WO2022092199A1 - Adhesive tape - Google Patents

Adhesive tape Download PDF

Info

Publication number
WO2022092199A1
WO2022092199A1 PCT/JP2021/039819 JP2021039819W WO2022092199A1 WO 2022092199 A1 WO2022092199 A1 WO 2022092199A1 JP 2021039819 W JP2021039819 W JP 2021039819W WO 2022092199 A1 WO2022092199 A1 WO 2022092199A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
weight
layer
material layer
adhesive tape
Prior art date
Application number
PCT/JP2021/039819
Other languages
French (fr)
Japanese (ja)
Inventor
明史 堀尾
泰志 石堂
誠 福山
妃那 安田
達哉 西垣
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020237000291A priority Critical patent/KR20230093413A/en
Priority to CN202180070684.0A priority patent/CN116367994A/en
Priority to JP2022507396A priority patent/JPWO2022092199A1/ja
Publication of WO2022092199A1 publication Critical patent/WO2022092199A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/366Applications of adhesives in processes or use of adhesives in the form of films or foils for mounting tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape

Definitions

  • the present invention relates to an adhesive tape.
  • Adhesive tapes are used for assembly in mobile electronic devices such as mobile phones and personal digital assistants (PDAs) (for example, Patent Documents 1 and 2). Adhesive tapes are also used for fixing in-vehicle electronic device parts such as in-vehicle panels to the vehicle body.
  • PDAs personal digital assistants
  • Adhesive tapes used for fixing portable electronic device parts, in-vehicle electronic device parts, and the like are required to have high adhesive strength and impact resistance that does not peel off even when impacted.
  • portable electronic devices, in-vehicle electronic devices, etc. tend to have more complicated shapes due to higher functionality. be.
  • the adhesive tape is required to have excellent flexibility to follow the shape of the adherend.
  • an adhesive tape having excellent flexibility and impact resistance for example, an adhesive tape using a foam base material obtained by foaming a polyolefin resin or the like is known.
  • electronic devices have been required to withstand repeated impacts (continuous impacts) due to harsher and diversified usage conditions, and conventional adhesive tapes using a foam base material have been used. Even if it does not peel off with a single impact, there is a problem that it peels off or the adherend is damaged when an impact such as dropping is repeatedly applied.
  • An object of the present invention is to provide an adhesive tape having excellent repeated impact resistance.
  • the present invention is an adhesive tape having a multilayer base material and an adhesive layer laminated on at least one surface of the multilayer base material, wherein the multilayer base material is a base material layer and the base material layer.
  • the base material layer has a resin layer laminated on at least one surface, and the storage elastic modulus E'in the dynamic viscoelastic measurement at 10 ° C. is 2.0 MPa or more and 21 MPa or less, and the resin layer.
  • the pressure-sensitive adhesive layer has a breaking elongation of 30% or more in the shear adhesive force measurement at 23 ° C. and is stored in the dynamic viscoelastic measurement at 10 ° C.
  • An adhesive tape having an elastic modulus G'of 0.13 MPa or more and 7.0 MPa or less. The present invention will be described in detail below.
  • an adhesive tape having a base material and an adhesive layer laminated on at least one surface of the base material the present inventors were laminated on the base material layer and at least one surface of the base material layer. It has been found that by using a multilayer base material having a resin layer, the resin layer plays a role of dispersing stress when an impact is applied, and the repeated impact resistance of the adhesive tape can be improved. The present inventors further analyzed the factors that affect the impact resistance repeatedly in such an adhesive tape. As a result, the present inventors have stored elastic modulus E'in the dynamic viscoelasticity measurement at 10 ° C. of the base material layer, Young's modulus at 23 ° C. of the resin layer, and shear adhesive force at 23 ° C. of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive tape of the present invention has a multilayer base material and a pressure-sensitive adhesive layer laminated on at least one surface of the multilayer base material.
  • the multilayer base material has a base material layer and a resin layer laminated on at least one surface of the base material layer.
  • the resin layer plays a role of dispersing stress when subjected to an impact, and the adhesive tape of the present invention can have excellent repeated impact resistance.
  • the resin layer may be laminated on only one surface of the base material layer or may be laminated on both sides, but it is preferable that the resin layer is laminated on only one surface of the base material layer. ..
  • the lower limit of the storage elastic modulus E'in the dynamic viscoelasticity measurement at 10 ° C. is 2.0 MPa, and the upper limit is 21 MPa.
  • the base material layer can have an appropriate hardness, and the adhesive tape of the present invention has excellent repeated impact resistance. be able to.
  • the storage elastic modulus E'at 10 ° C. is 21 MPa or less, the flexibility of the base material layer is improved, and the base material layer is too hard to disperse stress when subjected to an impact.
  • the adhesive tape of the present invention can have excellent repetitive impact resistance.
  • the storage elastic modulus E'in the dynamic viscoelasticity measurement at 10 ° C. of the base material layer is determined by using a viscoelasticity spectrometer (for example, manufactured by IT Measurement Control Co., Ltd., DVA-200, etc.) at a constant rate of temperature rise and tension. It can be obtained as a storage elastic modulus E'at 10 ° C. when a dynamic viscoelastic spectrum at ⁇ 40 to 140 ° C. is measured under the conditions of mode of 5 ° C./min, strain of 0.1%, and frequency of 10 Hz.
  • a viscoelasticity spectrometer for example, manufactured by IT Measurement Control Co., Ltd., DVA-200, etc.
  • the method for adjusting the storage elastic modulus E'at 10 ° C. to the above range is not particularly limited.
  • a method for adjusting the gel fraction of the base material layer, the base material layer is a foam base material layer.
  • a method of adjusting the type or amount of foamed particles a method of using a copolymer having a structure derived from a vinyl aromatic monomer and a structure derived from a (meth) acrylic monomer as described later in the base material layer. And so on.
  • the base material layer is not particularly limited as long as the storage elasticity E'at 10 ° C. satisfies the above range, but preferably contains a copolymer having a structure derived from a (meth) acrylic monomer. , It is more preferable to contain a copolymer having a structure derived from a vinyl aromatic monomer and a structure derived from a (meth) acrylic monomer. When the base material layer contains these copolymers, it becomes easy to adjust the storage elastic modulus E'at 10 ° C. to the above range, and the repeated impact resistance of the adhesive tape is further improved.
  • vinyl aromatic monomer examples include styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, 1-ethyl2-vinylbenzene, and 1-ethyl3-vinyl. Examples thereof include benzene, vinylnaphthalene and chlorostyrene. These vinyl aromatic monomers may be used alone or in combination of two or more. Of these, styrene is preferable because the repeated impact resistance of the adhesive tape is further improved.
  • the structure derived from the vinyl aromatic monomer refers to the structure represented by the following general formulas (1) and (2).
  • R 1 represents a substituent having an aromatic ring.
  • substituent R1 having an aromatic ring include a phenyl group, a methylphenyl group, a chlorophenyl group and the like.
  • the content of the structure derived from the vinyl aromatic monomer in the copolymer having the structure derived from the vinyl aromatic monomer and the structure derived from the (meth) acrylic monomer is not particularly limited, but is 1% by weight or more. It is preferably 30% by weight or less.
  • the content of the structure derived from the vinyl aromatic monomer is in the above range, the repeated impact resistance of the adhesive tape is further improved.
  • a more preferable lower limit of the content of the structure derived from the vinyl aromatic monomer is 1.5% by weight, a further preferable lower limit is 2% by weight, a further preferable lower limit is 3% by weight, and a particularly preferable lower limit is 3.5% by weight.
  • a more preferable upper limit is 15% by weight, and a further preferable upper limit is 8% by weight.
  • the copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer further has a structure derived from the monomer having a crosslinkable functional group.
  • a copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer has a crosslinkable functional group, the rubber elasticity of the copolymer is enhanced by cross-linking. It becomes easy to adjust the storage elastic coefficient E'at ° C to the above range, and the repeated impact resistance of the adhesive tape is further improved.
  • the crosslinkable functional group may or may not be crosslinked, but is more preferably crosslinked.
  • the structure derived from the monomer having a crosslinkable functional group refers to the structure represented by the following general formulas (3) and (4).
  • R 2 represents a substituent containing at least one functional group.
  • the functional group include a carboxyl group, a hydroxyl group, an epoxy group, a double bond, a triple bond, an amino group, an amide group, a nitrile group and the like.
  • the substituent R2 containing at least one functional group may contain an alkyl group, an ether group, a carbonyl group, an ester group, a carbonate group, an amide group, a urethane group and the like as its constituent elements.
  • the monomer having a crosslinkable functional group is not particularly limited, and for example, a carboxyl group-containing monomer, a hydroxyl group-containing monomer, an epoxy group-containing monomer, a double bond-containing monomer, a triple bond-containing monomer, an amino group-containing monomer, and an amide group-containing monomer. , A nitrile group-containing monomer and the like.
  • These crosslinkable functional groups may be used alone or in combination of two or more.
  • the group consists of a carboxyl group-containing monomer, a hydroxyl group-containing monomer, an epoxy group-containing monomer, a double bond-containing monomer, a triple bond-containing monomer, and an amide group-containing monomer. At least one selected is preferred.
  • the carboxyl group-containing monomer include (meth) acrylic acid-based monomers such as (meth) acrylic acid.
  • the hydroxyl group-containing monomer include 4-hydroxybutyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate.
  • the epoxy group-containing monomer include glycidyl (meth) acrylate and the like.
  • Examples of the double bond-containing monomer include allyl (meth) acrylate and hexanediol di (meth) acrylate.
  • Examples of the triple bond-containing monomer include propargyl (meth) acrylate and the like.
  • Examples of the amide group-containing monomer include (meth) acrylamide and the like. Of these, a carboxyl group-containing monomer and a hydroxyl group-containing monomer are preferable because the repeated impact resistance of the adhesive tape is further improved.
  • a (meth) acrylic acid-based monomer containing a carboxyl group and a (meth) acrylic acid-based monomer containing a hydroxyl group are more preferable, and (meth) acrylic acid, 4-hydroxybutyl (meth) acrylate, and 2-hydroxyethyl (meth) are preferable. Acrylic is more preferred.
  • the content of the structure derived from the crosslinkable functional group in the copolymer having the structure derived from the vinyl aromatic monomer and the structure derived from the (meth) acrylic monomer is not particularly limited, but is 0. It is preferably 1% by weight or more and 30% by weight or less.
  • the content of the structure derived from the monomer having a crosslinkable functional group is in the above range, the repeated impact resistance of the adhesive tape is further improved.
  • a more preferable lower limit of the content of the structure derived from the monomer having a crosslinkable functional group is 0.5% by weight, a further preferable lower limit is 1% by weight, a more preferable upper limit is 25% by weight, and a further preferable upper limit is 20% by weight. be.
  • the (meth) acrylic monomer may be a single monomer or may use a plurality of monomers.
  • the structure derived from the (meth) acrylic monomer refers to the structure represented by the following general formulas (5) and (6).
  • R 3 represents a side chain.
  • the side chain R 3 includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, a decyl group, a dodecyl group and a lauryl group. Examples thereof include an isostearyl group.
  • Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and heptyl (meth). Meta) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) acrylate, isostearyl (meth) acrylate And so on.
  • (meth) acrylic monomers may be used alone or in combination of two or more.
  • methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate are preferable because the repeated impact resistance of the adhesive tape is further improved.
  • Ethyl acrylates, butyl acrylates and 2-ethylhexyl acrylates are even more preferred.
  • the (meth) acrylic monomer it is preferable to use a (meth) acrylic monomer having 2 or less side chain carbon atoms.
  • the (meth) acrylic monomer having 2 or less side chain carbon atoms When the (meth) acrylic monomer having 2 or less side chain carbon atoms is used, the entanglement between the obtained copolymer chains is increased, the cohesive force is improved, and the storage elastic modulus E'at the above 10 ° C. is increased. It becomes easy to adjust to the above range, and the repeated impact resistance of the adhesive tape is further improved and the heat resistance is also improved.
  • Examples of the (meth) acrylic monomer having 2 or less side chain carbon atoms include methyl (meth) acrylate and ethyl (meth) acrylate, and methyl acrylate and ethyl acrylate are particularly preferable.
  • the content of the structure derived from the (meth) acrylic monomer in the copolymer having the structure derived from the vinyl aromatic monomer and the structure derived from the (meth) acrylic monomer is not particularly limited, and the content of the structure derived from the (meth) acrylic monomer is not particularly limited. The effect may be exhibited, but it is preferably 30% by weight or more and 99% by weight or less.
  • the content of the structure derived from the (meth) acrylic monomer is more preferably 40% by weight or more and 98% by weight or less, and further preferably 50% by weight or more and 97% by weight or less.
  • the content of the (meth) acrylic monomer having 2 or less side chain carbon atoms is particularly limited.
  • the preferred lower limit is 5% by weight and the preferred upper limit is 90% by weight.
  • the content of the (meth) acrylic monomer having 2 or less side chain carbon atoms is 5% by weight or more, the effect of improving the cohesive force is likely to be exhibited. If the content of the (meth) acrylic monomer having 2 or less side chain carbon atoms is 90% by weight or less, the cohesive force becomes too high, the flexibility becomes low, and the flexibility as an adhesive tape is lost. Can be prevented.
  • a more preferable lower limit of the content of the (meth) acrylic monomer having 2 or less side chain carbon atoms is 10% by weight, a further preferable lower limit is 20% by weight, a further preferable lower limit is 25% by weight, and a particularly preferable lower limit is 30% by weight.
  • the more preferable upper limit is 85% by weight, the further preferable upper limit is 80% by weight, the still more preferable upper limit is 75% by weight, and the particularly preferable upper limit is 70% by weight.
  • the copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer is not particularly limited as long as it has each structure as described above, and is a random copolymer. It may be a block copolymer or a block copolymer. From the viewpoint of further enhancing the flexibility of the base material layer, a random copolymer is preferable, and from the viewpoint of further enhancing the balance between the hardness and flexibility of the base material layer, a block copolymer is preferable.
  • the block copolymer is a copolymer containing a rigid structure (hereinafter, also referred to as "hard block”) and a flexible structure (hereinafter, also referred to as "soft block”).
  • the block copolymer may have a non-uniform phase-separated structure in which two blocks are difficult to be compatible with each other and islands formed by agglomeration of the hard blocks are scattered in the sea of the soft blocks. Since the islands serve as pseudo-crosslinking points, rubber elasticity can be imparted to the block copolymer, so that the repeated impact resistance of the adhesive tape is further improved.
  • the crosslinkable functional group as described above into the hard block, the repeated impact resistance of the adhesive tape is further improved.
  • the adhesive tape has excellent repeat impact resistance. be able to. It is considered that this is because the same interaction as the above-mentioned phase-separated structure works at a very small scale such as the nano level and the molecular level.
  • the block copolymer contains a structure derived from the vinyl aromatic monomer in the hard block and a structure derived from the (meth) acrylic monomer in the soft block.
  • the hard block is not particularly limited as long as it has a rigid structure, and in addition to the structure derived from the vinyl aromatic monomer, for example, a compound having a cyclic structure, a compound having a short side chain substituent, or the like can be used. It may have a derived structure.
  • the soft block may have a structure derived from a monomer other than the (meth) acrylic monomer as long as the effect of the present invention is not lost.
  • the block copolymer may have any structure such as a diblock structure or a triblock structure, but since the repeated impact resistance of the adhesive tape is further improved, the soft block between the hard blocks is further improved. It is preferable to have a triblock structure having.
  • the block copolymer may be a graft copolymer in which the hard block and the soft block are separated into a main chain and a side chain. Examples of the graft copolymer include a styrene macromer- (meth) acrylic monomer copolymer and the like.
  • the content of the hard block in the block copolymer is not particularly limited, but is preferably 1% by weight or more and 40% by weight or less.
  • the content of the hard block is in the above range, the repeated impact resistance of the adhesive tape is further improved and the heat resistance is also improved.
  • the more preferable lower limit of the content of the hard block is 2% by weight, the more preferable lower limit is 2.5% by weight, and the particularly preferable lower limit is 3% by weight.
  • a more preferable upper limit of the content of the hard block is 35% by weight, a further preferable upper limit is 30% by weight, a further preferable upper limit is 26% by weight, a further preferable upper limit is 20% by weight, and a particularly preferable upper limit is 17% by weight, particularly preferable.
  • the upper limit is 8% by weight.
  • the weight average molecular weight (Mw) of the copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer is not particularly limited, but is preferably 50,000 or more and 800,000 or less. ..
  • the more preferable lower limit of the weight average molecular weight is 75,000, and the more preferable upper limit is 600,000.
  • the weight average molecular weight can be determined, for example, by a GPC (Gel Permeation Chromatography) method in terms of standard polystyrene.
  • the raw material monomers of the hard block and the soft block are used in the presence of a polymerization initiator.
  • the hard block and the soft block may be obtained by radical reaction, respectively, and then the two may be reacted or copolymerized. Further, after obtaining the hard block, the raw material monomer of the soft block may be continuously added and copolymerized.
  • a solution mixed with the raw material monomers may be subjected to a radical reaction in the presence of a polymerization initiator.
  • the method for causing the radical reaction that is, the polymerization method
  • a conventionally known method is used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like.
  • the base material layer contains additives such as antistatic agents, mold release agents, antioxidants, weathering agents, and crystal nucleating agents, and resin modifiers such as polyolefins, polyesters, polyamides, and elastomers. good.
  • the base material layer has at least one peak in each of a region of 10 ° C. or lower and a region of 50 ° C. or higher when DSC measurement (differential scanning calorimetry) is performed in the atmosphere at a temperature rise rate of 10 ° C./min. It is preferable to have.
  • the base material layer has at least one peak in a region of 10 ° C. or lower and a region of 50 ° C. or higher when DSC measurement is performed, the base material layer is a block having two blocks as described above. It can be said that it contains a polymer. From the viewpoint of further enhancing the balance between the hardness and flexibility of the base material layer, it is preferable that the base material layer contains the block copolymer in this way.
  • the peak in the region of 10 ° C. or lower when the DSC measurement is performed may be referred to as the peak derived from the soft block, and the peak in the region of 50 ° C. or higher may be referred to as the peak derived from the hard block.
  • the peak region can be adjusted by the type of the raw material monomer of the hard block and the soft block.
  • a differential scanning calorimeter for example, manufactured by TA Instruments, DSC 2920, etc.
  • a temperature rise rate of 10 ° C./min a temperature rise rate of 10 ° C./min
  • the number of cycles is 1. It can be done under the condition of times.
  • the base material layer may have a single-layer structure or a multi-layer structure.
  • the base material layer is preferably a foam base material layer. Since the base material layer is the foam base material layer, the flexibility is improved, and it is possible to prevent the base material layer from being too hard to disperse stress when subjected to an impact. This further improves the repeated impact resistance of the adhesive tape.
  • the foam base material layer may have an open cell structure or a closed cell structure, but is preferably a closed cell structure.
  • the expansion ratio of the foam base material layer is not particularly limited, but the preferable lower limit is 1.1 times and the preferable upper limit is 10 times.
  • the foaming ratio is in the above range, the balance between the hardness and the flexibility of the foam base material layer can be further improved, so that the repeated impact resistance of the adhesive tape is further improved.
  • the more preferable lower limit of the foaming ratio is 1.3 times, the more preferable upper limit is 7 times, the further preferable lower limit is 1.5 times, and the further preferable upper limit is 5 times.
  • the foaming magnification of the foam base material layer is the reciprocal of the density of the foam base material layer, and is measured using an electronic hydrometer (for example, ED120T manufactured by Mirage Co., Ltd.) in accordance with JIS K 7222. can.
  • an electronic hydrometer for example, ED120T manufactured by Mirage Co., Ltd.
  • the average bubble diameter of the foam base material layer is not particularly limited, but is preferably 80 ⁇ m or less. When the average bubble diameter is 80 ⁇ m or less, the balance between the hardness and the flexibility of the foam base material layer can be further improved, so that the repeated impact resistance of the adhesive tape is further improved.
  • the average bubble diameter is more preferably 60 ⁇ m or less, and further preferably 55 ⁇ m or less.
  • the lower limit of the average cell diameter is not particularly limited, but is preferably 20 ⁇ m or more, and more preferably 30 ⁇ m or more, from the viewpoint of ensuring the flexibility of the foam base material layer.
  • the average bubble diameter of the foam base material layer can be measured by the following method.
  • the foam base material layer is cut into 50 mm squares, immersed in liquid nitrogen for 1 minute, and then cut in a plane perpendicular to the thickness direction of the foam base material layer using a razor blade. Then, using a digital microscope (for example, "VHX-900" manufactured by KEYENCE Corporation), a magnified photograph of the cut surface was taken at a magnification of 200 times, and the most bubbles existing in the range of thickness ⁇ 2 mm were taken. Measure a long bubble diameter (bubble diameter). This operation is repeated 5 times, and the average bubble diameter is calculated by averaging all the obtained bubble diameters.
  • VHX-900 manufactured by KEYENCE Corporation
  • the base material layer preferably has a gel fraction of 90% by weight or less.
  • the gel fraction of the base material layer is within the above range, the repeated impact resistance of the adhesive tape is further improved.
  • the more preferable upper limit of the gel fraction is 85% by weight, and the more preferable upper limit is 80% by weight.
  • the lower limit of the gel fraction is not particularly limited, but is, for example, 10% by weight or more, particularly 20% by weight or more, and particularly 35% by weight or more.
  • the gel fraction can be adjusted by cross-linking the resin constituting the base material layer.
  • the gel fraction of the base material layer can be measured by the following method.
  • the base material layer has a cross-linked structure formed between the main chains of the resin constituting the base material layer by adding a cross-linking agent.
  • a cross-linking agent By forming a crosslinked structure between the main chains of the resin constituting the base material layer, the stress applied intermittently can be dispersed, and the repeated impact resistance of the adhesive tape is further improved and the heat resistance is also improved. ..
  • the cross-linking agent is not particularly limited, and can be appropriately selected depending on the functional group of the resin constituting the base material layer. Specific examples thereof include isocyanate-based cross-linking agents, aziridine-based cross-linking agents, epoxy-based cross-linking agents, and metal chelate-type cross-linking agents. Among them, an epoxy-based cross-linking agent or an isocyanate-based cross-linking agent is preferable because a resin having an alcoholic hydroxyl group or a carboxyl group that can further improve flexibility can be cross-linked.
  • the isocyanate-based cross-linking agent When the isocyanate-based cross-linking agent is used, the alcoholic hydroxyl group or carboxyl group in the resin constituting the base material layer is crosslinked with the isocyanate group of the isocyanate-based cross-linking agent.
  • the epoxy-based cross-linking agent When the epoxy-based cross-linking agent is used, the carboxyl group in the resin constituting the base material layer and the epoxy group of the epoxy-based cross-linking agent are cross-linked.
  • the amount of the cross-linking agent added is not particularly limited, but is preferably 0.01 parts by weight or more and 10 parts by weight or less, preferably 0.1 parts by weight or more and 7 parts by weight with respect to 100 parts by weight of the resin constituting the base material layer. The following are more preferable.
  • the thickness of the base material layer is not particularly limited, but a preferable lower limit is 40 ⁇ m and a preferable upper limit is 2900 ⁇ m.
  • a preferable lower limit is 40 ⁇ m and a preferable upper limit is 2900 ⁇ m.
  • the adhesive tape can be used for portable electronic device parts and automobiles. It can be suitably used for fixing electronic device parts such as electronic device parts.
  • the more preferable lower limit of the thickness of the base material layer is 60 ⁇ m
  • the more preferable upper limit is 1900 ⁇ m
  • the further preferable lower limit is 80 ⁇ m
  • the further preferable upper limit is 1400 ⁇ m
  • the particularly preferable lower limit is.
  • 100 ⁇ m a particularly preferred upper limit is 1000 ⁇ m.
  • the method for producing the base material layer is not particularly limited.
  • examples of the method for producing the foam base material layer include a method of producing by the action of foaming gas and a method of producing by blending hollow spheres in a raw material matrix.
  • the foam base material layer produced by the latter method is called syntactic foam, and is excellent in strength, flexibility and heat resistance. Therefore, the foam base material layer may be syntactic foam. preferable.
  • the foam base material layer is syntactic foam, it becomes a closed cell type foam having a uniform size distribution, so that the density of the entire foam base material layer becomes more constant, and the strength, flexibility and Heat resistance is further improved.
  • syntactic foam exhibits higher heat resistance than other foams because it is less likely to cause irreversible disintegration under high temperature and high pressure.
  • Syntactic foam includes those having a foamed structure made of hollow inorganic particles and those having a foamed structure made of hollow organic particles. From the viewpoint of flexibility, syntactic foam having a foamed structure made of hollow organic particles. Foam is preferred.
  • Examples of the hollow organic particles include Expancel DU series (manufactured by Nippon Philite Co., Ltd.), Advancel EM series (manufactured by Sekisui Chemical Co., Ltd.) and the like. Among them, since it is easy to design the bubble diameter after foaming in a region with higher effect, Expandel 461-DU-20 (average bubble diameter after foaming under optimum conditions 20 ⁇ m), Expandel 461-DU- 40 (average cell diameter after foaming under optimum conditions 40 ⁇ m), Expandel 043-80 (average cell diameter after foaming under optimum conditions 80 ⁇ m), Advansel EML101 (average cell diameter after foaming under optimum conditions 50 ⁇ m) ) Is preferable.
  • the content of the hollow organic particles is not particularly limited, but the preferable lower limit is 0.1 parts by weight, the preferable upper limit is 10 parts by weight, and the more preferable lower limit is 0 with respect to 100 parts by weight of the resin constituting the foam base material layer. .3 parts by weight, more preferably 7 parts by weight.
  • the expansion ratio of the foam base material layer can be adjusted in an appropriate range.
  • the foaming agent is not particularly limited, and a conventionally known foaming agent such as a pyrolytic foaming agent can be used.
  • the resin layer has a lower limit of Young's modulus at 23 ° C. of 500 MPa.
  • the preferred lower limit of Young's modulus at 23 ° C. is 1000 MPa, and the more preferable lower limit is 2000 MPa.
  • the upper limit of the Young's modulus at 23 ° C. is not particularly limited, but from the viewpoint of ensuring flexibility, a preferable upper limit is 4000 MPa, and a more preferable upper limit is 3000 MPa.
  • a desktop precision universal testing machine for example, Shimadzu Corporation, Autograph AGS-X series, etc.
  • JIS-K-7161 JIS-K-7161.
  • a test piece cut into a width of 10 mm and a length of 100 mm is chucked at an interval of 50 mm, and a stress-strain curve when pulled at a speed of 200 mm / min is measured, and the strain is from 1% to 5%. Young's modulus can be obtained by calculating the average slope.
  • the method of adjusting the Young's modulus at 23 ° C. to the above range is not particularly limited, and examples thereof include a method of selecting a resin constituting the resin layer. More specifically, it is preferable to select a resin having a rigid component such as an aromatic ring in the main chain.
  • the resin constituting the resin layer preferably has heat resistance.
  • the resin constituting the heat-resistant resin layer include polyester resins such as polyethylene terephthalate, acrylic resins, silicone resins, phenol resins, polyimides, polycarbonates, and polyolefin resins. Among them, polyester-based resin, polyimide, and polyolefin resin are preferable, polyester-based resin is more preferable, and polyethylene terephthalate is further preferable, because the repeated impact resistance of the adhesive tape is further improved.
  • the resin layer may be colored.
  • coloring the resin layer it is possible to impart light-shielding properties to the adhesive tape.
  • the method of coloring the resin layer is not particularly limited, and for example, a method of kneading particles such as carbon black or titanium oxide or fine bubbles into the resin constituting the resin layer, or applying ink to the surface of the resin layer. The method and the like can be mentioned.
  • the resin layer may contain conventionally known particles and additives such as inorganic particles, conductive particles, plasticizers, tackifiers, ultraviolet absorbers, antioxidants, foaming agents, organic fillers, and inorganic fillers, if necessary. May be contained.
  • the thickness of the resin layer is not particularly limited, but the preferred lower limit is 5 ⁇ m and the preferred upper limit is 100 ⁇ m.
  • the thickness of the resin layer is not particularly limited, but the preferred lower limit is 5 ⁇ m and the preferred upper limit is 100 ⁇ m.
  • the more preferable lower limit of the thickness of the resin layer is 10 ⁇ m, and the more preferable upper limit is 70 ⁇ m.
  • the pressure-sensitive adhesive layer may be laminated on only one surface of the multilayer base material, or may be laminated on both sides.
  • the pressure-sensitive adhesive layers on both sides may have the same composition and physical properties, or may have different compositions and physical properties.
  • the pressure-sensitive adhesive layer has a lower limit of breaking elongation of 30% in the shear adhesive force measurement at 23 ° C.
  • the preferable lower limit of the elongation at break at 23 ° C. is 35%.
  • the upper limit of the elongation at break at 23 ° C. is not particularly limited, but from the viewpoint of ensuring strength, the preferable upper limit is 80%, and the more preferable upper limit is 70%.
  • test piece is based on JIS-Z-0237, and is a tabletop precision universal testing machine (for example, Autograph AGS-X manufactured by Shimadzu Corporation). It can be calculated as follows using the series etc.).
  • two polycarbonate plates of 55 mm ⁇ 65 mm ⁇ thickness of 1 mm are attached to both sides of the test piece and pressed at 10 kg for 10 seconds to bond the two polycarbonate plates. Then, the mixture is allowed to stand at 23 ° C. for 3 hours to obtain a test sample.
  • test sample was pulled in the length direction of the test piece at a speed of 500 mm / min under the above-mentioned device in an environment of 23 ° C., and the tensile elongation when the test piece broke was recorded, and the elongation rate with respect to the length of the test piece was recorded.
  • the breaking elongation in the shear adhesive force measurement of the adhesive layer at 23 ° C. is calculated.
  • the elongation at break in the shear adhesive force measurement is dominated by the influence of the most stretchable layer when the laminated body is the measurement target. Even if a layer having a small elongation due to a shearing force is included in the laminate to be measured, the presence of a layer having a small elongation due to a shearing force does not significantly affect the overall value. Therefore, when it is difficult to adjust the above-mentioned test piece, the breaking elongation of the most stretchable layer can be estimated by performing the same measurement on the laminated body itself.
  • the preferable lower limit of the gel fraction is 10% by weight, and the preferable upper limit is 90% by weight.
  • the gel fraction is 10% by weight or more, the adhesive layer is less likely to be deformed when subjected to an impact, and the repeated impact resistance of the adhesive tape is further improved.
  • the gel fraction is 90% by weight or less, the flexibility of the pressure-sensitive adhesive layer is improved, and it is possible to prevent the pressure-sensitive adhesive layer from being too hard to disperse stress when subjected to an impact. .. This further improves the repeated impact resistance of the adhesive tape.
  • the more preferable lower limit of the gel fraction is 20% by weight, and the more preferable upper limit is 80% by weight.
  • the gel fraction of the pressure-sensitive adhesive layer can be measured by the same method as the gel fraction of the base material layer.
  • the lower limit of the storage elastic modulus G'in the dynamic viscoelasticity measurement at 10 ° C. is 0.13 MPa
  • the upper limit is 7.0 MPa.
  • the storage elastic modulus G'at 10 ° C. is 0.13 MPa or more
  • the adhesive layer is less likely to be deformed when subjected to an impact, and the repeated impact resistance of the adhesive tape is further improved.
  • the storage elastic modulus G'at 10 ° C. is 7.0 MPa or less
  • the flexibility of the pressure-sensitive adhesive layer is improved, and the pressure-sensitive adhesive layer is too hard to disperse stress when subjected to an impact. You can prevent that. This further improves the repeated impact resistance of the adhesive tape.
  • the preferable lower limit of the storage elastic modulus G'at 10 ° C. of the pressure-sensitive adhesive layer is 0.25 MPa, the preferable upper limit is 5.0 MPa, the more preferable lower limit is 0.3 MPa, and the more preferable upper limit is 4.0 MPa.
  • the storage elastic modulus G'at 10 ° C. of the pressure-sensitive adhesive layer can be measured by the same method as the storage elastic modulus of the base material layer except that it is measured in the constant-speed temperature-increasing shear mode.
  • the method for adjusting the breaking elongation at 23 ° C., the gel fraction, and the storage elastic modulus G'at 10 ° C. within the above ranges is not particularly limited, and for example, the resin constituting the pressure-sensitive adhesive layer and the addition thereof. Examples include a method of selecting an agent. More specifically, as the pressure-sensitive adhesive layer, it is preferable to use an acrylic pressure-sensitive adhesive layer containing an acrylic copolymer, a pressure-imparting resin, and a cross-linking agent as described later.
  • the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include an acrylic pressure-sensitive adhesive layer, a rubber-based pressure-sensitive adhesive layer, a urethane pressure-sensitive adhesive layer, and a silicone-based pressure-sensitive adhesive layer.
  • an acrylic pressure-sensitive adhesive layer containing an acrylic copolymer is preferable because it has excellent heat resistance and can be adhered to a wide variety of adherends.
  • the acrylic copolymer can be obtained by copolymerizing a monomer mixture containing butyl acrylate and / or 2-ethylhexyl acrylate from the viewpoint of improving the initial tack and making it easy to attach at low temperature. preferable. Above all, it is more preferable to obtain it by copolymerizing a monomer mixture containing butyl acrylate and 2-ethylhexyl acrylate.
  • the preferable lower limit of the content of the butyl acrylate in the total monomer mixture is 40% by weight, and the preferable upper limit is 80% by weight.
  • the preferable lower limit of the content of the 2-ethylhexyl acrylate in the total monomer mixture is 10% by weight, and the preferable upper limit is 100% by weight.
  • the monomer mixture may contain other copolymerizable monomers other than butyl acrylate and 2-ethylhexyl acrylate, if necessary.
  • the other copolymerizable monomer include (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms in the alkyl group, functional monomers and the like.
  • the (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms in the alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth) acrylic acid.
  • Examples thereof include isopropyl, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, tridecyl methacrylate, and stearyl (meth) acrylate.
  • Examples of the functional monomer include hydroxyalkyl (meth) acrylate, alkoxyalkyl (meth) acrylate, glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, and itaconic acid. , Maleic anhydride, crotonic acid, maleic acid, fumaric acid and the like.
  • the monomer mixture may be subjected to a radical reaction in the presence of a polymerization initiator.
  • a method of radically reacting the monomer mixture that is, a polymerization method
  • a conventionally known method is used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like.
  • the weight average molecular weight (Mw) of the acrylic copolymer is not particularly limited, but the preferable lower limit is 400,000 and the preferable upper limit is 1.5 million. By setting the weight average molecular weight of the acrylic copolymer in the above range, high adhesive strength can be exhibited. From the viewpoint of further improving the adhesive strength, the more preferable lower limit of the weight average molecular weight is 500,000, and the more preferable upper limit is 1.4 million.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the acrylic copolymer is preferably 10.0.
  • Mw / Mn is 10.0 or less, the ratio of the small molecule component is suppressed, the pressure-sensitive adhesive layer is softened at a high temperature, the bulk strength is lowered, and the adhesive strength is suppressed.
  • the more preferable upper limit of Mw / Mn is 5.0, and the more preferable upper limit is 3.0.
  • the pressure-sensitive adhesive layer may contain a pressure-sensitive adhesive resin.
  • the tackifier resin include rosin ester resin, hydrogenated rosin resin, terpene resin, terpene phenol resin, Kumaron inden resin, alicyclic saturated hydrocarbon resin, C5 petroleum resin, and C9 resin. Examples thereof include petroleum resins and C5-C9 copolymerized petroleum resins. These tackifier resins may be used alone or in combination of two or more.
  • the content of the tackifier resin is not particularly limited, but the preferable lower limit is 10 parts by weight and the preferable upper limit is 60 parts by weight with respect to 100 parts by weight of the resin (for example, acrylic copolymer) which is the main component of the pressure-sensitive adhesive layer. ..
  • the resin for example, acrylic copolymer
  • the content of the pressure-sensitive adhesive resin is 10 parts by weight or more, the pressure-sensitive adhesive layer can exhibit high adhesive strength.
  • the content of the pressure-sensitive adhesive resin is 60 parts by weight or less, it is possible to suppress a decrease in adhesive strength or tackiness due to the hardening of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer has a cross-linked structure formed between the main chains of the resin (for example, the acrylic copolymer, the pressure-sensitive adhesive resin, etc.) constituting the pressure-sensitive adhesive layer by adding a cross-linking agent.
  • a cross-linking agent for example, the acrylic copolymer, the pressure-sensitive adhesive resin, etc.
  • the above-mentioned cross-linking agent is not particularly limited, and examples thereof include an isocyanate-based cross-linking agent, an aziridine-based cross-linking agent, an epoxy-based cross-linking agent, and a metal chelate-type cross-linking agent. Of these, isocyanate-based cross-linking agents are preferable.
  • the isocyanate group of the isocyanate-based cross-linking agent and the alcohol in the resin constituting the pressure-sensitive adhesive layer (for example, the acrylic copolymer, the pressure-sensitive adhesive resin, etc.)
  • the pressure-sensitive adhesive layer is crosslinked by reacting with the sex hydroxylate.
  • the amount of the cross-linking agent added is preferably 0.01 to 10 parts by weight, preferably 0.1 to 7 parts by weight, based on 100 parts by weight of the resin (for example, the acrylic copolymer) which is the main component of the pressure-sensitive adhesive layer. Is more preferable.
  • the pressure-sensitive adhesive layer may contain a silane coupling agent for the purpose of improving the pressure-sensitive adhesive force.
  • the silane coupling agent is not particularly limited, and examples thereof include epoxysilanes, acrylicsilanes, methacrylsilanes, aminosilanes, and isocyanatesilanes.
  • the pressure-sensitive adhesive layer may contain a coloring material for the purpose of imparting light-shielding properties.
  • the coloring material is not particularly limited, and examples thereof include carbon black, aniline black, and titanium oxide. Of these, carbon black is preferable because it is relatively inexpensive and chemically stable.
  • the pressure-sensitive adhesive layer may contain conventionally known particles and additives such as inorganic particles, conductive particles, antioxidants, foaming agents, organic fillers, and inorganic fillers, if necessary.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but a preferable lower limit is 0.01 mm, a preferable upper limit is 0.1 mm, a more preferable lower limit is 0.015 mm, and a more preferable upper limit is 0.09 mm.
  • a preferable lower limit is 0.01 mm
  • a preferable upper limit is 0.1 mm
  • a more preferable lower limit is 0.015 mm
  • a more preferable upper limit is 0.09 mm.
  • the adhesive tape of the present invention preferably has a lower limit of breaking elongation of 30% in the shear adhesive force measurement at 23 ° C.
  • the breaking elongation of the adhesive tape of the present invention in the shear adhesive force measurement at 23 ° C. can be adjusted, for example, by changing the breaking elongation in the shear adhesive force measurement of the pressure-sensitive adhesive layer at 23 ° C.
  • the thickness of the entire adhesive tape of the present invention is not particularly limited, but a preferable lower limit is 0.04 mm, a more preferable lower limit is 0.05 mm, a preferable upper limit is 2 mm, and a more preferable upper limit is 1.5 mm.
  • a preferable lower limit is 0.04 mm
  • a more preferable lower limit is 0.05 mm
  • a preferable upper limit is 2 mm
  • a more preferable upper limit is 1.5 mm.
  • the method for producing the adhesive tape of the present invention is not particularly limited, and examples thereof include the following methods. First, a pressure-sensitive adhesive solution is applied to a release film and dried to form a pressure-sensitive adhesive layer. Next, an unfoamed base material layer is manufactured, and a resin layer is laminated on the unfoamed base material layer to form a laminate. Then, an adhesive layer is attached to both sides of the obtained laminate, and the unfoamed base material is foamed by heating to form a foam base material layer, and an adhesive tape is manufactured.
  • the use of the adhesive tape of the present invention is not particularly limited, but it is preferably used for assembling or fixing electronic device parts such as portable electronic device parts and in-vehicle electronic device parts because it is excellent in repeated impact resistance.
  • Example 1 Production of unfoamed substrate layer 0.902 g of 1,6-hexanedithiol, 1.83 g of carbon disulfide, and 11 mL of dimethylformamide were placed in a two-necked flask and stirred at 25 ° C. To this, 2.49 g of triethylamine was added dropwise over 15 minutes, and the mixture was stirred at 25 ° C. for 3 hours. Then, 2.75 g of methyl- ⁇ -bromophenylacetic acid was added dropwise over 15 minutes, and the mixture was stirred at 25 ° C. for 4 hours.
  • the blending amount of the mixture was adjusted so that the content of the hard block in the obtained block copolymer was 3% by weight and the content of the soft block was 97% by weight.
  • a part of the reaction solution is collected, 4000 parts by weight of n-hexane is added thereto, and the mixture is stirred to precipitate the reaction product, then the unreacted monomer and solvent are filtered, and the reaction product is dried under reduced pressure at 70 ° C.
  • the block copolymer was obtained.
  • the weight average molecular weight of the obtained block copolymer was measured by the GPC method and found to be 390,000.
  • the obtained block copolymer was dissolved in ethyl acetate so that the solid content was 35%.
  • ethyl acetate For 100 parts by weight of the block copolymer, 3.3 parts by weight of Expandel 461-DU-40 (461DU40) (manufactured by Nippon Philite) as a foaming agent (foaming particles) and Tetrad C (Mitsubishi Gas Chemical Company) as a cross-linking agent. (Manufactured by the same company) 0.15 parts by weight was added and further sufficiently stirred to obtain a foam substrate layer solution.
  • Expandel 461-DU-40 461DU40
  • Tetrad C Mitsubishi Gas Chemical Company
  • the obtained foam base material layer solution was applied onto a corona-treated surface of a resin film as the resin layer I (a polyethylene terephthalate (PET) film having a thickness of 23 ⁇ m with one side treated with corona, and a Young's modulus of 2026 MPa at 23 ° C.). After coating and drying at 90 ° C. for 7 minutes, a laminate of the unfoamed base material layer A and the resin layer I was obtained. The thickness of the unfoamed base material layer A was adjusted to 127 ⁇ m when the unfoamed base material layer A was allowed to stand in an environment of 40 ° C. for 48 hours and then heated at 130 ° C. for 1 minute.
  • a resin film as the resin layer I a polyethylene terephthalate (PET) film having a thickness of 23 ⁇ m with one side treated with corona, and a Young's modulus of 2026 MPa at 23 ° C.
  • the weight average molecular weight of the obtained acrylic copolymer was measured by the GPC method using "2690 Separations Model" manufactured by Waters as a column, and it was 910,000. With respect to 100 parts by weight of the solid content of the acrylic copolymer contained in the obtained solution of the acrylic copolymer, 15 parts by weight of the polymerized rosin ester resin having a softening point of 135 ° C. and the terpenephenol resin 10 having a softening point of 160 ° C. By weight, 10 parts by weight of a rosin ester resin having a softening point of 75 ° C. was added.
  • test sample was pulled in the length direction of the test piece at a speed of 500 mm / min under the above-mentioned device in an environment of 23 ° C., and the tensile elongation when the test piece broke was recorded, and the elongation rate with respect to the length of the test piece was recorded.
  • the elongation at break in the shear adhesive force measurement of the adhesive layer at 23 ° C. was calculated.
  • Examples 2 to 20, Comparative Examples 1 to 7 An adhesive tape was obtained in the same manner as in Example 1 except that the base material layer (foam base material layer), the pressure-sensitive adhesive layer, and the resin layer were changed as shown in Tables 4 to 5.
  • the details of the base material layer (foam base material layer) are shown in Table 1, the details of the pressure-sensitive adhesive layer are shown in Table 2, and the details of the resin layer are shown in Table 3.
  • the AS-6S (styrene macromonomer solution (50% toluene solution) manufactured by Toa Synthetic Co., Ltd.) of the base material layer (foam base material layer R) used in Comparative Example 7 shows the amount of styrene macromonomer solid in the table. It was adjusted and used so as to have the stated value.
  • the raw materials in the table are as follows.
  • the test sample is placed in a TD-1000A drum type rotary drop tester (manufactured by Shinei Denshi Keiki Co., Ltd.) and rotated at a speed of 12 rpm while maintaining a room temperature environment of 23 ° C. to rotate the test sample to 1 m. It was repeatedly dropped from the height of.
  • the case where the number of drops when the polycarbonate plate was peeled off was more than 1500 times was evaluated as ⁇
  • the case where the number of drops was more than 1000 times and 1500 times or less was evaluated as ⁇
  • the case where the number of drops was 1000 times or less was evaluated as x.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The purpose of the present invention is to provide an adhesive tape having exceptional repeated shock resistance. The present invention is an adhesive tape having a multilayer substrate and an adhesive agent layer that is layered on at least one surface of the multilayer substrate, wherein: the multilayer substrate has a substrate layer and a resin layer that is layered on at least one surface of the substrate layer; the storage elastic modulus E' of the substrate layer in measurement of dynamic viscoelasticity at 10°C is 2.0-21 MPa (inclusive); the Young's modulus of the resin layer at 23°C is 500 MPa or greater; and the fracture elongation of the adhesive agent layer in measurement of shear adhesive power at 23°C is 30% or greater, and the storage elastic modulus G' of the adhesive agent layer in measurement of dynamic viscoelasticity at 10°C is 0.13-7.0 MPa (inclusive).

Description

粘着テープAdhesive tape
本発明は、粘着テープに関する。 The present invention relates to an adhesive tape.
携帯電話、携帯情報端末(Personal Digital Assistants、PDA)等の携帯電子機器においては、組み立てのために粘着テープが用いられている(例えば、特許文献1、2)。また、車載用パネル等の車載用電子機器部品を車両本体に固定する用途にも粘着テープが用いられている。 Adhesive tapes are used for assembly in mobile electronic devices such as mobile phones and personal digital assistants (PDAs) (for example, Patent Documents 1 and 2). Adhesive tapes are also used for fixing in-vehicle electronic device parts such as in-vehicle panels to the vehicle body.
特開2009-242541号公報Japanese Unexamined Patent Publication No. 2009-242541 特開2009-258274号公報Japanese Unexamined Patent Publication No. 2009-258274
携帯電子機器部品、車載用電子機器部品等の固定に用いられる粘着テープには、高い粘着力が求められるとともに衝撃によっても剥離しない耐衝撃性が求められる。一方、近年の携帯電子機器、車載用電子機器等は、高機能化に伴って形状がより複雑化する傾向にあるため、段差、角、非平面部等に粘着テープを貼り付けて用いることがある。このような場合、粘着テープには被着体の形状に追従できる優れた柔軟性が要求される。 Adhesive tapes used for fixing portable electronic device parts, in-vehicle electronic device parts, and the like are required to have high adhesive strength and impact resistance that does not peel off even when impacted. On the other hand, in recent years, portable electronic devices, in-vehicle electronic devices, etc. tend to have more complicated shapes due to higher functionality. be. In such a case, the adhesive tape is required to have excellent flexibility to follow the shape of the adherend.
柔軟性と耐衝撃性とに優れた粘着テープとして、例えば、ポリオレフィン樹脂等を発泡させた発泡体基材を用いた粘着テープが知られている。しかしながら、近年、電子機器は、使用条件の過酷化、多様化等によって繰り返しの衝撃(連続的な衝撃)に耐え得ることが求められており、従来の発泡体基材を用いた粘着テープでは、単発の衝撃では剥離しなくとも、落下等の衝撃を繰り返し与えた際には剥離したり被着体の破損が生じたりするという問題がある。 As an adhesive tape having excellent flexibility and impact resistance, for example, an adhesive tape using a foam base material obtained by foaming a polyolefin resin or the like is known. However, in recent years, electronic devices have been required to withstand repeated impacts (continuous impacts) due to harsher and diversified usage conditions, and conventional adhesive tapes using a foam base material have been used. Even if it does not peel off with a single impact, there is a problem that it peels off or the adherend is damaged when an impact such as dropping is repeatedly applied.
本発明は、繰り返し耐衝撃性に優れた粘着テープを提供することを目的とする。 An object of the present invention is to provide an adhesive tape having excellent repeated impact resistance.
本発明は、多層基材と、上記多層基材の少なくとも一方の面に積層された粘着剤層とを有する粘着テープであって、上記多層基材は、基材層と、上記基材層の少なくとも一方の面に積層された樹脂層とを有し、上記基材層は、10℃での動的粘弾性測定における貯蔵弾性率E’が2.0MPa以上、21MPa以下であり、上記樹脂層は、23℃でのヤング率が500MPa以上であり、上記粘着剤層は、23℃でのせん断粘着力測定における破断伸度が30%以上であり、10℃での動的粘弾性測定における貯蔵弾性率G’が0.13MPa以上、7.0MPa以下である粘着テープである。
以下に本発明を詳述する。
The present invention is an adhesive tape having a multilayer base material and an adhesive layer laminated on at least one surface of the multilayer base material, wherein the multilayer base material is a base material layer and the base material layer. The base material layer has a resin layer laminated on at least one surface, and the storage elastic modulus E'in the dynamic viscoelastic measurement at 10 ° C. is 2.0 MPa or more and 21 MPa or less, and the resin layer. Has a Young modulus of 500 MPa or more at 23 ° C., and the pressure-sensitive adhesive layer has a breaking elongation of 30% or more in the shear adhesive force measurement at 23 ° C. and is stored in the dynamic viscoelastic measurement at 10 ° C. An adhesive tape having an elastic modulus G'of 0.13 MPa or more and 7.0 MPa or less.
The present invention will be described in detail below.
本発明者らは、基材と、該基材の少なくとも一方の面に積層された粘着剤層とを有する粘着テープにおいて、基材層と、該基材層の少なくとも一方の面に積層された樹脂層とを有する多層基材を用いることで、衝撃を受けた際に樹脂層が応力を分散させる役割を果たし、粘着テープの繰り返し耐衝撃性を向上できることを見出した。
本発明者らは、このような粘着テープにおいて、繰り返し耐衝撃性に影響を与える因子について更に分析を行った。その結果、本発明者らは、基材層の10℃での動的粘弾性測定における貯蔵弾性率E’、樹脂層の23℃でのヤング率、粘着剤層の23℃でのせん断粘着力測定における破断伸度及び10℃での動的粘弾性測定における貯蔵弾性率G’を特定範囲に調整することにより、粘着テープの繰り返し耐衝撃性を更に大きく向上できることを見出した。これにより、本発明を完成させるに至った。
In an adhesive tape having a base material and an adhesive layer laminated on at least one surface of the base material, the present inventors were laminated on the base material layer and at least one surface of the base material layer. It has been found that by using a multilayer base material having a resin layer, the resin layer plays a role of dispersing stress when an impact is applied, and the repeated impact resistance of the adhesive tape can be improved.
The present inventors further analyzed the factors that affect the impact resistance repeatedly in such an adhesive tape. As a result, the present inventors have stored elastic modulus E'in the dynamic viscoelasticity measurement at 10 ° C. of the base material layer, Young's modulus at 23 ° C. of the resin layer, and shear adhesive force at 23 ° C. of the pressure-sensitive adhesive layer. It has been found that the repeated impact resistance of the adhesive tape can be further greatly improved by adjusting the breaking elongation in the measurement and the storage elastic modulus G'in the dynamic viscoelasticity measurement at 10 ° C. to a specific range. This has led to the completion of the present invention.
本発明の粘着テープは、多層基材と、上記多層基材の少なくとも一方の面に積層された粘着剤層とを有する。
上記多層基材は、基材層と、上記基材層の少なくとも一方の面に積層された樹脂層とを有する。このような多層基材を有することにより、衝撃を受けた際に上記樹脂層が応力を分散させる役割を果たし、本発明の粘着テープは、優れた繰り返し耐衝撃性を有することができる。上記樹脂層は、上記基材層の一方の面のみに積層されていてもよいし、両面に積層されていてもよいが、上記基材層の一方の面のみに積層されていることが好ましい。
The pressure-sensitive adhesive tape of the present invention has a multilayer base material and a pressure-sensitive adhesive layer laminated on at least one surface of the multilayer base material.
The multilayer base material has a base material layer and a resin layer laminated on at least one surface of the base material layer. By having such a multilayer base material, the resin layer plays a role of dispersing stress when subjected to an impact, and the adhesive tape of the present invention can have excellent repeated impact resistance. The resin layer may be laminated on only one surface of the base material layer or may be laminated on both sides, but it is preferable that the resin layer is laminated on only one surface of the base material layer. ..
上記基材層は、10℃での動的粘弾性測定における貯蔵弾性率E’の下限が2.0MPa、上限が21MPaである。
上記10℃での貯蔵弾性率E’が2.0MPa以上であることで、上記基材層が適度な硬さを有することができ、本発明の粘着テープは、優れた繰り返し耐衝撃性を有することができる。上記10℃での貯蔵弾性率E’が21MPa以下であることで、上記基材層の柔軟性が向上して、衝撃を受けた際に上記基材層が硬すぎて応力を分散できなくなることを防ぐことができ、本発明の粘着テープは、優れた繰り返し耐衝撃性を有することができる。上記10℃での貯蔵弾性率E’の好ましい下限は2.1MPa、好ましい上限は12.0MPaであり、より好ましい下限は2.2MPa、より好ましい上限は11.5MPaであり、更に好ましい下限は2.5MPa、更に好ましい上限は9.6MPaである。
なお、基材層の10℃での動的粘弾性測定における貯蔵弾性率E’は、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200等)を用い、定速昇温引張モードの5℃/分、歪0.1%、周波数10Hzの条件で-40~140℃の動的粘弾性スペクトルを測定したときの、10℃の貯蔵弾性率E’として得ることができる。
In the base material layer, the lower limit of the storage elastic modulus E'in the dynamic viscoelasticity measurement at 10 ° C. is 2.0 MPa, and the upper limit is 21 MPa.
When the storage elastic modulus E'at 10 ° C. is 2.0 MPa or more, the base material layer can have an appropriate hardness, and the adhesive tape of the present invention has excellent repeated impact resistance. be able to. When the storage elastic modulus E'at 10 ° C. is 21 MPa or less, the flexibility of the base material layer is improved, and the base material layer is too hard to disperse stress when subjected to an impact. The adhesive tape of the present invention can have excellent repetitive impact resistance. The preferable lower limit of the storage elastic modulus E'at 10 ° C. is 2.1 MPa, the preferable upper limit is 12.0 MPa, the more preferable lower limit is 2.2 MPa, the more preferable upper limit is 11.5 MPa, and the further preferable lower limit is 2. It is 5.5 MPa, and a more preferable upper limit is 9.6 MPa.
The storage elastic modulus E'in the dynamic viscoelasticity measurement at 10 ° C. of the base material layer is determined by using a viscoelasticity spectrometer (for example, manufactured by IT Measurement Control Co., Ltd., DVA-200, etc.) at a constant rate of temperature rise and tension. It can be obtained as a storage elastic modulus E'at 10 ° C. when a dynamic viscoelastic spectrum at −40 to 140 ° C. is measured under the conditions of mode of 5 ° C./min, strain of 0.1%, and frequency of 10 Hz.
上記10℃での貯蔵弾性率E’を上記範囲に調整する方法は特に限定されず、例えば、上記基材層のゲル分率を調整する方法、上記基材層が発泡体基材層である場合に発泡粒子の種類又は量を調整する方法、上記基材層に、後述するようなビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体を用いる方法等が挙げられる。 The method for adjusting the storage elastic modulus E'at 10 ° C. to the above range is not particularly limited. For example, a method for adjusting the gel fraction of the base material layer, the base material layer is a foam base material layer. In some cases, a method of adjusting the type or amount of foamed particles, a method of using a copolymer having a structure derived from a vinyl aromatic monomer and a structure derived from a (meth) acrylic monomer as described later in the base material layer. And so on.
上記基材層は、上記10℃での貯蔵弾性率E’が上記範囲を満たしていれば特に限定されないが、(メタ)アクリル系モノマーに由来する構造を有する共重合体を含有することが好ましく、ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体を含有することがより好ましい。上記基材層がこれらの共重合体を含有することにより、上記10℃での貯蔵弾性率E’を上記範囲に調整することが容易となり、粘着テープの繰り返し耐衝撃性がより向上する。 The base material layer is not particularly limited as long as the storage elasticity E'at 10 ° C. satisfies the above range, but preferably contains a copolymer having a structure derived from a (meth) acrylic monomer. , It is more preferable to contain a copolymer having a structure derived from a vinyl aromatic monomer and a structure derived from a (meth) acrylic monomer. When the base material layer contains these copolymers, it becomes easy to adjust the storage elastic modulus E'at 10 ° C. to the above range, and the repeated impact resistance of the adhesive tape is further improved.
上記ビニル芳香族モノマーとしては例えば、スチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、1-エチル2-ビニルベンゼン、1-エチル3-ビニルベンゼン、ビニルナフタレン、クロロスチレン等が挙げられる。これらのビニル芳香族モノマーは単独で用いられてもよく、2種以上が併用されてもよい。なかでも、粘着テープの繰り返し耐衝撃性がより向上することから、スチレンが好ましい。なお、本明細書においてビニル芳香族モノマーに由来する構造とは、下記一般式(1)及び(2)に示すような構造のことを指す。 Examples of the vinyl aromatic monomer include styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, 1-ethyl2-vinylbenzene, and 1-ethyl3-vinyl. Examples thereof include benzene, vinylnaphthalene and chlorostyrene. These vinyl aromatic monomers may be used alone or in combination of two or more. Of these, styrene is preferable because the repeated impact resistance of the adhesive tape is further improved. In the present specification, the structure derived from the vinyl aromatic monomer refers to the structure represented by the following general formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
一般式(1)及び(2)中、Rは芳香環を有する置換基を表す。芳香環を有する置換基Rとしては、フェニル基、メチルフェニル基、クロロフェニル基等が挙げられる。 In the general formulas (1) and (2), R 1 represents a substituent having an aromatic ring. Examples of the substituent R1 having an aromatic ring include a phenyl group, a methylphenyl group, a chlorophenyl group and the like.
上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体中、上記ビニル芳香族モノマーに由来する構造の含有量は特に限定されないが、1重量%以上、30重量%以下であることが好ましい。上記ビニル芳香族モノマーに由来する構造の含有量が上記範囲であることで、粘着テープの繰り返し耐衝撃性がより向上する。上記ビニル芳香族モノマーに由来する構造の含有量のより好ましい下限は1.5重量%、更に好ましい下限は2重量%、更により好ましい下限は3重量%、特に好ましい下限は3.5重量%、より好ましい上限は15重量%、更に好ましい上限は8重量%である。 The content of the structure derived from the vinyl aromatic monomer in the copolymer having the structure derived from the vinyl aromatic monomer and the structure derived from the (meth) acrylic monomer is not particularly limited, but is 1% by weight or more. It is preferably 30% by weight or less. When the content of the structure derived from the vinyl aromatic monomer is in the above range, the repeated impact resistance of the adhesive tape is further improved. A more preferable lower limit of the content of the structure derived from the vinyl aromatic monomer is 1.5% by weight, a further preferable lower limit is 2% by weight, a further preferable lower limit is 3% by weight, and a particularly preferable lower limit is 3.5% by weight. A more preferable upper limit is 15% by weight, and a further preferable upper limit is 8% by weight.
上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体は、更に、架橋性官能基を有するモノマーに由来する構造を有することが好ましい。
上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体が架橋性官能基を有すると、架橋によって該共重合体のゴム弾性が高まることから、上記10℃での貯蔵弾性率E’を上記範囲に調整することが容易となり、粘着テープの繰り返し耐衝撃性がより向上する。上記架橋性官能基は架橋されていても架橋されていなくてもよいが、架橋されていることがより好ましい。ただし、架橋されていない構造のままであったとしても、官能基間の相互作用により後述するハードブロック又はソフトブロック(特に、ハードブロック)内の凝集力が向上して、上記10℃での貯蔵弾性率E’を上記範囲に調整することが容易となり、粘着テープの繰り返し耐衝撃性がより向上する。なお、本明細書において架橋性官能基を有するモノマーに由来する構造とは、下記一般式(3)及び(4)に示すような構造のことを指す。
It is preferable that the copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer further has a structure derived from the monomer having a crosslinkable functional group.
When a copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer has a crosslinkable functional group, the rubber elasticity of the copolymer is enhanced by cross-linking. It becomes easy to adjust the storage elastic coefficient E'at ° C to the above range, and the repeated impact resistance of the adhesive tape is further improved. The crosslinkable functional group may or may not be crosslinked, but is more preferably crosslinked. However, even if the structure remains uncrosslinked, the cohesive force in the hard block or soft block (particularly the hard block) described later is improved by the interaction between the functional groups, and the storage at the above 10 ° C. is improved. It becomes easy to adjust the elastic modulus E'to the above range, and the repeated impact resistance of the adhesive tape is further improved. In the present specification, the structure derived from the monomer having a crosslinkable functional group refers to the structure represented by the following general formulas (3) and (4).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
一般式(3)及び(4)中、Rは少なくとも1つの官能基を含む置換基を表す。官能基としては、例えば、カルボキシル基、水酸基、エポキシ基、二重結合、三重結合、アミノ基、アミド基、ニトリル基等が挙げられる。なお、少なくとも1つの官能基を含む置換基Rは、その構成要素として、アルキル基、エーテル基、カルボニル基、エステル基、カーボネート基、アミド基、ウレタン基等を含んでいてもよい。 In the general formulas (3) and (4), R 2 represents a substituent containing at least one functional group. Examples of the functional group include a carboxyl group, a hydroxyl group, an epoxy group, a double bond, a triple bond, an amino group, an amide group, a nitrile group and the like. The substituent R2 containing at least one functional group may contain an alkyl group, an ether group, a carbonyl group, an ester group, a carbonate group, an amide group, a urethane group and the like as its constituent elements.
上記架橋性官能基を有するモノマーは特に限定されず、例えば、カルボキシル基含有モノマー、水酸基含有モノマー、エポキシ基含有モノマー、二重結合含有モノマー、三重結合含有モノマー、アミノ基含有モノマー、アミド基含有モノマー、ニトリル基含有モノマー等が挙げられる。これらの架橋性官能基を有するモノマーは単独で用いられてもよく、2種以上が併用されてもよい。なかでも、粘着テープの繰り返し耐衝撃性がより向上することから、カルボキシル基含有モノマー、水酸基含有モノマー、エポキシ基含有モノマー、二重結合含有モノマー、三重結合含有モノマー及びアミド基含有モノマーからなる群から選択される少なくとも1種が好ましい。
上記カルボキシル基含有モノマーとしては、(メタ)アクリル酸等の(メタ)アクリル酸系モノマーが挙げられる。上記水酸基含有モノマーとしては、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等が挙げられる。上記エポキシ基含有モノマーとしては、グリシジル(メタ)アクリレート等が挙げられる。上記二重結合含有モノマーとしては、アリル(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート等が挙げられる。上記三重結合含有モノマーとしては、プロパルギル(メタ)アクリレート等が挙げられる。上記アミド基含有モノマーとしては、(メタ)アクリルアミド等が挙げられる。なかでも、粘着テープの繰り返し耐衝撃性がより向上することから、カルボキシル基含有モノマー、水酸基含有モノマーが好ましい。更に、カルボキシル基を含む(メタ)アクリル酸系モノマー、水酸基を含む(メタ)アクリル酸系モノマーがより好ましく、(メタ)アクリル酸、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートが更に好ましい。
The monomer having a crosslinkable functional group is not particularly limited, and for example, a carboxyl group-containing monomer, a hydroxyl group-containing monomer, an epoxy group-containing monomer, a double bond-containing monomer, a triple bond-containing monomer, an amino group-containing monomer, and an amide group-containing monomer. , A nitrile group-containing monomer and the like. These crosslinkable functional groups may be used alone or in combination of two or more. Among them, since the repeated impact resistance of the adhesive tape is further improved, the group consists of a carboxyl group-containing monomer, a hydroxyl group-containing monomer, an epoxy group-containing monomer, a double bond-containing monomer, a triple bond-containing monomer, and an amide group-containing monomer. At least one selected is preferred.
Examples of the carboxyl group-containing monomer include (meth) acrylic acid-based monomers such as (meth) acrylic acid. Examples of the hydroxyl group-containing monomer include 4-hydroxybutyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate. Examples of the epoxy group-containing monomer include glycidyl (meth) acrylate and the like. Examples of the double bond-containing monomer include allyl (meth) acrylate and hexanediol di (meth) acrylate. Examples of the triple bond-containing monomer include propargyl (meth) acrylate and the like. Examples of the amide group-containing monomer include (meth) acrylamide and the like. Of these, a carboxyl group-containing monomer and a hydroxyl group-containing monomer are preferable because the repeated impact resistance of the adhesive tape is further improved. Further, a (meth) acrylic acid-based monomer containing a carboxyl group and a (meth) acrylic acid-based monomer containing a hydroxyl group are more preferable, and (meth) acrylic acid, 4-hydroxybutyl (meth) acrylate, and 2-hydroxyethyl (meth) are preferable. Acrylic is more preferred.
上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体中、上記架橋性官能基を有するモノマーに由来する構造の含有量は特に限定されないが、0.1重量%以上、30重量%以下であることが好ましい。上記架橋性官能基を有するモノマーに由来する構造の含有量が上記範囲であることで、粘着テープの繰り返し耐衝撃性がより向上する。上記架橋性官能基を有するモノマーに由来する構造の含有量のより好ましい下限は0.5重量%、更に好ましい下限は1重量%、より好ましい上限は25重量%、更に好ましい上限は20重量%である。 The content of the structure derived from the crosslinkable functional group in the copolymer having the structure derived from the vinyl aromatic monomer and the structure derived from the (meth) acrylic monomer is not particularly limited, but is 0. It is preferably 1% by weight or more and 30% by weight or less. When the content of the structure derived from the monomer having a crosslinkable functional group is in the above range, the repeated impact resistance of the adhesive tape is further improved. A more preferable lower limit of the content of the structure derived from the monomer having a crosslinkable functional group is 0.5% by weight, a further preferable lower limit is 1% by weight, a more preferable upper limit is 25% by weight, and a further preferable upper limit is 20% by weight. be.
上記(メタ)アクリル系モノマーは、単一のものであってもよいし、複数のモノマーを用いてもよい。なお、本明細書において(メタ)アクリル系モノマーに由来する構造とは、下記一般式(5)及び(6)に示すような構造のことを指す。 The (meth) acrylic monomer may be a single monomer or may use a plurality of monomers. In the present specification, the structure derived from the (meth) acrylic monomer refers to the structure represented by the following general formulas (5) and (6).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
一般式(5)及び(6)中、Rは側鎖を表す。側鎖Rとしては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルへキシル基、ノニル基、デシル基、ドデシル基、ラウリル基、イソステアリル基等が挙げられる。 In the general formulas (5) and (6), R 3 represents a side chain. The side chain R 3 includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, a decyl group, a dodecyl group and a lauryl group. Examples thereof include an isostearyl group.
上記(メタ)アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等が挙げられる。これらの(メタ)アクリル系モノマーは単独で用いられてもよく、2種以上が併用されてもよい。なかでも、粘着テープの繰り返し耐衝撃性がより向上することから、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレートが好ましく、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2-エチルへキシルアクリレートが更に好ましい。 Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and heptyl (meth). Meta) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) acrylate, isostearyl (meth) acrylate And so on. These (meth) acrylic monomers may be used alone or in combination of two or more. Of these, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate are preferable because the repeated impact resistance of the adhesive tape is further improved. Ethyl acrylates, butyl acrylates and 2-ethylhexyl acrylates are even more preferred.
また、上記(メタ)アクリル系モノマーとしては、側鎖炭素数が2以下の(メタ)アクリル系モノマーを用いることが好ましい。上記側鎖炭素数が2以下の(メタ)アクリル系モノマーを用いると、得られる共重合体鎖同士の絡み合いが増加し、凝集力が向上して、上記10℃での貯蔵弾性率E’を上記範囲に調整することが容易となり、粘着テープの繰り返し耐衝撃性がより向上するとともに耐熱性も向上する。
上記側鎖炭素数が2以下の(メタ)アクリル系モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレートが挙げられ、特にメチルアクリレート、エチルアクリレートが好ましい。
Further, as the (meth) acrylic monomer, it is preferable to use a (meth) acrylic monomer having 2 or less side chain carbon atoms. When the (meth) acrylic monomer having 2 or less side chain carbon atoms is used, the entanglement between the obtained copolymer chains is increased, the cohesive force is improved, and the storage elastic modulus E'at the above 10 ° C. is increased. It becomes easy to adjust to the above range, and the repeated impact resistance of the adhesive tape is further improved and the heat resistance is also improved.
Examples of the (meth) acrylic monomer having 2 or less side chain carbon atoms include methyl (meth) acrylate and ethyl (meth) acrylate, and methyl acrylate and ethyl acrylate are particularly preferable.
上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体中、上記(メタ)アクリル系モノマーに由来する構造の含有量は特に限定されず、本発明の効果が発揮されればよいが、30重量%以上、99重量%以下であることが好ましい。上記(メタ)アクリル系モノマーに由来する構造の含有量は、40重量%以上、98重量%以下であることがより好ましく、50重量%以上、97重量%以下であることが更に好ましい。 The content of the structure derived from the (meth) acrylic monomer in the copolymer having the structure derived from the vinyl aromatic monomer and the structure derived from the (meth) acrylic monomer is not particularly limited, and the content of the structure derived from the (meth) acrylic monomer is not particularly limited. The effect may be exhibited, but it is preferably 30% by weight or more and 99% by weight or less. The content of the structure derived from the (meth) acrylic monomer is more preferably 40% by weight or more and 98% by weight or less, and further preferably 50% by weight or more and 97% by weight or less.
また、上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体中、上記側鎖炭素数が2以下の(メタ)アクリル系モノマーの含有量は特に限定されないが、好ましい下限は5重量%、好ましい上限は90重量%である。上記側鎖炭素数が2以下の(メタ)アクリル系モノマーの含有量が5重量%以上であれば、凝集力向上効果が発現しやすくなる。上記側鎖炭素数が2以下の(メタ)アクリル系モノマーの含有量が90重量%以下であれば、凝集力が高くなりすぎて柔軟性が低くなって粘着テープとしての柔軟性が失われることを防ぐことができる。上記側鎖炭素数が2以下の(メタ)アクリル系モノマーの含有量のより好ましい下限は10重量%、更に好ましい下限は20重量%、更により好ましい下限は25重量%、特に好ましい下限は30重量%であり、より好ましい上限は85重量%、更に好ましい上限は80重量%、更により好ましい上限は75重量%、特に好ましい上限は70重量%である。 Further, in the copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer, the content of the (meth) acrylic monomer having 2 or less side chain carbon atoms is particularly limited. However, the preferred lower limit is 5% by weight and the preferred upper limit is 90% by weight. When the content of the (meth) acrylic monomer having 2 or less side chain carbon atoms is 5% by weight or more, the effect of improving the cohesive force is likely to be exhibited. If the content of the (meth) acrylic monomer having 2 or less side chain carbon atoms is 90% by weight or less, the cohesive force becomes too high, the flexibility becomes low, and the flexibility as an adhesive tape is lost. Can be prevented. A more preferable lower limit of the content of the (meth) acrylic monomer having 2 or less side chain carbon atoms is 10% by weight, a further preferable lower limit is 20% by weight, a further preferable lower limit is 25% by weight, and a particularly preferable lower limit is 30% by weight. The more preferable upper limit is 85% by weight, the further preferable upper limit is 80% by weight, the still more preferable upper limit is 75% by weight, and the particularly preferable upper limit is 70% by weight.
上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体は、上述したような各構造を有していれば特に限定されず、ランダム共重合体であってもよく、ブロック共重合体であってもよい。上記基材層の柔軟性をより高める観点からは、ランダム共重合体が好ましく、上記基材層の硬さと柔軟性とのバランスをより高める観点からは、ブロック共重合体が好ましい。 The copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer is not particularly limited as long as it has each structure as described above, and is a random copolymer. It may be a block copolymer or a block copolymer. From the viewpoint of further enhancing the flexibility of the base material layer, a random copolymer is preferable, and from the viewpoint of further enhancing the balance between the hardness and flexibility of the base material layer, a block copolymer is preferable.
上記ブロック共重合体とは、剛直な構造(以下、「ハードブロック」ともいう)と柔軟な構造(以下、「ソフトブロック」ともいう)とを含む共重合体である。
上記ブロック共重合体は、2つのブロックが相溶し難く、上記ソフトブロックの海の中に上記ハードブロックが凝集してできた島が点在する不均一な相分離構造をとることがある。そして、上記島が疑似架橋点となることで、上記ブロック共重合体にゴム弾性を付与できることから、粘着テープの繰り返し耐衝撃性がより向上する。上記ハードブロックに上述したような架橋性官能基を導入することで、粘着テープの繰り返し耐衝撃性が更に向上する。
なお、上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体がランダム共重合体である場合にも、粘着テープは、優れた繰り返し耐衝撃性を有することができる。これは、ナノレベルや分子レベルといった極小さなスケールにおいて上記相分離構造と同様の相互作用が働いているためではないかと考えられる。
The block copolymer is a copolymer containing a rigid structure (hereinafter, also referred to as "hard block") and a flexible structure (hereinafter, also referred to as "soft block").
The block copolymer may have a non-uniform phase-separated structure in which two blocks are difficult to be compatible with each other and islands formed by agglomeration of the hard blocks are scattered in the sea of the soft blocks. Since the islands serve as pseudo-crosslinking points, rubber elasticity can be imparted to the block copolymer, so that the repeated impact resistance of the adhesive tape is further improved. By introducing the crosslinkable functional group as described above into the hard block, the repeated impact resistance of the adhesive tape is further improved.
Even when the copolymer having the structure derived from the vinyl aromatic monomer and the structure derived from the (meth) acrylic monomer is a random copolymer, the adhesive tape has excellent repeat impact resistance. be able to. It is considered that this is because the same interaction as the above-mentioned phase-separated structure works at a very small scale such as the nano level and the molecular level.
上記ブロック共重合体は、上記ビニル芳香族モノマーに由来する構造が上記ハードブロックに含まれ、上記(メタ)アクリル系モノマーに由来する構造が上記ソフトブロックに含まれていることが好ましい。
上記ハードブロックは、剛直な構造を有していれば特に限定されず、上記ビニル芳香族モノマーに由来する構造に加えて更に、例えば、環状構造を有する化合物、側鎖置換基が短い化合物等に由来する構造を有していてもよい。上記ソフトブロックは、本発明の効果を失わない範囲で、上記(メタ)アクリル系モノマー以外のモノマーに由来する構造を有していてもよい。
It is preferable that the block copolymer contains a structure derived from the vinyl aromatic monomer in the hard block and a structure derived from the (meth) acrylic monomer in the soft block.
The hard block is not particularly limited as long as it has a rigid structure, and in addition to the structure derived from the vinyl aromatic monomer, for example, a compound having a cyclic structure, a compound having a short side chain substituent, or the like can be used. It may have a derived structure. The soft block may have a structure derived from a monomer other than the (meth) acrylic monomer as long as the effect of the present invention is not lost.
上記ブロック共重合体は、ジブロック構造、トリブロック構造等どのような構造をとっていてもよいが、粘着テープの繰り返し耐衝撃性がより向上することから、上記ハードブロックの間に上記ソフトブロックを有するトリブロック構造を有することが好ましい。
また、上記ブロック共重合体は、上記ハードブロックと上記ソフトブロックとが主鎖と側鎖とに分かれて存在しているようなグラフト共重合体であってもよい。上記グラフト共重合体としては、例えば、スチレンマクロマー-(メタ)アクリル系モノマー共重合体等が挙げられる。
The block copolymer may have any structure such as a diblock structure or a triblock structure, but since the repeated impact resistance of the adhesive tape is further improved, the soft block between the hard blocks is further improved. It is preferable to have a triblock structure having.
Further, the block copolymer may be a graft copolymer in which the hard block and the soft block are separated into a main chain and a side chain. Examples of the graft copolymer include a styrene macromer- (meth) acrylic monomer copolymer and the like.
上記ブロック共重合体中、上記ハードブロックの含有量は特に限定されないが、1重量%以上、40重量%以下であることが好ましい。上記ハードブロックの含有量が上記範囲であることで、粘着テープの繰り返し耐衝撃性がより向上するとともに耐熱性も向上する。繰り返し耐衝撃性及び耐熱性を更に高める観点から、上記ハードブロックの含有量のより好ましい下限は2重量%、更に好ましい下限は2.5重量%、特に好ましい下限は3重量%である。上記ハードブロックの含有量のより好ましい上限は35重量%、更に好ましい上限は30重量%、更に好ましい上限は26重量%、更により好ましい上限は20重量%、特に好ましい上限は17重量%、とりわけ好ましい上限は8重量%である。 The content of the hard block in the block copolymer is not particularly limited, but is preferably 1% by weight or more and 40% by weight or less. When the content of the hard block is in the above range, the repeated impact resistance of the adhesive tape is further improved and the heat resistance is also improved. From the viewpoint of further enhancing the repeated impact resistance and heat resistance, the more preferable lower limit of the content of the hard block is 2% by weight, the more preferable lower limit is 2.5% by weight, and the particularly preferable lower limit is 3% by weight. A more preferable upper limit of the content of the hard block is 35% by weight, a further preferable upper limit is 30% by weight, a further preferable upper limit is 26% by weight, a further preferable upper limit is 20% by weight, and a particularly preferable upper limit is 17% by weight, particularly preferable. The upper limit is 8% by weight.
上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体の重量平均分子量(Mw)は特に限定されないが、5万以上、80万以下であることが好ましい。上記重量平均分子量が上記範囲であることで、粘着テープの繰り返し耐衝撃性がより向上するとともに耐熱性も向上する。上記重量平均分子量のより好ましい下限は75000、より好ましい上限は60万である。
なお、重量平均分子量は、例えば、GPC(Gel Permeation Chromatography:ゲルパーミエーションクロマトグラフィ)法により標準ポリスチレン換算にて求めることができる。より具体的には、例えば、測定機器としてWaters社製「2690 Separations Module」、カラムとして昭和電工社製「GPC KF-806L」、溶媒として酢酸エチルを用い、サンプル流量1mL/min、カラム温度40℃の条件で測定することができる。
The weight average molecular weight (Mw) of the copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer is not particularly limited, but is preferably 50,000 or more and 800,000 or less. .. When the weight average molecular weight is in the above range, the repeated impact resistance of the adhesive tape is further improved and the heat resistance is also improved. The more preferable lower limit of the weight average molecular weight is 75,000, and the more preferable upper limit is 600,000.
The weight average molecular weight can be determined, for example, by a GPC (Gel Permeation Chromatography) method in terms of standard polystyrene. More specifically, for example, "2690 Separations Module" manufactured by Waters, "GPC KF-806L" manufactured by Showa Denko, and ethyl acetate as a solvent are used as a measuring device, a sample flow rate of 1 mL / min, and a column temperature of 40 ° C. It can be measured under the conditions of.
上記ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体を得るには、上記ハードブロック及び上記ソフトブロックの原料モノマーを、重合開始剤の存在下にてそれぞれラジカル反応させて上記ハードブロック及び上記ソフトブロックを得た後、両者を反応させる又は共重合すればよい。また、上記ハードブロックを得た後、続けて上記ソフトブロックの原料モノマーを投入し、共重合してもよい。ランダム共重合体の場合には、原料モノマーを混合した溶液を、重合開始剤の存在下にてラジカル反応させればよい。
上記ラジカル反応をさせる方法、即ち、重合方法としては、従来公知の方法が用いられ、例えば、溶液重合(沸点重合又は定温重合)、乳化重合、懸濁重合、塊状重合等が挙げられる。
In order to obtain a copolymer having a structure derived from the vinyl aromatic monomer and a structure derived from the (meth) acrylic monomer, the raw material monomers of the hard block and the soft block are used in the presence of a polymerization initiator. The hard block and the soft block may be obtained by radical reaction, respectively, and then the two may be reacted or copolymerized. Further, after obtaining the hard block, the raw material monomer of the soft block may be continuously added and copolymerized. In the case of a random copolymer, a solution mixed with the raw material monomers may be subjected to a radical reaction in the presence of a polymerization initiator.
As the method for causing the radical reaction, that is, the polymerization method, a conventionally known method is used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like.
上記基材層は、帯電防止剤、離型剤、酸化防止剤、耐候剤、結晶核剤等の添加剤や、ポリオレフィン、ポリエステル、ポリアミド、エラストマー等の樹脂改質剤等を含有していてもよい。 Even if the base material layer contains additives such as antistatic agents, mold release agents, antioxidants, weathering agents, and crystal nucleating agents, and resin modifiers such as polyolefins, polyesters, polyamides, and elastomers. good.
上記基材層は、大気中において昇温速度10℃/分の条件でDSC測定(示差走査熱量測定)を行ったときに10℃以下の領域及び50℃以上の領域にそれぞれ少なくとも一つのピークを有することが好ましい。
上記基材層がDSC測定を行ったときに10℃以下の領域及び50℃以上の領域にそれぞれ少なくとも一つのピークを有する場合、上記基材層は、上述したような2つのブロックを有するブロック共重合体を含有しているといえる。上記基材層の硬さと柔軟性とのバランスをより高める観点からは、このように上記基材層が上記ブロック共重合体を含有していることが好ましい。本発明においては、DSC測定を行ったときの10℃以下の領域のピークを上記ソフトブロックに由来するピーク、50℃以上の領域のピークを上記ハードブロックに由来するピークと呼んで差し支えない。上記ピークの領域は上記ハードブロック及び上記ソフトブロックの原料モノマーの種類によって調節することができる。
なお、基材層のDSC測定は、示差走査熱量計(例えば、TAインスツルメント社製、DSC 2920等)を用いて温度範囲-100~200℃、昇温速度10℃/分、サイクル回数1回の条件で行うことができる。
The base material layer has at least one peak in each of a region of 10 ° C. or lower and a region of 50 ° C. or higher when DSC measurement (differential scanning calorimetry) is performed in the atmosphere at a temperature rise rate of 10 ° C./min. It is preferable to have.
When the base material layer has at least one peak in a region of 10 ° C. or lower and a region of 50 ° C. or higher when DSC measurement is performed, the base material layer is a block having two blocks as described above. It can be said that it contains a polymer. From the viewpoint of further enhancing the balance between the hardness and flexibility of the base material layer, it is preferable that the base material layer contains the block copolymer in this way. In the present invention, the peak in the region of 10 ° C. or lower when the DSC measurement is performed may be referred to as the peak derived from the soft block, and the peak in the region of 50 ° C. or higher may be referred to as the peak derived from the hard block. The peak region can be adjusted by the type of the raw material monomer of the hard block and the soft block.
For DSC measurement of the substrate layer, a differential scanning calorimeter (for example, manufactured by TA Instruments, DSC 2920, etc.) is used in a temperature range of -100 to 200 ° C., a temperature rise rate of 10 ° C./min, and the number of cycles is 1. It can be done under the condition of times.
上記基材層は、単層構造であっても多層構造であってもよい。
上記基材層は、発泡体基材層であることが好ましい。上記基材層が上記発泡体基材層であることにより、柔軟性が向上して、衝撃を受けた際に上記基材層が硬すぎて応力を分散できなくなることを防ぐことができる。これにより、粘着テープの繰り返し耐衝撃性がより向上する。上記発泡体基材層は、連続気泡構造を有していても独立気泡構造を有していてもよいが、独立気泡構造を有することが好ましい。
The base material layer may have a single-layer structure or a multi-layer structure.
The base material layer is preferably a foam base material layer. Since the base material layer is the foam base material layer, the flexibility is improved, and it is possible to prevent the base material layer from being too hard to disperse stress when subjected to an impact. This further improves the repeated impact resistance of the adhesive tape. The foam base material layer may have an open cell structure or a closed cell structure, but is preferably a closed cell structure.
上記発泡体基材層の発泡倍率は特に限定されないが、好ましい下限が1.1倍、好ましい上限が10倍である。上記発泡倍率が上記範囲であることで、上記発泡体基材層の硬さと柔軟性とのバランスをより高めることができることから、粘着テープの繰り返し耐衝撃性がより向上する。繰り返し耐衝撃性を更に高める観点から、上記発泡倍率のより好ましい下限は1.3倍、より好ましい上限は7倍であり、更に好ましい下限は1.5倍、更に好ましい上限は5倍である。
なお、発泡体基材層の発泡倍率とは、発泡体基材層の密度の逆数であり、JIS K 7222に準拠して電子比重計(例えば、ミラージュ社製、ED120T等)を使用して測定できる。
The expansion ratio of the foam base material layer is not particularly limited, but the preferable lower limit is 1.1 times and the preferable upper limit is 10 times. When the foaming ratio is in the above range, the balance between the hardness and the flexibility of the foam base material layer can be further improved, so that the repeated impact resistance of the adhesive tape is further improved. From the viewpoint of further enhancing the repeat impact resistance, the more preferable lower limit of the foaming ratio is 1.3 times, the more preferable upper limit is 7 times, the further preferable lower limit is 1.5 times, and the further preferable upper limit is 5 times.
The foaming magnification of the foam base material layer is the reciprocal of the density of the foam base material layer, and is measured using an electronic hydrometer (for example, ED120T manufactured by Mirage Co., Ltd.) in accordance with JIS K 7222. can.
上記発泡体基材層の平均気泡径は特に限定されないが、80μm以下であることが好ましい。上記平均気泡径が80μm以下であることで、上記発泡体基材層の硬さと柔軟性とのバランスをより高めることができることから、粘着テープの繰り返し耐衝撃性がより向上する。上記平均気泡径は、60μm以下であることがより好ましく、55μm以下であることが更に好ましい。
上記平均気泡径の下限は特に限定されないが、上記発泡体基材層の柔軟性を確保する観点から、20μm以上であることが好ましく、30μm以上であることがより好ましい。
なお、発泡体基材層の平均気泡径は、次の方法により測定することができる。まず、発泡体基材層を50mm四方にカットし、液体窒素に1分間浸した後、カミソリ刃を用いて発泡体基材層の厚み方向に対して垂直な面で切断する。次いで、デジタルマイクロスコープ(例えば、キーエンス社製、「VHX-900」等)を用いて、200倍の倍率で切断面の拡大写真を撮影し、厚み×2mmの範囲に存在する全ての気泡について最も長い気泡径(気泡の直径)を測定する。この操作を5回繰り返し、得られたすべての気泡径を平均することで平均気泡径を算出する。
The average bubble diameter of the foam base material layer is not particularly limited, but is preferably 80 μm or less. When the average bubble diameter is 80 μm or less, the balance between the hardness and the flexibility of the foam base material layer can be further improved, so that the repeated impact resistance of the adhesive tape is further improved. The average bubble diameter is more preferably 60 μm or less, and further preferably 55 μm or less.
The lower limit of the average cell diameter is not particularly limited, but is preferably 20 μm or more, and more preferably 30 μm or more, from the viewpoint of ensuring the flexibility of the foam base material layer.
The average bubble diameter of the foam base material layer can be measured by the following method. First, the foam base material layer is cut into 50 mm squares, immersed in liquid nitrogen for 1 minute, and then cut in a plane perpendicular to the thickness direction of the foam base material layer using a razor blade. Then, using a digital microscope (for example, "VHX-900" manufactured by KEYENCE Corporation), a magnified photograph of the cut surface was taken at a magnification of 200 times, and the most bubbles existing in the range of thickness × 2 mm were taken. Measure a long bubble diameter (bubble diameter). This operation is repeated 5 times, and the average bubble diameter is calculated by averaging all the obtained bubble diameters.
上記基材層は、ゲル分率が90重量%以下であることが好ましい。
上記基材層のゲル分率が上記範囲であることで、粘着テープの繰り返し耐衝撃性がより向上する。繰り返し耐衝撃性を更に高める観点から、上記ゲル分率のより好ましい上限は85重量%、更に好ましい上限は80重量%である。上記ゲル分率の下限は特に限定されないが、例えば10重量%以上、とりわけ20重量%以上、特に35重量%以上である。上記ゲル分率は、上記基材層を構成する樹脂を架橋させることによって調節することができる。
なお、基材層のゲル分率は、次の方法で測定することができる。粘着テープから基材層のみを0.1g取り出し、酢酸エチル50mL中に浸漬し、振とう機で温度23度、120rpmの条件で24時間振とうする。振とう後、金属メッシュ(目開き#200メッシュ)を用いて、酢酸エチルと酢酸エチルを吸収し膨潤した基材層を分離する。分離後の基材層を110℃の条件下で1時間乾燥させる。乾燥後の金属メッシュを含む基材層の重量を測定し、下記式を用いて基材層のゲル分率を算出する。
ゲル分率(重量%)=100×(W-W)/W
(W:初期基材層重量、W:乾燥後の金属メッシュを含む基材層重量、W:金属メッシュの初期重量)
The base material layer preferably has a gel fraction of 90% by weight or less.
When the gel fraction of the base material layer is within the above range, the repeated impact resistance of the adhesive tape is further improved. From the viewpoint of further enhancing the repeat impact resistance, the more preferable upper limit of the gel fraction is 85% by weight, and the more preferable upper limit is 80% by weight. The lower limit of the gel fraction is not particularly limited, but is, for example, 10% by weight or more, particularly 20% by weight or more, and particularly 35% by weight or more. The gel fraction can be adjusted by cross-linking the resin constituting the base material layer.
The gel fraction of the base material layer can be measured by the following method. Only 0.1 g of the substrate layer is taken out from the adhesive tape, immersed in 50 mL of ethyl acetate, and shaken with a shaker at a temperature of 23 ° C. and 120 rpm for 24 hours. After shaking, a metal mesh (opening # 200 mesh) is used to absorb ethyl acetate and ethyl acetate and separate the swollen base material layer. The separated substrate layer is dried under the condition of 110 ° C. for 1 hour. The weight of the base material layer including the metal mesh after drying is measured, and the gel fraction of the base material layer is calculated using the following formula.
Gel fraction (% by weight) = 100 x (W 1 -W 2 ) / W 0
(W 0 : weight of initial base material layer, W 1 : weight of base material layer including dried metal mesh, W 2 : initial weight of metal mesh)
上記基材層は、架橋剤が添加されることにより上記基材層を構成する樹脂の主鎖間に架橋構造が形成されていることが好ましい。
上記基材層を構成する樹脂の主鎖間に架橋構造を形成することで、断続的に加わる応力を分散させることができ、粘着テープの繰り返し耐衝撃性がより向上するとともに耐熱性も向上する。
It is preferable that the base material layer has a cross-linked structure formed between the main chains of the resin constituting the base material layer by adding a cross-linking agent.
By forming a crosslinked structure between the main chains of the resin constituting the base material layer, the stress applied intermittently can be dispersed, and the repeated impact resistance of the adhesive tape is further improved and the heat resistance is also improved. ..
上記架橋剤は特に限定されず、上記基材層を構成する樹脂が有する官能基に応じて適宜選択することができる。具体的には例えば、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、金属キレート型架橋剤等が挙げられる。なかでも、より柔軟性を向上させることができるアルコール性水酸基やカルボキシル基を有する樹脂を架橋できることから、エポキシ系架橋剤又はイソシアネート系架橋剤が好ましい。なお、上記イソシアネート系架橋剤を用いた場合、上記基材層を構成する樹脂中のアルコール性水酸基やカルボキシル基と、上記イソシアネート系架橋剤のイソシアネート基との間が架橋される。また、上記エポキシ系架橋剤を用いた場合、上記基材層を構成する樹脂中のカルボキシル基と、上記エポキシ系架橋剤のエポキシ基との間が架橋される。
上記架橋剤の添加量は特に限定されないが、上記基材層を構成する樹脂100重量部に対して0.01重量部以上、10重量部以下が好ましく、0.1重量部以上、7重量部以下がより好ましい。
The cross-linking agent is not particularly limited, and can be appropriately selected depending on the functional group of the resin constituting the base material layer. Specific examples thereof include isocyanate-based cross-linking agents, aziridine-based cross-linking agents, epoxy-based cross-linking agents, and metal chelate-type cross-linking agents. Among them, an epoxy-based cross-linking agent or an isocyanate-based cross-linking agent is preferable because a resin having an alcoholic hydroxyl group or a carboxyl group that can further improve flexibility can be cross-linked. When the isocyanate-based cross-linking agent is used, the alcoholic hydroxyl group or carboxyl group in the resin constituting the base material layer is crosslinked with the isocyanate group of the isocyanate-based cross-linking agent. When the epoxy-based cross-linking agent is used, the carboxyl group in the resin constituting the base material layer and the epoxy group of the epoxy-based cross-linking agent are cross-linked.
The amount of the cross-linking agent added is not particularly limited, but is preferably 0.01 parts by weight or more and 10 parts by weight or less, preferably 0.1 parts by weight or more and 7 parts by weight with respect to 100 parts by weight of the resin constituting the base material layer. The following are more preferable.
上記基材層の厚みは特に限定されないが、好ましい下限は40μm、好ましい上限は2900μmである。上記基材層の厚みを上記範囲とすることにより、柔軟性、繰り返し耐衝撃性、耐熱性、取り扱い性等に優れた粘着テープとすることができるとともに、粘着テープを携帯電子機器部品、車載用電子機器部品等の電子機器部品の固定に好適に用いることができる。上記部品等の固定により好適に用いることができる観点から、上記基材層の厚みのより好ましい下限は60μm、より好ましい上限は1900μm、更に好ましい下限は80μm、更に好ましい上限は1400μm、特に好ましい下限は100μm、特に好ましい上限は1000μmである。 The thickness of the base material layer is not particularly limited, but a preferable lower limit is 40 μm and a preferable upper limit is 2900 μm. By setting the thickness of the base material layer within the above range, it is possible to obtain an adhesive tape having excellent flexibility, repeated impact resistance, heat resistance, handleability, etc., and the adhesive tape can be used for portable electronic device parts and automobiles. It can be suitably used for fixing electronic device parts such as electronic device parts. From the viewpoint that the parts and the like can be more preferably used, the more preferable lower limit of the thickness of the base material layer is 60 μm, the more preferable upper limit is 1900 μm, the further preferable lower limit is 80 μm, the further preferable upper limit is 1400 μm, and the particularly preferable lower limit is. 100 μm, a particularly preferred upper limit is 1000 μm.
上記基材層の製造方法は特に限定されない。上記基材層のうち、上記発泡体基材層の製造方法としては、例えば、発泡ガスの作用により製造する方法や、原材料マトリックス中に中空球を配合することによって製造する方法が挙げられる。なかでも、後者の方法で製造された発泡体基材層はシンタクチックフォームと称され、強度、柔軟性及び耐熱性により優れることから、上記発泡体基材層は、シンタクチックフォームであることが好ましい。 The method for producing the base material layer is not particularly limited. Among the base material layers, examples of the method for producing the foam base material layer include a method of producing by the action of foaming gas and a method of producing by blending hollow spheres in a raw material matrix. Among them, the foam base material layer produced by the latter method is called syntactic foam, and is excellent in strength, flexibility and heat resistance. Therefore, the foam base material layer may be syntactic foam. preferable.
上記発泡体基材層がシンタクチックフォームであることで、均一なサイズ分布を有する独立気泡型の発泡体となるため、上記発泡体基材層全体の密度がより一定となり、強度、柔軟性及び耐熱性がより向上する。また、シンタクチックフォームは、その他の発泡体と比較して、高温及び高圧下での不可逆的な崩壊を起こしにくいため、より高い耐熱性を示す。シンタクチックフォームとしては、中空無機粒子からなる発泡構造を有するものと、中空有機粒子からなる発泡構造を有するものとがあるが、柔軟性の観点から、中空有機粒子からなる発泡構造を有するシンタクチックフォームが好ましい。 Since the foam base material layer is syntactic foam, it becomes a closed cell type foam having a uniform size distribution, so that the density of the entire foam base material layer becomes more constant, and the strength, flexibility and Heat resistance is further improved. In addition, syntactic foam exhibits higher heat resistance than other foams because it is less likely to cause irreversible disintegration under high temperature and high pressure. Syntactic foam includes those having a foamed structure made of hollow inorganic particles and those having a foamed structure made of hollow organic particles. From the viewpoint of flexibility, syntactic foam having a foamed structure made of hollow organic particles. Foam is preferred.
上記中空有機粒子としては例えば、エクスパンセルDUシリーズ(日本フィライト社製)、アドバンセルEMシリーズ(積水化学工業社製)等が挙げられる。なかでも、発泡後の気泡径をより効果の高い領域に設計しやすいことから、エクスパンセル461-DU-20(最適条件での発泡後の平均気泡径20μm)、エクスパンセル461-DU-40(最適条件での発泡後の平均気泡径40μm)、エクスパンセル043-80(最適条件での発泡後の平均気泡径80μm)、アドバンセルEML101(最適条件での発泡後の平均気泡径50μm)が好ましい。
上記中空有機粒子の含有量は特に限定されないが、上記発泡体基材層を構成する樹脂100重量部に対する好ましい下限が0.1重量部、好ましい上限が10重量部であり、より好ましい下限が0.3重量部、より好ましい上限が7重量部である。上記中空有機粒子の含有量を上記範囲とすることにより、上記発泡体基材層の発泡倍率を適切な範囲に調整することができる。
Examples of the hollow organic particles include Expancel DU series (manufactured by Nippon Philite Co., Ltd.), Advancel EM series (manufactured by Sekisui Chemical Co., Ltd.) and the like. Among them, since it is easy to design the bubble diameter after foaming in a region with higher effect, Expandel 461-DU-20 (average bubble diameter after foaming under optimum conditions 20 μm), Expandel 461-DU- 40 (average cell diameter after foaming under optimum conditions 40 μm), Expandel 043-80 (average cell diameter after foaming under optimum conditions 80 μm), Advansel EML101 (average cell diameter after foaming under optimum conditions 50 μm) ) Is preferable.
The content of the hollow organic particles is not particularly limited, but the preferable lower limit is 0.1 parts by weight, the preferable upper limit is 10 parts by weight, and the more preferable lower limit is 0 with respect to 100 parts by weight of the resin constituting the foam base material layer. .3 parts by weight, more preferably 7 parts by weight. By setting the content of the hollow organic particles in the above range, the expansion ratio of the foam base material layer can be adjusted in an appropriate range.
上記発泡体基材層が上記シンタクチックフォーム以外の発泡体からなる場合の発泡剤は特に限定されず、熱分解型発泡剤等の従来公知の発泡剤を用いることができる。 When the foam base material layer is made of a foam other than the syntactic foam, the foaming agent is not particularly limited, and a conventionally known foaming agent such as a pyrolytic foaming agent can be used.
上記樹脂層は、23℃でのヤング率の下限が500MPaである。
上記23℃でのヤング率が500MPa以上であることで、衝撃を受けた際に上記樹脂層が応力を分散させることができ、本発明の粘着テープは、優れた繰り返し耐衝撃性を有することができる。上記23℃でのヤング率の好ましい下限は1000MPa、より好ましい下限は2000MPaである。
上記23℃でのヤング率の上限は特に限定されないが、柔軟性を確保する観点から、好ましい上限は4000MPa、より好ましい上限は3000MPaである。
なお、樹脂層の23℃でのヤング率は、JIS-K-7161に準拠して、卓上形精密万能試験機装置(例えば、島津製作所社製、オートグラフAGS-Xシリーズ等)を用いて測定できる。より具体的には例えば、幅10mm、長さ100mmに切り出した試験片を間隔50mmでチャックし、速度200mm/minで引張ったときの応力-ひずみ曲線を測定し、ひずみ1%から5%までの平均の傾きを算出することによりヤング率が得られる。
The resin layer has a lower limit of Young's modulus at 23 ° C. of 500 MPa.
When the Young's modulus at 23 ° C. is 500 MPa or more, the resin layer can disperse stress when subjected to an impact, and the adhesive tape of the present invention has excellent repeated impact resistance. can. The preferred lower limit of Young's modulus at 23 ° C. is 1000 MPa, and the more preferable lower limit is 2000 MPa.
The upper limit of the Young's modulus at 23 ° C. is not particularly limited, but from the viewpoint of ensuring flexibility, a preferable upper limit is 4000 MPa, and a more preferable upper limit is 3000 MPa.
The Young's modulus of the resin layer at 23 ° C. is measured using a desktop precision universal testing machine (for example, Shimadzu Corporation, Autograph AGS-X series, etc.) in accordance with JIS-K-7161. can. More specifically, for example, a test piece cut into a width of 10 mm and a length of 100 mm is chucked at an interval of 50 mm, and a stress-strain curve when pulled at a speed of 200 mm / min is measured, and the strain is from 1% to 5%. Young's modulus can be obtained by calculating the average slope.
上記23℃でのヤング率を上記範囲に調整する方法は特に限定されず、例えば、上記樹脂層を構成する樹脂を選択する方法等が挙げられる。より具体的には、主鎖に芳香環等の剛直な成分を有する樹脂を選択することが好ましい。 The method of adjusting the Young's modulus at 23 ° C. to the above range is not particularly limited, and examples thereof include a method of selecting a resin constituting the resin layer. More specifically, it is preferable to select a resin having a rigid component such as an aromatic ring in the main chain.
上記樹脂層を構成する樹脂は、耐熱性を有することが好ましい。耐熱性を有する上記樹脂層を構成する樹脂としては、例えば、ポリエチレンテレフタレート等のポリエステル系樹脂、アクリル系樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド、ポリカーボネート、ポリオレフィン樹脂等が挙げられる。なかでも、粘着テープの繰り返し耐衝撃性がより向上することから、ポリエステル系樹脂、ポリイミド、ポリオレフィン樹脂が好ましく、ポリエステル系樹脂がより好ましく、ポリエチレンテレフタレートが更に好ましい。 The resin constituting the resin layer preferably has heat resistance. Examples of the resin constituting the heat-resistant resin layer include polyester resins such as polyethylene terephthalate, acrylic resins, silicone resins, phenol resins, polyimides, polycarbonates, and polyolefin resins. Among them, polyester-based resin, polyimide, and polyolefin resin are preferable, polyester-based resin is more preferable, and polyethylene terephthalate is further preferable, because the repeated impact resistance of the adhesive tape is further improved.
上記樹脂層は、着色されていてもよい。上記樹脂層を着色することにより、粘着テープに遮光性を付与することができる。
上記樹脂層を着色する方法は特に限定されず、例えば、上記樹脂層を構成する樹脂にカーボンブラック、酸化チタン等の粒子又は微細な気泡を練り込む方法、上記樹脂層の表面にインクを塗布する方法等が挙げられる。
The resin layer may be colored. By coloring the resin layer, it is possible to impart light-shielding properties to the adhesive tape.
The method of coloring the resin layer is not particularly limited, and for example, a method of kneading particles such as carbon black or titanium oxide or fine bubbles into the resin constituting the resin layer, or applying ink to the surface of the resin layer. The method and the like can be mentioned.
上記樹脂層は、必要に応じて、無機粒子、導電粒子、可塑剤、粘着付与剤、紫外線吸収剤、酸化防止剤、発泡剤、有機充填剤、無機充填剤等の従来公知の粒子及び添加剤を含有してもよい。 The resin layer may contain conventionally known particles and additives such as inorganic particles, conductive particles, plasticizers, tackifiers, ultraviolet absorbers, antioxidants, foaming agents, organic fillers, and inorganic fillers, if necessary. May be contained.
上記樹脂層の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は100μmである。上記樹脂層の厚みを上記範囲とすることにより、粘着テープの取り扱い性と繰り返し耐衝撃性とを両立することができる。取り扱い性と繰り返し耐衝撃性とを更に両立する観点から、上記樹脂層の厚みのより好ましい下限は10μm、より好ましい上限は70μmである。 The thickness of the resin layer is not particularly limited, but the preferred lower limit is 5 μm and the preferred upper limit is 100 μm. By setting the thickness of the resin layer within the above range, it is possible to achieve both handleability of the adhesive tape and repeated impact resistance. From the viewpoint of further achieving both handleability and repeatable impact resistance, the more preferable lower limit of the thickness of the resin layer is 10 μm, and the more preferable upper limit is 70 μm.
上記粘着剤層は、上記多層基材の一方の面のみに積層されていてもよいし、両面に積層されていてもよい。上記粘着剤層が上記多層基材の両面に積層されている場合、両面の粘着剤層はそれぞれ同じ組成及び物性を有していてもよいし、異なる組成及び物性を有していてもよい。 The pressure-sensitive adhesive layer may be laminated on only one surface of the multilayer base material, or may be laminated on both sides. When the pressure-sensitive adhesive layer is laminated on both sides of the multilayer base material, the pressure-sensitive adhesive layers on both sides may have the same composition and physical properties, or may have different compositions and physical properties.
上記粘着剤層は、23℃でのせん断粘着力測定における破断伸度の下限が30%である。上記23℃での破断伸度が30%以上であることで、衝撃を受けた際の上記粘着剤層の変形による破断が起こりにくくなり、本発明の粘着テープは、優れた繰り返し耐衝撃性を有することができる。上記23℃での破断伸度の好ましい下限は35%である。
上記23℃での破断伸度の上限は特に限定されないが、強度を確保する観点から、好ましい上限は80%、より好ましい上限は70%である。
なお、粘着剤層の23℃でのせん断粘着力測定における破断伸度は、JIS-Z-0237に準拠して、卓上形精密万能試験機装置(例えば、島津製作所社製、オートグラフAGS-Xシリーズ等)を用いて以下のように算出することができる。
粘着テープを長さ5mm×幅35mmに切り出した試験片を用意する。次いで、55mm×65mm×厚さ1mmのポリカーボネート板2枚を、試験片の両面に貼り付け、10kgで10秒加圧することで、2枚のポリカーボネート板を接着する。その後、23℃で3時間静置し、試験サンプルを得る。試験サンプルを上記装置にて23℃環境下、500mm/minの速度で試験片の長さ方向に引張り、試験片が破断したときの引張伸びを記録し、試験片の長さに対する伸び率として、粘着剤層の23℃でのせん断粘着力測定における破断伸度を算出する。
The pressure-sensitive adhesive layer has a lower limit of breaking elongation of 30% in the shear adhesive force measurement at 23 ° C. When the breaking elongation at 23 ° C. is 30% or more, breaking due to deformation of the pressure-sensitive adhesive layer when subjected to impact is less likely to occur, and the adhesive tape of the present invention has excellent repeated impact resistance. Can have. The preferable lower limit of the elongation at break at 23 ° C. is 35%.
The upper limit of the elongation at break at 23 ° C. is not particularly limited, but from the viewpoint of ensuring strength, the preferable upper limit is 80%, and the more preferable upper limit is 70%.
The breaking elongation of the adhesive layer in the shear adhesive force measurement at 23 ° C. is based on JIS-Z-0237, and is a tabletop precision universal testing machine (for example, Autograph AGS-X manufactured by Shimadzu Corporation). It can be calculated as follows using the series etc.).
Prepare a test piece obtained by cutting the adhesive tape into a length of 5 mm and a width of 35 mm. Next, two polycarbonate plates of 55 mm × 65 mm × thickness of 1 mm are attached to both sides of the test piece and pressed at 10 kg for 10 seconds to bond the two polycarbonate plates. Then, the mixture is allowed to stand at 23 ° C. for 3 hours to obtain a test sample. The test sample was pulled in the length direction of the test piece at a speed of 500 mm / min under the above-mentioned device in an environment of 23 ° C., and the tensile elongation when the test piece broke was recorded, and the elongation rate with respect to the length of the test piece was recorded. The breaking elongation in the shear adhesive force measurement of the adhesive layer at 23 ° C. is calculated.
なお、せん断粘着力測定における破断伸度は、積層体を測定対象とする場合、最も伸びやすい層の影響が支配的である。せん断力による伸びが小さい層が、測定対象の積層体に含まれていたとしても、せん断力による伸びが小さい層の存在は全体の値に大きな影響を与えない。従って、上述の試験片の調整が困難な場合は、積層体自体に対して同様の測定を行うことで、最も伸びやすい層の破断伸度を見積もることができる。 The elongation at break in the shear adhesive force measurement is dominated by the influence of the most stretchable layer when the laminated body is the measurement target. Even if a layer having a small elongation due to a shearing force is included in the laminate to be measured, the presence of a layer having a small elongation due to a shearing force does not significantly affect the overall value. Therefore, when it is difficult to adjust the above-mentioned test piece, the breaking elongation of the most stretchable layer can be estimated by performing the same measurement on the laminated body itself.
上記粘着剤層は、ゲル分率の好ましい下限が10重量%、好ましい上限が90重量%である。上記ゲル分率が10重量%以上であれば、衝撃を受けた際に上記粘着剤層が変形しにくくなり、粘着テープの繰り返し耐衝撃性がより向上する。上記ゲル分率が90重量%以下であれば、上記粘着剤層の柔軟性が向上して、衝撃を受けた際に上記粘着剤層が硬すぎて応力を分散できなくなることを防ぐことができる。これにより、粘着テープの繰り返し耐衝撃性がより向上する。上記ゲル分率のより好ましい下限は20重量%、より好ましい上限は80重量%である。
なお、粘着剤層のゲル分率は、基材層のゲル分率と同様の方法で測定することができる。
In the pressure-sensitive adhesive layer, the preferable lower limit of the gel fraction is 10% by weight, and the preferable upper limit is 90% by weight. When the gel fraction is 10% by weight or more, the adhesive layer is less likely to be deformed when subjected to an impact, and the repeated impact resistance of the adhesive tape is further improved. When the gel fraction is 90% by weight or less, the flexibility of the pressure-sensitive adhesive layer is improved, and it is possible to prevent the pressure-sensitive adhesive layer from being too hard to disperse stress when subjected to an impact. .. This further improves the repeated impact resistance of the adhesive tape. The more preferable lower limit of the gel fraction is 20% by weight, and the more preferable upper limit is 80% by weight.
The gel fraction of the pressure-sensitive adhesive layer can be measured by the same method as the gel fraction of the base material layer.
上記粘着剤層は、10℃での動的粘弾性測定における貯蔵弾性率G’の下限が0.13MPa、上限が7.0MPaである。上記10℃での貯蔵弾性率G’が0.13MPa以上であれば、衝撃を受けた際に上記粘着剤層が変形しにくくなり、粘着テープの繰り返し耐衝撃性がより向上する。上記10℃での貯蔵弾性率G’が7.0MPa以下であれば、上記粘着剤層の柔軟性が向上して、衝撃を受けた際に上記粘着剤層が硬すぎて応力を分散できなくなることを防ぐことができる。これにより、粘着テープの繰り返し耐衝撃性がより向上する。上記粘着剤層の10℃での貯蔵弾性率G’の好ましい下限は0.25MPa、好ましい上限は5.0MPa、より好ましい下限は0.3MPa、より好ましい上限は4.0MPaである。
なお、粘着剤層の10℃での貯蔵弾性率G’は、定速昇温せん断モードで測定すること以外は、基材層の貯蔵弾性率と同様の方法で測定することができる。
In the pressure-sensitive adhesive layer, the lower limit of the storage elastic modulus G'in the dynamic viscoelasticity measurement at 10 ° C. is 0.13 MPa, and the upper limit is 7.0 MPa. When the storage elastic modulus G'at 10 ° C. is 0.13 MPa or more, the adhesive layer is less likely to be deformed when subjected to an impact, and the repeated impact resistance of the adhesive tape is further improved. When the storage elastic modulus G'at 10 ° C. is 7.0 MPa or less, the flexibility of the pressure-sensitive adhesive layer is improved, and the pressure-sensitive adhesive layer is too hard to disperse stress when subjected to an impact. You can prevent that. This further improves the repeated impact resistance of the adhesive tape. The preferable lower limit of the storage elastic modulus G'at 10 ° C. of the pressure-sensitive adhesive layer is 0.25 MPa, the preferable upper limit is 5.0 MPa, the more preferable lower limit is 0.3 MPa, and the more preferable upper limit is 4.0 MPa.
The storage elastic modulus G'at 10 ° C. of the pressure-sensitive adhesive layer can be measured by the same method as the storage elastic modulus of the base material layer except that it is measured in the constant-speed temperature-increasing shear mode.
上記23℃での破断伸度、上記ゲル分率及び、上記10℃での貯蔵弾性率G’を上記範囲に調整する方法は特に限定されず、例えば、上記粘着剤層を構成する樹脂及び添加剤を選択する方法等が挙げられる。より具体的には、上記粘着剤層として、後述するようなアクリル共重合体、粘着付与樹脂及び架橋剤を含有するアクリル粘着剤層を用いることが好ましい。 The method for adjusting the breaking elongation at 23 ° C., the gel fraction, and the storage elastic modulus G'at 10 ° C. within the above ranges is not particularly limited, and for example, the resin constituting the pressure-sensitive adhesive layer and the addition thereof. Examples include a method of selecting an agent. More specifically, as the pressure-sensitive adhesive layer, it is preferable to use an acrylic pressure-sensitive adhesive layer containing an acrylic copolymer, a pressure-imparting resin, and a cross-linking agent as described later.
上記粘着剤層は特に限定されず、例えば、アクリル粘着剤層、ゴム系粘着剤層、ウレタン粘着剤層、シリコーン系粘着剤層等が挙げられる。なかでも、耐熱性に優れ、幅広い種類の被着体に接着が可能であることから、アクリル共重合体を含有するアクリル粘着剤層が好ましい。 The pressure-sensitive adhesive layer is not particularly limited, and examples thereof include an acrylic pressure-sensitive adhesive layer, a rubber-based pressure-sensitive adhesive layer, a urethane pressure-sensitive adhesive layer, and a silicone-based pressure-sensitive adhesive layer. Among them, an acrylic pressure-sensitive adhesive layer containing an acrylic copolymer is preferable because it has excellent heat resistance and can be adhered to a wide variety of adherends.
上記アクリル共重合体は、初期のタックが向上するため低温時の貼り付け易さが良好となる観点から、ブチルアクリレート及び/又は2-エチルヘキシルアクリレートを含むモノマー混合物を共重合して得られることが好ましい。なかでも、ブチルアクリレートと2-エチルヘキシルアクリレートとを含むモノマー混合物を共重合して得られることがより好ましい。
全モノマー混合物に占める上記ブチルアクリレートの含有量の好ましい下限は40重量%、好ましい上限は80重量%である。上記ブチルアクリレートの含有量を上記範囲とすることにより、高い粘着力とタック性とを両立することができる。
全モノマー混合物に占める上記2-エチルヘキシルアクリレートの含有量の好ましい下限は10重量%、好ましい上限は100重量%である。上記2-エチルヘキシルアクリレートの含有量を上記範囲とすることにより、高い粘着力を発揮することができる。
The acrylic copolymer can be obtained by copolymerizing a monomer mixture containing butyl acrylate and / or 2-ethylhexyl acrylate from the viewpoint of improving the initial tack and making it easy to attach at low temperature. preferable. Above all, it is more preferable to obtain it by copolymerizing a monomer mixture containing butyl acrylate and 2-ethylhexyl acrylate.
The preferable lower limit of the content of the butyl acrylate in the total monomer mixture is 40% by weight, and the preferable upper limit is 80% by weight. By setting the content of the butyl acrylate in the above range, both high adhesive strength and tackiness can be achieved at the same time.
The preferable lower limit of the content of the 2-ethylhexyl acrylate in the total monomer mixture is 10% by weight, and the preferable upper limit is 100% by weight. By setting the content of the 2-ethylhexyl acrylate in the above range, high adhesive strength can be exhibited.
上記モノマー混合物は、必要に応じてブチルアクリレート及び2-エチルヘキシルアクリレート以外の共重合可能な他の重合性モノマーを含んでいてもよい。上記共重合可能な他の重合性モノマーとして、例えば、アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステル、官能性モノマー等が挙げられる。
上記アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルとして、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、メタクリル酸トリデシル、(メタ)アクリル酸ステアリル等が挙げられる。上記官能性モノマーとして、例えば、(メタ)アクリル酸ヒドロキシアルキル、(メタ)アクリル酸アルコキシアルキル、グリセリンジメタクリレート、(メタ)アクリル酸グリシジル、2-メタクリロイルオキシエチルイソシアネート、(メタ)アクリル酸、イタコン酸、無水マレイン酸、クロトン酸、マレイン酸、フマル酸等が挙げられる。
The monomer mixture may contain other copolymerizable monomers other than butyl acrylate and 2-ethylhexyl acrylate, if necessary. Examples of the other copolymerizable monomer include (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms in the alkyl group, functional monomers and the like.
Examples of the (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms in the alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth) acrylic acid. Examples thereof include isopropyl, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, tridecyl methacrylate, and stearyl (meth) acrylate. Examples of the functional monomer include hydroxyalkyl (meth) acrylate, alkoxyalkyl (meth) acrylate, glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, and itaconic acid. , Maleic anhydride, crotonic acid, maleic acid, fumaric acid and the like.
上記モノマー混合物を共重合して上記アクリル共重合体を得るには、上記モノマー混合物を、重合開始剤の存在下にてラジカル反応させればよい。上記モノマー混合物をラジカル反応させる方法、即ち、重合方法としては、従来公知の方法が用いられ、例えば、溶液重合(沸点重合又は定温重合)、乳化重合、懸濁重合、塊状重合等が挙げられる。 In order to copolymerize the monomer mixture to obtain the acrylic copolymer, the monomer mixture may be subjected to a radical reaction in the presence of a polymerization initiator. As a method of radically reacting the monomer mixture, that is, a polymerization method, a conventionally known method is used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like.
上記アクリル共重合体の重量平均分子量(Mw)は特に限定されないが、好ましい下限が40万、好ましい上限が150万である。上記アクリル共重合体の重量平均分子量を上記範囲とすることにより、高い粘着力を発揮することができる。粘着力の更なる向上の観点から、上記重量平均分子量のより好ましい下限は50万、より好ましい上限は140万である。 The weight average molecular weight (Mw) of the acrylic copolymer is not particularly limited, but the preferable lower limit is 400,000 and the preferable upper limit is 1.5 million. By setting the weight average molecular weight of the acrylic copolymer in the above range, high adhesive strength can be exhibited. From the viewpoint of further improving the adhesive strength, the more preferable lower limit of the weight average molecular weight is 500,000, and the more preferable upper limit is 1.4 million.
上記アクリル共重合体の数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)は、好ましい上限が10.0である。Mw/Mnが10.0以下であると、低分子成分の割合が抑えられ、上記粘着剤層が高温下で軟化し、バルク強度が下がり接着強度が低下することが抑制される。同様の観点から、Mw/Mnのより好ましい上限は5.0であり、更に好ましい上限は3.0である。 The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the acrylic copolymer is preferably 10.0. When Mw / Mn is 10.0 or less, the ratio of the small molecule component is suppressed, the pressure-sensitive adhesive layer is softened at a high temperature, the bulk strength is lowered, and the adhesive strength is suppressed. From the same viewpoint, the more preferable upper limit of Mw / Mn is 5.0, and the more preferable upper limit is 3.0.
上記粘着剤層は、粘着付与樹脂を含有してもよい。
上記粘着付与樹脂として、例えば、ロジンエステル系樹脂、水添ロジン系樹脂、テルペン系樹脂、テルペンフェノール系樹脂、クマロンインデン系樹脂、脂環族飽和炭化水素系樹脂、C5系石油樹脂、C9系石油樹脂、C5-C9共重合系石油樹脂等が挙げられる。これらの粘着付与樹脂は単独で用いてもよいし、2種以上を併用してもよい。
The pressure-sensitive adhesive layer may contain a pressure-sensitive adhesive resin.
Examples of the tackifier resin include rosin ester resin, hydrogenated rosin resin, terpene resin, terpene phenol resin, Kumaron inden resin, alicyclic saturated hydrocarbon resin, C5 petroleum resin, and C9 resin. Examples thereof include petroleum resins and C5-C9 copolymerized petroleum resins. These tackifier resins may be used alone or in combination of two or more.
上記粘着付与樹脂の含有量は特に限定されないが、上記粘着剤層の主成分となる樹脂(例えば、アクリル共重合体)100重量部に対する好ましい下限は10重量部、好ましい上限は60重量部である。上記粘着付与樹脂の含有量が10重量部以上であると、上記粘着剤層が高い粘着力を発揮することができる。上記粘着付与樹脂の含有量が60重量部以下であると、上記粘着剤層が硬くなることによる粘着力又はタック性の低下を抑制することができる。 The content of the tackifier resin is not particularly limited, but the preferable lower limit is 10 parts by weight and the preferable upper limit is 60 parts by weight with respect to 100 parts by weight of the resin (for example, acrylic copolymer) which is the main component of the pressure-sensitive adhesive layer. .. When the content of the pressure-sensitive adhesive resin is 10 parts by weight or more, the pressure-sensitive adhesive layer can exhibit high adhesive strength. When the content of the pressure-sensitive adhesive resin is 60 parts by weight or less, it is possible to suppress a decrease in adhesive strength or tackiness due to the hardening of the pressure-sensitive adhesive layer.
上記粘着剤層は、架橋剤が添加されることにより上記粘着剤層を構成する樹脂(例えば、上記アクリル共重合体、上記粘着付与樹脂等)の主鎖間に架橋構造が形成されていることが好ましい。
上記架橋剤は特に限定されず、例えば、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、金属キレート型架橋剤等が挙げられる。なかでも、イソシアネート系架橋剤が好ましい。上記粘着剤層にイソシアネート系架橋剤が添加されることで、イソシアネート系架橋剤のイソシアネート基と上記粘着剤層を構成する樹脂(例えば、上記アクリル共重合体、上記粘着付与樹脂等)中のアルコール性水酸基とが反応して、上記粘着剤層が架橋する。上記粘着剤層を構成する樹脂の主鎖間に架橋構造が形成されていることで、断続的に加わる応力を分散させることができ、粘着テープの繰り返し耐衝撃性がより向上するとともに耐熱性も向上する。
上記架橋剤の添加量は、上記粘着剤層の主成分となる樹脂(例えば、上記アクリル共重合体)100重量部に対して0.01~10重量部が好ましく、0.1~7重量部がより好ましい。
The pressure-sensitive adhesive layer has a cross-linked structure formed between the main chains of the resin (for example, the acrylic copolymer, the pressure-sensitive adhesive resin, etc.) constituting the pressure-sensitive adhesive layer by adding a cross-linking agent. Is preferable.
The above-mentioned cross-linking agent is not particularly limited, and examples thereof include an isocyanate-based cross-linking agent, an aziridine-based cross-linking agent, an epoxy-based cross-linking agent, and a metal chelate-type cross-linking agent. Of these, isocyanate-based cross-linking agents are preferable. By adding an isocyanate-based cross-linking agent to the pressure-sensitive adhesive layer, the isocyanate group of the isocyanate-based cross-linking agent and the alcohol in the resin constituting the pressure-sensitive adhesive layer (for example, the acrylic copolymer, the pressure-sensitive adhesive resin, etc.) The pressure-sensitive adhesive layer is crosslinked by reacting with the sex hydroxylate. By forming a crosslinked structure between the main chains of the resin constituting the pressure-sensitive adhesive layer, it is possible to disperse the stress applied intermittently, and the repeated impact resistance of the pressure-sensitive adhesive tape is further improved and the heat resistance is also improved. improves.
The amount of the cross-linking agent added is preferably 0.01 to 10 parts by weight, preferably 0.1 to 7 parts by weight, based on 100 parts by weight of the resin (for example, the acrylic copolymer) which is the main component of the pressure-sensitive adhesive layer. Is more preferable.
上記粘着剤層は、粘着力を向上させる目的で、シランカップリング剤を含有してもよい。上記シランカップリング剤は特に限定されず、例えば、エポキシシラン類、アクリルシラン類、メタクリルシラン類、アミノシラン類、イソシアネートシラン類等が挙げられる。 The pressure-sensitive adhesive layer may contain a silane coupling agent for the purpose of improving the pressure-sensitive adhesive force. The silane coupling agent is not particularly limited, and examples thereof include epoxysilanes, acrylicsilanes, methacrylsilanes, aminosilanes, and isocyanatesilanes.
上記粘着剤層は、遮光性を付与する目的で、着色材を含有してもよい。上記着色材は特に限定されず、例えば、カーボンブラック、アニリンブラック、酸化チタン等が挙げられる。なかでも、比較的安価で化学的に安定であることから、カーボンブラックが好ましい。
上記粘着剤層は、必要に応じて、無機粒子、導電粒子、酸化防止剤、発泡剤、有機充填剤、無機充填剤等の従来公知の粒子及び添加剤を含有してもよい。
The pressure-sensitive adhesive layer may contain a coloring material for the purpose of imparting light-shielding properties. The coloring material is not particularly limited, and examples thereof include carbon black, aniline black, and titanium oxide. Of these, carbon black is preferable because it is relatively inexpensive and chemically stable.
The pressure-sensitive adhesive layer may contain conventionally known particles and additives such as inorganic particles, conductive particles, antioxidants, foaming agents, organic fillers, and inorganic fillers, if necessary.
上記粘着剤層の厚みは特に限定されないが、好ましい下限は0.01mm、好ましい上限は0.1mmであり、より好ましい下限は0.015mm、より好ましい上限は0.09mmである。上記粘着剤層の厚みを上記範囲とすることにより、柔軟性、繰り返し耐衝撃性、耐熱性、取り扱い性等に優れた粘着テープとすることができるとともに、粘着テープを携帯電子機器部品、車載用電子機器部品等の電子機器部品の固定に好適に用いることができる。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, but a preferable lower limit is 0.01 mm, a preferable upper limit is 0.1 mm, a more preferable lower limit is 0.015 mm, and a more preferable upper limit is 0.09 mm. By setting the thickness of the adhesive layer within the above range, it is possible to obtain an adhesive tape having excellent flexibility, repeated impact resistance, heat resistance, handleability, etc., and the adhesive tape can be used for portable electronic device parts and automobiles. It can be suitably used for fixing electronic device parts such as electronic device parts.
本発明の粘着テープは、23℃でのせん断粘着力測定における破断伸度の下限が30%であることが好ましい。本発明の粘着テープの23℃でのせん断粘着力測定における破断伸度は、例えば、上記粘着剤層の23℃でのせん断粘着力測定における破断伸度を変化させることで調整することができる。 The adhesive tape of the present invention preferably has a lower limit of breaking elongation of 30% in the shear adhesive force measurement at 23 ° C. The breaking elongation of the adhesive tape of the present invention in the shear adhesive force measurement at 23 ° C. can be adjusted, for example, by changing the breaking elongation in the shear adhesive force measurement of the pressure-sensitive adhesive layer at 23 ° C.
本発明の粘着テープ全体の厚みは特に限定されないが、好ましい下限は0.04mm、より好ましい下限は0.05mm、好ましい上限は2mm、より好ましい上限は1.5mmである。本発明の粘着テープ全体の厚みを上記範囲とすることにより、柔軟性、繰り返し耐衝撃性、耐熱性、取り扱い性等に優れた粘着テープとすることができる。
本発明の粘着テープの形状は特に限定されないが、長方形、額縁状、円形、楕円形、ドーナツ型等が挙げられる。
The thickness of the entire adhesive tape of the present invention is not particularly limited, but a preferable lower limit is 0.04 mm, a more preferable lower limit is 0.05 mm, a preferable upper limit is 2 mm, and a more preferable upper limit is 1.5 mm. By setting the thickness of the entire adhesive tape of the present invention within the above range, it is possible to obtain an adhesive tape having excellent flexibility, repeated impact resistance, heat resistance, handleability and the like.
The shape of the adhesive tape of the present invention is not particularly limited, and examples thereof include a rectangle, a frame, a circle, an ellipse, and a donut.
本発明の粘着テープの製造方法としては特に限定されず、例えば、次のような方法が挙げられる。まず、離型フィルムに粘着剤溶液を塗工、乾燥して粘着剤層を形成する。次いで、未発泡体基材層を製造し、該未発泡体基材層に樹脂層を積層して積層体を形成する。その後、得られた積層体の両面に粘着剤層を貼り合わせ、加熱することで未発泡体基材を発泡させて発泡体基材層とし、粘着テープを製造する。 The method for producing the adhesive tape of the present invention is not particularly limited, and examples thereof include the following methods. First, a pressure-sensitive adhesive solution is applied to a release film and dried to form a pressure-sensitive adhesive layer. Next, an unfoamed base material layer is manufactured, and a resin layer is laminated on the unfoamed base material layer to form a laminate. Then, an adhesive layer is attached to both sides of the obtained laminate, and the unfoamed base material is foamed by heating to form a foam base material layer, and an adhesive tape is manufactured.
本発明の粘着テープの用途は特に限定されないが、繰り返し耐衝撃性に優れることから、携帯電子機器部品、車載用電子機器部品等の電子機器部品の組み立て又は固定に用いられることが好ましい。 The use of the adhesive tape of the present invention is not particularly limited, but it is preferably used for assembling or fixing electronic device parts such as portable electronic device parts and in-vehicle electronic device parts because it is excellent in repeated impact resistance.
本発明によれば、繰り返し耐衝撃性に優れた粘着テープを提供することができる。 According to the present invention, it is possible to provide an adhesive tape having excellent repeated impact resistance.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1)
(1)未発泡体基材層の製造
1,6-ヘキサンジチオール0.902gと、二硫化炭素1.83gと、ジメチルホルムアミド11mLとを2口フラスコに投入し、25℃で攪拌した。これに、トリエチルアミン2.49gを15分かけて滴下し、25℃で3時間攪拌した。次いで、メチル-α-ブロモフェニル酢酸2.75gを15分かけて滴下し、25℃で4時間攪拌した。その後、反応液に抽出溶媒(n-ヘキサン:酢酸エチル=50:50)100mLと水50mLとを加えて分液抽出した。1回目と2回目の分液抽出で得られた有機層を混合し、1M塩酸50mL、水50mL、飽和食塩水50mLで順に洗浄した。洗浄後の有機層に硫酸ナトリウムを加えて乾燥した後、硫酸ナトリウムをろ過し、ろ液をエバポレーターで濃縮して、有機溶媒を除去した。得られた濃縮物をシリカゲルカラムクロマトグラフィにて精製することでRAFT剤を得た。
(Example 1)
(1) Production of unfoamed substrate layer 0.902 g of 1,6-hexanedithiol, 1.83 g of carbon disulfide, and 11 mL of dimethylformamide were placed in a two-necked flask and stirred at 25 ° C. To this, 2.49 g of triethylamine was added dropwise over 15 minutes, and the mixture was stirred at 25 ° C. for 3 hours. Then, 2.75 g of methyl-α-bromophenylacetic acid was added dropwise over 15 minutes, and the mixture was stirred at 25 ° C. for 4 hours. Then, 100 mL of an extraction solvent (n-hexane: ethyl acetate = 50: 50) and 50 mL of water were added to the reaction solution for liquid-liquid extraction. The organic layers obtained by the first and second liquid separation extractions were mixed and washed in order with 50 mL of 1 M hydrochloric acid, 50 mL of water and 50 mL of saturated brine. Sodium sulfate was added to the washed organic layer and dried, and then the sodium sulfate was filtered, and the filtrate was concentrated with an evaporator to remove the organic solvent. The obtained concentrate was purified by silica gel column chromatography to obtain a RAFT agent.
スチレン(St)93重量部と、アクリル酸(AAc)6重量部と、ヒドロキシエチルアクリレート(HEA)1重量部と、RAFT剤2.8重量部と、2,2’-アゾビス(2-メチルブチロニトリル)(ABN-E)0.35重量部とを2口フラスコに投入し、フラスコ内を窒素ガスで置換しながら85℃に昇温した。その後、85℃で6時間撹拌して重合反応を行った(第一段階反応)。
反応終了後、フラスコ内にn-ヘキサン4000重量部を投入し、撹拌して反応物を沈殿させた後、未反応のモノマー及びRAFT剤をろ過し、反応物を70℃で減圧乾燥して共重合体(ハードブロック)を得た。
93 parts by weight of styrene (St), 6 parts by weight of acrylic acid (AAc), 1 part by weight of hydroxyethyl acrylate (HEA), 2.8 parts by weight of RAFT agent, and 2,2'-azobis (2-methylbuty). 0.35 part by weight of bnitrile) (ABN-E) was put into a two-port flask, and the temperature was raised to 85 ° C. while replacing the inside of the flask with nitrogen gas. Then, the polymerization reaction was carried out by stirring at 85 ° C. for 6 hours (first step reaction).
After completion of the reaction, 4000 parts by weight of n-hexane was put into the flask and stirred to precipitate the reaction product, then the unreacted monomer and RAFT agent were filtered, and the reaction product was dried under reduced pressure at 70 ° C. and copolymerized. A polymer (hard block) was obtained.
アクリル酸メチル(MA)49.5重量部、アクリル酸ブチル(BA)49.5重量部、アクリル酸(AAc)1重量部、ABN-E0.058重量部及び酢酸エチル50重量部を含む混合物と、上記で得られた共重合体(ハードブロック)とを2口フラスコに投入し、フラスコ内を窒素ガスで置換しながら85℃に昇温した。その後、85℃で6時間撹拌して重合反応を行い(第二段階反応)、ハードブロックとソフトブロックとから形成されるブロック共重合体を含む反応液を得た。なお、混合物の配合量は、得られるブロック共重合体におけるハードブロックの含有量が3重量%、ソフトブロックの含有量が97重量%となるように調整した。
反応液の一部を採取し、これにn-ヘキサン4000重量部を投入し、撹拌して反応物を沈殿させた後、未反応のモノマー及び溶媒をろ過し、反応物を70℃で減圧乾燥してブロック共重合体を得た。
得られたブロック共重合体について、GPC法により重量平均分子量を測定したところ、39万であった。なお、測定機器としてWaters社製「2690 Separations Module」、カラムとして昭和電工社製「GPC KF-806L」、溶媒として酢酸エチルを用い、サンプル流量1mL/min、カラム温度40℃の条件で測定した。
With a mixture containing 49.5 parts by weight of methyl acrylate (MA), 49.5 parts by weight of butyl acrylate (BA), 1 part by weight of acrylic acid (AAc), 0.058 parts by weight of ABN-E, and 50 parts by weight of ethyl acetate. The copolymer (hard block) obtained above was put into a two-necked flask, and the temperature was raised to 85 ° C. while replacing the inside of the flask with nitrogen gas. Then, the polymerization reaction was carried out by stirring at 85 ° C. for 6 hours (second stage reaction) to obtain a reaction solution containing a block copolymer formed from a hard block and a soft block. The blending amount of the mixture was adjusted so that the content of the hard block in the obtained block copolymer was 3% by weight and the content of the soft block was 97% by weight.
A part of the reaction solution is collected, 4000 parts by weight of n-hexane is added thereto, and the mixture is stirred to precipitate the reaction product, then the unreacted monomer and solvent are filtered, and the reaction product is dried under reduced pressure at 70 ° C. The block copolymer was obtained.
The weight average molecular weight of the obtained block copolymer was measured by the GPC method and found to be 390,000. Using "2690 Separations Model" manufactured by Waters as a measuring device, "GPC KF-806L" manufactured by Showa Denko as a column, and ethyl acetate as a solvent, the measurement was performed under the conditions of a sample flow rate of 1 mL / min and a column temperature of 40 ° C.
得られたブロック共重合体を固形分率が35%になるよう酢酸エチルに溶解させた。ブロック共重合体100重量部に対して、発泡剤(発泡粒子)としてエクスパンセル461-DU-40(461DU40)(日本フィライト社製)3.3重量部、架橋剤としてテトラッドC(三菱ガス化学社製)0.15重量部を加えて更に充分に撹拌し、発泡体基材層溶液を得た。得られた発泡体基材層溶液を、樹脂層Iとしての樹脂フィルム(片面にコロナ処理を施した厚み23μmのポリエチレンテレフタレート(PET)フィルム、23℃でのヤング率2026MPa)のコロナ処理面上に塗工し、90℃7分間乾燥させることで未発泡体基材層Aと樹脂層Iとの積層体を得た。未発泡体基材層Aの厚みは、40℃の環境下に48時間静置した後の未発泡体基材層Aを130℃1分間加熱した際に、127μmとなるように調整した。 The obtained block copolymer was dissolved in ethyl acetate so that the solid content was 35%. For 100 parts by weight of the block copolymer, 3.3 parts by weight of Expandel 461-DU-40 (461DU40) (manufactured by Nippon Philite) as a foaming agent (foaming particles) and Tetrad C (Mitsubishi Gas Chemical Company) as a cross-linking agent. (Manufactured by the same company) 0.15 parts by weight was added and further sufficiently stirred to obtain a foam substrate layer solution. The obtained foam base material layer solution was applied onto a corona-treated surface of a resin film as the resin layer I (a polyethylene terephthalate (PET) film having a thickness of 23 μm with one side treated with corona, and a Young's modulus of 2026 MPa at 23 ° C.). After coating and drying at 90 ° C. for 7 minutes, a laminate of the unfoamed base material layer A and the resin layer I was obtained. The thickness of the unfoamed base material layer A was adjusted to 127 μm when the unfoamed base material layer A was allowed to stand in an environment of 40 ° C. for 48 hours and then heated at 130 ° C. for 1 minute.
(2)粘着剤溶液の調製
温度計、攪拌機、冷却管を備えた反応器にブチルアクリレート(BA)78重量部、2-エチルヘキシルアクリレート(2EHA)19重量部、アクリル酸(AAc)3重量部、2-ヒドロキシエチルアクリレート(HEA)0.2重量部、及び、酢酸エチル80重量部を加え、窒素置換した後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤としてアゾビスイソブチロニトリル0.1重量部を添加した。5時間還流させて、アクリル共重合体(ランダム共重合体)の溶液を得た。得られたアクリル共重合体について、カラムとしてWaters社製「2690 Separations Model」を用いてGPC法により重量平均分子量を測定したところ、91万であった。
得られたアクリル共重合体の溶液に含まれるアクリル共重合体の固形分100重量部に対して、軟化点135℃の重合ロジンエステル系樹脂15重量部、軟化点160℃のテルペンフェノール系樹脂10重量部、軟化点75℃のロジンエステル系樹脂10重量部を添加した。更に、酢酸エチル(不二化学薬品社製)125重量部、イソシアネート系架橋剤(東ソー社製、コロネートL45)2.2重量部を添加し、攪拌して、粘着剤(1)の溶液を得た。
(2) Preparation of adhesive solution 78 parts by weight of butyl acrylate (BA), 19 parts by weight of 2-ethylhexyl acrylate (2EHA), 3 parts by weight of acrylic acid (AAc) in a reactor equipped with a thermometer, a stirrer and a cooling tube. After adding 0.2 parts by weight of 2-hydroxyethyl acrylate (HEA) and 80 parts by weight of ethyl acetate and substituting with nitrogen, the reactor was heated to start reflux. Subsequently, 0.1 part by weight of azobisisobutyronitrile was added as a polymerization initiator into the reactor. The mixture was refluxed for 5 hours to obtain a solution of an acrylic copolymer (random copolymer). The weight average molecular weight of the obtained acrylic copolymer was measured by the GPC method using "2690 Separations Model" manufactured by Waters as a column, and it was 910,000.
With respect to 100 parts by weight of the solid content of the acrylic copolymer contained in the obtained solution of the acrylic copolymer, 15 parts by weight of the polymerized rosin ester resin having a softening point of 135 ° C. and the terpenephenol resin 10 having a softening point of 160 ° C. By weight, 10 parts by weight of a rosin ester resin having a softening point of 75 ° C. was added. Further, 125 parts by weight of ethyl acetate (manufactured by Fuji Chemical Co., Ltd.) and 2.2 parts by weight of an isocyanate-based cross-linking agent (manufactured by Tosoh Co., Ltd., Coronate L45) were added and stirred to obtain a solution of the pressure-sensitive adhesive (1). rice field.
(3)粘着テープの製造
片面に離型処理を施した50μmのポリエチレンテレフタレート(PET)フィルムの離型処理面上に、得られた粘着剤(1)の溶液を乾燥皮膜の厚さが75μmとなるようにドクターナイフで塗工し、110℃、5分間加熱して塗工溶液を乾燥させ、粘着剤層(1)を得た。次いで、同様の操作で粘着剤層をもう1つ製造し、2つの粘着剤層(1)を得た。その後、上記で得られた未発泡体基材層Aと樹脂層Iとの積層体の両面に2つの粘着剤層(1)をそれぞれ貼り合わせ、40℃の環境下に48時間静置した。48時間後に40℃環境から取り出し、130℃1分加熱することで未発泡体基材層Aを発泡させて発泡体基材層Aとし、粘着テープを得た。
(3) Production of Adhesive Tape On the release-treated surface of a 50 μm polyethylene terephthalate (PET) film with a mold release treatment on one side, the obtained solution of the adhesive (1) was dried to a thickness of 75 μm. The coating was applied with a doctor's knife and heated at 110 ° C. for 5 minutes to dry the coating solution to obtain an adhesive layer (1). Then, another pressure-sensitive adhesive layer was produced by the same operation to obtain two pressure-sensitive adhesive layers (1). Then, the two pressure-sensitive adhesive layers (1) were laminated on both sides of the laminate of the unfoamed base material layer A and the resin layer I obtained above, and allowed to stand in an environment of 40 ° C. for 48 hours. After 48 hours, it was taken out from the environment at 40 ° C. and heated at 130 ° C. for 1 minute to foam the unfoamed base material layer A to obtain a foam base material layer A, and an adhesive tape was obtained.
(4)粘着剤層の破断伸度測定用試料の作製
粘着剤層(1)を、未発泡体基材層Aと樹脂層Iとの積層体に代えて厚さ50μmのポリエチレンテレフタレート(PET)フィルムの両面にそれぞれ貼り合わせたこと以外は上記(3)と同様にして、粘着剤層の破断伸度測定用試料を得た。
(4) Preparation of sample for measuring break elongation of the pressure-sensitive adhesive layer Polyethylene terephthalate (PET) having a thickness of 50 μm is used instead of the laminated body of the unfoamed base material layer A and the resin layer I for the pressure-sensitive adhesive layer (1). A sample for measuring the elongation at break of the pressure-sensitive adhesive layer was obtained in the same manner as in (3) above except that the films were bonded to both sides of the film.
(5)基材層のゲル分率の測定
粘着テープから基材層(発泡体基材層A)のみを0.1g取り出し、酢酸エチル50mL中に浸漬し、振とう機で温度23度、120rpmの条件で24時間振とうした。振とう後、金属メッシュ(目開き#200メッシュ)を用いて、酢酸エチルと酢酸エチルを吸収し膨潤した基材層を分離した。分離後の基材層を110℃の条件下で1時間乾燥させた。乾燥後の金属メッシュを含む基材層の重量を測定し、下記式を用いて基材層のゲル分率を算出した。
ゲル分率(重量%)=100×(W-W)/W
(W:初期基材層重量、W:乾燥後の金属メッシュを含む基材層重量、W:金属メッシュの初期重量)
(5) Measurement of gel fraction of the base material layer Only 0.1 g of the base material layer (foam base material layer A) is taken out from the adhesive tape, immersed in 50 mL of ethyl acetate, and shaken at a temperature of 23 degrees and 120 rpm. It was shaken for 24 hours under the conditions of. After shaking, a metal mesh (opening # 200 mesh) was used to absorb ethyl acetate and ethyl acetate, and the swollen substrate layer was separated. The base material layer after separation was dried under the condition of 110 ° C. for 1 hour. The weight of the base material layer containing the metal mesh after drying was measured, and the gel fraction of the base material layer was calculated using the following formula.
Gel fraction (% by weight) = 100 x (W 1 -W 2 ) / W 0
(W 0 : weight of initial base material layer, W 1 : weight of base material layer including dried metal mesh, W 2 : initial weight of metal mesh)
(6)基材層の10℃での貯蔵弾性率E’及び発泡倍率の測定
粘弾性スペクトロメーター(アイティー計測制御社製、DVA-200)を用い、定速昇温引張モードの5℃/分、歪0.1%、周波数10Hzの条件で-40~140℃の動的粘弾性スペクトルを取得し、基材層(発泡体基材層A)の10℃での貯蔵弾性率E’を測定した。
JIS K 7222に準拠して電子比重計(ミラージュ社製、ED120T)を使用して基材層(発泡体基材層A)の発泡倍率を測定した。
(6) Measurement of storage elastic modulus E'and foaming magnification of the base material layer at 10 ° C. Using a viscoelastic spectrometer (DVA-200, manufactured by IT Measurement Control Co., Ltd.), a constant speed temperature rise and tension mode of 5 ° C./ A dynamic viscoelastic spectrum of -40 to 140 ° C. was obtained under the conditions of minute, strain 0.1%, and frequency 10 Hz, and the storage elastic modulus E'of the substrate layer (foam substrate layer A) at 10 ° C. was obtained. It was measured.
The foaming magnification of the base material layer (foam base material layer A) was measured using an electronic hydrometer (ED120T manufactured by Mirage Co., Ltd.) in accordance with JIS K 7222.
(7)粘着剤層の23℃での破断伸度の測定
JIS-Z-0237に準拠して、卓上形精密万能試験機装置(島津製作所社製、オートグラフAGS-Xシリーズ)を用いて以下のように測定した。
粘着剤層の破断伸度測定用試料を長さ5mm×幅35mmに切り出した試験片を用意し、次いで、55mm×65mm×厚さ1mmのポリカーボネート板2枚を、試験片の両面に貼り付け、10kgで10秒加圧することで、2枚のポリカーボネート板を接着した。その後、23℃で3時間静置し、試験サンプルを得た。試験サンプルを上記装置にて23℃環境下、500mm/minの速度で試験片の長さ方向に引張り、試験片が破断したときの引張伸びを記録し、試験片の長さに対する伸び率として、粘着剤層の23℃でのせん断粘着力測定における破断伸度を算出した。
(7) Measurement of breaking elongation of the adhesive layer at 23 ° C. Using a desktop precision universal testing machine (manufactured by Shimadzu Corporation, Autograph AGS-X series) in accordance with JIS-Z-0237, the following It was measured as follows.
A test piece obtained by cutting a sample for measuring the elongation at break of the pressure-sensitive adhesive layer into a length of 5 mm × width of 35 mm was prepared, and then two polycarbonate plates of 55 mm × 65 mm × thickness of 1 mm were attached to both sides of the test piece. Two polycarbonate plates were bonded by pressurizing with 10 kg for 10 seconds. Then, it was allowed to stand at 23 degreeC for 3 hours, and a test sample was obtained. The test sample was pulled in the length direction of the test piece at a speed of 500 mm / min under the above-mentioned device in an environment of 23 ° C., and the tensile elongation when the test piece broke was recorded, and the elongation rate with respect to the length of the test piece was recorded. The elongation at break in the shear adhesive force measurement of the adhesive layer at 23 ° C. was calculated.
(8)粘着剤層のゲル分率の測定
粘着テープから粘着剤層(粘着剤層(1))のみを0.1g取り出し、基材層のゲル分率と同様の方法でゲル分率を測定した。
(8) Measurement of gel fraction of the pressure-sensitive adhesive layer Only 0.1 g of the pressure-sensitive adhesive layer (adhesive layer (1)) is taken out from the adhesive tape, and the gel fraction is measured by the same method as the gel fraction of the base material layer. bottom.
(9)粘着剤層の10℃での貯蔵弾性率G’の測定
基材層(発泡体基材層A)の10℃での貯蔵弾性率E’と同様の方法で貯蔵弾性率G’を測定した。
(9) Measurement of storage elastic modulus G'at 10 ° C. of the pressure-sensitive adhesive layer The storage elastic modulus G'at 10 ° C. of the base material layer (foam base material layer A) is measured in the same manner as the storage elastic modulus E'at 10 ° C. It was measured.
(実施例2~20、比較例1~7)
基材層(発泡体基材層)、粘着剤層、及び、樹脂層を表4~5に示すように変更したこと以外は実施例1と同様にして、粘着テープを得た。基材層(発泡体基材層)の詳細を表1に、粘着剤層の詳細を表2に、樹脂層の詳細を表3に示した。
なお、比較例7で用いた基材層(発泡体基材層R)のAS-6S(東亜合成社製のスチレンマクロモノマー溶液(50%トルエン溶液))は、スチレンマクロモノマー固体量が表に記載の値となるように調整して用いた。表中の原料は以下のとおりである。
(Examples 2 to 20, Comparative Examples 1 to 7)
An adhesive tape was obtained in the same manner as in Example 1 except that the base material layer (foam base material layer), the pressure-sensitive adhesive layer, and the resin layer were changed as shown in Tables 4 to 5. The details of the base material layer (foam base material layer) are shown in Table 1, the details of the pressure-sensitive adhesive layer are shown in Table 2, and the details of the resin layer are shown in Table 3.
The AS-6S (styrene macromonomer solution (50% toluene solution) manufactured by Toa Synthetic Co., Ltd.) of the base material layer (foam base material layer R) used in Comparative Example 7 shows the amount of styrene macromonomer solid in the table. It was adjusted and used so as to have the stated value. The raw materials in the table are as follows.
・発泡剤(発泡粒子)
エクスパンセル461-DU-40(461DU40)(日本フィライト社製)
エクスパンセル461-DU-20(461DU20)(日本フィライト社製)
アドバンセルEML101(積水化学工業社製)
・ Foaming agent (foaming particles)
Expandel 461-DU-40 (461DU40) (manufactured by Philite Japan)
Expandel 461-DU-20 (461DU20) (manufactured by Philite Japan)
Advansel EML101 (manufactured by Sekisui Chemical Co., Ltd.)
・基材層の原料モノマー
AS-6S(東亜合成社製のスチレンマクロモノマー溶液(50%トルエン溶液))
2EHA(2-エチルヘキシルアクリレート)
-Raw material monomer AS-6S for the base material layer (styrene macromonomer solution (50% toluene solution) manufactured by Toagosei Co., Ltd.)
2EHA (2-ethylhexyl acrylate)
・樹脂層を構成する樹脂
OPP(ポリオレフィン樹脂フィルム、厚み25μm、23℃でのヤング率689MPa)
PI(ポリイミドフィルム、厚み25μm、23℃でのヤング率2110MPa)
アクリル樹脂フィルム(厚み23μm、23℃でのヤング率1.3MPa、以下に調製方法を示す)
-Resin OPP (polyolefin resin film, thickness 25 μm, Young's modulus at 23 ° C. 689 MPa) constituting the resin layer)
PI (polyimide film, thickness 25 μm, Young's modulus at 23 ° C. 2110 MPa)
Acrylic resin film (thickness 23 μm, Young's modulus 1.3 MPa at 23 ° C, the preparation method is shown below)
(樹脂層IVとしてのアクリル樹脂フィルムの調製方法)
組成を以下のように変更し、発泡粒子及び硬化剤を配合せず、樹脂溶液を厚み50μmのポリエチレンテレフタレート(PET)フィルムの離型処理面上に塗工したこと以外は、実施例1の未発泡体基材層Aの製造方法と同様にしてアクリル樹脂フィルムを得た。
・各ブロック含有量比:ハードブロック20重量%、ソフトブロック80重量%
・ハードブロック組成(重量比):St93%、AAc12%、HEA1%
・ソフトブロック組成(重量比):MA50%、BA50%
・重量平均分子量:40万
(Method of preparing acrylic resin film as resin layer IV)
Except that the composition was changed as follows, the foamed particles and the curing agent were not blended, and the resin solution was applied on the release-treated surface of the polyethylene terephthalate (PET) film having a thickness of 50 μm, it was not described in Example 1. An acrylic resin film was obtained in the same manner as in the method for producing the foam base material layer A.
・ Content ratio of each block: 20% by weight of hard block, 80% by weight of soft block
-Hard block composition (weight ratio): St93%, AAc12%, HEA1%
-Soft block composition (weight ratio): MA50%, BA50%
-Weight average molecular weight: 400,000
<評価>
実施例、比較例で得られた粘着テープについて以下の評価を行った。結果を表4~5に示した。
<Evaluation>
The following evaluations were performed on the adhesive tapes obtained in Examples and Comparative Examples. The results are shown in Tables 4-5.
(1)繰り返し衝撃試験
1mm×70mmに切り出した粘着テープを2つ用意した。次いで、縦72mm、横135mm、厚み1mmのポリカーボネート板の各短辺に粘着テープを貼り付けた。ポリカーボネート板の粘着テープが貼り付けられた面と縦77mm、横150mm、厚み4mmのポリカーボネート板とを、2枚のポリカーボネート板の短辺同士及び長辺同士が対向するよう重ね合わせて、0.7MPa、15秒加圧することで2枚のポリカーボネート板を接着した。その後、23℃、24時間静置することで、試験サンプルを得た。
試験サンプルをTD-1000Aドラム式回転落下試験機(新栄電子計測器社製)に入れ、23℃下の室温環境を保った状態で12回転/分の速度で回転させることで、試験サンプルを1mの高さから繰り返し落下させた。
ポリカーボネート板が剥離したときの落下回数が1500回より多い場合を◎、1000回より多く1500回以下の場合を○、1000回以下の場合を×とした。
(1) Repeated impact test Two adhesive tapes cut out to 1 mm × 70 mm were prepared. Next, an adhesive tape was attached to each short side of a polycarbonate plate having a length of 72 mm, a width of 135 mm, and a thickness of 1 mm. The surface to which the adhesive tape of the polycarbonate plate is attached and the polycarbonate plate having a length of 77 mm, a width of 150 mm, and a thickness of 4 mm are overlapped so that the short sides and the long sides of the two polycarbonate plates face each other, and 0.7 MPa. , Two polycarbonate plates were bonded by pressurizing for 15 seconds. Then, a test sample was obtained by allowing it to stand at 23 ° C. for 24 hours.
The test sample is placed in a TD-1000A drum type rotary drop tester (manufactured by Shinei Denshi Keiki Co., Ltd.) and rotated at a speed of 12 rpm while maintaining a room temperature environment of 23 ° C. to rotate the test sample to 1 m. It was repeatedly dropped from the height of.
The case where the number of drops when the polycarbonate plate was peeled off was more than 1500 times was evaluated as ⊚, the case where the number of drops was more than 1000 times and 1500 times or less was evaluated as ◯, and the case where the number of drops was 1000 times or less was evaluated as x.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
本発明によれば、繰り返し耐衝撃性に優れた粘着テープを提供することができる。 According to the present invention, it is possible to provide an adhesive tape having excellent repeated impact resistance.

Claims (5)

  1. 多層基材と、前記多層基材の少なくとも一方の面に積層された粘着剤層とを有する粘着テープであって、
    前記多層基材は、基材層と、前記基材層の少なくとも一方の面に積層された樹脂層とを有し、
    前記基材層は、10℃での動的粘弾性測定における貯蔵弾性率E’が2.0MPa以上、21MPa以下であり、
    前記樹脂層は、23℃でのヤング率が500MPa以上であり、
    前記粘着剤層は、23℃でのせん断粘着力測定における破断伸度が30%以上であり、10℃での動的粘弾性測定における貯蔵弾性率G’が0.13MPa以上、7.0MPa以下である
    ことを特徴とする粘着テープ。
    An adhesive tape having a multilayer base material and an adhesive layer laminated on at least one surface of the multilayer base material.
    The multilayer base material has a base material layer and a resin layer laminated on at least one surface of the base material layer.
    The substrate layer has a storage elastic modulus E'of 2.0 MPa or more and 21 MPa or less in the dynamic viscoelasticity measurement at 10 ° C.
    The resin layer has a Young's modulus of 500 MPa or more at 23 ° C.
    The pressure-sensitive adhesive layer has a breaking elongation of 30% or more in shear adhesive force measurement at 23 ° C. and a storage elastic modulus G'in 0.13 MPa or more and 7.0 MPa or less in dynamic viscoelasticity measurement at 10 ° C. Adhesive tape characterized by being.
  2. 前記基材層は、ビニル芳香族モノマーに由来する構造及び(メタ)アクリル系モノマーに由来する構造を有する共重合体を含有することを特徴とする請求項1記載の粘着テープ。 The adhesive tape according to claim 1, wherein the base material layer contains a copolymer having a structure derived from a vinyl aromatic monomer and a structure derived from a (meth) acrylic monomer.
  3. 前記共重合体は、ビニル芳香族モノマーに由来する構造の含有量が1.5重量%以上、15重量%以下であることを特徴とする請求項2記載の粘着テープ。 The adhesive tape according to claim 2, wherein the copolymer has a structure derived from a vinyl aromatic monomer having a content of 1.5% by weight or more and 15% by weight or less.
  4. 前記基材層は、発泡体基材層であることを特徴とする請求項1、2又は3記載の粘着テープ。 The adhesive tape according to claim 1, 2 or 3, wherein the base material layer is a foam base material layer.
  5. 前記粘着剤層が前記多層基材の両面に積層されていることを特徴とする請求項1、2、3又は4記載の粘着テープ。 The pressure-sensitive adhesive tape according to claim 1, 2, 3 or 4, wherein the pressure-sensitive adhesive layer is laminated on both sides of the multilayer base material.
PCT/JP2021/039819 2020-10-28 2021-10-28 Adhesive tape WO2022092199A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237000291A KR20230093413A (en) 2020-10-28 2021-10-28 adhesive tape
CN202180070684.0A CN116367994A (en) 2020-10-28 2021-10-28 Adhesive tape
JP2022507396A JPWO2022092199A1 (en) 2020-10-28 2021-10-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020180947 2020-10-28
JP2020-180947 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022092199A1 true WO2022092199A1 (en) 2022-05-05

Family

ID=81382579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039819 WO2022092199A1 (en) 2020-10-28 2021-10-28 Adhesive tape

Country Status (4)

Country Link
JP (1) JPWO2022092199A1 (en)
KR (1) KR20230093413A (en)
CN (1) CN116367994A (en)
WO (1) WO2022092199A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102112A1 (en) * 2011-01-24 2012-08-02 日東電工株式会社 Foam laminate for electric or electronic device
JP2020012106A (en) * 2018-07-04 2020-01-23 積水化学工業株式会社 Double-sided adhesive tape
WO2020059791A1 (en) * 2018-09-21 2020-03-26 積水化学工業株式会社 Double-sided adhesive tape
WO2020218430A1 (en) * 2019-04-24 2020-10-29 積水化学工業株式会社 Pressure-sensitive adhesive tape

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242541A (en) 2008-03-31 2009-10-22 Sekisui Chem Co Ltd Impact-absorbing tape
JP5249625B2 (en) 2008-04-15 2013-07-31 積水化学工業株式会社 Adhesive sheet for display device front plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102112A1 (en) * 2011-01-24 2012-08-02 日東電工株式会社 Foam laminate for electric or electronic device
JP2020012106A (en) * 2018-07-04 2020-01-23 積水化学工業株式会社 Double-sided adhesive tape
WO2020059791A1 (en) * 2018-09-21 2020-03-26 積水化学工業株式会社 Double-sided adhesive tape
WO2020218430A1 (en) * 2019-04-24 2020-10-29 積水化学工業株式会社 Pressure-sensitive adhesive tape

Also Published As

Publication number Publication date
KR20230093413A (en) 2023-06-27
JPWO2022092199A1 (en) 2022-05-05
CN116367994A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP6966650B2 (en) Adhesive tape
JP6632379B2 (en) Shock absorbing adhesive sheet
JP6140491B2 (en) Double-sided adhesive sheet and portable electronic device
JP5048994B2 (en) Adhesive composition and optical functional film
TW201534683A (en) Adhesive composition, adhesive layer and adhesive sheet
JP2019512028A (en) Pressure sensitive adhesive strip
JP2019523720A (en) Pressure sensitive adhesive strip
TW201922997A (en) Adhesive strips with partially foamed self-adhesive mass
JP2009035708A (en) Solvent-type removable adhesive composition and removable adhesive product
JPWO2011118182A1 (en) Acrylic adhesive tape
TWI819096B (en) Double sided adhesive tape
JP2016041817A (en) Acrylic pressure-sensitive adhesive tape
JP2013079361A (en) Acrylic pressure-sensitive adhesive tape
JP6511314B2 (en) Adhesive tape
WO2022092199A1 (en) Adhesive tape
WO2022092201A1 (en) Adhesive tape
JP2022071864A (en) Adhesive tape
WO2022092149A1 (en) Pressure-sensitive adhesive tape
TWI833947B (en) Adhesive tape
JP2022071862A (en) Adhesive tape
JP2022071845A (en) Adhesive tape
JP2022071863A (en) Adhesive tape
JP2022029725A (en) Adhesive sheet and adhesive composition
JP7211457B1 (en) Adhesive sheet for flexible image display device, laminate for flexible image display device, and flexible image display device.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022507396

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886316

Country of ref document: EP

Kind code of ref document: A1