WO2022092142A1 - Heater heating control device, heater heating control method, and heater heating control program - Google Patents

Heater heating control device, heater heating control method, and heater heating control program Download PDF

Info

Publication number
WO2022092142A1
WO2022092142A1 PCT/JP2021/039629 JP2021039629W WO2022092142A1 WO 2022092142 A1 WO2022092142 A1 WO 2022092142A1 JP 2021039629 W JP2021039629 W JP 2021039629W WO 2022092142 A1 WO2022092142 A1 WO 2022092142A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
capacitor
switch
drive circuit
voltage
Prior art date
Application number
PCT/JP2021/039629
Other languages
French (fr)
Japanese (ja)
Inventor
直 宮本
Original Assignee
株式会社クラベ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラベ filed Critical 株式会社クラベ
Priority to JP2022559193A priority Critical patent/JPWO2022092142A1/ja
Publication of WO2022092142A1 publication Critical patent/WO2022092142A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present invention relates to a heater heating control device, a heater heating control method, and a heater heating control program.
  • the present invention relates to a heater heating control device that performs rapid heating control in the initial stage of heating of a heater, a heater heating control method, and a heater heating control program.
  • Patent Documents 1 and 2 disclose techniques for a heater having such a quick warming function.
  • Patent Document 1 a system including a temperature-controlled device, a primary energy source, an electronic device, an electromechanical device, or both, wherein the electronic device, the electromechanical device, or both are used.
  • a system including a secondary energy source, a switching device, a measuring device, and in some cases a controller when the temperature controlled device is turned on, the temperature controlled device is connected to the secondary energy source and the measuring device is connected.
  • a system is disclosed in which a switching device switches from a secondary energy source to a primary energy source when a predetermined state is measured and the temperature controlled device reaches a predetermined state, and the predetermined state is reached within about 60 seconds.
  • a system including (a) a device subject to temperature control, (b) a primary energy source, (c) an electronic device, an electromechanical device, or both, and (c) an electron.
  • a system comprising a formula device, an electromechanical device, or both (22): (i) a secondary energy source, (ii) a switching device, (iii) a measuring device, and (iv) a controller in some cases.
  • the temperature control target device is turned on, the temperature control target device is connected to the secondary energy source, the measuring device measures a predetermined state, and when the temperature control target device reaches a predetermined state, the switching device is two.
  • a system is disclosed that switches from a secondary energy source to a primary energy source and reaches a predetermined state within about 60 seconds.
  • One aspect of the heater heating control device of the present invention includes a drive circuit that supplies power to the heater, a first switch that selectively supplies either a battery voltage or a capacitor voltage to the drive circuit, and the above from one end.
  • a capacitor that outputs a capacitor voltage, a capacitor charging power source that stores power in the capacitor, a second switch that selectively supplies a battery voltage and a ground voltage to the other end of the capacitor, and a drive circuit.
  • the capacitor has a charging power supply, a control circuit for controlling the first switch and the second switch, and the control circuit is attached to the other end of the capacitor during a rapid heating period specified by a higher-level system.
  • the second switch is controlled so that the battery voltage is given, and the drive circuit and the first switch are controlled so that the drive circuit supplies power to the heater based on the capacitor voltage.
  • the drive circuit and the first switch are controlled so that the drive circuit supplies power to the heater based on the battery voltage.
  • One aspect of the heater heating control method of the present invention includes a drive circuit that supplies power to the heater, a first switch that selectively supplies either a battery voltage or a capacitor voltage to the drive circuit, and the above from one end.
  • a capacitor that outputs a capacitor voltage
  • a capacitor charging power source that stores power in the capacitor
  • a second switch that selectively supplies a battery voltage and a ground voltage to the other end of the capacitor
  • a heater heating control method for a heater heating control device comprising the capacitor charging power supply, the first switch, and a control circuit for controlling the second switch, in a rapid heating period specified by a higher-level system.
  • the drive circuit and the first switch are controlled so that the battery voltage is applied to the other end of the capacitor, and the drive circuit supplies power to the heater based on the capacitor voltage.
  • the drive circuit and the first switch are controlled so that the drive circuit supplies power to the heater based on the battery voltage. ..
  • One aspect of the heater heating control program of the present invention includes a drive circuit that supplies power to the heater, a first switch that selectively supplies either a battery voltage or a capacitor voltage to the drive circuit, and the above from one end.
  • a capacitor that outputs a capacitor voltage
  • a capacitor charging power source that stores power in the capacitor
  • a second switch that selectively supplies a battery voltage and a ground voltage to the other end of the capacitor
  • the heater heating control program executed by the control circuit of the heater heating control device having the capacitor charging power supply, the control circuit for controlling the first switch and the second switch, and the heater heating control.
  • the program controls the second switch so that the battery voltage is applied to the other end of the capacitor during the rapid heating period specified by the host system, and the drive circuit supplies the heater to the heater based on the capacitor voltage.
  • the drive circuit supplies power to the heater based on the battery voltage.
  • the drive circuit and the first switch are controlled so as to do so.
  • the heater heating control device According to the heater heating control device, the heater heating control method, and the heater heating control program according to the present invention, it is possible to reduce the capacity required for the capacitor that supplies electric power during the rapid heating period and reduce the mounting area.
  • FIG. It is a block diagram of the heater system including the heater heating control device which concerns on Embodiment 1.
  • FIG. It is a state transition diagram explaining the control sequence of the heater heating control device which concerns on Embodiment 1.
  • FIG. It is a block diagram of the heater system including the heater heating control device which concerns on Embodiment 2.
  • FIG. It is a state transition diagram explaining the control sequence of the heater heating control device which concerns on Embodiment 2.
  • FIG. It is a block diagram of the heater system including the heater heating control device which concerns on Embodiment 3.
  • FIG. It is a state transition diagram explaining the control sequence of the heater heating control device which concerns on Embodiment 3.
  • FIG. It is a block diagram of the heater system including the heater heating control device which concerns on Embodiment 4.
  • FIG. It is a state transition diagram explaining the control sequence of the heater heating control apparatus which concerns on Embodiment 4.
  • each element described in the drawing as a functional block that performs various processing can be configured by a CPU (Central Processing Unit), a memory, and other circuits in terms of hardware, and in terms of software, memory. It is realized by the program loaded in. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and the present invention is not limited to any of them.
  • the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.
  • Non-temporary computer-readable media include various types of tangible storage mediums.
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory) CD-Rs, CDs. -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (RandomAccessMemory)).
  • the program may also be supplied to the computer by various types of transient computer readable medium.
  • Examples of temporary computer readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Embodiment 1 In the embodiment described below, the heater system 1 including the heater heating control device 20 will be described. An example of applying the heater system 1 to an automobile seat heater will be described. However, the heater system 1 can be applied not only to the seat but also to a heater attached to a steering wheel or other vehicle parts, or a product other than an automobile. It is applicable to various products such as heaters used in the above.
  • FIG. 1 shows a block diagram of a heater system 1 including a heater heating control device 20 according to the first embodiment.
  • the heater system 1 includes a vehicle power supply 10, a heater heating control device 20, and a heater unit 30.
  • the vehicle power supply 10 is a battery of an automobile on which the heater system 1 is mounted.
  • the heater unit 30 is a control target of the heater heating control device 20.
  • the heater unit 30 is provided with a heater 31 and a temperature sensor 32. One end of the heater 31 is connected to the drive circuit 21 of the heater heating control device 20, and the other end is connected to a ground terminal to which a ground voltage is applied.
  • the temperature sensor 32 detects the temperature of the unheated material heated by the heater 31.
  • the heater heating control device 20 controls the temperature of the heater unit 30 to be controlled.
  • the heater heating control device 20 has a quick warming control function that rapidly raises the temperature in the initial stage of heating the heater 31.
  • the heater heating control device 20 includes a drive circuit 21, a control circuit 22, a capacitor charging power supply 23, and a capacitor 24. Further, the heater heating control device 20 has a switching circuit for switching the connection between the blocks.
  • the changeover circuit includes a first switch (switch SW0), a second switch (switch SW2), and a switch SW1.
  • the heater heating control device 20 obtains electric power for heating the heater 31 from the vehicle power supply 10 via the battery wiring W1.
  • the voltage output by the vehicle power supply 10 is referred to as a battery voltage Vbat.
  • the capacitor charging power supply 23 converts the battery voltage Vbat voltage into a voltage required for charging the capacitor 24 to charge the capacitor 24.
  • Switch SW0 is a 3-terminal switch, and has a P terminal, an N terminal, and a common terminal.
  • the switch SW0 selects either the P terminal or the N terminal and connects to the common terminal according to the instruction of the control circuit 22.
  • the battery wiring W1 is connected to the P terminal of the switch SW0, and the battery voltage Vbat is given.
  • one end (for example, a positive electrode terminal) of the capacitor 24 is connected to the N terminal of the switch SW0, and the capacitor voltage Vc1 is given.
  • the capacitor voltage Vc1 becomes the boost voltage.
  • the common terminal of the switch SW0 is connected to the drive circuit 21, and the voltage applied to the selected terminal is applied to the drive circuit 21 as the input voltage Vs1. That is, in the heater heating control device 20, the switch SW0 selects one of the battery voltage Vbat and the boosted voltage and gives it to the drive circuit.
  • the drive circuit 21 is given an input voltage Vs1 and supplies electric power for heating the heater 31 to one end of the heater 31 according to the instruction of the control circuit 22.
  • the other end of the heater 31 is connected to a ground terminal to which a ground voltage is applied.
  • the switch SW1 is a two-terminal switch, and switches whether or not to connect the output terminal of the capacitor charging power supply 23 to one end of the capacitor 24 according to the instruction of the control circuit 22.
  • the switch SW2 is a three-terminal switch and has a P terminal, an N terminal, and a common terminal. The switch SW2 selects either the P terminal or the N terminal and connects to the common terminal according to the instruction of the control circuit 22.
  • the battery wiring W1 is connected to the P terminal of the switch SW2, and the battery voltage Vbat is given.
  • a ground terminal is connected to the N terminal of the switch SW2, and a ground voltage is applied.
  • the common terminal of the switch SW2 is connected to the other end of the capacitor 24 (for example, a negative electrode terminal). That is, the switch SW2 selects one of the battery voltage Vbat and the ground voltage and gives it to the other end of the capacitor 24.
  • the capacitor 24 stores electric power during the period when the capacitor charging power supply 23 is electrically connected to one end, and discharges the stored electric power during the period when the drive circuit 21 is electrically connected to one end.
  • a lithium ion capacitor or an electric double layer capacitor as the capacitor 24.
  • Lithium-ion capacitors output power while maintaining a constant output voltage.
  • the control circuit 22 acquires the voltage value of the capacitor voltage Vc1 from the capacitor 24, and acquires the detected temperature value which is the temperature of the unheated object from the temperature sensor 32. Further, the control circuit 22 controls the switches SW0, SW1, SW2, the drive circuit 21, and the capacitor charging power supply 23 based on the acquired value and the operation instruction signal (not shown) input from the outside.
  • the control circuit 22 controls the switches SW0 to SW2, so that the capacitor voltage is set to the battery voltage Vbat during the rapid heating period specified by the host system (not shown).
  • the boosted voltage generated by adding Vc1 is given to the drive circuit 21 as the input voltage Vs1.
  • the control circuit 22 controls the switch SW2 so that the battery voltage Vbat is applied to the other end of the capacitor 24 in the rapid heating period started from the heating start time of the heater 31, and the drive circuit 21. Controls the drive circuit 21 and the switch SW0 so as to supply power to the heater based on the capacitor voltage Vc1.
  • the control circuit 22 gives the battery voltage Vbat as the input voltage Vs1 to the drive circuit 21 during the steady control period in which the heater is controlled at a temperature near the target value. More specifically, the control circuit 22 is a drive circuit 21 and a switch so that the drive circuit 21 supplies electric power to the heater 31 based on the battery voltage Vbat during the steady control period in which the heater 31 is controlled at a temperature near the target value. Control SW0.
  • control circuit 22 charges the capacitor 24 with the capacitor charging power supply 23 while the drive circuit 21 is stopped. It controls the power supply 23 and switches SW0 to SW2.
  • FIG. 2 shows a state transition diagram illustrating the control sequence of the heater heating control device 20 according to the first embodiment.
  • FIG. 2 shows the transition of states in the control sequence and the state of the switch in each state.
  • the control sequence shown in FIG. 2 shows the transition of the circuit state based on the control performed by the control circuit 22.
  • the heater heating control device 20 enters a standby state when the power is turned on (state A).
  • state A the control circuit 22 controls each switch so that the switch SW0 selects the P terminal, the switch SW1 is turned off, and the switch SW2 selects the N terminal.
  • the drive circuit 21 is assumed to be in a stopped state.
  • the heater control signal PF that controls the heater that controls the temperature of the heater 31 using the temperature sensor 32, the control circuit 22, and the drive circuit 21 is on (valid), and the quick warming sequence is executed.
  • This is performed when the boost signal BOOST instructing the above is in the ON state and the difference between the boosted voltage (Vboost) and the battery voltage Vbat is equal to or greater than the first threshold value V1.
  • the boost voltage Vboss is a value calculated by the battery voltage Vbat + the capacitor voltage Vc1.
  • the first threshold value V1 is the output voltage of the capacitor 24 when the charging of the capacitor 24 holds a sufficient charge amount for carrying out the quick warming sequence.
  • the capacity can be made larger than that of a general capacitor (electrolytic capacitor, ceramic capacitor, etc.), so the voltage change due to the amount of charge is smaller than that of a general capacitor, and when fully charged.
  • the voltage output by one of the lithium ion capacitors has an upper limit voltage of about 3.8V. Therefore, the first threshold value V1 is determined by the number of stages of lithium ion capacitors connected in series in the capacitor 24.
  • the heater control signal PF is turned off (invalid), and the boost signal BOOST is turned off, whichever is satisfied.
  • the heater of the state F is controlled while the switches SW0 to SW2 are controlled by the states C1, D1 and E1.
  • the heater control signal PF is off (invalid)
  • the boost signal BOOST is off
  • the difference between the boost voltage (Vboost) and the battery voltage Vbat is the second threshold value V2 or less
  • the thermistor is the detected temperature value.
  • the temperature is continued until any one of the temperature threshold value T1 or higher is satisfied.
  • the quick warming sequence ends the quick warming sequence while controlling the switches SW0 to SW2 by the states E2, D2, and C2.
  • the second threshold value V2 is a voltage when the charge amount of the capacitor 24 becomes more difficult to discharge.
  • the temperature threshold value T1 is, for example, a target temperature of the heater 31 or a temperature slightly lower than the target temperature, and is a preset value.
  • control circuit 22 sets the switch SW0 to neither the P terminal nor the N terminal, sets the switch SW1 to the off state, and switches SW2 selects both the P terminal and the N terminal. Control each switch so that it is in a non-existent state. In this state, the drive circuit 21 is assumed to be in a stopped state.
  • the control circuit 22 controls each switch so that the switch SW0 does not select either the P terminal or the N terminal, the switch SW1 is turned off, and the switch SW2 selects the P terminal. do.
  • the drive circuit 21 is assumed to be in a stopped state.
  • the voltage applied to the N terminal of the switch SW0 becomes a boosted voltage obtained by adding the capacitor voltage Vc1 to the voltage Vbat in the battery.
  • the control circuit 22 controls each switch so that the switch SW0 selects the N terminal, the switch SW1 is turned off, and the switch SW2 selects the P terminal.
  • the drive circuit 21 is assumed to be in a stopped state.
  • a boosted voltage obtained by adding the capacitor voltage Vc1 to the voltage Vbat by the battery is given to the drive circuit 21 as the input voltage Vs1.
  • the heater control based on the boosted voltage is performed by operating the drive circuit 21.
  • the steady control sequence controls the drive circuit 21 so as to control the heater 31 near the target temperature based on the thermistor temperature obtained from the temperature sensor 32, and this state is referred to as a state PF.
  • the state PF is performed during the period when the heater control signal PF is in the ON state.
  • the control circuit 22 controls each switch so that the switch SW0 selects the P terminal, the switch SW1 is turned off, and the switch SW2 selects the N terminal. That is, during the period during which the steady control sequence is being performed, the other end of the capacitor 24 is grounded and one end is disconnected from the drive circuit 21 and the capacitor charging power supply 23. Further, during the steady control sequence, the drive circuit 21 supplies electric power to the heater 31 based on the battery voltage Vbat.
  • the charging sequence is executed when the heater control signal PF is in the off state, the charging instruction signal CHARGE is in the on state, and the difference between the boost voltage (Vboost) and the battery voltage Vbat is equal to or less than the third threshold value V3. Will be done.
  • the charging instruction signal CHARGE is a signal transmitted from the host system. Since the charging sequence is performed when the heater control signal PF is in the off state, neither the quick warming sequence nor the steady control sequence is performed, and the charging sequence is performed during the period when the drive circuit 21 is stopped.
  • the third threshold value V3 is, for example, a value smaller than the first threshold value V1 and larger than the second threshold value V2. More preferably, the third threshold value V3 is preferably a value about 0.1 lower than the first threshold value V1. This is because by setting the third threshold value V3 to such a value, it is possible to maintain a state in which a large number of discharges are possible in the quick warming sequence.
  • the charging state B is reached via the state A21. Then, in the state B, the charging instruction signal CHARGE is turned off, or the difference between the battery voltage Vbat and the boosted voltage Vboss becomes equal to or higher than the first threshold value V1, and the process ends through the state A22.
  • the control circuit 22 controls each switch so that the switch SW0 selects the P terminal, the switch SW1 is turned off, and the switch SW2 selects the N terminal.
  • the control circuit 22 controls each switch so that the switch SW0 selects the P terminal, the switch SW1 is turned on, the switch SW2 selects the N terminal, and the capacitor.
  • the charging power supply 23 is controlled to be on.
  • the capacitor charging power supply 23 is in a state of charging the capacitor 24 connected between the output terminal and the ground terminal of the capacitor charging power supply 23.
  • the boost voltage generated by raising the capacitor voltage Vc1 with the battery voltage Vbat during the rapid heating period of the heater 31 is supplied to the drive circuit 21.
  • the heating speed of the heater 31 is improved.
  • the voltage generated by the capacitor 24 at the time of boosting voltage purification can be reduced by the battery voltage Vbat, so that the capacity of the capacitor 24 or the number of series stages can be reduced. can.
  • the capacitor 24 When a lithium ion capacitor is used as the capacitor 24, the voltage that can be generated by one lithium ion capacitor is small, and it is necessary to increase the number of stages of the lithium ion capacitor in order to generate a large boosted voltage.
  • the heater system 1 according to the first embodiment it is not necessary to generate a voltage by the lithium ion capacitor for the battery voltage Vbat, and the number of lithium ion capacitors can be reduced with respect to the magnitude of the boosted voltage. Since the lithium ion capacitor has a large volume, the effect of reducing the mounting volume of the heater heating control device 20 by reducing the number of lithium ion capacitors is great.
  • the heater heating control device 20 according to the first embodiment charges the capacitor 24 with the drive circuit 21 stopped.
  • the timing of power consumption can be dispersed and the peak of power consumption can be suppressed.
  • capacitors can be dispersed in different spaces and stored.
  • the power from another capacitor can be used.
  • the present invention does not limit the shape and method of the capacitor to a specific shape.
  • Capacitors can be selected according to the storage space, such as cubes, cylinders, and thin films.
  • the capacitor in the present invention refers to a power storage device, and has a power storage function such as an electrolytic capacitor, a film capacitor, a ceramic capacitor, an electric double layer capacitor, a mica capacitor, an air capacitor, a glass capacitor, a non-polar electrolytic capacitor, and an oil capacitor. If it is a device that has it, the method is not limited.
  • the electric power from the capacitor may be added only to a specific part of the heater to further improve the temperature rise characteristic of only a part of the heater.
  • the temperature rise can be felt faster at specific parts of the human body.
  • the heater heating control device 20 shown in FIG. 1 is used for a part of the heater having a high heating characteristic, and the capacitor charging power supply 23 and the capacitor 24 are removed from the heater heating control device 20.
  • another heater control device including a drive circuit 21 that receives only the power supply from the vehicle power supply 10 is further provided, and this can be realized by heating a heater different from the heater 31 by the other heater control device.
  • Embodiment 2 In the second embodiment, the heater system 2 which is another embodiment of the heater system 1 according to the first embodiment will be described. In the description of the second embodiment, the same components as those described in the first embodiment are designated by the same reference numerals as those of the first embodiment, and the description thereof will be omitted.
  • FIG. 3 shows a block diagram of the heater system 2 including the heater heating control device according to the second embodiment.
  • the heater system 2 according to the second embodiment has a heater heating control device 40 and a heater unit 50 in place of the heater heating control device 20 and the heater unit 30.
  • the heater heating control device 40 has a first drive circuit (for example, drive circuit 41) and a second drive circuit (for example, drive circuit 42) instead of the drive circuit 21. Further, the heater heating control device 40 uses the switch SW3 as the first switch and has the switch SW4 which is the third switch. Further, the heater heating control device 40 has a control circuit 43 instead of the control circuit 22.
  • the control circuit 43 is an arithmetic unit capable of executing a program such as a microcomputer like the control circuit 22, and obtains a block and a switch in the heater heating control device 40 from an instruction from a host system (not shown) and a temperature sensor 32. It is controlled based on the thermistor temperature and the capacitor voltage Vc1 of the capacitor 24.
  • the heater unit 50 has a heater 51 instead of the heater 31.
  • the heater 51 has a first heater 511 and a second heater 512.
  • the first heater 511 and the second heater 512 are divided into two heaters provided in the heater 31, and have, for example, the same resistance value.
  • One end of the first heater 511 is connected to the output terminal of the drive circuit 41, and the other end is connected to one end of the second heater 512.
  • the other end of the second heater 512 is connected to the ground terminal. Then, the connection point between the first heater 511 and the second heater 512 is connected to the output terminal of the drive circuit 42.
  • the battery voltage Vbat is directly input to the drive circuit 41. Further, in the heater heating control device 40, the drive circuit 41 is controlled to a stop state in which the output terminal becomes high impedance during the rapid heating period.
  • the capacitor voltage Vc1 lifted by the battery voltage Vbat via the switch SW3, which is the first switch is given as the input voltage Vs2.
  • the switch SW3 switches whether or not to apply the capacitor voltage Vc1 which is the boosted voltage to the drive circuit 42. More specifically, the switch SW3 gives the capacitor voltage Vc1 selectively boosted to the drive circuit 42 as the input voltage Vs2 during the rapid heating period.
  • the heater heating control device 40 has a switch SW4 which is a third switch.
  • the switch SW4 switches whether or not to apply a ground voltage to one end of the first heater 511 (the end on the side connected to the output terminal of the drive circuit 41). More specifically, the switch SW4 applies a ground voltage to one end of the first heater 511 during the rapid heating period.
  • the heater heating control device 40 has a first drive circuit (for example, a drive circuit 41) and a second drive circuit (for example, a drive circuit 42) as a drive circuit.
  • the heater unit 50 has a first heater 511 and a second heater 512 connected in series between the output terminal of the drive circuit 41 and the ground terminal to which the ground voltage is applied as a heater. Further, the output terminal of the drive circuit 42 is connected between the other end of the first heater 511 and one end of the second heater 512. Further, the heater heating control device 40 further has a third switch for switching whether or not to apply a ground voltage to one end of the second heater 512.
  • the drive circuit 41 is stopped in the rapid heating period, and the drive circuit 42 supplies electric power to the first heater 511 and the second heater 512 connected in parallel based on the capacitor voltage Vc1.
  • the switch SW3, the switch SW2 and the switch SW4 are controlled.
  • the drive circuit 42 is stopped during the steady control period, and the drive circuit 41 supplies electric power to the first heater 511 and the second heater 512 connected in series based on the battery voltage Vbat.
  • the switch SW3, the switch SW2, and the switch SW4 are controlled.
  • FIG. 4 shows a state transition diagram illustrating the control sequence of the heater heating control device 40 according to the second embodiment.
  • the state transition of the control sequence does not change even in the heater heating control device 40 according to the second embodiment.
  • the state of the switch in each state is different from the heater heating control device 20 according to the first embodiment in the first embodiment. Therefore, in the following, switching on / off of the switch in each state of the heater heating control device 40 according to the second embodiment will be described.
  • the control circuit 43 connects the switch SW1 to the off state, the switch SW2 to the N terminal side connected to the ground terminal, and turns off the switch SW3.
  • the state the drive circuit 42 is stopped, and the switch SW4 is turned off.
  • the control circuit 43 sets the switch SW1 in the off state, the switch SW2 in the off state in which neither the P terminal nor the N terminal is selected, the switch SW3 in the off state, and the drive circuit 42.
  • the stop state and the switch SW4 are turned off.
  • control circuit 43 connects the switch SW1 to the P terminal side to which the battery voltage Vbat is given, the switch SW3 is in the off state, and the drive circuit 42. Is stopped, and the switch SW4 is turned off.
  • control circuit 43 connects the switch SW1 to the P terminal side to which the battery voltage Vbat is given, the switch SW3 is on, and the drive circuit 42 is in the off state. Is stopped, and the switch SW4 is turned on.
  • the control circuit 43 connects the switch SW1 to the P terminal side to which the battery voltage Vbat is given, the switch SW3 is turned on, and the drive circuit 42. Is in the operating state, and the switch SW4 is in the on state. In this way, by setting the state F through the states C1, D1 and E1, the first heater 511 and the second heater 512 connected in parallel are driven by the drive circuit 42 based on the boosted capacitor voltage Vc1. It becomes.
  • the control circuit 43 connects the switch SW1 to the N terminal side connected to the ground terminal, the switch SW3 to the off state, and the drive circuit 42.
  • the stop state and the switch SW4 are turned off.
  • the control circuit 43 connects the switch SW1 to the N terminal side connected to the ground terminal, the switch SW3 to the off state, and the drive circuit. It is assumed that the 42 is controlled to be in the stopped state, the switch SW4 is in the off state, and the capacitor charging power supply 23 is controlled in the on state.
  • the capacitor 24 is charged by the capacitor charging power supply 23 with the drive circuit 41 and the drive circuit 42 stopped.
  • the heater heating control device 40 electric power is supplied to the first heater 511 and the second heater 512 whose resistance value is lowered by being connected in parallel during the rapid heating period. can do.
  • the heating temperature of the heater has a characteristic that is proportional to the magnitude of the electric power supplied to the heater, but if the resistance value of the heater is small, the drive circuit 21 can be in the rapid heating period even if the voltage output by the drive circuit 42 is low. It is possible to output a current larger than the output current. That is, in the heater system 2 according to the second embodiment, it is possible to generate heat to the same extent as the heater system 1 while lowering the output voltage of the drive circuit 42 than that of the drive circuit 21.
  • the voltage of the capacitor voltage Vc1 can be made lower than that of the first embodiment. That is, in the heater heating control device 40 according to the second embodiment, the number of series stages of the lithium ion capacitors constituting the capacitor 24 is reduced, and the mounting volume of the capacitor 24 is made smaller than the capacitor 24 according to the first embodiment. Can be done. As for the number of series stages of the lithium ion capacitors constituting the capacitor 24, for example, when five stages are required in the first embodiment, sufficient heat generation can be obtained in one stage in the second embodiment.
  • Embodiment 3 In the third embodiment, the heater heating control device 60, which is another embodiment of the heater heating control device 20 according to the first embodiment, will be described.
  • the same components as those described in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted.
  • FIG. 5 shows a block diagram of a heater system including the heater heating control device 60 according to the third embodiment.
  • the heater heating control device 60 excludes the switch SW2 of the heater heating control device 20 of the first embodiment. Then, in the heater heating control device 60, the other end of the capacitor 24 is directly connected to the ground terminal. That is, in the heater heating control device 60 according to the third embodiment, the capacitor voltage is not boosted by the battery voltage Vbat. Therefore, in the heater heating control device 60, the capacitor 24 is configured so that the boosted voltage Vc2, which is a voltage value obtained by adding the battery voltage Vbat and the capacitor voltage Vc1 to the capacitor 24, can be output.
  • FIG. 6 shows a state transition diagram illustrating a control sequence of the heater heating control device 60 according to the third embodiment.
  • control sequence of the heater heating control device 60 according to the third embodiment excludes the states A21 and A22 and the states D1 and D2 required for switching the switch SW2 of the first embodiment. ..
  • the capacitor 24 is charged while the drive circuit 21 is stopped.
  • the heater 31 is heated only by the electric power output from the capacitor 24 during the rapid heating period. That is, in the heater system 3 according to the third embodiment, the heater 31 is heated only by the heater heating control device 60 during the rapid heating period.
  • no current flows through the battery wiring W1 during the rapid heating period, so that the battery wiring W1 supplies the battery wiring W1 to the drive circuit 21 to drive the heater 31.
  • the wiring diameter can be the same as in the case.
  • Embodiment 4 In the fourth embodiment, the heater heating control device 70, which is another embodiment of the heater heating control device 40 according to the second embodiment, will be described.
  • the same components as those described in the first and second embodiments are designated by the same reference numerals as those of the first and second embodiments, and the description thereof will be omitted.
  • FIG. 7 shows a block diagram of a heater system including the heater heating control device 70 according to the fourth embodiment.
  • the heater heating control device 70 excludes the switch SW2 of the heater heating control device 40 of the second embodiment. Then, in the heater heating control device 70, the other end of the capacitor 24 is directly connected to the ground terminal. That is, in the heater heating control device 70 according to the fourth embodiment, the capacitor voltage is not boosted by the battery voltage Vbat. Therefore, in the heater heating control device 70, the capacitor 24 is configured so that the boosted voltage Vc2, which is a voltage value obtained by adding the battery voltage Vbat and the capacitor voltage Vc1 to the capacitor 24, can be output.
  • FIG. 8 shows a state transition diagram illustrating a control sequence of the heater heating control device 70 according to the fourth embodiment.
  • the control sequence of the heater heating control device 70 according to the fourth embodiment excludes the states A21 and A22 and the states D1 and D2 required for switching the switch SW2 of the second embodiment. ..
  • the booster voltage Vc2 generated by the capacitor 24 requires a higher voltage than that of the second embodiment, but the capacitor 24 is charged while the drive circuits 41 and 42 are stopped. Then, the heater 51 is heated only by the electric power output from the capacitor 24 during the rapid heating period. That is, in the heater system 4 according to the fourth embodiment, the heater 51 is heated only by the heater heating control device 70 during the rapid heating period.
  • the amount of current flowing through the battery wiring W1 during the rapid heating period and the amount of current flowing through the battery wiring W1 during the steady control period can be suppressed, so that the heater system 4 is driven only by the battery voltage.
  • the battery wiring W1 can be made thinner than supplying the circuits 41 and 42 to drive the heater 51.
  • the present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit.
  • the above embodiment includes the viewpoint shown in the following appendix.
  • the control circuit is During the rapid heating period specified by the host system, the drive circuit and the switching circuit are controlled so that the drive circuit supplies power to the heater based on the boost voltage.
  • the drive circuit and the switching circuit are controlled so that the drive circuit supplies electric power to the heater based on the battery voltage.
  • a heater heating control device that controls the drive circuit, the capacitor charging power supply, and the switching circuit so that the capacitor is charged with electric power from the capacitor charging power supply during a pause period in which the drive circuit is stopped.
  • Appendix 2 The heater heating control device according to Appendix 1, wherein the switching circuit has a first switch that selects one of the battery voltage and the boosted voltage and gives the switching circuit to the drive circuit.
  • Appendix 3 The heater heating control device according to Appendix 2, wherein the switching circuit further includes a second switch that selects one of the battery voltage and the ground voltage and gives it to the other end of the capacitor.
  • Appendix 4 The heater heating control device according to Appendix 2, which is connected to a ground terminal to which a ground voltage is supplied to the other end of the capacitor.
  • the drive circuit has a first drive circuit and a second drive circuit.
  • the switching circuit has a first switch for switching whether or not to apply the boosted voltage to the second drive circuit.
  • the heater heating control device according to Appendix 1, wherein the battery voltage is applied to the first drive circuit.
  • the heater has a first heater and a second heater connected in series between an output terminal of the first drive circuit and a ground terminal to which a ground voltage is applied.
  • the output terminal of the second drive circuit is connected between the other end of the first heater and one end of the second heater.
  • the heater heating control device further includes a third switch for switching whether or not to apply the ground voltage to one end of the first heater.
  • the control circuit is During the rapid heating period, the first drive circuit is stopped, and the second drive circuit supplies electric power to the first heater and the second heater connected in parallel based on the capacitor voltage.
  • the first switch, the second switch, and the third switch are controlled.
  • the second drive circuit is stopped, and the first drive circuit supplies electric power to the first heater and the second heater connected in series based on the battery voltage.
  • the heater heating control device for controlling the first switch, the second switch, and the third switch.
  • Appendix 8 The heater heating control device according to Appendix 5, which is connected to a ground terminal to which a ground voltage is supplied to the other end of the capacitor.
  • Heater system 10 Vehicle power supply 20, 40, 60, 70 Heater heating control device 21, 41, 42 Drive circuit 22, 43 Control circuit 23 Capacitor charge power supply 24 Capacitor 30, 50 Heater unit 31, 51 Heater 32 Temperature sensor 511 1st heater 512 2nd heater SW0 to SW4 switch W1 Battery wiring Vbat Battery voltage Vc1 Capacitor voltage Vc2 Boost voltage Vs1 Input voltage Vs2 Input voltage PF Heater control signal BOOST Boost signal CHARGE Charging instruction signal

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)

Abstract

Conventional control devices have posed a problem in that the devices involve a large mounting volume. A heater heating control device according to the present invention has: a drive circuit (21); a first switch (SW0) for selecting either one of a battery voltage (Vbat) and a capacitor voltage (Vc1) so as to apply the selected voltage to the drive circuit (21); a capacitor (24) having one terminal from which the capacitor voltage (Vc1) is outputted; a second switch (SW2) for selecting either one of a ground voltage and a battery voltage (Vbat) applied from the outside as to apply the selected voltage to the other terminal of the capacitor (24); and a control unit (22). The control unit (22) controls the second switch (SW2) so that the battery voltage (Vbat) is applied to the other terminal of the capacitor (24) during a rapid heating period designated by a host system to thereby apply the capacitor voltage (Vc1) to the drive circuit (21). During a steady control period in which a heater (31) is controlled at a temperature of or close to a target value, electric power is supplied from the drive circuit (21) to the heater (31) on the basis of the battery voltage (Vbat).

Description

ヒーター加熱制御装置、ヒーター加熱制御方法及びヒーター加熱制御プログラムHeater heating control device, heater heating control method and heater heating control program
 本発明はヒーター加熱制御装置、ヒーター加熱制御方法及びヒーター加熱制御プログラムに関し、例えば、ヒーターの加熱初期段階において急速加熱制御を行うヒーター加熱制御装置、ヒーター加熱制御方法及びヒーター加熱制御プログラムに関する。 The present invention relates to a heater heating control device, a heater heating control method, and a heater heating control program. For example, the present invention relates to a heater heating control device that performs rapid heating control in the initial stage of heating of a heater, a heater heating control method, and a heater heating control program.
 ヒーターでは、目標温度に達するまでの時間を短くする速暖機能を有するものがある。このような速暖機能を有するヒーターに関する技術が特許文献1、2に開示されている。 Some heaters have a quick warming function that shortens the time required to reach the target temperature. Patent Documents 1 and 2 disclose techniques for a heater having such a quick warming function.
 特許文献1では、温度制御対象装置と、一次エネルギー源と、電子式装置、電気機械式装置、またはこの両方とを備えたシステムであって、電子式装置、電気機械式装置、またはこの両方は二次エネルギー源と、切り換え装置と、測定装置と、場合によってはコントローラと、を備えるシステムにおいて、温度制御対象装置がオンになると、温度制御対象装置は二次エネルギー源に接続され、測定装置は所定の状態を測定し、温度制御対象装置が所定の状態に達すると、切り換え装置は二次エネルギー源から一次エネルギー源に切り換え、所定の状態に約60秒以内で達するシステムが開示されている。 In Patent Document 1, a system including a temperature-controlled device, a primary energy source, an electronic device, an electromechanical device, or both, wherein the electronic device, the electromechanical device, or both are used. In a system including a secondary energy source, a switching device, a measuring device, and in some cases a controller, when the temperature controlled device is turned on, the temperature controlled device is connected to the secondary energy source and the measuring device is connected. A system is disclosed in which a switching device switches from a secondary energy source to a primary energy source when a predetermined state is measured and the temperature controlled device reaches a predetermined state, and the predetermined state is reached within about 60 seconds.
 特許文献2では、(a)温度制御対象装置と、(b)一次エネルギー源と、(c)電子式装置、電気機械式装置、またはこの両方とを備えたシステムであって、(c)電子式装置、電気機械式装置、またはこの両方(22)は(i)二次エネルギー源と、(ii)切り換え装置と、(iii)測定装置と、(iv)場合によってはコントローラと、を備えるシステムにおいて、温度制御対象装置がオンになると、温度制御対象装置は二次エネルギー源に接続され、測定装置は所定の状態を測定し、温度制御対象装置が所定の状態に達すると、切り換え装置は二次エネルギー源から一次エネルギー源に切り換え、所定の状態に約60秒以内で達するシステムが開示されている。 In Patent Document 2, a system including (a) a device subject to temperature control, (b) a primary energy source, (c) an electronic device, an electromechanical device, or both, and (c) an electron. A system comprising a formula device, an electromechanical device, or both (22): (i) a secondary energy source, (ii) a switching device, (iii) a measuring device, and (iv) a controller in some cases. When the temperature control target device is turned on, the temperature control target device is connected to the secondary energy source, the measuring device measures a predetermined state, and when the temperature control target device reaches a predetermined state, the switching device is two. A system is disclosed that switches from a secondary energy source to a primary energy source and reaches a predetermined state within about 60 seconds.
特許第6310508号明細書Japanese Patent No. 6310508 特許第5961324号明細書Japanese Patent No. 5961324
 しかしながら、例えば、自動車等に搭載されるヒーターシステムでは、ヒーターの加熱制御を行うヒーター加熱制御装置を配置するための場所が限られる問題がある。ここで、速暖機能を備えるヒーターシステムを構築する場合、二次エネルギー源として一次エネルギー源よりも高い電圧を生成する必要がある。特許文献1、2に記載のシステムでは、この二次エネルギー源について開示されているものの、二次エネルギー源の省体積化については触れられておらず、特許文献1、2を参照しても二次エネルギー源を実装可能な体積に収めることができない問題がある。 However, for example, in a heater system mounted on an automobile or the like, there is a problem that a place for arranging a heater heating control device for controlling the heating of the heater is limited. Here, when constructing a heater system having a quick warming function, it is necessary to generate a voltage higher than that of the primary energy source as a secondary energy source. Although the system described in Patent Documents 1 and 2 discloses this secondary energy source, it does not mention the volume saving of the secondary energy source, and even if Patent Documents 1 and 2 are referred to, it is not mentioned. There is a problem that the next energy source cannot be contained in the mountable volume.
 本発明のヒーター加熱制御装置の一態様は、ヒーターに電力を供給する駆動回路と、前記駆動回路にバッテリ電圧とキャパシタ電圧とのいずれか一方を選択して与える第1のスイッチと、一端から前記キャパシタ電圧を出力するキャパシタと、前記キャパシタに電力に蓄積するキャパシタ充電電源と、前記キャパシタの他端に外部から与えられるバッテリ電圧と接地電圧とを選択して与える第2のスイッチと、前記駆動回路、前記キャパシタ充電電源、前記第1のスイッチ及び前記第2のスイッチを制御する制御回路と、を有し、前記制御回路は、上位システムにより指定される急速加熱期間において、前記キャパシタの他端に前記バッテリ電圧が与えられるように前記第2のスイッチを制御するとともに、前記駆動回路が前記キャパシタ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び前記第1のスイッチを制御し、前記ヒーターを目標値付近の温度で制御する定常制御期間においては前記駆動回路が前記バッテリ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び第1のスイッチを制御する。 One aspect of the heater heating control device of the present invention includes a drive circuit that supplies power to the heater, a first switch that selectively supplies either a battery voltage or a capacitor voltage to the drive circuit, and the above from one end. A capacitor that outputs a capacitor voltage, a capacitor charging power source that stores power in the capacitor, a second switch that selectively supplies a battery voltage and a ground voltage to the other end of the capacitor, and a drive circuit. The capacitor has a charging power supply, a control circuit for controlling the first switch and the second switch, and the control circuit is attached to the other end of the capacitor during a rapid heating period specified by a higher-level system. The second switch is controlled so that the battery voltage is given, and the drive circuit and the first switch are controlled so that the drive circuit supplies power to the heater based on the capacitor voltage. In the steady control period in which the heater is controlled at a temperature near the target value, the drive circuit and the first switch are controlled so that the drive circuit supplies power to the heater based on the battery voltage.
 本発明のヒーター加熱制御方法の一態様は、ヒーターに電力を供給する駆動回路と、前記駆動回路にバッテリ電圧とキャパシタ電圧とのいずれか一方を選択して与える第1のスイッチと、一端から前記キャパシタ電圧を出力するキャパシタと、前記キャパシタに電力に蓄積するキャパシタ充電電源と、前記キャパシタの他端に外部から与えられるバッテリ電圧と接地電圧とを選択して与える第2のスイッチと、前記駆動回路、前記キャパシタ充電電源、前記第1のスイッチ及び前記第2のスイッチを制御する制御回路と、を有するヒーター加熱制御装置のヒーター加熱制御方法であって、上位システムにより指定される急速加熱期間において、前記キャパシタの他端に前記バッテリ電圧が与えられるように前記第2のスイッチを制御するとともに、前記駆動回路が前記キャパシタ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び前記第1のスイッチを制御し、前記ヒーターを目標値付近の温度で制御する定常制御期間においては前記駆動回路が前記バッテリ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び第1のスイッチを制御する。 One aspect of the heater heating control method of the present invention includes a drive circuit that supplies power to the heater, a first switch that selectively supplies either a battery voltage or a capacitor voltage to the drive circuit, and the above from one end. A capacitor that outputs a capacitor voltage, a capacitor charging power source that stores power in the capacitor, a second switch that selectively supplies a battery voltage and a ground voltage to the other end of the capacitor, and a drive circuit. A heater heating control method for a heater heating control device comprising the capacitor charging power supply, the first switch, and a control circuit for controlling the second switch, in a rapid heating period specified by a higher-level system. The drive circuit and the first switch are controlled so that the battery voltage is applied to the other end of the capacitor, and the drive circuit supplies power to the heater based on the capacitor voltage. During the steady control period in which the switch is controlled and the heater is controlled at a temperature near the target value, the drive circuit and the first switch are controlled so that the drive circuit supplies power to the heater based on the battery voltage. ..
 本発明のヒーター加熱制御プログラムの一態様は、ヒーターに電力を供給する駆動回路と、前記駆動回路にバッテリ電圧とキャパシタ電圧とのいずれか一方を選択して与える第1のスイッチと、一端から前記キャパシタ電圧を出力するキャパシタと、前記キャパシタに電力に蓄積するキャパシタ充電電源と、前記キャパシタの他端に外部から与えられるバッテリ電圧と接地電圧とを選択して与える第2のスイッチと、前記駆動回路、前記キャパシタ充電電源、前記第1のスイッチ及び前記第2のスイッチを制御する制御回路と、を有するヒーター加熱制御装置の前記制御回路で実行されるヒーター加熱制御プログラムであって、前記ヒーター加熱制御プログラムは、上位システムにより指定される急速加熱期間において、前記キャパシタの他端に前記バッテリ電圧が与えられるように前記第2のスイッチを制御するとともに、前記駆動回路が前記キャパシタ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び前記第1のスイッチを制御し、前記ヒーターを目標値付近の温度で制御する定常制御期間においては前記駆動回路が前記バッテリ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び第1のスイッチを制御する。 One aspect of the heater heating control program of the present invention includes a drive circuit that supplies power to the heater, a first switch that selectively supplies either a battery voltage or a capacitor voltage to the drive circuit, and the above from one end. A capacitor that outputs a capacitor voltage, a capacitor charging power source that stores power in the capacitor, a second switch that selectively supplies a battery voltage and a ground voltage to the other end of the capacitor, and a drive circuit. , The heater heating control program executed by the control circuit of the heater heating control device having the capacitor charging power supply, the control circuit for controlling the first switch and the second switch, and the heater heating control. The program controls the second switch so that the battery voltage is applied to the other end of the capacitor during the rapid heating period specified by the host system, and the drive circuit supplies the heater to the heater based on the capacitor voltage. During the steady control period in which the drive circuit and the first switch are controlled so as to supply power, and the heater is controlled at a temperature near a target value, the drive circuit supplies power to the heater based on the battery voltage. The drive circuit and the first switch are controlled so as to do so.
 本発明にかかるヒーター加熱制御装置、ヒーター加熱制御方法及びヒーター加熱制御プログラムによれば、急速加熱期間に電力を供給するキャパシタに要求される容量を削減して実装面積を小さくすることができる。 According to the heater heating control device, the heater heating control method, and the heater heating control program according to the present invention, it is possible to reduce the capacity required for the capacitor that supplies electric power during the rapid heating period and reduce the mounting area.
実施の形態1にかかるヒーター加熱制御装置を含むヒーターシステムのブロック図である。It is a block diagram of the heater system including the heater heating control device which concerns on Embodiment 1. FIG. 実施の形態1にかかるヒーター加熱制御装置の制御シーケンスを説明する状態遷移図である。It is a state transition diagram explaining the control sequence of the heater heating control device which concerns on Embodiment 1. FIG. 実施の形態2にかかるヒーター加熱制御装置を含むヒーターシステムのブロック図である。It is a block diagram of the heater system including the heater heating control device which concerns on Embodiment 2. FIG. 実施の形態2にかかるヒーター加熱制御装置の制御シーケンスを説明する状態遷移図である。It is a state transition diagram explaining the control sequence of the heater heating control device which concerns on Embodiment 2. FIG. 実施の形態3にかかるヒーター加熱制御装置を含むヒーターシステムのブロック図である。It is a block diagram of the heater system including the heater heating control device which concerns on Embodiment 3. FIG. 実施の形態3にかかるヒーター加熱制御装置の制御シーケンスを説明する状態遷移図である。It is a state transition diagram explaining the control sequence of the heater heating control device which concerns on Embodiment 3. FIG. 実施の形態4にかかるヒーター加熱制御装置を含むヒーターシステムのブロック図である。It is a block diagram of the heater system including the heater heating control device which concerns on Embodiment 4. FIG. 実施の形態4にかかるヒーター加熱制御装置の制御シーケンスを説明する状態遷移図である。It is a state transition diagram explaining the control sequence of the heater heating control apparatus which concerns on Embodiment 4. FIG.
 説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU(Central Processing Unit)、メモリ、その他の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、又は、それらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。 For the sake of clarification of the explanation, the following description and drawings have been omitted or simplified as appropriate. In addition, each element described in the drawing as a functional block that performs various processing can be configured by a CPU (Central Processing Unit), a memory, and other circuits in terms of hardware, and in terms of software, memory. It is realized by the program loaded in. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and the present invention is not limited to any of them. In each drawing, the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.
 また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Further, the above-mentioned program can be stored in various types of non-transitory computer readable medium and supplied to the computer. Non-temporary computer-readable media include various types of tangible storage mediums. Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory) CD-Rs, CDs. -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (RandomAccessMemory)). The program may also be supplied to the computer by various types of transient computer readable medium. Examples of temporary computer readable media include electrical, optical, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 実施の形態1
 以下で説明する実施の形態では、ヒーター加熱制御装置20を含むヒーターシステム1について説明する。また、ヒーターシステム1を自動車のシートヒータに適用する例について説明するが、ヒーターシステム1が適用可能なものは、シートのみならず、ハンドルその他の車両部品に付随するヒーター、或いは、自動車以外の製品に用いられるヒーター等様々な製品に適用可能なものである。
Embodiment 1
In the embodiment described below, the heater system 1 including the heater heating control device 20 will be described. An example of applying the heater system 1 to an automobile seat heater will be described. However, the heater system 1 can be applied not only to the seat but also to a heater attached to a steering wheel or other vehicle parts, or a product other than an automobile. It is applicable to various products such as heaters used in the above.
 図1に実施の形態1にかかるヒーター加熱制御装置20を含むヒーターシステム1のブロック図を示す。図1に示すように、ヒーターシステム1は、車両電源10、ヒーター加熱制御装置20、ヒーターユニット30を有する。車両電源10は、ヒーターシステム1が搭載される自動車のバッテリである。ヒーターユニット30は、ヒーター加熱制御装置20の制御対象である。ヒーターユニット30には、ヒーター31及び温度センサ32が設けられる。ヒーター31は、一端がヒーター加熱制御装置20の駆動回路21に接続され、他端が接地電圧が印加される接地端子に接続される。温度センサ32は、ヒーター31により温められた非加熱物の温度を検出する。 FIG. 1 shows a block diagram of a heater system 1 including a heater heating control device 20 according to the first embodiment. As shown in FIG. 1, the heater system 1 includes a vehicle power supply 10, a heater heating control device 20, and a heater unit 30. The vehicle power supply 10 is a battery of an automobile on which the heater system 1 is mounted. The heater unit 30 is a control target of the heater heating control device 20. The heater unit 30 is provided with a heater 31 and a temperature sensor 32. One end of the heater 31 is connected to the drive circuit 21 of the heater heating control device 20, and the other end is connected to a ground terminal to which a ground voltage is applied. The temperature sensor 32 detects the temperature of the unheated material heated by the heater 31.
 ヒーター加熱制御装置20は、制御対象のヒーターユニット30に対して温度制御を行う。このヒーター加熱制御装置20は、ヒーター31を加熱する初期段階において温度を急速に高める速暖制御機能を有する。ヒーター加熱制御装置20は、駆動回路21、制御回路22、キャパシタ充電電源23及びキャパシタ24を有する。また、ヒーター加熱制御装置20は、各ブロック間の接続を切り替える切り替え回路を有する。図1に示す例では、切り替え回路は、第1のスイッチ(スイッチSW0)、第2のスイッチ(スイッチSW2)、スイッチSW1を有する。 The heater heating control device 20 controls the temperature of the heater unit 30 to be controlled. The heater heating control device 20 has a quick warming control function that rapidly raises the temperature in the initial stage of heating the heater 31. The heater heating control device 20 includes a drive circuit 21, a control circuit 22, a capacitor charging power supply 23, and a capacitor 24. Further, the heater heating control device 20 has a switching circuit for switching the connection between the blocks. In the example shown in FIG. 1, the changeover circuit includes a first switch (switch SW0), a second switch (switch SW2), and a switch SW1.
 ヒーター加熱制御装置20は、バッテリ配線W1を介して車両電源10からヒーター31を加熱する電力を得る。車両電源10が出力する電圧をバッテリ電圧Vbatと称す。キャパシタ充電電源23は、バッテリ電圧Vbatの電圧をキャパシタ24の充電に必要な電圧に変換して、キャパシタ24を充電する。 The heater heating control device 20 obtains electric power for heating the heater 31 from the vehicle power supply 10 via the battery wiring W1. The voltage output by the vehicle power supply 10 is referred to as a battery voltage Vbat. The capacitor charging power supply 23 converts the battery voltage Vbat voltage into a voltage required for charging the capacitor 24 to charge the capacitor 24.
 スイッチSW0は、3端子のスイッチであり、P端子、N端子及び共通端子を有する。スイッチSW0は、制御回路22の指示に従い、P端子とN端子のいずれかを選択して共通端子に接続する。ヒーター加熱制御装置20では、スイッチSW0のP端子にはバッテリ配線W1が接続され、バッテリ電圧Vbatが与えられる。また、スイッチSW0のN端子にはキャパシタ24の一端(例えば正極端子)が接続され、キャパシタ電圧Vc1が与えられる。なお、ヒーター加熱制御装置20では、スイッチSW0がN端子を選択する際にはキャパシタ電圧Vc1が昇圧電圧となる。そして、スイッチSW0の共通端子は、駆動回路21に接続され、選択した端子に与えられている電圧を入力電圧Vs1として駆動回路21に与える。つまり、ヒーター加熱制御装置20では、スイッチSW0は、バッテリ電圧Vbatと、前記昇圧電圧と、の一方を選択して駆動回路に与える。 Switch SW0 is a 3-terminal switch, and has a P terminal, an N terminal, and a common terminal. The switch SW0 selects either the P terminal or the N terminal and connects to the common terminal according to the instruction of the control circuit 22. In the heater heating control device 20, the battery wiring W1 is connected to the P terminal of the switch SW0, and the battery voltage Vbat is given. Further, one end (for example, a positive electrode terminal) of the capacitor 24 is connected to the N terminal of the switch SW0, and the capacitor voltage Vc1 is given. In the heater heating control device 20, when the switch SW0 selects the N terminal, the capacitor voltage Vc1 becomes the boost voltage. Then, the common terminal of the switch SW0 is connected to the drive circuit 21, and the voltage applied to the selected terminal is applied to the drive circuit 21 as the input voltage Vs1. That is, in the heater heating control device 20, the switch SW0 selects one of the battery voltage Vbat and the boosted voltage and gives it to the drive circuit.
 駆動回路21は、入力電圧Vs1が与えられ、制御回路22の指示に従ってヒーター31の一端にヒーター31を加熱するための電力を与える。なお、ヒーター31の他端は接地電圧が与えられる接地端子に接続される。 The drive circuit 21 is given an input voltage Vs1 and supplies electric power for heating the heater 31 to one end of the heater 31 according to the instruction of the control circuit 22. The other end of the heater 31 is connected to a ground terminal to which a ground voltage is applied.
 スイッチSW1は、2端子スイッチであり、制御回路22の指示に従いキャパシタ充電電源23の出力端子をキャパシタ24の一端に接続するか否かを切り替える。スイッチSW2は、3端子のスイッチであり、P端子、N端子及び共通端子を有する。スイッチSW2は、制御回路22の指示に従い、P端子とN端子のいずれかを選択して共通端子に接続する。ヒーター加熱制御装置20では、スイッチSW2のP端子にはバッテリ配線W1が接続され、バッテリ電圧Vbatが与えられる。また、スイッチSW2のN端子には接地端子が接続され、接地電圧が与えられる。スイッチSW2の共通端子は、キャパシタ24の他端(例えば負極端子)に接続される。つまり、スイッチSW2は、バッテリ電圧Vbatと接地電圧との一方を選択してキャパシタ24の他端に与える。 The switch SW1 is a two-terminal switch, and switches whether or not to connect the output terminal of the capacitor charging power supply 23 to one end of the capacitor 24 according to the instruction of the control circuit 22. The switch SW2 is a three-terminal switch and has a P terminal, an N terminal, and a common terminal. The switch SW2 selects either the P terminal or the N terminal and connects to the common terminal according to the instruction of the control circuit 22. In the heater heating control device 20, the battery wiring W1 is connected to the P terminal of the switch SW2, and the battery voltage Vbat is given. Further, a ground terminal is connected to the N terminal of the switch SW2, and a ground voltage is applied. The common terminal of the switch SW2 is connected to the other end of the capacitor 24 (for example, a negative electrode terminal). That is, the switch SW2 selects one of the battery voltage Vbat and the ground voltage and gives it to the other end of the capacitor 24.
 キャパシタ24は、キャパシタ充電電源23が一端に電気的に接続されている期間に電力を蓄積して、駆動回路21が一端に電気的に接続されている期間には蓄積した電力を放出する。ヒーター加熱制御装置20では、このキャパシタ24としてリチウムイオンキャパシタ或いは電気二重層キャパシタを利用することが好適である。以下の説明では、キャパシタ24としてリチウムイオンキャパシタを利用する例について説明する。リチウムイオンキャパシタは、一定の出力電圧を維持して電力を出力する。 The capacitor 24 stores electric power during the period when the capacitor charging power supply 23 is electrically connected to one end, and discharges the stored electric power during the period when the drive circuit 21 is electrically connected to one end. In the heater heating control device 20, it is preferable to use a lithium ion capacitor or an electric double layer capacitor as the capacitor 24. In the following description, an example of using a lithium ion capacitor as the capacitor 24 will be described. Lithium-ion capacitors output power while maintaining a constant output voltage.
 制御回路22は、キャパシタ24からキャパシタ電圧Vc1の電圧値を取得し、温度センサ32から非加熱物の温度である検出温度値を取得する。また、制御回路22は、取得した値及び外部から入力される動作指示信号(不図示)に基づき、スイッチSW0、SW1、SW2、駆動回路21、キャパシタ充電電源23を制御する。 The control circuit 22 acquires the voltage value of the capacitor voltage Vc1 from the capacitor 24, and acquires the detected temperature value which is the temperature of the unheated object from the temperature sensor 32. Further, the control circuit 22 controls the switches SW0, SW1, SW2, the drive circuit 21, and the capacitor charging power supply 23 based on the acquired value and the operation instruction signal (not shown) input from the outside.
 実施の形態1にかかるヒーター加熱制御装置20では、制御回路22が、スイッチSW0~SW2を制御することで、上位システム(不図示)から指定される急速加熱期間においては、バッテリ電圧Vbatにキャパシタ電圧Vc1を加えて生成される昇圧電圧を入力電圧Vs1として駆動回路21に与える。より具体的には、制御回路22は、ヒーター31の加熱開始時点から開始される急速加熱期間において、キャパシタ24の他端にバッテリ電圧Vbatが与えられるようにスイッチSW2を制御するとともに、駆動回路21がキャパシタ電圧Vc1に基づきヒーターに電力を供給するように駆動回路21及びスイッチSW0を制御する。 In the heater heating control device 20 according to the first embodiment, the control circuit 22 controls the switches SW0 to SW2, so that the capacitor voltage is set to the battery voltage Vbat during the rapid heating period specified by the host system (not shown). The boosted voltage generated by adding Vc1 is given to the drive circuit 21 as the input voltage Vs1. More specifically, the control circuit 22 controls the switch SW2 so that the battery voltage Vbat is applied to the other end of the capacitor 24 in the rapid heating period started from the heating start time of the heater 31, and the drive circuit 21. Controls the drive circuit 21 and the switch SW0 so as to supply power to the heater based on the capacitor voltage Vc1.
 また、実施の形態1にかかるヒーター加熱制御装置20では、制御回路22が、ヒーターを目標値付近の温度で制御する定常制御期間においてはバッテリ電圧Vbatを入力電圧Vs1として駆動回路21に与える。より具体的には、制御回路22は、ヒーター31を目標値付近の温度で制御する定常制御期間においては駆動回路21がバッテリ電圧Vbatに基づきヒーター31に電力を供給するように駆動回路21及びスイッチSW0を制御する。 Further, in the heater heating control device 20 according to the first embodiment, the control circuit 22 gives the battery voltage Vbat as the input voltage Vs1 to the drive circuit 21 during the steady control period in which the heater is controlled at a temperature near the target value. More specifically, the control circuit 22 is a drive circuit 21 and a switch so that the drive circuit 21 supplies electric power to the heater 31 based on the battery voltage Vbat during the steady control period in which the heater 31 is controlled at a temperature near the target value. Control SW0.
 また、実施の形態1にかかるヒーター加熱制御装置20では、制御回路22が、駆動回路21が停止している期間にキャパシタ24にキャパシタ充電電源23が電力を充電するように駆動回路21、キャパシタ充電電源23及びスイッチSW0~SW2を制御する。 Further, in the heater heating control device 20 according to the first embodiment, the control circuit 22 charges the capacitor 24 with the capacitor charging power supply 23 while the drive circuit 21 is stopped. It controls the power supply 23 and switches SW0 to SW2.
 ここで、実施の形態1にかかるヒーター加熱制御装置20の動作について説明する。そこで図2に実施の形態1にかかるヒーター加熱制御装置20の制御シーケンスを説明する状態遷移図を示す。図2では、制御シーケンス中の状態の遷移と、各状態におけるスイッチの状態を示した。なお、図2で示す制御シーケンスは、制御回路22で行われる制御に基づく回路状態の遷移を示したものである。 Here, the operation of the heater heating control device 20 according to the first embodiment will be described. Therefore, FIG. 2 shows a state transition diagram illustrating the control sequence of the heater heating control device 20 according to the first embodiment. FIG. 2 shows the transition of states in the control sequence and the state of the switch in each state. The control sequence shown in FIG. 2 shows the transition of the circuit state based on the control performed by the control circuit 22.
 図2に示すように、ヒーター加熱制御装置20では、電源がオンされると、待機状態となる(状態A)。この状態Aでは、制御回路22は、スイッチSW0はP端子を選択し、スイッチSW1をオフ状態とし、スイッチSW2はN端子を選択するように各スイッチを制御する。なお、この待機状態では、駆動回路21は停止状態であるものとする。 As shown in FIG. 2, the heater heating control device 20 enters a standby state when the power is turned on (state A). In this state A, the control circuit 22 controls each switch so that the switch SW0 selects the P terminal, the switch SW1 is turned off, and the switch SW2 selects the N terminal. In this standby state, the drive circuit 21 is assumed to be in a stopped state.
 続いて急速加熱期間に行う速暖シーケンスについて説明する。この速暖シーケンスは、温度センサ32、制御回路22及び駆動回路21を用いたヒーター31の温度制御を行うヒーター制御を行うヒーター制御信号PFがオン(有効)状態であり、速暖シーケンスを実施することを指示するブースト信号BOOSTがオン状態であり、かつ、昇圧電圧(Vboost)とバッテリ電圧Vbatとの差が第1の閾値V1以上であるときに実施される。なお、実施の形態1では昇圧電圧Vboostは、バッテリ電圧Vbat+キャパシタ電圧Vc1で算出される値である。また、第1の閾値V1は、キャパシタ24の充電が速暖シーケンスを実施する上で十分な充電量を保持しているときのキャパシタ24の出力電圧である。キャパシタ24としてリチウムイオンキャパシタを用いた場合、一般的なコンデンサ(電解コンデンサやセラミックコンデンサ等)よりも大容量化が可能であるため充電量による電圧変化が一般的なコンデンサよりも小さく、満充電時の1つのリチウムイオンキャパシタが出力する電圧は3.8V程度の上限電圧となる。そこで、第1の閾値V1は、キャパシタ24において直列接続されるリチウムイオンキャパシタの段数によって決定される。 Next, the quick warming sequence performed during the rapid heating period will be described. In this quick warming sequence, the heater control signal PF that controls the heater that controls the temperature of the heater 31 using the temperature sensor 32, the control circuit 22, and the drive circuit 21 is on (valid), and the quick warming sequence is executed. This is performed when the boost signal BOOST instructing the above is in the ON state and the difference between the boosted voltage (Vboost) and the battery voltage Vbat is equal to or greater than the first threshold value V1. In the first embodiment, the boost voltage Vboss is a value calculated by the battery voltage Vbat + the capacitor voltage Vc1. Further, the first threshold value V1 is the output voltage of the capacitor 24 when the charging of the capacitor 24 holds a sufficient charge amount for carrying out the quick warming sequence. When a lithium ion capacitor is used as the capacitor 24, the capacity can be made larger than that of a general capacitor (electrolytic capacitor, ceramic capacitor, etc.), so the voltage change due to the amount of charge is smaller than that of a general capacitor, and when fully charged. The voltage output by one of the lithium ion capacitors has an upper limit voltage of about 3.8V. Therefore, the first threshold value V1 is determined by the number of stages of lithium ion capacitors connected in series in the capacitor 24.
 そして、速暖シーケンスでは、ヒーター制御信号PFがオフ(無効)状態、ブースト信号BOOSTがオフ状態、のいずれか1つを満たすまで継続される。速暖シーケンスは、状態C1、D1、E1によりスイッチSW0~SW2を制御しながら、状態Fのヒーター制御を行う。そして、状態Fにおいて、ヒーター制御信号PFがオフ(無効)状態、ブースト信号BOOSTがオフ状態、昇圧電圧(Vboost)とバッテリ電圧Vbatとの差が第2の閾値V2以下、検出温度値であるサーミスタ温度が温度閾値T1以上、のいずれか1つを満たすまで継続される。そして、速暖シーケンスは、状態E2、D2、C2によりスイッチSW0~SW2を制御しながら速暖シーケンスを終了させる。 Then, in the quick warming sequence, the heater control signal PF is turned off (invalid), and the boost signal BOOST is turned off, whichever is satisfied. In the quick warming sequence, the heater of the state F is controlled while the switches SW0 to SW2 are controlled by the states C1, D1 and E1. Then, in the state F, the heater control signal PF is off (invalid), the boost signal BOOST is off, the difference between the boost voltage (Vboost) and the battery voltage Vbat is the second threshold value V2 or less, and the thermistor is the detected temperature value. The temperature is continued until any one of the temperature threshold value T1 or higher is satisfied. Then, the quick warming sequence ends the quick warming sequence while controlling the switches SW0 to SW2 by the states E2, D2, and C2.
 なお、第2の閾値V2は、キャパシタ24の充電量がこれ以上の放電が難しくなる状態となったときの電圧である。また、温度閾値T1は、例えば、ヒーター31の目標温度、或いは、目標温度よりも若干低い程度の温度であり、予め設定される値である。 The second threshold value V2 is a voltage when the charge amount of the capacitor 24 becomes more difficult to discharge. Further, the temperature threshold value T1 is, for example, a target temperature of the heater 31 or a temperature slightly lower than the target temperature, and is a preset value.
 状態C1及びC2では、制御回路22は、スイッチSW0がP端子とN端子のいずれも選択していない状態とし、スイッチSW1をオフ状態とし、スイッチSW2がP端子とN端子のいずれも選択していない状態とするように各スイッチを制御する。なお、この状態では、駆動回路21は停止状態であるものとする。 In the states C1 and C2, the control circuit 22 sets the switch SW0 to neither the P terminal nor the N terminal, sets the switch SW1 to the off state, and switches SW2 selects both the P terminal and the N terminal. Control each switch so that it is in a non-existent state. In this state, the drive circuit 21 is assumed to be in a stopped state.
 状態D1及びD2では、制御回路22は、スイッチSW0がP端子とN端子のいずれも選択していない状態とし、スイッチSW1をオフ状態とし、スイッチSW2がP端子を選択するように各スイッチを制御する。なお、この状態では、駆動回路21は停止状態であるものとする。これにより、スイッチSW0のN端子に与えられる電圧は、バッテリで電圧Vbatにキャパシタ電圧Vc1を加えた昇圧電圧となる。 In the states D1 and D2, the control circuit 22 controls each switch so that the switch SW0 does not select either the P terminal or the N terminal, the switch SW1 is turned off, and the switch SW2 selects the P terminal. do. In this state, the drive circuit 21 is assumed to be in a stopped state. As a result, the voltage applied to the N terminal of the switch SW0 becomes a boosted voltage obtained by adding the capacitor voltage Vc1 to the voltage Vbat in the battery.
 状態E1及びE2では、制御回路22は、スイッチSW0がN端子を選択し、スイッチSW1をオフ状態とし、スイッチSW2がP端子を選択するように各スイッチを制御する。なお、この状態では、駆動回路21は停止状態であるものとする。これにより、駆動回路21にはバッテリで電圧Vbatにキャパシタ電圧Vc1を加えた昇圧電圧が入力電圧Vs1として与えられることになる。そして、状態Fでは、駆動回路21を動作させることで、昇圧電圧に基づくヒーター制御が行われる。 In the states E1 and E2, the control circuit 22 controls each switch so that the switch SW0 selects the N terminal, the switch SW1 is turned off, and the switch SW2 selects the P terminal. In this state, the drive circuit 21 is assumed to be in a stopped state. As a result, a boosted voltage obtained by adding the capacitor voltage Vc1 to the voltage Vbat by the battery is given to the drive circuit 21 as the input voltage Vs1. Then, in the state F, the heater control based on the boosted voltage is performed by operating the drive circuit 21.
 続いて、定常制御シーケンスについて説明する。定常制御シーケンスは、温度センサ32から得られるサーミスタ温度に基づきヒーター31を目標温度付近で制御を行うように駆動回路21を制御するものであり、この状態を状態PFと称す。状態PFは、ヒーター制御信号PFがオン状態である期間に行われる。この状態PFでは、制御回路22は、スイッチSW0がP端子を選択し、スイッチSW1をオフ状態とし、スイッチSW2がN端子を選択するように各スイッチを制御する。つまり、定常制御シーケンスが行われている期間は、キャパシタ24の他端は接地され、かつ、一端は駆動回路21及びキャパシタ充電電源23から切り離された状態となっている。また、定常制御シーケンス中は、駆動回路21は、バッテリ電圧Vbatに基づきヒーター31に電力を供給する。 Next, the steady control sequence will be described. The steady control sequence controls the drive circuit 21 so as to control the heater 31 near the target temperature based on the thermistor temperature obtained from the temperature sensor 32, and this state is referred to as a state PF. The state PF is performed during the period when the heater control signal PF is in the ON state. In this state PF, the control circuit 22 controls each switch so that the switch SW0 selects the P terminal, the switch SW1 is turned off, and the switch SW2 selects the N terminal. That is, during the period during which the steady control sequence is being performed, the other end of the capacitor 24 is grounded and one end is disconnected from the drive circuit 21 and the capacitor charging power supply 23. Further, during the steady control sequence, the drive circuit 21 supplies electric power to the heater 31 based on the battery voltage Vbat.
 続いて、充電シーケンスについて説明する。充電シーケンスは、ヒーター制御信号PFがオフ状態であり、充電指示信号CHARGEがオン状態であり、かつ、昇圧電圧(Vboost)とバッテリ電圧Vbatとの差が第3の閾値V3以下であるときに実施される。充電指示信号CHARGEは、上位システムから送信される信号である。充電シーケンスは、ヒーター制御信号PFがオフ状態の時に行われることから、速暖シーケンスも定常制御シーケンスも行われず、駆動回路21が停止している期間に行われる。 Next, the charging sequence will be described. The charging sequence is executed when the heater control signal PF is in the off state, the charging instruction signal CHARGE is in the on state, and the difference between the boost voltage (Vboost) and the battery voltage Vbat is equal to or less than the third threshold value V3. Will be done. The charging instruction signal CHARGE is a signal transmitted from the host system. Since the charging sequence is performed when the heater control signal PF is in the off state, neither the quick warming sequence nor the steady control sequence is performed, and the charging sequence is performed during the period when the drive circuit 21 is stopped.
 この第3の閾値V3は、例えば、第1の閾値V1よりも小さく、かつ、第2の閾値V2よりも大きな値である。より好ましくは、第3の閾値V3は、第1の閾値V1よりも0.1程度低い値であることが好ましい。第3の閾値V3をこのような値に設定することで、速暖シーケンスにおいて多くの放電が可能な状態を維持することができるためである。 The third threshold value V3 is, for example, a value smaller than the first threshold value V1 and larger than the second threshold value V2. More preferably, the third threshold value V3 is preferably a value about 0.1 lower than the first threshold value V1. This is because by setting the third threshold value V3 to such a value, it is possible to maintain a state in which a large number of discharges are possible in the quick warming sequence.
 充電シーケンスでは、状態A21を経て充電状態である状態Bに達する。そして状態Bにおいて、充電指示信号CHARGEがオフ状態、或いは、バッテリ電圧Vbatと昇圧電圧Vboostとの差が第1の閾値V1以上となったことに応じて状態A22を経て終了する。 In the charging sequence, the charging state B is reached via the state A21. Then, in the state B, the charging instruction signal CHARGE is turned off, or the difference between the battery voltage Vbat and the boosted voltage Vboss becomes equal to or higher than the first threshold value V1, and the process ends through the state A22.
 状態A21及びA22では、制御回路22は、スイッチSW0がP端子を選択し、スイッチSW1をオフ状態とし、スイッチSW2がN端子を選択するように各スイッチを制御する。その後、状態Bでは、制御回路22は、スイッチSW0がP端子を選択している状態とし、スイッチSW1をオン状態とし、スイッチSW2がN端子を選択するように各スイッチを制御し、かつ、キャパシタ充電電源23をオン状態に制御する。これにより、充電シーケンスでは、キャパシタ充電電源23の出力端子と接地端子との間に接続されたキャパシタ24を、キャパシタ充電電源23が充電を行う状態となる。 In the states A21 and A22, the control circuit 22 controls each switch so that the switch SW0 selects the P terminal, the switch SW1 is turned off, and the switch SW2 selects the N terminal. After that, in the state B, the control circuit 22 controls each switch so that the switch SW0 selects the P terminal, the switch SW1 is turned on, the switch SW2 selects the N terminal, and the capacitor. The charging power supply 23 is controlled to be on. As a result, in the charging sequence, the capacitor charging power supply 23 is in a state of charging the capacitor 24 connected between the output terminal and the ground terminal of the capacitor charging power supply 23.
 上記説明より、実施の形態1にかかるヒーター加熱制御装置20では、ヒーター31の急速に加熱する急速加熱期間にバッテリ電圧Vbatでキャパシタ電圧Vc1を持ち上げることで生成される昇圧電圧を駆動回路21に供給してヒーター31の加熱速度を向上させる。これにより、実施の形態1にかかるヒーター加熱制御装置20では、昇圧電圧精製時にキャパシタ24により生じさせる電圧をバッテリ電圧Vbat分小さくすることができるため、キャパシタ24の容量或いは直列段数を少なくすることができる。 From the above description, in the heater heating control device 20 according to the first embodiment, the boost voltage generated by raising the capacitor voltage Vc1 with the battery voltage Vbat during the rapid heating period of the heater 31 is supplied to the drive circuit 21. The heating speed of the heater 31 is improved. As a result, in the heater heating control device 20 according to the first embodiment, the voltage generated by the capacitor 24 at the time of boosting voltage purification can be reduced by the battery voltage Vbat, so that the capacity of the capacitor 24 or the number of series stages can be reduced. can.
 キャパシタ24として、リチウムイオンキャパシタを用いた場合、一つのリチウムイオンキャパシタで生成可能な電圧は小さく、大きな昇圧電圧を生成しようとするとリチウムイオンキャパシタの段数を増やす必要がある。しかしながら、実施の形態1にかかるヒーターシステム1では、バッテリ電圧Vbat分に関しては、リチウムイオンキャパシタによる電圧生成は必要なく、昇圧電圧の大きさに対してリチウムイオンキャパシタの個数を減らすことができる。リチウムイオンキャパシタは体積が大きいため、リチウムイオンキャパシタの個数を減らすことに寄るヒーター加熱制御装置20の実装体積の削減の効果は大きい。 When a lithium ion capacitor is used as the capacitor 24, the voltage that can be generated by one lithium ion capacitor is small, and it is necessary to increase the number of stages of the lithium ion capacitor in order to generate a large boosted voltage. However, in the heater system 1 according to the first embodiment, it is not necessary to generate a voltage by the lithium ion capacitor for the battery voltage Vbat, and the number of lithium ion capacitors can be reduced with respect to the magnitude of the boosted voltage. Since the lithium ion capacitor has a large volume, the effect of reducing the mounting volume of the heater heating control device 20 by reducing the number of lithium ion capacitors is great.
 また、実施の形態1にかかるヒーター加熱制御装置20は、駆動回路21を停止させた状態でキャパシタ24への充電を行う。これにより、実施の形態1にかかるヒーター加熱制御装置20では、電力が消費されるタイミングを分散して、消費電力のピークを抑制することができる。 Further, the heater heating control device 20 according to the first embodiment charges the capacitor 24 with the drive circuit 21 stopped. As a result, in the heater heating control device 20 according to the first embodiment, the timing of power consumption can be dispersed and the peak of power consumption can be suppressed.
 また、キャパシタ24として、複数の小型のキャパシタを用いた場合には、別空間に分散してキャパシタを収納することができる。複数のキャパシタを用いる場合には、特定のキャパシタが放電状態であっても別のキャパシタからの電力を使うといった使い方をすることもできる。尚、本発明は、キャパシタの形と方式を特定の形に限定するものではない。立方体、円筒状、薄膜状など、収納空間に合わせてキャパシタを選定することができる。本発明でいうキャパシタとは蓄電装置を言うものであり、電解コンデンサ、フィルムコンデンサ、セラミックコンデンサ、電気二重層コンデンサ、マイカコンデンサ、空気コンデンサ、ガラスコンデンサ、無極性電解コンデンサ、オイルコンデンサなど、蓄電機能を持つデバイスであればその方式を限定するものではない。 Further, when a plurality of small capacitors are used as the capacitor 24, the capacitors can be dispersed in different spaces and stored. When using a plurality of capacitors, even if a specific capacitor is in a discharged state, the power from another capacitor can be used. The present invention does not limit the shape and method of the capacitor to a specific shape. Capacitors can be selected according to the storage space, such as cubes, cylinders, and thin films. The capacitor in the present invention refers to a power storage device, and has a power storage function such as an electrolytic capacitor, a film capacitor, a ceramic capacitor, an electric double layer capacitor, a mica capacitor, an air capacitor, a glass capacitor, a non-polar electrolytic capacitor, and an oil capacitor. If it is a device that has it, the method is not limited.
 さらに、ヒーターの特定の部位にだけキャパシタからの電力を追加し、ヒーターの一部分のみをより昇温特性を上げても良い。人体を暖める用途の場合には、人体の特定の部位でより早く昇温を感じることができる。このような構成は、例えば、図1に示すヒーター加熱制御装置20をヒーターの一部の昇温特性の高いヒーター部分に用い、ヒーター加熱制御装置20からキャパシタ充電電源23、キャパシタ24を除き、かつ、車両電源10からの給電のみを受ける駆動回路21を備える別のヒーター制御装置をさらに備え、この別のヒーター制御装置によりヒーター31とは異なるヒーターを加熱するにより実現可能である。 Furthermore, the electric power from the capacitor may be added only to a specific part of the heater to further improve the temperature rise characteristic of only a part of the heater. In the case of applications that warm the human body, the temperature rise can be felt faster at specific parts of the human body. In such a configuration, for example, the heater heating control device 20 shown in FIG. 1 is used for a part of the heater having a high heating characteristic, and the capacitor charging power supply 23 and the capacitor 24 are removed from the heater heating control device 20. Further, another heater control device including a drive circuit 21 that receives only the power supply from the vehicle power supply 10 is further provided, and this can be realized by heating a heater different from the heater 31 by the other heater control device.
 実施の形態2
 実施の形態2では、実施の形態1にかかるヒーターシステム1の別の形態となるヒーターシステム2について説明する。なお、実施の形態2の説明において実施の形態1で説明した構成要素と同じ構成要素については実施の形態1と同じ符号を付して説明を省略する。
Embodiment 2
In the second embodiment, the heater system 2 which is another embodiment of the heater system 1 according to the first embodiment will be described. In the description of the second embodiment, the same components as those described in the first embodiment are designated by the same reference numerals as those of the first embodiment, and the description thereof will be omitted.
 図3に実施の形態2にかかるヒーター加熱制御装置を含むヒーターシステム2のブロック図を示す。図3に示すように実施の形態2にかかるヒーターシステム2は、ヒーター加熱制御装置20及びヒーターユニット30に代えてヒーター加熱制御装置40及びヒーターユニット50を有する。 FIG. 3 shows a block diagram of the heater system 2 including the heater heating control device according to the second embodiment. As shown in FIG. 3, the heater system 2 according to the second embodiment has a heater heating control device 40 and a heater unit 50 in place of the heater heating control device 20 and the heater unit 30.
 ヒーター加熱制御装置40は、駆動回路21に代えて第1の駆動回路(例えば、駆動回路41)及び第2の駆動回路(例えば、駆動回路42)を有する。また、ヒーター加熱制御装置40では、第1のスイッチとしてスイッチSW3を用いるとともに、第3のスイッチであるスイッチSW4を有する。さらに、ヒーター加熱制御装置40は、制御回路22に代えて制御回路43を有する。制御回路43は、制御回路22と同様にマイコン等のプログラムを実行可能な演算装置であり、ヒーター加熱制御装置40内のブロック及びスイッチを上位システム(不図示)からの指示、温度センサ32から得られるサーミスタ温度及びキャパシタ24のキャパシタ電圧Vc1に基づき制御する。 The heater heating control device 40 has a first drive circuit (for example, drive circuit 41) and a second drive circuit (for example, drive circuit 42) instead of the drive circuit 21. Further, the heater heating control device 40 uses the switch SW3 as the first switch and has the switch SW4 which is the third switch. Further, the heater heating control device 40 has a control circuit 43 instead of the control circuit 22. The control circuit 43 is an arithmetic unit capable of executing a program such as a microcomputer like the control circuit 22, and obtains a block and a switch in the heater heating control device 40 from an instruction from a host system (not shown) and a temperature sensor 32. It is controlled based on the thermistor temperature and the capacitor voltage Vc1 of the capacitor 24.
 また、ヒーターユニット50は、ヒーター31に代えてヒーター51を有する。ヒーター51は、第1のヒーター511及び第2のヒーター512を有する。第1のヒーター511及び第2のヒーター512は、ヒーター31に備えられたヒーターを2つに分割したものであり、例えば、同じ抵抗値を有するものとする。第1のヒーター511は、一端が駆動回路41の出力端子に接続され、他端が第2のヒーター512の一端に接続される。第2のヒーター512の他端は接地端子に接続される。そして、第1のヒーター511と第2のヒーター512の接続点は、駆動回路42の出力端子に接続される。 Further, the heater unit 50 has a heater 51 instead of the heater 31. The heater 51 has a first heater 511 and a second heater 512. The first heater 511 and the second heater 512 are divided into two heaters provided in the heater 31, and have, for example, the same resistance value. One end of the first heater 511 is connected to the output terminal of the drive circuit 41, and the other end is connected to one end of the second heater 512. The other end of the second heater 512 is connected to the ground terminal. Then, the connection point between the first heater 511 and the second heater 512 is connected to the output terminal of the drive circuit 42.
 ヒーター加熱制御装置40では、駆動回路41にバッテリ電圧Vbatが直接入力される。また、ヒーター加熱制御装置40では、駆動回路41が急速加熱期間に出力端子がハイインピーダンスとなる停止状態に制御される。駆動回路42には、第1のスイッチであるスイッチSW3を介してバッテリ電圧Vbatにより持ち上げられたキャパシタ電圧Vc1が入力電圧Vs2として与えられる。スイッチSW3は、駆動回路42に昇圧電圧となったキャパシタ電圧Vc1を与えるか否かを切り替える。より具体的には、スイッチSW3は、急速加熱期間に選択的に駆動回路42に昇圧されたキャパシタ電圧Vc1を入力電圧Vs2として与える。 In the heater heating control device 40, the battery voltage Vbat is directly input to the drive circuit 41. Further, in the heater heating control device 40, the drive circuit 41 is controlled to a stop state in which the output terminal becomes high impedance during the rapid heating period. To the drive circuit 42, the capacitor voltage Vc1 lifted by the battery voltage Vbat via the switch SW3, which is the first switch, is given as the input voltage Vs2. The switch SW3 switches whether or not to apply the capacitor voltage Vc1 which is the boosted voltage to the drive circuit 42. More specifically, the switch SW3 gives the capacitor voltage Vc1 selectively boosted to the drive circuit 42 as the input voltage Vs2 during the rapid heating period.
 また、ヒーター加熱制御装置40は、第3のスイッチとなるスイッチSW4を有する。スイッチSW4は、第1のヒーター511の一端(駆動回路41の出力端子に接続される側の端部)に接地電圧を与えるか否かを切り替える。より具体的には、スイッチSW4は、急速加熱期間において、第1のヒーター511の一端に接地電圧を与える。 Further, the heater heating control device 40 has a switch SW4 which is a third switch. The switch SW4 switches whether or not to apply a ground voltage to one end of the first heater 511 (the end on the side connected to the output terminal of the drive circuit 41). More specifically, the switch SW4 applies a ground voltage to one end of the first heater 511 during the rapid heating period.
 つまり、実施の形態2にかかるヒーターシステム2では、ヒーター加熱制御装置40が、駆動回路として第1の駆動回路(例えば、駆動回路41)と第2の駆動回路(例えば、駆動回路42)とを有し、ヒーターユニット50が、ヒーターとして駆動回路41の出力端子と接地電圧が印加される接地端子との間に直列に接続される第1のヒーター511と第2のヒーター512とを有する。また、駆動回路42の出力端子を第1のヒーター511の他端と第2のヒーター512の一端との間に接続する。さらに、ヒーター加熱制御装置40は、第2のヒーター512の一端に接地電圧を与えるか否かを切り替える第3のスイッチをさらに有する。そして、制御回路43は、急速加熱期間において、駆動回路41を停止状態とし、並列接続された第1のヒーター511及び第2のヒーター512に駆動回路42がキャパシタ電圧Vc1に基づき電力を供給するように、スイッチSW3、スイッチSW2及びスイッチSW4を制御する。また、制御回路43は、定常制御期間においては、駆動回路42を停止状態とし、直列接続された第1のヒーター511及び第2のヒーター512に駆動回路41がバッテリ電圧Vbatに基づき電力を供給するように、スイッチSW3、スイッチSW2及びスイッチSW4を制御する。 That is, in the heater system 2 according to the second embodiment, the heater heating control device 40 has a first drive circuit (for example, a drive circuit 41) and a second drive circuit (for example, a drive circuit 42) as a drive circuit. The heater unit 50 has a first heater 511 and a second heater 512 connected in series between the output terminal of the drive circuit 41 and the ground terminal to which the ground voltage is applied as a heater. Further, the output terminal of the drive circuit 42 is connected between the other end of the first heater 511 and one end of the second heater 512. Further, the heater heating control device 40 further has a third switch for switching whether or not to apply a ground voltage to one end of the second heater 512. Then, in the control circuit 43, the drive circuit 41 is stopped in the rapid heating period, and the drive circuit 42 supplies electric power to the first heater 511 and the second heater 512 connected in parallel based on the capacitor voltage Vc1. In addition, the switch SW3, the switch SW2 and the switch SW4 are controlled. Further, in the control circuit 43, the drive circuit 42 is stopped during the steady control period, and the drive circuit 41 supplies electric power to the first heater 511 and the second heater 512 connected in series based on the battery voltage Vbat. As a result, the switch SW3, the switch SW2, and the switch SW4 are controlled.
 ここで、実施の形態2にかかるヒーター加熱制御装置40の動作について説明する。そこで、図4に実施の形態2にかかるヒーター加熱制御装置40の制御シーケンスを説明する状態遷移図を示す。図4に示すように、実施の形態2にかかるヒーター加熱制御装置40においても制御シーケンスの状態遷移は変わらない。しかしながら、実施の形態2にかかるヒーター加熱制御装置40では、実施の形態1では各状態におけるスイッチの状態が実施の形態1にかかるヒーター加熱制御装置20とは異なる。そこで、以下では、実施の形態2にかかるヒーター加熱制御装置40の各状態のスイッチのオン・オフの切り替えについて説明する。 Here, the operation of the heater heating control device 40 according to the second embodiment will be described. Therefore, FIG. 4 shows a state transition diagram illustrating the control sequence of the heater heating control device 40 according to the second embodiment. As shown in FIG. 4, the state transition of the control sequence does not change even in the heater heating control device 40 according to the second embodiment. However, in the heater heating control device 40 according to the second embodiment, the state of the switch in each state is different from the heater heating control device 20 according to the first embodiment in the first embodiment. Therefore, in the following, switching on / off of the switch in each state of the heater heating control device 40 according to the second embodiment will be described.
 まず、待機状態となる状態A及び定常制御シーケンス中の状態PFにおいては、制御回路43が、スイッチSW1をオフ状態、スイッチSW2を接地端子に接続されるN端子側に接続し、スイッチSW3をオフ状態、駆動回路42を停止状態、スイッチSW4をオフ状態とする。このようなスイッチの状態とすることで、状態A及び状態PFでは、駆動回路42により直列接続された第1のヒーター511及び第2のヒーター512に電力を供給が可能になる状態となる。なお、状態Aでは、駆動回路42は停止状態となり、ヒーター51に電力の供給を停止する。 First, in the standby state A and the state PF during the steady control sequence, the control circuit 43 connects the switch SW1 to the off state, the switch SW2 to the N terminal side connected to the ground terminal, and turns off the switch SW3. The state, the drive circuit 42 is stopped, and the switch SW4 is turned off. By setting such a switch state, in the state A and the state PF, it becomes possible to supply electric power to the first heater 511 and the second heater 512 connected in series by the drive circuit 42. In the state A, the drive circuit 42 is stopped, and the power supply to the heater 51 is stopped.
 続いて、速暖シーケンス中の状態C1及び状態C2では、制御回路43が、スイッチSW1をオフ状態、スイッチSW2をP端子もN端子も選択しないオフ状態、スイッチSW3をオフ状態、駆動回路42を停止状態、スイッチSW4をオフ状態とする。 Subsequently, in the states C1 and C2 during the quick warming sequence, the control circuit 43 sets the switch SW1 in the off state, the switch SW2 in the off state in which neither the P terminal nor the N terminal is selected, the switch SW3 in the off state, and the drive circuit 42. The stop state and the switch SW4 are turned off.
 また、速暖シーケンス中の状態D1及び状態D2では、制御回路43が、スイッチSW1をオフ状態、スイッチSW2をバッテリ電圧Vbatが与えられるP端子側に接続し、スイッチSW3をオフ状態、駆動回路42を停止状態、スイッチSW4をオフ状態とする。 Further, in the states D1 and D2 during the quick warming sequence, the control circuit 43 connects the switch SW1 to the P terminal side to which the battery voltage Vbat is given, the switch SW3 is in the off state, and the drive circuit 42. Is stopped, and the switch SW4 is turned off.
 また、速暖シーケンス中の状態E1及び状態E2では、制御回路43が、スイッチSW1をオフ状態、スイッチSW2をバッテリ電圧Vbatが与えられるP端子側に接続し、スイッチSW3をオン状態、駆動回路42を停止状態、スイッチSW4をオン状態とする。 Further, in the states E1 and E2 during the quick warming sequence, the control circuit 43 connects the switch SW1 to the P terminal side to which the battery voltage Vbat is given, the switch SW3 is on, and the drive circuit 42 is in the off state. Is stopped, and the switch SW4 is turned on.
 そして、速暖シーケンスにおいてヒーターを制御する状態Fにおいて、制御回路43が、スイッチSW1をオフ状態、スイッチSW2をバッテリ電圧Vbatが与えられるP端子側に接続し、スイッチSW3をオン状態、駆動回路42を動作状態、スイッチSW4をオン状態とする。このように、状態C1、D1、E1を経て状態Fとすることで、並列接続された第1のヒーター511及び第2のヒーター512を駆動回路42が昇圧されたキャパシタ電圧Vc1に基づき駆動する状態となる。 Then, in the state F in which the heater is controlled in the quick warming sequence, the control circuit 43 connects the switch SW1 to the P terminal side to which the battery voltage Vbat is given, the switch SW3 is turned on, and the drive circuit 42. Is in the operating state, and the switch SW4 is in the on state. In this way, by setting the state F through the states C1, D1 and E1, the first heater 511 and the second heater 512 connected in parallel are driven by the drive circuit 42 based on the boosted capacitor voltage Vc1. It becomes.
 続いて、充電シーケンス中の状態A21及びA22では、制御回路43が、スイッチSW1をオフ状態、スイッチSW2を接地端子に接続されるN端子側に接続し、スイッチSW3をオフ状態、駆動回路42を停止状態、スイッチSW4をオフ状態とする。また、充電シーケンス中の充電状態である状態Bにおいては、制御回路43が、スイッチSW1をオン状態、スイッチSW2を接地端子に接続されるN端子側に接続し、スイッチSW3をオフ状態、駆動回路42を停止状態、スイッチSW4をオフ状態、キャパシタ充電電源23をオン状態に制御するとする。これにより、実施の形態2にかかるヒーター加熱制御装置40では、駆動回路41及び駆動回路42を停止させた状態でキャパシタ24への充電がキャパシタ充電電源23により行われる状態となる。 Subsequently, in the states A21 and A22 during the charging sequence, the control circuit 43 connects the switch SW1 to the N terminal side connected to the ground terminal, the switch SW3 to the off state, and the drive circuit 42. The stop state and the switch SW4 are turned off. Further, in the charging state B during the charging sequence, the control circuit 43 connects the switch SW1 to the N terminal side connected to the ground terminal, the switch SW3 to the off state, and the drive circuit. It is assumed that the 42 is controlled to be in the stopped state, the switch SW4 is in the off state, and the capacitor charging power supply 23 is controlled in the on state. As a result, in the heater heating control device 40 according to the second embodiment, the capacitor 24 is charged by the capacitor charging power supply 23 with the drive circuit 41 and the drive circuit 42 stopped.
 上記説明より、実施の形態2にかかるヒーター加熱制御装置40では、急速加熱期間において、並列接続されることで抵抗値が低下した第1のヒーター511及び第2のヒーター512に対して電力を供給することができる。ヒーターの加熱温度は、ヒーターに供給される電力の大きさに比例する特性があるが、ヒーターの抵抗値が小さければ、駆動回路42の出力する電圧が低くても駆動回路21が急速加熱期間に出力する電流よりも大きな電流を出力可能になる。つまり、実施の形態2にかかるヒーターシステム2では、駆動回路42の出力電圧を駆動回路21よりも低くしながらヒーターシステム1と同程度の発熱をさせることが可能になる。 From the above description, in the heater heating control device 40 according to the second embodiment, electric power is supplied to the first heater 511 and the second heater 512 whose resistance value is lowered by being connected in parallel during the rapid heating period. can do. The heating temperature of the heater has a characteristic that is proportional to the magnitude of the electric power supplied to the heater, but if the resistance value of the heater is small, the drive circuit 21 can be in the rapid heating period even if the voltage output by the drive circuit 42 is low. It is possible to output a current larger than the output current. That is, in the heater system 2 according to the second embodiment, it is possible to generate heat to the same extent as the heater system 1 while lowering the output voltage of the drive circuit 42 than that of the drive circuit 21.
 これにより、実施の形態2にかかるヒーター加熱制御装置40では、キャパシタ電圧Vc1の電圧を実施の形態1よりも低くすることができる。つまり、実施の形態2にかかるヒーター加熱制御装置40では、キャパシタ24を構成するリチウムイオンキャパシタの直列段数を少なくして、キャパシタ24の実装体積を実施の形態1にかかるキャパシタ24よりも小さくすることができる。このキャパシタ24を構成するリチウムイオンキャパシタの直列段数は、例えば、実施の形態1で5段必要であった場合、実施の形態2では1段で十分な発熱を得ることができる。 Thereby, in the heater heating control device 40 according to the second embodiment, the voltage of the capacitor voltage Vc1 can be made lower than that of the first embodiment. That is, in the heater heating control device 40 according to the second embodiment, the number of series stages of the lithium ion capacitors constituting the capacitor 24 is reduced, and the mounting volume of the capacitor 24 is made smaller than the capacitor 24 according to the first embodiment. Can be done. As for the number of series stages of the lithium ion capacitors constituting the capacitor 24, for example, when five stages are required in the first embodiment, sufficient heat generation can be obtained in one stage in the second embodiment.
 実施の形態3
 実施の形態3では、実施の形態1にかかるヒーター加熱制御装置20の別の形態となるヒーター加熱制御装置60について説明する。なお、実施の形態3の説明では、実施の形態1で説明した構成要素と同じ構成要素については実施の形態1と同じ符号を付して説明を省略する。
Embodiment 3
In the third embodiment, the heater heating control device 60, which is another embodiment of the heater heating control device 20 according to the first embodiment, will be described. In the description of the third embodiment, the same components as those described in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted.
 図5に実施の形態3にかかるヒーター加熱制御装置60を含むヒーターシステムのブロック図に示す。図5に示すように、ヒーター加熱制御装置60は、実施の形態1のヒーター加熱制御装置20のスイッチSW2を除いたものである。そして、ヒーター加熱制御装置60では、キャパシタ24の他端が直接接地端子に接続される。つまり、実施の形態3にかかるヒーター加熱制御装置60では、バッテリ電圧Vbatによるキャパシタ電圧の昇圧がない。そのため、ヒーター加熱制御装置60では、キャパシタ24にバッテリ電圧Vbatとキャパシタ電圧Vc1とを加算した電圧値である昇圧電圧Vc2を出力できるようにキャパシタ24を構成する。 FIG. 5 shows a block diagram of a heater system including the heater heating control device 60 according to the third embodiment. As shown in FIG. 5, the heater heating control device 60 excludes the switch SW2 of the heater heating control device 20 of the first embodiment. Then, in the heater heating control device 60, the other end of the capacitor 24 is directly connected to the ground terminal. That is, in the heater heating control device 60 according to the third embodiment, the capacitor voltage is not boosted by the battery voltage Vbat. Therefore, in the heater heating control device 60, the capacitor 24 is configured so that the boosted voltage Vc2, which is a voltage value obtained by adding the battery voltage Vbat and the capacitor voltage Vc1 to the capacitor 24, can be output.
 続いて、実施の形態3にかかるヒーター加熱制御装置60の動作について説明する。図6に実施の形態3にかかるヒーター加熱制御装置60の制御シーケンスを説明する状態遷移図を示す。 Subsequently, the operation of the heater heating control device 60 according to the third embodiment will be described. FIG. 6 shows a state transition diagram illustrating a control sequence of the heater heating control device 60 according to the third embodiment.
 図6に示すように、実施の形態3にかかるヒーター加熱制御装置60の制御シーケンスは、実施の形態1のスイッチSW2の切り替えに要する状態A21、A22及び状態D1、D2が除かれたものとなる。 As shown in FIG. 6, the control sequence of the heater heating control device 60 according to the third embodiment excludes the states A21 and A22 and the states D1 and D2 required for switching the switch SW2 of the first embodiment. ..
 実施の形態3にかかるヒーターシステム3では、キャパシタ24により生成する昇圧電圧Vc2として実施の形態1よりも高い電圧が必要になるものの、駆動回路21が停止している期間にキャパシタ24を充電し、急速加熱期間にキャパシタ24から出力される電力のみでヒーター31を加熱する。つまり、実施の形態3にかかるヒーターシステム3では、急速加熱期間にヒーター加熱制御装置60のみでヒーター31を発熱させる。これにより、実施の形態3にかかるヒーターシステム3では、急速加熱期間にバッテリ配線W1には電流が流れないため、バッテリ配線W1は、バッテリ電圧のみで駆動回路21に供給してヒーター31を駆動する場合と同等の配線径とすることができる。 In the heater system 3 according to the third embodiment, although a higher voltage than that of the first embodiment is required as the boost voltage Vc2 generated by the capacitor 24, the capacitor 24 is charged while the drive circuit 21 is stopped. The heater 31 is heated only by the electric power output from the capacitor 24 during the rapid heating period. That is, in the heater system 3 according to the third embodiment, the heater 31 is heated only by the heater heating control device 60 during the rapid heating period. As a result, in the heater system 3 according to the third embodiment, no current flows through the battery wiring W1 during the rapid heating period, so that the battery wiring W1 supplies the battery wiring W1 to the drive circuit 21 to drive the heater 31. The wiring diameter can be the same as in the case.
 実施の形態4
 実施の形態4では、実施の形態2にかかるヒーター加熱制御装置40の別の形態となるヒーター加熱制御装置70について説明する。なお、実施の形態4の説明では、実施の形態1、2で説明した構成要素と同じ構成要素については実施の形態1、2と同じ符号を付して説明を省略する。
Embodiment 4
In the fourth embodiment, the heater heating control device 70, which is another embodiment of the heater heating control device 40 according to the second embodiment, will be described. In the description of the fourth embodiment, the same components as those described in the first and second embodiments are designated by the same reference numerals as those of the first and second embodiments, and the description thereof will be omitted.
 図7に実施の形態4にかかるヒーター加熱制御装置70を含むヒーターシステムのブロック図に示す。図7に示すように、ヒーター加熱制御装置70は、実施の形態2のヒーター加熱制御装置40のスイッチSW2を除いたものである。そして、ヒーター加熱制御装置70では、キャパシタ24の他端が直接接地端子に接続される。つまり、実施の形態4にかかるヒーター加熱制御装置70では、バッテリ電圧Vbatによるキャパシタ電圧の昇圧がない。そのため、ヒーター加熱制御装置70では、キャパシタ24にバッテリ電圧Vbatとキャパシタ電圧Vc1とを加算した電圧値である昇圧電圧Vc2を出力できるようにキャパシタ24を構成する。 FIG. 7 shows a block diagram of a heater system including the heater heating control device 70 according to the fourth embodiment. As shown in FIG. 7, the heater heating control device 70 excludes the switch SW2 of the heater heating control device 40 of the second embodiment. Then, in the heater heating control device 70, the other end of the capacitor 24 is directly connected to the ground terminal. That is, in the heater heating control device 70 according to the fourth embodiment, the capacitor voltage is not boosted by the battery voltage Vbat. Therefore, in the heater heating control device 70, the capacitor 24 is configured so that the boosted voltage Vc2, which is a voltage value obtained by adding the battery voltage Vbat and the capacitor voltage Vc1 to the capacitor 24, can be output.
 続いて、実施の形態4にかかるヒーター加熱制御装置70の動作について説明する。図8に実施の形態4にかかるヒーター加熱制御装置70の制御シーケンスを説明する状態遷移図を示す。 Subsequently, the operation of the heater heating control device 70 according to the fourth embodiment will be described. FIG. 8 shows a state transition diagram illustrating a control sequence of the heater heating control device 70 according to the fourth embodiment.
 図8に示すように、実施の形態4にかかるヒーター加熱制御装置70の制御シーケンスは、実施の形態2のスイッチSW2の切り替えに要する状態A21、A22及び状態D1、D2が除かれたものとなる。 As shown in FIG. 8, the control sequence of the heater heating control device 70 according to the fourth embodiment excludes the states A21 and A22 and the states D1 and D2 required for switching the switch SW2 of the second embodiment. ..
 実施の形態4にかかるヒーターシステム4では、キャパシタ24により生成する昇圧電圧Vc2として実施の形態2よりも高い電圧が必要になるものの、駆動回路41、42が停止している期間にキャパシタ24を充電し、急速加熱期間にキャパシタ24から出力される電力のみでヒーター51を加熱する。つまり、実施の形態4にかかるヒーターシステム4では、急速加熱期間にヒーター加熱制御装置70のみでヒーター51を発熱させる。これにより、実施の形態4にかかるヒーターシステム4では、急速加熱期間にバッテリ配線W1を流れる電流量及び定常制御期間においてバッテリ配線W1に流れる電流量を抑制することができるため、バッテリ電圧のみで駆動回路41、42に供給してヒーター51を駆動するよりもバッテリ配線W1を細くすることができる。 In the heater system 4 according to the fourth embodiment, the booster voltage Vc2 generated by the capacitor 24 requires a higher voltage than that of the second embodiment, but the capacitor 24 is charged while the drive circuits 41 and 42 are stopped. Then, the heater 51 is heated only by the electric power output from the capacitor 24 during the rapid heating period. That is, in the heater system 4 according to the fourth embodiment, the heater 51 is heated only by the heater heating control device 70 during the rapid heating period. As a result, in the heater system 4 according to the fourth embodiment, the amount of current flowing through the battery wiring W1 during the rapid heating period and the amount of current flowing through the battery wiring W1 during the steady control period can be suppressed, so that the heater system 4 is driven only by the battery voltage. The battery wiring W1 can be made thinner than supplying the circuits 41 and 42 to drive the heater 51.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記実施の形態は、以下の付記で示す観点を含む。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit. For example, the above embodiment includes the viewpoint shown in the following appendix.
 (付記1)
 外部から与えられるバッテリ電圧よりも高い昇圧電圧を一端から出力するキャパシタと、
 前記キャパシタに電力に蓄積するキャパシタ充電電源と、
 ヒーターに電力を供給する駆動回路と、
 前記キャパシタ、前記キャパシタ充電電源、前記バッテリ電圧を供給するバッテリ端子、及び、前記駆動回路の間の接続関係を切り替える切り替え回路と、
 前記駆動回路、前記キャパシタ充電電源及び前記切り替え回路を制御する制御回路と、を有し、
 前記制御回路は、
 上位システムにより指定される急速加熱期間において、前記駆動回路が前記昇圧電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び前記切り替え回路を制御し、
 前記ヒーターを目標値付近の温度で制御する定常制御期間においては前記駆動回路が前記バッテリ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び前記切り替え回路を制御し、
 前記駆動回路を停止している休止期間において前記キャパシタに前記キャパシタ充電電源から電力を充電するように前記駆動回路、前記キャパシタ充電電源及び前記切り替え回路制御するヒーター加熱制御装置。
(Appendix 1)
A capacitor that outputs a boosted voltage higher than the battery voltage given from the outside from one end,
A capacitor charging power source that stores electric power in the capacitor,
The drive circuit that supplies power to the heater and
A switching circuit that switches the connection relationship between the capacitor, the capacitor charging power supply, the battery terminal that supplies the battery voltage, and the drive circuit.
It has the drive circuit, the capacitor charging power supply, and the control circuit for controlling the switching circuit.
The control circuit is
During the rapid heating period specified by the host system, the drive circuit and the switching circuit are controlled so that the drive circuit supplies power to the heater based on the boost voltage.
During the steady control period in which the heater is controlled at a temperature near the target value, the drive circuit and the switching circuit are controlled so that the drive circuit supplies electric power to the heater based on the battery voltage.
A heater heating control device that controls the drive circuit, the capacitor charging power supply, and the switching circuit so that the capacitor is charged with electric power from the capacitor charging power supply during a pause period in which the drive circuit is stopped.
 (付記2)
 前記切り替え回路は、前記バッテリ電圧と、前記昇圧電圧と、の一方を選択して前記駆動回路に与える第1のスイッチを有する付記1に記載のヒーター加熱制御装置。
(Appendix 2)
The heater heating control device according to Appendix 1, wherein the switching circuit has a first switch that selects one of the battery voltage and the boosted voltage and gives the switching circuit to the drive circuit.
 (付記3)
 前記切り替え回路は、前記バッテリ電圧と接地電圧との一方を選択して前記キャパシタの他端に与える第2のスイッチをさらに有する付記2に記載のヒーター加熱制御装置。
(Appendix 3)
The heater heating control device according to Appendix 2, wherein the switching circuit further includes a second switch that selects one of the battery voltage and the ground voltage and gives it to the other end of the capacitor.
 (付記4)
 前記キャパシタの他端には、接地電圧が供給される接地端子に接続される付記2に記載のヒーター加熱制御装置。
(Appendix 4)
The heater heating control device according to Appendix 2, which is connected to a ground terminal to which a ground voltage is supplied to the other end of the capacitor.
 (付記5)
 前記駆動回路は、第1の駆動回路と第2の駆動回路とを有し、
 前記切り替え回路は、前記昇圧電圧を前記第2の駆動回路に与えるか否かを切り替える第1のスイッチを有し、
 前記第1の駆動回路には前記バッテリ電圧が与えられる付記1に記載のヒーター加熱制御装置。
(Appendix 5)
The drive circuit has a first drive circuit and a second drive circuit.
The switching circuit has a first switch for switching whether or not to apply the boosted voltage to the second drive circuit.
The heater heating control device according to Appendix 1, wherein the battery voltage is applied to the first drive circuit.
 (付記6)
 前記切り替え回路は、前記バッテリ電圧と接地電圧との一方を選択して前記キャパシタの他端に与える第2のスイッチをさらに有する付記5に記載のヒーター加熱制御装置。
(Appendix 6)
The heater heating control device according to Appendix 5, wherein the switching circuit further includes a second switch that selects one of the battery voltage and the ground voltage and gives it to the other end of the capacitor.
 (付記7)
 前記ヒーターは、前記第1の駆動回路の出力端子と接地電圧が印加される接地端子との間に直列に接続される第1のヒーターと第2のヒーターとを有し、
 前記第2の駆動回路の出力端子は、前記第1のヒーターの他端と前記第2のヒーターの一端との間に接続され、
 前記ヒーター加熱制御装置は、前記第1のヒーターの一端に前記接地電圧を与えるか否かを切り替える第3のスイッチをさらに有し、
 前記制御回路は、
 前記急速加熱期間において、前記第1の駆動回路を停止状態とし、並列接続された前記第1のヒーター及び前記第2のヒーターに前記第2の駆動回路が前記キャパシタ電圧に基づき電力を供給するように、第1のスイッチ、前記第2のスイッチ及び前記第3のスイッチを制御し、
 前記定常制御期間においては、前記第2の駆動回路を停止状態とし、直列接続された前記第1のヒーター及び前記第2のヒーターに前記第1の駆動回路が前記バッテリ電圧に基づき電力を供給するように、第1のスイッチ、前記第2のスイッチ及び前記第3のスイッチを制御する付記6に記載のヒーター加熱制御装置。
(Appendix 7)
The heater has a first heater and a second heater connected in series between an output terminal of the first drive circuit and a ground terminal to which a ground voltage is applied.
The output terminal of the second drive circuit is connected between the other end of the first heater and one end of the second heater.
The heater heating control device further includes a third switch for switching whether or not to apply the ground voltage to one end of the first heater.
The control circuit is
During the rapid heating period, the first drive circuit is stopped, and the second drive circuit supplies electric power to the first heater and the second heater connected in parallel based on the capacitor voltage. In addition, the first switch, the second switch, and the third switch are controlled.
During the steady control period, the second drive circuit is stopped, and the first drive circuit supplies electric power to the first heater and the second heater connected in series based on the battery voltage. As described in Appendix 6, the heater heating control device for controlling the first switch, the second switch, and the third switch.
 (付記8)
 前記キャパシタの他端には、接地電圧が供給される接地端子に接続される付記5に記載のヒーター加熱制御装置。
(Appendix 8)
The heater heating control device according to Appendix 5, which is connected to a ground terminal to which a ground voltage is supplied to the other end of the capacitor.
 (付記9)
 前記キャパシタは、一定の出力電圧を維持して電力を出力するリチウムイオンキャパシタである付記1乃至8のいずれか1項に記載のヒーター加熱制御装置。
(Appendix 9)
The heater heating control device according to any one of Supplementary note 1 to 8, wherein the capacitor is a lithium ion capacitor that maintains a constant output voltage and outputs electric power.
 この出願は、2020年10月29日に出願された日本出願特願2020-181170を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2020-181170 filed on October 29, 2020, and incorporates all of its disclosures herein.
 1~4 ヒーターシステム
 10 車両電源
 20、40、60、70 ヒーター加熱制御装置
 21、41、42 駆動回路
 22、43 制御回路
 23 キャパシタ充電電源
 24 キャパシタ
 30、50 ヒーターユニット
 31、51 ヒーター
 32 温度センサ
 511 第1のヒーター
 512 第2のヒーター
 SW0~SW4 スイッチ
 W1 バッテリ配線
 Vbat バッテリ電圧
 Vc1 キャパシタ電圧
 Vc2 昇圧電圧
 Vs1 入力電圧
 Vs2 入力電圧
 PF ヒーター制御信号
 BOOST ブースト信号
 CHARGE 充電指示信号
1-4 Heater system 10 Vehicle power supply 20, 40, 60, 70 Heater heating control device 21, 41, 42 Drive circuit 22, 43 Control circuit 23 Capacitor charge power supply 24 Capacitor 30, 50 Heater unit 31, 51 Heater 32 Temperature sensor 511 1st heater 512 2nd heater SW0 to SW4 switch W1 Battery wiring Vbat Battery voltage Vc1 Capacitor voltage Vc2 Boost voltage Vs1 Input voltage Vs2 Input voltage PF Heater control signal BOOST Boost signal CHARGE Charging instruction signal

Claims (6)

  1.  ヒーターに電力を供給する駆動回路と、
     前記駆動回路にバッテリ電圧とキャパシタ電圧とのいずれか一方を選択して与える第1のスイッチと、
     一端から前記キャパシタ電圧を出力するキャパシタと、
     前記キャパシタに電力に蓄積するキャパシタ充電電源と、
     前記キャパシタの他端に外部から与えられるバッテリ電圧と接地電圧とを選択して与える第2のスイッチと、
     前記駆動回路、前記キャパシタ充電電源、前記第1のスイッチ及び前記第2のスイッチを制御する制御回路と、を有し、
     前記制御回路は、
     上位システムにより指定される急速加熱期間において、前記キャパシタの他端に前記バッテリ電圧が与えられるように前記第2のスイッチを制御するとともに、前記駆動回路が前記キャパシタ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び前記第1のスイッチを制御し、
     前記ヒーターを目標値付近の温度で制御する定常制御期間においては前記駆動回路が前記バッテリ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び第1のスイッチを制御するヒーター加熱制御装置。
    The drive circuit that supplies power to the heater and
    A first switch that selects and gives either a battery voltage or a capacitor voltage to the drive circuit,
    A capacitor that outputs the capacitor voltage from one end,
    A capacitor charging power source that stores electric power in the capacitor,
    A second switch that selectively gives a battery voltage and a ground voltage given from the outside to the other end of the capacitor,
    It has the drive circuit, the capacitor charging power supply, the first switch, and a control circuit for controlling the second switch.
    The control circuit is
    During the rapid heating period specified by the host system, the second switch is controlled so that the battery voltage is applied to the other end of the capacitor, and the drive circuit supplies power to the heater based on the capacitor voltage. Control the drive circuit and the first switch so as to
    A heater heating control device that controls the drive circuit and the first switch so that the drive circuit supplies electric power to the heater based on the battery voltage during a steady control period in which the heater is controlled at a temperature near a target value.
  2.  前記制御回路は、前記駆動回路を停止している休止期間において前記キャパシタに前記キャパシタ充電電源から電力を充電するとともに前記キャパシタの他端に前記接地電圧を与えるように前記第2のスイッチを制御する請求項1に記載のヒーター加熱制御装置。 The control circuit controls the second switch so that the capacitor is charged with electric power from the capacitor charging power source and the ground voltage is applied to the other end of the capacitor during a pause period when the drive circuit is stopped. The heater heating control device according to claim 1.
  3.  前記駆動回路は、第1の駆動回路と第2の駆動回路とを有し、
     前記ヒーターは、前記第1の駆動回路の出力端子と接地電圧が印加される接地端子との間に直列に接続される第1のヒーターと第2のヒーターとを有し、
     前記第2の駆動回路の出力端子は、前記第1のヒーターの他端と前記第2のヒーターの一端との間に接続され、
     前記ヒーター加熱制御装置は、前記第1のヒーターの一端に前記接地電圧を与えるか否かを切り替える第3のスイッチをさらに有し、
     前記制御回路は、
     前記急速加熱期間において、前記第1の駆動回路を停止状態とし、並列接続された前記第1のヒーター及び前記第2のヒーターに前記第2の駆動回路が前記キャパシタ電圧に基づき電力を供給するように、第1のスイッチ、前記第2のスイッチ及び前記第3のスイッチを制御し、
     前記定常制御期間においては、前記第2の駆動回路を停止状態とし、直列接続された前記第1のヒーター及び前記第2のヒーターに前記第1の駆動回路が前記バッテリ電圧に基づき電力を供給するように、第1のスイッチ、前記第2のスイッチ及び前記第3のスイッチを制御する請求項1又は2に記載のヒーター加熱制御装置。
    The drive circuit has a first drive circuit and a second drive circuit.
    The heater has a first heater and a second heater connected in series between an output terminal of the first drive circuit and a ground terminal to which a ground voltage is applied.
    The output terminal of the second drive circuit is connected between the other end of the first heater and one end of the second heater.
    The heater heating control device further includes a third switch for switching whether or not to apply the ground voltage to one end of the first heater.
    The control circuit is
    During the rapid heating period, the first drive circuit is stopped, and the second drive circuit supplies electric power to the first heater and the second heater connected in parallel based on the capacitor voltage. In addition, the first switch, the second switch, and the third switch are controlled.
    During the steady control period, the second drive circuit is stopped, and the first drive circuit supplies electric power to the first heater and the second heater connected in series based on the battery voltage. The heater heating control device according to claim 1 or 2, wherein the first switch, the second switch, and the third switch are controlled.
  4.  前記キャパシタは、一定の出力電圧を維持して電力を出力するリチウムイオンキャパシタである請求項1乃至3のいずれか1項に記載のヒーター加熱制御装置。 The heater heating control device according to any one of claims 1 to 3, wherein the capacitor is a lithium ion capacitor that maintains a constant output voltage and outputs electric power.
  5.  ヒーターに電力を供給する駆動回路と、
     前記駆動回路にバッテリ電圧とキャパシタ電圧とのいずれか一方を選択して与える第1のスイッチと、
     一端から前記キャパシタ電圧を出力するキャパシタと、
     前記キャパシタに電力に蓄積するキャパシタ充電電源と、
     前記キャパシタの他端に外部から与えられるバッテリ電圧と接地電圧とを選択して与える第2のスイッチと、
     前記駆動回路、前記キャパシタ充電電源、前記第1のスイッチ及び前記第2のスイッチを制御する制御回路と、を有するヒーター加熱制御装置のヒーター加熱制御方法であって、
     上位システムにより指定される急速加熱期間において、前記キャパシタの他端に前記バッテリ電圧が与えられるように前記第2のスイッチを制御するとともに、前記駆動回路が前記キャパシタ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び前記第1のスイッチを制御し、
     前記ヒーターを目標値付近の温度で制御する定常制御期間においては前記駆動回路が前記バッテリ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び第1のスイッチを制御するヒーター加熱制御方法。
    The drive circuit that supplies power to the heater and
    A first switch that selects and gives either a battery voltage or a capacitor voltage to the drive circuit,
    A capacitor that outputs the capacitor voltage from one end,
    A capacitor charging power source that stores electric power in the capacitor,
    A second switch that selectively gives a battery voltage and a ground voltage given from the outside to the other end of the capacitor,
    A heater heating control method for a heater heating control device comprising the drive circuit, the capacitor charging power supply, the first switch, and the control circuit for controlling the second switch.
    During the rapid heating period specified by the host system, the second switch is controlled so that the battery voltage is applied to the other end of the capacitor, and the drive circuit supplies power to the heater based on the capacitor voltage. Control the drive circuit and the first switch so as to
    A heater heating control method for controlling the drive circuit and the first switch so that the drive circuit supplies electric power to the heater based on the battery voltage in a steady control period in which the heater is controlled at a temperature near a target value.
  6.  ヒーターに電力を供給する駆動回路と、
     前記駆動回路にバッテリ電圧とキャパシタ電圧とのいずれか一方を選択して与える第1のスイッチと、
     一端から前記キャパシタ電圧を出力するキャパシタと、
     前記キャパシタに電力に蓄積するキャパシタ充電電源と、
     前記キャパシタの他端に外部から与えられるバッテリ電圧と接地電圧とを選択して与える第2のスイッチと、
     前記駆動回路、前記キャパシタ充電電源、前記第1のスイッチ及び前記第2のスイッチを制御する制御回路と、を有するヒーター加熱制御装置の前記制御回路で実行されるヒーター加熱制御プログラムであって、
     前記ヒーター加熱制御プログラムは、
     上位システムにより指定される急速加熱期間において、前記キャパシタの他端に前記バッテリ電圧が与えられるように前記第2のスイッチを制御するとともに、前記駆動回路が前記キャパシタ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び前記第1のスイッチを制御し、
     前記ヒーターを目標値付近の温度で制御する定常制御期間においては前記駆動回路が前記バッテリ電圧に基づき前記ヒーターに電力を供給するように前記駆動回路及び第1のスイッチを制御するヒーター加熱制御プログラム。
    The drive circuit that supplies power to the heater and
    A first switch that selects and gives either a battery voltage or a capacitor voltage to the drive circuit,
    A capacitor that outputs the capacitor voltage from one end,
    A capacitor charging power source that stores electric power in the capacitor,
    A second switch that selectively gives a battery voltage and a ground voltage given from the outside to the other end of the capacitor,
    A heater heating control program executed by the control circuit of a heater heating control device having the drive circuit, the capacitor charging power supply, the first switch, and the control circuit for controlling the second switch.
    The heater heating control program is
    During the rapid heating period specified by the host system, the second switch is controlled so that the battery voltage is applied to the other end of the capacitor, and the drive circuit supplies power to the heater based on the capacitor voltage. Control the drive circuit and the first switch so as to
    A heater heating control program that controls the drive circuit and the first switch so that the drive circuit supplies electric power to the heater based on the battery voltage during a steady control period in which the heater is controlled at a temperature near a target value.
PCT/JP2021/039629 2020-10-29 2021-10-27 Heater heating control device, heater heating control method, and heater heating control program WO2022092142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022559193A JPWO2022092142A1 (en) 2020-10-29 2021-10-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-181170 2020-10-29
JP2020181170 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022092142A1 true WO2022092142A1 (en) 2022-05-05

Family

ID=81382620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039629 WO2022092142A1 (en) 2020-10-29 2021-10-27 Heater heating control device, heater heating control method, and heater heating control program

Country Status (2)

Country Link
JP (1) JPWO2022092142A1 (en)
WO (1) WO2022092142A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318303A (en) * 2004-04-28 2005-11-10 Mitsumi Electric Co Ltd Circuit and method for driving transistor
US20140084817A1 (en) * 2010-07-20 2014-03-27 Vijay Bhavaraju Method of energy and power management in dynamic power systems with ultra-capacitors (super capacitors)
JP2018113061A (en) * 2012-12-21 2018-07-19 ジェンサーム ゲーエムベーハー System for improving response time of temperature controlled device
JP2020108286A (en) * 2018-12-27 2020-07-09 株式会社ジェイテクト Auxiliary power unit and electric power steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318303A (en) * 2004-04-28 2005-11-10 Mitsumi Electric Co Ltd Circuit and method for driving transistor
US20140084817A1 (en) * 2010-07-20 2014-03-27 Vijay Bhavaraju Method of energy and power management in dynamic power systems with ultra-capacitors (super capacitors)
JP2018113061A (en) * 2012-12-21 2018-07-19 ジェンサーム ゲーエムベーハー System for improving response time of temperature controlled device
JP2020108286A (en) * 2018-12-27 2020-07-09 株式会社ジェイテクト Auxiliary power unit and electric power steering device

Also Published As

Publication number Publication date
JPWO2022092142A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP5020530B2 (en) Charging method, battery pack and charger thereof
JP4472758B2 (en) Battery pack voltage discharging apparatus and method
US9209637B2 (en) Battery control apparatus
JP5114885B2 (en) Capacity adjustment device
JP2007159280A (en) Power supply unit for vehicle
US20140210393A1 (en) Capacitor precharge circuit, motor drive system, electric power steering system and airbag system
WO2018053721A1 (en) Charging method, charging control system and charging device for power supply, and unmanned aerial vehicle
JP2016010280A (en) Control device for electric vehicles
JP2014075297A (en) Power storage system
CN110891820A (en) Discharge circuit and method for discharging a high-voltage intermediate circuit of a vehicle
KR20090103132A (en) Balenced charging apparatus of ultracapacitors and balenced charging method thereof
CN113752911A (en) Energy processing device and method and vehicle
WO2022092142A1 (en) Heater heating control device, heater heating control method, and heater heating control program
US9041245B2 (en) Power supply apparatus and method to control the same
JP6855822B2 (en) Equalization control device and in-vehicle power supply device
CN111971870B (en) Auxiliary power supply control device for vehicle and auxiliary power supply device for vehicle
CN110696626A (en) Unmanned vehicle and power supply control method thereof
KR20190066376A (en) Smart pra pre-charging system
CN211335652U (en) Vehicle and battery self-heating system thereof
JPH08308129A (en) Battery charger
JP7147646B2 (en) Battery module heating device
US7521899B2 (en) Methods and apparatus for managing energy supplied by an energy supply
CN113547942A (en) Control method and control device for low-temperature quick charging of electric automobile and electric automobile
JP2021034217A (en) Control apparatus of temperature regulation system
CN106183486A (en) Control equipment and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886260

Country of ref document: EP

Kind code of ref document: A1