WO2022092098A1 - Radical generation film-forming composition, radical generation film, method for manufacturing liquid crystal display element, and liquid crystal display element - Google Patents

Radical generation film-forming composition, radical generation film, method for manufacturing liquid crystal display element, and liquid crystal display element Download PDF

Info

Publication number
WO2022092098A1
WO2022092098A1 PCT/JP2021/039523 JP2021039523W WO2022092098A1 WO 2022092098 A1 WO2022092098 A1 WO 2022092098A1 JP 2021039523 W JP2021039523 W JP 2021039523W WO 2022092098 A1 WO2022092098 A1 WO 2022092098A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
substrate
carbon atoms
film
Prior art date
Application number
PCT/JP2021/039523
Other languages
French (fr)
Japanese (ja)
Inventor
尚宏 野田
一世 三宅
政太郎 大田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020237016397A priority Critical patent/KR20230095990A/en
Priority to JP2022559168A priority patent/JPWO2022092098A1/ja
Priority to CN202180073116.6A priority patent/CN116507643A/en
Publication of WO2022092098A1 publication Critical patent/WO2022092098A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention is a method for manufacturing a liquid crystal display element, which can manufacture a weak anchoring film by an inexpensive method and a method that does not include a complicated process, and applies a technique for stabilizing a liquid crystal layer with a polymer.
  • the present invention relates to a liquid crystal display element for realizing a further low voltage drive, a radical generation film forming composition that can be used for them, and a radical generation film.
  • liquid crystal display elements have been widely used in mobile phones, computers, television displays, and the like.
  • Liquid crystal display elements have characteristics such as thinness, light weight, and low power consumption, and are expected to be applied to further contents such as VR (Virtual Reality) and ultra-high-definition displays in the future.
  • Various display modes such as TN (Twisted Nematic), IPS (In-Plane Switching), and VA (Vertical Indicator) have been proposed as display methods for liquid crystal displays, but the liquid crystal is oriented in a desired orientation in all modes.
  • a film (liquid crystal alignment film) that induces IPS is used.
  • the IPS mode which does not distort the display even when touched, is preferred.
  • Liquid crystal display elements using Field Switching and technologies using non-contact technology using optical orientation have come to be used.
  • FFS has a higher substrate manufacturing cost than IPS, and has a problem that a display defect peculiar to FFS mode called Vcom shift occurs.
  • photo-alignment compared to the rubbing method, there are merits that the size of the element that can be manufactured can be increased and the display characteristics can be greatly improved.
  • seizure due to insufficient alignment force, etc. can be mentioned.
  • liquid crystal display element makers and liquid crystal alignment film makers are making various efforts to solve these problems.
  • a liquid crystal alignment film having strong anchoring energy is used for the substrate on one side, and the substrate side provided with the electrode for generating a transverse electric field on one side has no liquid crystal alignment regulating force.
  • Patent Document 3 As a method for solving this, a method of weakly anchoring only on the pixel electrode has been proposed (see Patent Document 3). It has been reported that this makes it possible to achieve both improvement in brightness and response speed.
  • Japanese Patent No. 40553530 Japanese Unexamined Patent Publication No. 2013-231757 Japanese Unexamined Patent Publication No. 2017-21166
  • the response speed delay during driving is suppressed, but in order to make the weak anchoring state only on the electrode, different materials are used in very small areas. It is necessary to prepare difficult techniques such as painting separately, which may be a big issue for actual industrialization.
  • the material design for obtaining a weak anchoring state is significantly different from the design of the liquid crystal alignment film using conventional polyimide, and there are many unclear points about the design guidelines, and the characteristics such as coating film forming property and electrical characteristics are taken into consideration. Then, it is very difficult to develop, and it may take time to find a material that can be put into practical use. There are very few reports of materials that can obtain a weak anchoring state just by applying them, and the current situation is that they are far from the practical level.
  • the present invention has been made to solve the above-mentioned problems, can be easily manufactured, can simultaneously realize a low drive voltage and a high response speed when the voltage is off, and has a good black display.
  • a method for manufacturing a liquid crystal display element that can produce a lateral electric field liquid crystal display element that is obtained, has a small decrease in VHR (voltage retention rate), and has good suppression of seizure, the liquid crystal display element, and radical generation that can be used for them. It is an object of the present invention to provide a film-forming composition and a radical-generating film.
  • Component (A) a polymer used as an alignment component of a liquid crystal alignment agent for driving a transverse electric field
  • component (B) a silicon-containing compound having a group represented by the following formula (1).
  • a radical generation film forming composition containing. (In formula (1), * represents a binding site, R 1 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-,- Represents CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
  • the above is provided at least on the condition that any of the following groups, that is, -O-, -COO-, -OCO-, -NHCO-, -CONH-, or -NH- is not adjacent to each other. It may be replaced by either group.
  • R 3 represents an organic group that induces radical polymerization.
  • the silicon-containing compound having a group represented by the formula (1) is hydrolyzable, including a silicon-containing compound represented by the following formula (2) and a silicon-containing compound represented by the following formula (2).
  • Z is a group represented by the above formula (1), R independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 4 has 1 to 10 carbon atoms.
  • R 3 represents an organic group that induces radical polymerization represented by the following formulas [X-1] to [X-18], [W], [Y] or [Z], [1] or The radical generating film forming composition according to [2].
  • [X-1] to [X-18] * indicates a binding site
  • S 1 and S 2 independently represent -O-, -NR-, or -S-, and R is hydrogen.
  • S2R or NR when a part of the ⁇ CH2 - group of the alkyl group is replaced with an oxygen atom, the oxygen atom is not directly bonded to S2 or N.
  • R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
  • Ar is a group consisting of phenylene, naphthylene, and biphenylylene which may have an organic group and / or a halogen atom as a substituent.
  • R 9 and R 10 each independently represent an alkyl group with 1-10 carbon atoms or an alkoxy group with 1-10 carbon atoms, with R 9 and R 10 being alkyl groups. In the case, they may be bonded to each other at the ends to form a ring structure.
  • Q represents any of the following structures.
  • R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond. The site is shown.).
  • S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • the radically polymerizable compound is polymerized in a state where the liquid crystal composition containing the liquid crystal and the radically polymerizable compound is in contact with the radically generated film of the first substrate having the radically generated film according to [7].
  • the present invention it can be easily manufactured, a low drive voltage and a high response speed at the time of voltage off can be realized at the same time, a good black display can be obtained, and a decrease in VHR (voltage holding rate) is small. It is possible to provide a method for manufacturing a liquid crystal display element capable of producing a transverse electric field liquid crystal display element having good seizure suppression, the liquid crystal display element, a radical generation film forming composition that can be used for the liquid crystal display element, and a radical generation film.
  • the radical generation film forming composition of the present invention contains at least the following component (A) and the following component (B).
  • the above is provided at least on the condition that any of the following groups, that is, -O-, -COO-, -OCO-, -NHCO-, -CONH-, or -NH- is not adjacent to each other. It may be replaced by either group.
  • R 3 represents an organic group that induces radical polymerization. )
  • a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is brought into contact with a radical generation film obtained by using the radical generation film forming composition of the present invention.
  • the step of polymerizing the radically polymerizable compound is included.
  • the present inventors have stated that a weak anchoring film is obtained by changing the surface of the radical-generating film by the polymerization reaction of the radically polymerizable compound using the radical generated by the radical-generating film.
  • a weak anchoring transverse electric field liquid crystal display element can be stably manufactured, and it is possible to simultaneously realize a low drive voltage and a high response speed when the voltage is off, which is good black.
  • a horizontal electric field liquid crystal display element with a small decrease in VHR can be manufactured even at a high temperature in which a display can be obtained and seizure is well suppressed.
  • the "weak anchoring film” means that there is no force to regulate the orientation of liquid crystal molecules in the in-plane direction, or even if there is, it is weaker than the intramolecular force between liquid crystals.
  • the weak anchoring film is not limited to the solid film, but also includes a liquid film covering the solid surface.
  • a liquid crystal display element uses a film that regulates the orientation of liquid crystal molecules, that is, a liquid crystal alignment film in pairs to align the liquid crystal, but even when the weak anchoring film and the liquid crystal alignment film are used in pairs, the liquid crystal is oriented. Can be made to.
  • Horizontal orientation refers to a state in which the major axes of liquid crystal molecules are arranged substantially parallel to the liquid crystal alignment film surface, and inclined orientation of about several degrees is also included in the category of horizontal orientation.
  • the component (B) is a silicon-containing compound having a group represented by the following formula (1).
  • * represents a binding site
  • R 1 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-,- Represents CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
  • the above is provided at least on the condition that any of the following groups, that is, -O-, -COO-, -OCO-, -NHCO-, -CONH-, or -NH- is not adjacent to each other. It may be replaced by either group.
  • R 3 represents an organic group that induces radical polymerization. )
  • R 2 examples include a divalent group represented by the following formula (1-1).
  • * 1 represents the binding site with R 1
  • * 3 represents the binding site with R 3.
  • n represents an integer of 1 to 6.
  • the —C n H 2n ⁇ (n represents an integer of 1 to 6) in the formula (1-1) may be a linear alkylene group or a branched alkylene group.
  • R3 is not particularly limited as long as it is an organic group that induces radical polymerization , but is represented by, for example, the following formulas [X-1] to [X-18], [W], [Y] or [Z]. Examples thereof include organic groups that induce radical polymerization.
  • [X-1] to [X-18] * indicates a binding site
  • S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively, and R is.
  • R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • Ar is a group consisting of phenylene, naphthylene, and biphenylylene which may have an organic group and / or a halogen atom as a substituent.
  • R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and R 9 and R 10 are alkyl groups. In the case of, they may be bonded to each other at the ends to form a ring structure.
  • Q represents any of the following structures.
  • R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond. The site is shown.).
  • S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
  • Examples of the group represented by the formula (1) include the following groups. (In the formula, * represents the binding site.)
  • Examples of the silicon-containing compound having a group represented by the formula (1) include the following (i), (ii), and (iii).
  • (decomposition condensate) Fine particles surface-modified using a silicon-containing compound represented by the following formula (2) (hereinafter, may be referred to as "surface-modified fine particles”).
  • Z is a group represented by the formula (1), R independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 4 has 1 to 10 carbon atoms. It represents an alkylene group, R'represents an alkyl group having 1 to 5 carbon atoms, and x represents 2 or 3).
  • the alkylene group having 1 to 10 carbon atoms in R4 may be a linear alkylene group or a branched alkylene group.
  • R4 may be an alkylene group having 1 to 6 carbon atoms or an alkylene group having 1 to 3 carbon atoms.
  • the hydrolyzed condensate may be a hydrolyzed condensate of the silicon-containing compound represented by the formula (2) alone, a silicon-containing compound represented by the formula (2), and other hydrolyzable organic silicon. It may be a hydrolyzed condensate in combination with a compound.
  • Examples of other hydrolyzable organosilicon compounds other than the silicon-containing compound represented by the formula (2) include an alkoxysilane represented by the following formula (3) and an alkoxysilane represented by the following formula (4). Examples thereof include alkoxysilane represented by the following formula (5).
  • R 11 Si (OR 12 ) 3 (3) (In the formula (3), R 11 is a hydrocarbon group having 8 to 30 carbon atoms which may be substituted with a fluorine atom, and R 12 represents an alkyl group having 1 to 5 carbon atoms.)
  • R 13 Si (OR 14 ) 3 (4) (In the formula (4), R 13 represents an alkyl group substituted with an acrylic group or a methacrylic group, and R 14 represents an alkyl group having 1 to 5 carbon atoms.)
  • R 15 ) n Si (OR 16 ) 4-n (5) (In the formula ( 5 ), R15 may be substituted with a hydrogen atom or a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group, and carbonic acid having 1 to 16 carbon atoms. It is a hydrogen group, R 16 is an alkyl group having 1 to 5 carbon atoms,
  • R 11 of the alkoxysilane represented by the formula (3) is a hydrocarbon group having 8 to 30, preferably 8 to 22, particularly preferably 10 to 22, which may be substituted with fluorine.
  • examples thereof include an alkyl group, a fluoroalkyl group, an alkenyl group, a phenethyl group, a styrylalkyl group, a naphthyl group, a fluorophenylalkyl group and the like.
  • alkoxysilane in which R 11 is an alkyl group or a fluoroalkyl group is preferable because it is relatively inexpensive and easily available as a commercially available product.
  • alkoxysilane in which R 11 is an alkyl group is preferable.
  • R 12 of the alkoxysilane represented by the formula (3) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 12 is a methyl group or an ethyl group. Specific examples of such an alkoxysilane represented by the formula (3) will be given, but the present invention is not limited thereto.
  • octyltriethoxysilane octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, heptadecyltrimethoxysilane.
  • R13 of the alkoxysilane represented by the formula ( 4) is an alkyl group substituted with an acrylic group or a methacrylic group.
  • the number of hydrogen atoms substituted is one or more, preferably one.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms. More preferably, it is 1 to 5.
  • the R 14 of the alkoxysilane represented by the formula (4) is the same as the definition of R 12 in the above formula (3), and the preferred group of R 14 is also the same as the case of R 12 .
  • alkoxysilane represented by the formula (4) are given, but the present invention is not limited thereto.
  • Examples thereof include silane, acryloxyethyltrimethoxysilane, and acryloxyethyltriethoxysilane.
  • R15 of the alkoxysilane represented by the formula ( 5 ) is a hydrogen atom or an organic group having 1 to 16 carbon atoms.
  • organic groups having 1 to 16 carbon atoms are aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings and hetero rings; unsaturated bonds; and heteros such as oxygen atoms, nitrogen atoms and sulfur atoms. It is a hydrocarbon having 1 to 16 carbon atoms, more preferably 1 to 12, particularly preferably 1 to 6, which may contain an atom or the like and may have a branched structure.
  • This hydrocarbon may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group or the like.
  • a halogen atom an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group or the like.
  • Specific examples of such an alkoxysilane represented by the formula (5) will be given, but the present invention is not limited thereto.
  • specific examples of the alkoxysilane when R15 is a hydrogen atom include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane and the like.
  • alkoxysilane of the formula (5) specific examples of the alkoxysilane in the case where R15 is an organic group having 1 to 16 carbon atoms include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyl.
  • tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane are more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
  • the hydrolyzed condensate is a so-called polysiloxane having a siloxane structure.
  • the structure of the polysiloxane is not particularly limited, and may be a random structure, a ladder type structure, a complete cage type structure, or an incomplete cage type structure. May be good.
  • An example of a polysiloxane is silsesquioxane, which has a composition formula (RSiO 1.5 ) n (R may be one kind of group or a plurality of kinds of groups. Good).
  • the cage-type silsesquioxane include silsesquioxane having a structure represented by the following formulas (I), (II), (III) or (IV). (In the formulas (I) to (IV), R may be one kind of group or a plurality of kinds of groups.)
  • the method for obtaining the hydrolyzed condensate is not particularly limited.
  • it contains a silicon-containing compound represented by the formula (2) as an essential component, and is represented by an alkoxysilane represented by the formula (3), an alkoxysilane represented by the formula (4), and a formula (5).
  • It is obtained by condensing a hydrolyzable organosilicon compound containing at least one of the alkoxysilanes in an organic solvent.
  • the hydrolyzable condensate is obtained as a solution obtained by polycondensing such a hydrolyzable organosilicon compound and uniformly dissolving it in an organic solvent.
  • Examples of the method for polycondensing the hydrolyzable organosilicon compound include a method for hydrolyzing and condensing the hydrolyzable organosilicon compound in a solvent such as alcohol or glycol.
  • the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis.
  • complete hydrolysis theoretically, 0.5 times mol of water of all alkoxy groups in the hydrolyzable organosilicon compound may be added, but usually, an excess amount of water is added more than 0.5 times mol. Is preferable.
  • the amount of water used in the above reaction can be appropriately selected as desired, but is usually preferably 0.5 to 2.5 times the molar amount of all alkoxy groups in the hydrolyzable organosilicon compound.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, oxalic acid, maleic acid, and fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine, and triethylamine.
  • a catalyst such as a metal salt such as hydrochloric acid, sulfuric acid or nitric acid.
  • the hydrolysis / condensation reaction can be further promoted by heating the solution in which the hydrolyzable organosilicon compound is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired.
  • a method of heating / stirring at 50 ° C. for 24 hours or heating / stirring at reflux for 1 hour can be mentioned.
  • a method of heating and polycondensing a mixture of a hydrolyzable organosilicon compound, a solvent and oxalic acid can be mentioned.
  • oxalic acid is added to alcohol in advance to prepare an alcohol solution of oxalic acid, and then the hydrolyzable organosilicon compound is mixed in a heated state of the solution.
  • the amount of the oxalic acid used is preferably 0.2 to 2 mol with respect to 1 mol of all the alkoxy groups contained in the hydrolyzable organosilicon compound.
  • the heating in this method can be performed at a liquid temperature of 50 to 180 ° C.
  • a method of heating the liquid under reflux for several tens of minutes to ten and several hours is preferable so that evaporation and volatilization of the liquid do not occur.
  • the hydrolyzable organosilicon compounds may be mixed in advance, or a plurality of hydrolyzable organosilicon compounds are sequentially mixed. May be.
  • the solvent used for polycondensing the hydrolyzable organosilicon compound (hereinafter, also referred to as a polymerization solvent) is not particularly limited as long as it dissolves the hydrolyzable organosilicon compound. Even when the hydrolyzable organosilicon compound is not dissolved, it may be dissolved as the hydrolytic organosilicon compound progresses in the polycondensation reaction.
  • alcohol is produced by the polycondensation reaction of the hydrolyzable organic silicon compound, alcohols, glycols, glycol ethers, or organic solvents having good compatibility with alcohols are used.
  • Such a polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol, and diacetone alcohol: ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, and the like.
  • glycol ethers examples thereof include glycol ethers, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, ⁇ -butyrolactone, dimethylsulfoxide, tetramethylurea, hexamethylphosphate triamide, m-cresol and the like. ..
  • the surface-modified fine particles are obtained by surface-modifying the fine particles with a silicon-containing compound represented by the formula (2).
  • the silicon-containing compound represented by the formula (2) may be used alone as the hydrolyzable organosilicon compound, or the silicon-containing compound represented by the formula (2) and the silicon-containing compound represented by the formula (2) may be used alone. It may be used in combination with a hydrolyzable organosilicon compound other than the silicon-containing compound represented by.
  • the fine particles may be organic fine particles or inorganic fine particles, but inorganic fine particles are preferable.
  • nuclear particles examples include Be, Al, Si, Ti, V, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, and the like. Includes oxides, sulfides or nitrides of one or more metals selected from the group consisting of Sn, Sb, Ta, W, Pb, Bi and Ce, and in particular may include these metal oxides. Suitable.
  • the inorganic fine particles may be used alone or in combination of two or more.
  • the metal oxide include, for example, Al 2 O 3 , ZnO, TiO 2 , ZrO 2 , Fe 2 O 3 , Sb 2 O 5 , BeO, ZnO, SnO 2 , CeO 2 , SiO 2 , WO 3 and the like. Can be mentioned. It is also effective to use a plurality of metal oxides as the composite oxide.
  • the composite oxide is a mixture of two or more kinds of inorganic oxides at the stage of producing fine particles. For example, a composite oxide of TiO 2 and ZrO 2 , a composite oxide of TiO 2 and ZrO 2 and SnO 2 , a composite oxide of ZrO 2 and SnO 2 and the like can be mentioned.
  • it may be a compound of the above metal.
  • ZnSb 2 O 6 , BaTIO 3 , SrTIO 3 , SrSnO 3 and the like can be mentioned. These compounds can be used alone or in admixture of two or more, and may be further mixed with the above oxides.
  • the surface-modified inorganic fine particles are prepared by adding a predetermined amount of a hydrolyzable organosilicon compound containing a silicon-containing compound represented by the formula (2) to an aqueous dispersion of nuclear particles or an organosolvent dispersion, and using a catalyst such as dilute hydrochloric acid. It can be obtained by hydrolyzing the hydrolyzable organosilicon compound and binding it to the surface of the nuclear particles.
  • the aqueous dispersion or hydrophilic organic solvent dispersion of the nuclear particles can be further replaced with a hydrophobic organic solvent. This replacement method can be carried out by a usual method such as a distillation method or an ultrafiltration method.
  • hydrophobic solvent examples include ketones such as methyl ethyl ketone and methyl isobutyl ketone, cyclic ketones such as cyclopentanone and cyclohexanone, and esters such as ethyl acetate and butyl acetate.
  • the organic solvent dispersion of the nuclear particles may contain an arbitrary component.
  • the dispersibility of the nuclear particles can be further improved.
  • the phosphoric acid derivative include phenylphosphonic acid and a metal salt thereof.
  • the phosphoric acid-based surfactant include Disperbyk (manufactured by Big Chemie), Phosphanol (manufactured by Toho Chemical Industry Co., Ltd.), and Nikkor (manufactured by Nikon Chemicals Co., Ltd.).
  • oxycarboxylic acid examples include lactic acid, tartrate acid, citric acid, gluconic acid, malic acid and glycolic acid.
  • the content of these optional components is preferably about 30% by mass or less with respect to the total metal oxide of the nuclear particles.
  • the content of the polymer as the component (B) in the radical generation film forming composition is not particularly limited, but the content of the component (B) is determined from the viewpoint of liquid crystal orientation and smoothness of the coating film.
  • the component (A) 0.01 to 50% by mass is preferable, 0.05 to 40% by mass is more preferable, 0.1 to 20% by mass is further preferable, and 0.5 to 5% by mass is particularly preferable. ..
  • the polymer [component (A)] used as the orientation component of the liquid crystal aligning agent for driving a transverse electric field is not particularly limited, and is, for example, a polyimide precursor, a polyimide, a polyurea, a polyamide, a polyacrylate, a polymethacrylate, a cellulose derivative, or a polyacetal. , Polystyrene or a derivative thereof, a poly (styrene-phenylmaleimide) derivative, a polyorganosiloxane, and the like, and at least one polymer selected from the group is preferable.
  • the component (A) is a polymer different from the component (B).
  • a preferred embodiment of the component (A) is a polymer selected from a polyamic acid obtained from a tetracarboxylic dianhydride component and a diamine component and an imidized product thereof.
  • Examples of the tetracarboxylic acid dianhydride component for obtaining a polyamic acid include a compound represented by the following formula (A1).
  • A is a tetravalent organic group, preferably a tetravalent organic group having 4 to 30 carbon atoms.
  • the tetracarboxylic acid dianhydride component for obtaining the polyamic acid of the component (A) may be one kind of tetracarboxylic acid dianhydride, and two or more kinds of tetracarboxylic acid dianhydrides are used in combination. May be good.
  • the diamine component used for the polymerization of the polyamic acid of the component (A) used in the radical generation film forming composition of the present invention consists of a diamine represented by the following formula (A2) and a diamine represented by the following formula (A3). It preferably contains at least one selected diamine.
  • a 1 is a single bond, an alkylene group having 2 to 10 carbon atoms, or a group in which at least one of —CH 2- possessed by the alkylene group is replaced with —O— or —S— under non-contiguous conditions.
  • 2 is a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a phosphoric acid group, or a monovalent organic group having 1 to 20 carbon atoms independently, and a is 0 to 4 independently.
  • the structure of A 2 may be the same or different.
  • b and c are independently 1 or 2
  • d is 0 or 1.
  • the component (A) becomes a liquid crystal display.
  • the component (A4) it is preferable to use at least one of the diamines represented by the following formula (A4) as the other diamine.
  • Y 1 is a divalent organic group containing the structure of the following formula (A5).
  • D represents a protecting group that is desorbed by heating and replaced with a hydrogen atom
  • * represents a connection point with another structure.
  • Preferred structures for D include the tert-butoxycarbonyl group.
  • preferred specific examples of the diamine represented by the formula (A4) will be given, but the present invention is not limited thereto.
  • Boc in the following structure represents a tert-butoxycarbonyl group.
  • At least one type of diamine represented by the following formula (A6) is preferable to use at least one type of diamine represented by the following formula (A6).
  • Y 2 is a divalent organic group having a nitrogen atom bonded to an aromatic group or having a nitrogen-containing aromatic heterocycle.
  • the preferred structure of Y 2 is shown below, but the present invention is not limited thereto.
  • the diamine used for the polymerization of the component (A) contained in the radical generation film forming composition of the present invention is a diamine other than the above formulas (A2) to (A6) as long as the effect of the present invention is not impaired (hereinafter referred to as “diamine”). It may also contain other diamines). Examples of other diamines are given below, but the present invention is not limited thereto.
  • the diamine component for obtaining the polyamic acid which is the component (A) may be one kind of diamine or two or more kinds of diamines may be used in combination.
  • the polymer selected from the polyamic acid as the component (A) and the imidized product thereof may be used alone, or the polymer obtained by using the tetracarboxylic dianhydride component and the diamine component. It may be a mixture of each other. When the polymers are mixtures, the polymers are different from each other.
  • the polymer as the component (A) may contain an organic group that induces radical polymerization, or may not contain an organic group that induces radical polymerization. It is preferable to introduce it in the case of reducing the sensitivity in the formation of the polymer layer, that is, the irradiation amount of UV, improving the film hardness, etc., but in terms of liquid crystal orientation, response speed, storage stability, etc., an organic group that induces radical polymerization. It is considered preferable to introduce a small amount of the radical solution or not to have it, and it is important to combine them appropriately.
  • the organic group that induces radical polymerization is, for example, an organic group that induces radical polymerization in the polymer as the component (B). Can be mentioned.
  • a polymer containing an organic group that induces radical polymerization is used as the component (A), in order to obtain a polymer having a group capable of generating radicals, as a monomer component, a methacrylic group, an acrylic group, a vinyl group, etc.
  • the monomer containing an organic group that induces radical polymerization are diamines that generate radicals and have a polymerizable side chain, and examples thereof include diamines having an organic group represented by the following formula (1). It can, but is not limited to.
  • * represents a binding site
  • R 1 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-,- Represents CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
  • R 3 represents an organic group that induces radical polymerization. ) Specific examples include the diamines shown below.
  • J 1 is a bonding group selected from a single bond, -O-, -COO-, -NHCO-, and -NH-
  • J 2 is a single bond, or unsubstituted or substituted with a fluorine atom.
  • n is an integer of 2 to 8
  • E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -CONH-,-. COO-, -OCO-,-(CH 2 ) m- , -SO 2- , -O- (CH 2 ) m -O-, -OC (CH 3 ) 2- , -C (CH 3 ) 2 -O-, -CO- (CH 2 ) m -,-(CH 2 ) m -CO-, -NH- (CH 2 ) m -,-(CH 2 ) m -NH-, -SO 2- (CH) 2 ) ) m -,-(CH 2 ) m -SO 2- , -CONH- (CH 2 ) m -,-(CH 2 ) m -NHCO-, -CONH- (CH 2 ) m -
  • the structure of the tetracarboxylic acid dialkyl ester to be reacted with the above diamine component in the synthesis when the polymer as the component (A) is a polyamic acid ester is not particularly limited, and specific examples thereof are given below.
  • aliphatic tetracarboxylic acid diester examples include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1.
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3', 4,4'-biphenyltetracarboxylic acid dialkyl ester, 2,2', 3,3'-biphenyltetracarboxylic acid dialkyl ester, and the like.
  • 2,3,3', 4'-biphenyltetracarboxylic acid dialkyl ester 3,3', 4,4'-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3', 4'-benzophenone tetracarboxylic acid dialkyl ester , Bis (3,4-dicarboxyphenyl) ether dialkyl ester, Bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6 Examples thereof include 7-naphthalene tetracarboxylic acid dialkyl ester.
  • the diisocyanate to be reacted with the above diamine component is not particularly limited and can be used depending on availability and the like.
  • the specific structure of diisocyanate is shown below.
  • R 2 and R 3 represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • K-1 to K-5 are inferior in reactivity but have the advantage of improving solvent solubility
  • aromatic diisocyanates shown in K-6 to K-13 are highly reactive and heat resistant.
  • K-1, K-7, K-8, K-9, and K-10 are preferable in terms of versatility and characteristics
  • K-12 is preferable from the viewpoint of electrical characteristics
  • K-13 is preferable from the viewpoint of liquid crystal orientation.
  • Two or more kinds of diisocyanates can be used in combination, and it is preferable to apply various diisocyanates according to the desired characteristics.
  • diisocyanates can be replaced with the tetracarboxylic acid dianhydride described above, and may be used in the form of a copolymer of polyamic acid and polyurea, and the polyimide and polyurea can be chemically imidized. It may be used in the form of a copolymer.
  • the structure of the dicarboxylic acid to be reacted in the synthesis when the polymer as the component (A) is polyamide is not particularly limited, but specific examples are as follows.
  • the aliphatic dicarboxylic acid include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, and 2,2-dimethylglutal.
  • dicarboxylic acids such as acids, 3,3-diethylsuccinic acid, adipic acid, sebacic acid and suberic acid.
  • Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • aromatic dicarboxylic acids examples include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, and 2,5-dimethylterephthalic acid.
  • dicarboxylic acid containing a heterocycle examples include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, and the like.
  • 1,2,5-Thiadiazol-3,4-dicarboxylic acid 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples thereof include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
  • various dicarboxylic acids may have an acid dihalide or an anhydrous structure. It is particularly preferable that these dicarboxylic acids are dicarboxylic acids capable of giving a polyamide having a linear structure from the viewpoint of maintaining the orientation of the liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, diphenylmethane-4,4'-dicarboxylic acid, 1,2-bis (4-carboxyphenyl) ethane , 2,2-bis (4-carboxyphenyl) propane, 2,2-bis (4-carboxyphenyl) hexafluoropropane, p-terphenyl-4,4 "-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,5-pyridinedicarboxylic acids, acid dihalides thereof, etc. are preferably used. Some of these compounds have isomers, but they may be a mixture containing them, and two or more kinds of compounds may be used.
  • the dicarboxylic acids used in the present invention are not limited to the above-mentioned exemplary compounds.
  • a known synthetic method can be used to obtain a polyamic acid by a reaction between a diamine component and a tetracarboxylic acid dianhydride component.
  • it is a method of reacting a diamine component and a tetracarboxylic acid dianhydride component in an organic solvent.
  • the reaction between the diamine component and the tetracarboxylic acid dianhydride component is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used in the above reaction is not particularly limited as long as it dissolves the produced polymer. Further, even if the organic solvent does not dissolve the polymer, it may be mixed with the above solvent and used as long as the produced polymer does not precipitate. Since the water content in the organic solvent inhibits the polymerization reaction and further causes the produced polymer to be hydrolyzed, it is preferable to use a dehydrated and dried organic solvent.
  • organic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2 -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, phosphoramide, ⁇ -Buchirolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve,
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid dianhydride component is used as it is or is organic.
  • a method of adding a tetracarboxylic acid dianhydride component dispersed or dissolved in a solvent conversely a method of adding a diamine component to a solution in which a tetracarboxylic acid dianhydride component is dispersed or dissolved in an organic solvent, a method of adding a tetracarboxylic acid dianhydride component and a diamine component.
  • Examples thereof include a method of adding alternately, and any of these methods may be used.
  • the reaction may be carried out in a premixed state, may be reacted individually in sequence, or may be further reacted individually with a low molecular weight.
  • the bodies may be mixed and reacted to form a high molecular weight compound.
  • the temperature at which the diamine component and the tetracarboxylic acid dianhydride component are reacted can be selected from any temperature, and is, for example, in the range of -20 to 100 ° C, preferably -5 to 80 ° C.
  • the reaction can be carried out at any concentration, for example, the total amount of the diamine component and the tetracarboxylic acid dianhydride component is 1 to 50% by mass, preferably 5 to 30% by mass with respect to the reaction solution. ..
  • the ratio of the total number of moles of the tetracarboxylic acid dianhydride component to the total number of moles of the diamine component in the above polymerization reaction can be arbitrarily selected according to the molecular weight of the polyamic acid to be obtained. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced. The preferred range is 0.8 to 1.2.
  • the method for synthesizing the polymer as the component (A) is not limited to the above method, and when synthesizing a polyamic acid, the above-mentioned tetracarboxylic acid dianhydride is similar to the general method for synthesizing a polyamic acid.
  • a tetracarboxylic acid having a corresponding structure or a tetracarboxylic acid derivative such as a tetracarboxylic acid dihalide can be used and reacted by a known method to obtain the corresponding polyamic acid.
  • polyimide can be obtained by ring-closing (imidizing) the polyamic acid.
  • the imidization ratio as used herein is the ratio of the imide group to the total amount of the imide group and the carboxy group derived from the tetracarboxylic acid dianhydride.
  • the imidization ratio does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • the imidization rate of the polyimide is preferably 30% or more because the voltage retention rate can be increased, while 80% or less is set from the viewpoint of whitening characteristics, that is, from the viewpoint of suppressing the precipitation of the polymer in the varnish. preferable.
  • the temperature at which the polyamic acid is thermally imidized in the solution is usually 100 to 400 ° C, preferably 120 to 250 ° C, and it is preferable to remove the water generated by the imidization reaction from the outside of the system.
  • the catalytic imidization of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyamic acid and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is usually 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group
  • the amount of the acid anhydride is usually 1 to 50 mol times, preferably 1 to 50 mol times the amic acid group. It is 3 to 30 mol times.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like, and among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, the reaction time, and the like.
  • the reaction solution When recovering the produced polymer from the reaction solution of the polymer, the reaction solution may be put into a poor solvent and precipitated.
  • the poor solvent used for precipitate formation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like.
  • the polymer put into a poor solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the efficiency of purification is further improved.
  • the molecular weight of the polymer as the component (A) is GPC when the strength of the radical generation film obtained by applying the radical generation film forming composition, the workability at the time of forming the coating film, the uniformity of the coating film, etc. are taken into consideration.
  • the weight average molecular weight measured by the (Gel Permeation Chromatography) method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • Photosensitive side-chain acrylic polymer that develops liquid crystallinity in a predetermined temperature range is a photosensitive side-chain acrylic polymer that exhibits liquid crystallinity in a predetermined temperature range.
  • the side chain acrylic polymer preferably reacts with light in the wavelength range of 250 to 400 nm and exhibits liquid crystallinity in the temperature range of 100 to 300 ° C.
  • the side chain acrylic polymer preferably has a photosensitive side chain that reacts to light in the wavelength range of 250 to 400 nm.
  • the side chain acrylic polymer preferably has a mesogen group because it exhibits liquid crystallinity in a temperature range of 100 to 300 ° C.
  • the side chain type acrylic polymer has a side chain having photosensitivity bonded to the main chain, and can cause a cross-linking reaction, an isomerization reaction, or a photo Fries rearrangement in response to light.
  • the structure of the side chain having photosensitivity is not particularly limited, but a structure that causes a cross-linking reaction or a photo-Fries rearrangement in response to light is desirable, and one that causes a cross-linking reaction is more preferable. In this case, even if it is exposed to external stress such as heat, the realized orientation control ability can be stably maintained for a long period of time.
  • the structure of the photosensitive side-chain acrylic polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side-chain structure has a rigid mesogen component. In this case, stable liquid crystal alignment can be obtained when the side chain acrylic polymer is used as a liquid crystal alignment film.
  • the structure of the acrylic polymer has, for example, a main chain and a side chain bonded to the main chain, and the side chain contains a mesogen component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group. It has a structure having a photosensitive group bonded to the tip and undergoing a cross-linking reaction and an isomerization reaction in response to light, and a main chain and a side chain bonded to the main chain, and the side chain also serves as a mesogen component. Moreover, it can be a structure having a phenylbenzoate group that undergoes a photofreeze rearrangement reaction.
  • More specific examples of the structure of the photosensitive side-chain acrylic polymer that develops liquidity in a predetermined temperature range include hydrocarbons, (meth) acrylates, itaconates, fumarate, maleates, ⁇ -methylene- ⁇ -.
  • Ar 1 to Ar 5 independently represent a divalent substituent obtained by removing two hydrogen atoms from a benzene ring, a naphthalene ring, a pyrrole ring, a furan ring, a thiophene ring, or a pyridine ring.
  • One of q1 and q2 is 1 and the other is 0.
  • S 1 to S 3 independently represent a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms, a phenylene group or a biphenylylene group, or a single bond or ether.
  • a linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms, a phenylene group, a biphenylylene group, or a combination thereof of 2 or more and 10 or less sites are bonded to each other.
  • the structure may be such that a plurality of the substituents are linked via the bond.
  • R 31 is a hydrogen atom, a hydroxy group, a mercapto group, an amino group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylamino group having 1 to 8 carbon atoms or a dialkyl group having 2 to 16 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched, cyclic, or may have a structure in which they are combined, and the hydrogen atom of the alkyl group may be substituted with a halogen atom.
  • the photosensitive side chain acrylic polymer that exhibits liquid crystallinity in a predetermined temperature range which is a kind of the component (A) of the present application, can contain a liquid crystal side chain.
  • a mesogen group having a liquid crystal side chain even if it is a group having a mesogen structure by itself such as a biphenyl structure or a phenylbenzoate structure, a group having a mesogen structure by hydrogen bonding between the side chains such as benzoic acid. May be.
  • the following structure is preferable as the mesogen group contained in the side chain.
  • the photosensitive side chain acrylic polymer that exhibits liquid crystallinity in the above-mentioned predetermined temperature range can be obtained by polymerizing a photoreactive side chain monomer having the above-mentioned photosensitive side chain and a liquid crystal side chain monomer. Can be done.
  • the photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at a side chain portion of the polymer when the polymer is formed.
  • the structures represented by the above formulas (31) to (35) are preferable.
  • a polymerizable group selected from the following PG1 to PG6 and a photosensitive side chain consisting of at least one of the above formulas (31) to (35) are bonded. It is preferably a structure.
  • M 1 represents a hydrogen atom or a methyl group.
  • the liquid crystal side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquidity and the polymer can form a mesogen group at a side chain site. More specific examples of the liquid crystal side chain monomer include radical polymerizable groups such as hydrocarbons, (meth) acrylates, itaconates, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide and norbornene. It is preferable that the structure has a polymerizable group composed of at least one selected from the above group and a side chain having at least one of the above-mentioned "mesogen groups having a liquid crystal side chain".
  • liquid crystal side chain monomer a monomer in which a liquid crystal side chain selected from the following formulas (1) to (12) is bonded to a polymerizable group selected from the above formulas PG1 to PG6 is preferable.
  • n 0 or 1
  • Z1 and Z2 are independently and single-coupled, respectively.
  • the side chain type acrylic polymer which is one aspect of the component (A) can be obtained by the polymerization reaction of the photoreactive side chain monomer exhibiting the liquid crystal property described above. Further, it can be obtained by copolymerizing a photoreactive side chain monomer that does not exhibit liquidity and a liquid crystal side chain monomer, or by copolymerizing a photoreactive side chain monomer that exhibits liquidity and a liquid crystal side chain monomer. can. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
  • Examples of other monomers include industrially available radical polymerization-reactive monomers.
  • Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds and vinyl compounds.
  • Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylic acid ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate and tert-butyl.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-butyl.
  • (Meta) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, and (3-ethyl-3-oxetanyl) methyl (meth) acrylate are also used. be able to.
  • the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
  • the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene and the like.
  • the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • the method for producing the side chain type polymer is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystal side chain monomer or a photoreactive side chain monomer. Of these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
  • a known radical polymerization initiator such as AIBN (azobisisobutyronitrile) or a known compound such as a reversible addition-cleaving chain transfer (RAFT) polymerization reagent shall be used. Can be done.
  • AIBN azobisisobutyronitrile
  • RAFT reversible addition-cleaving chain transfer
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a bulk polymerization method, a solution polymerization method, or the like can be used.
  • the organic solvent used for the polymerization reaction of the photosensitive side chain acrylic polymer that develops liquid crystallinity in a predetermined temperature range is not particularly limited as long as the produced polymer can be dissolved. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, Phosphoramide, ⁇ -butylollactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve
  • Diethylene glycol Diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol.
  • organic solvents may be used alone or in combination. Further, even if the solvent does not dissolve the produced polymer, it may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Further, in radical polymerization, oxygen in an organic solvent causes an inhibition of the polymerization reaction, so it is preferable to use an organic solvent degassed to the extent possible.
  • the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 to 150 ° C., but is preferably in the range of 50 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration and then an organic solvent can be added.
  • the ratio of the radical polymerization initiator when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.
  • the reaction solution When recovering the produced polymer from the reaction solution of the photosensitive side-chain polymer that can exhibit liquidity obtained by the above reaction, the reaction solution is put into a poor solvent and their weights are increased. The coalescence may be precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water and the like.
  • the polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the efficiency of purification is further improved.
  • the molecular weight of the photosensitive side-chain acrylic polymer that exhibits liquidity in a predetermined temperature range which is one aspect of the component (A) of the present invention, is the strength of the obtained coating film and the workability at the time of forming the coating film.
  • the weight average molecular weight measured by the GPC (Gel Permeation Chromatography) method is preferably 2,000 to 1,000,000, preferably 5,000 to 100,000. Some are more preferred.
  • the radical generating film-forming composition may contain other components such as a radical generating agent and an organic solvent in addition to the component (A) and the component (B).
  • a radical generating agent such as a compound that generates a radical by heat, a compound that generates a radical by light, and the like.
  • the compound that generates radicals by heat is a compound that generates radicals by heating to a temperature higher than the decomposition temperature.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation).
  • the compound that generates radicals with light is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy.
  • the radical generating film forming composition can contain a polymer component, and if necessary, an organic solvent that dissolves or disperses a radical generating agent or other contained components.
  • an organic solvent is not particularly limited, and examples thereof include organic solvents as exemplified in the above-mentioned synthesis of polyamic acid.
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble. It is preferable from the viewpoint of.
  • N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but two or more kinds of mixed solvents may be used.
  • a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent having high solubility of the components contained in the radical generation film forming composition.
  • Examples of the solvent for improving the uniformity and smoothness of the coating material include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve (ethylene glycol monobutyl ether), methyl cellosolve acetate, butyl cellosolve acetate, and ethyl cellosolve acetate.
  • the radical generation film forming composition may contain components other than the above. Examples thereof include compounds that improve the film thickness uniformity and surface smoothness when the radical generation film forming composition is applied, compounds that improve the adhesion between the radical generation film forming composition and the substrate, and radical generation film formation. Examples thereof include compounds that further improve the film strength of the composition.
  • Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. More specifically, for example, Ftop EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.), Megafuck F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by 3M), Asahi. Examples thereof include Guard AG710 (manufactured by AGC), Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical). When these surfactants are used, the ratio of their use is preferably 0.01 to 2 parts by mass, more preferably 0, with respect to 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition. It is 0.01 to 1 part by mass.
  • the compound that improves the adhesion between the radical generation film forming composition and the substrate include a functional silane-containing compound and an epoxy group-containing compound.
  • a functional silane-containing compound and an epoxy group-containing compound For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane.
  • a phenol compound such as 2,2 bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added. ..
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition.
  • the radical generating film forming composition includes a dielectric or a conductive material for the purpose of changing the electric properties such as the dielectric constant and the conductivity of the radical generating film as long as the effect of the present invention is not impaired. Substances may be added.
  • the radical generation film of the present invention can be obtained by using the above radical generation film forming composition.
  • a cured film obtained by applying the radical generation film forming composition used in the present invention to a substrate and then drying and firing it can be used as it is as a radical generation film.
  • this cured film can be subjected to orientation processing by rubbing, polarization, light of a specific wavelength, or the like, or by processing an ion beam, etc., and the liquid crystal display element after filling the liquid crystal is irradiated with UV (ultraviolet rays). Is also possible.
  • the substrate on which the radical generation film forming composition is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving a liquid crystal display is formed is preferable.
  • glass plates polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyether ketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, and tri.
  • a substrate in which a transparent electrode is formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, acetate butyrate cellulose or the like.
  • electrode patterns such as standard IPS comb tooth electrodes and PSA fishbone electrodes and protrusion patterns such as MVA can also be used.
  • an element such as a transistor is used between an electrode for driving a liquid crystal display and a substrate.
  • a transmissive liquid crystal display element When a transmissive liquid crystal display element is intended, it is common to use a substrate as described above, but when a reflective liquid crystal display element is intended, silicon is used only on one side of the substrate. An opaque substrate such as a wafer can also be used. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.
  • Examples of the method for applying the radical-generating film-forming composition include a spin coating method, a printing method, an inkjet method, a spray method, a roll coating method, and the like, but the transfer printing method is widely used industrially from the viewpoint of productivity. It is also suitably used in the present invention.
  • the step of drying after applying the radical generation film forming composition is not always necessary, but if the time from application to firing is not constant for each substrate or if it is not fired immediately after coating, it is dried. It is preferable to include the process.
  • the drying is not particularly limited as long as the solvent is removed to the extent that the shape of the coating film is not deformed by transporting the substrate or the like, and the drying means thereof is not particularly limited.
  • a method of drying on a hot plate having a temperature of 40 to 150 ° C., preferably 60 to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • the coating film formed by applying the radical generation film forming composition by the above method can be fired to form a cured film.
  • the firing temperature can be usually any temperature of 100 to 350 ° C., but is preferably 140 to 300 ° C., more preferably 150 to 230 ° C., and further preferably 160 to 220 ° C.
  • the firing time is usually any time of 5 to 240 minutes. It is preferably 10 to 90 minutes, more preferably 20 to 90 minutes.
  • a generally known method for example, a hot plate, a hot air circulation oven, an IR (infrared) type oven, a belt furnace, or the like can be used.
  • the thickness of this cured film can be selected as needed, but preferably 5 nm or more, more preferably 10 nm or more, because the reliability of the liquid crystal display element is improved. Further, when the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is preferable.
  • the radical generating film can be subjected to uniaxial orientation treatment.
  • the method for performing the uniaxial alignment treatment include a photoalignment method, an orthorhombic vapor deposition method, rubbing, and a uniaxial alignment treatment using a magnetic field.
  • the substrate is moved so that the rubbing cloth and the film come into contact with each other while rotating the rubbing roller around which the rubbing cloth is wound.
  • the alignment process can be performed by irradiating the entire surface of the film with polarized UV having a specific wavelength and heating the film as necessary.
  • the direction is selected by the electrical properties of the liquid crystal, but when a liquid crystal having positive dielectric anisotropy is used, the rubbing direction is the comb tooth electrode. It is preferable that the direction is substantially the same as the extending direction of.
  • a step of creating a weak anchoring part and a strong anchoring part there is a method of irradiating radiation with an arbitrary pattern via a photomask or the like.
  • the radiation used in this step include polarized light, light having a specific wavelength, an ion beam, and the like. It is particularly preferable to irradiate light having a wavelength having the highest absorbance at the portion corresponding to the photoradical generation site.
  • the second substrate of the present invention may or may not have a radical generation film.
  • the second substrate is preferably a substrate having a conventionally known liquid crystal alignment film.
  • the first substrate may be a substrate having a comb tooth electrode
  • the second substrate may be a facing substrate
  • the second substrate may be a substrate having a comb tooth electrode
  • the first substrate may be a facing substrate.
  • the liquid crystal cell of the present invention comprises a substrate having the radical generating film (first substrate) and a substrate having a known liquid crystal alignment film (second substrate) after forming a radical generating film on the substrate by the above method. Is obtained by arranging the radical generating film and the liquid crystal alignment film so as to face each other, sandwiching a spacer, fixing with a sealing agent, and injecting and sealing a liquid crystal composition containing a liquid crystal and a radically polymerizable compound. Be done. At that time, the size of the spacer used is usually 1 to 30 ⁇ m, but preferably 2 to 10 ⁇ m.
  • the IPS substrate which is a comb tooth electrode substrate used in the IPS (In-Plane Switching) mode, includes a base material, a plurality of linear electrodes formed on the base material, and arranged in a comb tooth shape, and a base. It has a liquid crystal alignment film formed on the material so as to cover the linear electrodes.
  • the FFS substrate which is a comb tooth electrode substrate used in the FFS (Friend Field Switching) mode, is insulated from the base material, the surface electrode formed on the base material, and the insulating film formed on the surface electrode. It has a plurality of linear electrodes formed on the film and arranged in a comb-teeth shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.
  • the method of injecting a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is not particularly limited, and a vacuum method of injecting a mixture containing the liquid crystal and the polymerizable compound after depressurizing the inside of the produced liquid crystal cell, polymerization with the liquid crystal.
  • a dropping method in which a mixture containing a sex compound is dropped and then sealed.
  • the polymerizable compound used together with the liquid crystal in the production of the liquid crystal display element of the present invention is not particularly limited as long as it is a radically polymerizable compound, and is, for example, a compound having one or two or more polymerizable reactive groups in one molecule. be. It is preferably a compound having one polymerizable reactive group in one molecule (hereinafter, may be referred to as "a compound having a monofunctional polymerizable group", "a compound having a monofunctional polymerizable group", etc.). ..
  • the polymerizable reactive group is preferably a radically polymerizable reactive group, for example, a vinyl bond.
  • At least one of the radically polymerizable compounds is preferably a compound having compatibility with liquid crystal and having one polymerizable reactive group in one molecule, that is, a compound having a monofunctional radically polymerizable group.
  • the radically polymerizable polymerizable group M of the radically polymerizable compound is preferably a polymerizable group selected from the following structures.
  • * indicates a binding site.
  • R b represents a linear alkyl group having 2 to 8 carbon atoms
  • E represents a single bond, -O-, -NR c- , -S-, an ester bond and an amide bond.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R d represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the radically polymerizable compound has an unsaturated bond capable of performing radical polymerization in the presence of an organic radical, and is, for example, tert-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, lauryl methacrylate, and the like.
  • Methacrylate monomers such as n-octyl methacrylate; acrylate monomers such as tert-butyl acrylate, benzyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, lauryl acrylate, n-octyl acrylate; styrene, styrene derivatives (eg, o).
  • vinyl esters eg, vinyl acetate, vinyl propionate, etc.
  • Vinyl benzoate etc.
  • vinyl ketones eg, vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone, etc.
  • N-vinyl compounds eg, N-vinylpyrrolidone, N-vinylpyrrole, N-vinylcarbazole, N- Vinyl indols, etc.
  • acrylic acid derivatives eg, acrylonitrile, metaacrylonitrile, acrylamide, isopropylacrylamide, methacrylicamide, etc.
  • vinyl halides eg, vinyl chloride, vinylidene chloride, tetrachloroethylene
  • Ra and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms, and E is a single bond, —O—, —NR c ⁇ , —S—, an ester bond, And a bonding group selected from an amide bond.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • a more preferable example of the radically polymerizable compound used in the present invention is represented by the following formula (A).
  • M represents a radically polymerizable polymerizable group
  • R 1 to R 3 are independent single bonds or alkylene groups having 1 to 6 carbon atoms in which a bonding group may be inserted.
  • Ar represents an aromatic hydrocarbon group which may have a substituent
  • X 1 and X 2 each independently have a hydrogen atom or an aromatic hydrocarbon group which may have a substituent. May be combined with the carbon atoms bonded to R 1 X 1 and R 2 X 2 and R 1 X 1 and R 2 X 2 to form a ring, however, R 1 X 1 , R.
  • the total number of carbon atoms of 2 X 2 and R 3 is 1 or more.
  • a weak anchoring transverse electric field liquid crystal display element can be stably manufactured without generating a pretilt angle in a narrow cell gap, and the drive voltage can be lowered and the voltage can be reduced. At the same time, it is possible to increase the response speed at the time of turning off, and in addition, it becomes possible to manufacture a lateral electric field liquid crystal display element with a small decrease in VHR even at a high temperature.
  • the present inventors consider how the radically polymerizable compound represented by the formula (A) contributes to this as follows.
  • the radically polymerizable compound M represented by the formula (A) contributes to the radical polymerization of the radically polymerizable compound.
  • the narrow cell gap means a cell gap of 3.5 ⁇ m or less.
  • the alkylene group having 1 to 6 carbon atoms in which the linking group is inserted is a divalent group in which the linking group is inserted between carbons in the alkylene group having 1 to 6 carbon atoms.
  • it means a divalent group in which a bonding group is inserted between an alkylene group having 1 to 6 carbon atoms and a carbon atom bonded to the alkylene group.
  • the bonding group include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), an amide bond (-CONH- or -NHCO-), and the like.
  • Examples of the unsaturated bond include a carbon-carbon double bond, and an alkylene group having 1 to 6 carbon atoms into which a bonding group is inserted has a carbon-carbon double bond inside, not at the end thereof. It is preferable to have a bond.
  • Examples of the alkylene group having 1 to 6 carbon atoms into which the bonding group may be inserted include an alkylene group having 1 to 6 carbon atoms and an oxyalkylene group having 1 to 6 carbon atoms.
  • the oxygen atom in the oxyalkylene group having 1 to 6 carbon atoms is bonded to, for example, the carbon atom bonded to M, R 1 , R 2 and R 3 in the formula (A).
  • the alkylene group having 1 to 6 carbon atoms may be a linear alkylene group, a branched alkylene group, or a cyclic alkylene group.
  • examples of the aromatic hydrocarbon group which may have a substituent include a phenyl group and a naphthyl group which may have a substituent.
  • substituents include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkyl halide group having 1 to 4 carbon atoms, a halogenated alkoxy group having 1 to 4 carbon atoms, and the like.
  • the halogenation in the alkyl halide group and the halogenated alkoxy group may be total halogenation or partial halogenation.
  • the halogen atom include a fluorine atom and a chlorine atom.
  • examples of R 1 include a single bond and an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group having 1 to 6 carbon atoms include a linear alkylene group having 1 to 6 carbon atoms.
  • examples of R 2 include a single bond and an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group having 1 to 6 carbon atoms include a linear alkylene group having 1 to 6 carbon atoms.
  • examples of R3 include a single bond and an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group having 1 to 6 carbon atoms include a linear alkylene group having 1 to 6 carbon atoms.
  • examples of X 1 include a hydrogen atom and a phenyl group.
  • examples of X 2 include a hydrogen atom and a phenyl group.
  • Ar includes, for example, a phenyl group and the like.
  • the total number of carbon atoms of R 1 X 1 , R 2 X 2 and R 3 is not particularly limited as long as it is 1 or more, but it may be 2 or more. Further, the total carbon number of R 1 , R 2, and R 3 may be, for example, 18 or less, 15 or less, or 10 or less.
  • the total carbon number of R 1 , R 2, and R 3 is not particularly limited as long as it is 1 or more, but it may be 2 or more.
  • the total number of carbon atoms of R 1 , R 2 and R 3 may be 0.
  • a bonding group may be inserted into the ring having 3 carbon atoms. 13 hydrocarbon rings can be mentioned.
  • the binding group is as described above.
  • Examples of the radically polymerizable compound contained in the formula (A) and the formula (A-1) include the following radically polymerizable compounds.
  • Examples of the radically polymerizable compound represented by the formula (A) include radically polymerizable compounds represented by the following formulas (A-1) to (A-3).
  • M represents a radically polymerizable polymerizable group.
  • R 1 to R 3 represent alkylene groups having 1 to 6 carbon atoms, each of which has a single bond or a bonding group may be inserted independently.
  • Ar, Ar 1 and Ar 2 each represent an aromatic hydrocarbon group which may have a substituent independently.
  • R 11 and R 12 each represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms to which a bonding group may be inserted.
  • the carbon atoms bonded to R 11 and R 12 and R 11 and R 12 may form a ring together.
  • the total number of carbon atoms of R 11 , R 12 and R 3 is 1 or more, and may be 2 or more. Further, the total number of carbon atoms may be 18 or less, 15 or less, or 10 or less.
  • the total number of carbon atoms of R 1 , R 12 and R 3 is not particularly limited and may be 0.
  • the total number of carbon atoms may be, for example, 18 or less, 15 or less, or 10 or less.
  • the total number of carbon atoms of R 1 , R 2 and R 3 is not particularly limited and may be 0.
  • the total number of carbon atoms may be, for example, 18 or less, 15 or less, or 10 or less.
  • R 11 is a case where X 1 is a hydrogen atom in R 1 X 1 .
  • R 12 is the case where X 2 is a hydrogen atom in R 2 X 2 .
  • Examples of the radically polymerizable compound contained in the formula (A) and the formula (A-1) include the following radically polymerizable compounds.
  • a further preferred example of the radically polymerizable compound used in the present invention is represented by the following formula (A').
  • M represents a radically polymerizable polymerizable group
  • R 1 represents a linear or branched aliphatic hydrocarbon group having 1 to 10 carbon atoms
  • the three Xs are independent of each other.
  • Y represents a single bond, -O-, -S-, or -NR-
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents a bond site.
  • R 2 , R 3 and R 4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms.
  • a weak anchoring transverse electric field liquid crystal display element can be stably manufactured without generating a pretilt angle in a narrow cell gap, and the drive voltage can be reduced. At the same time, it is possible to increase the response speed when the voltage is off, and in addition, it is possible to manufacture a lateral electric field liquid crystal display element with a small decrease in VHR even at a high temperature.
  • the present inventors consider how the radically polymerizable compound represented by the formula (A') contributes to this as follows.
  • the radically polymerizable compound M represented by the formula (A') contributes to the radical polymerization of the radically polymerizable compound.
  • the radically polymerizable compound represented by the formula (A') -SiR 2 R 3 R 4 contributes to the suppression of the generation of the pretilt angle, the improvement of the response speed, and the high VHR at high temperature. The inventors speculate.
  • the aliphatic hydrocarbon group in R 1 of the formula (A') has 1 to 10 carbon atoms, may have 1 to 8 carbon atoms, may have 1 to 6 carbon atoms, or may have 1 to 6 carbon atoms. It may be 1 to 4.
  • the alkyl group having 1 to 6 carbon atoms in R 2 , R 3 and R 4 of the formula (A') may be, for example, an alkyl group having 1 to 5 carbon atoms or having 1 to 4 carbon atoms. It may be an alkyl group. These alkyl groups may have a linear structure or a branched structure.
  • the aromatic hydrocarbon groups in R2 , R3 , and R4 of the formula (A') may be unsubstituted or the hydrogen atom may be substituted with a substituent.
  • substituent of the aromatic hydrocarbon group which may have a substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen having 1 to 4 carbon atoms. Examples thereof include an alkylated group and an alkoxy halide group having 1 to 4 carbon atoms.
  • the halogenation in the alkyl halide group and the halogenated alkoxy group may be total halogenation or partial halogenation.
  • halogen atom examples include a fluorine atom and a chlorine atom.
  • aromatic hydrocarbon group of the aromatic hydrocarbon group which may have a substituent examples include a phenyl group and a naphthyl group. The number of substituents in the aromatic hydrocarbon group is not particularly limited.
  • the number of groups represented by the formula (B') is one or more, and may be one or two. There may be three. In the radically polymerizable compound represented by the formula (A'), the three Xs are independent of each other. Therefore, in the radically polymerizable compound represented by the formula (A'), when the number of groups represented by the formula (B') is two or more, the group represented by two or more formulas (B') is. It may have the same structure or may have a different structure.
  • R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group which may have a substituent. Therefore, in formula (B'), one of R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group which may have a substituent, or R 2 , R 3 , and R. Two of 4 may be aromatic hydrocarbon groups which may have a substituent, and three of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. It may be.
  • Examples of the radically polymerizable compound represented by the formula (A') include radically polymerizable compounds satisfying the following (I) to (III).
  • Each of the three Xs independently represents a hydrogen atom or formula (B'). However, at least one of the three Xs represents the equation (B').
  • R 2 , R 3 and R 4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms. However, at least one of R 2 , R 3 and R 4 represents an aromatic hydrocarbon group which may have a substituent.
  • Examples of the radically polymerizable compound contained in the formula (A') include the following radically polymerizable compounds.
  • the liquid crystal composition contains at least the liquid crystal and the radically polymerizable compound.
  • the content of the radically polymerizable compound in the liquid crystal composition is preferably 0.5% by mass or more, more preferably 1% by mass or more, and preferably 1% by mass or more, based on the total mass of the liquid crystal and the radically polymerizable compound. It is 10% by mass or less, more preferably 5% by mass or less.
  • a plurality of compounds having other monofunctional radically polymerizable groups (hereinafter, may be referred to as “other radically polymerizable compounds”) are used in combination. May be.
  • At least one of the radically polymerizable compounds contained in the liquid crystal composition has a compound having a polymerizable unsaturated bond in one molecule, which is compatible with the liquid crystal, that is, a monofunctional radically polymerizable group. It is preferably a compound.
  • the liquid crystal composition contains a radically polymerizable compound in which the Tg of the polymer obtained by polymerizing the radically polymerizable compound is 100 ° C. or lower.
  • the polymer obtained by polymerizing a radically polymerizable compound preferably has a Tg of 100 ° C. or lower, more preferably 0 ° C. or lower.
  • the liquid crystal generally refers to a substance exhibiting both solid and liquid properties, and typical liquid crystal phases include nematic liquid crystal and smectic liquid crystal, but the liquid crystal that can be used in the present invention is not particularly limited.
  • One example is 4-pentyl-4'-cyanobiphenyl.
  • the liquid crystal cell into which the mixture (liquid crystal composition) containing the liquid crystal and the radically polymerizable compound is introduced to carry out the polymerization reaction of the radically polymerizable compound.
  • This can be done, for example, by applying heat or UV irradiation, and the radically polymerizable compound is polymerized in situ to exhibit the desired properties.
  • UV irradiation is preferable because it enables oriented patterning and allows the polymerization reaction to occur in a shorter time.
  • heating may be performed during UV irradiation.
  • the heating temperature at the time of UV irradiation is preferably in a temperature range in which the introduced liquid crystal exhibits liquid crystal properties, is usually 40 ° C. or higher, and is preferably heated at a temperature lower than a temperature at which the liquid crystal changes to an isotropic phase.
  • the UV irradiation wavelength in the case of UV irradiation, it is preferable to select the wavelength having the best reaction quantum yield of the reactive polymerizable compound, and the UV irradiation amount is usually 0.01 to 30 J / cm 2 . However, preferably, it is 10 J / cm 2 or less, and the smaller the UV irradiation amount, the more the reliability deterioration due to the destruction of the members constituting the liquid crystal display can be suppressed, and the UV irradiation time can be reduced, so that the manufacturing process can be performed. It is suitable because it improves tact.
  • the heating in the case of polymerizing only by heating instead of UV irradiation is performed in a temperature range in which the temperature at which the polymerizable compound reacts and is lower than the decomposition temperature of the liquid crystal display. Specifically, it is 100 to 150 ° C.
  • a liquid crystal display element can be manufactured using the liquid crystal cell thus obtained.
  • the method for manufacturing a liquid crystal display element includes, for example, the following steps (1) to (4).
  • (1) A step of preparing a first substrate having a radical generating film of the present invention and a second substrate which may have a radical generating film (2)
  • the radical generating film in the first substrate faces the second substrate.
  • (3) A step of filling a liquid crystal composition containing a liquid crystal display and a radically polymerizable compound between the first substrate and the second substrate.
  • the liquid crystal display element is, for example, a first substrate and a second arranged facing the first substrate. It has a substrate and a liquid crystal display filled between the first substrate and the second substrate. Then, the liquid crystal display element polymerizes the radically polymerizable compound in a state where the liquid crystal composition containing the liquid crystal and the radically polymerizable compound is brought into contact with the radical generating film of the first substrate having the radical generating film of the present invention. Let me.
  • the liquid crystal display element can be made into a reflective liquid crystal display element by, for example, providing a reflective electrode, a transparent electrode, a ⁇ / 4 plate, a polarizing film, a color filter layer, or the like in the liquid crystal cell according to a conventional method.
  • a transmissive liquid crystal display element can be obtained by providing the liquid crystal cell with a backlight, a polarizing plate, a ⁇ / 4 plate, a transparent electrode, a polarizing film, a color filter layer and the like according to a conventional method, if necessary.
  • the second substrate may be a second substrate having no radical generation film.
  • the second substrate may be a substrate coated with a liquid crystal alignment film having uniaxial orientation.
  • the liquid crystal alignment film having uniaxial orientation may be a liquid crystal alignment film for horizontal alignment.
  • one of the first substrate and the second substrate is a substrate having a comb tooth electrode.
  • FIG. 1 is a schematic cross-sectional view showing an example of a transverse electric field liquid crystal display element of the present invention, and is an example of an IPS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2c and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb tooth electrode substrate 2 is formed on the base material 2a and the base material 2a, and is formed so as to cover the plurality of linear electrodes 2b arranged in a comb tooth shape and the linear electrodes 2b on the base material 2a. It also has a liquid crystal alignment film 2c.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, a weak anchoring film obtained by chemically changing a radical generation film.
  • the liquid crystal alignment film on the comb-shaped electrode substrate side is obtained, for example, by polymerizing a radically polymerizable compound in a state where a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is in contact with a radical generating film.
  • a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by the electric lines of force L.
  • FIG. 2 is a schematic cross-sectional view showing another example of the transverse electric field liquid crystal display element of the present invention, and is an example of an FFS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2h and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb tooth electrode substrate 2 is formed on the base material 2d, the surface electrode 2e formed on the base material 2d, the insulating film 2f formed on the surface electrode 2e, and the insulating film 2f, and has a comb tooth shape.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is, for example, a weak anchoring film obtained by chemically changing a radical generating film.
  • the liquid crystal alignment film on the comb-shaped electrode substrate side is obtained, for example, by polymerizing a radically polymerizable compound in a state where a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is in contact with a radical generating film.
  • the lateral electric field liquid crystal display element 1 when a voltage is applied to the surface electrode 2e and the linear electrode 2g, an electric field is generated between the surface electrode 2e and the linear electrode 2g as shown by the electric lines of force L.
  • TC-1 to TC-2 Compounds represented by the following formulas (TC-1) to (TC-2), respectively.
  • Add-1 Compounds represented by the following formulas (Add-1)
  • Addd-C1 to Add-C2 Compounds represented by the following formulas (Add-C1) to (Add-C2), respectively.
  • ⁇ Viscosity measurement> For the viscosity of the polyamic acid solution, etc., use an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), sample volume 1.1 mL (milliliter), cone rotor TE-1 (1 ° 34', R24), temperature 25. Measured at ° C. ⁇ Measurement of molecular weight> For the molecular weight of the polyimide precursor and polyimide, use a room temperature gel permeation chromatography (GPC) device (GPC-101) (manufactured by Showa Denko), a column (GPC KD-803, GPC KD-805) (manufactured by Showa Denko).
  • GPC room temperature gel permeation chromatography
  • DA-3 (5.17 g: 20.0 mmol) was weighed in a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, NMP (58.0 g) was added, and the mixture was stirred and dissolved in a nitrogen atmosphere. After that, TC-1 (3.61 g: 18.4 mmol) and NMP (10.0 g) were added in an ice bath while keeping the temperature at 10 ° C. or lower, and the mixture was reacted at room temperature for 24 hours to obtain a viscosity of about 230 mPa ⁇ s. A polyamic acid solution (PAA-1) having a solid content concentration of 12% by mass was obtained. The molecular weight of this polyamic acid was Mn: 11,100 and Mw: 30,500.
  • PAA-1 polyamic acid solution
  • DA-2 (3.42 g: 14.0 mmol) and DA-3 (1.55 g: 6.0 mmol) were weighed in a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, and NMP (42.0 g) was weighed. ), Stir and dissolve in a nitrogen atmosphere, then add TC-2 (4.21 g: 18.8 mmol) and NMP (10.0 g) in an ice bath while keeping the temperature below 10 ° C., and add 24 at room temperature.
  • PAA-2 polyamic acid solution having a viscosity of about 710 mPa ⁇ s and a solid content concentration of 15% by mass was obtained.
  • the molecular weight of this polyamic acid was Mn: 15,500 and Mw: 41,800.
  • DA-1 (1.08 g: 10.0 mmol) and DA-4 (3.30 g: 10.0 mmol) were weighed in a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, and NMP (49. 2 g) is added, and after stirring and dissolving in a nitrogen atmosphere, TC-2 (4.30 g: 19.2 mmol) and NMP (10.0 g) are added while keeping the temperature below 10 ° C. in an ice bath, and at room temperature.
  • PAA-3 polyamic acid solution having a viscosity of about 280 mPa ⁇ s and a solid content concentration of 12% by mass was obtained.
  • the molecular weight of this polyamic acid was Mn: 13,500 and Mw: 39,200.
  • Preparation of liquid crystal alignment agent AL-1> Weigh 20.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 3 above into a 50 mL Erlenmeyer flask equipped with a stirrer, add NMP (8.0 g) and BCS (12.0 g), and add room temperature. The liquid crystal alignment agent (AL-1) was obtained by stirring with the mixture for 1 hour.
  • the method for producing a liquid crystal cell for evaluating the liquid crystal orientation and the electro-optic response is shown below.
  • the substrate is a non-alkali glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • the first pixel and the second pixel are formed.
  • the size of each pixel is 5 mm in length and about 5 mm in width.
  • the radical-generating film-forming compositions AL-3 to AL-9 obtained by the above method, the liquid crystal alignment agent AL-2, and the liquid crystal alignment agent SE-6414 for horizontal alignment (manufactured by Nissan Chemical Industries, Ltd.). ) Is filtered through a filter having a pore size of 1.0 ⁇ m, and then the prepared IPS substrate and the back surface ITO substrate having an ITO film formed on the back surface and having a columnar spacer having a height of 3.0 ⁇ m (hereinafter, opposed to each other). The substrate) was coated and filmed by the spin coating method. Then, it was dried on a hot plate at 80 ° C. for 80 minutes and then fired at 230 ° C.
  • the rubbing method is used for AL-3, AL-4, AL-5, AL-8, AL-9 and SE-6414, and the rubbing device manufactured by Iinuma Gauge and the rubbing cloth manufactured by Yoshikawa Kako Co., Ltd. ( YA-20R), a rubbing roller (diameter 10.0 cm), a stage feed rate of 30 mm / s, a roller rotation speed of 700 rpm, and a pushing pressure of 0.4 mm.
  • the photo-alignment method is used, and all of them use a UV exposure device manufactured by Ushio, Inc. to obtain linearly polarized UV having an extinction ratio of about 26: 1.
  • Polarized UV was irradiated so that the irradiation amount was 300 mJ / cm 2 with respect to the wavelength of 254 nm, and the alignment was performed by heating at 230 ° C. for 20 minutes.
  • using the above two types of substrates combine them in the combinations shown in Tables 1 and 4 so that their orientation directions are parallel to each other, and seal the surroundings while leaving the liquid crystal injection port, and the cell gap is about.
  • An empty cell of 3.3 ⁇ m was prepared.
  • a liquid crystal composition obtained by mixing 2.0% by mass of the additive Add-1 in this empty cell is used, and a liquid crystal composition without additives is used in some of the display elements (Comparative Examples 1 and 4) to be compared. After vacuum injection at room temperature, the injection port was sealed to obtain an anti-parallel oriented liquid crystal cell.
  • the liquid crystal mixture used was MLC-3019 (manufactured by Merck & Co., Ltd.).
  • the obtained liquid crystal cell constitutes an IPS mode liquid crystal display element.
  • the obtained liquid crystal cell was heat-treated at 120 ° C. for 10 minutes, and UV (UV lamp: FLR40SUV32 / A-1) was applied using a UV-FL irradiation device manufactured by Toshiba Lighting & Technology Corporation in a state where no voltage was applied. Irradiation for 30 minutes was performed to obtain a liquid crystal display element.
  • VT curve and drive threshold voltage, maximum luminance voltage, transmittance evaluation A white LED backlight and a luminance meter are set so that the optical axes are aligned, and a liquid crystal cell (liquid crystal display element) with a polarizing plate is set between them so that the luminance is minimized, and the voltage is applied to 8V at 1V intervals.
  • the VT curve was measured by applying and measuring the luminance at voltage. From the obtained VT curve, the value of the voltage (Vmax) at which the brightness was maximized was estimated. Further, the maximum transmittance (Tmax) was estimated by comparing the maximum transmitted luminance in the VT curve with the transmitted luminance at the time of parallel Nicol set to 100% via the liquid crystal cell to which no voltage was applied.
  • ⁇ VHR> [Evaluation of voltage retention rate] The voltage retention rate was measured using a liquid crystal cell after UV irradiation. The voltage retention rate at room temperature was measured. A voltage of 4 V was applied to the prepared liquid crystal cell at a temperature of 23 ° C. for 60 ⁇ s, and the voltage after 16.7 ms was measured to calculate how much the voltage could be maintained as the voltage retention rate. In addition, the voltage retention rate at high temperature was measured. A voltage of 1 V was applied to the prepared liquid crystal cell at a temperature of 70 ° C. for 60 ⁇ s, and the voltage after 1667 ms was measured to calculate how much the voltage could be maintained as the voltage retention rate. A VHR-1 voltage holding rate measuring device manufactured by Toyo Corporation was used to measure the voltage holding rate.
  • ⁇ Burn-in evaluation> A rectangular wave voltage (60 Hz) that maximizes the brightness is applied to the first pixel region of each liquid crystal cell, a state is created in which no voltage is applied to the other second pixel region, and the battery is driven at 60 ° C. for 168 hours for aging. Was done. Burn-in was evaluated by comparing the brightness of the first pixel and the second pixel after aging. The smaller the difference in brightness, the better.
  • Tables 2 to 3 show the evaluation results of Examples and Comparative Examples in the liquid crystal display element manufactured by the rubbing method.
  • Examples 7 to 10 and Comparative Example 2 use a photoradical generating film as an IPS substrate and a liquid crystal alignment film as an opposed substrate
  • Examples 11 to 14 and Comparative Example 3 use a liquid crystal alignment film as an IPS substrate.
  • SE-6414 was used for both the IPS substrate and the facing substrate.
  • the black luminance of Examples 7 to 14 showed better results than the results of any of the Comparative Examples, and the VHR and burn-in of Examples 7 to 14 both gave good results. It can be seen that the response speeds (Toff) of Examples 7 to 14 are also faster than those of Comparative Examples 2 and 3.
  • the photoradical generation site is introduced by using a diamine having a photoradical generation site in the polyimide, but especially with respect to the horizontal orientation, the introduction of the side chain structure significantly impairs the liquid crystal orientation. It is considered that it is not preferable, and as a result, the black brightness and the burn-in are deteriorated. Further, in order to obtain weak anchoring characteristics, it is necessary to introduce a relatively large amount of diamine such as DA-4, and as a result, VHR tends to be deteriorated.
  • the photoradical generation film obtained by using the radical generation film forming composition of the present invention can be effective by adding a small amount of a silicon-containing compound having a photoradical generation site to a normal horizontal alignment film. Therefore, weak anchoring can be performed in a state where the liquid crystal orientation is good, and as a result, black brightness and burn-in are improved, and a decrease in VHR can be suppressed. Furthermore, it is considered that the response speed (Toff) could be improved because a region of a moderately strong anchoring energy state could be left.
  • Tables 5 to 6 show the results of Examples and Comparative Examples in the liquid crystal display element manufactured by using the optical orientation.
  • Examples 15, 16, and Comparative Example 5 each use a photoradical generation film for the IPS substrate and a photoalignment film for the facing substrate, and Examples 17, 18, and Comparative Example 6 are In each case, a photoalignment film is used for the IPS substrate and a photoradical generation film is used for the facing substrate, and in Comparative Example 4, a photoalignment film is used for both substrates. These also show the same results as those produced by the rubbing method, and the effect of the present invention can be confirmed. It is possible to produce a photoradical generation film necessary for the production of weak anchoring IPS by simply adding a small amount of a silicon-containing compound into which a photoradical generation site has been introduced to a normal liquid crystal alignment film. It was found that the same effect was obtained with both the liquid crystal alignment films for photoalignment, and good weak anchoring characteristics could be obtained regardless of the composition of the liquid crystal alignment film.
  • the present invention it can be easily manufactured, a low drive voltage and a high response speed when the voltage is turned off can be realized at the same time, and a good black display can be obtained, and a transverse electric field liquid crystal display having good seizure suppression can be obtained.
  • a display element can be provided, and a liquid crystal display element with good reliability can be obtained. Therefore, the liquid crystal display element obtained by the method of the present invention is useful as a horizontal electric field drive type liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

A radical generation film-forming composition containing a component (A) (a polymer used as an alignment component of a liquid crystal alignment agent for in-plane switching) and a component (B) (a silicon-containing compound having a group represented by formula (1)). (In formula (1): * represents a bonding site, and R1 represents a single bond, -CH2-, -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, -CH2O-, -N(CH3)-, -CON(CH3)-, or -N(CH3)CO-; R2 represents a single bond, or a C1-20 alkylene group that is unsubstituted or substituted with a fluorine atom, where one or more of any -CH2- or -CF2- in the alkylene group may each independently be substituted with a group selected from -CH=CH-, a divalent carbocyclic ring, and a divalent heterocyclic ring, and furthermore, one or more of any -CH2- or -CF2- in the alkylene group may be substituted with any of the following groups, i.e., -O-, -COO-, -OCO-, -NHCO-, -CONH-, or -NH-, provided that said groups are not adjacent to each other; and R3 represents an organic group that induces radical polymerization.)

Description

ラジカル発生膜形成組成物、ラジカル発生膜、液晶表示素子の製造方法、及び液晶表示素子Radical generation film forming composition, radical generation film, manufacturing method of liquid crystal display element, and liquid crystal display element
 本発明は、安価な手法かつ複雑な工程を含まない手法にて、弱アンカリング膜を製造することが可能であり、かつポリマーによる液晶層の安定化技術を応用した、液晶表示素子の製造方法、及び、更なる低電圧駆動を実現するための液晶表示素子、並びにそれらに利用可能なラジカル発生膜形成組成物、及びラジカル発生膜に関するものである。 INDUSTRIAL APPLICABILITY The present invention is a method for manufacturing a liquid crystal display element, which can manufacture a weak anchoring film by an inexpensive method and a method that does not include a complicated process, and applies a technique for stabilizing a liquid crystal layer with a polymer. The present invention relates to a liquid crystal display element for realizing a further low voltage drive, a radical generation film forming composition that can be used for them, and a radical generation film.
 近年、携帯電話、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVR(Virtual Reality)や超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)、IPS(In-Plane Switching)、VA(Vertical Alignment)など様々な表示モードが提案されているが、すべてのモードには液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。 In recent years, liquid crystal display elements have been widely used in mobile phones, computers, television displays, and the like. Liquid crystal display elements have characteristics such as thinness, light weight, and low power consumption, and are expected to be applied to further contents such as VR (Virtual Reality) and ultra-high-definition displays in the future. Various display modes such as TN (Twisted Nematic), IPS (In-Plane Switching), and VA (Vertical Indicator) have been proposed as display methods for liquid crystal displays, but the liquid crystal is oriented in a desired orientation in all modes. A film (liquid crystal alignment film) that induces IPS is used.
 特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPSモードが好まれており、近年ではコントラスト向上や視野角特性の向上の点でFFS(Frindge Field Switching)を用いた液晶表示素子や、光配向を用いた非接触技術を用いた技術が用いられるようになってきた。 In particular, for products equipped with a touch panel such as tablet PCs, smartphones, and smart TVs, the IPS mode, which does not distort the display even when touched, is preferred. Liquid crystal display elements using Field Switching) and technologies using non-contact technology using optical orientation have come to be used.
 しかしながら、FFSはIPSに比べ基板の製造コストが大きく、Vcomシフトと呼ばれるFFSモード特有の表示不良が発生する課題がある。また光配向に関しては、ラビング法に比べ、製造できる素子の大きさを大きくできる点や表示特性を大きく向上できるというメリットがあるが、光配向の原理上の課題(分解型であれば分解物由来の表示不良、異性化型であれば配向力不足による焼き付き等)が挙げられる。それらの課題を解決するために液晶表示素子メーカーや液晶配向膜メーカーは種々工夫を行っているのが現状である。 However, FFS has a higher substrate manufacturing cost than IPS, and has a problem that a display defect peculiar to FFS mode called Vcom shift occurs. In addition, regarding photo-alignment, compared to the rubbing method, there are merits that the size of the element that can be manufactured can be increased and the display characteristics can be greatly improved. In the case of isomerized type, seizure due to insufficient alignment force, etc.) can be mentioned. At present, liquid crystal display element makers and liquid crystal alignment film makers are making various efforts to solve these problems.
 一方で、近年弱アンカリングというものを利用したIPSモードが提案されており、この手法を用いることで従来のIPSモードに比べてコントラスト向上や大幅な低電圧駆動が可能になるという報告がされている(特許文献1参照)。 On the other hand, in recent years, an IPS mode using weak anchoring has been proposed, and it has been reported that using this method enables improved contrast and significantly lower voltage drive compared to the conventional IPS mode. (See Patent Document 1).
 具体的には、片側の基板には強いアンカリングエネルギーを有する液晶配向膜を用い、一方の横電界を発生させる方の電極を具備した基板側には一切液晶の配向規制力を有さなくなるような処理を施し、それらを用いてIPSモードの液晶表示素子を作る方法である。 Specifically, a liquid crystal alignment film having strong anchoring energy is used for the substrate on one side, and the substrate side provided with the electrode for generating a transverse electric field on one side has no liquid crystal alignment regulating force. This is a method of making a liquid crystal display element in IPS mode by performing various processes and using them.
 近年では、濃厚ポリマーブラシ等を用いて弱状態を作り出す、弱アンカリングIPSモードの技術提案がなされている(特許文献2参照)。この技術によりコントラスト比の大幅な向上や駆動電圧の大幅な低下を実現している。 In recent years, a technical proposal for a weak anchoring IPS mode that creates a weak state using a concentrated polymer brush or the like has been made (see Patent Document 2). This technology has realized a significant improvement in the contrast ratio and a significant reduction in the drive voltage.
 一方で、応答速度特に電圧OFF時の応答速度が著しく低下する課題がある。これは駆動電圧が低くなるため、通常の駆動方式に比べ弱い電界で応答させることによる影響と、配向膜のアンカリング力が極めて小さいが故に、液晶の復元に時間がかかってしまうことに起因する。 On the other hand, there is a problem that the response speed, especially when the voltage is off, is significantly reduced. This is due to the effect of responding with a weaker electric field compared to the normal drive method because the drive voltage is low, and because the anchoring force of the alignment film is extremely small, it takes time to restore the liquid crystal. ..
 これを解決する方法として、画素電極上のみ弱アンカリングにする手法が提案されている(特許文献3参照)。これにより輝度の向上と応答速度の両立が可能になることが報告されている。 As a method for solving this, a method of weakly anchoring only on the pixel electrode has been proposed (see Patent Document 3). It has been reported that this makes it possible to achieve both improvement in brightness and response speed.
特許第4053530号公報Japanese Patent No. 40553530 特開2013-231757号公報Japanese Unexamined Patent Publication No. 2013-231757 特開2017-211566号公報Japanese Unexamined Patent Publication No. 2017-21166
 IPS櫛歯電極の電極上のみ弱アンカリングにすることで駆動時の応答速度遅延が抑制される一方で、電極上のみ弱アンカリングの状態にするためには非常に細かな領域に異なる材料を塗り分けする等の難しい技術を用意する必要があり、実際の工業化には大きな課題となることが考えられる。
 更には、弱アンカリング状態を得るための材料設計は従来のポリイミドを用いた液晶配向膜の設計とは大きく異なり設計指針も不明な点も多く、塗布成膜性や電気特性などの特性を加味すると非常に開発難易度が高く、実用化可能な材料を見出すためには時間がかかることが考えられる。実際塗布するだけで弱アンカリング状態が得られる材料の報告は非常に少なく、実用レベルとは程遠いのが現状である。
By making the IPS comb tooth electrode weak anchoring only on the electrode, the response speed delay during driving is suppressed, but in order to make the weak anchoring state only on the electrode, different materials are used in very small areas. It is necessary to prepare difficult techniques such as painting separately, which may be a big issue for actual industrialization.
Furthermore, the material design for obtaining a weak anchoring state is significantly different from the design of the liquid crystal alignment film using conventional polyimide, and there are many unclear points about the design guidelines, and the characteristics such as coating film forming property and electrical characteristics are taken into consideration. Then, it is very difficult to develop, and it may take time to find a material that can be put into practical use. There are very few reports of materials that can obtain a weak anchoring state just by applying them, and the current situation is that they are far from the practical level.
 このような技術的課題を解決できればパネルメーカーとしても大きなコストメリットとなり、バッテリーの消費抑制や画質の向上等にもメリットとなることが考えられる。 If such a technical problem can be solved, it will be a great cost merit as a panel maker, and it is considered that it will be a merit for suppressing battery consumption and improving image quality.
 本発明は、上記のような課題を解決するためになされたものであり、簡便に製造でき、低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現でき、良好な黒表示が得られ、VHR(電圧保持率)の低下が少なく、焼き付きの抑制が良好な横電界液晶表示素子が製造可能な液晶表示素子の製造方法、及び当該液晶表示素子、並びにそれらに利用可能なラジカル発生膜形成組成物、及びラジカル発生膜を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, can be easily manufactured, can simultaneously realize a low drive voltage and a high response speed when the voltage is off, and has a good black display. A method for manufacturing a liquid crystal display element that can produce a lateral electric field liquid crystal display element that is obtained, has a small decrease in VHR (voltage retention rate), and has good suppression of seizure, the liquid crystal display element, and radical generation that can be used for them. It is an object of the present invention to provide a film-forming composition and a radical-generating film.
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved, and have completed the present invention having the following gist.
 すなわち、本発明は以下を包含する。
 [1] 成分(A):横電界駆動用液晶配向剤の配向成分として用いられる重合体、及び
 成分(B):下記式(1)で表される基を有するケイ素含有化合物、
を含有するラジカル発生膜形成組成物。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、*は結合部位を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表す。
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、当該アルキレン基の任意の-CH-又は-CF-の1以上は、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの少なくともいずれかの基で置き換えられていてもよい。
 Rは、ラジカル重合を誘発する有機基を表す。)
 [2] 前記式(1)で表される基を有するケイ素含有化合物が、下記式(2)で表されるケイ素含有化合物、下記式(2)で表されるケイ素含有化合物を含む加水分解性有機ケイ素化合物の加水分解縮合物、及び下記式(2)で表されるケイ素含有化合物を用いて表面修飾された微粒子の少なくともいずれかである、[1]に記載のラジカル発生膜形成組成物。
Figure JPOXMLDOC01-appb-C000007
(式(2)中、Zは前記式(1)で表される基であり、Rはそれぞれ独立して水素原子又は炭素数1~5のアルキル基を表し、Rは炭素数1~10のアルキレン基を表し、R’は炭素数1~5のアルキル基を表し、xは2または3を表す。)
 [3] Rが、下記式[X-1]~[X-18]、[W]、[Y]又は[Z]で表されるラジカル重合を誘発する有機基を表す、[1]又は[2]に記載のラジカル発生膜形成組成物。
Figure JPOXMLDOC01-appb-C000008
(式[X-1]~[X-18]中、*は結合部位を示し、S及びSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R及びRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000009
(式[W]、[Y]及び[Z]中、*は結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000010
(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)。Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
 [4] 前記成分(A)としての前記重合体が、ポリイミド前駆体又はポリイミドである、[1]~[3]のいずれかに記載のラジカル発生膜形成組成物。
 [5] 前記成分(A)としての前記重合体が、ラジカル重合を誘発する有機基を有しない、[1]~[4]のいずれかに記載のラジカル発生膜形成組成物。
 [6] 前記成分(A)に対する前記成分(B)の含有量が、0.1~20質量%である、[1]~[5]のいずれかに記載のラジカル発生膜形成組成物。
 [7] [1]~[6]のいずれかに記載のラジカル発生膜形成組成物を用いて得られるラジカル発生膜。
 [8] [7]に記載のラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ、
 前記第一基板における前記ラジカル発生膜が前記第二基板に対向するように、前記第一基板および前記第二基板を対向配置するステップ、
 前記第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップ、および
 前記液晶組成物を、前記ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるステップ、
を含む液晶表示素子の製造方法。
 [9] 前記第二基板がラジカル発生膜を有しない第二基板である、[8]に記載の液晶表示素子の製造方法。
 [10] 前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である、[8]に記載の液晶表示素子の製造方法。
 [11] 前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜である、[10]に記載の液晶表示素子の製造方法。
 [12] 前記第一基板および前記第二基板のいずれか一方が櫛歯電極を有する基板である、[8]~[11]のいずれかに記載の液晶表示素子の製造方法。
 [13] 第一基板、前記第一基板に対向して配置された第二基板、および前記第一基板と前記第二基板との間に充填された液晶を有し、
 前記液晶及びラジカル重合性化合物を含有する液晶組成物を、[7]に記載のラジカル発生膜を有する前記第一基板の前記ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させてなる、ことを特徴とする液晶表示素子。
That is, the present invention includes the following.
[1] Component (A): a polymer used as an alignment component of a liquid crystal alignment agent for driving a transverse electric field, and component (B): a silicon-containing compound having a group represented by the following formula (1).
A radical generation film forming composition containing.
Figure JPOXMLDOC01-appb-C000006
(In formula (1), * represents a binding site, R 1 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-,- Represents CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
R 2 represents an alkylene group having 1 to 20 carbon atoms which is single-bonded, or unsubstituted or substituted with a fluorine atom, and one or more of any -CH 2- or -CF 2- of the alkylene group is independent of each other. May be replaced with a group selected from -CH = CH-, a divalent carbocycle, and a divalent heterocycle, and any one of the alkylene group -CH 2- or -CF 2- . The above is provided at least on the condition that any of the following groups, that is, -O-, -COO-, -OCO-, -NHCO-, -CONH-, or -NH- is not adjacent to each other. It may be replaced by either group.
R 3 represents an organic group that induces radical polymerization. )
[2] The silicon-containing compound having a group represented by the formula (1) is hydrolyzable, including a silicon-containing compound represented by the following formula (2) and a silicon-containing compound represented by the following formula (2). The radical-generating film-forming composition according to [1], which is at least one of a hydrolysis condensate of an organic silicon compound and fine particles surface-modified with a silicon-containing compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000007
(In the formula (2), Z is a group represented by the above formula (1), R independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 4 has 1 to 10 carbon atoms. Represents an alkylene group of, R'represents an alkyl group having 1 to 5 carbon atoms, and x represents 2 or 3).
[3] R 3 represents an organic group that induces radical polymerization represented by the following formulas [X-1] to [X-18], [W], [Y] or [Z], [1] or The radical generating film forming composition according to [2].
Figure JPOXMLDOC01-appb-C000008
(In formulas [X-1] to [X-18], * indicates a binding site, S 1 and S 2 independently represent -O-, -NR-, or -S-, and R is hydrogen. Represents an atom or an alkyl group having 1 to 10 carbon atoms (among the alkyl groups having 1 to 10 carbon atoms, a part of the -CH 2- group of the alkyl group having 2 to 10 carbon atoms is replaced with an oxygen atom. However, in S2R or NR, when a part of the −CH2 - group of the alkyl group is replaced with an oxygen atom, the oxygen atom is not directly bonded to S2 or N. R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000009
(In the formulas [W], [Y] and [Z], * indicates a bond site, and Ar is a group consisting of phenylene, naphthylene, and biphenylylene which may have an organic group and / or a halogen atom as a substituent. Representing the aromatic hydrocarbon group of choice, R 9 and R 10 each independently represent an alkyl group with 1-10 carbon atoms or an alkoxy group with 1-10 carbon atoms, with R 9 and R 10 being alkyl groups. In the case, they may be bonded to each other at the ends to form a ring structure. Q represents any of the following structures.
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond. The site is shown.). S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-. R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
[4] The radical generation film-forming composition according to any one of [1] to [3], wherein the polymer as the component (A) is a polyimide precursor or a polyimide.
[5] The radical-generating film-forming composition according to any one of [1] to [4], wherein the polymer as the component (A) does not have an organic group that induces radical polymerization.
[6] The radical generation film forming composition according to any one of [1] to [5], wherein the content of the component (B) with respect to the component (A) is 0.1 to 20% by mass.
[7] A radical generating film obtained by using the radical generating film forming composition according to any one of [1] to [6].
[8] The step of preparing the first substrate having the radical generation film according to [7] and the second substrate which may have the radical generation film.
A step of arranging the first substrate and the second substrate facing each other so that the radical generating film on the first substrate faces the second substrate.
The step of filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between the first substrate and the second substrate, and the liquid crystal composition in contact with the radical generating film, said. Steps to polymerize radically polymerizable compounds,
A method for manufacturing a liquid crystal display element including.
[9] The method for manufacturing a liquid crystal display element according to [8], wherein the second substrate is a second substrate having no radical generation film.
[10] The method for manufacturing a liquid crystal display element according to [8], wherein the second substrate is a substrate coated with a liquid crystal alignment film having uniaxial orientation.
[11] The method for manufacturing a liquid crystal display element according to [10], wherein the liquid crystal alignment film having uniaxial orientation is a liquid crystal alignment film for horizontal alignment.
[12] The method for manufacturing a liquid crystal display element according to any one of [8] to [11], wherein either the first substrate or the second substrate is a substrate having a comb tooth electrode.
[13] It has a first substrate, a second substrate arranged to face the first substrate, and a liquid crystal display filled between the first substrate and the second substrate.
The radically polymerizable compound is polymerized in a state where the liquid crystal composition containing the liquid crystal and the radically polymerizable compound is in contact with the radically generated film of the first substrate having the radically generated film according to [7]. A liquid crystal display element characterized by radical polymerization.
 本発明によれば、簡便に製造でき、低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現でき、良好な黒表示が得られ、VHR(電圧保持率)の低下が少なく、焼き付きの抑制が良好な横電界液晶表示素子が製造可能な液晶表示素子の製造方法、及び当該液晶表示素子、並びにそれらに利用可能なラジカル発生膜形成組成物、及びラジカル発生膜を提供できる。 According to the present invention, it can be easily manufactured, a low drive voltage and a high response speed at the time of voltage off can be realized at the same time, a good black display can be obtained, and a decrease in VHR (voltage holding rate) is small. It is possible to provide a method for manufacturing a liquid crystal display element capable of producing a transverse electric field liquid crystal display element having good seizure suppression, the liquid crystal display element, a radical generation film forming composition that can be used for the liquid crystal display element, and a radical generation film.
本発明の横電界液晶表示素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the transverse electric field liquid crystal display element of this invention. 本発明の横電界液晶表示素子の他の例を示す概略断面図である。It is the schematic sectional drawing which shows the other example of the transverse electric field liquid crystal display element of this invention.
[ラジカル発生膜形成組成物]
 本発明のラジカル発生膜形成組成物は、下記成分(A)、及び下記成分(B)を少なくとも含有する。
 成分(A):横電界駆動用液晶配向剤の配向成分として用いられる重合体
 成分(B):下記式(1)で表される基を有するケイ素含有化合物
Figure JPOXMLDOC01-appb-C000011
(式(1)中、*は結合部位を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表す。
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、当該アルキレン基の任意の-CH-又は-CF-の1以上は、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの少なくともいずれかの基で置き換えられていてもよい。
 Rは、ラジカル重合を誘発する有機基を表す。)
[Radical generation film forming composition]
The radical generation film forming composition of the present invention contains at least the following component (A) and the following component (B).
Component (A): Polymer component used as an alignment component for a liquid crystal alignment agent for driving a transverse electric field Component (B): A silicon-containing compound having a group represented by the following formula (1)
Figure JPOXMLDOC01-appb-C000011
(In formula (1), * represents a binding site, R 1 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-,- Represents CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
R 2 represents an alkylene group having 1 to 20 carbon atoms which is single-bonded, or unsubstituted or substituted with a fluorine atom, and one or more of any -CH 2- or -CF 2- of the alkylene group is independent of each other. May be replaced with a group selected from -CH = CH-, a divalent carbocycle, and a divalent heterocycle, and any one of the alkylene group -CH 2- or -CF 2- . The above is provided at least on the condition that any of the following groups, that is, -O-, -COO-, -OCO-, -NHCO-, -CONH-, or -NH- is not adjacent to each other. It may be replaced by either group.
R 3 represents an organic group that induces radical polymerization. )
 このような組成物を塗布、硬化して膜を形成することにより、ラジカル重合を誘発する有機基が膜中に固定化されたラジカル発生膜を得ることができる。
 そして、後述する本発明の液晶表示素子の製造方法においては、液晶及びラジカル重合性化合物を含有する液晶組成物を、本発明のラジカル発生膜形成組成物を用いて得られるラジカル発生膜に接触させた状態で、ラジカル重合性化合物を重合反応させるステップを含む。このステップにおいては、ラジカル発生膜により発生したラジカルを利用したラジカル重合性化合物の重合反応によって、ラジカル発生膜の表面に変化が生じ、弱アンカリング膜が得られていると、本発明者らは推測している。しかし、かかるステップによるラジカル発生膜の表面の変化が、ラジカル発生膜自体の変化であるのか、それともラジカル発生膜上にラジカル重合性化合物の重合層が形成されていることによる変化であるのかは、確認が困難である。そのため、かかるステップによる結果物を特定するには至っていない。
By applying and curing such a composition to form a film, it is possible to obtain a radical generation film in which an organic group that induces radical polymerization is immobilized in the film.
Then, in the method for producing a liquid crystal display element of the present invention described later, a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is brought into contact with a radical generation film obtained by using the radical generation film forming composition of the present invention. In this state, the step of polymerizing the radically polymerizable compound is included. In this step, the present inventors have stated that a weak anchoring film is obtained by changing the surface of the radical-generating film by the polymerization reaction of the radically polymerizable compound using the radical generated by the radical-generating film. I'm guessing. However, whether the change in the surface of the radical-generating film due to such a step is a change in the radical-generating film itself or a change due to the formation of a polymerized layer of the radical-polymerizable compound on the radical-generating film. It is difficult to confirm. Therefore, it has not been possible to identify the result of such a step.
 本発明においては、上記ステップを行うことで、安定的に弱アンカリング横電界液晶表示素子が作製でき、低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現でき、良好な黒表示が得られ、加えて焼き付きの抑制が良好な高温時においてもVHRの低下が少ない横電界液晶表示素子が製造可能となる。 In the present invention, by performing the above steps, a weak anchoring transverse electric field liquid crystal display element can be stably manufactured, and it is possible to simultaneously realize a low drive voltage and a high response speed when the voltage is off, which is good black. A horizontal electric field liquid crystal display element with a small decrease in VHR can be manufactured even at a high temperature in which a display can be obtained and seizure is well suppressed.
 本発明において「弱アンカリング膜」とは、面内方向における液晶分子の配向規制力が全く無いか、あったとしても液晶同士の分子間力よりも弱く、この膜のみでは液晶分子をいずれの方向にも一軸配向させない膜をいう。また、この弱アンカリング膜は、固体膜に限定されず固体表面を覆う液体膜も含まれる。通常、液晶表示素子には液晶分子の配向を規制する膜、すなわち液晶配向膜を対で用いて液晶を配向させるが、この弱アンカリング膜と液晶配向膜を対で用いた場合も液晶を配向させることが出来る。これは、液晶配向膜の配向規制力が液晶分子同士の分子間力によって液晶層の厚み方向にも伝達し、結果として弱アンカリング膜に近接する液晶分子も配向するからである。よって液晶配向膜に水平配向用の液晶配向膜を用いた場合においては液晶セル内全体で水平配向状態を作り出すことが出来る。水平配向とは液晶分子の長軸が液晶配向膜面に対してほぼ平行に配列している状態をいい、数度程度の傾斜配向も水平配向の範疇に含まれる。 In the present invention, the "weak anchoring film" means that there is no force to regulate the orientation of liquid crystal molecules in the in-plane direction, or even if there is, it is weaker than the intramolecular force between liquid crystals. A film that is not uniaxially oriented in the direction. Further, the weak anchoring film is not limited to the solid film, but also includes a liquid film covering the solid surface. Normally, a liquid crystal display element uses a film that regulates the orientation of liquid crystal molecules, that is, a liquid crystal alignment film in pairs to align the liquid crystal, but even when the weak anchoring film and the liquid crystal alignment film are used in pairs, the liquid crystal is oriented. Can be made to. This is because the alignment restricting force of the liquid crystal alignment film is transmitted to the thickness direction of the liquid crystal layer by the intramolecular force between the liquid crystal molecules, and as a result, the liquid crystal molecules close to the weak anchoring film are also oriented. Therefore, when a liquid crystal alignment film for horizontal alignment is used as the liquid crystal alignment film, a horizontal alignment state can be created in the entire liquid crystal cell. Horizontal orientation refers to a state in which the major axes of liquid crystal molecules are arranged substantially parallel to the liquid crystal alignment film surface, and inclined orientation of about several degrees is also included in the category of horizontal orientation.
<成分(B)>
 成分(B)は、下記式(1)で表される基を有するケイ素含有化合物である。
Figure JPOXMLDOC01-appb-C000012
(式(1)中、*は結合部位を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表す。
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、当該アルキレン基の任意の-CH-又は-CF-の1以上は、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの少なくともいずれかの基で置き換えられていてもよい。
 Rは、ラジカル重合を誘発する有機基を表す。)
<Ingredient (B)>
The component (B) is a silicon-containing compound having a group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000012
(In formula (1), * represents a binding site, R 1 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-,- Represents CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
R 2 represents an alkylene group having 1 to 20 carbon atoms which is single-bonded, or unsubstituted or substituted with a fluorine atom, and one or more of any -CH 2- or -CF 2- of the alkylene group is independent of each other. May be replaced with a group selected from -CH = CH-, a divalent carbocycle, and a divalent heterocycle, and any one of the alkylene group -CH 2- or -CF 2- . The above is provided at least on the condition that any of the following groups, that is, -O-, -COO-, -OCO-, -NHCO-, -CONH-, or -NH- is not adjacent to each other. It may be replaced by either group.
R 3 represents an organic group that induces radical polymerization. )
 Rとしては、例えば、下記式(1-1)で表される2価基が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式(1-1)中、*1はRとの結合部位を表し、*3はRとの結合部位を表す。nは1~6の整数を表す。)
 式(1-1)における-C2n-(nは1~6の整数を表す。)としては、直鎖アルキレン基であってもよいし、分岐アルキレン基であってもよい。
Examples of R 2 include a divalent group represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000013
(In equation (1-1), * 1 represents the binding site with R 1 , * 3 represents the binding site with R 3. n represents an integer of 1 to 6.)
The —C n H 2n − (n represents an integer of 1 to 6) in the formula (1-1) may be a linear alkylene group or a branched alkylene group.
 Rは、ラジカル重合を誘発する有機基であれば、特に限定されないが、例えば、下記式[X-1]~[X-18]、[W]、[Y]又は[Z]で表されるラジカル重合を誘発する有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式[X-1]~[X-18]中、*は結合部位を示し、S、およびSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R、およびRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000015
(式[W]、[Y]、および[Z]中、*は結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000016
(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)。Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
R3 is not particularly limited as long as it is an organic group that induces radical polymerization , but is represented by, for example, the following formulas [X-1] to [X-18], [W], [Y] or [Z]. Examples thereof include organic groups that induce radical polymerization.
Figure JPOXMLDOC01-appb-C000014
(In formulas [X-1] to [X-18], * indicates a binding site, S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively, and R is. Represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (among the alkyl groups having 1 to 10 carbon atoms, a part of the −CH2- group of the alkyl group having 2 to 10 carbon atoms is replaced with an oxygen atom. However, in S2R or NR, when a part of the −CH2 - group of the alkyl group is replaced with an oxygen atom, the oxygen atom is directly bonded to S2 or N. No.). R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000015
(In the formulas [W], [Y], and [Z], * indicates a bond site, and Ar is a group consisting of phenylene, naphthylene, and biphenylylene which may have an organic group and / or a halogen atom as a substituent. R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and R 9 and R 10 are alkyl groups. In the case of, they may be bonded to each other at the ends to form a ring structure. Q represents any of the following structures.
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond. The site is shown.). S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-. R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
 式(1)で表される基としては、例えば、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000017
(式中、*は結合部位を表す。)
Examples of the group represented by the formula (1) include the following groups.
Figure JPOXMLDOC01-appb-C000017
(In the formula, * represents the binding site.)
 式(1)で表される基を有するケイ素含有化合物としては、例えば、下記(i)、(ii)、(iii)が挙げられる。
 (i):下記式(2)で表されるケイ素含有化合物
 (ii):下記式(2)で表されるケイ素含有化合物を含む加水分解性有機ケイ素化合物の加水分解縮合物(以下、「加水分解縮合物」と称することがある)
 (iii):下記式(2)で表されるケイ素含有化合物を用いて表面修飾された微粒子(以下、「表面修飾された微粒子」と称することがある)
Figure JPOXMLDOC01-appb-C000018
(式(2)中、Zは式(1)で表される基であり、Rはそれぞれ独立して水素原子又は炭素数1~5のアルキル基を表し、Rは炭素数1~10のアルキレン基を表し、R’は炭素数1~5のアルキル基を表し、xは2または3を表す。)
Examples of the silicon-containing compound having a group represented by the formula (1) include the following (i), (ii), and (iii).
(I): Silicon-containing compound represented by the following formula (2) (ii): Hydrolyzed condensate of a hydrolyzable organosilicon compound containing a silicon-containing compound represented by the following formula (2) (hereinafter, "hydration"). Sometimes referred to as "decomposition condensate")
(Iii): Fine particles surface-modified using a silicon-containing compound represented by the following formula (2) (hereinafter, may be referred to as "surface-modified fine particles").
Figure JPOXMLDOC01-appb-C000018
(In the formula (2), Z is a group represented by the formula (1), R independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 4 has 1 to 10 carbon atoms. It represents an alkylene group, R'represents an alkyl group having 1 to 5 carbon atoms, and x represents 2 or 3).
 Rにおける炭素数1~10のアルキレン基は、直鎖アルキレン基であってもよいし、分岐アルキレン基であってもよい。
 Rは炭素数1~6のアルキレン基であってもよいし、炭素数1~3のアルキレン基であってもよい。
The alkylene group having 1 to 10 carbon atoms in R4 may be a linear alkylene group or a branched alkylene group.
R4 may be an alkylene group having 1 to 6 carbon atoms or an alkylene group having 1 to 3 carbon atoms.
<加水分解縮合物>
 加水分解縮合物は、式(2)で表されるケイ素含有化合物単独の加水分解縮合物であってもよいし、式(2)で表されるケイ素含有化合物と、その他の加水分解性有機ケイ素化合物との併用による加水分解縮合物であってもよい。
<Hydrolyzed condensate>
The hydrolyzed condensate may be a hydrolyzed condensate of the silicon-containing compound represented by the formula (2) alone, a silicon-containing compound represented by the formula (2), and other hydrolyzable organic silicon. It may be a hydrolyzed condensate in combination with a compound.
 式(2)で表されるケイ素含有化合物ではないその他の加水分解性有機ケイ素化合物としては、例えば、下記式(3)で表されるアルコキシシラン、下記式(4)で表されるアルコキシシラン、下記式(5)で表されるアルコキシシランなどが挙げられる。
     R11Si(OR12     (3)
(式(3)中、R11はフッ素原子で置換されていてもよい、炭素数8~30の炭化水素基であり、R12は炭素数1~5のアルキル基を表す。)
     R13Si(OR14     (4)
(式(4)中、R13はアクリル基又はメタクリル基で置換されたアルキル基、R14は炭素数1~5のアルキル基を表す。)
    (R15Si(OR164-n     (5)
(式(5)中、R15は、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基若しくはウレイド基で置換されていてもよい、炭素数1~16の炭化水素基であり、R16は炭素数1~5のアルキル基であり、好ましくは炭素数1~3のアルキル基であり、nは0~3の整数を表し、好ましくは0~2の整数を表す。)
Examples of other hydrolyzable organosilicon compounds other than the silicon-containing compound represented by the formula (2) include an alkoxysilane represented by the following formula (3) and an alkoxysilane represented by the following formula (4). Examples thereof include alkoxysilane represented by the following formula (5).
R 11 Si (OR 12 ) 3 (3)
(In the formula (3), R 11 is a hydrocarbon group having 8 to 30 carbon atoms which may be substituted with a fluorine atom, and R 12 represents an alkyl group having 1 to 5 carbon atoms.)
R 13 Si (OR 14 ) 3 (4)
(In the formula (4), R 13 represents an alkyl group substituted with an acrylic group or a methacrylic group, and R 14 represents an alkyl group having 1 to 5 carbon atoms.)
(R 15 ) n Si (OR 16 ) 4-n (5)
(In the formula ( 5 ), R15 may be substituted with a hydrogen atom or a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group, and carbonic acid having 1 to 16 carbon atoms. It is a hydrogen group, R 16 is an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 0 to 3, preferably an integer of 0 to 2. show.)
 式(3)で表されるアルコキシシランのR11は、フッ素で置換されていてもよい炭素数が8~30、好ましくは8~22、特に好ましくは10~22の炭化水素基である。それらの例としては、アルキル基、フルオロアルキル基、アルケニル基、フェネチル基、スチリルアルキル基、ナフチル基、フルオロフェニルアルキル基等が挙げられる。これらの中でも、R11がアルキル基、又はフルオロアルキル基であるアルコキシシランは比較的安価で市販品として入手が容易であるため好ましい。特に、R11がアルキル基であるアルコキシシランが好ましい。
 式(3)で表されるアルコキシシランのR12は、炭素数1~5、好ましくは1~3のアルキル基である。より好ましくは、R12がメチル基又はエチル基である。
 このような式(3)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。
R 11 of the alkoxysilane represented by the formula (3) is a hydrocarbon group having 8 to 30, preferably 8 to 22, particularly preferably 10 to 22, which may be substituted with fluorine. Examples thereof include an alkyl group, a fluoroalkyl group, an alkenyl group, a phenethyl group, a styrylalkyl group, a naphthyl group, a fluorophenylalkyl group and the like. Among these, alkoxysilane in which R 11 is an alkyl group or a fluoroalkyl group is preferable because it is relatively inexpensive and easily available as a commercially available product. In particular, alkoxysilane in which R 11 is an alkyl group is preferable.
R 12 of the alkoxysilane represented by the formula (3) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 12 is a methyl group or an ethyl group.
Specific examples of such an alkoxysilane represented by the formula (3) will be given, but the present invention is not limited thereto.
 例えば、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリメトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、ノナデシルトリメトキシシラン、ノナデシルトリエトキシシラン、ウンデシルトリエトキシシラン、ウンデシルトリメトキシシラン、21-ドコセニルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、イソオクチルトリエトキシシラン、フェネチルトリエトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、(1-ナフチル)トリエトキシシラン、(1-ナフチル)トリメトキシシラン等が挙げられる。なかでも、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリメトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、ノナデシルトリメトキシシラン、ノナデシルトリエトキシシラン、ウンデシルトリエトキシシラン、又はウンデシルトリメトキシシランが好ましい。 For example, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, heptadecyltrimethoxysilane, Heptadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, nonadesyltrimethoxysilane, nonadeciltriethoxysilane, undecyltriethoxysilane, undecyltrimethoxysilane, 21-docosenyltriethoxysilane, trideca Fluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, isooctyltriethoxysilane, phenetyltriethoxysilane, pentafluorophenylpropyltrimethoxysilane, (1) -Naphtyl) triethoxysilane, (1-naphthyl) trimethoxysilane and the like can be mentioned. Among them, octyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, heptadecyltrimethoxysilane. , Heptadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, nonadesyltrimethoxysilane, nonadesyltriethoxysilane, undecyltriethoxysilane, or undecyltriethoxysilane, is preferred.
 一方、式(4)で表されるアルコキシシランのR13はアクリル基又はメタクリル基で置換されたアルキル基である。置換されている水素原子は1つ以上であり、好ましくは1つである。アルキル基の炭素数は1~30が好ましく、より好ましくは1~10である。更に好ましくは1~5である。式(4)で表されるアルコキシシランのR14は、上記した式(3)におけるR12の定義と同じであり、また、R14の好ましい基もR12の場合と同じである。 On the other hand, R13 of the alkoxysilane represented by the formula ( 4) is an alkyl group substituted with an acrylic group or a methacrylic group. The number of hydrogen atoms substituted is one or more, preferably one. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms. More preferably, it is 1 to 5. The R 14 of the alkoxysilane represented by the formula (4) is the same as the definition of R 12 in the above formula (3), and the preferred group of R 14 is also the same as the case of R 12 .
 式(4)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン等が挙げられる。 Specific examples of the alkoxysilane represented by the formula (4) are given, but the present invention is not limited thereto. For example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, methacrylatemethyltrimethoxysilane, methacrylatemethyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane. Examples thereof include silane, acryloxyethyltrimethoxysilane, and acryloxyethyltriethoxysilane.
 式(5)で表されるアルコキシシランのR15は水素原子、又は炭素数1~16の有機基である。炭素数1~16の有機基の例としては、脂肪族炭化水素;脂肪族環、芳香族環及びヘテロ環のような環構造;不飽和結合;及び酸素原子、窒素原子、硫黄原子等のヘテロ原子等を含んでいてもよく、分岐構造を有していてもよい、炭素数が1~16、より好ましくは1~12、特に好ましくは1~6の炭化水素である。この炭化水素はハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基などで置換されていてもよい。
 このような式(5)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。
 式(5)のアルコキシシランにおいて、R15が水素原子である場合のアルコキシシランの具体例としては、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン等が挙げられる。
R15 of the alkoxysilane represented by the formula ( 5 ) is a hydrogen atom or an organic group having 1 to 16 carbon atoms. Examples of organic groups having 1 to 16 carbon atoms are aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings and hetero rings; unsaturated bonds; and heteros such as oxygen atoms, nitrogen atoms and sulfur atoms. It is a hydrocarbon having 1 to 16 carbon atoms, more preferably 1 to 12, particularly preferably 1 to 6, which may contain an atom or the like and may have a branched structure. This hydrocarbon may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group or the like.
Specific examples of such an alkoxysilane represented by the formula (5) will be given, but the present invention is not limited thereto.
In the alkoxysilane of the formula (5), specific examples of the alkoxysilane when R15 is a hydrogen atom include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane and the like.
 また、式(5)のアルコキシシランにおいて、R15が炭素数1~16の有機基である場合のアルコキシシランの具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、2-(2-アミノエチル)チオエチルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン及びγ-ウレイドプロピルトリプロポキシシラン等が挙げられる。 Further, in the alkoxysilane of the formula (5), specific examples of the alkoxysilane in the case where R15 is an organic group having 1 to 16 carbon atoms include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyl. Triethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, methyltripropoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxy Silane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltriethoxysilane, 2-amino Ethylaminomethyltrimethoxysilane, 2- (2-aminoethyl) thioethyltriethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, 3-isoxapropyltriethoxysilane, trifluoropropyltrimethoxysilane, Chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, 3-amino Examples thereof include propylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane and γ-ureidopropyltripropoxysilane.
 式(5)においてnが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランがより好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。 As the alkoxysilane in which n is 0 in the formula (5), tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane are more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
 加水分解縮合物は、シロキサン構造を有する、いわゆるポリシロキサンである。ポリシロキサンの構造としては、特に限定されず、ランダム構造であってもよいし、ラダー型構造であってもよいし、完全かご型構造であってもよいし、不完全かご型構造であってもよい。
 ポリシロキサンの一例は、シルセスキオキサンであり、シルセスキオキサンは、組成式(RSiO1.5(Rは1種類の基であってもよいし、複数種類の基であってもよい)で表される。
 かご型シルセスキオキサンとしては、例えば、下記式(I)、(II)、(III)又は(IV)で表される構造を有するシルセスキオキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(式(I)~(IV)中、Rは、1種類の基であってもよいし、複数種類の基であってもよい。)
The hydrolyzed condensate is a so-called polysiloxane having a siloxane structure. The structure of the polysiloxane is not particularly limited, and may be a random structure, a ladder type structure, a complete cage type structure, or an incomplete cage type structure. May be good.
An example of a polysiloxane is silsesquioxane, which has a composition formula (RSiO 1.5 ) n (R may be one kind of group or a plurality of kinds of groups. Good).
Examples of the cage-type silsesquioxane include silsesquioxane having a structure represented by the following formulas (I), (II), (III) or (IV).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(In the formulas (I) to (IV), R may be one kind of group or a plurality of kinds of groups.)
<<加水分解縮合物の製造方法>>
 加水分解縮合物を得る方法は特に限定されない。例えば、式(2)で表されるケイ素含有化合物を必須成分として含有し、式(3)で表されるアルコキシシラン、式(4)で表されるアルコキシシラン、及び式(5)で表されるアルコキシシランの少なくともいずれかを任意で含有する加水分解性有機ケイ素化合物を有機溶媒中で縮合させて得られる。通常、加水分解縮合物は、このような加水分解性有機ケイ素化合物を重縮合して、有機溶媒に均一に溶解した溶液として得られる。
 上記加水分解性有機ケイ素化合物を重縮合する方法として、例えば、加水分解性有機ケイ素化合物をアルコール又はグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、加水分解性有機ケイ素化合物中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
 上記反応に用いる水の量は、所望により適宜選択することができるが、通常、加水分解性有機ケイ素化合物中の全アルコキシ基の0.5~2.5倍モルであるのが好ましい。
<< Method for producing hydrolyzed condensate >>
The method for obtaining the hydrolyzed condensate is not particularly limited. For example, it contains a silicon-containing compound represented by the formula (2) as an essential component, and is represented by an alkoxysilane represented by the formula (3), an alkoxysilane represented by the formula (4), and a formula (5). It is obtained by condensing a hydrolyzable organosilicon compound containing at least one of the alkoxysilanes in an organic solvent. Usually, the hydrolyzable condensate is obtained as a solution obtained by polycondensing such a hydrolyzable organosilicon compound and uniformly dissolving it in an organic solvent.
Examples of the method for polycondensing the hydrolyzable organosilicon compound include a method for hydrolyzing and condensing the hydrolyzable organosilicon compound in a solvent such as alcohol or glycol. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, 0.5 times mol of water of all alkoxy groups in the hydrolyzable organosilicon compound may be added, but usually, an excess amount of water is added more than 0.5 times mol. Is preferable.
The amount of water used in the above reaction can be appropriately selected as desired, but is usually preferably 0.5 to 2.5 times the molar amount of all alkoxy groups in the hydrolyzable organosilicon compound.
 また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩;などの触媒を用いるのが好ましい。また、加水分解性有機ケイ素化合物が溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることもできる。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌したり、還流下で1時間加熱・撹拌するなどの方法が挙げられる。
 また、別法として、例えば、加水分解性有機ケイ素化合物、溶媒及び蓚酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、該溶液を加熱した状態で、加水分解性有機ケイ素化合物を混合する方法である。その際、用いる蓚酸の量は、加水分解性有機ケイ素化合物が有する全アルコキシ基の1モルに対して0.2~2モルとすることが好ましい。この方法における加熱は、液温50~180℃で行うことができる。好ましくは、液の蒸発、揮散などが起こらないように、還流下で数十分から十数時間加熱する方法である。
Also, usually, for the purpose of promoting the hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, oxalic acid, maleic acid, and fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine, and triethylamine. It is preferable to use a catalyst such as a metal salt such as hydrochloric acid, sulfuric acid or nitric acid. Further, the hydrolysis / condensation reaction can be further promoted by heating the solution in which the hydrolyzable organosilicon compound is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, a method of heating / stirring at 50 ° C. for 24 hours or heating / stirring at reflux for 1 hour can be mentioned.
Further, as another method, for example, a method of heating and polycondensing a mixture of a hydrolyzable organosilicon compound, a solvent and oxalic acid can be mentioned. Specifically, it is a method in which oxalic acid is added to alcohol in advance to prepare an alcohol solution of oxalic acid, and then the hydrolyzable organosilicon compound is mixed in a heated state of the solution. At that time, the amount of the oxalic acid used is preferably 0.2 to 2 mol with respect to 1 mol of all the alkoxy groups contained in the hydrolyzable organosilicon compound. The heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating the liquid under reflux for several tens of minutes to ten and several hours is preferable so that evaporation and volatilization of the liquid do not occur.
 加水分解縮合物を得る際に、加水分解性有機ケイ素化合物を複数種用いる場合は、加水分解性有機ケイ素化合物をあらかじめ混合してもよいし、複数種の加水分解性有機ケイ素化合物を順次混合してもよい。
 加水分解性有機ケイ素化合物を重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、加水分解性有機ケイ素化合物を溶解するものであれば特に限定されない。また、加水分解性有機ケイ素化合物が溶解しない場合でも、加水分解性有機ケイ素化合物の重縮合反応の進行とともに溶解するものであればよい。一般的には、加水分解性有機ケイ素化合物の重縮合反応によりアルコールが生成するため、アルコール類、グリコール類、グリコールエーテル類、又はアルコール類と相溶性の良好な有機溶媒が用いられる。
When a plurality of hydrolyzable organosilicon compounds are used in obtaining a hydrolyzable condensate, the hydrolyzable organosilicon compounds may be mixed in advance, or a plurality of hydrolyzable organosilicon compounds are sequentially mixed. May be.
The solvent used for polycondensing the hydrolyzable organosilicon compound (hereinafter, also referred to as a polymerization solvent) is not particularly limited as long as it dissolves the hydrolyzable organosilicon compound. Even when the hydrolyzable organosilicon compound is not dissolved, it may be dissolved as the hydrolytic organosilicon compound progresses in the polycondensation reaction. Generally, since alcohol is produced by the polycondensation reaction of the hydrolyzable organic silicon compound, alcohols, glycols, glycol ethers, or organic solvents having good compatibility with alcohols are used.
 このような重合溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール,ジアセトンアルコール等のアルコール類:エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,3-ペンタンジオール、2,4-ペンタンジオール、1,6-ヘキサンジオール等のグリコール類:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のグリコールエーテル類、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルリン酸トリアミド、m-クレゾール等が挙げられる。 Specific examples of such a polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol, and diacetone alcohol: ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, and the like. 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1 Glycols such as 5-pentanediol, 2,3-pentanediol, 2,4-pentanediol, 1,6-hexanediol: ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol Monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di Propyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether, etc. Examples thereof include glycol ethers, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, dimethylsulfoxide, tetramethylurea, hexamethylphosphate triamide, m-cresol and the like. ..
<表面修飾された微粒子>
 表面修飾された微粒子は、微粒子を、式(2)で表されるケイ素含有化合物を用いて表面修飾して得られる。
 表面修飾には、加水分解性有機ケイ素化合物として、式(2)で表されるケイ素含有化合物を単独で用いてもよいし、式(2)で表されるケイ素含有化合物と、式(2)で表されるケイ素含有化合物以外の加水分解性有機ケイ素化合物とを併用してもよい。
<Surface-modified fine particles>
The surface-modified fine particles are obtained by surface-modifying the fine particles with a silicon-containing compound represented by the formula (2).
For the surface modification, the silicon-containing compound represented by the formula (2) may be used alone as the hydrolyzable organosilicon compound, or the silicon-containing compound represented by the formula (2) and the silicon-containing compound represented by the formula (2) may be used alone. It may be used in combination with a hydrolyzable organosilicon compound other than the silicon-containing compound represented by.
 微粒子としては、有機微粒子であってもよいし、無機微粒子であってもよいが、無機微粒子が好ましい。 The fine particles may be organic fine particles or inorganic fine particles, but inorganic fine particles are preferable.
 表面修飾される無機微粒子(以下、「核粒子」と称することがある)としては、例えば、Be、Al、Si、Ti、V、Fe、Cu、Zn、Y、Zr、Nb、Mo、In、Sn、Sb、Ta、W、Pb、BiおよびCeからなる群から選ばれる1種または2種以上の金属の酸化物、硫化物または窒化物を含み、特に、これらの金属酸化物を含むことが好適である。なお、無機微粒子は単独で用いても、2種以上組み合わせて用いてもよい。
 金属酸化物の具体例としては、例えば、Al23、ZnO、TiO2、ZrO2、Fe23、Sb25、BeO、ZnO、SnO2、CeO2、SiO2、WO3などが挙げられる。
 また、複数の金属酸化物を複合酸化物として用いることも有効である。複合酸化物とは、微粒子の製造段階で2種以上の無機酸化物を混合させたものである。例えば、TiO2とZrO2との複合酸化物、TiO2とZrO2とSnO2との複合酸化物、ZrO2とSnO2との複合酸化物などが挙げられる。
 さらに、上記金属の化合物であってもよい。例えば、ZnSb26、BaTiO3、SrTiO3、SrSnO3などが挙げられる。これらの化合物は、単独でまたは2種以上を混合して用いることができ、さらに上記の酸化物と混合して用いてもよい。
Examples of the surface-modified inorganic fine particles (hereinafter, may be referred to as “nuclear particles”) include Be, Al, Si, Ti, V, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, and the like. Includes oxides, sulfides or nitrides of one or more metals selected from the group consisting of Sn, Sb, Ta, W, Pb, Bi and Ce, and in particular may include these metal oxides. Suitable. The inorganic fine particles may be used alone or in combination of two or more.
Specific examples of the metal oxide include, for example, Al 2 O 3 , ZnO, TiO 2 , ZrO 2 , Fe 2 O 3 , Sb 2 O 5 , BeO, ZnO, SnO 2 , CeO 2 , SiO 2 , WO 3 and the like. Can be mentioned.
It is also effective to use a plurality of metal oxides as the composite oxide. The composite oxide is a mixture of two or more kinds of inorganic oxides at the stage of producing fine particles. For example, a composite oxide of TiO 2 and ZrO 2 , a composite oxide of TiO 2 and ZrO 2 and SnO 2 , a composite oxide of ZrO 2 and SnO 2 and the like can be mentioned.
Further, it may be a compound of the above metal. For example, ZnSb 2 O 6 , BaTIO 3 , SrTIO 3 , SrSnO 3 and the like can be mentioned. These compounds can be used alone or in admixture of two or more, and may be further mixed with the above oxides.
 表面修飾された無機微粒子は、核粒子の水分散液または有機溶媒分散液に式(2)で表されるケイ素含有化合物を含む加水分解性有機ケイ素化合物を所定量添加し、希塩酸等の触媒により該加水分解性有機ケイ素化合物を加水分解させて、核粒子の表面に結合させることにより得ることができる。
 上記核粒子の水分散液または親水性有機溶媒分散液は、さらに疎水性有機溶媒へ置換することができる。この置換方法は、蒸留法、限外ろ過法等の通常の方法により行なうことができる。疎水性溶媒の例としては、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、シクロペンタノン、シクロヘキサノン等の環状ケトン、酢酸エチル、酢酸ブチル等のエステル類が挙げられる。
The surface-modified inorganic fine particles are prepared by adding a predetermined amount of a hydrolyzable organosilicon compound containing a silicon-containing compound represented by the formula (2) to an aqueous dispersion of nuclear particles or an organosolvent dispersion, and using a catalyst such as dilute hydrochloric acid. It can be obtained by hydrolyzing the hydrolyzable organosilicon compound and binding it to the surface of the nuclear particles.
The aqueous dispersion or hydrophilic organic solvent dispersion of the nuclear particles can be further replaced with a hydrophobic organic solvent. This replacement method can be carried out by a usual method such as a distillation method or an ultrafiltration method. Examples of the hydrophobic solvent include ketones such as methyl ethyl ketone and methyl isobutyl ketone, cyclic ketones such as cyclopentanone and cyclohexanone, and esters such as ethyl acetate and butyl acetate.
 上記核粒子の有機溶媒分散液は、任意成分を含有してもよい。特に、リン酸、リン酸誘導体、リン酸系界面活性剤、オキシカルボン酸等を含有させることにより、上記核粒子の分散性等をさらに向上させることができる。リン酸系誘導体としては、例えば、フェニルホスホン酸およびその金属塩が挙げられる。リン酸系界面活性剤としては、例えば、Disperbyk(ビックケミー社製)、フォスファノール(東邦化学工業(株)製)、ニッコール(日光ケミカルズ(株)製)が挙げられる。オキシカルボン酸としては、例えば、乳酸、酒石酸、クエン酸、グルコン酸、リンゴ酸およびグリコール酸が挙げられる。これら任意成分の含有量は、上記核粒子の全金属酸化物に対して、約30質量%以下とすることが好ましい。 The organic solvent dispersion of the nuclear particles may contain an arbitrary component. In particular, by containing phosphoric acid, a phosphoric acid derivative, a phosphoric acid-based surfactant, an oxycarboxylic acid, or the like, the dispersibility of the nuclear particles can be further improved. Examples of the phosphoric acid derivative include phenylphosphonic acid and a metal salt thereof. Examples of the phosphoric acid-based surfactant include Disperbyk (manufactured by Big Chemie), Phosphanol (manufactured by Toho Chemical Industry Co., Ltd.), and Nikkor (manufactured by Nikon Chemicals Co., Ltd.). Examples of the oxycarboxylic acid include lactic acid, tartrate acid, citric acid, gluconic acid, malic acid and glycolic acid. The content of these optional components is preferably about 30% by mass or less with respect to the total metal oxide of the nuclear particles.
 成分(B)としての重合体の、ラジカル発生膜形成組成物における含有量としては、特に限定されないが、液晶配向性と塗布膜の平滑性等の点から、成分(B)の含有量は、成分(A)に対して、0.01~50質量%が好ましく、0.05~40質量%がより好ましく、0.1~20質量%がさらに好ましく、0.5~5質量%が特に好ましい。 The content of the polymer as the component (B) in the radical generation film forming composition is not particularly limited, but the content of the component (B) is determined from the viewpoint of liquid crystal orientation and smoothness of the coating film. With respect to the component (A), 0.01 to 50% by mass is preferable, 0.05 to 40% by mass is more preferable, 0.1 to 20% by mass is further preferable, and 0.5 to 5% by mass is particularly preferable. ..
<成分(A)>
 横電界駆動用液晶配向剤の配向成分として用いられる重合体〔成分(A)〕としては、特に制限されないが、例えばポリイミド前駆体、ポリイミド、ポリウレア、ポリアミド、ポリアクリレート、ポリメタクリレート、セルロース誘導体、ポリアセタール、ポリスチレンまたはその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体及びポリオルガノシロキサンなどからなる群から選ばれる少なくとも1種の重合体が好ましい。
 なお、成分(A)は、成分(B)とは異なる重合体である。
<Ingredient (A)>
The polymer [component (A)] used as the orientation component of the liquid crystal aligning agent for driving a transverse electric field is not particularly limited, and is, for example, a polyimide precursor, a polyimide, a polyurea, a polyamide, a polyacrylate, a polymethacrylate, a cellulose derivative, or a polyacetal. , Polystyrene or a derivative thereof, a poly (styrene-phenylmaleimide) derivative, a polyorganosiloxane, and the like, and at least one polymer selected from the group is preferable.
The component (A) is a polymer different from the component (B).
 成分(A)の好ましい態様として、テトラカルボン酸二無水物成分とジアミン成分とから得られるポリアミック酸及びそのイミド化物から選ばれる重合体が挙げられる。 A preferred embodiment of the component (A) is a polymer selected from a polyamic acid obtained from a tetracarboxylic dianhydride component and a diamine component and an imidized product thereof.
 成分(A)の好ましい態様であるポリアミック酸を得るためのテトラカルボン酸二無水物成分としては、下記式(A1)で表される化合物を挙げることができる。 Examples of the tetracarboxylic acid dianhydride component for obtaining a polyamic acid, which is a preferred embodiment of the component (A), include a compound represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000023
 式(A1)中、Aは4価の有機基であり、好ましくは炭素数4~30の4価の有機基である。
Figure JPOXMLDOC01-appb-C000023
In the formula (A1), A is a tetravalent organic group, preferably a tetravalent organic group having 4 to 30 carbon atoms.
 以下に、好ましいAの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
The preferred structure of A is shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記の構造のうち、(A-1)、(A-2)は光配向性の更なる向上という観点から好ましく、(A-4)は蓄積電荷の緩和速度の向上という観点から好ましく、(A-15)~(A-17)などは、液晶配向性の更なる向上と蓄積電荷の緩和速度の向上という観点から好ましい。成分(A)のポリアミック酸を得るためのテトラカルボン酸二無水物成分は、一種類のテトラカルボン酸二無水物であってもよく、2種類以上のテトラカルボン酸二無水物が併用されていてもよい。 Of the above structures, (A-1) and (A-2) are preferable from the viewpoint of further improving the photo-orientation, and (A-4) is preferable from the viewpoint of improving the relaxation rate of the accumulated charge, and (A) is preferable. −15) to (A-17) are preferable from the viewpoint of further improving the liquid crystal orientation and improving the relaxation rate of the accumulated charge. The tetracarboxylic acid dianhydride component for obtaining the polyamic acid of the component (A) may be one kind of tetracarboxylic acid dianhydride, and two or more kinds of tetracarboxylic acid dianhydrides are used in combination. May be good.
<ジアミン>
 本発明のラジカル発生膜形成組成物で使用する成分(A)のポリアミック酸の重合に用いられるジアミン成分は、下記式(A2)で表されるジアミン及び下記式(A3)で表されるジアミンから選ばれる少なくとも1種類のジアミンを含むことが好ましい。
<Diamine>
The diamine component used for the polymerization of the polyamic acid of the component (A) used in the radical generation film forming composition of the present invention consists of a diamine represented by the following formula (A2) and a diamine represented by the following formula (A3). It preferably contains at least one selected diamine.
Figure JPOXMLDOC01-appb-C000026
 Aは単結合、炭素数2~10のアルキレン基、又は、前記アルキレン基が有する-CH-の少なくとも一つを連続しない条件で-O-又は-S-で置き換えた基であり、Aは、それぞれ独立してハロゲン原子、ヒドロキシ基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aはそれぞれ独立して0~4の整数であり、Aが複数存在する場合、Aの構造は同一でも異なってもよい。b及びcはそれぞれ独立して1又は2であり、dは0又は1である。)
Figure JPOXMLDOC01-appb-C000026
A 1 is a single bond, an alkylene group having 2 to 10 carbon atoms, or a group in which at least one of —CH 2- possessed by the alkylene group is replaced with —O— or —S— under non-contiguous conditions. 2 is a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a phosphoric acid group, or a monovalent organic group having 1 to 20 carbon atoms independently, and a is 0 to 4 independently. When there are a plurality of A 2s , the structure of A 2 may be the same or different. b and c are independently 1 or 2, and d is 0 or 1. )
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 以下に式(A2)で表されるジアミンの好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。このうち式(A2-1)、(A2-3)、(A2-5)~(A2-7)、(A2-12)は特に好ましい。 The following are preferable specific examples of the diamine represented by the formula (A2), but the present invention is not limited thereto. Of these, formulas (A2-1), (A2-3), (A2-5) to (A2-7), and (A2-12) are particularly preferable.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 以下に式(A3)で表されるジアミンの好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。 The following are preferable specific examples of the diamine represented by the formula (A3), but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 また、ポリイミドの溶媒溶解性の向上という観点、及び本発明のラジカル発生膜形成組成物に成分(A)及び成分(B)以外のその他の重合体を含有させた際に成分(A)が液晶配向膜の表層付近に偏在しやすくなるという観点から、その他のジアミンとして下記式(A4)で表されるジアミンの少なくとも1種を用いることは好ましい。 Further, from the viewpoint of improving the solvent solubility of the polyimide, and when the radical-generating film-forming composition of the present invention contains a polymer other than the component (A) and the component (B), the component (A) becomes a liquid crystal display. From the viewpoint that it tends to be unevenly distributed near the surface layer of the alignment film, it is preferable to use at least one of the diamines represented by the following formula (A4) as the other diamine.
Figure JPOXMLDOC01-appb-C000030
 式(A4)中、Yは下記式(A5)の構造を含有する2価の有機基である。
Figure JPOXMLDOC01-appb-C000030
In the formula (A4), Y 1 is a divalent organic group containing the structure of the following formula (A5).
Figure JPOXMLDOC01-appb-C000031
 式(A5)中、Dは加熱によって脱離し水素原子に置き換わる保護基を表し、*は他の構造との接続箇所を表す。Dの好ましい構造としては、tert-ブトキシカルボニル基が挙げられる。
 以下に、式(A4)で表されるジアミンの好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。なお、下記構造におけるBocはtert-ブトキシカルボニル基を表す。
Figure JPOXMLDOC01-appb-C000031
In the formula (A5), D represents a protecting group that is desorbed by heating and replaced with a hydrogen atom, and * represents a connection point with another structure. Preferred structures for D include the tert-butoxycarbonyl group.
Hereinafter, preferred specific examples of the diamine represented by the formula (A4) will be given, but the present invention is not limited thereto. Boc in the following structure represents a tert-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 また、蓄積電荷の緩和速度の向上という観点から下記式(A6)で表されるジアミンの少なくとも1種を用いることは好ましい。 Further, from the viewpoint of improving the relaxation rate of the accumulated charge, it is preferable to use at least one type of diamine represented by the following formula (A6).
Figure JPOXMLDOC01-appb-C000033
 式(A6)中、Yは芳香族基に結合する窒素原子を有するか又は含窒素芳香族複素環を有する2価の有機基である。
 以下に、好ましいYの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000033
In formula (A6), Y 2 is a divalent organic group having a nitrogen atom bonded to an aromatic group or having a nitrogen-containing aromatic heterocycle.
The preferred structure of Y 2 is shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 本発明のラジカル発生膜形成組成物に含有される成分(A)の重合に用いられるジアミンは、本発明の効果を損なわない限りにおいて、上記式(A2)~(A6)以外のジアミン(以下、その他のジアミンともいう)を含んでいてもよい。以下にその他のジアミンの一例を挙げるが、本発明はこれらに限定されるものではない。 The diamine used for the polymerization of the component (A) contained in the radical generation film forming composition of the present invention is a diamine other than the above formulas (A2) to (A6) as long as the effect of the present invention is not impaired (hereinafter referred to as “diamine”). It may also contain other diamines). Examples of other diamines are given below, but the present invention is not limited thereto.
 m-フェニレンジアミン、4-(2-(メチルアミノ)エチル)アニリン、3,5-ジアミノ安息香酸、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェネチル)ウレア、など。 m-phenylenediamine, 4- (2- (methylamino) ethyl) aniline, 3,5-diaminobenzoic acid, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diamino Naphthalene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) ) Propane, 1,3-bis (4-aminophenetyl) urea, etc.
 成分(A)であるポリアミック酸を得るためのジアミン成分は、一種類のジアミンであってもよく、2種類以上のジアミンが併用されていてもよい。 The diamine component for obtaining the polyamic acid which is the component (A) may be one kind of diamine or two or more kinds of diamines may be used in combination.
 また、成分(A)であるポリアミック酸及びそのイミド化物から選ばれる重合体は、単独であってもよいし、上記テトラカルボン酸二無水物成分と、上記ジアミン成分とを用いて得られる重合体どうしの混合物であってもよい。重合体どうしが混合物である場合は、それぞれの重合体は、互いに異なる。 Further, the polymer selected from the polyamic acid as the component (A) and the imidized product thereof may be used alone, or the polymer obtained by using the tetracarboxylic dianhydride component and the diamine component. It may be a mixture of each other. When the polymers are mixtures, the polymers are different from each other.
 成分(A)としての重合体は、ラジカル重合を誘発する有機基を含有していてもよいし、ラジカル重合を誘発する有機基を含有していなくてもよい。重合層の形成における感度すなわちUVの照射量を小さくする場合や膜硬度改善等においては導入することが好ましいが、液晶配向性、応答速度、保存安定性等の点ではラジカル重合を誘発する有機基は少量の導入、あるいは有していないことが好ましいことが考えられ、適宜組み合わせることが重要である。 The polymer as the component (A) may contain an organic group that induces radical polymerization, or may not contain an organic group that induces radical polymerization. It is preferable to introduce it in the case of reducing the sensitivity in the formation of the polymer layer, that is, the irradiation amount of UV, improving the film hardness, etc., but in terms of liquid crystal orientation, response speed, storage stability, etc., an organic group that induces radical polymerization. It is considered preferable to introduce a small amount of the radical solution or not to have it, and it is important to combine them appropriately.
 成分(A)として、ラジカル重合を誘発する有機基を含有する重合体を用いる場合、ラジカル重合を誘発する有機基は、例えば、成分(B)としての重合体におけるラジカル重合を誘発する有機基が挙げられる。 When a polymer containing an organic group that induces radical polymerization is used as the component (A), the organic group that induces radical polymerization is, for example, an organic group that induces radical polymerization in the polymer as the component (B). Can be mentioned.
 成分(A)として、ラジカル重合を誘発する有機基を含有する重合体を用いる場合、ラジカルを発生しうる基を有する重合体を得るには、モノマー成分として、メタクリル基、アクリル基、ビニル基、アリル基、クマリル基、スチリル基及びシンナモイル基から選択される少なくとも一種を含む光反応性の側鎖を有するモノマーや、紫外線照射により分解し、ラジカルを発生する部位を側鎖に有するモノマーを用いて製造することが好ましい。
 ラジカル重合を誘発する有機基を含有するモノマーは、具体的には、ラジカルを発生し重合可能な側鎖を有するジアミンであり、下記の式(1)で表される有機基を有するジアミンを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
(式(1)中、*は結合部位を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表す。
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、ならびに置換基を有していてもよい二価の炭素環、および置換基を有していてもよい二価の複素環から選ばれる基で置き換えられていてもよく、さらに、当該アルキレン基の任意の-CH-又は-CF-の1以上は、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基の少なくともいずれかで置き換えられていてもよい。
 Rは、ラジカル重合を誘発する有機基を表す。)
 具体的な構造としては以下に示すジアミンが挙げられる。
When a polymer containing an organic group that induces radical polymerization is used as the component (A), in order to obtain a polymer having a group capable of generating radicals, as a monomer component, a methacrylic group, an acrylic group, a vinyl group, etc. Using a monomer having a photoreactive side chain containing at least one selected from an allyl group, a kumalyl group, a styryl group and a cinnamoyl group, or a monomer having a site that is decomposed by ultraviolet irradiation and generates a radical in the side chain. It is preferable to manufacture.
Specific examples of the monomer containing an organic group that induces radical polymerization are diamines that generate radicals and have a polymerizable side chain, and examples thereof include diamines having an organic group represented by the following formula (1). It can, but is not limited to.
Figure JPOXMLDOC01-appb-C000035
(In formula (1), * represents a binding site, R 1 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-,- Represents CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
R 2 represents an alkylene group having 1 to 20 carbon atoms which is single-bonded, or unsubstituted or substituted with a fluorine atom, and one or more of any -CH 2- or -CF 2- of the alkylene group is independent of each other. It may be replaced with a group selected from -CH = CH-, a divalent carbocycle which may have a substituent, and a divalent heterocycle which may have a substituent. Further, one or more of any -CH 2- or -CF 2- of the alkylene group is one of the following groups, that is, -O-, -COO-, -OCO-, -NHCO-, -CONH. -Or -NH- may be replaced by at least one of these groups, provided they are not adjacent to each other.
R 3 represents an organic group that induces radical polymerization. )
Specific examples include the diamines shown below.
Figure JPOXMLDOC01-appb-C000036
(式中、Jは単結合、-O-、-COO-、-NHCO-、及び-NH-より選ばれる結合基であり、Jは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000036
(In the formula, J 1 is a bonding group selected from a single bond, -O-, -COO-, -NHCO-, and -NH-, and J 2 is a single bond, or unsubstituted or substituted with a fluorine atom. Represents an alkylene group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
(式中、nは2~8の整数であり、Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-CONH-、-COO-、-OCO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-C(CH-O-、-CO-(CH-、-(CH-CO-、-NH-(CH-、-(CH-NH-、-SO-(CH-、-(CH-SO-、-CONH-(CH-、-(CH-NHCO-、-CONH-(CH-NHCO-または-COO-(CH-OCO-であり、mは1~8の整数である。)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
(In the equation, n is an integer of 2 to 8, and E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -CONH-,-. COO-, -OCO-,-(CH 2 ) m- , -SO 2- , -O- (CH 2 ) m -O-, -OC (CH 3 ) 2- , -C (CH 3 ) 2 -O-, -CO- (CH 2 ) m -,-(CH 2 ) m -CO-, -NH- (CH 2 ) m -,-(CH 2 ) m -NH-, -SO 2- (CH) 2 ) m -,-(CH 2 ) m -SO 2- , -CONH- (CH 2 ) m -,-(CH 2 ) m -NHCO-, -CONH- (CH 2 ) m -NHCO- or -COO -(CH 2 ) m -OCO-, where m is an integer of 1-8.)
 成分(A)としての重合体がポリアミック酸エステルである場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸ジアルキルエステルの構造は特に限定されないが、その具体例を以下に挙げる。 The structure of the tetracarboxylic acid dialkyl ester to be reacted with the above diamine component in the synthesis when the polymer as the component (A) is a polyamic acid ester is not particularly limited, and specific examples thereof are given below.
 脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、テトラヒドロフラン-2,3,4,5-テトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、2-(3,4-ジカルボキシシクロへキシル)コハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.0<2,5>]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.1<2,7>.0<3,6>.1<9,14>.0<10,13>]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸ジアルキルエステルなどが挙げられる。 Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1. , 3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-Cyclopentane tetracarboxylic acid dialkyl ester, tetrahydrofuran-2,3,4,5-tetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 2- (3,4-) Dicarboxycyclohexyl) Succinic acid dialkyl ester, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid dialkyl ester, 1,2,3,4-butanetetracarboxylic acid dialkyl ester , Bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic acid dialkyl ester, 3,3', 4,4'-dicyclohexyltetracarboxylic acid dialkyl ester, 2,3,5-tricarboxyl Cyclopentyl acetate dialkyl ester, cis-3,7-dibutylcycloocta-1,5-diene-1,2,5,6-tetracarboxylic acid dialkyl ester, tricyclo [4.2.1.0 <2,5>] Nonan-3,4,7,8-tetracarboxylic acid-3,4: 7,8-dialkylester, hexacyclo [6.6.0.1 <2,7>. 0 <3,6>. 1 <9,14>. 0 <10,13>] Hexadecane-4,5,11,12-tetracarboxylic acid-4,5:11,12-dialkylester, 4- (2,5-dioxotetrahydrofuran-3-yl) -1, Examples thereof include 2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid dialkyl ester.
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4’-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。 Examples of the aromatic tetracarboxylic acid dialkyl ester include pyromellitic acid dialkyl ester, 3,3', 4,4'-biphenyltetracarboxylic acid dialkyl ester, 2,2', 3,3'-biphenyltetracarboxylic acid dialkyl ester, and the like. 2,3,3', 4'-biphenyltetracarboxylic acid dialkyl ester, 3,3', 4,4'-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3', 4'-benzophenone tetracarboxylic acid dialkyl ester , Bis (3,4-dicarboxyphenyl) ether dialkyl ester, Bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6 Examples thereof include 7-naphthalene tetracarboxylic acid dialkyl ester.
 成分(A)としての重合体がポリウレアである場合の合成で、上記のジアミン成分と反応させるジイソシアネートに関しては、特に限定はせず、入手性等に応じて使用することができる。ジイソシアネートの具体的構造を以下に示す。
Figure JPOXMLDOC01-appb-C000039
 式中R、およびRは炭素数1~10の脂肪族炭化水素基を表す。
In the synthesis when the polymer as the component (A) is polyurea, the diisocyanate to be reacted with the above diamine component is not particularly limited and can be used depending on availability and the like. The specific structure of diisocyanate is shown below.
Figure JPOXMLDOC01-appb-C000039
In the formula, R 2 and R 3 represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
 K-1~K-5に示す脂肪族ジイソシアネートは、反応性は劣るが溶媒溶解性を向上させるメリットがあり、K-6~K-13に示すような芳香族ジイソシアネートは反応性に富み耐熱性を向上させる効果があるが、溶媒溶解性を低下させる欠点が挙げられる。汎用性や特性面においてはK-1、K-7、K-8、K-9、K-10が好ましく、電気特性の観点ではK-12、液晶配向性の観点ではK-13が好ましい。ジイソシアネートは2種以上を併用して使用することもでき、得たい特性に応じて種々適用するのが好ましい。 The aliphatic diisocyanates shown in K-1 to K-5 are inferior in reactivity but have the advantage of improving solvent solubility, and the aromatic diisocyanates shown in K-6 to K-13 are highly reactive and heat resistant. However, there is a drawback that the solvent solubility is lowered. K-1, K-7, K-8, K-9, and K-10 are preferable in terms of versatility and characteristics, K-12 is preferable from the viewpoint of electrical characteristics, and K-13 is preferable from the viewpoint of liquid crystal orientation. Two or more kinds of diisocyanates can be used in combination, and it is preferable to apply various diisocyanates according to the desired characteristics.
 また、一部のジイソシアネートを上記で説明したテトラカルボン酸二無水物に置き換えることもでき、ポリアミック酸とポリウレアの共重合体のような形で使用しても良く、化学イミド化によってポリイミドとポリウレアの共重合体のような形で使用しても良い。 In addition, some diisocyanates can be replaced with the tetracarboxylic acid dianhydride described above, and may be used in the form of a copolymer of polyamic acid and polyurea, and the polyimide and polyurea can be chemically imidized. It may be used in the form of a copolymer.
 成分(A)としての重合体がポリアミドである場合の合成で、反応させるジカルボン酸の構造は特に限定されないが、あえて具体例を以下に挙げれば以下のとおりである。脂肪族ジカルボン酸としては、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライイン酸、セバシン酸およびスベリン酸等のジカルボン酸を挙げることができる。 The structure of the dicarboxylic acid to be reacted in the synthesis when the polymer as the component (A) is polyamide is not particularly limited, but specific examples are as follows. Examples of the aliphatic dicarboxylic acid include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, and 2,2-dimethylglutal. Examples thereof include dicarboxylic acids such as acids, 3,3-diethylsuccinic acid, adipic acid, sebacic acid and suberic acid.
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2-ノルボルネン-1,4-ジカルボン酸、2-ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファー酸等を挙げることができる。 Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid. Acid, 3,4-diphenyl-1,2-cyclobutane dicarboxylic acid, 2,4-diphenyl-1,3-cyclobutane dicarboxylic acid, 1-cyclobutene-1,2-dicarboxylic acid, 1-cyclobutene-3,4-dicarboxylic acid Acid, 1,1-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,1-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexane Dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2-norbornene-1,4-dicarboxylic acid, 2-norbornen-2,3-dicarboxylic acid, bicyclo [2.2.2] octane-1,4-dicarboxylic acid, Bicyclo [2.2.2] octane-2,3-dicarboxylic acid, 2,5-dioxo-1,4-bicyclo [2.2.2] octanedicarboxylic acid, 1,3-adamantandicarboxylic acid, 4,8 -Dioxo-1,3-adamantan dicarboxylic acid, 2,6-spiro [3.3] heptane dicarboxylic acid, 1,3-adamantan diacetic acid, camphor acid and the like can be mentioned.
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、アントラキノン-1,4-ジカルボン酸、2,5-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、p-ターフェニル-4,4”-ジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、1,2-ビス(4-カルボキシフェニル)エタン、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、ジフェニルエーテル-4,4’-ジカルボン酸、ビベンジル-4,4’-ジカルボン酸、4,4’-スチルベンジカルボン酸、トラン-4,4’-ジカルボン酸、4,4’-カルボニル二安息香酸、4,4’-スルホニル二安息香酸、4,4’-ジチオ二安息香酸、p-フェニレン二酢酸、3,3’-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。 Examples of aromatic dicarboxylic acids include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, and 2,5-dimethylterephthalic acid. Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracendicarboxylic acid, anthraquinone-1 , 4-Dicarboxylic acid, 2,5-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 1,5-biphenylenedicarboxylic acid, p-terphenyl-4,4 "-dicarboxylic acid, diphenylmethane-4,4' -Dicarboxylic acid, 1,2-bis (4-carboxyphenyl) ethane, 2,2-bis (4-carboxyphenyl) propane, 2,2-bis (4-carboxyphenyl) hexafluoropropane, diphenyl ether-4,4 '-Dicarboxylic acid, bibenzyl-4,4'-dicarboxylic acid, 4,4'-stilbendicarboxylic acid, trans-4,4'-dicarboxylic acid, 4,4'-carbonyldibenzoic acid, 4,4'-sulfonyl Dibenzoic acid, 4,4'-dithiodibenzoic acid, p-phenylene diacetic acid, 3,3'-p-phenylenedipropionic acid, 4-carboxykerhide acid, p-phenylenediacrylic acid, 3,3'- [4,4'-(methylenedi-p-phenylene)] dipropionic acid, 4,4'-[4,4'-(oxydi-p-phenylene)] dipropionic acid, 4,4'-[4,4'-(4,4'-(oxydi-p-phenylene)] '-(Oxydi-p-phenylene)] dicarboxylic acid such as dibutyric acid, (isopropyridendi-p-phenylenedioxy) dibutyric acid, and bis (p-carboxyphenyl) dimethylsilane can be mentioned.
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。 Examples of the dicarboxylic acid containing a heterocycle include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, and the like. 1,2,5-Thiadiazol-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples thereof include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
 上記の各種ジカルボン酸は酸ジハライドあるいは無水の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ビフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、1,2-ビス(4-カルボキシフェニル)エタン、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、p-ターフェニル-4,4”-ジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。 The above-mentioned various dicarboxylic acids may have an acid dihalide or an anhydrous structure. It is particularly preferable that these dicarboxylic acids are dicarboxylic acids capable of giving a polyamide having a linear structure from the viewpoint of maintaining the orientation of the liquid crystal molecules. Among these, terephthalic acid, isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, diphenylmethane-4,4'-dicarboxylic acid, 1,2-bis (4-carboxyphenyl) ethane , 2,2-bis (4-carboxyphenyl) propane, 2,2-bis (4-carboxyphenyl) hexafluoropropane, p-terphenyl-4,4 "-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,5-pyridinedicarboxylic acids, acid dihalides thereof, etc. are preferably used. Some of these compounds have isomers, but they may be a mixture containing them, and two or more kinds of compounds may be used. The dicarboxylic acids used in the present invention are not limited to the above-mentioned exemplary compounds.
 ジアミン成分とテトラカルボン酸二無水物成分との反応により、ポリアミック酸を得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分とを、有機溶媒中で反応させる方法である。 A known synthetic method can be used to obtain a polyamic acid by a reaction between a diamine component and a tetracarboxylic acid dianhydride component. Generally, it is a method of reacting a diamine component and a tetracarboxylic acid dianhydride component in an organic solvent.
 ジアミン成分とテトラカルボン酸二無水物成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。 The reaction between the diamine component and the tetracarboxylic acid dianhydride component is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
 上記反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。さらに、重合体が溶解しない有機溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は、重合反応を阻害し、さらには生成した重合体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 The organic solvent used in the above reaction is not particularly limited as long as it dissolves the produced polymer. Further, even if the organic solvent does not dissolve the polymer, it may be mixed with the above solvent and used as long as the produced polymer does not precipitate. Since the water content in the organic solvent inhibits the polymerization reaction and further causes the produced polymer to be hydrolyzed, it is preferable to use a dehydrated and dried organic solvent.
 有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、2-エチル-1-ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。 Examples of the organic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2 -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methyl-ε-caprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, phosphoramide, γ -Buchirolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carvi Thor, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, Dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono Acetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl Isobutyl ether, diisobutylene, amylacetate, butylbutyrate, butyl ether, diisobutylketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, diethyl Luether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, 3 -Methylethyl ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglime, 4-hydroxy-4-methyl- Examples thereof include 2-pentanone and 2-ethyl-1-hexanol. These organic solvents may be used alone or in combination.
 ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を撹拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。 When the diamine component and the tetracarboxylic acid dianhydride component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid dianhydride component is used as it is or is organic. A method of adding a tetracarboxylic acid dianhydride component dispersed or dissolved in a solvent, conversely a method of adding a diamine component to a solution in which a tetracarboxylic acid dianhydride component is dispersed or dissolved in an organic solvent, a method of adding a tetracarboxylic acid dianhydride component and a diamine component. Examples thereof include a method of adding alternately, and any of these methods may be used. When the diamine component or the tetracarboxylic acid dianhydride component is composed of a plurality of types of compounds, the reaction may be carried out in a premixed state, may be reacted individually in sequence, or may be further reacted individually with a low molecular weight. The bodies may be mixed and reacted to form a high molecular weight compound.
 ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば、-20~100℃、好ましくは-5~80℃の範囲である。また、反応は任意の濃度で行うことができ、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1~50質量%、好ましくは5~30質量%である。 The temperature at which the diamine component and the tetracarboxylic acid dianhydride component are reacted can be selected from any temperature, and is, for example, in the range of -20 to 100 ° C, preferably -5 to 80 ° C. The reaction can be carried out at any concentration, for example, the total amount of the diamine component and the tetracarboxylic acid dianhydride component is 1 to 50% by mass, preferably 5 to 30% by mass with respect to the reaction solution. ..
 上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。好ましい範囲としては、0.8~1.2である。 The ratio of the total number of moles of the tetracarboxylic acid dianhydride component to the total number of moles of the diamine component in the above polymerization reaction can be arbitrarily selected according to the molecular weight of the polyamic acid to be obtained. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced. The preferred range is 0.8 to 1.2.
 成分(A)としての重合体を合成する方法は、上記の手法に限定されず、ポリアミック酸を合成する場合は、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。 The method for synthesizing the polymer as the component (A) is not limited to the above method, and when synthesizing a polyamic acid, the above-mentioned tetracarboxylic acid dianhydride is similar to the general method for synthesizing a polyamic acid. Alternatively, a tetracarboxylic acid having a corresponding structure or a tetracarboxylic acid derivative such as a tetracarboxylic acid dihalide can be used and reacted by a known method to obtain the corresponding polyamic acid.
 また、上記ポリアミック酸を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物由来のイミド基とカルボキシ基との合計量に占めるイミド基の割合のことである。ポリイミドにおいては、イミド化率は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。ポリイミドのイミド化率は、電圧保持率を高くできることから、30%以上であることが好ましく、一方、白化特性の、すなわち、ワニス中での重合体の析出を抑制する観点から、80%以下が好ましい。 Further, polyimide can be obtained by ring-closing (imidizing) the polyamic acid. The imidization ratio as used herein is the ratio of the imide group to the total amount of the imide group and the carboxy group derived from the tetracarboxylic acid dianhydride. In polyimide, the imidization ratio does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose. The imidization rate of the polyimide is preferably 30% or more because the voltage retention rate can be increased, while 80% or less is set from the viewpoint of whitening characteristics, that is, from the viewpoint of suppressing the precipitation of the polymer in the varnish. preferable.
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、通常100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。 The temperature at which the polyamic acid is thermally imidized in the solution is usually 100 to 400 ° C, preferably 120 to 250 ° C, and it is preferable to remove the water generated by the imidization reaction from the outside of the system.
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、通常-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量は、アミック酸基の通常0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の通常1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができるが、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間などを調節することにより制御することができる。 The catalytic imidization of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyamic acid and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is usually 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group, and the amount of the acid anhydride is usually 1 to 50 mol times, preferably 1 to 50 mol times the amic acid group. It is 3 to 30 mol times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like, and among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, the reaction time, and the like.
 重合体の反応溶液から、生成した重合体を回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿生成に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polymer from the reaction solution of the polymer, the reaction solution may be put into a poor solvent and precipitated. Examples of the poor solvent used for precipitate formation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like. The polymer put into a poor solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure. Further, by re-dissolving the polymer recovered by precipitation in an organic solvent and repeating the operation of re-precipitation recovery 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the efficiency of purification is further improved.
 成分(A)としての重合体の分子量は、ラジカル発生膜形成組成物を塗布して得られるラジカル発生膜の強度、塗膜形成時の作業性、塗膜の均一性等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000~1,000,000が好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polymer as the component (A) is GPC when the strength of the radical generation film obtained by applying the radical generation film forming composition, the workability at the time of forming the coating film, the uniformity of the coating film, etc. are taken into consideration. The weight average molecular weight measured by the (Gel Permeation Chromatography) method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
<<所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体>>
 成分(A)の好ましい態様の一つは、所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体である。
 該側鎖型アクリル重合体は、250~400nmの波長範囲の光で反応し、かつ100~300℃の温度範囲で液晶性を示すのがよい。
 該側鎖型アクリル重合体は、250~400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。
 該側鎖型アクリル重合体は、100~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
<< Photosensitive side-chain acrylic polymer that develops liquid crystallinity in a predetermined temperature range >>
One of the preferred embodiments of the component (A) is a photosensitive side-chain acrylic polymer that exhibits liquid crystallinity in a predetermined temperature range.
The side chain acrylic polymer preferably reacts with light in the wavelength range of 250 to 400 nm and exhibits liquid crystallinity in the temperature range of 100 to 300 ° C.
The side chain acrylic polymer preferably has a photosensitive side chain that reacts to light in the wavelength range of 250 to 400 nm.
The side chain acrylic polymer preferably has a mesogen group because it exhibits liquid crystallinity in a temperature range of 100 to 300 ° C.
 該側鎖型アクリル重合体は、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応、異性化反応、または光フリース転位を起こすことができる。感光性を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、または光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る感光性の側鎖型アクリル重合体膜の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型アクリル重合体を液晶配向膜とした際に、安定な液晶配向を得ることができる。 The side chain type acrylic polymer has a side chain having photosensitivity bonded to the main chain, and can cause a cross-linking reaction, an isomerization reaction, or a photo Fries rearrangement in response to light. The structure of the side chain having photosensitivity is not particularly limited, but a structure that causes a cross-linking reaction or a photo-Fries rearrangement in response to light is desirable, and one that causes a cross-linking reaction is more preferable. In this case, even if it is exposed to external stress such as heat, the realized orientation control ability can be stably maintained for a long period of time. The structure of the photosensitive side-chain acrylic polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side-chain structure has a rigid mesogen component. In this case, stable liquid crystal alignment can be obtained when the side chain acrylic polymer is used as a liquid crystal alignment film.
 該アクリル重合体の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする感光性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。 The structure of the acrylic polymer has, for example, a main chain and a side chain bonded to the main chain, and the side chain contains a mesogen component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group. It has a structure having a photosensitive group bonded to the tip and undergoing a cross-linking reaction and an isomerization reaction in response to light, and a main chain and a side chain bonded to the main chain, and the side chain also serves as a mesogen component. Moreover, it can be a structure having a phenylbenzoate group that undergoes a photofreeze rearrangement reaction.
 所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基からなる群から選択される少なくとも1種から構成された主鎖と、下記式(31)から(35)の少なくとも1種からなる側鎖を有する構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000040
 式中、Ar~Arはそれぞれ独立して、ベンゼン環、ナフタレン環、ピロール環、フラン環、チオフェン環、又はピリジン環から2個の水素原子を取り去った2価の置換基を表し、
q1とq2は一方が1でもう一方が0であり、
-YはCH=CH、CH=N、N=CHまたはC-C(ただし、炭素-炭素間の結合は3重結合)を表し、
~Sはそれぞれ独立に単結合、炭素数1~18の直鎖又は分岐状のアルキレン基、炭素数5~8のシクロアルキレン基、フェニレン基またはビフェニリレン基を表すか、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、アミノ結合、カルボニル基又はそれらの組み合わせから選ばれる1種又は2種以上の結合を表すか、或いは該1種又は2種以上の結合を介して、炭素数1~18の直鎖又は分岐状のアルキレン基、炭素数5~8のシクロアルキレン基、フェニレン基、ビフェニリレン基又はそれらの組み合わせから選ばれる2以上10以下の部位が結合してなる構造であって、前記置換基は前記結合を介してそれぞれ複数個が連結してなる構造であってもよく、
31は水素原子、ヒドロキシ基、メルカプト基、アミノ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~8のアルキルアミノ基または炭素数2~16のジアルキルアミノ基を表し、ベンゼン環および/またはナフタレン環はハロゲン原子、シアノ基、ニトロ基、カルボキシ基および炭素数2~11のアルコキシカルボニル基から選ばれる同一または相異なる1以上の置換基によって置換されていてもよい。その際、炭素数1~10のアルキル基は直鎖状でも分岐でも環状でも、それらを組み合わせた構造でもよく、該アルキル基の水素原子はハロゲン原子で置換されていてもよい。
More specific examples of the structure of the photosensitive side-chain acrylic polymer that develops liquidity in a predetermined temperature range include hydrocarbons, (meth) acrylates, itaconates, fumarate, maleates, α-methylene-γ-. A main chain composed of at least one selected from the group consisting of radically polymerizable groups such as butyrolactone, styrene, vinyl, maleimide, and norbornen, and a side chain composed of at least one of the following formulas (31) to (35). It is preferable that the structure has.
Figure JPOXMLDOC01-appb-C000040
In the formula, Ar 1 to Ar 5 independently represent a divalent substituent obtained by removing two hydrogen atoms from a benzene ring, a naphthalene ring, a pyrrole ring, a furan ring, a thiophene ring, or a pyridine ring.
One of q1 and q2 is 1 and the other is 0.
Y 1 to Y 2 represent CH = CH, CH = N, N = CH or CC (however, the carbon-carbon bond is a triple bond).
S 1 to S 3 independently represent a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms, a phenylene group or a biphenylylene group, or a single bond or ether. Represents one or more bonds selected from a bond, ester bond, amide bond, urea bond, urethane bond, amino bond, carbonyl group or a combination thereof, or via the one or more bonds. A linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms, a phenylene group, a biphenylylene group, or a combination thereof of 2 or more and 10 or less sites are bonded to each other. The structure may be such that a plurality of the substituents are linked via the bond.
R 31 is a hydrogen atom, a hydroxy group, a mercapto group, an amino group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylamino group having 1 to 8 carbon atoms or a dialkyl group having 2 to 16 carbon atoms. Representing an amino group, the benzene ring and / or the naphthalene ring is substituted with one or more identical or different substituents selected from a halogen atom, a cyano group, a nitro group, a carboxy group and an alkoxycarbonyl group having 2 to 11 carbon atoms. You may. At that time, the alkyl group having 1 to 10 carbon atoms may be linear, branched, cyclic, or may have a structure in which they are combined, and the hydrogen atom of the alkyl group may be substituted with a halogen atom.
 本願の成分(A)の一種である所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体は、液晶性側鎖を含有することが出来る。
 液晶性側鎖の有するメソゲン基として、ビフェニル構造やフェニルベンゾエート構造などの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000041
The photosensitive side chain acrylic polymer that exhibits liquid crystallinity in a predetermined temperature range, which is a kind of the component (A) of the present application, can contain a liquid crystal side chain.
As a mesogen group having a liquid crystal side chain, even if it is a group having a mesogen structure by itself such as a biphenyl structure or a phenylbenzoate structure, a group having a mesogen structure by hydrogen bonding between the side chains such as benzoic acid. May be. The following structure is preferable as the mesogen group contained in the side chain.
Figure JPOXMLDOC01-appb-C000041
<<<感光性の側鎖型高分子の製法>>>
 上記の所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体は、上記の感光性側鎖を有する光反応性側鎖モノマーおよび液晶性側鎖モノマーを重合することによって得ることができる。
<<< Manufacturing method of photosensitive side chain polymer >>>
The photosensitive side chain acrylic polymer that exhibits liquid crystallinity in the above-mentioned predetermined temperature range can be obtained by polymerizing a photoreactive side chain monomer having the above-mentioned photosensitive side chain and a liquid crystal side chain monomer. Can be done.
[光反応性側鎖モノマー]
 光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に感光性側鎖を有する高分子を形成することができるモノマーのことである。
 側鎖の有する光反応性基としては上記式(31)~(35)で表される構造が好ましい。
 光反応性側鎖モノマーのより具体的な例としては、下記PG1~PG6から選ばれる重合性基と、上記式(31)~(35)の少なくとも1種からなる感光性側鎖とが結合した構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
 式中、Mは水素原子又はメチル基を表す。
[Photoreactive side chain monomer]
The photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at a side chain portion of the polymer when the polymer is formed.
As the photoreactive group of the side chain, the structures represented by the above formulas (31) to (35) are preferable.
As a more specific example of the photoreactive side chain monomer, a polymerizable group selected from the following PG1 to PG6 and a photosensitive side chain consisting of at least one of the above formulas (31) to (35) are bonded. It is preferably a structure.
Figure JPOXMLDOC01-appb-C000042
In the formula, M 1 represents a hydrogen atom or a methyl group.
[液晶性側鎖モノマー]
 液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
 液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基からなる群から選択される少なくとも1種から構成された重合性基と、前記「液晶性側鎖の有するメソゲン基」の少なくとも1種を有する側鎖を有する構造であることが好ましい。
[Liquid crystal side chain monomer]
The liquid crystal side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquidity and the polymer can form a mesogen group at a side chain site.
More specific examples of the liquid crystal side chain monomer include radical polymerizable groups such as hydrocarbons, (meth) acrylates, itaconates, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide and norbornene. It is preferable that the structure has a polymerizable group composed of at least one selected from the above group and a side chain having at least one of the above-mentioned "mesogen groups having a liquid crystal side chain".
 液晶性側鎖モノマーとしては、下記式(1)~(12)より選ばれる液晶性側鎖が、上記式PG1~PG6から選ばれる重合性基に結合したモノマーが好ましい。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
(式(1)~(12)中、AおよびAは、それぞれ独立して、単結合、-O-、-CH-、-C(=O)-O-、-OC(=O)-、-C(=O)NH-、-NHC(=O)-、-CH=CH-C(=O)O-、または-OC(=O)-CH=CH-を表し、R11は、-NO、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、R12は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、およびこれらを組み合わせて得られる基からなる群から選ばれる基を表し、これらに結合する水素原子が、-NO、-CN、ハロゲン原子、炭素数1~5のアルキル基、または炭素数1~5のアルコキシ基で置換されてもよく、R13は、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、Eは、-C(=O)O-、または-OC(=O)-を表し、dは、1~12の整数を表し、k1~k5は、それぞれ独立して、0~2の整数であるが、各式におけるk1~k5の合計は2以上であり、k6およびk7は、それぞれ独立して、0~2の整数であるが、各式においてk6およびk7の合計は1以上であり、m1、m2およびm3は、それぞれ独立して、1~3の整数であり、nは、0または1であり、ZおよびZは、それぞれ独立して、単結合、-C(=O)-、-CHO-、-CH=N-または-CF-を表す。破線は結合手を表す。)
As the liquid crystal side chain monomer, a monomer in which a liquid crystal side chain selected from the following formulas (1) to (12) is bonded to a polymerizable group selected from the above formulas PG1 to PG6 is preferable.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
In equations (1) to (12), A3 and A4 are independently single - bonded, -O-, -CH 2- , -C (= O) -O-, and -OC (= O). )-, -C (= O) NH-, -NHC (= O)-, -CH = CH-C (= O) O-, or -OC (= O) -CH = CH-, representing R 11 -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, carbon number of 1 Represents an alkyl group to 12 or an alkoxy group having 1 to 12 carbon atoms, and R12 is a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, and a monovalent group having 5 to 8 carbon atoms. Represents a group selected from the group consisting of an alicyclic hydrocarbon group and a group obtained by combining these, and the hydrogen atom bonded to these is -NO 2 , -CN, a halogen atom, and an alkyl having 1 to 5 carbon atoms. It may be substituted with a group or an alkoxy group having 1 to 5 carbon atoms, and R13 is a hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen atom. , Phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, alkyl group having 1 to 12 carbon atoms, or 1 to 12 carbon atoms. Represents 12 alkoxy groups, E represents -C (= O) O- or -OC (= O)-, d represents an integer of 1 to 12, and k1 to k5 are independent of each other. , 0 to 2, but the sum of k1 to k5 in each equation is 2 or more, and k6 and k7 are independently integers of 0 to 2, but in each equation, k6 and k7. The sum is 1 or more, m1, m2 and m3 are independently integers of 1 to 3, n is 0 or 1 , and Z1 and Z2 are independently and single-coupled, respectively. , -C (= O)-, -CH 2 O-, -CH = N- or -CF 2- .
 成分(A)の一態様である側鎖型アクリル重合体は、上述した液晶性を発現する光反応性側鎖モノマーの重合反応により得ることができる。また、液晶性を発現しない光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合や、液晶性を発現する光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合によって得ることができる。さらに、液晶性の発現能を損なわない範囲でその他のモノマーと共重合することができる。 The side chain type acrylic polymer which is one aspect of the component (A) can be obtained by the polymerization reaction of the photoreactive side chain monomer exhibiting the liquid crystal property described above. Further, it can be obtained by copolymerizing a photoreactive side chain monomer that does not exhibit liquidity and a liquid crystal side chain monomer, or by copolymerizing a photoreactive side chain monomer that exhibits liquidity and a liquid crystal side chain monomer. can. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
 その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
 その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロ[5.2.1.0<2,6>]デシルアクリレート、及び、8-エチル-8-トリシクロ[5.2.1.0<2,6>]デシルアクリレート等が挙げられる。
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロ[5.2.1.0<2,6>]デシルメタクリレート、及び、8-エチル-8-トリシクロ[5.2.1.0<2,6>]デシルメタクリレート等が挙げられる。グリシジル(メタ)アクリレート、(3-メチル-3-オキセタニル)メチル(メタ)アクリレート、および(3-エチル-3-オキセタニル)メチル(メタ)アクリレートなどの環状エーテル基を有する(メタ)アクリレート化合物も用いることができる。
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。
 スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。
Examples of other monomers include industrially available radical polymerization-reactive monomers.
Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds and vinyl compounds.
Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
Examples of the acrylic acid ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate and tert-butyl. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclo [5.2.1.0 <2,6>] decylacrylate, and 8-ethyl-8-tricyclo [5.2.1.0 <2]. , 6>] Decyl acrylate and the like.
Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclo [5.2.1.0 <2,6>] decylmethacrylate, and 8-ethyl-8-tricyclo [5.2.1.0 <2]. , 6>] Decyl methacrylate and the like. (Meta) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, and (3-ethyl-3-oxetanyl) methyl (meth) acrylate are also used. be able to.
Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene and the like.
Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
 側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。 The method for producing the side chain type polymer is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystal side chain monomer or a photoreactive side chain monomer. Of these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
 ラジカル重合の重合開始剤としては、AIBN(アゾビスイソブチロニトリル)等の公知のラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, a known radical polymerization initiator such as AIBN (azobisisobutyronitrile) or a known compound such as a reversible addition-cleaving chain transfer (RAFT) polymerization reagent shall be used. Can be done.
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a bulk polymerization method, a solution polymerization method, or the like can be used.
 所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体の重合反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
 また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
The organic solvent used for the polymerization reaction of the photosensitive side chain acrylic polymer that develops liquid crystallinity in a predetermined temperature range is not particularly limited as long as the produced polymer can be dissolved. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, Phosphoramide, γ-butylollactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbi Thor, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether. , Diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol. Monoacetate Monopropyl ether, 3-Methyl-3-methoxybutyl acetate, Tripropylene glycol methyl ether, 3-Methyl-3-methoxybutanol, Diisopropyl ether, Ethylisobutyl ether, Diisobutylene, Amilacetate, Butylbutyrate, Butyl ether, Diisobutylketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, acetic acid. Methyl, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxy Propylene Onic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglime, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3 -Ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like can be mentioned.
These organic solvents may be used alone or in combination. Further, even if the solvent does not dissolve the produced polymer, it may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
Further, in radical polymerization, oxygen in an organic solvent causes an inhibition of the polymerization reaction, so it is preferable to use an organic solvent degassed to the extent possible.
 ラジカル重合の際の重合温度は30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、モノマー濃度が、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。
The polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 to 150 ° C., but is preferably in the range of 50 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration and then an organic solvent can be added.
In the above-mentioned radical polymerization reaction, when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.
 上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polymer from the reaction solution of the photosensitive side-chain polymer that can exhibit liquidity obtained by the above reaction, the reaction solution is put into a poor solvent and their weights are increased. The coalescence may be precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water and the like. The polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure. Further, by re-dissolving the polymer recovered by precipitation in an organic solvent and repeating the operation of re-precipitation recovery 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the efficiency of purification is further improved.
 本発明の成分(A)の一態様である、所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2,000~1,000,000であるものが好ましく、5,000~100,000であるものがより好ましい。 The molecular weight of the photosensitive side-chain acrylic polymer that exhibits liquidity in a predetermined temperature range, which is one aspect of the component (A) of the present invention, is the strength of the obtained coating film and the workability at the time of forming the coating film. In consideration of the uniformity of the coating film, the weight average molecular weight measured by the GPC (Gel Permeation Chromatography) method is preferably 2,000 to 1,000,000, preferably 5,000 to 100,000. Some are more preferred.
<その他の成分>
 ラジカル発生膜形成組成物は、成分(A)、及び成分(B)以外に、ラジカル発生剤、有機溶媒などのその他の成分を含有していてもよい。
 ラジカル発生剤としては、例えば、熱でラジカルを発生する化合物、光でラジカルを発生する化合物などが挙げられる。
<Other ingredients>
The radical generating film-forming composition may contain other components such as a radical generating agent and an organic solvent in addition to the component (A) and the component (B).
Examples of the radical generator include a compound that generates a radical by heat, a compound that generates a radical by light, and the like.
 熱でラジカルを発生する化合物としては、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、および2,2’-ビス(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。 The compound that generates radicals by heat is a compound that generates radicals by heating to a temperature higher than the decomposition temperature. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation). Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane, etc.) Etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy2-ethylcyclohexanoic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, etc.) Examples thereof include sodium persulfate, ammonium persulfate, etc.) and azo radical compounds (azobisisobutyronitrile, and 2,2'-bis (2-hydroxyethyl) azobisisobutyronitrile, etc.). Such a radical thermal polymerization initiator may be used alone or in combination of two or more.
 光でラジカルを発生する化合物としては、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。 The compound that generates radicals with light is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy. -2-Methylpropiophenone, 2-Hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenylketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthron, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1-( 4-Molholinophenyl) -butanone-1, 4-ethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di (tert-butylperoxycarbonyl) benzophenone, 3,4,4'-tri (3,4'-tri ( tert-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphinoxide, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3' , 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2 -(2'-Methtylyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 1, 3-Bis (trichloromethyl) -5- (2'-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (4'-methoxyphenyl) -s-triazine, 2- (p- Dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis (7-diethylaminocoumarin), 2- (o-chlorophenyl) -4,4 ', 5,5'-Tetraphenyl-1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetrakis (4-ethoxycarbonylphenyl) ) -1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis (2,4-dibromophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4 ', 5,5'-Tetraphenyl-1,2'-biimidazole, 3- (2-methyl-2-dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9 -N-Dodecylcarbazole, 1-hydroxycyclohexylphenylketone, bis (5-2,4-cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl ) Titanium, 3,3', 4,4'-tetra (tert-butylperoxycarbonyl) benzophenone, 3,3', 4,4'-tetra (tert-hexylperoxycarbonyl) benzophenone, 3,3'-di ( Methylcarbonyl) -4,4'-di (tert-butylperoxycarbonyl) benzophenone, 3,4'-di (methoxycarbonyl) -4,3'-di (tert-butylperoxycarbonyl) benzophenone, 4,4'- Di (methoxycarbonyl) -3,3'-di (tert-butylperoxycarbonyl) benzophenone, 2- (3-methyl-3H-benzothiazole-2-iriden) -1-naphthalen-2-yl-etanone, or 2 -(3-Methyl-1,3-benzothiazole-2 (3H) -iriden) -1- (2-benzoyl) etanone and the like can be mentioned. These compounds may be used alone or in admixture of two or more.
 ラジカル発生膜形成組成物は、重合体成分、必要に応じてラジカル発生剤その他の含有成分を溶解又は分散する有機溶媒を含有することができる。そのような有機溶媒に特に限定はなく、例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でも、N-メチル-2-ピロリドン、γ-ブチロラクトン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等は、溶解性の観点から好ましい。特に、N-メチル-2-ピロリドン又はN-エチル-2-ピロリドンが好ましいが、2種類以上の混合溶媒を用いてもよい。 The radical generating film forming composition can contain a polymer component, and if necessary, an organic solvent that dissolves or disperses a radical generating agent or other contained components. Such an organic solvent is not particularly limited, and examples thereof include organic solvents as exemplified in the above-mentioned synthesis of polyamic acid. Among them, N-methyl-2-pyrrolidone, γ-butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble. It is preferable from the viewpoint of. In particular, N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but two or more kinds of mixed solvents may be used.
 また、塗膜の均一性や平滑性を向上させる溶媒を、ラジカル発生膜形成組成物の含有成分の溶解性が高い有機溶媒に混合して使用すると好ましい。 Further, it is preferable to use a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent having high solubility of the components contained in the radical generation film forming composition.
 塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ(エチレングリコールモノブチルエーテル)、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、2-エチル-1-ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、ラジカル発生膜形成組成物に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。 Examples of the solvent for improving the uniformity and smoothness of the coating material include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve (ethylene glycol monobutyl ether), methyl cellosolve acetate, butyl cellosolve acetate, and ethyl cellosolve acetate. Butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert- Butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene Glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether , Ethylisobutyl ether, diisobutylene, amylacetate, butylbutyrate, butyl ether, diisobutylketone, methylcyclohexene, propyl ether, dihexyl ether, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, lactic acid. Ethyl, n-propyl lactate, n-butyl lactate, isoamyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, 3- Methyl ethyl ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy - 2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, Examples thereof include dipropylene glycol, 2- (2-ethoxypropanol) propanol, 2-ethyl-1-hexanol and the like. A plurality of types of these solvents may be mixed. When these solvents are used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the radical generation film forming composition.
 ラジカル発生膜形成組成物には、上記以外の成分を含有させてもよい。その例としては、ラジカル発生膜形成組成物を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、ラジカル発生膜形成組成物と基板との密着性を向上させる化合物、ラジカル発生膜形成組成物の膜強度をさらに向上させる化合物などが挙げられる。 The radical generation film forming composition may contain components other than the above. Examples thereof include compounds that improve the film thickness uniformity and surface smoothness when the radical generation film forming composition is applied, compounds that improve the adhesion between the radical generation film forming composition and the substrate, and radical generation film formation. Examples thereof include compounds that further improve the film strength of the composition.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(三菱マテリアル電子化成社製)、メガファックF171、F173、R-30(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガードAG710(AGC社製)、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. More specifically, for example, Ftop EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.), Megafuck F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by 3M), Asahi. Examples thereof include Guard AG710 (manufactured by AGC), Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical). When these surfactants are used, the ratio of their use is preferably 0.01 to 2 parts by mass, more preferably 0, with respect to 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition. It is 0.01 to 1 part by mass.
 ラジカル発生膜形成組成物と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-(3-トリエトキシシリルプロピル)トリエチレンテトラミン、N-(3-トリメトキシシリルプロピル)トリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。 Specific examples of the compound that improves the adhesion between the radical generation film forming composition and the substrate include a functional silane-containing compound and an epoxy group-containing compound. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane. , N- (2-Aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N- (3-triethoxysilylpropyl) triethylenetetramine, N- (3-trimethoxysilylpropyl) triethylenetetramine, 10-trimethoxysilyl-1,4,7- Triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl- 3-Aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, Polyethylene Glycol Diglycidyl Ether, Propyl Glycol Diglycidyl Ether, Tripropylene Glycol Diglycidyl Ether, Polypropylene Glycol Diglycidyl Ether, Neopentyl Glycol Diglycidyl Ether, 1,6-Hexanediol Diglycidyl Ether, Glycerin Diglycidyl Ether, Dibromo Neopentyl Glycoldiglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N', N'-tetraglycidyl-m-xylylene diamine, 1,3-bis (N, N-Diglycidylaminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, 3- (N-allyl-N-glycidyl) aminopropyltrimethoxysilane, 3- ( N, N-diglycidyl) Aminopropyltrimethoxysilane and the like can be mentioned.
 また、ラジカル発生膜の膜強度をさらに上げるためには、2,2ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。 Further, in order to further increase the film strength of the radical generation film, a phenol compound such as 2,2 bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added. .. When these compounds are used, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition. Is.
 さらに、ラジカル発生膜形成組成物には、上記の他、本発明の効果が損なわれない範囲であれば、ラジカル発生膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 Further, in addition to the above, the radical generating film forming composition includes a dielectric or a conductive material for the purpose of changing the electric properties such as the dielectric constant and the conductivity of the radical generating film as long as the effect of the present invention is not impaired. Substances may be added.
[ラジカル発生膜]
 本発明のラジカル発生膜は、上記ラジカル発生膜形成組成物を用いて得られる。例えば、本発明に用いるラジカル発生膜形成組成物を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのままラジカル発生膜として用いることもできる。また、この硬化膜をラビングや偏光又は特定の波長の光等を照射、イオンビーム等の処理にて配向処理を行うことができ、液晶充填後の液晶表示素子にUV(紫外線)を照射することも可能である。
[Radical generation membrane]
The radical generation film of the present invention can be obtained by using the above radical generation film forming composition. For example, a cured film obtained by applying the radical generation film forming composition used in the present invention to a substrate and then drying and firing it can be used as it is as a radical generation film. In addition, this cured film can be subjected to orientation processing by rubbing, polarization, light of a specific wavelength, or the like, or by processing an ion beam, etc., and the liquid crystal display element after filling the liquid crystal is irradiated with UV (ultraviolet rays). Is also possible.
 ラジカル発生膜形成組成物を塗布する基板としては、透明性の高い基板であれば特に限定されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。 The substrate on which the radical generation film forming composition is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving a liquid crystal display is formed is preferable.
 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。 Specific examples include glass plates, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyether ketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, and tri. Examples thereof include a substrate in which a transparent electrode is formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, acetate butyrate cellulose or the like.
 IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSAフィッシュボーン電極といった電極パターンやMVAのような突起パターンでも使用できる。 For the substrate that can be used for the IPS liquid crystal display element, electrode patterns such as standard IPS comb tooth electrodes and PSA fishbone electrodes and protrusion patterns such as MVA can also be used.
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。 Further, in a high-performance element such as a TFT type element, an element such as a transistor is used between an electrode for driving a liquid crystal display and a substrate.
 透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。 When a transmissive liquid crystal display element is intended, it is common to use a substrate as described above, but when a reflective liquid crystal display element is intended, silicon is used only on one side of the substrate. An opaque substrate such as a wafer can also be used. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.
 ラジカル発生膜形成組成物の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。 Examples of the method for applying the radical-generating film-forming composition include a spin coating method, a printing method, an inkjet method, a spray method, a roll coating method, and the like, but the transfer printing method is widely used industrially from the viewpoint of productivity. It is also suitably used in the present invention.
 ラジカル発生膜形成組成物を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40~150℃、好ましくは60~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。 The step of drying after applying the radical generation film forming composition is not always necessary, but if the time from application to firing is not constant for each substrate or if it is not fired immediately after coating, it is dried. It is preferable to include the process. The drying is not particularly limited as long as the solvent is removed to the extent that the shape of the coating film is not deformed by transporting the substrate or the like, and the drying means thereof is not particularly limited. For example, a method of drying on a hot plate having a temperature of 40 to 150 ° C., preferably 60 to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
 上記の方法でラジカル発生膜形成組成物を塗布して形成される塗膜は、焼成して硬化膜とすることができる。その際、焼成温度は、通常100~350℃の任意の温度で行うことができるが、好ましくは140~300℃であり、より好ましくは150~230℃、更に好ましくは160~220℃である。焼成時間は通常5~240分の任意の時間で焼成を行うことができる。好ましくは10~90分であり、より好ましくは20~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環オーブン、IR(赤外線)型オーブン、ベルト炉などを用いることができる。 The coating film formed by applying the radical generation film forming composition by the above method can be fired to form a cured film. At that time, the firing temperature can be usually any temperature of 100 to 350 ° C., but is preferably 140 to 300 ° C., more preferably 150 to 230 ° C., and further preferably 160 to 220 ° C. The firing time is usually any time of 5 to 240 minutes. It is preferably 10 to 90 minutes, more preferably 20 to 90 minutes. For heating, a generally known method, for example, a hot plate, a hot air circulation oven, an IR (infrared) type oven, a belt furnace, or the like can be used.
 この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が向上するので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。 The thickness of this cured film can be selected as needed, but preferably 5 nm or more, more preferably 10 nm or more, because the reliability of the liquid crystal display element is improved. Further, when the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is preferable.
 以上のようにしてラジカル発生膜を有する第一基板を得ることができるが、当該ラジカル発生膜に一軸配向処理を施すことができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。 Although the first substrate having a radical generating film can be obtained as described above, the radical generating film can be subjected to uniaxial orientation treatment. Examples of the method for performing the uniaxial alignment treatment include a photoalignment method, an orthorhombic vapor deposition method, rubbing, and a uniaxial alignment treatment using a magnetic field.
 一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。光配向法を用いる場合には、特定波長の偏光UVを膜全面に照射し、必要に応じて加熱することにより配向処理ができる。
 櫛歯電極が形成されている本発明の第一基板の場合、液晶の電気的物性によって方向が選択されるが、正の誘電異方性を有する液晶を用いる場合において、ラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。
When the orientation treatment is performed by the rubbing treatment in one direction, for example, the substrate is moved so that the rubbing cloth and the film come into contact with each other while rotating the rubbing roller around which the rubbing cloth is wound. When the photo-alignment method is used, the alignment process can be performed by irradiating the entire surface of the film with polarized UV having a specific wavelength and heating the film as necessary.
In the case of the first substrate of the present invention in which the comb tooth electrode is formed, the direction is selected by the electrical properties of the liquid crystal, but when a liquid crystal having positive dielectric anisotropy is used, the rubbing direction is the comb tooth electrode. It is preferable that the direction is substantially the same as the extending direction of.
 弱アンカリング部と強アンカリング部を作り出す工程として、フォトマスク等を介して任意のパターンにて放射線を照射する方法が挙げられる。これは予めラジカル発生膜に放射線を照射することによりラジカル発生部位を消失させ、弱アンカリング状態にならないようにする工程である。この工程を行う際の放射線として偏光又は特定の波長の光や、イオンビーム等が挙げられる。光ラジカル発生部位に該当する部分の吸光度が最も高くなる波長の光を照射することが特に好ましい。 As a step of creating a weak anchoring part and a strong anchoring part, there is a method of irradiating radiation with an arbitrary pattern via a photomask or the like. This is a step of irradiating the radical generation membrane with radiation in advance to eliminate the radical generation site and prevent a weak anchoring state. Examples of the radiation used in this step include polarized light, light having a specific wavelength, an ion beam, and the like. It is particularly preferable to irradiate light having a wavelength having the highest absorbance at the portion corresponding to the photoradical generation site.
 本発明の第二基板は、ラジカル発生膜を有していてもよいし、有していなくてもよい。第二基板は従来から知られている液晶配向膜を有する基板とすることが好ましい。 The second substrate of the present invention may or may not have a radical generation film. The second substrate is preferably a substrate having a conventionally known liquid crystal alignment film.
 本発明においては、第一基板が櫛歯電極を有する基板であり、第二基板が対向基板であってもよい。また、本発明においては、第二基板が櫛歯電極を有する基板であり、第一基板が対向基板であってもよい。 In the present invention, the first substrate may be a substrate having a comb tooth electrode, and the second substrate may be a facing substrate. Further, in the present invention, the second substrate may be a substrate having a comb tooth electrode, and the first substrate may be a facing substrate.
[液晶セル]
 本発明の液晶セルは、上記の方法により、基板にラジカル発生膜を形成した後、当該ラジカル発生膜を有する基板(第一基板)と、公知の液晶配向膜を有する基板(第二基板)とを、ラジカル発生膜と液晶配向膜とが向かい合うように配置し、スペーサーを挟んで、シール剤で固定し、液晶及びラジカル重合性化合物を含有する液晶組成物を注入して封止することにより得られる。その際、用いるスペーサーの大きさは通常1~30μmであるが、好ましくは2~10μmである。また、第一基板のラビング方向と、第二基板のラビング方向とを平行にすることにより、IPSモードやFFSモードに使用することができ、ラビング方向が直交するように配置すれば、ツイストネマチックモードに使用することができる。
 なお、IPS(In-Plane Switching)モードにおいて使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。
 なお、FFS(Frindge Field Switching)モードにおいて使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。
[LCD cell]
The liquid crystal cell of the present invention comprises a substrate having the radical generating film (first substrate) and a substrate having a known liquid crystal alignment film (second substrate) after forming a radical generating film on the substrate by the above method. Is obtained by arranging the radical generating film and the liquid crystal alignment film so as to face each other, sandwiching a spacer, fixing with a sealing agent, and injecting and sealing a liquid crystal composition containing a liquid crystal and a radically polymerizable compound. Be done. At that time, the size of the spacer used is usually 1 to 30 μm, but preferably 2 to 10 μm. Further, by making the rubbing direction of the first substrate parallel to the rubbing direction of the second substrate, it can be used in the IPS mode and the FFS mode, and if the rubbing directions are arranged so as to be orthogonal to each other, the twist nematic mode can be used. Can be used for.
The IPS substrate, which is a comb tooth electrode substrate used in the IPS (In-Plane Switching) mode, includes a base material, a plurality of linear electrodes formed on the base material, and arranged in a comb tooth shape, and a base. It has a liquid crystal alignment film formed on the material so as to cover the linear electrodes.
The FFS substrate, which is a comb tooth electrode substrate used in the FFS (Friend Field Switching) mode, is insulated from the base material, the surface electrode formed on the base material, and the insulating film formed on the surface electrode. It has a plurality of linear electrodes formed on the film and arranged in a comb-teeth shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.
 液晶及びラジカル重合性化合物を含有する液晶組成物を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶と重合性化合物を含む混合物を注入する真空法、液晶と重合性化合物とを含む混合物を滴下した後に封止を行う滴下法などを挙げることができる。 The method of injecting a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is not particularly limited, and a vacuum method of injecting a mixture containing the liquid crystal and the polymerizable compound after depressurizing the inside of the produced liquid crystal cell, polymerization with the liquid crystal. Examples thereof include a dropping method in which a mixture containing a sex compound is dropped and then sealed.
<ラジカル重合性化合物、及び液晶組成物>
 本発明の液晶表示素子の作製において、液晶とともに用いる重合性化合物は、ラジカル重合性化合物であれば特に限定されないが、例えば、一分子中に一個又は二個以上の重合性反応基を有する化合物である。好ましくは一分子中に一個の重合性反応基を有する化合物である(以下、「一官能の重合性基を有する化合物」、「単官能の重合性基を有する化合物」等と称する場合がある)。重合性反応基は、好ましくはラジカル重合性反応基であり、例えばビニル結合である。
<Radical polymerizable compound and liquid crystal composition>
The polymerizable compound used together with the liquid crystal in the production of the liquid crystal display element of the present invention is not particularly limited as long as it is a radically polymerizable compound, and is, for example, a compound having one or two or more polymerizable reactive groups in one molecule. be. It is preferably a compound having one polymerizable reactive group in one molecule (hereinafter, may be referred to as "a compound having a monofunctional polymerizable group", "a compound having a monofunctional polymerizable group", etc.). .. The polymerizable reactive group is preferably a radically polymerizable reactive group, for example, a vinyl bond.
 ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。 At least one of the radically polymerizable compounds is preferably a compound having compatibility with liquid crystal and having one polymerizable reactive group in one molecule, that is, a compound having a monofunctional radically polymerizable group.
 そして、ラジカル重合性化合物のラジカル重合可能な重合性基Mとしては以下の構造から選ばれる重合性基が好ましい。
Figure JPOXMLDOC01-appb-C000045
(式中、*は結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、または炭素数1~4のアルキル基を表す。Rは水素原子、または炭素数1~6のアルキル基を表す。)
The radically polymerizable polymerizable group M of the radically polymerizable compound is preferably a polymerizable group selected from the following structures.
Figure JPOXMLDOC01-appb-C000045
(In the formula, * indicates a binding site. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, -O-, -NR c- , -S-, an ester bond and an amide bond. R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R d represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
 ラジカル重合性化合物は、有機ラジカルの存在下でラジカル重合を行うことが可能な不飽和結合を有するものであり、例えば、tert-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、ラウリルメタクリレート、n-オクチルメタクリレートなどのメタクリレート系モノマー;tert-ブチルアクリレート、ベンジルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、ラウリルアクリレート、n-オクチルアクリレートなどのアクリレート系モノマー;スチレン、スチレン誘導体(例えば、o-、m-、p-メトキシスチレン、o-、m-、p-tert-ブトキシスチレン、o-、m-、p-クロロメチルスチレンなど)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニルなど)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなど)、N-ビニル化合物(例えば、N-ビニルピロリドン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドールなど)、(メタ)アクリル酸誘導体(例えば、アクリロニトリル、メタアクリロニトリル、アクリルアミド、イソプロピルアクリルアミド、メタクリルアミドなど)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプレン、フッ化ビニルなど)などのビニルモノマーが挙げられるが、これらに限定はしない。これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。 The radically polymerizable compound has an unsaturated bond capable of performing radical polymerization in the presence of an organic radical, and is, for example, tert-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, lauryl methacrylate, and the like. Methacrylate monomers such as n-octyl methacrylate; acrylate monomers such as tert-butyl acrylate, benzyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, lauryl acrylate, n-octyl acrylate; styrene, styrene derivatives (eg, o). -, M-, p-methoxystyrene, o-, m-, p-tert-butoxystyrene, o-, m-, p-chloromethylstyrene, etc., vinyl esters (eg, vinyl acetate, vinyl propionate, etc.) Vinyl benzoate, etc.), vinyl ketones (eg, vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone, etc.), N-vinyl compounds (eg, N-vinylpyrrolidone, N-vinylpyrrole, N-vinylcarbazole, N- Vinyl indols, etc.), (meth) acrylic acid derivatives (eg, acrylonitrile, metaacrylonitrile, acrylamide, isopropylacrylamide, methacrylicamide, etc.), vinyl halides (eg, vinyl chloride, vinylidene chloride, tetrachloroethylene, hexachloroprene, vinyl fluoride, etc.) Etc.), but are not limited to these. These various radically polymerizable monomers may be used alone or in combination of two or more. Further, it is preferable that these have compatibility with the liquid crystal.
 また、ラジカル重合性化合物としては、下記式(Z)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000046
(式(Z)中、RおよびRはそれぞれ独立に炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合、およびアミド結合から選ばれる結合基を表す。Rは水素原子または炭素数1~4のアルキル基を表す。)
Further, as the radically polymerizable compound, a compound represented by the following formula (Z) is also preferable.
Figure JPOXMLDOC01-appb-C000046
(In the formula (Z ), Ra and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms, and E is a single bond, —O—, —NR c −, —S—, an ester bond, And a bonding group selected from an amide bond. R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
 本発明で使用するラジカル重合性化合物の更に好適な一例は、下記式(A)で表される。
Figure JPOXMLDOC01-appb-C000047
A more preferable example of the radically polymerizable compound used in the present invention is represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000047
(式(A)中、Mはラジカル重合可能な重合性基を表し、R~Rはそれぞれ独立して単結合、または結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、XおよびXはそれぞれ独立して水素原子、または置換基を有していてもよい芳香族炭化水素基を表し、RとRとRおよびRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、RおよびRの合計炭素数は1以上である。) (In the formula (A), M represents a radically polymerizable polymerizable group, and R 1 to R 3 are independent single bonds or alkylene groups having 1 to 6 carbon atoms in which a bonding group may be inserted. , Ar represents an aromatic hydrocarbon group which may have a substituent, and X 1 and X 2 each independently have a hydrogen atom or an aromatic hydrocarbon group which may have a substituent. May be combined with the carbon atoms bonded to R 1 X 1 and R 2 X 2 and R 1 X 1 and R 2 X 2 to form a ring, however, R 1 X 1 , R. The total number of carbon atoms of 2 X 2 and R 3 is 1 or more.)
 式(A)で表されるラジカル重合性化合物を用いることで、狭セルギャップ化において、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製でき、低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現でき、加えて高温時においてもVHRの低下が少ない横電界液晶表示素子が製造可能となる。式(A)で表されるラジカル重合性化合物がそのことにどのように寄与しているかについて、本発明者らは以下のように考えている。
 式(A)で表されるラジカル重合性化合物のMは、ラジカル重合性化合物のラジカル重合に寄与する。そのことにより、弱アンカリング膜が形成でき、低駆動電圧化が実現できる。
 また、式(A)で表されるラジカル重合性化合物のAr(置換基を有していてもよい芳香族炭化水素基)は、プレチルト角の発生の抑制、応答速度の改善、及び高温時の高VHRに寄与していると、発明者らは推測している。
 また、式(A)において、MとArとが近すぎず、MとArと間にある程度の大きさの基〔-C(R)(R)R-〕があることが、応答速度を更に早くする効果があるものと、本発明者らは推測している。
 なお、本明細書において狭セルギャップとは、3.5μm以下のセルギャップを意味する。
By using the radically polymerizable compound represented by the formula (A), a weak anchoring transverse electric field liquid crystal display element can be stably manufactured without generating a pretilt angle in a narrow cell gap, and the drive voltage can be lowered and the voltage can be reduced. At the same time, it is possible to increase the response speed at the time of turning off, and in addition, it becomes possible to manufacture a lateral electric field liquid crystal display element with a small decrease in VHR even at a high temperature. The present inventors consider how the radically polymerizable compound represented by the formula (A) contributes to this as follows.
The radically polymerizable compound M represented by the formula (A) contributes to the radical polymerization of the radically polymerizable compound. As a result, a weak anchoring film can be formed, and a low drive voltage can be realized.
Further, Ar (an aromatic hydrocarbon group which may have a substituent) of the radically polymerizable compound represented by the formula (A) suppresses the generation of the pretilt angle, improves the response speed, and at high temperature. The inventors speculate that it contributes to high VHR.
Further, in the formula (A), M and Ar are not too close to each other, and there is a group [-C (R 1 X 1 ) (R 2 X 2 ) R 3- ] having a certain size between M and Ar. The present inventors speculate that this has the effect of further increasing the response speed.
In the present specification, the narrow cell gap means a cell gap of 3.5 μm or less.
 式(A)において、結合基が挿入されている炭素数1~6のアルキレン基とは、炭素数1~6のアルキレン基内の炭素-炭素間に結合基が挿入されている2価基、又は炭素数1~6のアルキレン基とそれに結合する炭素原子との間に結合基が挿入されている2価基を意味する。
 結合基としては、例えば、炭素-炭素不飽和結合、エーテル結合(-O-)、エステル結合(-COO-又は-OCO-)、アミド結合(-CONH-又は-NHCO-)などが挙げられる。不飽和結合としては、例えば、炭素-炭素二重結合などが挙げられるが、結合基が挿入されている炭素数1~6のアルキレン基は、その末端にではなく、内部に炭素-炭素二重結合を有する方が好ましい。
 結合基が挿入されていてもよい炭素数1~6のアルキレン基としては、例えば、炭素数1~6のアルキレン基、炭素数1~6のオキシアルキレン基などが挙げられる。炭素数1~6のオキシアルキレン基における酸素原子は、例えば、式(A)中のM、R、R、及びRに結合する炭素原子と結合する。
 炭素数1~6のアルキレン基は、直鎖アルキレン基であってもよいし、分岐アルキレン基であってもよいし、環状アルキレン基であってもよい。
In the formula (A), the alkylene group having 1 to 6 carbon atoms in which the linking group is inserted is a divalent group in which the linking group is inserted between carbons in the alkylene group having 1 to 6 carbon atoms. Alternatively, it means a divalent group in which a bonding group is inserted between an alkylene group having 1 to 6 carbon atoms and a carbon atom bonded to the alkylene group.
Examples of the bonding group include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), an amide bond (-CONH- or -NHCO-), and the like. Examples of the unsaturated bond include a carbon-carbon double bond, and an alkylene group having 1 to 6 carbon atoms into which a bonding group is inserted has a carbon-carbon double bond inside, not at the end thereof. It is preferable to have a bond.
Examples of the alkylene group having 1 to 6 carbon atoms into which the bonding group may be inserted include an alkylene group having 1 to 6 carbon atoms and an oxyalkylene group having 1 to 6 carbon atoms. The oxygen atom in the oxyalkylene group having 1 to 6 carbon atoms is bonded to, for example, the carbon atom bonded to M, R 1 , R 2 and R 3 in the formula (A).
The alkylene group having 1 to 6 carbon atoms may be a linear alkylene group, a branched alkylene group, or a cyclic alkylene group.
 式(A)において、置換基を有していてもよい芳香族炭化水素基としては、例えば、置換基を有していてもよいフェニル基、ナフチル基などが挙げられる。
 置換基としては、例えば、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロゲン化アルキル基、炭素数1~4のハロゲン化アルコキシ基などが挙げられる。ハロゲン化アルキル基、およびハロゲン化アルコキシ基におけるハロゲン化は、全ハロゲン化であってもよいし、一部のハロゲン化であってもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
In the formula (A), examples of the aromatic hydrocarbon group which may have a substituent include a phenyl group and a naphthyl group which may have a substituent.
Examples of the substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkyl halide group having 1 to 4 carbon atoms, a halogenated alkoxy group having 1 to 4 carbon atoms, and the like. Can be mentioned. The halogenation in the alkyl halide group and the halogenated alkoxy group may be total halogenation or partial halogenation. Examples of the halogen atom include a fluorine atom and a chlorine atom.
 式(A)において、Rとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(A)において、Rとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(A)において、Rとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(A)において、Xとしては、例えば、水素原子、フェニル基などが挙げられる。
 式(A)において、Xとしては、例えば、水素原子、フェニル基などが挙げられる。
 式(A)において、Aは、例えば、フェニル基などが挙げられる。
In the formula (A), examples of R 1 include a single bond and an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group having 1 to 6 carbon atoms include a linear alkylene group having 1 to 6 carbon atoms.
In the formula (A), examples of R 2 include a single bond and an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group having 1 to 6 carbon atoms include a linear alkylene group having 1 to 6 carbon atoms.
In the formula (A) , examples of R3 include a single bond and an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group having 1 to 6 carbon atoms include a linear alkylene group having 1 to 6 carbon atoms.
In the formula (A), examples of X 1 include a hydrogen atom and a phenyl group.
In the formula (A), examples of X 2 include a hydrogen atom and a phenyl group.
In the formula (A), Ar includes, for example, a phenyl group and the like.
 式(A)において、R、RおよびRの合計炭素数は1以上であれば、特に限定されないが、2以上であってもよい。
 また、R、R2、およびRの合計炭素数は、例えば、18以下であってもよいし、15以下であってもよいし、10以下であってもよい。
 また、X及びXが水素原子の場合、R、R2、およびRの合計炭素数は1以上であれば、特に限定されないが、2以上であってもよい。
 なお、X及びXの少なくともいずれかが置換基を有していてもよい芳香族炭化水素基の場合、R、R2、およびRの合計炭素数は0であってもよい。
In the formula (A), the total number of carbon atoms of R 1 X 1 , R 2 X 2 and R 3 is not particularly limited as long as it is 1 or more, but it may be 2 or more.
Further, the total carbon number of R 1 , R 2, and R 3 may be, for example, 18 or less, 15 or less, or 10 or less.
When X 1 and X 2 are hydrogen atoms, the total carbon number of R 1 , R 2, and R 3 is not particularly limited as long as it is 1 or more, but it may be 2 or more.
In the case of an aromatic hydrocarbon group in which at least one of X 1 and X 2 may have a substituent, the total number of carbon atoms of R 1 , R 2 and R 3 may be 0.
 RとRとRおよびRに結合する炭素原子とが一緒になって形成する環としては、例えば、結合基が挿入されていてもよい炭素数3~13の炭化水素環が挙げられる。結合基は、前述のとおりである。 As a ring formed by combining R 1 X 1 and R 2 X 2 and carbon atoms bonded to R 1 X 1 and R 2 X 2 , for example, a bonding group may be inserted into the ring having 3 carbon atoms. 13 hydrocarbon rings can be mentioned. The binding group is as described above.
 式(A)及び式(A-1)に含まれるラジカル重合性化合物としては、例えば、以下のラジカル重合性化合物が挙げられる。 Examples of the radically polymerizable compound contained in the formula (A) and the formula (A-1) include the following radically polymerizable compounds.
 式(A)で表されるラジカル重合性化合物としては、例えば、下記式(A-1)~(A-3)で表されるラジカル重合性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000048
 式中、Mはラジカル重合可能な重合性基を表し、
 R~Rはそれぞれ独立して単結合、または結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、
 Ar、ArおよびArはそれぞれ独立して置換基を有していてもよい芳香族炭化水素基を表し、
 R11およびR12はそれぞれ独立して水素原子、または結合基が挿入されていてもよい炭素数1~6のアルキル基を表す。
 式(A-1)中、R11とR12とR11およびR12に結合する炭素原子とは一緒になって環を形成していてもよい。
 式(A-1)中、R11、R12およびRの合計炭素数は1以上であり、2以上であってもよい。また、合計炭素数は、18以下であってもよいし、15以下であってもよいし、10以下であってもよい。
 式(A-2)中、R、R12およびRの合計炭素数は、特に限定されず0であってもよい。合計炭素数は、例えば、18以下であってもよいし、15以下であってもよいし、10以下であってもよい。
 式(A-3)中、R、RおよびRの合計炭素数は、特に限定されず0であってもよい。合計炭素数は、例えば、18以下であってもよいし、15以下であってもよいし、10以下であってもよい。
 なお、R11は、RにおいてXが水素原子の場合である。R12は、RにおいてXが水素原子の場合である。
Examples of the radically polymerizable compound represented by the formula (A) include radically polymerizable compounds represented by the following formulas (A-1) to (A-3).
Figure JPOXMLDOC01-appb-C000048
In the formula, M represents a radically polymerizable polymerizable group.
R 1 to R 3 represent alkylene groups having 1 to 6 carbon atoms, each of which has a single bond or a bonding group may be inserted independently.
Ar, Ar 1 and Ar 2 each represent an aromatic hydrocarbon group which may have a substituent independently.
R 11 and R 12 each represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms to which a bonding group may be inserted.
In formula (A-1), the carbon atoms bonded to R 11 and R 12 and R 11 and R 12 may form a ring together.
In the formula (A-1), the total number of carbon atoms of R 11 , R 12 and R 3 is 1 or more, and may be 2 or more. Further, the total number of carbon atoms may be 18 or less, 15 or less, or 10 or less.
In the formula (A-2), the total number of carbon atoms of R 1 , R 12 and R 3 is not particularly limited and may be 0. The total number of carbon atoms may be, for example, 18 or less, 15 or less, or 10 or less.
In the formula (A-3), the total number of carbon atoms of R 1 , R 2 and R 3 is not particularly limited and may be 0. The total number of carbon atoms may be, for example, 18 or less, 15 or less, or 10 or less.
Note that R 11 is a case where X 1 is a hydrogen atom in R 1 X 1 . R 12 is the case where X 2 is a hydrogen atom in R 2 X 2 .
 式(A)及び式(A-1)に含まれるラジカル重合性化合物としては、例えば、以下のラジカル重合性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000049
Examples of the radically polymerizable compound contained in the formula (A) and the formula (A-1) include the following radically polymerizable compounds.
Figure JPOXMLDOC01-appb-C000049
 本発明で使用するラジカル重合性化合物の更に好適な他の一例は、下記式(A’)で表される。
Figure JPOXMLDOC01-appb-C000050
(式(A’)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または下記式(B’)を表す。ただし、3つのXの少なくとも一つは式(B’)を表す。)
Figure JPOXMLDOC01-appb-C000051
(式(B’)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
A further preferred example of the radically polymerizable compound used in the present invention is represented by the following formula (A').
Figure JPOXMLDOC01-appb-C000050
(In the formula (A'), M represents a radically polymerizable polymerizable group, R 1 represents a linear or branched aliphatic hydrocarbon group having 1 to 10 carbon atoms, and the three Xs are independent of each other. Represents a hydrogen atom or the following formula (B'), where at least one of the three Xs represents the formula (B').)
Figure JPOXMLDOC01-appb-C000051
(In formula (B'), Y represents a single bond, -O-, -S-, or -NR-, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond site. R 2 , R 3 and R 4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms.)
 式(A’)で表されるラジカル重合性化合物を用いることで、狭セルギャップ化において、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製でき、低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現でき、加えて高温時においてもVHRの低下が少ない横電界液晶表示素子が製造可能となる。式(A’)で表されるラジカル重合性化合物がそのことにどのように寄与しているかについて、本発明者らは以下のように考えている。
 式(A’)で表されるラジカル重合性化合物のMは、ラジカル重合性化合物のラジカル重合に寄与する。そのことにより、弱アンカリング膜が形成でき、低駆動電圧化が実現できる。
 また、式(A’)で表されるラジカル重合性化合物の-SiRは、プレチルト角の発生の抑制、応答速度の改善、及び高温時の高VHRに寄与していると、本発明者らは推測している。
By using the radically polymerizable compound represented by the formula (A'), a weak anchoring transverse electric field liquid crystal display element can be stably manufactured without generating a pretilt angle in a narrow cell gap, and the drive voltage can be reduced. At the same time, it is possible to increase the response speed when the voltage is off, and in addition, it is possible to manufacture a lateral electric field liquid crystal display element with a small decrease in VHR even at a high temperature. The present inventors consider how the radically polymerizable compound represented by the formula (A') contributes to this as follows.
The radically polymerizable compound M represented by the formula (A') contributes to the radical polymerization of the radically polymerizable compound. As a result, a weak anchoring film can be formed, and a low drive voltage can be realized.
Further, it is said that the radically polymerizable compound represented by the formula (A') -SiR 2 R 3 R 4 contributes to the suppression of the generation of the pretilt angle, the improvement of the response speed, and the high VHR at high temperature. The inventors speculate.
 式(A’)のRにおける脂肪族炭化水素基の炭素数は1~10であり、炭素数1~8であってもよいし、炭素数1~6であってもよいし、炭素数1~4であってもよい。 The aliphatic hydrocarbon group in R 1 of the formula (A') has 1 to 10 carbon atoms, may have 1 to 8 carbon atoms, may have 1 to 6 carbon atoms, or may have 1 to 6 carbon atoms. It may be 1 to 4.
 式(A’)のR、R、及びRにおける炭素数1~6のアルキル基としては、例えば、炭素数1~5のアルキル基であってもよいし、炭素数1~4のアルキル基であってもよい。これらアルキル基は、直鎖構造であってもよいし、分岐構造であってもよい。 The alkyl group having 1 to 6 carbon atoms in R 2 , R 3 and R 4 of the formula (A') may be, for example, an alkyl group having 1 to 5 carbon atoms or having 1 to 4 carbon atoms. It may be an alkyl group. These alkyl groups may have a linear structure or a branched structure.
 式(A’)のR、R、及びRにおける芳香族炭化水素基は、無置換であってもよいし、水素原子が置換基により置換されていてもよい。
 置換基を有していてもよい芳香族炭化水素基の置換基としては、例えば、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロゲン化アルキル基、炭素数1~4のハロゲン化アルコキシ基などが挙げられる。ハロゲン化アルキル基、およびハロゲン化アルコキシ基におけるハロゲン化は、全ハロゲン化であってもよいし、一部のハロゲン化であってもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
 置換基を有していてもよい芳香族炭化水素基の芳香族炭化水素基としては、例えば、フェニル基、ナフチル基が挙げられる。
 芳香族炭化水素基における置換基の数としては、特に限定されない。
The aromatic hydrocarbon groups in R2 , R3 , and R4 of the formula (A') may be unsubstituted or the hydrogen atom may be substituted with a substituent.
Examples of the substituent of the aromatic hydrocarbon group which may have a substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen having 1 to 4 carbon atoms. Examples thereof include an alkylated group and an alkoxy halide group having 1 to 4 carbon atoms. The halogenation in the alkyl halide group and the halogenated alkoxy group may be total halogenation or partial halogenation. Examples of the halogen atom include a fluorine atom and a chlorine atom.
Examples of the aromatic hydrocarbon group of the aromatic hydrocarbon group which may have a substituent include a phenyl group and a naphthyl group.
The number of substituents in the aromatic hydrocarbon group is not particularly limited.
 式(A’)で表されるラジカル重合性化合物において、式(B’)で表される基は1つ以上であり、1つであってもよいし、2つであってもよいし、3つであってもよい。
 式(A’)で表されるラジカル重合性化合物において、3つのXはそれぞれ独立している。そのため、式(A’)で表されるラジカル重合性化合物において、式(B’)で表される基が2つ以上の場合、2つ以上の式(B’)で表される基は、同じ構造であってもよいし、異なる構造であってもよい。
In the radically polymerizable compound represented by the formula (A'), the number of groups represented by the formula (B') is one or more, and may be one or two. There may be three.
In the radically polymerizable compound represented by the formula (A'), the three Xs are independent of each other. Therefore, in the radically polymerizable compound represented by the formula (A'), when the number of groups represented by the formula (B') is two or more, the group represented by two or more formulas (B') is. It may have the same structure or may have a different structure.
 式(B’)において、R、R、およびRの少なくとも一つは、置換基を有していてもよい芳香族炭化水素基であってもよい。そのため、式(B’)において、R、R、およびRの一つが置換基を有していてもよい芳香族炭化水素基であってもよいし、R、R、およびRの二つが置換基を有していてもよい芳香族炭化水素基であってもよし、R、R、およびRの三つが置換基を有していてもよい芳香族炭化水素基であってもよい。 In formula (B'), at least one of R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group which may have a substituent. Therefore, in formula (B'), one of R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group which may have a substituent, or R 2 , R 3 , and R. Two of 4 may be aromatic hydrocarbon groups which may have a substituent, and three of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. It may be.
 式(A’)で表されるラジカル重合性化合物としては、例えば、以下の(I)~(III)を満たすラジカル重合性化合物が挙げられる。
 (I):式(A’)中、Mは下記構造(C’)又は構造(D’)を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または式(B’)を表す。ただし、3つのXの少なくとも一つは式(B’)を表す。
 (II):式(B’)中、Yは-O-を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。ただし、R、R、およびRの少なくとも一つは、置換基を有していてもよい芳香族炭化水素基を表す。
 (III):下記式(E’)で表されるラジカル重合性化合物ではない。
Figure JPOXMLDOC01-appb-C000052
Examples of the radically polymerizable compound represented by the formula (A') include radically polymerizable compounds satisfying the following (I) to (III).
(I): In the formula (A'), M represents the following structure (C') or structure (D'), and R 1 is an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms. Each of the three Xs independently represents a hydrogen atom or formula (B'). However, at least one of the three Xs represents the equation (B').
(II): In the formula (B'), Y represents —O— and * represents a binding site. R 2 , R 3 and R 4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms. However, at least one of R 2 , R 3 and R 4 represents an aromatic hydrocarbon group which may have a substituent.
(III): It is not a radically polymerizable compound represented by the following formula (E').
Figure JPOXMLDOC01-appb-C000052
 式(A’)に含まれるラジカル重合性化合物としては、例えば、以下のラジカル重合性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000053
Examples of the radically polymerizable compound contained in the formula (A') include the following radically polymerizable compounds.
Figure JPOXMLDOC01-appb-C000053
 液晶組成物は、液晶と、上記ラジカル重合性化合物とを少なくとも含有する。
 液晶組成物中の上記ラジカル重合性化合物の含有量は、液晶とラジカル重合性化合物との合計質量に対して、好ましくは0.5質量%以上、より好ましくは1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下である。
The liquid crystal composition contains at least the liquid crystal and the radically polymerizable compound.
The content of the radically polymerizable compound in the liquid crystal composition is preferably 0.5% by mass or more, more preferably 1% by mass or more, and preferably 1% by mass or more, based on the total mass of the liquid crystal and the radically polymerizable compound. It is 10% by mass or less, more preferably 5% by mass or less.
 また、液晶組成物においては、上記ラジカル重合性化合物とは別に他の単官能のラジカル重合性基を有する化合物(以下、「他のラジカル重合性化合物」と称することがある)とを複数併用してもよい。 Further, in the liquid crystal composition, in addition to the above radically polymerizable compound, a plurality of compounds having other monofunctional radically polymerizable groups (hereinafter, may be referred to as “other radically polymerizable compounds”) are used in combination. May be.
 液晶組成物に含有されるラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。 At least one of the radically polymerizable compounds contained in the liquid crystal composition has a compound having a polymerizable unsaturated bond in one molecule, which is compatible with the liquid crystal, that is, a monofunctional radically polymerizable group. It is preferably a compound.
 そして、前記式(Z)で表されるラジカル重合性化合物としては式中Eがエステル結合(-C(=O)-O-または-O-C(=O)-で表される結合)のものが合成のしやすさや液晶への相溶性、重合反応性の観点で好ましく、具体的には以下のような構造で表される化合物が好ましいが、特に限定はしない。
Figure JPOXMLDOC01-appb-C000054
As the radically polymerizable compound represented by the formula (Z), E in the formula has an ester bond (bond represented by —C (= O) —O— or —O—C (= O) −). Those are preferable from the viewpoints of ease of synthesis, compatibility with liquid crystal, and polymerization reactivity, and specifically, compounds represented by the following structures are preferable, but are not particularly limited.
Figure JPOXMLDOC01-appb-C000054
 また、液晶組成物において、ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下になるラジカル重合性化合物を含有することが好ましい。 Further, it is preferable that the liquid crystal composition contains a radically polymerizable compound in which the Tg of the polymer obtained by polymerizing the radically polymerizable compound is 100 ° C. or lower.
 これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。 These various radically polymerizable monomers may be used alone or in combination of two or more. Further, it is preferable that these have compatibility with the liquid crystal.
 ラジカル重合性化合物を重合させて得られるポリマーは、そのTgを100℃以下とすることが好ましく、より好ましくは0℃以下である。 The polymer obtained by polymerizing a radically polymerizable compound preferably has a Tg of 100 ° C. or lower, more preferably 0 ° C. or lower.
 なお、液晶とは一般に固体と液体の両方の性質を示す状態にある物質をいい、代表的な液晶相としてネマティック液晶とスメクティック液晶があるが、本発明において使用できる液晶は特に限定されない。一例を挙げれば4-ペンチル-4’-シアノビフェニルである。 The liquid crystal generally refers to a substance exhibiting both solid and liquid properties, and typical liquid crystal phases include nematic liquid crystal and smectic liquid crystal, but the liquid crystal that can be used in the present invention is not particularly limited. One example is 4-pentyl-4'-cyanobiphenyl.
 次に、この液晶とラジカル重合性化合物とを含む混合物(液晶組成物)が導入された液晶セルに当該ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与える。これは、例えば、熱を加えるか、UV照射することにより実施することができ、当該ラジカル重合性化合物がその場で重合されることで、所望の特性が発現する。中でも配向性のパターニングが可能となり、更に短時間で重合反応させられる点で、UV照射が好ましい。 Next, sufficient energy is given to the liquid crystal cell into which the mixture (liquid crystal composition) containing the liquid crystal and the radically polymerizable compound is introduced to carry out the polymerization reaction of the radically polymerizable compound. This can be done, for example, by applying heat or UV irradiation, and the radically polymerizable compound is polymerized in situ to exhibit the desired properties. Of these, UV irradiation is preferable because it enables oriented patterning and allows the polymerization reaction to occur in a shorter time.
 またUV照射の際、加熱を行ってもよい。UV照射を行う際の加熱温度は、導入された液晶が液晶性を発現する温度範囲が好ましく、通常40℃以上であり、液晶の等方相に変わる温度未満での加熱が好ましい。 Also, heating may be performed during UV irradiation. The heating temperature at the time of UV irradiation is preferably in a temperature range in which the introduced liquid crystal exhibits liquid crystal properties, is usually 40 ° C. or higher, and is preferably heated at a temperature lower than a temperature at which the liquid crystal changes to an isotropic phase.
 ここで、UV照射する場合におけるUV照射波長は、反応する重合性化合物の反応量子収率の最も良い波長を選択することが好ましく、UVの照射量は、通常0.01~30J/cmであるが、好ましくは、10J/cm以下であり、UV照射量が少ないほうが、液晶ディスプレイを構成する部材の破壊からなる信頼性低下を抑制でき、かつUV照射時間を減らせることで製造上のタクトが向上するので好適である。 Here, as the UV irradiation wavelength in the case of UV irradiation, it is preferable to select the wavelength having the best reaction quantum yield of the reactive polymerizable compound, and the UV irradiation amount is usually 0.01 to 30 J / cm 2 . However, preferably, it is 10 J / cm 2 or less, and the smaller the UV irradiation amount, the more the reliability deterioration due to the destruction of the members constituting the liquid crystal display can be suppressed, and the UV irradiation time can be reduced, so that the manufacturing process can be performed. It is suitable because it improves tact.
 また、UV照射ではなく、加熱のみで重合させる場合の加熱は、重合性化合物の反応する温度であって、液晶の分解温度未満となる温度範囲で行うことが好ましい。具体的には、100~150℃である。 Further, it is preferable that the heating in the case of polymerizing only by heating instead of UV irradiation is performed in a temperature range in which the temperature at which the polymerizable compound reacts and is lower than the decomposition temperature of the liquid crystal display. Specifically, it is 100 to 150 ° C.
 ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるとき、電圧を印加しない、無電界状態であることが好ましい。 When giving sufficient energy to polymerize the radically polymerizable compound, it is preferable that no voltage is applied and the state is in an electric field-free state.
[液晶表示素子の製造方法、及び液晶表示素子]
 このようにして得られた液晶セルを用いて液晶表示素子を作製することができる。
 液晶表示素子の製造方法は、例えば、以下のステップ(1)~(4)を含む。
 (1)本発明のラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ
 (2)第一基板におけるラジカル発生膜が第二基板に対向するように、第一基板および第二基板を対向配置するステップ
 (3)第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップ、
 (4)液晶組成物を、ラジカル発生膜に接触させた状態で、ラジカル重合性化合物を重合反応させるステップ
 液晶表示素子は、例えば、第一基板、第一基板に対向して配置された第二基板、および第一基板と第二基板との間に充填された液晶を有する。そして、液晶表示素子は、液晶及びラジカル重合性化合物を含有する液晶組成物を、本発明のラジカル発生膜を有する第一基板のラジカル発生膜に接触させた状態で、ラジカル重合性化合物を重合反応させてなる。
 液晶表示素子は、例えば、液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより反射型液晶表示素子とすることができる。また、液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより透過型液晶表示素子とすることができる。
[Manufacturing method of liquid crystal display element and liquid crystal display element]
A liquid crystal display element can be manufactured using the liquid crystal cell thus obtained.
The method for manufacturing a liquid crystal display element includes, for example, the following steps (1) to (4).
(1) A step of preparing a first substrate having a radical generating film of the present invention and a second substrate which may have a radical generating film (2) The radical generating film in the first substrate faces the second substrate. (3) A step of filling a liquid crystal composition containing a liquid crystal display and a radically polymerizable compound between the first substrate and the second substrate.
(4) A step in which a radically polymerizable compound is polymerized in a state where the liquid crystal composition is in contact with a radical generating film. The liquid crystal display element is, for example, a first substrate and a second arranged facing the first substrate. It has a substrate and a liquid crystal display filled between the first substrate and the second substrate. Then, the liquid crystal display element polymerizes the radically polymerizable compound in a state where the liquid crystal composition containing the liquid crystal and the radically polymerizable compound is brought into contact with the radical generating film of the first substrate having the radical generating film of the present invention. Let me.
The liquid crystal display element can be made into a reflective liquid crystal display element by, for example, providing a reflective electrode, a transparent electrode, a λ / 4 plate, a polarizing film, a color filter layer, or the like in the liquid crystal cell according to a conventional method. Further, a transmissive liquid crystal display element can be obtained by providing the liquid crystal cell with a backlight, a polarizing plate, a λ / 4 plate, a transparent electrode, a polarizing film, a color filter layer and the like according to a conventional method, if necessary.
 第二基板はラジカル発生膜を有さない第二基板であってもよい。
 第二基板は一軸配向性を有する液晶配向膜がコーティングされた基板であってもよい。そして、一軸配向性を有する液晶配向膜は水平配向用の液晶配向膜であってもよい。
The second substrate may be a second substrate having no radical generation film.
The second substrate may be a substrate coated with a liquid crystal alignment film having uniaxial orientation. The liquid crystal alignment film having uniaxial orientation may be a liquid crystal alignment film for horizontal alignment.
 液晶表示素子の製造方法、及び液晶表示素子においては、例えば、第一基板および第二基板のいずれか一方が櫛歯電極を有する基板である。 In the method for manufacturing a liquid crystal display element and the liquid crystal display element, for example, one of the first substrate and the second substrate is a substrate having a comb tooth electrode.
 図1は、本発明の横電界液晶表示素子の一例を示す概略断面図であり、IPSモード液晶表示素子の例である。
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、例えば、ラジカル発生膜を化学変化させて得られる弱アンカリング膜である。櫛型電極基板側の液晶配向膜は、例えば、ラジカル発生膜に、液晶とラジカル重合性化合物とを含有する液晶組成物を接触させた状態で、ラジカル重合性化合物を重合反応させて得られる。
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
FIG. 1 is a schematic cross-sectional view showing an example of a transverse electric field liquid crystal display element of the present invention, and is an example of an IPS mode liquid crystal display element.
In the transverse electric field liquid crystal display element 1 illustrated in FIG. 1, the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2c and the opposed substrate 4 provided with the liquid crystal alignment film 4a. The comb tooth electrode substrate 2 is formed on the base material 2a and the base material 2a, and is formed so as to cover the plurality of linear electrodes 2b arranged in a comb tooth shape and the linear electrodes 2b on the base material 2a. It also has a liquid crystal alignment film 2c. The facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2c is, for example, a weak anchoring film obtained by chemically changing a radical generation film. The liquid crystal alignment film on the comb-shaped electrode substrate side is obtained, for example, by polymerizing a radically polymerizable compound in a state where a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is in contact with a radical generating film.
In the lateral electric field liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by the electric lines of force L.
 図2は、本発明の横電界液晶表示素子の他の例を示す概略断面図であり、FFSモード液晶表示素子の例である。
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、例えば、ラジカル発生膜を化学変化させて得られる弱アンカリング膜である。櫛型電極基板側の液晶配向膜は、例えば、ラジカル発生膜に、液晶とラジカル重合性化合物とを含有する液晶組成物を接触させた状態で、ラジカル重合性化合物を重合反応させて得られる。
 この横電界液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
FIG. 2 is a schematic cross-sectional view showing another example of the transverse electric field liquid crystal display element of the present invention, and is an example of an FFS mode liquid crystal display element.
In the transverse electric field liquid crystal display element 1 illustrated in FIG. 2, the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2h and the opposed substrate 4 provided with the liquid crystal alignment film 4a. The comb tooth electrode substrate 2 is formed on the base material 2d, the surface electrode 2e formed on the base material 2d, the insulating film 2f formed on the surface electrode 2e, and the insulating film 2f, and has a comb tooth shape. It has a plurality of arranged linear electrodes 2g and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g. The facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2h is, for example, a weak anchoring film obtained by chemically changing a radical generating film. The liquid crystal alignment film on the comb-shaped electrode substrate side is obtained, for example, by polymerizing a radically polymerizable compound in a state where a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is in contact with a radical generating film.
In the lateral electric field liquid crystal display element 1, when a voltage is applied to the surface electrode 2e and the linear electrode 2g, an electric field is generated between the surface electrode 2e and the linear electrode 2g as shown by the electric lines of force L.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明は、これらの実施例に限定して解釈されるものではない。化合物の略号、及び各特性の測定方法は以下のとおりである。 The present invention will be specifically described below with reference to examples, but the present invention is not construed as being limited to these examples. The abbreviations of the compounds and the measuring method of each characteristic are as follows.
(ジアミン)
 DA-1~DA-4:それぞれ、下記式(DA-1)~(DA-4)で表される化合物
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
(Diamine)
DA-1 to DA-4: Compounds represented by the following formulas (DA-1) to (DA-4), respectively.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
(テトラカルボン酸二無水物)
 TC-1~TC-2:それぞれ、下記式(TC-1)~(TC-2)で表される化合物
Figure JPOXMLDOC01-appb-C000057
(Tetracarboxylic dianhydride)
TC-1 to TC-2: Compounds represented by the following formulas (TC-1) to (TC-2), respectively.
Figure JPOXMLDOC01-appb-C000057
(添加剤)
 Add-1:下記式(Add-1)で表される化合物
 Add-C1~Add-C2:それぞれ、下記式(Add-C1)~(Add-C2)で表される化合物
Figure JPOXMLDOC01-appb-C000058
(Additive)
Add-1: Compounds represented by the following formulas (Add-1) Addd-C1 to Add-C2: Compounds represented by the following formulas (Add-C1) to (Add-C2), respectively.
Figure JPOXMLDOC01-appb-C000058
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 THF:テトラヒドロフラン
(反応試剤)
 TEA:トリエチルアミン
 DMAP:4-ジメチルアミノピリジン
 DBU:ジアザビシクロウンデセン
 TMAH:水酸化トリメチルアニリニウム
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve THF: Tetrahydrofuran (reaction reagent)
TEA: Triethylamine DMAP: 4-Dimethylaminopyridine DBU: Diazabicycloundecene TMAH: Tetramethylammonium hydroxide
<粘度測定>
 ポリアミック酸溶液などの粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃において測定した。
<分子量の測定>
 ポリイミド前駆体及びポリイミドなどの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(GPC KD-803,GPC KD-805)(昭和電工社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
 流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
<Viscosity measurement>
For the viscosity of the polyamic acid solution, etc., use an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), sample volume 1.1 mL (milliliter), cone rotor TE-1 (1 ° 34', R24), temperature 25. Measured at ° C.
<Measurement of molecular weight>
For the molecular weight of the polyimide precursor and polyimide, use a room temperature gel permeation chromatography (GPC) device (GPC-101) (manufactured by Showa Denko), a column (GPC KD-803, GPC KD-805) (manufactured by Showa Denko). Using, it was measured as follows.
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr · H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 mL / L)
Flow rate: 1.0 mL / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (Tosoh) and polyethylene glycol (molecular weight; about) 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
<合成例1 2-(4-(2-hydroxy-2-methylpropanoyl)phenyl)oxyethyl (3-(triethoxysilyl)propyl)carbamate(Add-C1)の合成>
Figure JPOXMLDOC01-appb-C000059
<Synthesis Example 1 2- (4- (2-hydroxy-2-methylpropanoyl) phenyl) oxyethyl (3- (triethoxysilyl) propyl) carbamate (Add-C1) synthesis>
Figure JPOXMLDOC01-appb-C000059
 撹拌子を備えた300mL4つ口フラスコに、2-hydroxy-1-(4-(2-hydroxyethoxy)phenyl)-2-methylpropan-1-one(30.20g:134.7mmol)及び酢酸エチル(AcOEt,181.84g)を加え、しばらく撹拌し、(3-isocyanatopropyl)triethoxysilane(34.98g:141.4mmol)及びDBU(0.28g:1.84mmol)を加え、12時間還流させた。HPLCにて反応の終了を確認した後、ヘキサン(200mL)を加え、晶析させた。粗物を回収し、乾燥させることで目的物(50.6g、収率:80%、白色固体、Add-C1)を得た。
<合成例2>
 加水分解縮合物の合成(Add-C2)
Figure JPOXMLDOC01-appb-C000060
In a 300 mL four-necked flask equipped with a stirrer, 2-hydroxy-1- (4- (2-hydroxyethoxy) phenyl) -2-methylpropan-1-one (30.20 g: 134.7 mmol) and ethyl acetate (AcOEt, 181.84 g) was added, the mixture was stirred for a while, (3-isocyanatopropyl) triethoxysilane (34.98 g: 141.4 mmol) and DBU (0.28 g: 1.84 mmol) were added, and the mixture was refluxed for 12 hours. After confirming the completion of the reaction by HPLC, hexane (200 mL) was added and crystallized. The crude product was recovered and dried to obtain the desired product (50.6 g, yield: 80%, white solid, Addd-C1).
<Synthesis example 2>
Synthesis of hydrolyzed condensate (Add-C2)
Figure JPOXMLDOC01-appb-C000060
 撹拌子を備えた50mL4つ口フラスコに、合成例1で合成した2-(4-(2-hydroxy-2-methylpropanoyl)phenyl)oxyethyl (3-(triethoxysilyl)propyl)carbamate(10.0g:21.2mmol)及びTHF(10.0g)加え、撹拌しながらTMAH(38.3mg:0.42mmol)、純水(0.6g)、及びTHF(5.0g)の混合溶液を滴下しながら加え、40℃で4時間反応させた。反応終了後、酢酸エチル(30ml)を加え、酢酸水溶液(10%)にて中和を行い、純水(10.0ml)で3回有機層の洗浄を行った。有機層を回収し、ロータリーエバポレーターにて濃縮を行うことで目的とする重合体Add-C2(9.3g、数平均分子量(Mn):2,200、重量平均分子量(Mw):4,700)を得た。撹拌子を取り付けた50mlナス型フラスコに、得られた重合体Add-C2(2.0g)を量り取り、NMP(21.3g)及びBCS(10.0g)を加え室温で30分間撹拌することで本発明に使用するAdd-C2の溶液を得た。 2- (4- (2-hydroxy-2-methlypropanoyl) phenyl) oxyethyl (3- (triethoxysilyl) probel) carbamate (10.0 g: 21.) synthesized in Synthesis Example 1 in a 50 mL four-necked flask equipped with a stirrer. 2 mmol) and THF (10.0 g) are added, and a mixed solution of TMAH (38.3 mg: 0.42 mmol), pure water (0.6 g), and THF (5.0 g) is added dropwise with stirring, and 40. The reaction was carried out at ° C. for 4 hours. After completion of the reaction, ethyl acetate (30 ml) was added, neutralization was performed with an aqueous acetic acid solution (10%), and the organic layer was washed 3 times with pure water (10.0 ml). The target polymer Add-C2 (9.3 g, number average molecular weight (Mn): 2,200, weight average molecular weight (Mw): 4,700) by recovering the organic layer and concentrating it with a rotary evaporator). Got Weigh the obtained polymer Add-C2 (2.0 g) into a 50 ml eggplant-shaped flask equipped with a stirrer, add NMP (21.3 g) and BCS (10.0 g), and stir at room temperature for 30 minutes. A solution of Add-C2 used in the present invention was obtained.
<合成例3>
 メカニカルスターラー及び窒素導入管を備え付けた100mL四つ口フラスコに、DA-3(5.17g:20.0mmol)を量り取り、NMP(58.0g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-1(3.61g:18.4mmol)及びNMP(10.0g)を加え、室温で24時間反応させることにより、粘度が約230mPa・s、固形分濃度が12質量%のポリアミック酸溶液(PAA-1)を得た。このポリアミック酸の分子量は、Mn:11,100、Mw:30,500であった。
<Synthesis example 3>
DA-3 (5.17 g: 20.0 mmol) was weighed in a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, NMP (58.0 g) was added, and the mixture was stirred and dissolved in a nitrogen atmosphere. After that, TC-1 (3.61 g: 18.4 mmol) and NMP (10.0 g) were added in an ice bath while keeping the temperature at 10 ° C. or lower, and the mixture was reacted at room temperature for 24 hours to obtain a viscosity of about 230 mPa · s. A polyamic acid solution (PAA-1) having a solid content concentration of 12% by mass was obtained. The molecular weight of this polyamic acid was Mn: 11,100 and Mw: 30,500.
<合成例4>
 メカニカルスターラー及び窒素導入管を備え付けた100mL四つ口フラスコに、DA-2(3.42g:14.0mmol)及びDA-3(1.55g:6.0mmol)を量り取り、NMP(42.0g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-2(4.21g:18.8mmol)及びNMP(10.0g)を加え、室温で24時間反応させることにより、粘度が約710mPa・s、固形分濃度が15質量%のポリアミック酸溶液(PAA-2)を得た。このポリアミック酸の分子量は、Mn:15,500、Mw:41,800であった。
<Synthesis example 4>
DA-2 (3.42 g: 14.0 mmol) and DA-3 (1.55 g: 6.0 mmol) were weighed in a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, and NMP (42.0 g) was weighed. ), Stir and dissolve in a nitrogen atmosphere, then add TC-2 (4.21 g: 18.8 mmol) and NMP (10.0 g) in an ice bath while keeping the temperature below 10 ° C., and add 24 at room temperature. By reacting for a time, a polyamic acid solution (PAA-2) having a viscosity of about 710 mPa · s and a solid content concentration of 15% by mass was obtained. The molecular weight of this polyamic acid was Mn: 15,500 and Mw: 41,800.
<合成例5>
 メカニカルスターラー及び窒素導入管を備え付けた100mL四つ口フラスコに、DA-1(1.08g:10.0mmol)、及びDA-4(3.30g:10.0mmol)を量り取り、NMP(49.2g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-2(4.30g:19.2mmol)及びNMP(10.0g)を加え、室温で24時間反応させることにより、粘度が約280mPa・s、固形分濃度が12質量%のポリアミック酸溶液(PAA-3)を得た。このポリアミック酸の分子量は、Mn:13,500、Mw:39,200であった。
<Synthesis Example 5>
DA-1 (1.08 g: 10.0 mmol) and DA-4 (3.30 g: 10.0 mmol) were weighed in a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, and NMP (49. 2 g) is added, and after stirring and dissolving in a nitrogen atmosphere, TC-2 (4.30 g: 19.2 mmol) and NMP (10.0 g) are added while keeping the temperature below 10 ° C. in an ice bath, and at room temperature. By reacting for 24 hours, a polyamic acid solution (PAA-3) having a viscosity of about 280 mPa · s and a solid content concentration of 12% by mass was obtained. The molecular weight of this polyamic acid was Mn: 13,500 and Mw: 39,200.
<合成例6 Add-1(1-phenylhexan-3-yl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000061
<Synthesis Example 6 Synthesis of 1-phenylhexan-3-yl methyllate>
Figure JPOXMLDOC01-appb-C000061
(第1工程)
 撹拌子を備えた500mL4つ口フラスコにhydrocinnamaldehyde(25.0g:0.186mol)及びTHF(テトラヒドロフラン、300mL)を秤量し溶解させた。この溶液をドライアイス-メタノールバスにて-78℃に冷却した後、n-propylmagnesium bromide(1.5mol/L THF溶液、186mL:0.279mol)を、内温が-70℃以上にならないように滴下し、滴下終了後室温に戻し18時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を0℃に冷却し、1規定塩酸水溶液(100mL)を加えクエンチを行った。この反応溶液に酢酸エチル(200mL)を加え、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。さらに真空乾燥を行うことによりAdd-1a(30.0g:収率89%、無色透明液体)を得た。
(First step)
Hydrocinnamaldydide (25.0 g: 0.186 mol) and THF (tetrahydrofuran, 300 mL) were weighed and dissolved in a 500 mL four-necked flask equipped with a stir bar. After cooling this solution to -78 ° C in a dry ice-methanol bath, add n-propylmagnesium bromide (1.5 mol / L THF solution, 186 mL: 0.279 mol) so that the internal temperature does not exceed -70 ° C. The mixture was added dropwise, and after the addition was completed, the temperature was returned to room temperature and the mixture was stirred for 18 hours. After confirming the completion of the reaction by HPLC, the reaction solution was cooled to 0 ° C., 1N hydrochloric acid aqueous solution (100 mL) was added, and quenching was performed. Ethyl acetate (200 mL) was added to this reaction solution, and the mixture was washed 3 times with pure water (100 mL) using a separating funnel. After washing, the product was dehydrated with magnesium sulfate and distilled off with a rotary evaporator to obtain a crude product. Further vacuum drying gave Add-1a (30.0 g: yield 89%, colorless and transparent liquid).
(第2工程)
 撹拌子を備えた500mL4つ口フラスコにAdd-1a(30.0g:0.168mol)、TEA(トリエチルアミン、25.5g:0.252mol)、及びTHF(300mL)を秤量し溶解させた。この溶液を氷浴にて0℃に冷却した後、methacryloyl chloride(21.1g:0.201mol)を、内温を5℃以下に保ちながら静かに滴下し、室温に戻し18時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液に酢酸エチル(200mL)を加え、分液ロートを用いて炭酸カリウム10%水溶液(100mL)で3回、及び純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=9/1(容量比))にて行い、溶媒留去と真空乾燥を行うことによりAdd-1(35.6g:収率86%、無色透明液体)を得た。H-NMR測定により目的物であることを確認した。重合禁止剤としてBHT(0.01mol%分)を添加して使用した。
 H-NMR(500MHz) in DMSO-d: 7.28-7.15(5H)、6.02(1H)、5.64(1H)、4.90-4.88(1H)、2.62-2.55(2H)、1.90-1.85(2H+3H)、1.59-1.54(2H)、1.30-1.28(2H)、0.88-0.86(3H)[ppm]
(Second step)
Add-1a (30.0 g: 0.168 mol), TEA (triethylamine, 25.5 g: 0.252 mol), and THF (300 mL) were weighed and dissolved in a 500 mL four-necked flask equipped with a stir bar. After cooling this solution to 0 ° C. in an ice bath, a methylyloyl chloride (21.1 g: 0.201 mol) was gently added dropwise while keeping the internal temperature at 5 ° C. or lower, and the mixture was returned to room temperature and stirred for 18 hours. After confirming the completion of the reaction by HPLC, ethyl acetate (200 mL) was added to this reaction solution, and 3 times with a 10% aqueous solution of potassium carbonate (100 mL) and 3 times with pure water (100 mL) using a separating funnel. Washed. After washing, the product was dehydrated with magnesium sulfate and distilled off with a rotary evaporator to obtain a crude product. Purification is performed by silica gel column chromatography (developing solvent: n-hexane / ethyl acetate = 9/1 (volume ratio)), and by distilling off the solvent and vacuum drying, Add-1 (35.6 g: yield 86). %, A colorless transparent liquid) was obtained. 1 It was confirmed by 1 H-NMR measurement that it was the target product. BHT (for 0.01 mol%) was added and used as a polymerization inhibitor.
1 1 H-NMR (500 MHz) in DMSO-d 6 : 7.28-7.15 (5H), 6.02 (1H), 5.64 (1H), 4.90-4.88 (1H), 2 .62-2.55 (2H), 1.90-1.85 (2H + 3H), 1.59-1.54 (2H), 1.30-1.28 (2H), 0.88-0.86 (3H) [ppm]
<<液晶配向剤の調製>>
<調製例1 液晶配向剤AL-1の調製>
 撹拌子を備えた50mL三角フラスコに、上記合成例3で得られたポリアミック酸溶液(PAA-1)を20.0g量り取り、NMP(8.0g)及びBCS(12.0g)を加え、室温で1時間撹拌することで、液晶配向剤(AL-1)を得た。
<< Preparation of liquid crystal alignment agent >>
<Preparation Example 1 Preparation of liquid crystal alignment agent AL-1>
Weigh 20.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 3 above into a 50 mL Erlenmeyer flask equipped with a stirrer, add NMP (8.0 g) and BCS (12.0 g), and add room temperature. The liquid crystal alignment agent (AL-1) was obtained by stirring with the mixture for 1 hour.
<調製例2 液晶配向剤AL-2の調製>
 撹拌子を備えた50mL三角フラスコに、上記合成例4で得られたポリアミック酸溶液(PAA-2)を20.0g量り取り、NMP(15.0g)及びBCS(15.0g)を加え、室温で1時間撹拌することで、液晶配向剤(AL-2)を得た。
<Preparation Example 2 Preparation of liquid crystal alignment agent AL-2>
Weigh 20.0 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 4 above into a 50 mL Erlenmeyer flask equipped with a stirrer, add NMP (15.0 g) and BCS (15.0 g), and add room temperature. The liquid crystal alignment agent (AL-2) was obtained by stirring with the mixture for 1 hour.
<調製例3 ラジカル発生膜形成組成物AL-3の調製>
 撹拌子を備えた50mL三角フラスコに、上記合成例5で得られたポリアミック酸溶液(PAA-3)を20.0g量り取り、NMP(8.0g)及びBCS(12.0g)を加え、室温で1時間撹拌することで、ラジカル発生膜形成組成物(AL-3)を得た。
<Preparation Example 3 Preparation of Radical Generation Film Forming Composition AL-3>
Weigh 20.0 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 5 above into a 50 mL Erlenmeyer flask equipped with a stirrer, add NMP (8.0 g) and BCS (12.0 g), and add to room temperature. The radical-generating film-forming composition (AL-3) was obtained by stirring with the mixture for 1 hour.
<実施例1 ラジカル発生膜形成組成物AL-4の調製>
 撹拌子を備えた50mL三角フラスコに、上記調製例1で得られた液晶配向剤(AL-1)を20.0g量り取り、上記合成例1で得られたAdd-C1(0.06g)を加え、室温で1時間撹拌することで、本発明で使用するラジカル発生膜形成組成物(AL-4)を得た。
<Example 1 Preparation of radical generation film forming composition AL-4>
In a 50 mL Erlenmeyer flask equipped with a stirrer, weigh 20.0 g of the liquid crystal alignment agent (AL-1) obtained in Preparation Example 1 above, and add Add-C1 (0.06 g) obtained in Synthesis Example 1 above. In addition, the mixture was stirred at room temperature for 1 hour to obtain a radical-generating film-forming composition (AL-4) used in the present invention.
<実施例2 ラジカル発生膜形成組成物AL-5の調製>
 撹拌子を備えた50mL三角フラスコに、上記調製例1で得られた液晶配向剤(AL-1)を19.0g量り取り、上記合成例2で得られたAdd-C2の溶液(1.0g)を加え、室温で1時間撹拌することで、本発明で使用するラジカル発生膜形成組成物(AL-5)を得た。
<Example 2 Preparation of radical generation film forming composition AL-5>
In a 50 mL Erlenmeyer flask equipped with a stirrer, 19.0 g of the liquid crystal alignment agent (AL-1) obtained in Preparation Example 1 was weighed, and a solution (1.0 g) of Add-C2 obtained in Synthesis Example 2 was added. ) Was added, and the mixture was stirred at room temperature for 1 hour to obtain a radical-generating film-forming composition (AL-5) used in the present invention.
<実施例3 ラジカル発生膜形成組成物AL-6の調製>
 撹拌子を備えた50mL三角フラスコに、上記調製例2で得られた液晶配向剤(AL-2)を20.0g量り取り、上記合成例1で得られたAdd-C1(0.06g)を加え、室温で1時間撹拌することで、本発明で使用するラジカル発生膜形成組成物(AL-6)を得た。
<Example 3 Preparation of radical generation film forming composition AL-6>
In a 50 mL Erlenmeyer flask equipped with a stirrer, weigh 20.0 g of the liquid crystal alignment agent (AL-2) obtained in Preparation Example 2 above, and add Add-C1 (0.06 g) obtained in Synthesis Example 1 above. In addition, the mixture was stirred at room temperature for 1 hour to obtain a radical-generating film-forming composition (AL-6) used in the present invention.
<実施例4 ラジカル発生膜形成組成物AL-7の調製>
 撹拌子を備えた50mL三角フラスコに、上記調製例2で得られた液晶配向剤(AL-2)を19.0g量り取り、上記合成例2で得られたAdd-C2の溶液(1.0g)を加え、室温で1時間撹拌することで、本発明で使用するラジカル発生膜形成組成物(AL-7)を得た。
<Example 4 Preparation of radical generation film forming composition AL-7>
In a 50 mL Erlenmeyer flask equipped with a stirrer, 19.0 g of the liquid crystal alignment agent (AL-2) obtained in Preparation Example 2 was weighed, and a solution (1.0 g) of Add-C2 obtained in Synthesis Example 2 was added. ) Was added, and the mixture was stirred at room temperature for 1 hour to obtain a radical-generating film-forming composition (AL-7) used in the present invention.
<実施例5 ラジカル発生膜形成組成物AL-8の調製>
 撹拌子を備えた50mL三角フラスコに、SE-6414(日産化学社製、固形分濃度:6.0質量%)を20.0g量り取り、上記合成例1で得られたAdd-C1(0.06g)を加え、室温で1時間撹拌することで、本発明で使用するラジカル発生膜形成組成物(AL-8)を得た。
<Example 5 Preparation of radical generation film forming composition AL-8>
20.0 g of SE-6414 (manufactured by Nissan Chemical Industries, Ltd., solid content concentration: 6.0% by mass) was weighed in a 50 mL Erlenmeyer flask equipped with a stirrer, and Addd-C1 (0. 06 g) was added, and the mixture was stirred at room temperature for 1 hour to obtain a radical-generating film-forming composition (AL-8) used in the present invention.
<実施例6 ラジカル発生膜形成組成物AL-9の調製>
 撹拌子を備えた50mL三角フラスコに、SE-6414(日産化学社製、固形分濃度:6.0質量%)を19.0g量り取り、上記合成例2で得られたAdd-C2の溶液(1.0g)を加え、室温で1時間撹拌することで、本発明で使用するラジカル発生膜形成組成物(AL-9)を得た。
<Example 6 Preparation of radical generation film forming composition AL-9>
19.0 g of SE-6414 (manufactured by Nissan Chemical Industries, Ltd., solid content concentration: 6.0% by mass) was weighed in a 50 mL Erlenmeyer flask equipped with a stirrer, and the solution of Addd-C2 obtained in the above Synthesis Example 2 ( 1.0 g) was added and stirred at room temperature for 1 hour to obtain a radical-generating film-forming composition (AL-9) used in the present invention.
<液晶表示素子の作成>
 以下に、液晶配向性及び電気光学応答を評価するための液晶セルの作製方法を示す。
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmの無アルカリガラス基板である。基板上には電極幅が3μm、電極と電極の間隔が6μm、基板の長辺に対して10°の角度となるような櫛歯型パターンを備えたITO(Indium-Tin-Oxide)電極が形成され、第1画素と第2画素を形成している。各画素のサイズは、縦5mmで横約5mmである。以後IPS基板と呼ぶ。
 次に、上記の方法で得られたラジカル発生膜形成組成物AL-3~AL-9、及び液晶配向剤AL-2、並びに水平配向用の液晶配向剤であるSE-6414(日産化学社製)を孔径1.0μmのフィルターで濾過した後、準備された上記IPS基板と、裏面にITO膜が成膜されており、かつ高さ3.0μmの柱状のスペーサーを有する裏面ITO基板(以後対向基板と呼ぶ)にスピンコート法にて塗布・成膜を行った。次いで、80℃のホットプレート上で80分乾燥後、230℃で20分焼成し、膜厚100nmの塗膜を得た。IPS基板側の塗膜においては、櫛歯の方向に添う方向で配向処理を行い、対向基板側の塗膜においては櫛歯電極と直交する方向に配向処理を行った。尚、配向処理においてはAL-3、AL-4、AL-5、AL-8、AL-9及びSE-6414においてはラビング法を用い、飯沼ゲージ社製ラビング装置、吉川化工社製ラビング布(YA-20R)、ラビングローラー(径10.0cm)、ステージ送り速度30mm/s、ローラー回転数700rpm、押し込み圧0.4mmにて行った。AL-2、AL-3、AL-6、及びAL-7においては光配向法を用い、いずれもウシオ電機社製のUV露光装置を用いて、消光比が約26:1の直線偏光UVを、254nmの波長を基準として照射量300mJ/cmになるように偏光UVを照射し、230℃にて20分加熱することで行い配向処理を行った。
 その後、上記2種類の基板を用いて、以下表1及び表4に示す組み合わせにて、それぞれの配向方向が平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが約3.3μmの空セルを作製した。この空セルに、添加剤Add-1を2.0質量%混合させた液晶組成物を、比較対象とする一部の表示素子(比較例1及び4)においては無添加の液晶組成物をそれぞれ常温で真空注入した後、注入口を封止して、アンチパラレル配向の液晶セルとした。尚、使用した液晶混合物はMLC-3019(Merck社製)を用いた。
<Creation of liquid crystal display element>
The method for producing a liquid crystal cell for evaluating the liquid crystal orientation and the electro-optic response is shown below.
First, a substrate with electrodes was prepared. The substrate is a non-alkali glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. An ITO (Indium-Tin-Oxide) electrode having a comb-shaped pattern such that the electrode width is 3 μm, the distance between the electrodes is 6 μm, and the angle is 10 ° with respect to the long side of the substrate is formed on the substrate. The first pixel and the second pixel are formed. The size of each pixel is 5 mm in length and about 5 mm in width. Hereinafter referred to as an IPS board.
Next, the radical-generating film-forming compositions AL-3 to AL-9 obtained by the above method, the liquid crystal alignment agent AL-2, and the liquid crystal alignment agent SE-6414 for horizontal alignment (manufactured by Nissan Chemical Industries, Ltd.). ) Is filtered through a filter having a pore size of 1.0 μm, and then the prepared IPS substrate and the back surface ITO substrate having an ITO film formed on the back surface and having a columnar spacer having a height of 3.0 μm (hereinafter, opposed to each other). The substrate) was coated and filmed by the spin coating method. Then, it was dried on a hot plate at 80 ° C. for 80 minutes and then fired at 230 ° C. for 20 minutes to obtain a coating film having a film thickness of 100 nm. The coating film on the IPS substrate side was oriented along the direction of the comb teeth, and the coating film on the opposite substrate side was oriented in the direction orthogonal to the comb teeth electrode. In the alignment process, the rubbing method is used for AL-3, AL-4, AL-5, AL-8, AL-9 and SE-6414, and the rubbing device manufactured by Iinuma Gauge and the rubbing cloth manufactured by Yoshikawa Kako Co., Ltd. ( YA-20R), a rubbing roller (diameter 10.0 cm), a stage feed rate of 30 mm / s, a roller rotation speed of 700 rpm, and a pushing pressure of 0.4 mm. In AL-2, AL-3, AL-6, and AL-7, the photo-alignment method is used, and all of them use a UV exposure device manufactured by Ushio, Inc. to obtain linearly polarized UV having an extinction ratio of about 26: 1. Polarized UV was irradiated so that the irradiation amount was 300 mJ / cm 2 with respect to the wavelength of 254 nm, and the alignment was performed by heating at 230 ° C. for 20 minutes.
Then, using the above two types of substrates, combine them in the combinations shown in Tables 1 and 4 so that their orientation directions are parallel to each other, and seal the surroundings while leaving the liquid crystal injection port, and the cell gap is about. An empty cell of 3.3 μm was prepared. A liquid crystal composition obtained by mixing 2.0% by mass of the additive Add-1 in this empty cell is used, and a liquid crystal composition without additives is used in some of the display elements (Comparative Examples 1 and 4) to be compared. After vacuum injection at room temperature, the injection port was sealed to obtain an anti-parallel oriented liquid crystal cell. The liquid crystal mixture used was MLC-3019 (manufactured by Merck & Co., Ltd.).
 得られた液晶セルは、IPSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理を行い、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射して液晶表示素子を得た。 The obtained liquid crystal cell constitutes an IPS mode liquid crystal display element. After that, the obtained liquid crystal cell was heat-treated at 120 ° C. for 10 minutes, and UV (UV lamp: FLR40SUV32 / A-1) was applied using a UV-FL irradiation device manufactured by Toshiba Lighting & Technology Corporation in a state where no voltage was applied. Irradiation for 30 minutes was performed to obtain a liquid crystal display element.
<液晶配向性の評価>
 偏光顕微鏡を用い、偏光版をクロスニコルに設定し、液晶セルの輝度が最も小さくなる状態で固定し、そこから1°液晶セルを回転させ、液晶の配向状態の観察を行った。ムラやドメイン等の配向不良が観察されない場合あるいは非常に軽微な場合は「良好」とし、明確に観察された場合は「不良」と定義して評価を行った。
 また、同偏光顕微鏡にフォトダイオードを取り付け、電流-電圧変換アンプを介してエレクトロメーターに接続し、クロスニコル下で輝度が最も小さくなる条件での電圧をモニターすることで黒輝度の測定を行った。
<Evaluation of liquid crystal orientation>
Using a polarizing microscope, the polarizing plate was set to cross Nicol, the liquid crystal cell was fixed in the state where the brightness was the smallest, and the liquid crystal cell was rotated by 1 ° from the state, and the alignment state of the liquid crystal was observed. When no misalignment such as unevenness or domain was observed or when it was very slight, it was defined as "good", and when it was clearly observed, it was defined as "poor" and evaluated.
In addition, a photodiode was attached to the same polarizing microscope, connected to an electrometer via a current-voltage conversion amplifier, and the black brightness was measured by monitoring the voltage under the condition where the brightness was the lowest under the cross Nicol. ..
<V-Tカーブの測定と駆動閾値電圧、最大輝度電圧、透過率評価>
 光軸が合うように白色LEDバックライトと輝度計をセットし、その間に、輝度が最も小さくなるように偏光板を取り付けた液晶セル(液晶表示素子)をセットし、1V間隔で8Vまで電圧を印加し、電圧における輝度を測定することでV-Tカーブの測定を行った。得られたV-Tカーブから輝度が最大になる電圧(Vmax)の値を見積もった。また、電圧無印加の液晶セルを介して、パラレルニコル時の透過輝度を100%とし、V-Tカーブでの最大透過輝度を比較することにより最大透過率(Tmax)として見積もった。
<Measurement of VT curve and drive threshold voltage, maximum luminance voltage, transmittance evaluation>
A white LED backlight and a luminance meter are set so that the optical axes are aligned, and a liquid crystal cell (liquid crystal display element) with a polarizing plate is set between them so that the luminance is minimized, and the voltage is applied to 8V at 1V intervals. The VT curve was measured by applying and measuring the luminance at voltage. From the obtained VT curve, the value of the voltage (Vmax) at which the brightness was maximized was estimated. Further, the maximum transmittance (Tmax) was estimated by comparing the maximum transmitted luminance in the VT curve with the transmitted luminance at the time of parallel Nicol set to 100% via the liquid crystal cell to which no voltage was applied.
<応答時間(Ton、Toff)の測定>
 上記V-Tカーブの測定で使用した装置を用い、輝度計をオシロスコープに接続し、最大輝度になる電圧を印加した際の応答速度(Ton)及び電圧を0Vに戻した際の応答速度(Toff)を測定した。
<Measurement of response time (Ton, Toff)>
Using the device used in the above VT curve measurement, connect the luminance meter to the oscilloscope, and the response speed (Ton) when the voltage that maximizes the brightness is applied and the response speed (Toff) when the voltage is returned to 0V. ) Was measured.
<VHR>
[電圧保持率の評価]
 UV照射後の液晶セルを用いて電圧保持率を測定した。
 常温での電圧保持率の測定を行った。作成した液晶セルに、23℃の温度下で4Vの電圧を60μs間印加し、16.7ms後の電圧を測定することで、電圧がどのくらい保持できているかを電圧保持率として計算した。
 また、高温での電圧保持率の測定を行った。作成した液晶セルに、70℃の温度下で1Vの電圧を60μs間印加し、1667ms後の電圧を測定することで、電圧がどのくらい保持できているかを電圧保持率として計算した。
 なお、電圧保持率の測定には株式会社東陽テクニカ製のVHR-1電圧保持率測定装置を使用した。
<VHR>
[Evaluation of voltage retention rate]
The voltage retention rate was measured using a liquid crystal cell after UV irradiation.
The voltage retention rate at room temperature was measured. A voltage of 4 V was applied to the prepared liquid crystal cell at a temperature of 23 ° C. for 60 μs, and the voltage after 16.7 ms was measured to calculate how much the voltage could be maintained as the voltage retention rate.
In addition, the voltage retention rate at high temperature was measured. A voltage of 1 V was applied to the prepared liquid crystal cell at a temperature of 70 ° C. for 60 μs, and the voltage after 1667 ms was measured to calculate how much the voltage could be maintained as the voltage retention rate.
A VHR-1 voltage holding rate measuring device manufactured by Toyo Corporation was used to measure the voltage holding rate.
<焼き付き評価>
 それぞれの液晶セルの第1画素領域に輝度が最大になる矩形波電圧(60Hz)を印加し、もう一方の第2画素領域には電圧を印加しない状態を作り、60℃で168時間駆動させエージングを行った。エージング後の第1画素と第2画素の輝度を比較することにより焼き付きの評価を行った。輝度の差が小さいほど良好とする。
<Burn-in evaluation>
A rectangular wave voltage (60 Hz) that maximizes the brightness is applied to the first pixel region of each liquid crystal cell, a state is created in which no voltage is applied to the other second pixel region, and the battery is driven at 60 ° C. for 168 hours for aging. Was done. Burn-in was evaluated by comparing the brightness of the first pixel and the second pixel after aging. The smaller the difference in brightness, the better.
 ラビング法にて作製した液晶表示素子における実施例及び比較例の評価結果を表2~表3に示す。 Tables 2 to 3 show the evaluation results of Examples and Comparative Examples in the liquid crystal display element manufactured by the rubbing method.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 実施例7~10及び比較例2はIPS基板に光ラジカル発生膜を使用し、対向基板に液晶配向膜を使用したものであり、実施例11~14及び比較例3はIPS基板に液晶配向膜を使用し、対向基板に光ラジカル発生膜を使用したものであり、比較例1はIPS基板、対向基板共にSE-6414を使用したものである。実施例7~14の黒輝度はいずれの比較例の結果よりも良好な結果を示し、実施例7~14のVHR、焼き付きは共に良好な結果が得られた。実施例7~14の応答速度(Toff)に関しても比較例2、3と比べ速くなっているのが分かる。比較例2及び3はポリイミド中に光ラジカル発生部位を有するジアミンを用いて光ラジカル発生部位を導入したものになるが、特に水平配向に関しては、側鎖構造の導入は液晶配向性を著しく損なうため好ましくないことが挙げられ、その結果黒輝度や焼き付きが悪くなったことが考えられる。また、弱アンカリング特性を得るためにはDA-4のようなジアミンを比較的多く導入する必要があり、その結果VHRも悪化する傾向がある。一方で、本発明のラジカル発生膜形成組成物を用いて得られた光ラジカル発生膜は通常の水平配向膜に光ラジカル発生部位を有するケイ素含有化合物を少量添加することで効果を得ることができるため、液晶配向性が良好な状態で弱アンカリング化ができ、結果として黒輝度や焼き付きが良好になることに加え、VHRの低下も抑制できる。更には適度に強いアンカリングエネルギー状態の領域を残すことができるため応答速度(Toff)が改善できたと考えられる。 Examples 7 to 10 and Comparative Example 2 use a photoradical generating film as an IPS substrate and a liquid crystal alignment film as an opposed substrate, and Examples 11 to 14 and Comparative Example 3 use a liquid crystal alignment film as an IPS substrate. In Comparative Example 1, SE-6414 was used for both the IPS substrate and the facing substrate. The black luminance of Examples 7 to 14 showed better results than the results of any of the Comparative Examples, and the VHR and burn-in of Examples 7 to 14 both gave good results. It can be seen that the response speeds (Toff) of Examples 7 to 14 are also faster than those of Comparative Examples 2 and 3. In Comparative Examples 2 and 3, the photoradical generation site is introduced by using a diamine having a photoradical generation site in the polyimide, but especially with respect to the horizontal orientation, the introduction of the side chain structure significantly impairs the liquid crystal orientation. It is considered that it is not preferable, and as a result, the black brightness and the burn-in are deteriorated. Further, in order to obtain weak anchoring characteristics, it is necessary to introduce a relatively large amount of diamine such as DA-4, and as a result, VHR tends to be deteriorated. On the other hand, the photoradical generation film obtained by using the radical generation film forming composition of the present invention can be effective by adding a small amount of a silicon-containing compound having a photoradical generation site to a normal horizontal alignment film. Therefore, weak anchoring can be performed in a state where the liquid crystal orientation is good, and as a result, black brightness and burn-in are improved, and a decrease in VHR can be suppressed. Furthermore, it is considered that the response speed (Toff) could be improved because a region of a moderately strong anchoring energy state could be left.
 光配向を用いて作製した液晶表示素子における実施例及び比較例の結果を表5~表6に示す。 Tables 5 to 6 show the results of Examples and Comparative Examples in the liquid crystal display element manufactured by using the optical orientation.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 実施例15、実施例16、及び比較例5はそれぞれIPS基板に光ラジカル発生膜を用い、対向基板に光配向膜を使用したものであり、実施例17、実施例18、及び比較例6はそれぞれIPS基板に光配向膜を用い、対向基板に光ラジカル発生膜を使用したものであり、比較例4は両方の基板に光配向膜を使用したもののである。これらもラビング法で作製したものと同様の結果を示し、本発明の効果が確認できる。
 光ラジカル発生部位が導入されたケイ素含有化合物を通常の液晶配向膜に少量添加するだけで弱アンカリングIPS製造に必要な光ラジカル発生膜を製造することが可能であり、ラビング用液晶配向膜と光配向用液晶配向膜の両方でも同様に効果が得られ、液晶配向膜の組成に依存せず良好な弱アンカリング特性を得ることができることが判明した。
Examples 15, 16, and Comparative Example 5 each use a photoradical generation film for the IPS substrate and a photoalignment film for the facing substrate, and Examples 17, 18, and Comparative Example 6 are In each case, a photoalignment film is used for the IPS substrate and a photoradical generation film is used for the facing substrate, and in Comparative Example 4, a photoalignment film is used for both substrates. These also show the same results as those produced by the rubbing method, and the effect of the present invention can be confirmed.
It is possible to produce a photoradical generation film necessary for the production of weak anchoring IPS by simply adding a small amount of a silicon-containing compound into which a photoradical generation site has been introduced to a normal liquid crystal alignment film. It was found that the same effect was obtained with both the liquid crystal alignment films for photoalignment, and good weak anchoring characteristics could be obtained regardless of the composition of the liquid crystal alignment film.
 本発明によれば、簡便に製造でき、低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現でき、加えて良好な黒表示が得られ、焼き付きの抑制が良好な横電界液晶表示素子を提供することができ、また良好な信頼性の液晶表示素子を得ることができる。よって本発明の方法で得られる液晶表示素子は、横電界駆動方式の液晶表示素子として有用である。 According to the present invention, it can be easily manufactured, a low drive voltage and a high response speed when the voltage is turned off can be realized at the same time, and a good black display can be obtained, and a transverse electric field liquid crystal display having good seizure suppression can be obtained. A display element can be provided, and a liquid crystal display element with good reliability can be obtained. Therefore, the liquid crystal display element obtained by the method of the present invention is useful as a horizontal electric field drive type liquid crystal display element.
 1  横電界液晶表示素子
 2  櫛歯電極基板
 2a 基材
 2b 線状電極
 2c 液晶配向膜
 2d 基材
 2e 面電極
 2f 絶縁膜
 2g 線状電極
 2h 液晶配向膜
 3  液晶
 4  対向基板
 4a 液晶配向膜
 4b 基材
 L  電気力線

 
1 Transverse electric field liquid crystal display element 2 Comb tooth electrode substrate 2a Base material 2b Linear electrode 2c Liquid crystal alignment film 2d Base material 2e Surface electrode 2f Insulation film 2g Linear electrode 2h Liquid crystal alignment film 3 Liquid crystal 4 Opposing substrate 4a Liquid crystal alignment film 4b base Material L Electric power wire

Claims (13)

  1.  成分(A):横電界駆動用液晶配向剤の配向成分として用いられる重合体、及び
     成分(B):下記式(1)で表される基を有するケイ素含有化合物、
    を含有するラジカル発生膜形成組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、*は結合部位を表し、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表す。
     Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、及び二価の複素環から選ばれる基で置き換えられていてもよく、さらに、当該アルキレン基の任意の-CH-又は-CF-の1以上は、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの少なくともいずれかの基で置き換えられていてもよい。
     Rは、ラジカル重合を誘発する有機基を表す。)
    Component (A): Polymer used as an alignment component of a liquid crystal alignment agent for driving a transverse electric field, and component (B): a silicon-containing compound having a group represented by the following formula (1).
    A radical generation film forming composition containing.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), * represents a binding site, R 1 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-,- Represents CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
    R 2 represents an alkylene group having 1 to 20 carbon atoms which is single-bonded, or unsubstituted or substituted with a fluorine atom, and one or more of any -CH 2- or -CF 2- of the alkylene group is independent of each other. May be replaced with a group selected from -CH = CH-, a divalent carbocycle, and a divalent heterocycle, and any one of the alkylene group -CH 2- or -CF 2- . The above is provided at least on the condition that any of the following groups, that is, -O-, -COO-, -OCO-, -NHCO-, -CONH-, or -NH- is not adjacent to each other. It may be replaced by either group.
    R 3 represents an organic group that induces radical polymerization. )
  2.  前記式(1)で表される基を有するケイ素含有化合物が、下記式(2)で表されるケイ素含有化合物、下記式(2)で表されるケイ素含有化合物を含む加水分解性有機ケイ素化合物の加水分解縮合物、及び下記式(2)で表されるケイ素含有化合物を用いて表面修飾された微粒子の少なくともいずれかである、請求項1に記載のラジカル発生膜形成組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Zは前記式(1)で表される基であり、Rはそれぞれ独立して水素原子又は炭素数1~5のアルキル基を表し、Rは炭素数1~10のアルキレン基を表し、R’は炭素数1~5のアルキル基を表し、xは2または3を表す。)
    The silicon-containing compound having a group represented by the formula (1) is a hydrolyzable organic silicon compound containing a silicon-containing compound represented by the following formula (2) and a silicon-containing compound represented by the following formula (2). The radical-generating film-forming composition according to claim 1, which is at least one of the hydrolyzed condensate of No. 1 and the fine particles surface-modified with the silicon-containing compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), Z is a group represented by the above formula (1), R independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 4 has 1 to 10 carbon atoms. Represents an alkylene group of, R'represents an alkyl group having 1 to 5 carbon atoms, and x represents 2 or 3).
  3.  Rが、下記式[X-1]~[X-18]、[W]、[Y]又は[Z]で表されるラジカル重合を誘発する有機基を表す、請求項1又は2に記載のラジカル発生膜形成組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式[X-1]~[X-18]中、*は結合部位を示し、S及びSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R及びRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式[W]、[Y]及び[Z]中、*は結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記のいずれかの構造を表す。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)。Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
    The invention according to claim 1 or 2, wherein R 3 represents an organic group that induces radical polymerization represented by the following formulas [X-1] to [X-18], [W], [Y] or [Z]. Radical-generating film-forming composition.
    Figure JPOXMLDOC01-appb-C000003
    (In formulas [X-1] to [X-18], * indicates a binding site, S 1 and S 2 independently represent -O-, -NR-, or -S-, and R is hydrogen. Represents an atom or an alkyl group having 1 to 10 carbon atoms (among the alkyl groups having 1 to 10 carbon atoms, a part of the −CH2- group of the alkyl group having 2 to 10 carbon atoms is replaced with an oxygen atom. However, in S2R or NR, when a part of the −CH2 - group of the alkyl group is replaced with an oxygen atom, the oxygen atom is not directly bonded to S2 or N. R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formulas [W], [Y] and [Z], * indicates a bond site, and Ar is a group consisting of phenylene, naphthylene, and biphenylylene which may have an organic group and / or a halogen atom as a substituent. Representing the aromatic hydrocarbon group of choice, R 9 and R 10 each independently represent an alkyl group with 1-10 carbon atoms or an alkoxy group with 1-10 carbon atoms, with R 9 and R 10 being alkyl groups. In the case, they may be bonded to each other at the ends to form a ring structure. Q represents any of the following structures.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond. The site is shown.). S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-. R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
  4.  前記成分(A)としての前記重合体が、ポリイミド前駆体又はポリイミドである、請求項1~3のいずれかに記載のラジカル発生膜形成組成物。 The radical generation film-forming composition according to any one of claims 1 to 3, wherein the polymer as the component (A) is a polyimide precursor or a polyimide.
  5.  前記成分(A)としての前記重合体が、ラジカル重合を誘発する有機基を有しない、請求項1~4のいずれかに記載のラジカル発生膜形成組成物。 The radical-generating film-forming composition according to any one of claims 1 to 4, wherein the polymer as the component (A) does not have an organic group that induces radical polymerization.
  6.  前記成分(A)に対する前記成分(B)の含有量が、0.1~20質量%である、請求項1~5のいずれかに記載のラジカル発生膜形成組成物。 The radical generating film forming composition according to any one of claims 1 to 5, wherein the content of the component (B) with respect to the component (A) is 0.1 to 20% by mass.
  7.  請求項1~6のいずれかに記載のラジカル発生膜形成組成物を用いて得られるラジカル発生膜。 A radical generation film obtained by using the radical generation film forming composition according to any one of claims 1 to 6.
  8.  請求項7に記載のラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ、
     前記第一基板における前記ラジカル発生膜が前記第二基板に対向するように、前記第一基板および前記第二基板を対向配置するステップ、
     前記第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップ、および
     前記液晶組成物を、前記ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるステップ、
    を含む液晶表示素子の製造方法。
    The step of preparing the first substrate having the radical generation film according to claim 7 and the second substrate which may have the radical generation film.
    A step of arranging the first substrate and the second substrate facing each other so that the radical generation film on the first substrate faces the second substrate.
    The step of filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound between the first substrate and the second substrate, and the liquid crystal composition in contact with the radical generating film, said. Steps to polymerize radically polymerizable compounds,
    A method for manufacturing a liquid crystal display element including.
  9.  前記第二基板がラジカル発生膜を有しない第二基板である、請求項8に記載の液晶表示素子の製造方法。 The method for manufacturing a liquid crystal display element according to claim 8, wherein the second substrate is a second substrate having no radical generation film.
  10.  前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である、請求項8に記載の液晶表示素子の製造方法。 The method for manufacturing a liquid crystal display element according to claim 8, wherein the second substrate is a substrate coated with a liquid crystal alignment film having uniaxial orientation.
  11.  前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜である、請求項10に記載の液晶表示素子の製造方法。 The method for manufacturing a liquid crystal display element according to claim 10, wherein the liquid crystal alignment film having uniaxial orientation is a liquid crystal alignment film for horizontal alignment.
  12.  前記第一基板および前記第二基板のいずれか一方が櫛歯電極を有する基板である、請求項8~11のいずれかに記載の液晶表示素子の製造方法。 The method for manufacturing a liquid crystal display element according to any one of claims 8 to 11, wherein either the first substrate or the second substrate is a substrate having a comb tooth electrode.
  13.  第一基板、前記第一基板に対向して配置された第二基板、および前記第一基板と前記第二基板との間に充填された液晶を有し、
     前記液晶及びラジカル重合性化合物を含有する液晶組成物を、請求項7に記載のラジカル発生膜を有する前記第一基板の前記ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させてなる、ことを特徴とする液晶表示素子。

     
    It has a first substrate, a second substrate arranged facing the first substrate, and a liquid crystal display filled between the first substrate and the second substrate.
    The radically polymerizable compound is polymerized in a state where the liquid crystal composition containing the liquid crystal and the radically polymerizable compound is in contact with the radically generated film of the first substrate having the radically generated film according to claim 7. A liquid crystal display element characterized by radical polymerization.

PCT/JP2021/039523 2020-10-27 2021-10-26 Radical generation film-forming composition, radical generation film, method for manufacturing liquid crystal display element, and liquid crystal display element WO2022092098A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237016397A KR20230095990A (en) 2020-10-27 2021-10-26 Radical generating film forming composition, radical generating film, manufacturing method of liquid crystal display element, and liquid crystal display element
JP2022559168A JPWO2022092098A1 (en) 2020-10-27 2021-10-26
CN202180073116.6A CN116507643A (en) 2020-10-27 2021-10-26 Radical generating film forming composition, radical generating film, method for manufacturing liquid crystal display element, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-179543 2020-10-27
JP2020179543 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022092098A1 true WO2022092098A1 (en) 2022-05-05

Family

ID=81381515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039523 WO2022092098A1 (en) 2020-10-27 2021-10-26 Radical generation film-forming composition, radical generation film, method for manufacturing liquid crystal display element, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JPWO2022092098A1 (en)
KR (1) KR20230095990A (en)
CN (1) CN116507643A (en)
TW (1) TW202225272A (en)
WO (1) WO2022092098A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310608A (en) * 1997-05-14 1998-11-24 Jsr Corp Curable resin composition
JP2015180916A (en) * 2014-03-07 2015-10-15 Jsr株式会社 Liquid crystal display device manufacturing method
WO2019004433A1 (en) * 2017-06-30 2019-01-03 日産化学株式会社 Method for producing zero-azimuthal anchoring film, and liquid crystal display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053530B2 (en) 2004-09-14 2008-02-27 独立行政法人科学技術振興機構 Zero-plane anchoring liquid crystal alignment method and liquid crystal device
JP2013231757A (en) 2012-04-27 2013-11-14 Lg Display Co Ltd Method of aligning liquid crystal having no anchoring in plane and non-contact liquid crystal aligning method using the same, and liquid crystal display device
JP6858495B2 (en) 2016-05-27 2021-04-14 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display device and manufacturing method of liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310608A (en) * 1997-05-14 1998-11-24 Jsr Corp Curable resin composition
JP2015180916A (en) * 2014-03-07 2015-10-15 Jsr株式会社 Liquid crystal display device manufacturing method
WO2019004433A1 (en) * 2017-06-30 2019-01-03 日産化学株式会社 Method for producing zero-azimuthal anchoring film, and liquid crystal display element

Also Published As

Publication number Publication date
KR20230095990A (en) 2023-06-29
TW202225272A (en) 2022-07-01
JPWO2022092098A1 (en) 2022-05-05
CN116507643A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
JP7234924B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
WO2021020399A1 (en) Lateral-electric-field liquid crystal display element, and method for manufacturing lateral-electric-field liquid crystal cell
WO2022030602A1 (en) Liquid-crystal composition, method for producing liquid-crystal display element, and liquid-crystal display element
JP7276149B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
WO2022092088A1 (en) Composition for forming radical-generating film, radical-generating film, method for producing liquid crystal display element, and liquid crystal display element
WO2022092098A1 (en) Radical generation film-forming composition, radical generation film, method for manufacturing liquid crystal display element, and liquid crystal display element
WO2017057496A1 (en) Liquid crystal display element
WO2022071286A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
WO2022196565A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
WO2021125327A1 (en) Method for manufacturing patterned liquid crystal display element
JP7367673B2 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
JP7367674B2 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
WO2021125319A1 (en) Liquid crystal aligning agent, radical generation film and method for producing in-plane switching liquid crystal cell
WO2023120726A1 (en) Weak-anchoring liquid crystal alignment agent, and liquid cyrstal display element
JPWO2019244821A5 (en)
JPWO2019244820A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559168

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180073116.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237016397

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886216

Country of ref document: EP

Kind code of ref document: A1