WO2022091915A1 - Varnish for production of polyimide porous membrane - Google Patents

Varnish for production of polyimide porous membrane Download PDF

Info

Publication number
WO2022091915A1
WO2022091915A1 PCT/JP2021/038813 JP2021038813W WO2022091915A1 WO 2022091915 A1 WO2022091915 A1 WO 2022091915A1 JP 2021038813 W JP2021038813 W JP 2021038813W WO 2022091915 A1 WO2022091915 A1 WO 2022091915A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
film
fine particles
vinyl
organic fine
Prior art date
Application number
PCT/JP2021/038813
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 野口
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to CN202180074412.8A priority Critical patent/CN116457394A/en
Priority to JP2022559059A priority patent/JPWO2022091915A1/ja
Publication of WO2022091915A1 publication Critical patent/WO2022091915A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a varnish for producing a polyimide porous membrane.
  • polyimide and / or polyamide-imide porous membranes have been studied as filters used as gas or liquid separation membranes, separators for lithium ion batteries, fuel cell electrolyte membranes, or low dielectric constant materials.
  • a varnish in which fine particles such as silica particles are dispersed in a polymer solution of polyamic acid or polyimide is applied onto a substrate, and then applied as necessary.
  • a method is known in which a polyimide film containing fine particles is obtained by heating the film, and then fine particles such as silica particles in the polyimide film are removed using hydrofluoric acid to make the polyimide film porous (see Patent Document 1). ..
  • the orientation of the polyamic acids is hindered by the poor compatibility between the polyamic acid and the solvent containing water and the presence of the fine particles, and the polyamic acid lumps embracing the fine particles.
  • a mixture having a non-uniform composition that can cause poor formation of the coating film is likely to be formed, which leads to a defect that causes a decrease in film strength.
  • the dried organic fine particles have poor dispersion stability and solvent resistance to an organic solvent that dissolves polyamic acid, aggregates are generated, and pores are uniformly formed, and the polyimide porous membrane has good air permeability. There are problems such as difficulty in obtaining.
  • a varnish containing organic fine particles which can form a polyimide porous film having a high aperture ratio and has a uniform dispersion, a method for producing a precursor film of the polyimide porous film using the varnish, and a polyimide porous film.
  • a method for producing a film is desired.
  • the present invention has been made in view of the above problems, and is uniform including organic fine particles capable of forming a polyimide porous film having uniform and fine spherical pores having a diameter equivalent to the median diameter of the particles. It is an object of the present invention to provide a varnish composition having a composition, a method for producing a precursor film of a polyimide porous film using the above-mentioned varnish composition, and a method for producing a polyimide porous film using the precursor film.
  • a varnish composition for forming a polyimide porous film obtained by mixing a polyamic acid (A), organic fine particles (B), and a solvent (S).
  • m represents an integer of 1 to 3 and represents R represents a group represented by the following formula (i) or formula (ii).
  • R 1 represents a hydrogen atom or a methyl group
  • AO represents an alkyleneoxy group having 2 to 4 carbon atoms
  • n represents an integer of 0 to 100.
  • X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M
  • M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group.
  • the structural unit (a) derived from the vinyl-based monomer includes a structural unit (a0) derived from a monofunctional vinyl-based monomer and a structural unit (a3) derived from a polyfunctional vinyl-based monomer.
  • a varnish composition for forming a polyimide porous film obtained by mixing a polyamic acid (A), organic fine particles (B), and a solvent (S).
  • the ratio of the structural unit (a0) is 88 to 99% by mass, the ratio of the structural unit (a3) is 0.9 to 10% by mass, and the ratio of the structural unit (b0) is 0.1 to 2% by mass.
  • a method for producing a precursor film of a polyimide porous film which comprises a step of forming a precursor film, wherein the solvent (S) is removed from the coating film to form a precursor film of the polyimide porous film.
  • [5] The method for producing a polyimide porous film according to [4], which comprises a peeling step of peeling the precursor film from the substrate after the precursor film forming step.
  • [6] The method for producing a precursor film of a polyimide porous film according to [5], which comprises a winding step of winding the precursor film into a roll after the peeling step.
  • a polyimide comprising a step of producing a precursor film of a polyimide porous film by the method according to any one of [4] to [6], and then removing the organic fine particles (B) from the precursor film.
  • a method for producing a porous membrane A method for producing a porous membrane.
  • the varnish composition of the present invention can provide a polyimide porous film having spherical pores having a diameter equivalent to the median diameter of the organic fine particles contained in the varnish with a uniform distribution. Further, the method for producing a porous membrane of the present invention can produce a polyimide porous membrane having spherical pores having a uniform distribution.
  • FIG. 1 shows an SEM image of a porous membrane ((a) Example 1, (b) Example 2, (c) Example 3, and (d) Example 4).
  • FIG. 2 shows an SEM image of the porous membrane (Comparative Example 1).
  • the varnish composition targeted by the present invention contains a polyamic acid (A), specific organic fine particles (B), and a solvent (S).
  • a precursor film of a polyimide porous film can be formed.
  • a polyimide porous film mainly made of a polyimide resin can be obtained. Therefore, the varnish composition of the present invention can be used for forming a polyimide porous film.
  • a product obtained by polymerizing an arbitrary tetracarboxylic acid dianhydride and a diamine can be used without particular limitation.
  • the amount of tetracarboxylic acid dianhydride and diamine used (charged amount) is not particularly limited, but diamine is used in a ratio of 0.50 mol or more and 1.50 mol or less with respect to 1 mol of tetracarboxylic acid dianhydride. It is more preferable to use it at a ratio of 0.60 mol or more and 1.30 mol or less, and it is particularly preferable to use it at a ratio of 0.70 mol or more and 1.20 mol or less.
  • the tetracarboxylic acid dianhydride can be appropriately selected from compounds conventionally used as a raw material for synthesizing polyamic acid.
  • the tetracarboxylic acid dianhydride may be an aromatic tetracarboxylic acid dianhydride or an aliphatic tetracarboxylic acid dianhydride, but the heat resistance of the obtained polyimide resin and thus the porous film From the point of view, it is preferable to use aromatic tetracarboxylic acid dianhydride.
  • the above tetracarboxylic acid dianhydride may be used alone or in combination of two or more.
  • aromatic tetracarboxylic acid dianhydride examples include, but are not limited to, pyromellitic acid dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, and bis.
  • Examples of the aliphatic tetracarboxylic dianhydride include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexanetetracarboxylic dianhydride, 1, 2, and so on. Examples thereof include 4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride and the like. Among these, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride and pyromellitic acid dianhydride are preferable from the viewpoint of price, availability and the like.
  • the above diamine can be appropriately selected from compounds conventionally used as synthetic raw materials for polyamic acids.
  • the diamine may be an aromatic diamine or an aliphatic diamine, but an aromatic diamine is preferable from the viewpoint of heat resistance of the obtained polyimide resin and the porous membrane. These diamines may be used alone or in combination of two or more.
  • aromatic diamine a diamino compound containing one benzene ring, a diamino compound containing an aromatic skeleton in which two or more and about 10 or less benzene rings are bonded by a single bond or via a divalent linking group.
  • a diamino compound containing an aromatic skeleton in which 2 or more and 10 or less of the benzene rings are condensed can be mentioned.
  • a phenylenediamine compound and its derivative a diaminobiphenyl compound and its derivative, a diaminodiphenyl compound and its derivative, a diaminotriphenyl compound and its derivative, a diaminonaphthalene compound and its derivative, an aminophenylaminoindan compound and its derivative
  • examples thereof include a diaminotetraphenyl compound and its derivative, a diaminohexaphenyl compound and its derivative, and a cardo-type fluorangeamine derivative.
  • phenylenediamine compound examples include m-phenylenediamine, p-phenylenediamine and the like, and examples thereof include diamines in which the hydrogen atom on the benzene ring is substituted with an alkyl group such as a methyl group or an ethyl group, for example, 2. , 4-Diaminotoluene, 2,4-triphenylenediamine, etc.
  • the diaminobiphenyl compound and its derivative have a structure in which two aminophenyl groups are bonded to each other by a single bond.
  • Specific examples thereof include 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl and the like.
  • the diaminodiphenyl compound and its derivative have a structure in which two aminophenyl groups are bonded via another group (linking group).
  • the linking group (bond) include an ether bond, a sulfonyl bond, a thioether bond, a carbonyl bond, a bond with an alkylene or a derivative group thereof, an imino bond, an azo bond, a phosphine oxide bond, an amide bond, and a ureylene bond.
  • the number of carbon atoms of the alkylene bond is about 1 or more and 6 or less, and a double bond may be partially contained.
  • the derivative group of the alkylene group include an alkylene group substituted with one or more halogen atoms and the like, and an alkylene group substituted with an alkenyl group or the like.
  • diaminodiphenyl compounds and derivatives thereof examples include 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfone, 3,4'-diamino.
  • the diaminotriphenyl compound and its derivative are compounds having a structure in which two aminophenyl groups are bonded via a single bond and / or a linking group, respectively, with one phenylene group interposed therebetween.
  • As the linking group a group similar to the group mentioned in the diaminodiphenyl compound and its derivative is selected.
  • diaminotriphenyl compounds and their derivatives include 1,3-bis (m-aminophenoxy) benzene [also referred to as 1,3-bis (3-aminophenoxy) benzene] and 1,3-bis (p-amino).
  • Phenoxy) benzene [also referred to as 1,3-bis (4-aminophenoxy) benzene], 1,4-bis (p-aminophenoxy) benzene [also referred to as 1,4-bis (4-aminophenoxy) benzene], 2 , 4-Triphenylenediamine and the like can be mentioned.
  • diaminonaphthalene compound and its derivative examples include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
  • aminophenylaminoindane compound and its derivative examples include 5 or 6-amino-1- (p-aminophenyl) -1,3,3-trimethylindane.
  • diaminotetraphenyl compounds and derivatives thereof examples include 4,4'-bis (p-aminophenoxy) biphenyl, bis [4- (p-aminophenoxy) phenyl] sulfone [bis [4- (4-aminophenoxy).
  • phenyl] sulfone bis [4- (m-aminophenoxy) phenyl] sulfone [also called bis [4- (3-aminophenoxy) phenyl] sulfone], 2,2'-bis [p- (p') -Aminophenoxy) phenyl] propane [2,2-bis [4- (4-aminophenoxy) phenyl] propane], 2,2'-bis [p- (p'-aminophenoxy) phenyl] hexafluoropropane [2,2-bis [4- (4-aminophenoxy) phenyl] also referred to as hexafluoropropane], 2,2'-bis [p- (p'-aminophenoxy) biphenyl] propane, 2,2'-bis [P- (m-aminophenoxy) phenyl] benzophenone and the like can be mentioned.
  • cardo-type fluorene amine derivative examples include 9,9-bisaniline fluorene and the like.
  • aromatic diamines p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are preferable from the viewpoint of price, availability, and the like.
  • Examples of the aliphatic diamine include diamine compounds having 2 or more and 15 or less carbon atoms. Specific examples of the aliphatic diamine include pentamethylenediamine, hexamethylenediamine, heptamethylenediamine and the like.
  • the means for producing the polyamic acid (A) is not particularly limited, and a known method such as a method of reacting a tetracarboxylic acid dianhydride component with a diamine component in a solvent can be used.
  • the solvent used for the above-mentioned reaction between the tetracarboxylic acid dianhydride and the diamine is a solvent that can dissolve the tetracarboxylic acid dianhydride and the diamine and does not react with the tetracarboxylic acid dianhydride and the diamine. Not particularly limited. One type of solvent may be used alone, or two or more types may be used in combination.
  • Examples of the solvent used for the reaction between the tetracarboxylic acid dianhydride and the diamine include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, Nitrogen-containing polar solvents such as N-diethylformamide, N-methylcaprolactam, N, N, N', N'-tetramethylurea; ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, Lactone-based polar solvents such as ⁇ -caprolactone and ⁇ -caprolactone; dimethylsulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dioxane, tetrahydrofuran, methyl cellsolve
  • Etc. examples thereof include phenol-based solvents such as cresols and xylene-based mixed solvents.
  • the amount of the solvent used is not particularly limited, but it is desirable to use it so that the content of the polyamic acid (A) produced is 5% by mass or more and 50% by mass or less.
  • N-methyl-2-pyrrolidone N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N,
  • a nitrogen-containing polar solvent such as N-diethylformamide, N-methylcaprolactam, N, N, N', N'-tetramethylurea is preferable.
  • the temperature at the time of polyamic acid synthesis an arbitrary temperature of ⁇ 10 ° C. or higher and 120 ° C. or lower, preferably 5 ° C. or higher and 30 ° C. or lower can be selected.
  • the reaction time varies depending on the raw material composition used, but is usually 3 hours or more and 24 hours or less.
  • the reaction solution of the polyamic acid can be used as it is as the polyamic acid-containing liquid in the preparation of the varnish composition.
  • the content of the polyamic acid (A) in the varnish composition is not particularly limited, and is appropriately determined in consideration of the viscosity and coatability of the varnish composition and the solid content concentration of the varnish composition.
  • the polyamic acid (A) may be used alone or in combination of two or more.
  • the organic fine particles (B) used in the varnish composition of the present invention are a structural unit (a) derived from a vinyl-based monomer and a structural unit (b1) derived from a compound represented by the general formula (I) described later. ), which is a vinyl-based resin particle.
  • the organic fine particles (B) are a copolymer (copolymer) of a monomer component (mixture) containing a vinyl-based monomer and a compound represented by the general formula (I), which constitutes each of the above-mentioned structural units. It can be a polymer).
  • the organic fine particles (B) used in the varnish composition include a structural unit (a0) derived from a monofunctional vinyl-based monomer described later and a polyfunctional vinyl-based monomer described later.
  • Vinyl-based resin particles which are polymers having a structural unit (a3) derived from the above and a structural unit (b0) derived from the reactive emulsifier described later, can be used.
  • the (meth) acrylic monomer means both an acrylic monomer and a methacrylic monomer.
  • (meth) acrylic acid alkyl ester refers to acrylic acid alkyl ester and methacrylic acid alkyl ester.
  • structural unit derived from vinyl-based monomer "structural unit derived from monofunctional styrene-based monomer”
  • structural unit derived from monofunctional (meth) acrylic monomer "structural unit derived from monofunctional (meth) acrylic monomer”
  • Notations such as “structural unit derived from polyfunctional vinyl-based monomer” are vinyl-based monomer, monofunctional styrene-based monomer, monofunctional (meth) acrylic-based monomer, polyfunctional vinyl-based monomer. However, each indicates a structural unit formed when polymerized, and does not represent those monomers themselves.
  • the structural unit (a) derived from the vinyl-based monomer is distinguished from the structural unit (b0) derived from the reactive emulsifier described later and the structural unit (b1) derived from the compound represented by the general formula (I). Is to be done.
  • the structural unit (a) can include a structural unit (a0) derived from a monofunctional vinyl-based monomer and a structural unit (a3) derived from a polyfunctional vinyl-based monomer, and is also monofunctional vinyl-based.
  • the structural unit (a0) derived from the monomer includes a structural unit (a1) derived from a monofunctional styrene-based monomer and a structural unit (a2) derived from a monofunctional (meth) acrylic monomer. be able to.
  • the structural unit (a) includes both a structural unit (a0) derived from a monofunctional vinyl-based monomer and a structural unit (a3) derived from a polyfunctional vinyl-based monomer.
  • Examples of the monofunctional styrene-based monomer constituting the structural unit (a1) include styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2, Styrene such as 5-dimethylstyrene and 2,4,6-trimethylstyrene and derivatives thereof; styrene sulfonates such as sodium styrene sulfonate and ammonium styrene sulfonate can be mentioned. Among these, styrene, ⁇ -methylstyrene, and sodium styrene sulfonate can be mentioned as suitable ones.
  • the structural unit (a2) to be used may be included.
  • the structural unit derived from the (meth) acrylic monomer has the property of being easily decomposed (depolymerized) in the monomer unit regardless of whether it is monofunctional or polyfunctional, and has excellent thermal decomposition properties, and the heat of the organic fine particles (B). The decomposition temperature can be lowered.
  • Examples of the monofunctional (meth) acrylic monomer constituting the structural unit (a2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth). ) Isopropyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, 3-methylbutyl (meth) acrylate, (meth) ) N-hexyl acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, etc.
  • (Meta) acrylic acid esters having a number of 1 to 18 can be mentioned.
  • methyl (meth) acrylate and ethyl (meth) acrylate are preferable as the (meth) acrylic acid-based monomer from the viewpoint of easily obtaining organic fine particles (B) having the same particle size. It can be mentioned as a thing, and methyl (meth) acrylate is particularly preferable.
  • the structural unit (a) can include a structural unit (a3) derived from a polyfunctional vinyl-based monomer in addition to a structural unit (a0) derived from a monofunctional vinyl-based monomer.
  • a varnish composition (polyimide varnish) by containing the structural unit (a3) derived from a polyfunctional vinyl-based monomer to enhance the solvent resistance of the obtained organic fine particles (B) and swelling the organic fine particles (B). It is possible to suppress the decrease in viscosity of. Further, by including the structural unit (a3), the compressive strength is high and it becomes easy to obtain the organic fine particles (B) having the same particle size.
  • the structural unit (a3) includes a structural unit (a3-1) derived from a polyfunctional (meth) acrylic monomer and a structural unit (a3-2) derived from a polyfunctional (poly) vinyl monomer. ) Can be mentioned.
  • polyfunctional (meth) acrylic monomer constituting the structural unit (a3-1) include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3. -Butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, ethylene oxide modified 1,6-hexanediol di (meth) acrylate, 1,9 -Di (meth) acrylates of polyhydric alcohols having 1 to 10 carbon atoms such as nonanediol di (meth) acrylates, propylene oxide-modified neopentyl glycol di (meth) acrylates, and tripropylene glycol di (meth) acrylates; Polyethylene glycol di (meth) acrylate having 2 to 50 moles added, polypropylene glycol di (meth) acrylate having 2 to 50 mo
  • Alkyldi (meth) acrylate in which the number of added moles of the alkylene oxide group of 4 is 2 to 50; ethoxylated glycerintri (meth) acrylate, propylene oxide-modified glycerol tri (meth) acrylate, ethylene oxide-modified trimethyl propanetri (meth) acrylate.
  • Penta (meth) acrylate of polyvalent alcohol having 1 to 10 carbon atoms such as dipentaerythritol (monohydroxy) penta (meth) acrylate; multivalent of 1 to 10 carbon atoms such as pentaerythritol hexa (meth) acrylate.
  • Hexa (meth) acrylate of alcohol and the like can be mentioned, but the present invention is not limited thereto.
  • polyfunctional (poly) vinyl-based monomer constituting the structural unit (a3-2) include polyfunctional aliphatic vinyl monomers such as isoprene and butadiene; cyclopentadiene. , Cyclohexadiene and other polyfunctional alicyclic vinyl monomers; polyfunctional aromatic vinyl monomers such as divinylbenzene, divinyltoluene and divinylnaphthalene; divinyl adipate, divinyl maleate, divinyl phthalate, isophthalic acid Polyfunctional vinyl ester-based monomer such as divinyl; Polyfunctional allyl ester-based monomer such as diallyl maleate, diallyl phthalate, diallyl isophthalate, diallyl adipate; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether Polyfunctional vinyl ether-based monomers such as, etc .; Polyfunctional allyl ether-based monomers such as diallyl ether, diallyl ether,
  • ethylene glycol di (meth) acrylates, 1, 3 are examples of the polyfunctional vinyl-based monomer constituting the structural unit (a3) from the viewpoint that organic fine particles (B) having the same particle size can be easily obtained.
  • -Butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, divinylbenzene, divinyltoluene and the like are preferable.
  • ethylene glycol di (meth) acrylate trimethylolpropane tri (meth) acrylate, 1,3-butylene glycol di (meth).
  • examples thereof include ethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate is preferable.
  • the structural unit (a3) derived from the polyfunctional vinyl-based monomer is preferably 1% by mass to 10% by mass with respect to the total mass of the structural unit (a).
  • the polymer which is the organic fine particles (B) has the structural units (a0) [(a1), (a2)] and (a3) [(a3-1), (a3) as long as the effects of the present invention are not impaired.
  • -2)] may contain structural units derived from other vinyl-based monomers (polymerizable monomers). That is, the organic fine particles (B) can be a copolymer of a monomer component (mixture) containing other polymerizable monomers.
  • other polymerizable monomers include monofunctional (meth) acrylonitrile-based single amounts such as (meth) acrylonitrile.
  • Body Monofunctional heterocycle-containing vinyl-based monomer such as N-vinylimidazole and N-vinyl-2-pyrrolidone; Simple such as vinyl acetate (vinyl acetate), isopropenyl acetate, vinyl propionate, vinyl decanoate and the like.
  • Monofunctional vinyl ester-based monomer Monofunctional vinyl ether-based monomer such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, ethylene glycol vinyl ether; Other monofunctional vinyl compounds such as vinyl cyclopentane, vinyl cyclohexane, ethyl vinyl benzene, etc.
  • Monomer Monofunctional (meth) acrylic acid-based monomer such as (meth) acrylic acid and itaconic acid; Monofunctional (meth) acrylamide-based monomer such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide. Examples thereof include, but are not limited to, monomers.
  • the reactive emulsifier is not particularly limited as long as it is an emulsifier reactive with the above-mentioned monomer or its polymer, but has a radically polymerizable double bond, a hydrophilic functional group, and a hydrophobicity in its molecular structure. Examples thereof include those having each group and having emulsifying, dispersing, and wetting functions similar to general emulsifiers.
  • Examples of the structure of the radically polymerizable double bond in the molecular structure include 1-propenyl group, 2-methyl-1-propenyl group, allyl group, methallyl group, vinyl group, acryloyl group, metaacryloyl group and the like. Can be mentioned.
  • hydrophilic functional group in the molecular structure examples include anionic groups such as sulfate group, nitrate group, phosphate group, borate group and carboxyl group (-OSO 3- , -NO 3- , -OPO 3- , and so on. -B (OH) 4- , -COO- , etc.); Cationic groups such as amino groups ( -NH 3+ , etc.); Polyoxyalkylene chains such as polyoxyethylene, polyoxymethylene, polyoxypropylene; hydroxy groups, etc. Can be mentioned.
  • hydrophobic group in the molecular structure examples include an alkyl group, an alkenyl group, a phenyl group, an alkylphenyl group, a styrrified phenyl group, a naphthyl group and the like.
  • Reactive emulsifiers are classified into anionic emulsifiers, nonionic emulsifiers, cationic emulsifiers, amphoteric emulsifiers and the like according to the type of hydrophilic functional group contained in the molecular structure. Further, the radically polymerizable double bond, the hydrophilic functional group, and the hydrophobic group in the molecular structure of the reactive emulsifier can each have a plurality of types of structures and functional groups.
  • the reactive emulsifier preferably has at least a polyoxyalkylene chain and a sulfuric acid group as hydrophilic functional groups inside the molecular structure.
  • the trade name generally commercially available as such a reactive emulsifier is not particularly limited, but for example, Adecaria Soap SR, ER, SE, NE, PP (ADEKA Corporation), Aqualon HS, BC, KH. (Daiichi Kogyo Seiyaku Co., Ltd.), Latemuru PD (Kao Co., Ltd.), Eleminor JS, RS (Sanyo Kasei Kogyo Co., Ltd.), Antox MS (Nippon Emulsifier Co., Ltd.) and the like.
  • the organic fine particles (B) can have a structural unit (b1) derived from the compound represented by the following general formula (I).
  • the compound represented by the following general formula (I) has a hydrophobic group and a hydrophilic group in the molecule, and also has a copolymerizable unsaturated group. Therefore, the compound represented by the following general formula (I) also functions as a reactive (copolymerizable) emulsifier (corresponding to the above-mentioned reactive emulsifier), and various problems in the conventional emulsion polymerization, for example, during emulsion polymerization.
  • m represents an integer of 1 to 3, and preferably represents 2 from the viewpoint of emulsifying property.
  • AO represents an alkyleneoxy group having 2 to 4 carbon atoms.
  • the alkyleneoxy group having 2 to 4 carbon atoms include an ethyleneoxy group, a propyleneoxy group, and a butyleneoxy group.
  • ethyleneoxy group is preferable as AO. Since the ethyleneoxy group is more hydrophilic than other alkyleneoxy groups and can form a resin emulsion having a dense hydration layer, the stability of the resin particles in the aqueous dispersion medium can be further improved.
  • n represents the number of repetitions of the alkyleneoxy unit (that is, the number of moles of the alkyleneoxy group added).
  • n is an integer of 0 to 100, preferably an integer of 5 to 50, and more preferably an integer of 5 to 30, from the viewpoint of the stability of the resin particles in the aqueous dispersion medium.
  • X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group).
  • M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group.
  • the alkali metal atom include a sodium atom and a potassium atom.
  • Examples of the alkaline earth metal atom include a calcium atom and a barium atom.
  • X is preferably a hydrogen atom, -SO 3 NH 4 , -SO 3 Na, or -SO 3 K, and more preferably -SO 3 NH 4 .
  • R represents a polymerizable unsaturated group, specifically a group represented by the following formula (i) or formula (ii), and in the formula, R 1 represents a hydrogen atom or a methyl group.
  • the ratio of the structural unit (a) when the total structural unit of the polymer is 100% by mass from the viewpoint of copolymerizability at the time of polymerization, for example, the ratio of the structural unit (a) is 98.0% by mass.
  • the ratio of the structural unit (b0) (for example, the structural unit (b1)) to 99.9% by mass can be 0.1% by mass to 2.0% by mass.
  • the ratio of the structural unit (a0) is 88 to 99% by mass
  • the ratio of the structural unit (a3) is 0.9.
  • the ratio of the structural unit (b0) can be about 10% by mass and 0.1 to 2% by mass.
  • the ratio of the structural unit (b0) may be read as the ratio of the structural unit (b1), or the total of the structural unit (b1) and the structural unit (b0) other than the structural unit (b1). It may be read as a ratio.
  • the ratio of the structural unit (a1) derived from the monofunctional styrene-based monomer in the structural unit (a) is set. 10% by mass to 99% by mass, the ratio of the structural unit (a2) derived from the monofunctional (meth) acrylic monomer is 0% by mass to 80% by mass, and the structural unit derived from the polyfunctional vinyl-based monomer ( The ratio of a3) can be 1% by mass to 10% by mass, and the ratio of other structural units derived from the polymerizable monomer can be 0% by mass to 5% by mass (total of 100% by mass).
  • the content of the organic fine particles (B) in the varnish composition is not particularly limited, and is appropriately determined in consideration of the viscosity and coatability of the varnish composition and the solid content concentration of the varnish composition.
  • the organic fine particles (B) may be used alone or in combination of two or more.
  • the organic fine particles (B) are preferably particles having a median diameter D 50 of 0.05 ⁇ m to 2.0 ⁇ m.
  • a value of 50% volume diameter based on a volume measured by a dynamic light scattering method can be adopted.
  • the organic fine particles (B) used in the present invention exert an excellent aggregation suppressing effect in the dispersion, so that the organic fine particles (B) have an excellent effect.
  • the particle size can be in a relatively small range.
  • the median diameter in the above range, when a polyimide porous film is produced from the varnish composition described later, fine pores can be formed in the polyimide, and the obtained polyimide porous film can be used as a material having a low dielectric constant. It will be possible to provide. However, if the median diameter is less than 0.2 ⁇ m, the particle size may be too small to contribute to the formation of sufficient pores. Further, if it exceeds 1.5 ⁇ m, the mechanical strength of the polyimide resin to be punctured may be lowered, or the desired dielectric property may not be obtained.
  • the organic fine particles (B) have a pyrolysis temperature lower than the pyrolysis temperature of the thermosetting resin described later under atmospheric pressure.
  • the thermal decomposition temperature is a condition according to JIS K7120 (thermogravimetric analysis method for plastics), and the weight reduction due to thermal decomposition of a sample is measured by a thermogravimetric analyzer (TGA). Means the starting temperature.
  • the thermal decomposition temperature of the organic fine particles (B) in a nitrogen atmosphere is, for example, 340 to 440 ° C, preferably 370 to 410 ° C.
  • the organic fine particles (B) can be obtained by emulsion polymerization of a monomer component containing the vinyl-based monomer and the reactive emulsifier (for example, a compound represented by the general formula (I)). ..
  • the emulsification polymerization method is preferable in that particles having a small particle size can be easily obtained.
  • vinyl-based monomer various monomers mentioned in the above description [monofunctional vinyl-based monomer (monofunctional styrene-based monomer, monofunctional (meth) acrylic-based monomer), Polyfunctional vinyl-based monomers (polyfunctional (meth) acrylic monomers, polyfunctional (poly) vinyl-based monomers), and other polymerizable monomers] can be used as the reactive emulsifiers of the above-mentioned compounds and the like. Can be exemplified respectively.
  • a preferred embodiment of emulsion polymerization is to use a polymerization mixture containing the above-mentioned monomer component, a polymerization initiator, and optionally other additives (surfactant, protective colloid agent, chain transfer agent, pH adjuster, etc.) for emulsion polymerization.
  • the emulsion polymerization step may be included, and if desired, an aging step of aging the reaction solution obtained in the emulsion polymerization step may be included.
  • the emulsion polymerization is usually carried out in an aqueous dispersion medium, and the aqueous dispersion medium is not particularly limited, and examples thereof include water and a mixed solution of water and an alcohol solvent. From the viewpoint of stability (non-aggregation) of the organic fine particles (B) formed after emulsion polymerization, water is preferable as the aqueous dispersion medium.
  • the amount of the aqueous dispersion medium used can be appropriately set so that the content of the organic fine particles (B) present in the system after emulsion polymerization is a desired ratio.
  • the content of the organic fine particles (B) existing in the system is set to 1% by mass to 70% by mass, 10% by mass to 60% by mass, 20% by mass to 50% by mass, and the amount of the aqueous dispersion medium used. It may be set appropriately.
  • the polymerization initiator used for the emulsion polymerization is not particularly limited, and a known polymerization initiator can be used.
  • a known polymerization initiator can be used.
  • Azo compounds such as tetrahydrate; persulfates such as potassium persulfate and ammonium persulfate; peroxides such as hydrogen peroxide, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide, ammonium peroxide and the like.
  • peroxides such as hydrogen peroxide, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide, ammonium peroxide and the like.
  • the present invention is not limited to these examples.
  • the azo compound and the peroxide can also function as a decomposition accelerator, that is, have a function of promoting the thermal decomposition of the organic fine particles (B) when producing the polyimide porous film described later. Therefore, it can be preferably used.
  • the amount of the polymerization initiator used is not particularly limited, but is preferably 0.05 parts by mass or more per 100 parts by mass of the monomer component, from the viewpoint of increasing the polymerization rate and reducing the residual amount of the unreacted monomer. Is 0.1 part by mass or more, and can be, for example, 5 parts by mass or less from the viewpoint of polymerization stability.
  • the reactive emulsifier and the compound represented by the general formula (I) also serve as an emulsifier and can satisfactorily initiate and complete emulsion polymerization, but are commonly used surfactants for emulsion polymerization ().
  • Emulsifier may be further used as another additive.
  • As the surfactant an anionic surfactant or a cationic surfactant and / or other nonionic surfactant may be used in combination.
  • anionic surfactants include fatty acid sekken; sekken rosinate; alkyl sulfates such as ammonium dodecyl sulfate and sodium dodecyl sulphate; alkyl sulfonates such as ammonium dodecyl sulfonate and sodium dodecyl sulfonate; Alkylaryl sulfonates such as ammonium dodecylbenzene sulfonate, sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfonate; polyoxyalkylene alkyl sulfate; polyoxyalkylene aryl sulfate; polyoxyalkylene alkylaryl sulfate; dialkylsulfosuccinic acid Salts; arylsulfonic acid-formalin condensates; fatty acid salts such as
  • Examples of the cationic surfactant include stearyltrimethylammonium, cetyltrimethylammonium, and lauryltrimethylammonium.
  • Examples of the nonionic surfactant include polyoxyalkylene alkylphenyl ether, polyoxyalkylene alkyl ether, alkyl polyglucoside, polyglycerin alkyl ether, polyoxyalkylene fatty acid ester, polyglycerin fatty acid ester, total ruby monofatty acid ester and the like. Be done.
  • the amount used is, for example, 0.05 parts by mass or more, 0.1 parts by mass or more, or 0.3 parts by mass with respect to 100 parts by mass of the monomer component.
  • the number may be 10 parts by mass or more, and the upper limit thereof may be, for example, 10 parts by mass, 8 parts by mass or less, and 5 parts by mass or less.
  • a known protective colloidal agent may be used in combination as another additive.
  • the protective colloid agent include fully saponified polyvinyl alcohol, partially saponified polyvinyl alcohol, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyacrylic acid, and gum arabic.
  • a known chain transfer agent or pH adjuster may be used in combination.
  • the chain transfer agent include octyl mercaptan, dodecyl mercaptan, mercaptoethanol, thioglycolic acid, allyl alcohol, isopropyl alcohol, sodium hypophosphite and the like.
  • the pH adjusting agent include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as citric acid, succinic acid, apple acid and lactic acid; and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • Alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, isopropanol, aliphatic amines such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, aromatic polyamines such as phenylenediamine and tolylenediamine, piperazine.
  • Organic bases such as heterocyclic polyamines such as aminoethylpiperazine and the like.
  • the amount of each monomer used can be appropriately set.
  • the ratio of the vinyl-based monomer to the total amount of all the monomers (total 100% by mass) is 98.0% by mass to 99.9% by mass, and is represented by a reactive emulsifier (for example, the general formula (I)).
  • the proportion of the compound) can be 0.1% by mass to 2.0% by mass.
  • the ratio of the monofunctional vinyl-based monomer is 88% by mass to 99% by mass
  • the ratio of the polyfunctional vinyl-based monomer is 0.9% by mass with respect to the total amount of all the monomers (total 100% by mass).
  • the ratio of the reactive emulsifier can be from% to 10% by mass, and the ratio of the reactive emulsifier can be from 0.1 to 2% by mass.
  • the monofunctional styrene-based monomer is 10% by mass to 99% by mass
  • the monofunctional (meth) acrylic monomer is 0% by mass to 80% by mass, and more.
  • the functional vinyl-based monomer may be 1% by mass to 10% by mass, and the other polymerizable monomer may be 0% by mass to 5% by mass.
  • the emulsion polymerization may be carried out by a known emulsion polymerization method, and for example, a monomer dropping method, a pre-emulsion method, a batch charging polymerization method and the like can be adopted. From the viewpoint of industrial productivity, it is preferable to adopt the pre-emulsion method because it can be polymerized stably and a polymer (organic fine particles (B)) having few aggregates can be obtained.
  • the method for charging the above-mentioned monomer component, polymerization initiator, and other additives is not particularly limited and may be appropriately set.
  • a vinyl-based monomer is pre-emulsified with a reactive emulsifier (for example, a compound represented by the general formula (I)) and an aqueous dispersion medium such as water.
  • a reactive emulsifier for example, a compound represented by the general formula (I)
  • an aqueous dispersion medium such as water.
  • the remaining polymerization mixture may be dropped or the like.
  • the remaining monomer component and the remaining monomer component may be performed.
  • the emulsion polymerization step is repeated by two or more steps, that is, in an embodiment including, for example, a first emulsion polymerization step and a second emulsion polymerization step, a core portion is formed by the first emulsion polymerization step, and a subsequent second emulsion polymerization step is carried out.
  • the shell portion By forming the shell portion on the surface of the core portion, the core-shell type resin particles can be formed.
  • the second emulsion polymerization step may be performed a plurality of times, and when the second second emulsion polymerization step is performed, the surface of the shell portion formed by the first second emulsion polymerization step is newly formed. Resin particles on which a shell portion is formed can be obtained.
  • the composition of the monomer component used in each step can be changed, and the monomer component used in each step can be changed to 1. It may be a monomer of the seed. That is, in the first emulsion polymerization step and the second emulsion polymerization step, different monomers (one kind) may be used, or a mixture of monomers and a monomer (one kind) may be used. Alternatively, a mixture of different monomers may be used in each step. When a mixture of monomers of the same type is used, a mixture in which the mixing ratio of the monomers is changed can be used.
  • the monofunctional styrene-based monomer, the polyfunctional vinyl-based monomer, and the reactive emulsifier (for example, represented by the general formula (I)) are represented.
  • the monofunctional styrene-based monomer, the monofunctional (meth) acrylic-based monomer, and the polyfunctional vinyl-based monomer among the monofunctional vinyl-based monomers are used.
  • a mixture containing a monomer and a reactive emulsifier for example, a compound represented by the general formula (I) can be used.
  • the polymerization temperature in the emulsion polymerization may be appropriately set depending on the polymerization initiator and the like used, and may be, for example, 30 ° C to 90 ° C or 50 ° C to 80 ° C.
  • the polymerization time may be appropriately set according to the reaction rate obtained from the charged amount of the monomer component and the residual amount in the reaction solution, but is usually about 1 hour to 12 hours, for example, about 2 hours to 8 hours. be.
  • the aging step which is an arbitrary step, after the emulsion polymerization step, unreacted monomers are reduced, or the polymer particles (organic fine particles (B)) obtained by emulsion polymerization are stabilized. It is done for the purpose of polymerizing.
  • the aging temperature in the aging step can be, for example, 50 ° C. to 90 ° C., and can be, for example, 70 ° C. to 85 ° C. By keeping the aging temperature within the above range, it can be expected that the amount of the unreacted monomer mixture can be reduced while suppressing the aggregation of particles.
  • the aging time may be appropriately set according to the reaction rate obtained from the total amount of the monomer components charged and the residual amount of the monomer components in the reaction solution, but is usually 1 hour to 12 hours, preferably 1 to 12 hours. It takes about 2 to 8 hours.
  • a surfactant may be added as necessary for the purpose of facilitating the suppression of aggregation of the organic fine particles (B) during aging.
  • the surfactant used in the aging step it is preferable to use the surfactant mentioned in the emulsion polymerization step described above, and it is also possible to use an anionic surfactant or a nonionic surfactant. ..
  • the amount of the surfactant used in the aging step is, for example, 0.05 parts by mass or more and 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of the monomer components attached to the emulsion polymerization step. , 0.3 parts by mass or more, and for example, 10 parts by mass or less, 8 parts by mass or less, and 5 parts by mass.
  • the organic fine particles (B) can be obtained in the form of a dispersion liquid containing the formed polymer in the aqueous dispersion medium.
  • the organic fine particles (B) can be used in the form of a fine particle dispersion liquid containing the organic fine particles (B) or as the organic fine particles (B) of the dry powder.
  • the organic fine particles (B) are used as the organic fine particles (B) of the dry powder
  • the organic fine particles (B) in the form of the dispersion liquid contained in the above-mentioned aqueous dispersion medium are freeze-dried, hot-air dried, spray-dried, or the like. Therefore, the form of powder can be obtained.
  • the organic fine particles (B) are used in the form of a fine particle dispersion liquid containing the organic fine particles (B)
  • the dispersion liquid containing the organic fine particles (B) obtained through the above-mentioned emulsification polymerization step in the aqueous dispersion medium is used.
  • the aqueous dispersion medium may be substituted with a solvent to obtain a fine particle dispersion, or the organic fine particles (B) in the powder form described above may be passed and then dispersed in an appropriate solvent to form a fine particle dispersion. good.
  • the solvent that can be used include one or more selected from water (SI) and an organic solvent (S-III), which will be described later.
  • the varnish composition contains a solvent (S).
  • the solvent (S) include water (SI), an organic solvent (S-III), or a combination thereof.
  • the organic solvent (S-III) may be basic, but is preferably a compound that is neutral or weakly basic in water from the viewpoint of avoiding hydrolysis of the polyamic acid (A). ..
  • Suitable examples of the organic solvent (S-III) include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylisobutylamide, N, N-diethylacetamide, N, N-dimethylformamide (DMF), N, N-diethylformamide, N-methylcaprolactam, 1,3-dimethyl-2-imidazolidinone (DMI), pyridine, and N, N, N', N'- Nitrogen-containing polar solvent such as tetramethylurea (TMU); lactone-based polar solvent such as ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, and ⁇ -caprolactone; dimethylsulfoxide Hexamethylphosphoric triamide; acetonitrile; aromatic solvents such as benzene, toluene, xy
  • Ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; methanol, ethanol, 1-propanol, 2-propanol, tert-butyl alcohol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-butene Alcohol-based solvents such as -1,4-diol, 2-methyl-2,4-pentanediol, glycerin, 2-ethyl-2-hydroxymethyl-1,3-propanediol, and 1,2,6-hexanetriol.
  • a compound corresponding to a ketone or an ether and having an alcoholic hydroxy group can be classified as an alcohol-based solvent.
  • compounds corresponding to both ketones and ethers can be classified as ketone solvents.
  • the solvent (S) is an organic solvent (S-III), particularly an organic solvent (S), because the varnish composition has solubility or dispersion stability and the solvent (S) can be easily removed from the coating film.
  • S-III) is the following formula (S1): (In the formula ( S1 ), RS1 and RS2 are each independently an alkyl group having 1 or more and 3 or less carbon atoms, and RS3 is a hydrogen atom, or the following formula (S1-1) or the following formula (S1). -2): RS4 is a hydrogen atom or a hydroxy group, and RS5 and RS6 are independently hydrogen atoms and alkyl groups having 1 or more and 3 or less carbon atoms, respectively, and are represented by RS7 and RS6 . RS8 is an independently hydrogen atom or an alkyl group having 1 or more and 3 or less carbon atoms. ) It is preferable to contain a nitrogen-containing organic solvent represented by (1) or dimethyl sulfoxide.
  • RS3 is a hydrogen atom or a group represented by the formula (S1-1)
  • specific examples of the case where RS3 is a hydrogen atom or a group represented by the formula (S1-1) are N, N-dimethylformamide and N, N-dimethyl.
  • Acetamide, N, N, 2-trimethylpropionamide, N-ethyl-N, 2-dimethylpropionamide, N, N-diethyl-2-methylpropionamide, N, N,2-trimethyl-2-hydroxypropionamide examples thereof include N-ethyl-N, 2-dimethyl-2-hydroxypropionamide, N, N-diethyl-2-hydroxy-2-methylpropionamide and the like.
  • RS3 is a group represented by the formula (S1-2)
  • specific examples of the case where RS3 is a group represented by the formula (S1-2) include N, N, N', N'-tetramethylurea, and N. , N, N', N'-tetraethylurea and the like.
  • particularly preferable compounds are N, N-dimethylformamide, N, N-dimethylacetamide, N, N, 2-trimethylpropionamide, and N, N, N', N'-tetramethylurea can be mentioned. Of these, N, N, 2-trimethylpropionamide and N, N, N', N'-tetramethylurea are preferred.
  • N, N, 2-trimethylpropionamide, and N, N, N', N'-tetramethylurea are substances of very high concern (SVHC) under the REACH regulation in EU (European Union). It is useful in that it is a substance with low toxicity so that it is not designated as Very High Concern (substance of very high concern).
  • the content of the solvent (S) in the varnish composition is not particularly limited as long as it does not impair the object of the present invention.
  • the content of the solvent (S) in the varnish composition is appropriately adjusted according to the solid content content of the varnish composition.
  • a dispersant may be further added together with the organic fine particles (B) for the purpose of uniformly dispersing the organic fine particles (B) in the varnish composition.
  • the dispersant By adding the dispersant, the polyamic acid (A) and the organic fine particles (B) can be mixed more uniformly, and further, the organic fine particles (B) in the formed film can be uniformly distributed.
  • a dense opening can be provided on the surface of the finally obtained polyimide porous membrane, and the front and back surfaces can be efficiently communicated with each other, and the air permeability of the polyimide porous membrane is improved.
  • the drying property of the varnish composition is likely to be improved, and the peelability of the formed polyimide porous film from the precursor film or the like is easily improved.
  • the content of the dispersant in the varnish composition is preferably 0.01% by mass or more and 5% by mass or less with respect to the fine particles, for example, in terms of film forming property. It is more preferably 05% by mass or more and 1% by mass or less, and even more preferably 0.1% by mass or more and 0.5% by mass or less.
  • the essential or optional components described above can be added to the essential or optional components described above according to a predetermined composition in consideration of the coatability of the varnish composition and various characteristics of the polyimide porous film to be produced. By mixing, a varnish composition is produced.
  • the method for producing the varnish composition is produced by mixing the above-mentioned various components in predetermined amounts, and the specific procedure thereof is not particularly limited.
  • a polyamic acid-containing liquid containing a polyamic acid (A) and an organic solvent (S-III), and a fine particle dispersion liquid containing organic fine particles (B) or an organic dry powder are used as one of the preferable methods for producing the varnish composition.
  • a method of mixing with the fine particles (B) can be mentioned.
  • the polyamic acid (A) and the organic solvent (S-III) are as described above.
  • the polyamic acid-containing solution may be prepared by dissolving the polyamic acid (A) produced by a well-known method in an organic solvent (S-III), or the polyamic acid (A) may be prepared in the organic solvent (S-III). May be synthesized and the reaction solution may be used as it is as a polyamic acid-containing solution.
  • the polyamic acid-containing liquid may contain water (SI). Further, the polyamic acid-containing liquid may contain an arbitrary component other than the polyamic acid (A), the organic solvent (S-III), and water (SI).
  • the dispersion medium contained in the fine particle dispersion is preferably one or more selected from water (SI) and an organic solvent (S-III).
  • the mixing is performed under warmed conditions within a range in which the polyamic acid (A) and the organic fine particles (B) are not excessively decomposed or deformed. You may. Further, various materials constituting the varnish composition may be mixed while dispersing the organic fine particles (B) using various dispersion devices.
  • the viscosity of the varnish composition is not particularly limited as long as a coating film having a desired film thickness can be formed.
  • the viscosity of the varnish composition is preferably 300 cP or more and 20,000 cP or less, more preferably 1,000 cP or more and 15,000 cP or less, and further preferably 1,500 cP or more and 12,000 cP or less. When the viscosity of the varnish composition is within this range, uniform film formation is easy.
  • the varnish composition has a ratio of organic fine particles (B) / polyamic acid (A) of 0.5 to 4.0 (mass ratio) when a polyamic acid-fine particle composite film (precursor film) described later is used.
  • Organic fine particles (B) and polyamic acid (A) are preferably contained, and the organic fine particles (B) have the above-mentioned (B) / (A) ratio of 0.7 to 3.5 (mass ratio). And more preferably containing the polyamic acid (A).
  • the volume ratio of the organic fine particles (B) / polyamic acid (A) in the composite film is 1.0 to 5.0.
  • It preferably contains organic fine particles (B) and a polyamic acid.
  • the above-mentioned volume ratio is more preferably 1.2 to 4.5.
  • the mass ratio or volume ratio of the organic fine particles (B) / polyamic acid (A) is at least the above-mentioned lower limit value, it is easy to form pores having an appropriate density.
  • the mass ratio or volume ratio of the organic fine particles (B) / polyamic acid (A) is equal to or less than the above upper limit value, the varnish composition is stably formed without causing problems such as an increase in viscosity and cracks in the film. Can be filmed.
  • the solid content concentration of the varnish composition is not particularly limited, but is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and the upper limit is, for example, 60% by mass or less. It is preferably 30% by mass or less.
  • the solid content concentration referred to here means the concentration of a component other than the solvent (S), and even a liquid component is included in the weight as a solid content.
  • the method for producing a precursor film of a polyimide porous film is a coating film forming step of applying the above-mentioned varnish composition on a substrate to form a coating film, and removing the solvent (S) from the coating film to form a polyimide porous film. It includes a precursor film forming step of forming a precursor film of the film.
  • the substrate examples include PET films, SUS substrates, glass substrates and the like.
  • the above-mentioned varnish composition is applied onto a substrate to form a coating film, and then the temperature is 0 ° C. or higher and 100 ° C. or lower, preferably normal pressure, under normal pressure or vacuum. It may be dried at 10 ° C. or higher and 100 ° C. or lower.
  • precursor film may be formed directly on the substrate, or may be formed on a lower film different from the precursor film formed on the substrate. Further, after forming a precursor film using the above-mentioned varnish composition, an upper film different from the precursor film may be further formed on the upper layer.
  • both the aspect of providing the lower layer film on the substrate and the aspect of providing the upper layer film on the precursor film are included in the method of forming the precursor film on the substrate.
  • the lower layer film is, for example, a varnish containing a resin selected from the group consisting of polyamic acid, polyimide, polyamide-imide precursor, polyamideimide and polyether sulfone, fine particles, and a solvent.
  • Upper layer An unfired composite film can be mentioned.
  • the lower unfired composite film may be formed on the substrate.
  • the fine particles in the varnish When the content of the fine particles in the varnish is more than 40% by volume, the fine particles are uniformly dispersed in the varnish, and when the content of the fine particles is 81% by volume or less, the fine particles do not aggregate with each other. Therefore, the pores can be uniformly formed in the layer derived from the lower layer film (or the upper layer film). Further, when the content of the fine particles in the varnish is within the above range, when the lower unfired composite film is formed on the substrate, even if the base material is not provided with the release layer in advance, the film is formed. Easy to secure releasability.
  • the fine particles used for the lower (or upper) film forming varnish may be the same as or different from the organic fine particles (B) used for the above-mentioned varnish composition.
  • the fine particles used for the lower (or upper) film-forming varnish have a particle size distribution more than that of the organic fine particles (B) used in the above-mentioned varnish composition. It is preferable that the exponent is small or the same. Alternatively, it is preferable that the fine particles used for the lower (or upper) film forming varnish have a smaller or the same sphericity ratio than the fine particles used for the above-mentioned varnish composition.
  • the average particle size of the fine particles used for the varnish for forming the lower (or upper) film is preferably 5 nm or more and 1000 nm or less, and more preferably 10 nm or more and 600 nm or less.
  • the content of the fine particles in the lower (or upper) film forming varnish may be higher or lower than that of the above-mentioned varnish composition.
  • Preferable examples of components such as fine particles and a solvent contained in the lower (or upper) film-forming varnish are the same as those of the above-mentioned varnish composition.
  • the varnish for forming the lower layer (or upper layer) film can be prepared by the same method as the above-mentioned varnish composition.
  • the above-mentioned varnish for forming the lower layer film is applied on a substrate and dried at 0 ° C. or higher and 100 ° C. or lower, preferably 10 ° C. or higher and 100 ° C. or lower under normal pressure or vacuum. By doing so, it can be formed.
  • the film forming conditions of the upper unfired composite film are the same applies to the film forming conditions of the upper unfired composite film.
  • the lower (or upper) film may be made of a fiber-based material such as a cellulosic resin or a non-woven fabric (for example, a polyimide non-woven fabric or the like (the fiber diameter is, for example, about 50 nm or more and about 3000 nm or less)).
  • a non-woven fabric for example, a polyimide non-woven fabric or the like (the fiber diameter is, for example, about 50 nm or more and about 3000 nm or less)
  • a film made of non-woven fabric, a polyimide film, and the like can also be mentioned.
  • the precursor film is formed on the substrate alone or, if necessary, together with the lower layer (or upper layer) film.
  • the method for producing a precursor film of a polyimide porous film may include a peeling step of peeling the precursor film from the substrate after the above-mentioned precursor film forming step.
  • the substrate is not required to have heat resistance that can withstand the temperature at which the precursor film is fired.
  • the release agent When peeling the precursor film or the laminated film of the precursor film and the lower (or upper) unfired composite film from the base material, use a base material with a release layer in advance in order to further improve the peelability of the film. You can also.
  • the release layer is provided on the substrate in advance, the release agent is applied on the substrate and dried or baked before applying the above-mentioned varnish composition or the varnish for forming the lower layer film.
  • a known release agent such as an alkyl phosphate ammonium salt type, a fluorine type or a silicone type can be used without particular limitation.
  • a cleaning step may be introduced in which a precursor film peeled from the substrate or a laminated film containing the precursor film is washed with an organic solvent.
  • the above peeling step and cleaning step can be omitted.
  • a dipping step and a dipping step of immersing the precursor film in water or a solvent containing water in the method for producing a precursor film, a dipping step and a dipping step of immersing the precursor film in water or a solvent containing water.
  • a pressing step of pressing the precursor film afterwards and a drying step of drying the precursor film after the dipping step may be provided as arbitrary steps.
  • a winding step of winding the precursor film into a roll may be further carried out after the peeling step.
  • the roll-shaped precursor film can be fired in a small firing furnace.
  • the precursor film can be easily transferred until the precursor film is fired, and space can be saved for storage.
  • a roll-to-roll process can be applied to the process of firing the precursor film, and an efficient production of a polyimide porous film is possible.
  • the method for producing a polyimide porous membrane includes a removal step of removing organic fine particles (B) from the precursor film of the polyimide porous membrane described above.
  • the organic fine particles (B) may be removed while imidizing the polyamic acid (A) or after imidizing the polyamic acid (A).
  • the organic fine particles (B) are preferably removed by heating, and may be removed by heating after chemical imidization described later, or at the same time as or during the imidization of the precursor film by calcination related to thermal imidization. , Or may be removed after imidization.
  • thermally decomposing the organic fine particles (B) by heating a polyimide porous film having spherical pores with a uniform distribution can be obtained.
  • the method for imidizing the polyamic acid (A) is not particularly limited.
  • the imidization may be either thermal imidization or chemical imidization.
  • As the chemical imidization a method such as immersing the precursor membrane containing the polyamic acid (A) in acetic anhydride or a mixed solvent of acetic anhydride and isoquinoline can be used.
  • calcination which is thermal imidization
  • thermal imidization is preferable because it is not necessary to remove the imidizing agent by washing.
  • calcination related to thermal imidization will be described.
  • the lower layer (or upper layer) film is formed together with the precursor film when the precursor film is produced, the lower layer (or upper layer) film is fired together with the firing of the precursor film.
  • the firing temperature varies depending on the structure of the polyamic acid (A) and the like, but is preferably 120 ° C. or higher and 500 ° C. or lower, more preferably 150 ° C. or higher and 450 ° C. or lower, and more preferably 300 ° C. or higher and 450 ° C. or lower.
  • the firing conditions are, for example, a method of raising the temperature from room temperature to about 400 ° C. to 450 ° C. in about 3 hours and then holding the temperature at the same temperature for about 2 to 30 minutes, or stepwise from room temperature in increments of, for example, 50 ° C. Drying-heat including continuous or stepwise temperature raising operation such as raising the temperature to 400 ° C. to 450 ° C. (holding for about 20 minutes in each step) and finally holding at 400 ° C. to 450 ° C. for about 2 to 30 minutes.
  • the imidization method can also be used.
  • the precursor film or the laminated film containing the precursor film is once peeled off from the substrate, and the firing step is performed, the end portion of the precursor film or the laminated film is made of SUS. It is also possible to adopt a method of fixing to a mold or the like to prevent deformation due to firing.
  • the film thickness of the polyimide porous film obtained after firing can be obtained by measuring the thicknesses of a plurality of locations with a micrometer or the like and averaging them. What kind of average film thickness is preferable depends on the use of the polyimide porous membrane, but for example, when it is used for a separator or the like, it is preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, and 15 ⁇ m or more and 30 ⁇ m or less. Is even more preferable. When used for a filter or the like, it is preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 300 ⁇ m or less, and further preferably 20 ⁇ m or more and 150 ⁇ m or less.
  • the polyimide porous film thus obtained is a non-transparent or yellow or brown colored porous film.
  • the polyimide porous membrane is a porous membrane in which spherical pores communicate with each other throughout the membrane, and the front and back surfaces communicate with each other.
  • the method for producing the polyimide porous film may include a resin removing step of removing at least a part of the polyimide porous film after the removing step of removing the organic fine particles (B).
  • the resin removing step means a step of removing the resin (thinning the film thickness) in the film thickness direction of the porous film, and by removing at least a part of the porous film after the removing step, the porous film is described. It is possible to improve the pore size of the polyimide porous membrane of the final product as compared with the polyimide porous membrane which does not remove at least a part of the above.
  • a step of removing at least a part of the resin portion of the precursor film may be included before the step of removing the organic fine particles (B), for example, after the step of forming the precursor film. At this time, a part of the organic fine particles (B) contained in the precursor film may be removed.
  • the porous polyimide type of the final product is compared with the one in which the resin portion of the precursor film is not removed. It is possible to improve the aperture ratio of the resin film.
  • the step of removing at least a part of the resin portion or the step of removing at least a part of the polyimide porous film is performed by a normal chemical etching method, a physical removal method, or a method in which these are combined. Can be done.
  • Examples of the chemical etching method include treatment with a chemical etching solution such as an inorganic alkaline solution or an organic alkaline solution, and the use of an inorganic alkaline solution is particularly preferable.
  • a chemical etching solution such as an inorganic alkaline solution or an organic alkaline solution
  • an inorganic alkaline solution for example, a hydrazine solution containing hydrazine hydrate and ethylenediamine; a solution of an alkali metal hydroxide such as potassium hydroxide, sodium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate; an ammonia solution; hydroxylation.
  • Examples thereof include an etching solution containing an alkali metal compound, hydrazine, and 1,3-dimethyl-2-imidazolidinone as main components.
  • organic alkaline solution examples include primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; dimethylethanolamine. , Alcohol amines such as triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; alkaline solutions such as cyclic amines such as pyrrole and piperidine.
  • the alkaline concentrations of these inorganic alkaline solutions and organic alkaline solutions are, for example, 0.01% by mass or more and 20% by mass or less.
  • Pure water and alcohols can be appropriately selected as the solvent for each of the above solutions. Further, it is also possible to use a solution in which an appropriate amount of a surfactant is added.
  • a physical removal method for example, plasma (oxygen, argon, etc.), dry etching by corona discharge, etc .; a polishing agent (for example, alumina (hardness 9), etc.) is dispersed in a liquid, and this is applied to the surface of the film.
  • a polishing agent for example, alumina (hardness 9), etc.
  • Surface treatment or the like by irradiating at a speed of 30 m / s or more and 100 m / s or less can be used.
  • a method is adopted in which the surface of the object is pressure-bonded to a mount film (for example, a polyester film such as PET film) wetted with a liquid, and then the porous film is peeled off from the mount film without drying or after drying. You can also do it.
  • the porous film is peeled off from the mount film while only the surface layer of the porous film is left on the mount film due to the surface tension or electrostatic adhesion of the liquid.
  • tetracarboxylic acid dianhydrides diamines, polyamic acids, and organic solvents were used.
  • -Tetracarboxylic acid dianhydride pyromellitic acid dianhydride-Diamine: 4,4'-diaminodiphenyl ether-Polyamic acid solution: Reaction product of pyromellitic acid dianhydride and 4,4'-diaminodiphenyl ether (solid content) 20% by mass (organic solvent: dimethylacetamide))
  • -Organic solvent Dimethylacetamide (DMAc)
  • Synthesis example 1 In a glass container having an internal capacity of 1.0 L equipped with a stirrer, a thermometer, a temperature controller, a condenser, and a dropping device, 383.0 g of ion-exchanged water was placed and nitrogen gas was introduced while stirring to perform nitrogen substitution. After that, it was heated with a mantle heater and the temperature was controlled at 72 ⁇ 2 ° C. to obtain a polymerization vessel.
  • styrene as a monofunctional monomer (styrene monomer manufactured by Asahi Kasei Co., Ltd.) 378.6 g, ethylene glycol dimethacrylate (Mitsubishi) as a polyfunctional monomer 22.2 g of Acryester ED manufactured by Chemical Co., Ltd. was added and stirred to obtain a monomer emulsion in which styrene and ethylene glycol dimethacrylate were emulsified in ion-exchanged water.
  • the remaining monomer emulsion and the polymerization initiator aqueous solution were each sent to the polymerization vessel over 240 minutes by a liquid feed pump, and the dropping polymerization was carried out.
  • the liquid feeding line was co-washed with 9.0 g of ion-exchanged water.
  • the mixture was cooled to 40 ° C. to obtain a crosslinked polymer aqueous dispersion having a solid content of 40%.
  • Synthesis example 2 Polymerization was carried out in the same manner as in Synthesis Example 1, except that 374.2 g of styrene and 4.4 g of methyl methacrylate were used instead of 378.6 g of styrene in Synthesis Example 1, and trimethylolpropane trimethacrylate was used instead of ethylene glycol dimethacrylate. A crosslinked polymer aqueous dispersion having a solid content of 40% was obtained.
  • Synthesis example 3 Instead of 378.6 g of styrene in Synthesis Example 1, 388.8 g of styrene was contained, and instead of 22.2 g of ethylene glycol dimethacrylate, a divinylbenzene mixture (DVB570 manufactured by Nittetsu Chemical & Materials Co., Ltd., 57% divinylbenzene was contained. A crosslinked polymer having a solid content of 40%, which was polymerized in the same manner as in Synthesis Example 1 except that 12.0 g (divinylbenzene: 6.84 g, ethylvinylbenzene: 5.16 g) (containing 43% of ethylvinylbenzene) was used. An aqueous dispersion was obtained.
  • Synthesis example 4 In addition, 364.7 g of styrene and 4.0 g of methyl methacrylate were used instead of 378.6 g of styrene in Synthesis Example 1, and 32.1 g of 1,3-butylene glycol dimethacrylate was used instead of 22.2 g of ethylene glycol dimethacrylate.
  • 32.1 g of 1,3-butylene glycol dimethacrylate was used instead of 22.2 g of ethylene glycol dimethacrylate.
  • Synthesis example 5 Nitrogen gas was introduced into a glass container having an internal capacity of 1.0 L equipped with a stirrer, a thermometer, a temperature controller, a condenser, and a dropping device, and nitrogen exchange was performed while stirring. After nitrogen substitution, 0.6 g of a 40% aqueous solution of triethanolamine lauryl sulfate (Alscope LS-40T manufactured by Toho Chemical Industry Co., Ltd.) was added as an emulsifier, heated with a mantle heater, and the temperature was controlled at 72 ⁇ 2 ° C to form a polymerization vessel. ..
  • the remaining monomer emulsion and the remaining polymerization initiator aqueous solution were each sent to the polymerization vessel over 300 minutes by a liquid feed pump, and the dropping polymerization was carried out. After continuing the polymerization reaction for 120 minutes, the mixture was cooled to 40 ° C. to obtain a non-crosslinked polymer aqueous dispersion having a solid content of 40%.
  • Synthesis example 6 In place of 12.8 g of polyoxyethylene styrenated propenylphenyl ether sulfate ammonium salt (25% aqueous solution) in Synthesis Example 1, 8.0 g of lauryl sulfate triethanolamine (40% aqueous solution) was used, and 392.8 g of styrene and ethylene were used. Polymerization was carried out in the same manner as in Synthesis Example 1 except that glycol dimethacrylate was changed to 8.0 g to obtain a crosslinked polymer aqueous dispersion having a solid content of 40%.
  • Example 1 ⁇ Drying of organic fine particle aqueous dispersion>
  • the crosslinked polymer aqueous dispersion (organic fine particle aqueous dispersion) obtained in Synthesis Example 1 was spray-dried using a spray dryer ADL-311S-A (manufactured by Yamato Kagaku Co., Ltd.) to obtain powdery organic fine particles. ..
  • Example 2 Except for changing the organic fine particles to the types of organic fine particles shown in Table 1, the organic fine particle aqueous dispersion was dried, the varnish composition was prepared, and the polyimide porous film was produced in the same manner as in Example 1. In addition, SEM observation was performed for each porous membrane. The obtained SEM image on the air surface side is shown in FIG. 1 (FIG. 1 (b): Example 2, FIG. 1 (c): Example 3, FIG. 1 (d): Example 4). As shown in FIGS. 1B, 1C and 1D, spherical pores of uniform size are formed in the polyimide porous material, and the diameter of the pores is determined using an SEM length measuring tool. As a result of the measurement, it was confirmed that the pores having the same size as the median diameter of the organic fine particles could be formed.
  • Each of the prepared porous membranes was cut into 5 cm squares to prepare a sample for measuring air permeability.
  • the air permeability can be, for example, within 250 seconds or 200 seconds. The lower the value, the more preferable, so the lower limit is not particularly set, but considering the handleability of the porous membrane sample, it can be, for example, 30 seconds or more. If the Garley air permeability is within 250 seconds, it can be judged that it can be applied as a filter used for a separator of a lithium ion battery or a separation membrane for gas or liquid because it exhibits sufficiently high ion permeability.
  • the varnish composition of the example containing the organic fine particles defined in the present invention has better air permeability and uniform distribution than the varnish composition of the comparative example. It was confirmed that a polyimide porous membrane having spherical pores having a diameter equivalent to the median diameter of the organic fine particles can be produced.
  • the size of the pores opened on the surface was uniform, and the distribution state of the surface openings was also substantially uniform.
  • the polyimide porous membrane made of the varnish compositions of Examples 1 to 3 had a uniform size of pores opened on the surface and the distribution state of the surface openings, and was a better polyimide porous membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

[Problem] To provide: a varnish composition that has a uniform compositional makeup including organic fine particles from which it is possible to form a polyimide porous membrane having fine uniform spherical pores having a diameter equivalent to the median diameter of the particles; a production method for a precursor membrane of a polyimide porous membrane, using said varnish composition; and a production method for a polyimide porous membrane using said precursor membrane. [Solution] This varnish composition for forming a polyimide porous membrane is obtained by mixing a polyamic acid (A), organic fine particles (B), and a solvent (S). The organic fine particles (B) include vinyl-based resin particles of a polymer having a structural unit (a) derived from a vinyl-based monomer and a structural unit (b1) that is derived from a compound represented by general formula (I) and that is different from the structural unit (a). [In the formula, m represents an integer of 1-3, R represents a polymerizable unsaturated group, AO represents an alkyleneoxy group having 2-4 carbon atoms, n represents an integer of 0-100, and X represents a hydrogen atom or an anionic hydrophilic group.]

Description

ポリイミド多孔質膜製造用ワニスVarnish for manufacturing polyimide porous membrane
 本発明はポリイミド多孔質膜製造用ワニスに関する。 The present invention relates to a varnish for producing a polyimide porous membrane.
 近年、ガス又は液体の分離膜として使用されるフィルタや、リチウムイオン電池のセパレータ、燃料電池電解質膜、あるいは低誘電率材料として、ポリイミド及び/又はポリアミドイミド多孔質膜の研究がなされている。 In recent years, polyimide and / or polyamide-imide porous membranes have been studied as filters used as gas or liquid separation membranes, separators for lithium ion batteries, fuel cell electrolyte membranes, or low dielectric constant materials.
 例えば、セパレータ用途に使用されるポリイミドの多孔質膜の製造方法として、ポリアミック酸やポリイミドのポリマー溶液中にシリカ粒子等の微粒子を分散させたワニスを基板上に塗布した後、必要に応じて塗布膜を加熱して微粒子を含むポリイミド膜を得、次いで、ポリイミド膜中のシリカ粒子等の微粒子を、フッ酸を用いて除去し、多孔質化させる方法が知られている(特許文献1参照)。 For example, as a method for producing a porous polyimide film used for a separator, a varnish in which fine particles such as silica particles are dispersed in a polymer solution of polyamic acid or polyimide is applied onto a substrate, and then applied as necessary. A method is known in which a polyimide film containing fine particles is obtained by heating the film, and then fine particles such as silica particles in the polyimide film are removed using hydrofluoric acid to make the polyimide film porous (see Patent Document 1). ..
特許第5605566号公報Japanese Patent No. 5605566
 特許文献1に記載される方法等により多孔質のポリイミド膜を形成する場合に使用されるフッ酸の取り扱いは容易ではない。このため、フッ酸の使用がポリイミド多孔質膜の製造コストを増加させる要因となっており、フッ酸を使用せずに多孔質膜を製造する方法が求められている。例えば上記シリカ粒子に変えて、有機微粒子等の他の微粒子を用いることが考えられる。有機微粒子は水溶媒中で調製される場合が多く、水を含む微粒子分散液として流通することが多い。そのため有機微粒子の使用にあたり、水を含む微粒子分散液を用いてポリアミック酸やポリイミドを含有するワニスを調製すると、必然的に水を含むワニスが得られることとなる。 It is not easy to handle hydrofluoric acid used when forming a porous polyimide film by the method described in Patent Document 1. Therefore, the use of hydrofluoric acid is a factor that increases the production cost of the polyimide porous membrane, and there is a demand for a method for producing a porous membrane without using hydrofluoric acid. For example, it is conceivable to use other fine particles such as organic fine particles instead of the above silica particles. Organic fine particles are often prepared in an aqueous solvent and are often distributed as a fine particle dispersion containing water. Therefore, when using organic fine particles, if a varnish containing polyamic acid or polyimide is prepared using a fine particle dispersion liquid containing water, a varnish containing water is inevitably obtained.
 しかしながら、上記ワニスが水と微粒子とを含む場合、ポリアミック酸と水を含む溶媒とのなじみの悪さや、微粒子の存在によりポリアミック酸同士の配向が阻害され、微粒子を抱き込んだポリアミック酸の塊状物を含むものとなるなど、塗布膜の形成不良を引き起こし得る不均一な組成の混合物が形成されやすい問題があり、これは膜強度の低下を引き起こす不具合につながる。 However, when the varnish contains water and fine particles, the orientation of the polyamic acids is hindered by the poor compatibility between the polyamic acid and the solvent containing water and the presence of the fine particles, and the polyamic acid lumps embracing the fine particles. There is a problem that a mixture having a non-uniform composition that can cause poor formation of the coating film is likely to be formed, which leads to a defect that causes a decrease in film strength.
 このような問題を避けるために、完全に乾燥した有機微粒子を用いて実質的に水を含まないワニスを製造することが考えられる。しかし、乾燥した有機微粒子はポリアミック酸を溶解する有機溶媒に対する分散安定性や耐溶剤性が悪く、凝集物が発生して、細孔が均一に形成された透気度が良好なポリイミド多孔質膜を得にくい等の問題がある。 In order to avoid such problems, it is conceivable to produce a varnish that is substantially free of water using completely dried organic fine particles. However, the dried organic fine particles have poor dispersion stability and solvent resistance to an organic solvent that dissolves polyamic acid, aggregates are generated, and pores are uniformly formed, and the polyimide porous membrane has good air permeability. There are problems such as difficulty in obtaining.
 このため、開口率の高いポリイミド多孔質膜を形成でき、且つ分散が均一な組成である、有機微粒子を含むワニスと、当該ワニスを用いるポリイミド多孔質膜の前駆膜の製造方法や、ポリイミド多孔質膜の製造方法が望まれている。 Therefore, a varnish containing organic fine particles, which can form a polyimide porous film having a high aperture ratio and has a uniform dispersion, a method for producing a precursor film of the polyimide porous film using the varnish, and a polyimide porous film. A method for producing a film is desired.
 本発明は、上記の課題に鑑みなされたものであって、粒子のメジアン径と同等の直径である均一で微細な球状の空孔を持つポリイミド多孔質膜を形成できる、有機微粒子を含む均一な組成のワニス組成物と、前述のワニス組成物を用いるポリイミド多孔質膜の前駆膜の製造方法と、当該前駆膜を用いるポリイミド多孔質膜の製造法とを提供することを目的とする。 The present invention has been made in view of the above problems, and is uniform including organic fine particles capable of forming a polyimide porous film having uniform and fine spherical pores having a diameter equivalent to the median diameter of the particles. It is an object of the present invention to provide a varnish composition having a composition, a method for producing a precursor film of a polyimide porous film using the above-mentioned varnish composition, and a method for producing a polyimide porous film using the precursor film.
 本発明は、下記[1]~[7]を対象とするものである。
[1]
 ポリアミック酸(A)と、有機微粒子(B)と、溶媒(S)とを混合して得られる、ポリイミド多孔質膜形成用のワニス組成物であって、
 前記有機微粒子(B)が
ビニル系単量体に由来する構造単位(a)と、
前記構造単位(a)とは異なる下記一般式(I)で表される化合物に由来する構造単位(b1)を有する重合体であるビニル系樹脂粒子を含む、ワニス組成物。
Figure JPOXMLDOC01-appb-C000003
[式中、
mは、1~3の整数を表し、
Rは下記式(i)又は式(ii)で表される基を表し
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子又はメチル基を表す)、
AOは、炭素原子数2~4のアルキレンオキシ基を表し、nは、0~100の整数を表し、
Xは、水素原子を表すか、又は、-SOM、-COOM及び-POM(式中、Mは、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基又は有機アンモニウム基を表す。)からなる群から選ばれるアニオン性親水基を表す。]
[2]
前記ビニル系単量体に由来する構造単位(a)が、単官能ビニル系単量体に由来する構造単位(a0)及び多官能ビニル系単量体に由来する構造単位(a3)を含む、[1]のワニス組成物。
[3]
 ポリアミック酸(A)と、有機微粒子(B)と、溶媒(S)とを混合して得られる、ポリイミド多孔質膜形成用のワニス組成物であって、
 前記有機微粒子(B)が
単官能ビニル系単量体に由来する構造単位(a0)と、
多官能ビニル系単量体に由来する構造単位(a3)と、
反応性乳化剤に由来する構造単位(b0)とを有する重合体である、多孔質膜製造用ビニル系樹脂粒子であって、
前記構造単位(a0)の割合が88~99質量%、前記構造単位(a3)の割合が0.9~10質量%、前記構造単位(b0)の割合が0.1~2質量%である多孔質膜製造用ビニル系樹脂粒子を含む、ワニス組成物。
[4]
 [1]~[3]のいずれか1項に記載の前記ワニス組成物を基材上に塗布して塗布膜を形成する、塗布膜形成工程と、
 前記塗布膜から前記溶媒(S)を除き、ポリイミド多孔質膜の前駆膜を形成する、前駆膜形成工程とを含む、ポリイミド多孔質膜の前駆膜の製造方法。
[5]
 前記前駆膜形成工程の後に、前記基材から前記前駆膜を剥離させる、剥離工程を含む、[4]に記載のポリイミド多孔質膜の前駆膜の製造方法。
[6]
 前記剥離工程の後に、前記前駆膜をロール状に巻き取る、巻取工程を含む、[5]に記載のポリイミド多孔質膜の前駆膜の製造方法。
[7]
 [4]~[6]のいずれか1項に記載の方法によりポリイミド多孔質膜の前駆膜を製造し、次いで、前記前駆膜から、前記有機微粒子(B)を除去する除去工程を含む、ポリイミド多孔質膜の製造方法。
The present invention is intended for the following [1] to [7].
[1]
A varnish composition for forming a polyimide porous film obtained by mixing a polyamic acid (A), organic fine particles (B), and a solvent (S).
The structural unit (a) in which the organic fine particles (B) are derived from a vinyl-based monomer and
A varnish composition containing vinyl-based resin particles which are polymers having a structural unit (b1) derived from a compound represented by the following general formula (I), which is different from the structural unit (a).
Figure JPOXMLDOC01-appb-C000003
[During the ceremony,
m represents an integer of 1 to 3 and represents
R represents a group represented by the following formula (i) or formula (ii).
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 represents a hydrogen atom or a methyl group),
AO represents an alkyleneoxy group having 2 to 4 carbon atoms, and n represents an integer of 0 to 100.
X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group). Represents an anionic hydrophilic group selected from the group consisting of. ]
[2]
The structural unit (a) derived from the vinyl-based monomer includes a structural unit (a0) derived from a monofunctional vinyl-based monomer and a structural unit (a3) derived from a polyfunctional vinyl-based monomer. The varnish composition of [1].
[3]
A varnish composition for forming a polyimide porous film obtained by mixing a polyamic acid (A), organic fine particles (B), and a solvent (S).
The structural unit (a0) in which the organic fine particles (B) are derived from a monofunctional vinyl-based monomer and
The structural unit (a3) derived from the polyfunctional vinyl-based monomer and
Vinyl-based resin particles for producing a porous membrane, which is a polymer having a structural unit (b0) derived from a reactive emulsifier.
The ratio of the structural unit (a0) is 88 to 99% by mass, the ratio of the structural unit (a3) is 0.9 to 10% by mass, and the ratio of the structural unit (b0) is 0.1 to 2% by mass. A varnish composition containing vinyl-based resin particles for producing a porous film.
[4]
A coating film forming step of applying the varnish composition according to any one of [1] to [3] onto a substrate to form a coating film.
A method for producing a precursor film of a polyimide porous film, which comprises a step of forming a precursor film, wherein the solvent (S) is removed from the coating film to form a precursor film of the polyimide porous film.
[5]
The method for producing a polyimide porous film according to [4], which comprises a peeling step of peeling the precursor film from the substrate after the precursor film forming step.
[6]
The method for producing a precursor film of a polyimide porous film according to [5], which comprises a winding step of winding the precursor film into a roll after the peeling step.
[7]
A polyimide comprising a step of producing a precursor film of a polyimide porous film by the method according to any one of [4] to [6], and then removing the organic fine particles (B) from the precursor film. A method for producing a porous membrane.
 本発明のワニス組成物は、均一な分布にて、当該ワニスに含まれる有機微粒子のメジアン径と同等の直径を有する、球状の空孔を持つポリイミド多孔質膜を提供することができる。
 また本発明の多孔質膜の製造方法は、均一な分布の球状の空孔を持つポリイミド多孔質膜を製造することができる。
The varnish composition of the present invention can provide a polyimide porous film having spherical pores having a diameter equivalent to the median diameter of the organic fine particles contained in the varnish with a uniform distribution.
Further, the method for producing a porous membrane of the present invention can produce a polyimide porous membrane having spherical pores having a uniform distribution.
図1は、多孔質膜のSEM画像を示す((a)実施例1、(b)実施例2、(c)実施例3、(d)実施例4)。FIG. 1 shows an SEM image of a porous membrane ((a) Example 1, (b) Example 2, (c) Example 3, and (d) Example 4). 図2は、多孔質膜のSEM画像を示す(比較例1)。FIG. 2 shows an SEM image of the porous membrane (Comparative Example 1).
≪ワニス組成物≫
 本発明が対象とするワニス組成物は、ポリアミック酸(A)と、特定の有機微粒子(B)と、溶媒(S)とを含む。
 本発明のワニス組成物を用いて形成した塗布膜から溶媒(S)を除去することにより、ポリイミド多孔質膜の前駆膜を形成することができる。かかる前駆膜に含まれるポリアミック酸(A)のイミド化と、前駆膜からの有機微粒子(B)の除去とを行うことにより、主にポリイミド樹脂からなるポリイミド多孔質膜が得られる。
 このため、本発明のワニス組成物は、ポリイミド多孔質膜の形成に用いることができる。
≪Varnish composition≫
The varnish composition targeted by the present invention contains a polyamic acid (A), specific organic fine particles (B), and a solvent (S).
By removing the solvent (S) from the coating film formed by using the varnish composition of the present invention, a precursor film of a polyimide porous film can be formed. By imidizing the polyamic acid (A) contained in the precursor film and removing the organic fine particles (B) from the precursor film, a polyimide porous film mainly made of a polyimide resin can be obtained.
Therefore, the varnish composition of the present invention can be used for forming a polyimide porous film.
 以下、ワニス組成物の調製に用いられる、必須、又は任意の成分について説明する。 Hereinafter, essential or arbitrary components used for preparing the varnish composition will be described.
<ポリアミック酸(A)>
 ポリアミック酸(A)としては、任意のテトラカルボン酸二無水物とジアミンとを重合して得られる生成物が、特に限定されることなく使用できる。
 テトラカルボン酸二無水物及びジアミンの使用量(仕込み量)は特に限定されないが、テトラカルボン酸二無水物1モルに対して、ジアミンを0.50モル以上1.50モル以下の割合にて用いるのが好ましく、0.60モル以上1.30モル以下の割合にて用いるのがより好ましく、0.70モル以上1.20モル以下の割合にて用いるのが特に好ましい。
<Polyamic acid (A)>
As the polyamic acid (A), a product obtained by polymerizing an arbitrary tetracarboxylic acid dianhydride and a diamine can be used without particular limitation.
The amount of tetracarboxylic acid dianhydride and diamine used (charged amount) is not particularly limited, but diamine is used in a ratio of 0.50 mol or more and 1.50 mol or less with respect to 1 mol of tetracarboxylic acid dianhydride. It is more preferable to use it at a ratio of 0.60 mol or more and 1.30 mol or less, and it is particularly preferable to use it at a ratio of 0.70 mol or more and 1.20 mol or less.
 上記テトラカルボン酸二無水物は、従来からポリアミック酸の合成原料として使用されている化合物から適宜選択することができる。上記テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物であっても、脂肪族テトラカルボン酸二無水物であってもよいが、得られるポリイミド樹脂、ひいては多孔質膜の耐熱性の点から、芳香族テトラカルボン酸二無水物を使用することが好ましい。上記テトラカルボン酸二無水物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The tetracarboxylic acid dianhydride can be appropriately selected from compounds conventionally used as a raw material for synthesizing polyamic acid. The tetracarboxylic acid dianhydride may be an aromatic tetracarboxylic acid dianhydride or an aliphatic tetracarboxylic acid dianhydride, but the heat resistance of the obtained polyimide resin and thus the porous film From the point of view, it is preferable to use aromatic tetracarboxylic acid dianhydride. The above tetracarboxylic acid dianhydride may be used alone or in combination of two or more.
 芳香族テトラカルボン酸二無水物の好適な具体例としては、ただしこれらに限定されないが、ピロメリット酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2,6,6-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4-(m-フェニレンジオキシ)ジフタル酸二無水物、1,2,5,6-ナフタレンテトラカルボン二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス無水フタル酸フルオレン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。
 脂肪族テトラカルボン酸二無水物としては、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物等が挙げられる。
 これらの中でも、価格、入手容易性等から、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物が好ましい。
Preferable specific examples of the aromatic tetracarboxylic acid dianhydride include, but are not limited to, pyromellitic acid dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, and bis. (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 2,3 , 3', 4'-biphenyltetracarboxylic acid dianhydride, 2,2,6,6-biphenyltetracarboxylic acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedi Anhydride, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic Acid dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, 2,2', 3,3'-benzophenone tetracarboxylic dianhydride Anhydride, 4,4- (p-phenylenedioxy) diphthalic acid dianhydride, 4,4- (m-phenylenedioxy) diphthalic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride , 1,4,5,8-naphthalenetetracarboxylic acid dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,4,9,10-Perylenetetracarboxylic acid dianhydride, 2,3,6,7-anthracentetracarboxylic acid dianhydride, 1,2,7,8-phenanthrentetracarboxylic acid dianhydride, 9, Examples thereof include fluorene 9-bisanhydride phthalate, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride and the like.
Examples of the aliphatic tetracarboxylic dianhydride include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexanetetracarboxylic dianhydride, 1, 2, and so on. Examples thereof include 4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride and the like.
Among these, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride and pyromellitic acid dianhydride are preferable from the viewpoint of price, availability and the like.
 上記ジアミンは、従来からポリアミック酸の合成原料として使用されている化合物から適宜選択することができる。上記ジアミンは、芳香族ジアミンであっても、脂肪族ジアミンであってもよいが、得られるポリイミド樹脂、ひいては多孔質膜の耐熱性の点から、芳香族ジアミンが好ましい。これらのジアミンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The above diamine can be appropriately selected from compounds conventionally used as synthetic raw materials for polyamic acids. The diamine may be an aromatic diamine or an aliphatic diamine, but an aromatic diamine is preferable from the viewpoint of heat resistance of the obtained polyimide resin and the porous membrane. These diamines may be used alone or in combination of two or more.
 芳香族ジアミンとしては、1個のベンゼン環を含むジアミノ化合物、2個以上10個以下程度のベンゼン環が単結合にて又は2価の連結基を介して結合した芳香族骨格を含むジアミノ化合物、あるいは2個以上10個以下程度の該ベンゼン環が縮合した芳香族骨格を含むジアミノ化合物などを挙げることができる。
 具体的には、フェニレンジアミン化合物及びその誘導体、ジアミノビフェニル化合物及びその誘導体、ジアミノジフェニル化合物及びその誘導体、ジアミノトリフェニル化合物及びその誘導体、ジアミノナフタレン化合物及びその誘導体、アミノフェニルアミノインダン化合物及びその誘導体、ジアミノテトラフェニル化合物及びその誘導体、ジアミノヘキサフェニル化合物及びその誘導体、カルド型フルオレンジアミン誘導体などが挙げられる。
As the aromatic diamine, a diamino compound containing one benzene ring, a diamino compound containing an aromatic skeleton in which two or more and about 10 or less benzene rings are bonded by a single bond or via a divalent linking group. Alternatively, a diamino compound containing an aromatic skeleton in which 2 or more and 10 or less of the benzene rings are condensed can be mentioned.
Specifically, a phenylenediamine compound and its derivative, a diaminobiphenyl compound and its derivative, a diaminodiphenyl compound and its derivative, a diaminotriphenyl compound and its derivative, a diaminonaphthalene compound and its derivative, an aminophenylaminoindan compound and its derivative, Examples thereof include a diaminotetraphenyl compound and its derivative, a diaminohexaphenyl compound and its derivative, and a cardo-type fluorangeamine derivative.
 フェニレンジアミン化合物としては、m-フェニレンジアミン、p-フェニレンジアミン等が挙げられ、その誘導体としては、ベンゼン環上の水素原子がメチル基、エチル基等のアルキル基で置換されたジアミン、例えば、2,4-ジアミノトルエン、2,4-トリフェニレンジアミン等である。 Examples of the phenylenediamine compound include m-phenylenediamine, p-phenylenediamine and the like, and examples thereof include diamines in which the hydrogen atom on the benzene ring is substituted with an alkyl group such as a methyl group or an ethyl group, for example, 2. , 4-Diaminotoluene, 2,4-triphenylenediamine, etc.
 ジアミノビフェニル化合物及びその誘導体は、2つのアミノフェニル基同士が単結合にて結合した構造を有する。その具体例としては、例えば、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル等である。 The diaminobiphenyl compound and its derivative have a structure in which two aminophenyl groups are bonded to each other by a single bond. Specific examples thereof include 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl and the like.
 ジアミノジフェニル化合物及びその誘導体は、2つのアミノフェニル基が他の基(連結基)を介して結合した構造を有する。前記連結基(結合)としては、エーテル結合、スルホニル結合、チオエーテル結合、カルボニル結合、アルキレン又はその誘導体基による結合、イミノ結合、アゾ結合、ホスフィンオキシド結合、アミド結合、ウレイレン結合等が挙げられる。アルキレン結合の炭素原子数は1以上6以下程度であり、一部に二重結合を含んでいてもよい。アルキレン基の誘導体基は、1以上のハロゲン原子等で置換されたアルキレン基や、アルケニル基等で置換されたアルキレン基を挙げることができる。 The diaminodiphenyl compound and its derivative have a structure in which two aminophenyl groups are bonded via another group (linking group). Examples of the linking group (bond) include an ether bond, a sulfonyl bond, a thioether bond, a carbonyl bond, a bond with an alkylene or a derivative group thereof, an imino bond, an azo bond, a phosphine oxide bond, an amide bond, and a ureylene bond. The number of carbon atoms of the alkylene bond is about 1 or more and 6 or less, and a double bond may be partially contained. Examples of the derivative group of the alkylene group include an alkylene group substituted with one or more halogen atoms and the like, and an alkylene group substituted with an alkenyl group or the like.
 ジアミノジフェニル化合物及びその誘導体の例としては、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,2-ビス(p-アミノフェニル)プロパン、2,2’-ビス(p-アミノフェニル)ヘキサフルオロプロパン、4-メチル-2,4-ビス(p-アミノフェニル)-1-ペンテン、4-メチル-2,4-ビス(p-アミノフェニル)-2-ペンテン、イミノジアニリン、4-メチル-2,4-ビス(p-アミノフェニル)ペンタン、ビス(p-アミノフェニル)ホスフィンオキシド、4,4’-ジアミノアゾベンゼン、4,4’-ジアミノジフェニル尿素、4,4’-ジアミノジフェニルアミド等が挙げられる。 Examples of diaminodiphenyl compounds and derivatives thereof include 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfone, 3,4'-diamino. Diphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfide, 3,3'- Diaminodiphenylketone, 3,4'-diaminodiphenylketone, 2,2-bis (p-aminophenyl) propane, 2,2'-bis (p-aminophenyl) hexafluoropropane, 4-methyl-2,4- Bis (p-aminophenyl) -1-pentene, 4-methyl-2,4-bis (p-aminophenyl) -2-penten, iminodianiline, 4-methyl-2,4-bis (p-aminophenyl) ) Pentan, bis (p-aminophenyl) phosphinoxide, 4,4'-diaminoazobenzene, 4,4'-diaminodiphenylurea, 4,4'-diaminodiphenylamide and the like.
 ジアミノトリフェニル化合物及びその誘導体は、1つのフェニレン基を挟んで2つのアミノフェニル基がそれぞれ単結合及び/又は連結基を介して結合した構造を有する化合物である。該連結基は、ジアミノジフェニル化合物及びその誘導体において挙げた基と同様の基が選ばれる。
 ジアミノトリフェニル化合物及びその誘導体の例としては、1,3-ビス(m-アミノフェノキシ)ベンゼン[1,3-ビス(3-アミノフェノキシ)ベンゼンとも称する]、1,3-ビス(p-アミノフェノキシ)ベンゼン[1,3-ビス(4-アミノフェノキシ)ベンゼンとも称する]、1,4-ビス(p-アミノフェノキシ)ベンゼン[1,4-ビス(4-アミノフェノキシ)ベンゼンとも称する]、2,4-トリフェニレンジアミン等を挙げることができる。
The diaminotriphenyl compound and its derivative are compounds having a structure in which two aminophenyl groups are bonded via a single bond and / or a linking group, respectively, with one phenylene group interposed therebetween. As the linking group, a group similar to the group mentioned in the diaminodiphenyl compound and its derivative is selected.
Examples of diaminotriphenyl compounds and their derivatives include 1,3-bis (m-aminophenoxy) benzene [also referred to as 1,3-bis (3-aminophenoxy) benzene] and 1,3-bis (p-amino). Phenoxy) benzene [also referred to as 1,3-bis (4-aminophenoxy) benzene], 1,4-bis (p-aminophenoxy) benzene [also referred to as 1,4-bis (4-aminophenoxy) benzene], 2 , 4-Triphenylenediamine and the like can be mentioned.
 ジアミノナフタレン化合物及びその誘導体の例としては、1,5-ジアミノナフタレン及び2,6-ジアミノナフタレン等を挙げることができる。 Examples of the diaminonaphthalene compound and its derivative include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
 アミノフェニルアミノインダン化合物及びその誘導体の例としては、5又は6-アミノ-1-(p-アミノフェニル)-1,3,3-トリメチルインダン等を挙げることができる。 Examples of the aminophenylaminoindane compound and its derivative include 5 or 6-amino-1- (p-aminophenyl) -1,3,3-trimethylindane.
 ジアミノテトラフェニル化合物及びその誘導体の例としては、4,4’-ビス(p-アミノフェノキシ)ビフェニル、ビス[4-(p-アミノフェノキシ)フェニル]スルホン[ビス[4-(4-アミノフェノキシ)フェニル]スルホンとも称する]、ビス[4-(m-アミノフェノキシ)フェニル]スルホン[ビス[4-(3-アミノフェノキシ)フェニル]スルホンとも称する]、2,2’-ビス[p-(p’-アミノフェノキシ)フェニル]プロパン[2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンとも称する]、2,2’-ビス[p-(p’-アミノフェノキシ)フェニル]ヘキサフルオロプロパン[2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパンとも称する]、2,2’-ビス[p-(p’-アミノフェノキシ)ビフェニル]プロパン、2,2’-ビス[p-(m-アミノフェノキシ)フェニル]ベンゾフェノン等を挙げることができる。 Examples of diaminotetraphenyl compounds and derivatives thereof include 4,4'-bis (p-aminophenoxy) biphenyl, bis [4- (p-aminophenoxy) phenyl] sulfone [bis [4- (4-aminophenoxy). Also called phenyl] sulfone], bis [4- (m-aminophenoxy) phenyl] sulfone [also called bis [4- (3-aminophenoxy) phenyl] sulfone], 2,2'-bis [p- (p') -Aminophenoxy) phenyl] propane [2,2-bis [4- (4-aminophenoxy) phenyl] propane], 2,2'-bis [p- (p'-aminophenoxy) phenyl] hexafluoropropane [2,2-bis [4- (4-aminophenoxy) phenyl] also referred to as hexafluoropropane], 2,2'-bis [p- (p'-aminophenoxy) biphenyl] propane, 2,2'-bis [P- (m-aminophenoxy) phenyl] benzophenone and the like can be mentioned.
 カルド型フルオレンジアミン誘導体の具体例としては、9,9-ビスアニリンフルオレン等が挙げられる。 Specific examples of the cardo-type fluorene amine derivative include 9,9-bisaniline fluorene and the like.
 これら芳香族ジアミンの中でも、価格、入手容易性等から、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、及び4,4’-ジアミノジフェニルエーテルが好ましい。 Among these aromatic diamines, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are preferable from the viewpoint of price, availability, and the like.
 脂肪族ジアミンとしては、例えば2以上15以下程度の炭素原子数を有するジアミン化合物を挙げることができる。
 脂肪族ジアミンの具体例としては、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン等が挙げられる。
Examples of the aliphatic diamine include diamine compounds having 2 or more and 15 or less carbon atoms.
Specific examples of the aliphatic diamine include pentamethylenediamine, hexamethylenediamine, heptamethylenediamine and the like.
 なお、これら脂肪族ジアミンの炭素原子鎖の水素原子がハロゲン原子、メチル基、メトキシ基、シアノ基、フェニル基等の群より選択される少なくとも1種の置換基により置換された化合物であってもよい。 Even if the hydrogen atom of the carbon atom chain of these aliphatic diamines is substituted with at least one substituent selected from the group of halogen atom, methyl group, methoxy group, cyano group, phenyl group and the like. good.
 ポリアミック酸(A)を製造する手段に特に制限はなく、例えば、溶剤中でテトラカルボン酸二無水物成分とジアミン成分を反応させる方法等の公知の手法を用いることができる。 The means for producing the polyamic acid (A) is not particularly limited, and a known method such as a method of reacting a tetracarboxylic acid dianhydride component with a diamine component in a solvent can be used.
 上述のテトラカルボン酸二無水物とジアミンとの反応に使用される溶剤は、テトラカルボン酸二無水物及びジアミンを溶解させることができ、テトラカルボン酸二無水物及びジアミンと反応しない溶剤であれば特に限定されない。溶剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The solvent used for the above-mentioned reaction between the tetracarboxylic acid dianhydride and the diamine is a solvent that can dissolve the tetracarboxylic acid dianhydride and the diamine and does not react with the tetracarboxylic acid dianhydride and the diamine. Not particularly limited. One type of solvent may be used alone, or two or more types may be used in combination.
 テトラカルボン酸二無水物とジアミンとの反応に用いる溶剤の例としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤;β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン等のラクトン系極性溶剤;ジメチルスルホキシド;アセトニトリル;乳酸エチル、乳酸ブチル等の脂肪酸エステル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジオキサン、テトラヒドロフラン、メチルセルソルブアセテート、エチルセルソルブアセテート等のエーテル類;クレゾール類、キシレン系混合溶媒等のフェノール系溶剤が挙げられる。
 溶剤の使用量に特に制限はないが、生成するポリアミック酸(A)の含有量が5質量%以上50質量%以下となるように使用するのが望ましい。
Examples of the solvent used for the reaction between the tetracarboxylic acid dianhydride and the diamine include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, Nitrogen-containing polar solvents such as N-diethylformamide, N-methylcaprolactam, N, N, N', N'-tetramethylurea; β-propiolactone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, Lactone-based polar solvents such as γ-caprolactone and ε-caprolactone; dimethylsulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dioxane, tetrahydrofuran, methyl cellsolve acetate, ethyl cell solve acetate. Etc.; Examples thereof include phenol-based solvents such as cresols and xylene-based mixed solvents.
The amount of the solvent used is not particularly limited, but it is desirable to use it so that the content of the polyamic acid (A) produced is 5% by mass or more and 50% by mass or less.
 これらの溶剤の中では、生成するポリアミック酸(A)の溶解性から、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤が好ましい。 Among these solvents, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, A nitrogen-containing polar solvent such as N-diethylformamide, N-methylcaprolactam, N, N, N', N'-tetramethylurea is preferable.
 ポリアミック酸合成時の温度は、一般的には-10℃以上120℃以下、好ましくは5℃以上30℃以下の任意の温度を選択できる。
 反応時間は使用する原料組成により異なるが、通常は3時間以上24時間以下である。
 なお、ポリアミック酸の合成を後述する溶媒(S)中で行った場合、ポリアミック酸の反応溶液をそのままポリアミック酸含有液として、ワニス組成物の調製に使用することができる。
As the temperature at the time of polyamic acid synthesis, an arbitrary temperature of −10 ° C. or higher and 120 ° C. or lower, preferably 5 ° C. or higher and 30 ° C. or lower can be selected.
The reaction time varies depending on the raw material composition used, but is usually 3 hours or more and 24 hours or less.
When the synthesis of the polyamic acid is carried out in the solvent (S) described later, the reaction solution of the polyamic acid can be used as it is as the polyamic acid-containing liquid in the preparation of the varnish composition.
 ワニス組成物におけるポリアミック酸(A)の含有量は特に限定されず、ワニス組成物の粘度や塗布性、ワニス組成物の固形分濃度を勘案して適宜定められる。
 なおポリアミック酸(A)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The content of the polyamic acid (A) in the varnish composition is not particularly limited, and is appropriately determined in consideration of the viscosity and coatability of the varnish composition and the solid content concentration of the varnish composition.
The polyamic acid (A) may be used alone or in combination of two or more.
<有機微粒子(B)>
 本発明のワニス組成物に使用する有機微粒子(B)は、ビニル系単量体に由来する構造単位(a)と、後述する一般式(I)で表される化合物に由来する構造単位(b1)を有する重合体である、ビニル系樹脂粒子である。
 有機微粒子(B)は上述の各構造単位を構成することとなる、ビニル系単量体と一般式(I)で表される化合物とを含む単量体成分(混合物)の共重合物(共重合体)とすることができる。
<Organic fine particles (B)>
The organic fine particles (B) used in the varnish composition of the present invention are a structural unit (a) derived from a vinyl-based monomer and a structural unit (b1) derived from a compound represented by the general formula (I) described later. ), Which is a vinyl-based resin particle.
The organic fine particles (B) are a copolymer (copolymer) of a monomer component (mixture) containing a vinyl-based monomer and a compound represented by the general formula (I), which constitutes each of the above-mentioned structural units. It can be a polymer).
 また本発明の一態様において、前記ワニス組成物に使用する有機微粒子(B)として、後述する単官能ビニル系単量体に由来する構造単位(a0)と、後述する多官能ビニル系単量体に由来する構造単位(a3)と、後述する反応性乳化剤に由来する構造単位(b0)とを有する重合体である、ビニル系樹脂粒子を用いることができる。 Further, in one embodiment of the present invention, the organic fine particles (B) used in the varnish composition include a structural unit (a0) derived from a monofunctional vinyl-based monomer described later and a polyfunctional vinyl-based monomer described later. Vinyl-based resin particles, which are polymers having a structural unit (a3) derived from the above and a structural unit (b0) derived from the reactive emulsifier described later, can be used.
 なお、本明細書において(メタ)アクリル系単量体とは、アクリル系単量体とメタクリル系単量体の両方をいう。例えば(メタ)アクリル酸アルキルエステルは、アクリル酸アルキルエステルとメタクリル酸アルキルエステルをいう。
 また本明細書において、「ビニル系単量体に由来する構造単位」「単官能スチレン系単量体に由来する構造単位」「単官能(メタ)アクリル系単量体に由来する構造単位」「多官能ビニル系単量体に由来する構造単位」などの表記は、ビニル系単量体、単官能スチレン系単量体、単官能(メタ)アクリル系単量体、多官能ビニル系単量体が、それぞれ重合された場合に形成される構造単位を示し、それら単量体そのものを表すものではない。
In the present specification, the (meth) acrylic monomer means both an acrylic monomer and a methacrylic monomer. For example, (meth) acrylic acid alkyl ester refers to acrylic acid alkyl ester and methacrylic acid alkyl ester.
Further, in the present specification, "structural unit derived from vinyl-based monomer", "structural unit derived from monofunctional styrene-based monomer", "structural unit derived from monofunctional (meth) acrylic monomer", and "structural unit". Notations such as "structural unit derived from polyfunctional vinyl-based monomer" are vinyl-based monomer, monofunctional styrene-based monomer, monofunctional (meth) acrylic-based monomer, polyfunctional vinyl-based monomer. However, each indicates a structural unit formed when polymerized, and does not represent those monomers themselves.
[ビニル系単量体に由来する構造単位(a)]
 ビニル系単量体に由来する構造単位(a)は、後述する反応性乳化剤に由来する構造単位(b0)及び一般式(I)で表される化合物に由来する構造単位(b1)とは区別されるものである。
 前記構造単位(a)は、単官能ビニル系単量体に由来する構造単位(a0)と多官能ビニル系単量体に由来する構造単位(a3)を含むことができ、また単官能ビニル系単量体に由来する構造単位(a0)には単官能スチレン系単量体に由来する構造単位(a1)や、単官能(メタ)アクリル系単量体に由来する構造単位(a2)を含むことができる。
 好適な態様において、構造単位(a)は、単官能ビニル系単量体に由来する構造単位(a0)と多官能ビニル系単量体に由来する構造単位(a3)の双方を含む。
[Structural unit derived from vinyl-based monomer (a)]
The structural unit (a) derived from the vinyl-based monomer is distinguished from the structural unit (b0) derived from the reactive emulsifier described later and the structural unit (b1) derived from the compound represented by the general formula (I). Is to be done.
The structural unit (a) can include a structural unit (a0) derived from a monofunctional vinyl-based monomer and a structural unit (a3) derived from a polyfunctional vinyl-based monomer, and is also monofunctional vinyl-based. The structural unit (a0) derived from the monomer includes a structural unit (a1) derived from a monofunctional styrene-based monomer and a structural unit (a2) derived from a monofunctional (meth) acrylic monomer. be able to.
In a preferred embodiment, the structural unit (a) includes both a structural unit (a0) derived from a monofunctional vinyl-based monomer and a structural unit (a3) derived from a polyfunctional vinyl-based monomer.
[単官能ビニル系単量体に由来する構造単位(a0)]
〈単官能スチレン系単量体に由来する構造単位(a1)〉
 前記単官能ビニル系単量体に由来する構造単位(a0)として、単官能スチレン系単量体に由来する構造単位(a1)を含むことができる。一般にスチレン系単量体に由来する構造単位は、均一な真球状の粒子形成に寄与することができる。
 前記構造単位(a1)を構成することとなる単官能スチレン系単量体としては、例えば、スチレン、α-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、2,4,6-トリメチルスチレン等のスチレン及びその誘導体;スチレンスルホン酸ナトリウム、スチレンスルホン酸アンモニウム等のスチレンスルホン酸塩が挙げられる。これらの中でも、スチレン、α-メチルスチレン、スチレンスルホン酸ナトリウムを好適なものとして挙げることができる。
[Structural unit derived from monofunctional vinyl monomer (a0)]
<Structural unit derived from monofunctional styrene-based monomer (a1)>
As the structural unit (a0) derived from the monofunctional vinyl-based monomer, the structural unit (a1) derived from the monofunctional styrene-based monomer can be included. In general, structural units derived from styrene-based monomers can contribute to the formation of uniform spherical particles.
Examples of the monofunctional styrene-based monomer constituting the structural unit (a1) include styrene, α-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2, Styrene such as 5-dimethylstyrene and 2,4,6-trimethylstyrene and derivatives thereof; styrene sulfonates such as sodium styrene sulfonate and ammonium styrene sulfonate can be mentioned. Among these, styrene, α-methylstyrene, and sodium styrene sulfonate can be mentioned as suitable ones.
〈単官能(メタ)アクリル系単量体に由来する構造単位(a2)〉
 また前記単官能ビニル系単量体に由来する構造単位(a0)として、前記単官能スチレン系単量体に由来する構造単位(a1)に加え、単官能(メタ)アクリル系単量体に由来する構造単位(a2)を含んでいてもよい。(メタ)アクリル系単量体に由来する構造単位は、単官能・多官能問わずモノマー単位で分解(解重合)しやすく熱分解性に優れるという特性を有し、有機微粒子(B)の熱分解温度を下げることができる。
 前記構造単位(a2)を構成することとなる単官能(メタ)アクリル系単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸3-メチルブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル等、アルキル基の炭素原子数が1~18である(メタ)アクリル酸エステルを挙げることができる。
 これらの中でも、粒子径の揃った有機微粒子(B)を得やすいという観点からは、前記(メタ)アクリル酸系単量体として、(メタ)アクリル酸メチルや(メタ)アクリル酸エチルを好適なものとして挙げることができ、特に(メタ)アクリル酸メチルが好ましい。
<Structural unit derived from monofunctional (meth) acrylic monomer (a2)>
Further, as the structural unit (a0) derived from the monofunctional vinyl-based monomer, in addition to the structural unit (a1) derived from the monofunctional styrene-based monomer, it is derived from the monofunctional (meth) acrylic monomer. The structural unit (a2) to be used may be included. The structural unit derived from the (meth) acrylic monomer has the property of being easily decomposed (depolymerized) in the monomer unit regardless of whether it is monofunctional or polyfunctional, and has excellent thermal decomposition properties, and the heat of the organic fine particles (B). The decomposition temperature can be lowered.
Examples of the monofunctional (meth) acrylic monomer constituting the structural unit (a2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth). ) Isopropyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, 3-methylbutyl (meth) acrylate, (meth) ) N-hexyl acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, etc. (Meta) acrylic acid esters having a number of 1 to 18 can be mentioned.
Among these, methyl (meth) acrylate and ethyl (meth) acrylate are preferable as the (meth) acrylic acid-based monomer from the viewpoint of easily obtaining organic fine particles (B) having the same particle size. It can be mentioned as a thing, and methyl (meth) acrylate is particularly preferable.
[多官能ビニル系単量体に由来する構造単位(a3)]
 前記構造単位(a)は、単官能ビニル系単量体に由来する構造単位(a0)に加え、多官能ビニル系単量体に由来する構造単位(a3)を含むことができる。多官能ビニル系単量体に由来する構造単位(a3)を含むことにより、得られる有機微粒子(B)の耐溶剤性を高め、有機微粒子(B)の膨潤による、ワニス組成物(ポリイミドワニス)の粘度低下を抑制することができる。また構造単位(a3)を含むことにより、圧縮強度が高く、粒子径の揃った有機微粒子(B)を得やすくなる。
 上記構造単位(a3)としては、多官能(メタ)アクリル系単量体に由来する構造単位(a3-1)や、多官能(ポリ)ビニル系単量体に由来する構造単位(a3-2)を挙げることができる。
[Structural unit derived from polyfunctional vinyl-based monomer (a3)]
The structural unit (a) can include a structural unit (a3) derived from a polyfunctional vinyl-based monomer in addition to a structural unit (a0) derived from a monofunctional vinyl-based monomer. A varnish composition (polyimide varnish) by containing the structural unit (a3) derived from a polyfunctional vinyl-based monomer to enhance the solvent resistance of the obtained organic fine particles (B) and swelling the organic fine particles (B). It is possible to suppress the decrease in viscosity of. Further, by including the structural unit (a3), the compressive strength is high and it becomes easy to obtain the organic fine particles (B) having the same particle size.
The structural unit (a3) includes a structural unit (a3-1) derived from a polyfunctional (meth) acrylic monomer and a structural unit (a3-2) derived from a polyfunctional (poly) vinyl monomer. ) Can be mentioned.
 前記構造単位(a3-1)を構成することとなる、多官能(メタ)アクリル系単量体の具体例としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エチレンオキシド変性1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのジ(メタ)アクリレート;エチレンオキシドの付加モル数が2~50のポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシドの付加モル数が2~50のポリプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどの炭素原子数2~4のアルキレンオキシド基の付加モル数が2~50であるアルキルジ(メタ)アクリレート;エトキシ化グリセリントリ(メタ)アクリレート、プロピレンオキシド変性グリセロールトリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールモノヒドロキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのトリ(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのテトラ(メタ)アクリレート;ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトール(モノヒドロキシ)ペンタ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのペンタ(メタ)アクリレート;ペンタエリスリトールヘキサ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのヘキサ(メタ)アクリレート等が挙げられるがこれらに限定されない。 Specific examples of the polyfunctional (meth) acrylic monomer constituting the structural unit (a3-1) include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3. -Butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, ethylene oxide modified 1,6-hexanediol di (meth) acrylate, 1,9 -Di (meth) acrylates of polyhydric alcohols having 1 to 10 carbon atoms such as nonanediol di (meth) acrylates, propylene oxide-modified neopentyl glycol di (meth) acrylates, and tripropylene glycol di (meth) acrylates; Polyethylene glycol di (meth) acrylate having 2 to 50 moles added, polypropylene glycol di (meth) acrylate having 2 to 50 moles of propylene oxide, tripropylene glycol di (meth) acrylate, etc. having 2 to 2 carbon atoms. Alkyldi (meth) acrylate in which the number of added moles of the alkylene oxide group of 4 is 2 to 50; ethoxylated glycerintri (meth) acrylate, propylene oxide-modified glycerol tri (meth) acrylate, ethylene oxide-modified trimethyl propanetri (meth) acrylate. , Trimethylol propanetri (meth) acrylate, pentaerythritol monohydroxytri (meth) acrylate, trimethylolpropanetriethoxytri (meth) acrylate and other polyhydric alcohol tri (meth) acrylates having 1 to 10 carbon atoms; penta Tetra (meth) acrylates of polyhydric alcohols having 1 to 10 carbon atoms such as erythritol tetra (meth) acrylates, dipentaerythritol tetra (meth) acrylates, and ditrimethylolpropane tetra (meth) acrylates; pentaerythritol penta (meth) acrylates. , Penta (meth) acrylate of polyvalent alcohol having 1 to 10 carbon atoms such as dipentaerythritol (monohydroxy) penta (meth) acrylate; multivalent of 1 to 10 carbon atoms such as pentaerythritol hexa (meth) acrylate. Hexa (meth) acrylate of alcohol and the like can be mentioned, but the present invention is not limited thereto.
 また、前記構造単位(a3-2)を構成することとなる、多官能(ポリ)ビニル系単量体の具体例としては、イソプレン、ブタジエン等の多官能脂肪族ビニル系単量体;シクロペンタジエン、シクロヘキサジエン等の多官能脂環式ビニル系単量体;ジビニルベンゼン、ジビニルトルエン、ジビニルナフタレン等の多官能芳香族ビニル系単量体;アジピン酸ジビニル、マレイン酸ジビニル、フタル酸ジビニル、イソフタル酸ジビニル等の多官能ビニルエステル系単量体;マレイン酸ジアリル、フタル酸ジアリル、イソフタル酸ジアリル、アジピン酸ジアリル等の多官能アリルエステル系単量体;ジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等の多官能ビニルエーテル系単量体;ジアリルエーテル、ジアリルオキシエタン、トリアリルオキシエタン等の多官能アリルエーテル系単量体;ジビニルケトン、ジアリルケトン等の多官能ビニルケトン系単量体;ジアリルアミン、ジアリルイソシアヌレート、ジアリルシアヌレート、メチレンビス(メタ)アクリルアミド、ビスマレイミド等の多官能含窒素ビニル系単量体;ジメチルジビニルシラン、ジビニルメチルフェニルシラン、ジフェニルジビニルシラン等の多官能含ケイ素ビニル系単量体等が挙げられるがこれらに限定されない。 Specific examples of the polyfunctional (poly) vinyl-based monomer constituting the structural unit (a3-2) include polyfunctional aliphatic vinyl monomers such as isoprene and butadiene; cyclopentadiene. , Cyclohexadiene and other polyfunctional alicyclic vinyl monomers; polyfunctional aromatic vinyl monomers such as divinylbenzene, divinyltoluene and divinylnaphthalene; divinyl adipate, divinyl maleate, divinyl phthalate, isophthalic acid Polyfunctional vinyl ester-based monomer such as divinyl; Polyfunctional allyl ester-based monomer such as diallyl maleate, diallyl phthalate, diallyl isophthalate, diallyl adipate; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether Polyfunctional vinyl ether-based monomers such as, etc .; Polyfunctional allyl ether-based monomers such as diallyl ether, diallyl oxyetane, and triallyl oxyetane; Polyfunctional vinyl ketone-based monomers such as divinyl ketone and diallyl ketone; Polyfunctional nitrogen-containing vinyl monomers such as isocyanurate, diallyl cyanurate, methylenebis (meth) acrylamide, and bismaleimide; polyfunctional silicon-containing vinyl monomers such as dimethyldivinylsilane, divinylmethylphenylsilane, and diphenyldivinylsilane. Etc., but are not limited to these.
 これらの中でも、粒子径の揃った有機微粒子(B)を得やすいという観点から、上記構造単位(a3)を構成する多官能ビニル系単量体として、エチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジビニルベンゼン、ジビニルトルエン等が好ましい。さらに重合安定性に優れ、凝集物の少ない有機微粒子(B)を得やすいという観点から、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレートが挙げられ、中でもエチレングリコールジ(メタ)アクリレートが好ましい。 Among these, ethylene glycol di (meth) acrylates, 1, 3 are examples of the polyfunctional vinyl-based monomer constituting the structural unit (a3) from the viewpoint that organic fine particles (B) having the same particle size can be easily obtained. -Butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, divinylbenzene, divinyltoluene and the like are preferable. Further, from the viewpoint of excellent polymerization stability and easy acquisition of organic fine particles (B) with few aggregates, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,3-butylene glycol di (meth). Examples thereof include ethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate is preferable.
 前記多官能ビニル系単量体に由来する構造単位(a3)は、前記構造単位(a)の合計質量に対して1質量%~10質量%であることが好ましい。 The structural unit (a3) derived from the polyfunctional vinyl-based monomer is preferably 1% by mass to 10% by mass with respect to the total mass of the structural unit (a).
〈その他の重合性単量体に由来する構造単位〉
 有機微粒子(B)である重合体は、本発明の効果を損なわない範囲において、上記構造単位(a0)[(a1)、(a2)]、及び(a3)[(a3-1)、(a3-2)]以外のその他のビニル系単量体(重合性単量体)に由来する構造単位を含んでいてもよい。すなわち有機微粒子(B)は、その他の重合性単量体を含む単量体成分(混合物)の共重合体とすることができる。
<Structural unit derived from other polymerizable monomers>
The polymer which is the organic fine particles (B) has the structural units (a0) [(a1), (a2)] and (a3) [(a3-1), (a3) as long as the effects of the present invention are not impaired. -2)] may contain structural units derived from other vinyl-based monomers (polymerizable monomers). That is, the organic fine particles (B) can be a copolymer of a monomer component (mixture) containing other polymerizable monomers.
 例えば、上記単官能スチレン系単量体、上記単官能(メタ)アクリル系単量体以外の、その他の重合性単量体としては、(メタ)アクリロニトリル等の単官能(メタ)アクリロニトリル系単量体;N-ビニルイミダゾール、N-ビニル-2-ピロリドン等の単官能ヘテロ環含有ビニル系単量体;酢酸ビニル(ビニルアセテート)、酢酸イソプロペニル、ビニルプロピオネート、ビニルデカノエート等の単官能ビニルエステル系単量体;エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、エチレングリコールビニルエーテル等の単官能ビニルエーテル系単量体;ビニルシクロペンタン、ビニルシクロヘキサン、エチルビニルベンゼン等のその他単官能ビニル化合物系単量体;(メタ)アクリル酸、イタコン酸等の単官能(メタ)アクリル酸系単量体;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の単官能(メタ)アクリルアミド系単量体等が挙げられるがこれらに限定されない。 For example, other than the monofunctional styrene-based monomer and the monofunctional (meth) acrylic-based monomer, other polymerizable monomers include monofunctional (meth) acrylonitrile-based single amounts such as (meth) acrylonitrile. Body; Monofunctional heterocycle-containing vinyl-based monomer such as N-vinylimidazole and N-vinyl-2-pyrrolidone; Simple such as vinyl acetate (vinyl acetate), isopropenyl acetate, vinyl propionate, vinyl decanoate and the like. Functional vinyl ester-based monomer; Monofunctional vinyl ether-based monomer such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, ethylene glycol vinyl ether; Other monofunctional vinyl compounds such as vinyl cyclopentane, vinyl cyclohexane, ethyl vinyl benzene, etc. Monomer: Monofunctional (meth) acrylic acid-based monomer such as (meth) acrylic acid and itaconic acid; Monofunctional (meth) acrylamide-based monomer such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide. Examples thereof include, but are not limited to, monomers.
<反応性乳化剤及び反応性乳化剤に由来する構造単位(b0)>
 前記反応性乳化剤は、上述した単量体又はその重合体と反応性を有する乳化剤であれば特に限定されないが、その分子構造中にラジカル重合性の二重結合、親水性官能基、及び疎水性基をそれぞれ有し、かつ一般の乳化剤と同様に、乳化、分散、及び湿潤機能を持つものが挙げられる。
<Structural unit derived from reactive emulsifier and reactive emulsifier (b0)>
The reactive emulsifier is not particularly limited as long as it is an emulsifier reactive with the above-mentioned monomer or its polymer, but has a radically polymerizable double bond, a hydrophilic functional group, and a hydrophobicity in its molecular structure. Examples thereof include those having each group and having emulsifying, dispersing, and wetting functions similar to general emulsifiers.
 分子構造中のラジカル重合性の二重結合の構造例としては、例えば、1-プロペニル基、2-メチル-1-プロペニル基、アリル基、メタリル基、ビニル基、アクリロイル基、メタアクリロイル基等が挙げられる。 Examples of the structure of the radically polymerizable double bond in the molecular structure include 1-propenyl group, 2-methyl-1-propenyl group, allyl group, methallyl group, vinyl group, acryloyl group, metaacryloyl group and the like. Can be mentioned.
 分子構造中の親水性官能基としては、例えば、硫酸基、硝酸基、リン酸基、ホウ酸基、カルボキシル基等のアニオン性基(-OSO 、-NO 、-OPO 、-B(OH) 、-COO等);アミノ基等のカチオン性基(-NH 等);ポリオキシエチレン、ポリオキシメチレン、ポリオキシプロピレン等のポリオキシアルキレン鎖;ヒドロキシ基等が挙げられる。 Examples of the hydrophilic functional group in the molecular structure include anionic groups such as sulfate group, nitrate group, phosphate group, borate group and carboxyl group (-OSO 3- , -NO 3- , -OPO 3- , and so on. -B (OH) 4- , -COO- , etc.); Cationic groups such as amino groups ( -NH 3+ , etc.); Polyoxyalkylene chains such as polyoxyethylene, polyoxymethylene, polyoxypropylene; hydroxy groups, etc. Can be mentioned.
 分子構造中の疎水性基としては、例えば、アルキル基、アルケニル基、フェニル基、アルキルフェニル基、スチレン化フェニル基、ナフチル基等が挙げられる。 Examples of the hydrophobic group in the molecular structure include an alkyl group, an alkenyl group, a phenyl group, an alkylphenyl group, a styrrified phenyl group, a naphthyl group and the like.
 反応性乳化剤はその分子構造中に含まれる親水性官能基の種類により、アニオン性乳化剤、ノニオン性乳化剤、カチオン性乳化剤、両性乳化剤等に分類される。
 また反応性乳化剤における分子構造中のラジカル重合性の二重結合、親水性官能基、及び疎水性基は、それぞれ複数の種類の構造、官能基を有することも可能である。
Reactive emulsifiers are classified into anionic emulsifiers, nonionic emulsifiers, cationic emulsifiers, amphoteric emulsifiers and the like according to the type of hydrophilic functional group contained in the molecular structure.
Further, the radically polymerizable double bond, the hydrophilic functional group, and the hydrophobic group in the molecular structure of the reactive emulsifier can each have a plurality of types of structures and functional groups.
 上述した中でも、反応性乳化剤は、少なくとも分子構造内部に親水性官能基としてポリオキシアルキレン鎖及び硫酸基を持つものが好ましい。 Among the above, the reactive emulsifier preferably has at least a polyoxyalkylene chain and a sulfuric acid group as hydrophilic functional groups inside the molecular structure.
 このような反応性乳化剤として一般的に市販されている商品名としては、特に限定されないが、例えば、アデカリアソープSR、ER、SE、NE、PP(株式会社ADEKA)、アクアロンHS、BC、KH(第一工業製薬株式会社)、ラテムルPD(花王株式会社)、エレミノールJS、RS(三洋化成工業株式会社)、アントックスMS(日本乳化剤株式会社)等が挙げられる。 The trade name generally commercially available as such a reactive emulsifier is not particularly limited, but for example, Adecaria Soap SR, ER, SE, NE, PP (ADEKA Corporation), Aqualon HS, BC, KH. (Daiichi Kogyo Seiyaku Co., Ltd.), Latemuru PD (Kao Co., Ltd.), Eleminor JS, RS (Sanyo Kasei Kogyo Co., Ltd.), Antox MS (Nippon Emulsifier Co., Ltd.) and the like.
[一般式(I)で表される化合物に由来する構造単位(b1)]
 上述したように、有機微粒子(B)は、下記一般式(I)で表される化合物に由来する構造単位(b1)を有することができる。
 下記一般式(I)で表される化合物は、分子中に疎水基と親水基を有するとともに、共重合性の不飽和基を有する。そのため、下記一般式(I)で表される化合物は反応性(共重合性)の乳化剤(前述の反応性乳化剤に該当)としても機能し、従来の乳化重合時における諸問題、例えば乳化重合時における重合不安定性や系の泡立ち、また重合後に得られる重合物の物性の劣化等を抑制・改善が期待できる。
Figure JPOXMLDOC01-appb-C000005
上記一般式(I)中、mは、1~3の整数を表し、乳化性の観点から、好ましくは2を表す。
[Structural unit (b1) derived from the compound represented by the general formula (I)]
As described above, the organic fine particles (B) can have a structural unit (b1) derived from the compound represented by the following general formula (I).
The compound represented by the following general formula (I) has a hydrophobic group and a hydrophilic group in the molecule, and also has a copolymerizable unsaturated group. Therefore, the compound represented by the following general formula (I) also functions as a reactive (copolymerizable) emulsifier (corresponding to the above-mentioned reactive emulsifier), and various problems in the conventional emulsion polymerization, for example, during emulsion polymerization. It can be expected to suppress / improve the polymerization instability, the foaming of the system, and the deterioration of the physical properties of the polymer obtained after the polymerization.
Figure JPOXMLDOC01-appb-C000005
In the above general formula (I), m represents an integer of 1 to 3, and preferably represents 2 from the viewpoint of emulsifying property.
 AOは、炭素原子数2~4のアルキレンオキシ基を表す。炭素原子数2~4のアルキレンオキシ基としては、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基が挙げられる。これらの中でも、AOとしては、エチレンオキシ基が好ましい。エチレンオキシ基は、他のアルキレンオキシ基よりも親水性が高く、密度の高い水和層を有する樹脂エマルションを形成できるため、水性分散媒中での樹脂粒子の安定性をより向上できる。
 nは、アルキレンオキシ単位の繰り返し数(即ち、アルキレンオキシ基の付加モル数)を表す。nは、0~100の整数であり、水性分散媒中での樹脂粒子の安定性の観点から、好ましくは5~50の整数であり、より好ましくは5~30の整数である。
AO represents an alkyleneoxy group having 2 to 4 carbon atoms. Examples of the alkyleneoxy group having 2 to 4 carbon atoms include an ethyleneoxy group, a propyleneoxy group, and a butyleneoxy group. Among these, ethyleneoxy group is preferable as AO. Since the ethyleneoxy group is more hydrophilic than other alkyleneoxy groups and can form a resin emulsion having a dense hydration layer, the stability of the resin particles in the aqueous dispersion medium can be further improved.
n represents the number of repetitions of the alkyleneoxy unit (that is, the number of moles of the alkyleneoxy group added). n is an integer of 0 to 100, preferably an integer of 5 to 50, and more preferably an integer of 5 to 30, from the viewpoint of the stability of the resin particles in the aqueous dispersion medium.
 Xは、水素原子を表すか、又は、-SOM、-COOM及び-POM(式中、Mは、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基又は有機アンモニウム基を表す。)からなる群から選ばれるアニオン性親水基を表す。
 アルカリ金属原子としては、ナトリウム原子、カリウム原子等が挙げられる。アルカリ土類金属原子としては、カルシウム原子、バリウム原子等が挙げられる。
 Xとしては、乳化性を考慮すると、好ましくは、水素原子、-SONH、-SONa、又は-SOKであり、より好ましくは、-SONHである。
X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group). Represents an anionic hydrophilic group selected from the group consisting of.
Examples of the alkali metal atom include a sodium atom and a potassium atom. Examples of the alkaline earth metal atom include a calcium atom and a barium atom.
Considering the emulsifying property, X is preferably a hydrogen atom, -SO 3 NH 4 , -SO 3 Na, or -SO 3 K, and more preferably -SO 3 NH 4 .
 Rは重合性の不飽和基、具体的には下記式(i)又は式(ii)で表される基を表し、式中、Rは水素原子又はメチル基を表す。
Figure JPOXMLDOC01-appb-C000006
R represents a polymerizable unsaturated group, specifically a group represented by the following formula (i) or formula (ii), and in the formula, R 1 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000006
 前記一般式(I)で表される化合物の好ましい例として、下記式(I-1)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
(式中、m、AO、n、Xは式(I)で定義した通りである。)
As a preferable example of the compound represented by the general formula (I), a compound represented by the following formula (I-1) can be mentioned.
Figure JPOXMLDOC01-appb-C000007
(In the formula, m, AO, n, and X are as defined in the formula (I).)
 上記一般式(I)で表される化合物は市販品を用いることもでき、例えば、第一工業化学(株)製のアクアロンARシリーズ(AR-10、AR-1025、AR-20、AR-2020)等を挙げることができる。 Commercially available products can also be used as the compound represented by the general formula (I). For example, Aqualon AR series (AR-10, AR-1025, AR-20, AR-2020) manufactured by Daiichi Kogyo Kagaku Co., Ltd. ) Etc. can be mentioned.
 有機微粒子(B)(重合体)において、重合時の共重合性等の観点から、重合体の全構造単位を100質量%としたとき、例えば構造単位(a)の割合は98.0質量%~99.9質量%、構造単位(b0)(例えば構造単位(b1))の割合は0.1質量%~2.0質量%とすることができる。
 また、有機微粒子(B)(重合体)の全構造単位を100質量%としたとき、前記構造単位(a0)の割合が88~99質量%、前記構造単位(a3)の割合が0.9~10質量%、前記構造単位(b0)の割合が0.1~2質量%とすることができる。
 なお、前述の構造単位(b0)の割合は、構造単位(b1)の割合と読み替えてもよいし、構造単位(b1)と、構造単位(b1)以外の構造単位(b0)との合計の割合と読み替えてもよい。
In the organic fine particles (B) (polymer), when the total structural unit of the polymer is 100% by mass from the viewpoint of copolymerizability at the time of polymerization, for example, the ratio of the structural unit (a) is 98.0% by mass. The ratio of the structural unit (b0) (for example, the structural unit (b1)) to 99.9% by mass can be 0.1% by mass to 2.0% by mass.
Further, when the total structural unit of the organic fine particles (B) (polymer) is 100% by mass, the ratio of the structural unit (a0) is 88 to 99% by mass, and the ratio of the structural unit (a3) is 0.9. The ratio of the structural unit (b0) can be about 10% by mass and 0.1 to 2% by mass.
The ratio of the structural unit (b0) may be read as the ratio of the structural unit (b1), or the total of the structural unit (b1) and the structural unit (b0) other than the structural unit (b1). It may be read as a ratio.
 なお、粒子径が均一であり、また溶媒等に対して安定な樹脂粒子を得る観点から、例えば構造単位(a)中の単官能スチレン系単量体に由来する構造単位(a1)の割合を10質量%~99質量%、単官能(メタ)アクリル系単量体に由来する構造単位(a2)の割合を0質量%~80質量%、多官能ビニル系単量体に由来する構造単位(a3)の割合を1質量%~10質量%、その他重合性単量体に由来する構造単位の割合を0質量%~5質量%(以上の合計100質量%)とすることができる。 From the viewpoint of obtaining resin particles having a uniform particle size and being stable to a solvent or the like, for example, the ratio of the structural unit (a1) derived from the monofunctional styrene-based monomer in the structural unit (a) is set. 10% by mass to 99% by mass, the ratio of the structural unit (a2) derived from the monofunctional (meth) acrylic monomer is 0% by mass to 80% by mass, and the structural unit derived from the polyfunctional vinyl-based monomer ( The ratio of a3) can be 1% by mass to 10% by mass, and the ratio of other structural units derived from the polymerizable monomer can be 0% by mass to 5% by mass (total of 100% by mass).
 ワニス組成物における有機微粒子(B)の含有量は特に限定されず、ワニス組成物の粘度や塗布性、ワニス組成物の固形分濃度を勘案して適宜定められる。
 なお有機微粒子(B)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The content of the organic fine particles (B) in the varnish composition is not particularly limited, and is appropriately determined in consideration of the viscosity and coatability of the varnish composition and the solid content concentration of the varnish composition.
The organic fine particles (B) may be used alone or in combination of two or more.
[有機微粒子(B)の粒径]
 有機微粒子(B)は、メジアン径D50が0.05μm~2.0μmの粒子であることが好ましい。
 なお本発明におけるメジアン径とは、動的光散乱法により測定される体積基準による50%体積径の値を採用できる。
 一般に、粒子径が小さくなると、特に重合時に粒子の凝集が起こりやすいが、本発明で使用する有機微粒子(B)はその分散体において優れた凝集抑制効果を発揮するため、有機微粒子(B)の粒子径を比較的小さい範囲とすることができる。メジアン径を上記範囲とすることにより、後述するワニス組成物よりポリイミド多孔質膜を製造する際、ポリイミドに対して微細な孔を形成でき、得られるポリイミド多孔質膜が低誘電率の材料としての提供が可能となる。
 ただし、上記メジアン径が0.2μm未満であると、粒子径が小さすぎて十分な空孔の形成に寄与できないことがある。また1.5μmを超えると、空孔対象のポリイミド樹脂の機械的強度を低下させる虞や、所望の誘電特性の獲得に至らない場合がある。
[Diameter of organic fine particles (B)]
The organic fine particles (B) are preferably particles having a median diameter D 50 of 0.05 μm to 2.0 μm.
As the median diameter in the present invention, a value of 50% volume diameter based on a volume measured by a dynamic light scattering method can be adopted.
Generally, when the particle size is small, agglomeration of particles is likely to occur particularly during polymerization, but the organic fine particles (B) used in the present invention exert an excellent aggregation suppressing effect in the dispersion, so that the organic fine particles (B) have an excellent effect. The particle size can be in a relatively small range. By setting the median diameter in the above range, when a polyimide porous film is produced from the varnish composition described later, fine pores can be formed in the polyimide, and the obtained polyimide porous film can be used as a material having a low dielectric constant. It will be possible to provide.
However, if the median diameter is less than 0.2 μm, the particle size may be too small to contribute to the formation of sufficient pores. Further, if it exceeds 1.5 μm, the mechanical strength of the polyimide resin to be punctured may be lowered, or the desired dielectric property may not be obtained.
[有機微粒子(B)の熱分解温度]
 有機微粒子(B)は、大気圧下で、後述する熱硬化性樹脂の熱分解温度よりも、低い熱分解温度を有することが好ましい。
 本明細書において、熱分解温度とは、JISK7120(プラスチックの熱重量測定方法)に準拠した条件で、熱重量分析装置(TGA:Thermo Gravimetry Analyzer)における測定において、試料の熱分解に伴う重量減少の開始温度を意味する。
 対象とする熱硬化性樹脂の種類にもよるが、有機微粒子(B)の窒素雰囲気下における熱分解温度は、例えば340~440℃、好ましくは370~410℃である。
[Pyrolysis temperature of organic fine particles (B)]
It is preferable that the organic fine particles (B) have a pyrolysis temperature lower than the pyrolysis temperature of the thermosetting resin described later under atmospheric pressure.
In the present specification, the thermal decomposition temperature is a condition according to JIS K7120 (thermogravimetric analysis method for plastics), and the weight reduction due to thermal decomposition of a sample is measured by a thermogravimetric analyzer (TGA). Means the starting temperature.
Although it depends on the type of the target thermosetting resin, the thermal decomposition temperature of the organic fine particles (B) in a nitrogen atmosphere is, for example, 340 to 440 ° C, preferably 370 to 410 ° C.
[有機微粒子(B)の製造方法]
 有機微粒子(B)は、上記ビニル系単量体と、上記反応性乳化剤(例えば一般式(I)で表される化合物)とを含む、単量体成分を、乳化重合して得ることができる。乳化重合法は、粒子径の小さい粒子が得られやすい点で好ましい。なお上記ビニル系単量体としては、前述の説明において挙げた種々の単量体[単官能ビニル系単量体(単官能スチレン系単量体、単官能(メタ)アクリル系単量体)、多官能ビニル系単量体(多官能(メタ)アクリル系単量体、多官能(ポリ)ビニル系単量体)、その他の重合性単量体]を、反応性乳化剤としては前述の化合物等を、それぞれ例示できる。
 好ましい乳化重合の態様は、前記単量体成分、重合開始剤、所望によりその他添加剤(界面活性剤、保護コロイド剤、連鎖移動剤、pH調整剤等)を含む重合用混合液を乳化重合に付す乳化重合工程を含み、所望により、乳化重合工程で得られた反応液を熟成する熟成工程を含んでいてもよい。
[Manufacturing method of organic fine particles (B)]
The organic fine particles (B) can be obtained by emulsion polymerization of a monomer component containing the vinyl-based monomer and the reactive emulsifier (for example, a compound represented by the general formula (I)). .. The emulsification polymerization method is preferable in that particles having a small particle size can be easily obtained. As the vinyl-based monomer, various monomers mentioned in the above description [monofunctional vinyl-based monomer (monofunctional styrene-based monomer, monofunctional (meth) acrylic-based monomer), Polyfunctional vinyl-based monomers (polyfunctional (meth) acrylic monomers, polyfunctional (poly) vinyl-based monomers), and other polymerizable monomers] can be used as the reactive emulsifiers of the above-mentioned compounds and the like. Can be exemplified respectively.
A preferred embodiment of emulsion polymerization is to use a polymerization mixture containing the above-mentioned monomer component, a polymerization initiator, and optionally other additives (surfactant, protective colloid agent, chain transfer agent, pH adjuster, etc.) for emulsion polymerization. The emulsion polymerization step may be included, and if desired, an aging step of aging the reaction solution obtained in the emulsion polymerization step may be included.
 前記乳化重合は、通常、水性分散媒中で行われ、該水性分散媒としては特に限定されず、例えば水、水とアルコール系溶剤との混合液等が挙げられる。乳化重合後に形成される有機微粒子(B)の安定性(非凝集性)の観点から、水性分散媒としては水が好ましい。水性分散媒の使用量は、乳化重合後に系内に存在する有機微粒子(B)の含有量が所望の割合となるように、適宜設定することができる。例えば系内に存在する有機微粒子(B)の含有量を1質量%~70質量%、10質量%~60質量%、20質量%~50質量%などと設定し、水性分散媒の使用量を適宜設定すればよい。 The emulsion polymerization is usually carried out in an aqueous dispersion medium, and the aqueous dispersion medium is not particularly limited, and examples thereof include water and a mixed solution of water and an alcohol solvent. From the viewpoint of stability (non-aggregation) of the organic fine particles (B) formed after emulsion polymerization, water is preferable as the aqueous dispersion medium. The amount of the aqueous dispersion medium used can be appropriately set so that the content of the organic fine particles (B) present in the system after emulsion polymerization is a desired ratio. For example, the content of the organic fine particles (B) existing in the system is set to 1% by mass to 70% by mass, 10% by mass to 60% by mass, 20% by mass to 50% by mass, and the amount of the aqueous dispersion medium used. It may be set appropriately.
 前記乳化重合に用いる重合開始剤としては、特に制限はなく、公知の重合開始剤を用いることができる。例えば、アゾビスイソブチロニトリル、2,2-アゾビス(2-メチルブチロニトリル)、2,2-アゾビス(2,4-ジメチルバレロニトリル)、2,2-アゾビス(2-ジアミノプロパン)ハイドロクロリド、4,4-アゾビス(4-シアノ吉草酸)、2,2-アゾビス(2-メチルプロピオンアミジン)、2,2’-アゾビス〔N-(2-カルボキシエチル)-2-メチルプロピオンアミジン〕4水和物などのアゾ化合物;過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩;過酸化水素、ベンゾイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、過酸化アンモニウムなどの過酸化物などが挙げられるが、これら例示のみに限定されるものではない。これらの中でも、アゾ化合物や過酸化物は、分解促進剤としても機能し得、すなわち、後述するポリイミド多孔質膜を製造する際、有機微粒子(B)の熱分解を促進させる機能を有し得ることから好ましく使用できる。
 重合開始剤の使用量は、特に制限されないが、重合速度を高め、未反応の単量体の残存量を低減させる観点から、単量体成分100質量部あたり例えば0.05質量部以上、好ましくは0.1質量部以上であり、重合安定性の観点から例えば5質量部以下とすることができる。
The polymerization initiator used for the emulsion polymerization is not particularly limited, and a known polymerization initiator can be used. For example, azobisisobutyronitrile, 2,2-azobis (2-methylbutyronitrile), 2,2-azobis (2,4-dimethylvaleronitrile), 2,2-azobis (2-diaminopropane) hydro. Chloride, 4,4-azobis (4-cyanovaleric acid), 2,2-azobis (2-methylpropion amidine), 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] Azo compounds such as tetrahydrate; persulfates such as potassium persulfate and ammonium persulfate; peroxides such as hydrogen peroxide, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide, ammonium peroxide and the like. However, the present invention is not limited to these examples. Among these, the azo compound and the peroxide can also function as a decomposition accelerator, that is, have a function of promoting the thermal decomposition of the organic fine particles (B) when producing the polyimide porous film described later. Therefore, it can be preferably used.
The amount of the polymerization initiator used is not particularly limited, but is preferably 0.05 parts by mass or more per 100 parts by mass of the monomer component, from the viewpoint of increasing the polymerization rate and reducing the residual amount of the unreacted monomer. Is 0.1 part by mass or more, and can be, for example, 5 parts by mass or less from the viewpoint of polymerization stability.
 前記反応性乳化剤、そして前記一般式(I)で表される化合物は、乳化剤としての役割も果たし、乳化重合を良好に開始・完結させることができるが、乳化重合に一般に用いられる界面活性剤(乳化剤)をその他添加剤としてさらに用いてもよい。
 上記界面活性剤としては、アニオン性界面活性剤又はカチオン性界面活性剤又は/及び他の非イオン性界面活性剤を併用してもよい。
 例えば、アニオン系界面活性剤(アニオン性乳化剤)としては、脂肪酸セッケン;ロジン酸セッケン;ドデシル硫酸アンモニウム、ドデシル硫酸ナトリウムなどのアルキル硫酸塩;ドデシルスルホン酸アンモニウム、ドデシルスルホン酸ナトリウムなどのアルキルスルホン酸塩;ドデシルベンゼンスルホン酸アンモニウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルナフタレンスルホン酸ナトリウムなどのアルキルアリールスルホン酸塩;ポリオキシアルキレンアルキル硫酸塩;ポリオキシアルキレンアリール硫酸塩;ポリオキシアルキレンアルキルアリール硫酸塩;ジアルキルスルホコハク酸塩;アリールスルホン酸-ホルマリン縮合物;アンモニウムラウリレート、ナトリウムステアリレートなどの脂肪酸塩などが挙げられる。
 カチオン性界面活性剤としては、ステアリルトリメチルアンモニウム、セチルトリメチルアンモニウム、ラウリルトリメチルアンモニウムなどが挙げられる。
 非イオン性界面活性剤としては、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、アルキルポリグルコシド、ポリグリセリンアルキルエーテル、ポリオキシアルキレン脂肪酸エステル、ポリグリセリン脂肪酸エステル、総ルビ単脂肪酸エステルなどが挙げられる。
 乳化重合工程において、別途界面活性剤を使用する場合、その使用量は、単量体成分100質量部に対して、例えば0.05質量部以上、また0.1質量部以上、0.3質量部以上とすることができ、その上限としては例えば10質量部、8質量部以下、5質量部以下とすることができる。
The reactive emulsifier and the compound represented by the general formula (I) also serve as an emulsifier and can satisfactorily initiate and complete emulsion polymerization, but are commonly used surfactants for emulsion polymerization (). (Emulsifier) may be further used as another additive.
As the surfactant, an anionic surfactant or a cationic surfactant and / or other nonionic surfactant may be used in combination.
For example, examples of anionic surfactants (anionic emulsifiers) include fatty acid sekken; sekken rosinate; alkyl sulfates such as ammonium dodecyl sulfate and sodium dodecyl sulphate; alkyl sulfonates such as ammonium dodecyl sulfonate and sodium dodecyl sulfonate; Alkylaryl sulfonates such as ammonium dodecylbenzene sulfonate, sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfonate; polyoxyalkylene alkyl sulfate; polyoxyalkylene aryl sulfate; polyoxyalkylene alkylaryl sulfate; dialkylsulfosuccinic acid Salts; arylsulfonic acid-formalin condensates; fatty acid salts such as ammonium laurylate, sodium stearilate and the like.
Examples of the cationic surfactant include stearyltrimethylammonium, cetyltrimethylammonium, and lauryltrimethylammonium.
Examples of the nonionic surfactant include polyoxyalkylene alkylphenyl ether, polyoxyalkylene alkyl ether, alkyl polyglucoside, polyglycerin alkyl ether, polyoxyalkylene fatty acid ester, polyglycerin fatty acid ester, total ruby monofatty acid ester and the like. Be done.
When a surfactant is separately used in the emulsion polymerization step, the amount used is, for example, 0.05 parts by mass or more, 0.1 parts by mass or more, or 0.3 parts by mass with respect to 100 parts by mass of the monomer component. The number may be 10 parts by mass or more, and the upper limit thereof may be, for example, 10 parts by mass, 8 parts by mass or less, and 5 parts by mass or less.
 また乳化重合時の重合安定性を向上させる目的で、その他添加剤として公知の保護コロイド剤を併用してもよい。前記保護コロイド剤としては、完全ケン化ポリビニルアルコール、部分ケン化ポリビニルアルコール、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリアクリル酸、アラビアゴム等が挙げられる。 Further, for the purpose of improving the polymerization stability during emulsion polymerization, a known protective colloidal agent may be used in combination as another additive. Examples of the protective colloid agent include fully saponified polyvinyl alcohol, partially saponified polyvinyl alcohol, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyacrylic acid, and gum arabic.
 また乳化重合時のその他添加剤として、公知の連鎖移動剤やpH調整剤を併用してもよい。
 前記連鎖移動剤としては、例えばオクチルメルカプタン、ドデシルメルカプタン、メルカプトエタノール、チオグリコール酸、アリルアルコール、イソプロピルアルコール、次亜リン酸ナトリウム等が挙げられる。
 前記pH調整剤としては、塩酸、硫酸、リン酸などの無機酸;クエン酸、コハク酸、りんご酸、乳酸等の有機酸;水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イソプロパノール等のアルカノールアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン、フェニレンジアミン、トリレンジアミン等の芳香族ポリアミン、ピペラジン、アミノエチルピペラジン等の複素環式ポリアミン等の有機塩基などが挙げられる。
Further, as another additive at the time of emulsion polymerization, a known chain transfer agent or pH adjuster may be used in combination.
Examples of the chain transfer agent include octyl mercaptan, dodecyl mercaptan, mercaptoethanol, thioglycolic acid, allyl alcohol, isopropyl alcohol, sodium hypophosphite and the like.
Examples of the pH adjusting agent include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as citric acid, succinic acid, apple acid and lactic acid; and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate. Alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, isopropanol, aliphatic amines such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, aromatic polyamines such as phenylenediamine and tolylenediamine, piperazine. , Organic bases such as heterocyclic polyamines such as aminoethylpiperazine and the like.
 前記乳化重合に付す単量体成分において、各単量体の使用量(仕込み割合)は適宜設定され得る。
 例えば全単量体の総量(合計100質量%)に対して、ビニル系単量体の割合は98.0質量%~99.9質量%、反応性乳化剤(例えば一般式(I)で表される化合物)の割合は0.1質量%~2.0質量%とすることができる。
 また例えば全単量体の総量(合計100質量%)に対して、単官能ビニル系単量体の割合は88質量%~99質量%、多官能ビニル系単量体の割合は0.9質量%~10質量%、前記反応性乳化剤の割合は0.1~2質量%とすることができる。
 さらにビニル系単量体(合計100質量%)において、単官能スチレン系単量体を10質量%~99質量%、単官能(メタ)アクリル系単量体を0質量%~80質量%、多官能ビニル系単量体を1質量%~10質量%、その他重合性単量体を0質量%~5質量%とすることができる。
In the monomer component to be subjected to the emulsion polymerization, the amount of each monomer used (charge ratio) can be appropriately set.
For example, the ratio of the vinyl-based monomer to the total amount of all the monomers (total 100% by mass) is 98.0% by mass to 99.9% by mass, and is represented by a reactive emulsifier (for example, the general formula (I)). The proportion of the compound) can be 0.1% by mass to 2.0% by mass.
Further, for example, the ratio of the monofunctional vinyl-based monomer is 88% by mass to 99% by mass, and the ratio of the polyfunctional vinyl-based monomer is 0.9% by mass with respect to the total amount of all the monomers (total 100% by mass). The ratio of the reactive emulsifier can be from% to 10% by mass, and the ratio of the reactive emulsifier can be from 0.1 to 2% by mass.
Further, in the vinyl-based monomer (100% by mass in total), the monofunctional styrene-based monomer is 10% by mass to 99% by mass, the monofunctional (meth) acrylic monomer is 0% by mass to 80% by mass, and more. The functional vinyl-based monomer may be 1% by mass to 10% by mass, and the other polymerizable monomer may be 0% by mass to 5% by mass.
 前記乳化重合は、公知の乳化重合法で行えばよく、例えば、モノマー滴下法、プレエマルジョン法、一括仕込み重合法などを採用することができる。工業的生産性の観点からみて、安定的に重合することができ、凝集物が少ない重合体(有機微粒子(B))を得られる点で、プレエマルジョン法を採用するのが好ましい。 The emulsion polymerization may be carried out by a known emulsion polymerization method, and for example, a monomer dropping method, a pre-emulsion method, a batch charging polymerization method and the like can be adopted. From the viewpoint of industrial productivity, it is preferable to adopt the pre-emulsion method because it can be polymerized stably and a polymer (organic fine particles (B)) having few aggregates can be obtained.
 前記乳化重合に際し、前述の単量体成分、重合開始剤、その他添加剤の仕込み方法などは、特に制限はなく適宜設定すればよい。
 例えばプレエマルジョン法にて乳化重合させる場合の手順は、予めビニル系単量体を、反応性乳化剤(例えば一般式(I)で表される化合物等)と水等の水性分散媒にて乳化させ、プレエマルジョンを得る。そして得られたプレエマルジョンを反応容器内に滴下し、適宜、重合開始剤を加えて、乳化重合反応を進行させることにより実施され得る。
 また前記重合用混合液の一部を用いて乳化重合を開始した後、残りの重合用混合液を滴下するなどの操作を行っても良い。或いは、予め前記単量体成分の総量の一部と重合開始剤の一部(及びその他添加剤)とからなる混合液を用いて乳化重合を開始した後、残りの前記単量体成分、及び重合開始剤(及びその他添加剤)を別々にあるいは混合して滴下するなどの操作を行ってもよい。
In the emulsion polymerization, the method for charging the above-mentioned monomer component, polymerization initiator, and other additives is not particularly limited and may be appropriately set.
For example, in the case of emulsion polymerization by the pre-emulsion method, a vinyl-based monomer is pre-emulsified with a reactive emulsifier (for example, a compound represented by the general formula (I)) and an aqueous dispersion medium such as water. , Get a pre-emulsion. Then, the obtained pre-emulsion can be carried out by dropping it into a reaction vessel and appropriately adding a polymerization initiator to promote the emulsion polymerization reaction.
Further, after starting emulsion polymerization using a part of the polymerization mixture, the remaining polymerization mixture may be dropped or the like. Alternatively, after starting emulsion polymerization in advance using a mixed solution consisting of a part of the total amount of the monomer component and a part of the polymerization initiator (and other additives), the remaining monomer component and the remaining monomer component, and An operation such as dropping the polymerization initiator (and other additives) separately or by mixing them may be performed.
 また、乳化重合工程を、2工程以上繰り返して行う、すなわち例えば第1乳化重合工程と第2乳化重合工程を含む態様とし、第1乳化重合工程によりコア部を形成し、続く第2乳化重合工程によりコア部の表面にシェル部を形成することにより、コア-シェル型の樹脂粒子を形成することができる。この場合、第2乳化重合工程は複数回行ってもよく、2回目の第2乳化重合工程を行った場合には、1回目の第2乳化重合工程によって形成されたシェル部の表面に新たにシェル部が形成された樹脂粒子が得られる。
 第1乳化重合工程と第2乳化重合工程とを含む場合には、それぞれの工程で使用する単量体成分の組成を変更することができ、またそれぞれの工程で使用する単量体成分を1種の単量体としてもよい。すなわち、第1乳化重合工程と第2乳化重合工程において、それぞれ異なる単量体(一種)を用いてもよいし、単量体の混合物と単量体(一種)とを用いてもよいし、或いは異なる単量体の混合物をそれぞれの工程において用いてもよい。同一種の単量体の混合物を用いる場合、単量体の混合割合を変えた混合物を用いることができる。例えば、第1乳化重合工程では、単官能ビニル系単量体のうち単官能スチレン系単量体と、多官能ビニル系単量体と、反応性乳化剤(例えば一般式(I)で表される化合物)を含有する混合物を用い、続く第2乳化重合工程では、単官能ビニル系単量体のうち単官能スチレン系単量体と単官能(メタ)アクリル系単量体と、多官能ビニル系単量体と、反応性乳化剤(例えば一般式(I)で表される化合物)を含有する混合物を用いることができる。
Further, the emulsion polymerization step is repeated by two or more steps, that is, in an embodiment including, for example, a first emulsion polymerization step and a second emulsion polymerization step, a core portion is formed by the first emulsion polymerization step, and a subsequent second emulsion polymerization step is carried out. By forming the shell portion on the surface of the core portion, the core-shell type resin particles can be formed. In this case, the second emulsion polymerization step may be performed a plurality of times, and when the second second emulsion polymerization step is performed, the surface of the shell portion formed by the first second emulsion polymerization step is newly formed. Resin particles on which a shell portion is formed can be obtained.
When the first emulsion polymerization step and the second emulsion polymerization step are included, the composition of the monomer component used in each step can be changed, and the monomer component used in each step can be changed to 1. It may be a monomer of the seed. That is, in the first emulsion polymerization step and the second emulsion polymerization step, different monomers (one kind) may be used, or a mixture of monomers and a monomer (one kind) may be used. Alternatively, a mixture of different monomers may be used in each step. When a mixture of monomers of the same type is used, a mixture in which the mixing ratio of the monomers is changed can be used. For example, in the first emulsion polymerization step, among the monofunctional vinyl-based monomers, the monofunctional styrene-based monomer, the polyfunctional vinyl-based monomer, and the reactive emulsifier (for example, represented by the general formula (I)) are represented. In the subsequent second emulsion polymerization step using the mixture containing the compound), the monofunctional styrene-based monomer, the monofunctional (meth) acrylic-based monomer, and the polyfunctional vinyl-based monomer among the monofunctional vinyl-based monomers are used. A mixture containing a monomer and a reactive emulsifier (for example, a compound represented by the general formula (I)) can be used.
 前記乳化重合における重合温度は、用いる重合開始剤等に応じて適宜設定すればよいが、例えば30℃~90℃、或いは50℃~80℃とすることができる。重合時間は、前記単量体成分の仕込み量と反応液中の残存量とから求められる反応率に応じて適宜設定すればよいが、通常1時間~12時間、例えば2時間~8時間程度である。 The polymerization temperature in the emulsion polymerization may be appropriately set depending on the polymerization initiator and the like used, and may be, for example, 30 ° C to 90 ° C or 50 ° C to 80 ° C. The polymerization time may be appropriately set according to the reaction rate obtained from the charged amount of the monomer component and the residual amount in the reaction solution, but is usually about 1 hour to 12 hours, for example, about 2 hours to 8 hours. be.
 次に任意の工程である熟成工程は、前記乳化重合工程の後で、未反応の単量体を減少させたり、または、乳化重合で得られた重合体粒子(有機微粒子(B))を安定化させたりする目的で行われる。
 前記熟成工程における熟成温度は例えば50℃~90℃とすることができ、また例えば70℃~85℃とすることができる。熟成温度を前記範囲内とすることにより、粒子の凝集を抑えながら、未反応の単量体混合物の量を減少させることが期待できる。熟成時間は、単量体成分の総仕込み量と、反応液中の単量体成分の残存量とから求められる反応率に応じて適宜設定すればよいが、通常1時間~12時間、好ましくは2時間~8時間程度である。
Next, in the aging step, which is an arbitrary step, after the emulsion polymerization step, unreacted monomers are reduced, or the polymer particles (organic fine particles (B)) obtained by emulsion polymerization are stabilized. It is done for the purpose of polymerizing.
The aging temperature in the aging step can be, for example, 50 ° C. to 90 ° C., and can be, for example, 70 ° C. to 85 ° C. By keeping the aging temperature within the above range, it can be expected that the amount of the unreacted monomer mixture can be reduced while suppressing the aggregation of particles. The aging time may be appropriately set according to the reaction rate obtained from the total amount of the monomer components charged and the residual amount of the monomer components in the reaction solution, but is usually 1 hour to 12 hours, preferably 1 to 12 hours. It takes about 2 to 8 hours.
 前記熟成工程において、熟成時の有機微粒子(B)の凝集を抑制し易くする等の目的で、必要に応じて界面活性剤を添加してもよい。
 前記熟成工程で使用される界面活性剤としては、前述の乳化重合工程に挙げた界面活性剤を用いることが好ましく、アニオン系界面活性剤や、またノニオン性界面活性剤を用いることも可能である。
 前記熟成工程で用いる界面活性剤の量としては、前記乳化重合工程に付した単量体成分の総量:100質量部に対して、例えば0.05質量部以上であり、0.1質量部以上、0.3質量部以上とすることができ、また例えば10質量部以下であり、8質量部以下、5質量部とすることができる。
In the aging step, a surfactant may be added as necessary for the purpose of facilitating the suppression of aggregation of the organic fine particles (B) during aging.
As the surfactant used in the aging step, it is preferable to use the surfactant mentioned in the emulsion polymerization step described above, and it is also possible to use an anionic surfactant or a nonionic surfactant. ..
The amount of the surfactant used in the aging step is, for example, 0.05 parts by mass or more and 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of the monomer components attached to the emulsion polymerization step. , 0.3 parts by mass or more, and for example, 10 parts by mass or less, 8 parts by mass or less, and 5 parts by mass.
 前記乳化重合工程(及び所望により熟成工程)を経た後、形成された重合体を水性分散媒中に含む、分散液の形態として、有機微粒子(B)を得ることができる。
 後述するワニス組成物において、有機微粒子(B)は、有機微粒子(B)を含む微粒子分散液の形態にて、あるいは、乾粉の有機微粒子(B)として用いることができる。
After undergoing the emulsion polymerization step (and, if desired, the aging step), the organic fine particles (B) can be obtained in the form of a dispersion liquid containing the formed polymer in the aqueous dispersion medium.
In the varnish composition described later, the organic fine particles (B) can be used in the form of a fine particle dispersion liquid containing the organic fine particles (B) or as the organic fine particles (B) of the dry powder.
 有機微粒子(B)を乾粉の有機微粒子(B)として用いる場合、前述の水性分散媒中に含む分散液の形態にある有機微粒子(B)を、凍結乾燥、熱風乾燥、スプレードライ等するなどして、粉体の形態を得ることができる。
 また有機微粒子(B)を、有機微粒子(B)を含む微粒子分散液の形態にて用いる場合、前述の乳化重合工程を経て得られた有機微粒子(B)を水性分散媒中に含む分散液をそのまま用いてもよく、水性分散媒を溶媒置換して微粒子分散液としてもよく、あるいは、前述の粉体形態の有機微粒子(B)を経た後、適当な溶媒に分散させて微粒子分散液としてもよい。
 このとき、使用可能な溶媒としては、後述する水(S-I)及び有機溶媒(S-III)から選択される1種以上を挙げることができる。
When the organic fine particles (B) are used as the organic fine particles (B) of the dry powder, the organic fine particles (B) in the form of the dispersion liquid contained in the above-mentioned aqueous dispersion medium are freeze-dried, hot-air dried, spray-dried, or the like. Therefore, the form of powder can be obtained.
When the organic fine particles (B) are used in the form of a fine particle dispersion liquid containing the organic fine particles (B), the dispersion liquid containing the organic fine particles (B) obtained through the above-mentioned emulsification polymerization step in the aqueous dispersion medium is used. It may be used as it is, the aqueous dispersion medium may be substituted with a solvent to obtain a fine particle dispersion, or the organic fine particles (B) in the powder form described above may be passed and then dispersed in an appropriate solvent to form a fine particle dispersion. good.
At this time, examples of the solvent that can be used include one or more selected from water (SI) and an organic solvent (S-III), which will be described later.
<溶媒(S)>
 ワニス組成物は、溶媒(S)を含む。
 溶媒(S)は、例えば、水(S-I)、有機溶媒(S-III)又はこれらの組み合わせが挙げられる。
<Solvent (S)>
The varnish composition contains a solvent (S).
Examples of the solvent (S) include water (SI), an organic solvent (S-III), or a combination thereof.
上記有機溶媒(S-III)は、塩基性を呈していてもよいが、ポリアミック酸(A)の加水分解を避ける観点から、水中において中性、又は弱塩基性を呈する化合物であるのが好ましい。 The organic solvent (S-III) may be basic, but is preferably a compound that is neutral or weakly basic in water from the viewpoint of avoiding hydrolysis of the polyamic acid (A). ..
 有機溶媒(S-III)の好適な例としては、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルイソブチルアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、1,3-ジメチル-2-イミダゾリジノン(DMI)、ピリジン、及びN,N,N’,N’-テトラメチルウレア(TMU)等の含窒素極性溶媒;β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、及びε-カプロラクトン等のラクトン系極性溶媒;ジメチルスルホキシド;ヘキサメチルホスホリックトリアミド;アセトニトリル;ベンゼン、トルエン、キシレン等の芳香族系溶媒;テトラヒドロフラン(THF)、ジオキサン、トリオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、及びジエチレングリコールジエチルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、及びシクロヘキサノン等のケトン系溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-ブテン-1,4-ジオール、2-メチル-2,4-ペンタンジオール、グリセリン、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール、及び1,2,6-ヘキサントリオール等のアルコール系溶媒が挙げられる。
 なお、本出願の明細書では、上記溶媒の分類にあたり、例えばケトンやエーテルに該当する化合物であってアルコール性ヒドロキシ基を有する化合物は、アルコール系溶媒に分類することができる。また、ケトンとエーテルとの双方に該当する化合物は、ケトン系溶媒に分類することができる。
Suitable examples of the organic solvent (S-III) include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylisobutylamide, N, N-diethylacetamide, N, N-dimethylformamide (DMF), N, N-diethylformamide, N-methylcaprolactam, 1,3-dimethyl-2-imidazolidinone (DMI), pyridine, and N, N, N', N'- Nitrogen-containing polar solvent such as tetramethylurea (TMU); lactone-based polar solvent such as β-propiolactone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, and ε-caprolactone; dimethylsulfoxide Hexamethylphosphoric triamide; acetonitrile; aromatic solvents such as benzene, toluene, xylene; ether solvents such as tetrahydrofuran (THF), dioxane, trioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, and diethylene glycol diethyl ether. Ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; methanol, ethanol, 1-propanol, 2-propanol, tert-butyl alcohol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-butene Alcohol-based solvents such as -1,4-diol, 2-methyl-2,4-pentanediol, glycerin, 2-ethyl-2-hydroxymethyl-1,3-propanediol, and 1,2,6-hexanetriol. Can be mentioned.
In the specification of the present application, in the classification of the above-mentioned solvent, for example, a compound corresponding to a ketone or an ether and having an alcoholic hydroxy group can be classified as an alcohol-based solvent. Further, compounds corresponding to both ketones and ethers can be classified as ketone solvents.
 ワニス組成物の溶解性又は分散安定性や、塗布膜からの溶媒(S)の除去が容易である点から、溶媒(S)としては有機溶媒(S-III)であること、特に有機溶媒(S-III)が、下記式(S1):
Figure JPOXMLDOC01-appb-C000008
(式(S1)中、RS1及びRS2は、それぞれ独立に炭素原子数1以上3以下のアルキル基であり、RS3は、水素原子、又は下記式(S1-1)若しくは下記式(S1-2):
Figure JPOXMLDOC01-appb-C000009
で表される基であり、RS4は、水素原子又はヒドロキシ基であり、RS5及びRS6は、それぞれ独立に、水素原子、炭素原子数1以上3以下のアルキル基であり、RS7及びRS8は、それぞれ独立に水素原子、又は炭素原子数1以上3以下のアルキル基である。)
で表される含窒素有機溶媒、又はジメチルスルホキシドを含むのが好ましい。
The solvent (S) is an organic solvent (S-III), particularly an organic solvent (S), because the varnish composition has solubility or dispersion stability and the solvent (S) can be easily removed from the coating film. S-III) is the following formula (S1):
Figure JPOXMLDOC01-appb-C000008
(In the formula ( S1 ), RS1 and RS2 are each independently an alkyl group having 1 or more and 3 or less carbon atoms, and RS3 is a hydrogen atom, or the following formula (S1-1) or the following formula (S1). -2):
Figure JPOXMLDOC01-appb-C000009
RS4 is a hydrogen atom or a hydroxy group, and RS5 and RS6 are independently hydrogen atoms and alkyl groups having 1 or more and 3 or less carbon atoms, respectively, and are represented by RS7 and RS6 . RS8 is an independently hydrogen atom or an alkyl group having 1 or more and 3 or less carbon atoms. )
It is preferable to contain a nitrogen-containing organic solvent represented by (1) or dimethyl sulfoxide.
 式(S1)で表される化合物のうち、RS3が水素原子又は式(S1-1)で表される基である場合の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N,2-トリメチルプロピオンアミド、N-エチル-N,2-ジメチルプロピオンアミド、N,N-ジエチル-2-メチルプロピオンアミド、N,N,2-トリメチル-2-ヒドロキシプロピオンアミド、N-エチル-N,2-ジメチル-2-ヒドロキシプロピオンアミド、及びN,N-ジエチル-2-ヒドロキシ-2-メチルプロピオンアミド等が挙げられる。 Among the compounds represented by the formula (S1), specific examples of the case where RS3 is a hydrogen atom or a group represented by the formula (S1-1) are N, N-dimethylformamide and N, N-dimethyl. Acetamide, N, N, 2-trimethylpropionamide, N-ethyl-N, 2-dimethylpropionamide, N, N-diethyl-2-methylpropionamide, N, N,2-trimethyl-2-hydroxypropionamide, Examples thereof include N-ethyl-N, 2-dimethyl-2-hydroxypropionamide, N, N-diethyl-2-hydroxy-2-methylpropionamide and the like.
 式(S1)で表される化合物のうち、RS3が式(S1-2)で表される基である場合の具体例としては、N,N,N’,N’-テトラメチルウレア、N,N,N’,N’-テトラエチルウレア等が挙げられる。 Among the compounds represented by the formula (S1), specific examples of the case where RS3 is a group represented by the formula (S1-2) include N, N, N', N'-tetramethylurea, and N. , N, N', N'-tetraethylurea and the like.
 式(S1)で表される化合物の具体例のうち、特に好ましい化合物としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N,2-トリメチルプロピオンアミド、及びN,N,N’,N’-テトラメチルウレアが挙げられる。これらの中では、N,N,2-トリメチルプロピオンアミド、及びN,N,N’,N’-テトラメチルウレアが好ましい。 Among the specific examples of the compound represented by the formula (S1), particularly preferable compounds are N, N-dimethylformamide, N, N-dimethylacetamide, N, N, 2-trimethylpropionamide, and N, N, N', N'-tetramethylurea can be mentioned. Of these, N, N, 2-trimethylpropionamide and N, N, N', N'-tetramethylurea are preferred.
 N,N,2-トリメチルプロピオンアミド、及びN,N,N’,N’-テトラメチルウレアは、EU(欧州連合)でのREACH規則において、有害性が懸念される物質であるSVHC(Substance of Very High Concern、高懸念物質)に指定されていないように、有害性が低い物質である点で有用である。 N, N, 2-trimethylpropionamide, and N, N, N', N'-tetramethylurea are substances of very high concern (SVHC) under the REACH regulation in EU (European Union). It is useful in that it is a substance with low toxicity so that it is not designated as Very High Concern (substance of very high concern).
 ワニス組成物中の溶媒(S)の含有量は、本発明の目的を阻害しない範囲で特に限定されない。ワニス組成物中の溶媒(S)の含有量は、ワニス組成物の固形分含有量に応じて適宜調整される。 The content of the solvent (S) in the varnish composition is not particularly limited as long as it does not impair the object of the present invention. The content of the solvent (S) in the varnish composition is appropriately adjusted according to the solid content content of the varnish composition.
<分散剤>
 ワニス組成物中の有機微粒子(B)を均一に分散させることを目的に、有機微粒子(B)とともにさらに分散剤を添加してもよい。分散剤を添加することにより、ポリアミック酸(A)と有機微粒子(B)とを一層均一に混合でき、さらには、成膜した膜中の有機微粒子(B)を均一に分布させることができる。その結果、最終的に得られるポリイミド多孔質膜の表面に稠密な開口を設け、且つ、表裏面を効率よく連通させることが可能となり、ポリイミド多孔質膜の透気度が向上する。さらに、分散剤を添加することにより、ワニス組成物の乾燥性が向上しやすくなり、また、形成されたポリイミド多孔質膜の前駆膜の基板等からの剥離性が向上しやすい。
<Dispersant>
A dispersant may be further added together with the organic fine particles (B) for the purpose of uniformly dispersing the organic fine particles (B) in the varnish composition. By adding the dispersant, the polyamic acid (A) and the organic fine particles (B) can be mixed more uniformly, and further, the organic fine particles (B) in the formed film can be uniformly distributed. As a result, a dense opening can be provided on the surface of the finally obtained polyimide porous membrane, and the front and back surfaces can be efficiently communicated with each other, and the air permeability of the polyimide porous membrane is improved. Further, by adding the dispersant, the drying property of the varnish composition is likely to be improved, and the peelability of the formed polyimide porous film from the precursor film or the like is easily improved.
 分散剤が使用される場合、ワニス組成物における分散剤の含有量は、例えば、成膜性の点で、上記微粒子に対し0.01質量%以上5質量%以下であることが好ましく、0.05質量%以上1質量%以下であることがより好ましく、0.1質量%以上0.5質量%以下であることがさらにより好ましい。 When a dispersant is used, the content of the dispersant in the varnish composition is preferably 0.01% by mass or more and 5% by mass or less with respect to the fine particles, for example, in terms of film forming property. It is more preferably 05% by mass or more and 1% by mass or less, and even more preferably 0.1% by mass or more and 0.5% by mass or less.
 以上説明した、必須又は任意の成分を、ワニス組成物の塗布性や、製造されるポリイミド多孔質膜の種々の特性を勘案して予め定められた組成に従い、以上説明した必須又は任意の成分を混合することにより、ワニス組成物が製造される。 The essential or optional components described above can be added to the essential or optional components described above according to a predetermined composition in consideration of the coatability of the varnish composition and various characteristics of the polyimide porous film to be produced. By mixing, a varnish composition is produced.
≪ワニス組成物の製造方法≫
 ワニス組成物の製造方法は、前述の種々の成分を、それぞれ所定量混合することにより製造され、その具体的手順は特に限定されない。
 ワニス組成物の製造方法として好ましい方法の一つとしては、ポリアミック酸(A)及び有機溶媒(S-III)を含むポリアミック酸含有液と、有機微粒子(B)を含む微粒子分散液または乾粉の有機微粒子(B)とを混合する方法が挙げられる。
≪Manufacturing method of varnish composition≫
The method for producing the varnish composition is produced by mixing the above-mentioned various components in predetermined amounts, and the specific procedure thereof is not particularly limited.
As one of the preferable methods for producing the varnish composition, a polyamic acid-containing liquid containing a polyamic acid (A) and an organic solvent (S-III), and a fine particle dispersion liquid containing organic fine particles (B) or an organic dry powder are used. A method of mixing with the fine particles (B) can be mentioned.
 ポリアミック酸含有液について、ポリアミック酸(A)、及び有機溶媒(S-III)は前述の通りである。ポリアミック酸含有液は、周知の方法で製造されたポリアミック酸(A)を有機溶媒(S-III)に溶解させて調製してもよく、有機溶媒(S-III)中でポリアミック酸(A)を合成し、反応溶液をそのままポリアミック酸含有液としてもよい。
 ポリアミック酸含有液は、水(S-I)を含んでいてもよい。また、ポリアミック酸含有液は、ポリアミック酸(A)、有機溶媒(S-III)、水(S-I)以外の任意成分を含んでいてもよい。
Regarding the polyamic acid-containing liquid, the polyamic acid (A) and the organic solvent (S-III) are as described above. The polyamic acid-containing solution may be prepared by dissolving the polyamic acid (A) produced by a well-known method in an organic solvent (S-III), or the polyamic acid (A) may be prepared in the organic solvent (S-III). May be synthesized and the reaction solution may be used as it is as a polyamic acid-containing solution.
The polyamic acid-containing liquid may contain water (SI). Further, the polyamic acid-containing liquid may contain an arbitrary component other than the polyamic acid (A), the organic solvent (S-III), and water (SI).
 有機微粒子(B)を含む微粒子分散液について、有機微粒子(B)は前述の通りである。微粒子分散液に含まれる分散媒は、水(S-I)、及び有機溶媒(S-III)から選択される1種以上が好ましい。 Regarding the fine particle dispersion liquid containing the organic fine particles (B), the organic fine particles (B) are as described above. The dispersion medium contained in the fine particle dispersion is preferably one or more selected from water (SI) and an organic solvent (S-III).
 上記の方法において、ワニス組成物を構成する各種材料を混合する場合、ポリアミック酸(A)や有機微粒子(B)の過度の分解や変形が生じない範囲において、加温された条件で混合を行ってもよい。
 また、種々の分散装置を用いて、有機微粒子(B)を分散させながらワニス組成物を構成する各種材料を混合してもよい。
In the above method, when various materials constituting the varnish composition are mixed, the mixing is performed under warmed conditions within a range in which the polyamic acid (A) and the organic fine particles (B) are not excessively decomposed or deformed. You may.
Further, various materials constituting the varnish composition may be mixed while dispersing the organic fine particles (B) using various dispersion devices.
 ワニス組成物の粘度は、所望する膜厚の塗布膜を形成できる限り特に限定されない。例えば、ワニス組成物の粘度は、300cP以上20,000cP以下が好ましく、1,000cP以上15,000cP以下がより好ましく、1,500cP以上12,000cP以下がさらに好ましい。ワニス組成物の粘度がこの範囲内であれば、均一な成膜が容易である。 The viscosity of the varnish composition is not particularly limited as long as a coating film having a desired film thickness can be formed. For example, the viscosity of the varnish composition is preferably 300 cP or more and 20,000 cP or less, more preferably 1,000 cP or more and 15,000 cP or less, and further preferably 1,500 cP or more and 12,000 cP or less. When the viscosity of the varnish composition is within this range, uniform film formation is easy.
 ワニス組成物は、後述するポリアミック酸-微粒子複合膜(前駆膜)とした際に有機微粒子(B)/ポリアミック酸(A)の比率が0.5~4.0(質量比)であるように、有機微粒子(B)及びポリアミック酸(A)を含むことが好ましく、前述の(B)/(A)比率が0.7~3.5(質量比)であるように、有機微粒子(B)及びポリアミック酸(A)を含むことがより好ましい。
 また、ワニス組成物を用いてポリアミック酸-微粒子複合膜を形成した場合に、複合膜における有機微粒子(B)/ポリアミック酸(A)の体積比率が1.0~5.0となるように、有機微粒子(B)及びポリアミック酸を含むことが好ましい。前述の体積比率は、1.2~4.5がさらに好ましい。
 有機微粒子(B)/ポリアミック酸(A)の質量比又は体積比が上記した下限値以上であれば、適切な密度の孔を形成しやすい。有機微粒子(B)/ポリアミック酸(A)の質量比又は体積比が上記した上限値以下であれば、ワニス組成物の粘度の増加や膜中のひび割れ等の問題を生じることなく安定的に成膜することができる。
The varnish composition has a ratio of organic fine particles (B) / polyamic acid (A) of 0.5 to 4.0 (mass ratio) when a polyamic acid-fine particle composite film (precursor film) described later is used. , Organic fine particles (B) and polyamic acid (A) are preferably contained, and the organic fine particles (B) have the above-mentioned (B) / (A) ratio of 0.7 to 3.5 (mass ratio). And more preferably containing the polyamic acid (A).
Further, when a polyamic acid-fine particle composite film is formed using the varnish composition, the volume ratio of the organic fine particles (B) / polyamic acid (A) in the composite film is 1.0 to 5.0. It preferably contains organic fine particles (B) and a polyamic acid. The above-mentioned volume ratio is more preferably 1.2 to 4.5.
When the mass ratio or volume ratio of the organic fine particles (B) / polyamic acid (A) is at least the above-mentioned lower limit value, it is easy to form pores having an appropriate density. When the mass ratio or volume ratio of the organic fine particles (B) / polyamic acid (A) is equal to or less than the above upper limit value, the varnish composition is stably formed without causing problems such as an increase in viscosity and cracks in the film. Can be filmed.
 ワニス組成物の固形分濃度は、特に限定されないが、例えば、1質量%以上であり、5質量%以上であることが好ましく、10質量%以上がより好ましく、上限は例えば60質量%以下であり、好ましくは30質量%以下である。なおここでいう固形分濃度とは、溶媒(S)以外の成分の濃度を意味し、液状の成分であっても固形分として重量に含めるものとする。 The solid content concentration of the varnish composition is not particularly limited, but is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and the upper limit is, for example, 60% by mass or less. It is preferably 30% by mass or less. The solid content concentration referred to here means the concentration of a component other than the solvent (S), and even a liquid component is included in the weight as a solid content.
≪ポリイミド多孔質膜の前駆膜の製造方法≫
 ポリイミド多孔質膜の前駆膜の製造方法は、前述のワニス組成物を基材上に塗布して塗布膜を形成する、塗布膜形成工程と、塗布膜から溶媒(S)を除き、ポリイミド多孔質膜の前駆膜を形成する、前駆膜形成工程とを含む。
≪Manufacturing method of precursor film of polyimide porous film≫
The method for producing a precursor film of a polyimide porous film is a coating film forming step of applying the above-mentioned varnish composition on a substrate to form a coating film, and removing the solvent (S) from the coating film to form a polyimide porous film. It includes a precursor film forming step of forming a precursor film of the film.
 上記基材としては、例えば、PETフィルム、SUS基板、ガラス基板等が挙げられる。
 また塗布膜から溶媒(S)を除くには、前述のワニス組成物を基材上に塗布し塗布膜を形成した後、常圧又は真空下で0℃以上100℃以下、好ましくは常圧で10℃以上100℃以下で乾燥すればよい。
Examples of the substrate include PET films, SUS substrates, glass substrates and the like.
To remove the solvent (S) from the coating film, the above-mentioned varnish composition is applied onto a substrate to form a coating film, and then the temperature is 0 ° C. or higher and 100 ° C. or lower, preferably normal pressure, under normal pressure or vacuum. It may be dried at 10 ° C. or higher and 100 ° C. or lower.
 以下、ポリイミド多孔質膜の前駆膜(以下、単に「前駆膜」とも記す。)の成膜手順について説明する。
 前駆膜は、基材上に直接成膜してもよいし、基材上に形成された上記前駆膜とは異なる下層膜上に成膜してもよい。また、前述のワニス組成物を用いて前駆膜を成膜した後に、さらに上層に上記前駆膜とは異なる上層膜を成膜してもよい。なお、本出願において、基材上に下層膜を設ける態様も、前駆膜の上に上層膜を設ける態様も、基材上に前駆膜を形成する方法に含める。
Hereinafter, a procedure for forming a precursor film of a polyimide porous film (hereinafter, also simply referred to as “precursor film”) will be described.
The precursor film may be formed directly on the substrate, or may be formed on a lower film different from the precursor film formed on the substrate. Further, after forming a precursor film using the above-mentioned varnish composition, an upper film different from the precursor film may be further formed on the upper layer. In the present application, both the aspect of providing the lower layer film on the substrate and the aspect of providing the upper layer film on the precursor film are included in the method of forming the precursor film on the substrate.
 上記下層膜(又は上層膜)としては、例えば、ポリアミック酸、ポリイミド、ポリアミドイミド前駆体、ポリアミドイミド及びポリエーテルスルホンからなる群から選択される樹脂と、微粒子と、溶媒とを含有するワニスであって、例えば上記微粒子の含有量が上記樹脂と上記微粒子との合計に対して40体積%超81体積%以下である、下層膜(又は上層膜)形成用ワニスを用いて成膜した下層(又は上層)未焼成複合膜が挙げられる。下層未焼成複合膜は、基材上に形成されてもよい。
 上記ワニスにおいて上記微粒子の含有量が40体積%超であると、ワニスに微粒子が均一に分散し、また上記微粒子の含有量が81体積%以下であると、微粒子同士が凝集することもなくワニスに分散するため、上記下層膜(又は上層膜)に由来する層において孔を均一に形成することができる。
 また、上記ワニスにおいて上記微粒子の含有量が上記範囲内であれば、下層未焼成複合膜を基板上に形成する場合、上記基材に予め離型層を設けていなくても、成膜後の離型性を確保しやすい。
The lower layer film (or upper layer film) is, for example, a varnish containing a resin selected from the group consisting of polyamic acid, polyimide, polyamide-imide precursor, polyamideimide and polyether sulfone, fine particles, and a solvent. For example, the lower layer (or the upper layer) formed with a varnish for forming a lower layer film (or an upper layer film) having a content of the fine particles of 40% by volume or more and 81% by volume or less with respect to the total of the resin and the fine particles is formed. Upper layer) An unfired composite film can be mentioned. The lower unfired composite film may be formed on the substrate.
When the content of the fine particles in the varnish is more than 40% by volume, the fine particles are uniformly dispersed in the varnish, and when the content of the fine particles is 81% by volume or less, the fine particles do not aggregate with each other. Therefore, the pores can be uniformly formed in the layer derived from the lower layer film (or the upper layer film).
Further, when the content of the fine particles in the varnish is within the above range, when the lower unfired composite film is formed on the substrate, even if the base material is not provided with the release layer in advance, the film is formed. Easy to secure releasability.
 なお、下層(又は上層)膜形成用ワニスに用いる微粒子は、前述のワニス組成物に用いる有機微粒子(B)と、同じであってもよいし、異なってもよい。下層(又は上層)未焼成複合膜における孔をより稠密にするには、下層(又は上層)膜形成用ワニスに用いる微粒子は、前述のワニス組成物に用いる有機微粒子(B)よりも粒径分布指数が小さいか同じであることが好ましい。あるいは、下層(又は上層)膜形成用ワニスに用いる微粒子は、前述のワニス組成物に用いる微粒子よりも真球率が小さいか同じであることが好ましい。 The fine particles used for the lower (or upper) film forming varnish may be the same as or different from the organic fine particles (B) used for the above-mentioned varnish composition. In order to make the pores in the lower (or upper) unfired composite film more dense, the fine particles used for the lower (or upper) film-forming varnish have a particle size distribution more than that of the organic fine particles (B) used in the above-mentioned varnish composition. It is preferable that the exponent is small or the same. Alternatively, it is preferable that the fine particles used for the lower (or upper) film forming varnish have a smaller or the same sphericity ratio than the fine particles used for the above-mentioned varnish composition.
 また、下層(又は上層)膜形成用ワニスに用いる微粒子の平均粒径は、5nm以上1000nm以下が好ましく、10nm以上600nm以下がより好ましい。 Further, the average particle size of the fine particles used for the varnish for forming the lower (or upper) film is preferably 5 nm or more and 1000 nm or less, and more preferably 10 nm or more and 600 nm or less.
 また、下層(又は上層)膜形成用ワニスにおける微粒子の含有量は、前述のワニス組成物よりも多くてもよいし少なくてもよい。
 上記下層(又は上層)膜形成用ワニスに含まれる、微粒子、及び溶媒等の成分の好適な例は、前述のワニス組成物と同様である。下層(又は上層)膜形成用ワニスは、前述のワニス組成物と同様の方法により調製することができる。
 下層未焼成複合膜は、例えば、基材上に、上記下層膜形成用ワニスを塗布し、常圧又は真空下で0℃以上100℃以下、好ましくは常圧で10℃以上100℃以下で乾燥することにより、形成することができる。上層未焼成複合膜の成膜条件も同様である。
Further, the content of the fine particles in the lower (or upper) film forming varnish may be higher or lower than that of the above-mentioned varnish composition.
Preferable examples of components such as fine particles and a solvent contained in the lower (or upper) film-forming varnish are the same as those of the above-mentioned varnish composition. The varnish for forming the lower layer (or upper layer) film can be prepared by the same method as the above-mentioned varnish composition.
For the lower unfired composite film, for example, the above-mentioned varnish for forming the lower layer film is applied on a substrate and dried at 0 ° C. or higher and 100 ° C. or lower, preferably 10 ° C. or higher and 100 ° C. or lower under normal pressure or vacuum. By doing so, it can be formed. The same applies to the film forming conditions of the upper unfired composite film.
 また、上記下層(又は上層)膜としては、例えば、セルロース系樹脂、不織布(例えば、ポリイミド製不織布等(繊維径は、例えば、約50nm以上約3000nm以下である。))等の繊維系材料からなる膜や、ポリイミドフィルムなども挙げられる。 The lower (or upper) film may be made of a fiber-based material such as a cellulosic resin or a non-woven fabric (for example, a polyimide non-woven fabric or the like (the fiber diameter is, for example, about 50 nm or more and about 3000 nm or less)). A film made of non-woven fabric, a polyimide film, and the like can also be mentioned.
 以上説明した方法により、基材上に、前駆膜が単独で、又は、必要に応じて、下層(又は上層)膜とともに前駆膜が形成される。 By the method described above, the precursor film is formed on the substrate alone or, if necessary, together with the lower layer (or upper layer) film.
 ポリイミド多孔質膜の前駆膜の製造方法は、上記の前駆膜形成工程の後に、基材から前駆膜を剥離させる、剥離工程を含んでいてもよい。
 基材から前駆膜が剥離される場合、基材には前駆膜を焼成する温度に耐えうる耐熱性が要求されない。
The method for producing a precursor film of a polyimide porous film may include a peeling step of peeling the precursor film from the substrate after the above-mentioned precursor film forming step.
When the precursor film is peeled off from the substrate, the substrate is not required to have heat resistance that can withstand the temperature at which the precursor film is fired.
 前駆膜又は前駆膜と下層(又は上層)未焼成複合膜との積層膜を基材から剥離する場合、膜の剥離性をさらに高めるために、予め離型層を設けた基材を使用することもできる。基材に予め離型層を設ける場合は、前述のワニス組成物、又は下層膜形成用のワニスを塗布する前に、基材上に離型剤を塗布して乾燥あるいは焼き付けを行う。ここで使用される離型剤は、アルキルリン酸アンモニウム塩系、フッ素系又はシリコーン系等の公知の離型剤が特に制限なく使用可能である。ただし上記乾燥した前駆膜を基材から剥離する際、前駆膜の剥離面にわずかながら離型剤が残存すると、残存する離型剤が焼成中の変色や電気特性への悪影響の原因となりうる。このため、剥離面に付着する離型剤は、極力取り除かれることが好ましい。離型剤を取り除くことを目的として、基材より剥離された前駆膜や前駆膜を含む積層膜を、有機溶媒を用いて洗浄する洗浄工程を導入してもよい。 When peeling the precursor film or the laminated film of the precursor film and the lower (or upper) unfired composite film from the base material, use a base material with a release layer in advance in order to further improve the peelability of the film. You can also. When the release layer is provided on the substrate in advance, the release agent is applied on the substrate and dried or baked before applying the above-mentioned varnish composition or the varnish for forming the lower layer film. As the release agent used here, a known release agent such as an alkyl phosphate ammonium salt type, a fluorine type or a silicone type can be used without particular limitation. However, when the dried precursor film is peeled off from the substrate, if a small amount of the release agent remains on the peeled surface of the precursor film, the remaining mold release agent may cause discoloration during firing and adverse effects on electrical characteristics. Therefore, it is preferable that the release agent adhering to the peeled surface is removed as much as possible. For the purpose of removing the release agent, a cleaning step may be introduced in which a precursor film peeled from the substrate or a laminated film containing the precursor film is washed with an organic solvent.
 離型層を設けず基材をそのまま使用する場合は、上記の剥離工程及び洗浄工程を省くことができる。また、後述するポリイミド多孔質膜の製造方法における有機微粒子(B)を除去する除去工程の前に、前駆膜の製造方法において、水又は水を含む溶媒へ前駆膜を浸漬させる浸漬工程、浸漬工程後の前駆膜をプレスするプレス工程、浸漬工程後の前駆膜を乾燥させる乾燥工程をそれぞれ任意の工程として設けてもよい。 When the base material is used as it is without providing a release layer, the above peeling step and cleaning step can be omitted. Further, before the removal step of removing the organic fine particles (B) in the method for producing a polyimide porous film described later, in the method for producing a precursor film, a dipping step and a dipping step of immersing the precursor film in water or a solvent containing water. A pressing step of pressing the precursor film afterwards and a drying step of drying the precursor film after the dipping step may be provided as arbitrary steps.
 ポリイミド多孔質膜の前駆膜の製造方法において、上記の剥離工程を実施する場合、さらに、剥離工程の後に、前駆膜をロール状に巻き取る巻取工程を実施してもよい。
 前駆膜をロール状に巻き取る場合、小型の焼成炉で、ロール状の前駆膜を焼成することが可能である。また、前駆膜を焼成するまでの、前駆膜の移送が容易であり、保管についても省スペース化を図れる。
 さらに、前駆膜を焼成するプロセスについて、ロール・トゥ・ロールプロセスを適用可能であり、ポリイミド多孔質膜の効率的な製造が可能である。
In the method for producing a precursor film of a polyimide porous film, when the above peeling step is carried out, a winding step of winding the precursor film into a roll may be further carried out after the peeling step.
When the precursor film is wound into a roll, the roll-shaped precursor film can be fired in a small firing furnace. In addition, the precursor film can be easily transferred until the precursor film is fired, and space can be saved for storage.
Further, a roll-to-roll process can be applied to the process of firing the precursor film, and an efficient production of a polyimide porous film is possible.
≪ポリイミド多孔質膜の製造方法≫
 ポリイミド多孔質膜の製造方法は、前述のポリイミド多孔質膜の前駆膜から、有機微粒子(B)を除去する除去工程を含む。当該除去工程において、有機微粒子(B)の除去は、ポリアミック酸(A)をイミド化させつつ行ってもよいし、ポリアミック酸(A)をイミド化させた後に行ってもよい。有機微粒子(B)の除去は、加熱による除去が好ましく、後述の化学イミド化後に加熱により除去してもよいし、熱イミド化に係る焼成により前駆膜がイミド化するのと同時若しくは進行中に、又はイミド化後に除去してもよい。加熱により有機微粒子(B)が熱分解することで、均一な分布の球状の空孔を持つポリイミド多孔質膜ポリイミド多孔質膜が得られる。
≪Manufacturing method of polyimide porous membrane≫
The method for producing a polyimide porous membrane includes a removal step of removing organic fine particles (B) from the precursor film of the polyimide porous membrane described above. In the removing step, the organic fine particles (B) may be removed while imidizing the polyamic acid (A) or after imidizing the polyamic acid (A). The organic fine particles (B) are preferably removed by heating, and may be removed by heating after chemical imidization described later, or at the same time as or during the imidization of the precursor film by calcination related to thermal imidization. , Or may be removed after imidization. By thermally decomposing the organic fine particles (B) by heating, a polyimide porous film having spherical pores with a uniform distribution can be obtained.
 ポリアミック酸(A)をイミド化させる方法は特に限定されない。イミド化は熱イミド化及び化学イミド化のいずれであってもよい。化学イミド化としては、ポリアミック酸(A)を含む前駆膜を、無水酢酸、あるいは無水酢酸とイソキノリンの混合溶媒に浸す等の方法を用いることができる。 The method for imidizing the polyamic acid (A) is not particularly limited. The imidization may be either thermal imidization or chemical imidization. As the chemical imidization, a method such as immersing the precursor membrane containing the polyamic acid (A) in acetic anhydride or a mixed solvent of acetic anhydride and isoquinoline can be used.
 上記のイミド化方法の中では、イミド化剤の洗浄による除去が不要である点等から、熱イミド化である焼成が好ましい。以下、熱イミド化に係る焼成について説明する。 Among the above-mentioned imidization methods, calcination, which is thermal imidization, is preferable because it is not necessary to remove the imidizing agent by washing. Hereinafter, calcination related to thermal imidization will be described.
 なお前駆膜を製造する際に、前駆膜とともに下層(又は上層)膜を形成した場合には、前駆膜の焼成とともに、下層(又は上層)膜を焼成する。
 焼成温度は、ポリアミック酸(A)の構造等によっても異なるが、120℃以上500℃以下が好ましく、150℃以上450℃以下がより好ましく、300℃以上450℃以下がより好ましい。
When the lower layer (or upper layer) film is formed together with the precursor film when the precursor film is produced, the lower layer (or upper layer) film is fired together with the firing of the precursor film.
The firing temperature varies depending on the structure of the polyamic acid (A) and the like, but is preferably 120 ° C. or higher and 500 ° C. or lower, more preferably 150 ° C. or higher and 450 ° C. or lower, and more preferably 300 ° C. or higher and 450 ° C. or lower.
 焼成条件は、例えば、室温から400℃~450℃程度までを3時間程度で昇温させた後、同温度で2~30分間程度保持させる方法や、室温から、例えば50℃刻みで段階的に400℃~450℃まで昇温(各ステップ20分程度保持)し、最終的に400℃~450℃で2~30分間程度保持させる等の連続的又は段階的な昇温操作を含む乾燥-熱イミド化法を用いることもできる。
 基材上に前駆膜を成膜し、基材から前駆膜又は前駆膜を含む積層膜を一旦剥離してその焼成工程を実施する場合には、前駆膜又は積層膜の端部をSUS製の型枠等に固定し、焼成による変形を防ぐ方法を採ることもできる。
The firing conditions are, for example, a method of raising the temperature from room temperature to about 400 ° C. to 450 ° C. in about 3 hours and then holding the temperature at the same temperature for about 2 to 30 minutes, or stepwise from room temperature in increments of, for example, 50 ° C. Drying-heat including continuous or stepwise temperature raising operation such as raising the temperature to 400 ° C. to 450 ° C. (holding for about 20 minutes in each step) and finally holding at 400 ° C. to 450 ° C. for about 2 to 30 minutes. The imidization method can also be used.
When a precursor film is formed on a substrate, the precursor film or the laminated film containing the precursor film is once peeled off from the substrate, and the firing step is performed, the end portion of the precursor film or the laminated film is made of SUS. It is also possible to adopt a method of fixing to a mold or the like to prevent deformation due to firing.
 焼成後に得られるポリイミド多孔質膜の膜厚は、例えばマイクロメータ等で複数の箇所の厚さを測定し平均することで求めることができる。どのような平均膜厚が好ましいかは、ポリイミド多孔質膜の用途によって異なるが、例えば、セパレータ等に使用する場合は、5μm以上500μm以下が好ましく、10μm以上100μm以下がより好ましく、15μm以上30μm以下がさらに好ましい。フィルタ等に使用する場合は、5μm以上500μm以下が好ましく、10μm以上300μm以下がより好ましく、20μm以上150μm以下がさらに好ましい。 The film thickness of the polyimide porous film obtained after firing can be obtained by measuring the thicknesses of a plurality of locations with a micrometer or the like and averaging them. What kind of average film thickness is preferable depends on the use of the polyimide porous membrane, but for example, when it is used for a separator or the like, it is preferably 5 μm or more and 500 μm or less, more preferably 10 μm or more and 100 μm or less, and 15 μm or more and 30 μm or less. Is even more preferable. When used for a filter or the like, it is preferably 5 μm or more and 500 μm or less, more preferably 10 μm or more and 300 μm or less, and further preferably 20 μm or more and 150 μm or less.
 このようにして得られたポリイミド多孔質膜は、非透明な又は黄色若しくは茶褐色に着色した多孔質膜である。また、いかなる膜厚であっても、ポリイミド多孔質膜は、膜全体に球状孔が連通した状態で分布している多孔質膜であり、表裏面が連通している。 The polyimide porous film thus obtained is a non-transparent or yellow or brown colored porous film. Further, regardless of the film thickness, the polyimide porous membrane is a porous membrane in which spherical pores communicate with each other throughout the membrane, and the front and back surfaces communicate with each other.
 ポリイミド多孔質膜の製造方法は、上記有機微粒子(B)を除去する除去工程後に、ポリイミド多孔質膜の少なくとも一部を除去する樹脂除去工程を有していてもよい。樹脂除去工程とは、多孔質膜の膜厚方向に樹脂を除去する(膜厚を薄くする)工程を意味し、除去工程後に多孔質膜の少なくとも一部を除去することにより、上記多孔質膜の少なくとも一部を除去しないポリイミド多孔質膜に比べて、最終製品のポリイミド多孔質膜の開孔率を向上させることが可能となる。
 なお、上記有機微粒子(B)を除去する工程の前に、例えば前駆膜形成工程の後に、前駆膜の樹脂部分の少なくとも一部を除去する工程を含むこともできる。このとき、前駆膜に含まれる有機微粒子(B)の一部が取り除かれても構わない。本工程を含むことにより、続く微粒子除去工程で有機微粒子(B)が取り除かれ空孔が形成された場合に、上記前駆膜の樹脂部分を除去しないものに比べて、最終製品の多孔質ポリイミド系樹脂膜の開孔率を向上させることが可能となる。
The method for producing the polyimide porous film may include a resin removing step of removing at least a part of the polyimide porous film after the removing step of removing the organic fine particles (B). The resin removing step means a step of removing the resin (thinning the film thickness) in the film thickness direction of the porous film, and by removing at least a part of the porous film after the removing step, the porous film is described. It is possible to improve the pore size of the polyimide porous membrane of the final product as compared with the polyimide porous membrane which does not remove at least a part of the above.
It should be noted that a step of removing at least a part of the resin portion of the precursor film may be included before the step of removing the organic fine particles (B), for example, after the step of forming the precursor film. At this time, a part of the organic fine particles (B) contained in the precursor film may be removed. By including this step, when the organic fine particles (B) are removed and pores are formed in the subsequent fine particle removal step, the porous polyimide type of the final product is compared with the one in which the resin portion of the precursor film is not removed. It is possible to improve the aperture ratio of the resin film.
 上記の樹脂部分の少なくとも一部を除去する工程、あるいは、ポリイミド多孔質膜の少なくとも一部を除去する工程は、通常のケミカルエッチング法若しくは物理的除去方法、又は、これらを組み合わせた方法により行うことができる。 The step of removing at least a part of the resin portion or the step of removing at least a part of the polyimide porous film is performed by a normal chemical etching method, a physical removal method, or a method in which these are combined. Can be done.
 ケミカルエッチング法としては、無機アルカリ溶液又は有機アルカリ溶液等のケミカルエッチング液による処理が挙げられ、中でも無機アルカリ溶液の使用が好ましい。
 無機アルカリ溶液として、例えば、ヒドラジンヒドラートとエチレンジアミンを含むヒドラジン溶液;水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム等のアルカリ金属水酸化物の溶液;アンモニア溶液;水酸化アルカリ金属化合物とヒドラジンと1,3-ジメチル-2-イミダゾリジノンを主成分とするエッチング液等が挙げられる。
 有機アルカリ溶液としては、エチルアミン、n-プロピルアミン等の第一級アミン類;ジエチルアミン、ジ-n-ブチルアミン等の第二級アミン類;トリエチルアミン、メチルジエチルアミン等の第三級アミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩;ピロール、ピペリジン等の環状アミン類等のアルカリ性溶液が挙げられる。
 これら無機アルカリ溶液及び有機アルカリ溶液のアルカリ濃度は、例えば0.01質量%以上20質量%以下である。
Examples of the chemical etching method include treatment with a chemical etching solution such as an inorganic alkaline solution or an organic alkaline solution, and the use of an inorganic alkaline solution is particularly preferable.
As an inorganic alkaline solution, for example, a hydrazine solution containing hydrazine hydrate and ethylenediamine; a solution of an alkali metal hydroxide such as potassium hydroxide, sodium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate; an ammonia solution; hydroxylation. Examples thereof include an etching solution containing an alkali metal compound, hydrazine, and 1,3-dimethyl-2-imidazolidinone as main components.
Examples of the organic alkaline solution include primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; dimethylethanolamine. , Alcohol amines such as triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; alkaline solutions such as cyclic amines such as pyrrole and piperidine.
The alkaline concentrations of these inorganic alkaline solutions and organic alkaline solutions are, for example, 0.01% by mass or more and 20% by mass or less.
 上記の各溶液の溶媒については、純水、アルコール類を適宜選択できる。また各溶液に界面活性剤を適当量添加したものを使用することもできる。 Pure water and alcohols can be appropriately selected as the solvent for each of the above solutions. Further, it is also possible to use a solution in which an appropriate amount of a surfactant is added.
 また、物理的な除去方法としては、例えば、プラズマ(酸素、アルゴン等)、コロナ放電等によるドライエッチング;研磨剤(例えば、アルミナ(硬度9)等)を液体に分散し、これを膜の表面に30m/s以上100m/s以下の速度で照射することによる表面処理等が使用できる。 As a physical removal method, for example, plasma (oxygen, argon, etc.), dry etching by corona discharge, etc .; a polishing agent (for example, alumina (hardness 9), etc.) is dispersed in a liquid, and this is applied to the surface of the film. Surface treatment or the like by irradiating at a speed of 30 m / s or more and 100 m / s or less can be used.
 他の物理的除去方法として、対象表面を液体で濡らした台紙フィルム(例えばPETフィルム等のポリエステルフィルム)に圧着後、乾燥しないで又は乾燥した後、多孔質膜を台紙フィルムから引きはがす方法を採用することもできる。本方法は、液体の表面張力あるいは静電付着力に起因して、多孔質膜の表面層のみが台紙フィルム上に残された状態で、多孔質膜が台紙フィルムから引きはがされる。 As another physical removal method, a method is adopted in which the surface of the object is pressure-bonded to a mount film (for example, a polyester film such as PET film) wetted with a liquid, and then the porous film is peeled off from the mount film without drying or after drying. You can also do it. In this method, the porous film is peeled off from the mount film while only the surface layer of the porous film is left on the mount film due to the surface tension or electrostatic adhesion of the liquid.
 以下、実施例を基に実施例を示して本発明をさらに具体的に説明するが、本発明の範囲は、これに限定されない。 Hereinafter, the present invention will be described in more detail by showing examples based on the examples, but the scope of the present invention is not limited to this.
 実施例及び比較例では、以下に示すテトラカルボン酸二無水物、ジアミン、ポリアミック酸、有機溶剤を用いた。
 ・テトラカルボン酸二無水物:ピロメリット酸二無水物
 ・ジアミン:4,4’-ジアミノジフェニルエーテル
 ・ポリアミック酸溶液:ピロメリット酸二無水物と4,4’-ジアミノジフェニルエーテルとの反応物(固形分20質量%(有機溶剤:ジメチルアセトアミド))
 ・有機溶剤:ジメチルアセトアミド(DMAc)
In Examples and Comparative Examples, the following tetracarboxylic acid dianhydrides, diamines, polyamic acids, and organic solvents were used.
-Tetracarboxylic acid dianhydride: pyromellitic acid dianhydride-Diamine: 4,4'-diaminodiphenyl ether-Polyamic acid solution: Reaction product of pyromellitic acid dianhydride and 4,4'-diaminodiphenyl ether (solid content) 20% by mass (organic solvent: dimethylacetamide))
-Organic solvent: Dimethylacetamide (DMAc)
合成例1
 撹拌機、温度計、温度コントローラー、コンデンサー、滴下装置を備えた内容量1.0Lのガラス容器に、イオン交換水383.0gを入れ撹拌しながら窒素ガスを導入し窒素置換を行った。その後マントルヒーターで加熱、72±2℃で温度コントロールし重合容器とした。
 撹拌機を備えた内容量1.0Lのガラス容器にイオン交換水122.4g、一般式(I)で表される化合物(反応性乳化剤)としてポリオキシエチレンスチレン化プロペニルフェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬(株)製 アクアロンAR-1025 (25%水溶液))12.8g、単官能モノマーとしてスチレン(旭化成(株)製 スチレンモノマー)378.6g、多官能モノマーとしてエチレングリコールジメタクリレート(三菱ケミカル(株)製 アクリエステルED)22.2gを入れ撹拌し、スチレン及びエチレングリコールジメタクリレートがイオン交換水に乳化したモノマーエマルジョンを得た。
 撹拌機を備えた内容量0.1Lのガラス容器にイオン交換水48.6g、重合開始剤として2,2’-アゾビス〔N-(2-カルボキシエチル)-2-メチルプロピオンアミジン〕4水和物(富士フイルム和光純薬(株)製 VA-057)3.1gを入れ撹拌溶解し、重合開始剤水溶液を得た。
 調製した前記モノマーエマルジョンから26.8g、調製した前記重合開始剤水溶液から5.0gを前記重合容器に入れ、初期重合を120分間行った。
 120分間初期重合を行った後に、残りのモノマーエマルジョン及び重合開始剤水溶液をそれぞれ送液ポンプにて240分間かけて前記重合容器へ送液し、滴下重合を行った。滴下終了後、イオン交換水9.0gで送液ラインの共洗いを行った。
 120分間重合反応を継続した後、40℃まで冷却し固形分40%の架橋ポリマー水性分散体を得た。
Synthesis example 1
In a glass container having an internal capacity of 1.0 L equipped with a stirrer, a thermometer, a temperature controller, a condenser, and a dropping device, 383.0 g of ion-exchanged water was placed and nitrogen gas was introduced while stirring to perform nitrogen substitution. After that, it was heated with a mantle heater and the temperature was controlled at 72 ± 2 ° C. to obtain a polymerization vessel.
122.4 g of ion-exchanged water in a glass container with a content of 1.0 L equipped with a stirrer, polyoxyethylene styrenated propenylphenyl ether sulfate ammonium salt as a compound (reactive emulsifier) represented by the general formula (I) ( Aqualon AR-1025 (25% aqueous solution) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. 12.8 g, styrene as a monofunctional monomer (styrene monomer manufactured by Asahi Kasei Co., Ltd.) 378.6 g, ethylene glycol dimethacrylate (Mitsubishi) as a polyfunctional monomer 22.2 g of Acryester ED manufactured by Chemical Co., Ltd. was added and stirred to obtain a monomer emulsion in which styrene and ethylene glycol dimethacrylate were emulsified in ion-exchanged water.
48.6 g of ion-exchanged water in a glass container with a content of 0.1 L equipped with a stirrer, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate as a polymerization initiator 3.1 g of a product (VA-057 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added and dissolved by stirring to obtain an aqueous polymerization initiator solution.
26.8 g from the prepared monomer emulsion and 5.0 g from the prepared aqueous polymerization initiator were placed in the polymerization vessel, and the initial polymerization was carried out for 120 minutes.
After the initial polymerization was carried out for 120 minutes, the remaining monomer emulsion and the polymerization initiator aqueous solution were each sent to the polymerization vessel over 240 minutes by a liquid feed pump, and the dropping polymerization was carried out. After the completion of the dropping, the liquid feeding line was co-washed with 9.0 g of ion-exchanged water.
After continuing the polymerization reaction for 120 minutes, the mixture was cooled to 40 ° C. to obtain a crosslinked polymer aqueous dispersion having a solid content of 40%.
合成例2
 合成例1におけるスチレン378.6gの代わりに、スチレン374.2gとメチルメタクリレート4.4g、エチレングリコールジメタクリレートの代わりに、トリメチロールプロパントリメタクリレートを用いた他は、合成例1と同様にして重合を行い、固形分40%の架橋ポリマー水性分散体得た。
Synthesis example 2
Polymerization was carried out in the same manner as in Synthesis Example 1, except that 374.2 g of styrene and 4.4 g of methyl methacrylate were used instead of 378.6 g of styrene in Synthesis Example 1, and trimethylolpropane trimethacrylate was used instead of ethylene glycol dimethacrylate. A crosslinked polymer aqueous dispersion having a solid content of 40% was obtained.
合成例3
 合成例1におけるスチレン378.6gの代わりに、スチレン388.8gを、エチレングリコールジメタクリレート22.2gの代わりに、ジビニルベンゼン混合物(日鉄ケミカル&マテリアル(株)製 DVB570、ジビニルベンゼン57%含有、エチルビニルベンゼン43%含有)12.0g(ジビニルベンゼン:6.84g、エチルビニルベンゼン:5.16g)を用いた他は、合成例1と同様にして重合を行い、固形分40%の架橋ポリマー水性分散体を得た。
Synthesis example 3
Instead of 378.6 g of styrene in Synthesis Example 1, 388.8 g of styrene was contained, and instead of 22.2 g of ethylene glycol dimethacrylate, a divinylbenzene mixture (DVB570 manufactured by Nittetsu Chemical & Materials Co., Ltd., 57% divinylbenzene was contained. A crosslinked polymer having a solid content of 40%, which was polymerized in the same manner as in Synthesis Example 1 except that 12.0 g (divinylbenzene: 6.84 g, ethylvinylbenzene: 5.16 g) (containing 43% of ethylvinylbenzene) was used. An aqueous dispersion was obtained.
合成例4
 合成例1におけるスチレン378.6gの代わりに、スチレン364.7gとメチルメタクリレート4.0gを、エチレングリコールジメタクリレート22.2gの代わりに、1,3-ブチレングリコールジメタクリレート32.1gを用いた他は、合成例1と同様にして重合を行い、固形分40%の架橋ポリマー水性分散体を得た。
Synthesis example 4
In addition, 364.7 g of styrene and 4.0 g of methyl methacrylate were used instead of 378.6 g of styrene in Synthesis Example 1, and 32.1 g of 1,3-butylene glycol dimethacrylate was used instead of 22.2 g of ethylene glycol dimethacrylate. Was polymerized in the same manner as in Synthesis Example 1 to obtain a crosslinked polymer aqueous dispersion having a solid content of 40%.
合成例5
 撹拌機、温度計、温度コントローラー、コンデンサー、滴下装置を備えた内容量1.0Lのガラス容器に、イオン交換水343.3gを入れ撹拌しながら窒素ガスを導入し窒素置換を行った。窒素置換後、乳化剤として40%ラウリル硫酸トリエタノールアミン水溶液(東邦化学工業(株)製 アルスコープLS-40T)0.6gを入れマントルヒーターで加熱、72±2℃で温度コントロールし重合容器とした。
 撹拌機を備えた内容量1.0Lのガラス容器にイオン交換水169.7g、乳化剤として40%ラウリル硫酸トリエタノールアミン水溶液3.5g、単官能モノマーとしてスチレン364.9g、2-ヒドロキシエチルメタクリレート(三菱ケミカル(株)製 アクリエステルHO)11.1gを入れ撹拌し、スチレン、2-ヒドロキシエチルメタクリレートがイオン交換水に乳化したモノマーエマルジョンを得た。
 撹拌機を備えた内容量0.1Lのガラス容器にイオン交換水49.1g、重合開始剤として2,2’-アゾビス〔N-(2-カルボキシエチル)-2-メチルプロピオンアミジン〕4水和物3.2gを入れ撹拌溶解し、重合開始剤水溶液を得た。
 調製した前記モノマーエマルジョンから28.4g、調製した前記重合開始剤水溶液から4.5gを前記重合容器に入れ、初期重合を120分間行った。
 120分間初期重合を行った後に、残りのモノマーエマルジョン及び残りの重合開始剤水溶液をそれぞれ送液ポンプにて300分間かけて前記重合容器へ送液し、滴下重合を行った。
 120分間重合反応を継続した後、40℃まで冷却し固形分40%の非架橋ポリマー水性分散体を得た。
Synthesis example 5
Nitrogen gas was introduced into a glass container having an internal capacity of 1.0 L equipped with a stirrer, a thermometer, a temperature controller, a condenser, and a dropping device, and nitrogen exchange was performed while stirring. After nitrogen substitution, 0.6 g of a 40% aqueous solution of triethanolamine lauryl sulfate (Alscope LS-40T manufactured by Toho Chemical Industry Co., Ltd.) was added as an emulsifier, heated with a mantle heater, and the temperature was controlled at 72 ± 2 ° C to form a polymerization vessel. ..
In a glass container with a content of 1.0 L equipped with a stirrer, 169.7 g of ion-exchanged water, 3.5 g of a 40% triethanolamine lauryl sulfate aqueous solution as an emulsifier, 364.9 g of styrene as a monofunctional monomer, and 2-hydroxyethyl methacrylate ( 11.1 g of Acryester HO manufactured by Mitsubishi Chemical Co., Ltd. was added and stirred to obtain a monomer emulsion in which styrene and 2-hydroxyethyl methacrylate were emulsified in ion-exchanged water.
49.1 g of ion-exchanged water in a glass container with a content of 0.1 L equipped with a stirrer, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate as a polymerization initiator 3.2 g of the product was added and dissolved by stirring to obtain an aqueous polymerization initiator solution.
28.4 g of the prepared monomer emulsion and 4.5 g of the prepared aqueous polymerization initiator were placed in the polymerization vessel, and the initial polymerization was carried out for 120 minutes.
After performing the initial polymerization for 120 minutes, the remaining monomer emulsion and the remaining polymerization initiator aqueous solution were each sent to the polymerization vessel over 300 minutes by a liquid feed pump, and the dropping polymerization was carried out.
After continuing the polymerization reaction for 120 minutes, the mixture was cooled to 40 ° C. to obtain a non-crosslinked polymer aqueous dispersion having a solid content of 40%.
合成例6
 合成例1におけるポリオキシエチレンスチレン化プロペニルフェニルエーテル硫酸エステルアンモニウム塩(25%水溶液)12.8gの代わりにラウリル硫酸トリエタノールアミン(40%水溶液)8.0gを用い、スチレンを392.8g、エチレングリコールジメタクリレートを8.0gに変更した以外は合成例1と同様にして重合を行い、固形分40%の架橋ポリマー水性分散体を得た。
Synthesis example 6
In place of 12.8 g of polyoxyethylene styrenated propenylphenyl ether sulfate ammonium salt (25% aqueous solution) in Synthesis Example 1, 8.0 g of lauryl sulfate triethanolamine (40% aqueous solution) was used, and 392.8 g of styrene and ethylene were used. Polymerization was carried out in the same manner as in Synthesis Example 1 except that glycol dimethacrylate was changed to 8.0 g to obtain a crosslinked polymer aqueous dispersion having a solid content of 40%.
[実施例1]
<有機微粒子水性分散体の乾燥>
 合成例1で得た架橋ポリマー水性分散体(有機微粒子水性分散体)を、スプレードライヤADL-311S-A(ヤマト科学(株)製)を用いて噴霧乾燥し、粉体の有機微粒子を得た。
[Example 1]
<Drying of organic fine particle aqueous dispersion>
The crosslinked polymer aqueous dispersion (organic fine particle aqueous dispersion) obtained in Synthesis Example 1 was spray-dried using a spray dryer ADL-311S-A (manufactured by Yamato Kagaku Co., Ltd.) to obtain powdery organic fine particles. ..
<ワニス組成物の調製>
 粉体の有機微粒子10.7質量部と、N,N-ジメチルアセトアミド43.0質量部を攪拌し分散液とし、該分散液にポリアミック酸(ジメチルアセトアミド20質量%溶液)46.3質量部を加え、三本ロールミルで分散し、均一な組成のワニス組成物を得た。
<Preparation of varnish composition>
10.7 parts by mass of organic fine particles of powder and 43.0 parts by mass of N, N-dimethylacetamide were stirred to prepare a dispersion, and 46.3 parts by mass of polyamic acid (20 mass% solution of dimethylacetamide) was added to the dispersion. In addition, it was dispersed with a three-roll mill to obtain a varnish composition having a uniform composition.
<ポリイミド多孔質膜の製造>
 前記ワニス組成物を、ポリエチレンテレフタレートフィルム上に塗布した後、90℃で5分間乾燥させて、ポリイミド多孔質膜の前駆膜を得た。得られた前駆膜を、ポリエチレンテレフタレートフィルムから剥離させた後、前駆膜を焼成炉内で420℃で5分間焼成して、ビニル系樹脂粒子を熱分解させながらポリアミック酸のイミド化を行い、実施例1のポリイミド多孔質膜を得た。
 得られた多孔質膜の表面(基板のフィルム側と空気面側)を走査型電子顕微鏡(SEM)により観察した。得られた空気面側のSEM画像を図1(図1(a))に示す。図1(a)からポリイミド多孔質に均一な大きさの球状空孔が形成されており、SEMの測長ツールを用いて空孔部の直径を測定した結果、使用した有機樹脂粒子のメジアン径と同等の大きさの空孔を形成できていることが確認された。
<Manufacturing of polyimide porous membrane>
The varnish composition was applied onto a polyethylene terephthalate film and then dried at 90 ° C. for 5 minutes to obtain a precursor film of a polyimide porous film. After the obtained precursor film was peeled off from the polyethylene terephthalate film, the precursor film was fired at 420 ° C. for 5 minutes in a firing furnace to imidize the polyamic acid while thermally decomposing the vinyl resin particles. The polyimide porous film of Example 1 was obtained.
The surfaces of the obtained porous film (film side and air surface side of the substrate) were observed with a scanning electron microscope (SEM). The obtained SEM image on the air surface side is shown in FIG. 1 (FIG. 1 (a)). From FIG. 1 (a), spherical pores of uniform size are formed in the polyimide porous material, and as a result of measuring the diameter of the pores using the SEM length measuring tool, the median diameter of the organic resin particles used It was confirmed that pores of the same size as the above could be formed.
[実施例2~4]
 有機微粒子を表1に記載の種類の有機微粒子に変更したほかは、実施例1と同様に有機微粒子水性分散体の乾燥と、ワニス組成物の調製と、ポリイミド多孔質膜の製造を行った。またそれぞれの多孔質膜についてSEM観察を行った。得られた空気面側のSEM画像を図1(図1(b):実施例2、図1(c):実施例3、図1(d):実施例4)に示す。
 図1(b)、(c)及び(d)に示すように、ポリイミド多孔質に均一な大きさの球状空孔が形成されており、SEMの測長ツールを用いて空孔部の直径を測定した結果、有機微粒子のメジアン径と同等の大きさの空孔を形成できていることが確認された。
[Examples 2 to 4]
Except for changing the organic fine particles to the types of organic fine particles shown in Table 1, the organic fine particle aqueous dispersion was dried, the varnish composition was prepared, and the polyimide porous film was produced in the same manner as in Example 1. In addition, SEM observation was performed for each porous membrane. The obtained SEM image on the air surface side is shown in FIG. 1 (FIG. 1 (b): Example 2, FIG. 1 (c): Example 3, FIG. 1 (d): Example 4).
As shown in FIGS. 1B, 1C and 1D, spherical pores of uniform size are formed in the polyimide porous material, and the diameter of the pores is determined using an SEM length measuring tool. As a result of the measurement, it was confirmed that the pores having the same size as the median diameter of the organic fine particles could be formed.
[比較例1~2]
 有機微粒子を表1に記載の種類の有機微粒子に変更したほかは、実施例1と同様に有機微粒子性分散体の乾燥と、ワニス組成物の調製と、ポリイミド多孔質膜の製造を行った。また比較例1について、SEM観察を行い、得られたSEM画像を図2に示す。
 図2に示すように、本例ではポリイミド多孔質に不均一な大きさの球状空孔が、実施例と比べて不均一な分布にて形成されており、SEMの測長ツールを用いて空孔部の直径を測定した結果、有機微粒子のメジアン径より大きい空孔であることが確認された。また、比較例2についても、実施例と比べて不均一な分布にて形成されており、有機微粒子のメジアン径より大きい空孔と小さい空孔が疎らになっていることが確認された。
[Comparative Examples 1 and 2]
Except for changing the organic fine particles to the types of organic fine particles shown in Table 1, the organic fine particle dispersion was dried, the varnish composition was prepared, and the polyimide porous film was produced in the same manner as in Example 1. Further, regarding Comparative Example 1, SEM observation was performed, and the obtained SEM image is shown in FIG.
As shown in FIG. 2, in this example, spherical pores having a non-uniform size are formed in the polyimide porous material in a non-uniform distribution as compared with the examples, and the holes are vacant using the SEM length measuring tool. As a result of measuring the diameter of the pores, it was confirmed that the pores were larger than the median diameter of the organic fine particles. Further, it was confirmed that Comparative Example 2 was also formed with a non-uniform distribution as compared with Example, and the pores larger and smaller than the median diameter of the organic fine particles were sparse.
<評価>
 上記により用意した各多孔質膜について下記評価を行った。
[応力及び破断伸度]
 用意した各多孔質膜を3cm×3mmの大きさに切り出して、短冊状のサンプルを得た。このサンプルの破断時の応力(MPa;引張強度)及び破断伸度(%GL)を、EZ Test((株)島津製作所社製)を用いて評価した。
<Evaluation>
The following evaluation was performed for each of the porous membranes prepared as described above.
[Stress and elongation at break]
Each of the prepared porous membranes was cut into a size of 3 cm × 3 mm to obtain a strip-shaped sample. The stress (MPa; tensile strength) and elongation at break (% GL) at break of this sample were evaluated using EZ Test (manufactured by Shimadzu Corporation).
[透気度]
 用意した各多孔質膜を、各々を5cm角に切り出して、透気度測定用のサンプルとした。ガーレー式デンソメーター(東洋精機製作所(株)製)を用いて、JIS P 8117に準じて、100mlの空気が上記サンプルを通過する時間を測定した。
 なお透気度の目安としては、例えば250秒以内、200秒以内とすることができる。低いほど好ましいので下限は特に設定されないが、多孔質膜サンプルのハンドリング性を考慮すると、例えば、30秒以上とすることができる。ガーレー透気度が250秒以内であれば、十分高いイオン透過性を示すためリチウムイオン電池のセパレータ用又はガス若しくは液体の分離膜用として使用されるフィルタとして適用可能と判断できる。
[Air permeability]
Each of the prepared porous membranes was cut into 5 cm squares to prepare a sample for measuring air permeability. Using a Garley type densometer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the time for 100 ml of air to pass through the sample was measured according to JIS P 8117.
The air permeability can be, for example, within 250 seconds or 200 seconds. The lower the value, the more preferable, so the lower limit is not particularly set, but considering the handleability of the porous membrane sample, it can be, for example, 30 seconds or more. If the Garley air permeability is within 250 seconds, it can be judged that it can be applied as a filter used for a separator of a lithium ion battery or a separation membrane for gas or liquid because it exhibits sufficiently high ion permeability.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1並びに図1~図2に示す通り、本発明で規定する有機微粒子を含む実施例のワニス組成物は、比較例のワニス組成物と比べ、透気度が良好で、且つ、均一な分布にて、有機微粒子のメジアン径と同等の直径である球状の空孔を持つポリイミド多孔質膜を製造可能であることが確認された。実施例4のワニス組成物によるポリイミド多孔質膜は、表面に開口した孔のサイズは均一であり、表面開口の分布状態もおおむね均一であった。実施例1~3のワニス組成物によるポリイミド多孔質膜は、表面に開口した孔の大きさも、表面開口の分布状態も、ともに均一であり、より良好なポリイミド多孔質膜だった。
 
As shown in Table 1 and FIGS. 1 to 2, the varnish composition of the example containing the organic fine particles defined in the present invention has better air permeability and uniform distribution than the varnish composition of the comparative example. It was confirmed that a polyimide porous membrane having spherical pores having a diameter equivalent to the median diameter of the organic fine particles can be produced. In the polyimide porous film made of the varnish composition of Example 4, the size of the pores opened on the surface was uniform, and the distribution state of the surface openings was also substantially uniform. The polyimide porous membrane made of the varnish compositions of Examples 1 to 3 had a uniform size of pores opened on the surface and the distribution state of the surface openings, and was a better polyimide porous membrane.

Claims (7)

  1.  ポリアミック酸(A)と、有機微粒子(B)と、溶媒(S)とを混合して得られる、ポリイミド多孔質膜形成用のワニス組成物であって、
     前記有機微粒子(B)が
    ビニル系単量体に由来する構造単位(a)と、
    前記構造単位(a)とは異なる下記一般式(I)で表される化合物に由来する構造単位(b1)を有する重合体であるビニル系樹脂粒子を含む、ワニス組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    mは、1~3の整数を表し、
    Rは下記式(i)又は式(ii)で表される基を表し
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子又はメチル基を表す)、
    AOは、炭素原子数2~4のアルキレンオキシ基を表し、nは、0~100の整数を表し、
    Xは、水素原子を表すか、又は、-SOM、-COOM及び-POM(式中、Mは、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基又は有機アンモニウム基を表す。)からなる群から選ばれるアニオン性親水基を表す。]
    A varnish composition for forming a polyimide porous film obtained by mixing a polyamic acid (A), organic fine particles (B), and a solvent (S).
    The structural unit (a) in which the organic fine particles (B) are derived from a vinyl-based monomer and
    A varnish composition containing vinyl-based resin particles which are polymers having a structural unit (b1) derived from a compound represented by the following general formula (I), which is different from the structural unit (a).
    Figure JPOXMLDOC01-appb-C000001
    [During the ceremony,
    m represents an integer of 1 to 3 and represents
    R represents a group represented by the following formula (i) or formula (ii).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 represents a hydrogen atom or a methyl group),
    AO represents an alkyleneoxy group having 2 to 4 carbon atoms, and n represents an integer of 0 to 100.
    X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group). Represents an anionic hydrophilic group selected from the group consisting of. ]
  2. 前記ビニル系単量体に由来する構造単位(a)が、単官能ビニル系単量体に由来する構造単位(a0)及び多官能ビニル系単量体に由来する構造単位(a3)を含む、請求項1に記載のワニス組成物。 The structural unit (a) derived from the vinyl-based monomer includes a structural unit (a0) derived from a monofunctional vinyl-based monomer and a structural unit (a3) derived from a polyfunctional vinyl-based monomer. The varnish composition according to claim 1.
  3.  ポリアミック酸(A)と、有機微粒子(B)と、溶媒(S)とを混合して得られる、ポリイミド多孔質膜形成用のワニス組成物であって、
     前記有機微粒子(B)が
    単官能ビニル系単量体に由来する構造単位(a0)と、
    多官能ビニル系単量体に由来する構造単位(a3)と、
    反応性乳化剤に由来する構造単位(b0)とを有する重合体である、多孔質膜製造用ビニル系樹脂粒子であって、
    前記構造単位(a0)の割合が88~99質量%、前記構造単位(a3)の割合が0.9~10質量%、前記構造単位(b0)の割合が0.1~2質量%である多孔質膜製造用ビニル系樹脂粒子を含む、ワニス組成物。
    A varnish composition for forming a polyimide porous film obtained by mixing a polyamic acid (A), organic fine particles (B), and a solvent (S).
    The structural unit (a0) in which the organic fine particles (B) are derived from a monofunctional vinyl-based monomer and
    The structural unit (a3) derived from the polyfunctional vinyl-based monomer and
    Vinyl-based resin particles for producing a porous membrane, which is a polymer having a structural unit (b0) derived from a reactive emulsifier.
    The ratio of the structural unit (a0) is 88 to 99% by mass, the ratio of the structural unit (a3) is 0.9 to 10% by mass, and the ratio of the structural unit (b0) is 0.1 to 2% by mass. A varnish composition containing vinyl-based resin particles for producing a porous film.
  4.  請求項1~3のいずれか1項に記載の前記ワニス組成物を基材上に塗布して塗布膜を形成する、塗布膜形成工程と、
     前記塗布膜から前記溶媒(S)を除き、ポリイミド多孔質膜の前駆膜を形成する、前駆膜形成工程とを含む、ポリイミド多孔質膜の前駆膜の製造方法。
    A coating film forming step of applying the varnish composition according to any one of claims 1 to 3 onto a substrate to form a coating film.
    A method for producing a precursor film of a polyimide porous film, which comprises a step of forming a precursor film, wherein the solvent (S) is removed from the coating film to form a precursor film of the polyimide porous film.
  5.  前記前駆膜形成工程の後に、前記基材から前記前駆膜を剥離させる、剥離工程を含む、請求項4に記載のポリイミド多孔質膜の前駆膜の製造方法。 The method for producing a polyimide porous film according to claim 4, further comprising a peeling step of peeling the precursor film from the substrate after the precursor film forming step.
  6.  前記剥離工程の後に、前記前駆膜をロール状に巻き取る、巻取工程を含む、請求項5に記載のポリイミド多孔質膜の前駆膜の製造方法。 The method for producing a precursor film of a polyimide porous film according to claim 5, further comprising a winding step of winding the precursor film into a roll after the peeling step.
  7.  請求項4~6のいずれか1項に記載の方法によりポリイミド多孔質膜の前駆膜を製造し、次いで、前記前駆膜から、前記有機微粒子(B)を除去する除去工程を含む、ポリイミド多孔質膜の製造方法。
     
    A polyimide porous membrane comprising a removal step of producing a precursor film of a polyimide porous membrane by the method according to any one of claims 4 to 6 and then removing the organic fine particles (B) from the precursor membrane. Membrane manufacturing method.
PCT/JP2021/038813 2020-10-30 2021-10-20 Varnish for production of polyimide porous membrane WO2022091915A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180074412.8A CN116457394A (en) 2020-10-30 2021-10-20 Varnish for producing polyimide porous film
JP2022559059A JPWO2022091915A1 (en) 2020-10-30 2021-10-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-182855 2020-10-30
JP2020182855 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022091915A1 true WO2022091915A1 (en) 2022-05-05

Family

ID=81382422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038813 WO2022091915A1 (en) 2020-10-30 2021-10-20 Varnish for production of polyimide porous membrane

Country Status (4)

Country Link
JP (1) JPWO2022091915A1 (en)
CN (1) CN116457394A (en)
TW (1) TW202225347A (en)
WO (1) WO2022091915A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287888A (en) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp Coating composition for non-aqueous electrolyte secondary battery
JP2010024385A (en) * 2008-07-22 2010-02-04 Sekisui Chem Co Ltd Method for producing porous resin film, porous resin film, and cell separator
JP2011116951A (en) * 2009-10-26 2011-06-16 Sanyo Chem Ind Ltd Method for producing porous resin
CN103602058A (en) * 2013-11-12 2014-02-26 无锡市天聚科技有限公司 Three-dimensional ordered macroporous silicon dioxide and nylon composite
WO2014196656A1 (en) * 2013-06-07 2014-12-11 公立大学法人首都大学東京 Method for manufacturing secondary-battery separator and method for manufacturing lithium secondary battery
CN104841423A (en) * 2015-04-08 2015-08-19 天津大学 Three-dimensional macro-porous structured molybdenum dioxide supported palladium particle material and synthetic method thereof
JP2015165005A (en) * 2014-02-28 2015-09-17 ポール・コーポレーションPallCorporation Porous polymeric membrane with high void volume
WO2016027825A1 (en) * 2014-08-20 2016-02-25 東京応化工業株式会社 Varnish for porous polyimide film production and method for producing porous polyimide film using same
JP2016033913A (en) * 2013-12-06 2016-03-10 ダイキン工業株式会社 Secondary battery separator and secondary battery
JP2016056225A (en) * 2014-09-05 2016-04-21 東京応化工業株式会社 Varnish for porous film production, method for producing porous film using the same, and polyamide-imide porous film
WO2017038898A1 (en) * 2015-09-04 2017-03-09 東京応化工業株式会社 Porous film and method for producing same
JP2019014850A (en) * 2017-07-10 2019-01-31 富士ゼロックス株式会社 Particle dispersion polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
WO2020105673A1 (en) * 2018-11-22 2020-05-28 東レ株式会社 Porous film, separator for secondary cell, and secondary cell

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287888A (en) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp Coating composition for non-aqueous electrolyte secondary battery
JP2010024385A (en) * 2008-07-22 2010-02-04 Sekisui Chem Co Ltd Method for producing porous resin film, porous resin film, and cell separator
JP2011116951A (en) * 2009-10-26 2011-06-16 Sanyo Chem Ind Ltd Method for producing porous resin
WO2014196656A1 (en) * 2013-06-07 2014-12-11 公立大学法人首都大学東京 Method for manufacturing secondary-battery separator and method for manufacturing lithium secondary battery
CN103602058A (en) * 2013-11-12 2014-02-26 无锡市天聚科技有限公司 Three-dimensional ordered macroporous silicon dioxide and nylon composite
JP2016033913A (en) * 2013-12-06 2016-03-10 ダイキン工業株式会社 Secondary battery separator and secondary battery
JP2015165005A (en) * 2014-02-28 2015-09-17 ポール・コーポレーションPallCorporation Porous polymeric membrane with high void volume
WO2016027825A1 (en) * 2014-08-20 2016-02-25 東京応化工業株式会社 Varnish for porous polyimide film production and method for producing porous polyimide film using same
JP2016056225A (en) * 2014-09-05 2016-04-21 東京応化工業株式会社 Varnish for porous film production, method for producing porous film using the same, and polyamide-imide porous film
CN104841423A (en) * 2015-04-08 2015-08-19 天津大学 Three-dimensional macro-porous structured molybdenum dioxide supported palladium particle material and synthetic method thereof
WO2017038898A1 (en) * 2015-09-04 2017-03-09 東京応化工業株式会社 Porous film and method for producing same
JP2019014850A (en) * 2017-07-10 2019-01-31 富士ゼロックス株式会社 Particle dispersion polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
WO2020105673A1 (en) * 2018-11-22 2020-05-28 東レ株式会社 Porous film, separator for secondary cell, and secondary cell

Also Published As

Publication number Publication date
TW202225347A (en) 2022-07-01
JPWO2022091915A1 (en) 2022-05-05
CN116457394A (en) 2023-07-18

Similar Documents

Publication Publication Date Title
JP6881644B2 (en) Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film.
JP6897150B2 (en) Method for Producing Polyimide Precursor Solution, Method for Producing Polyimide Precursor Solution, and Porous Polyimide Film
JP2020203283A (en) Porous membrane and method for producing the same
JP6807317B2 (en) Method for manufacturing a porous membrane
JP6950307B2 (en) Particle-dispersed polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
JP7024225B2 (en) Polyimide laminated film and method for manufacturing polyimide laminated film
JP7439534B2 (en) Method for producing polyimide precursor solution and porous polyimide film
WO2016039299A1 (en) Method for producing porous polyimide film
JP6876912B2 (en) Method for producing polyimide precursor solution and porous polyimide film
JP2018178105A (en) Microporous polyimide film and method of producing the same
WO2016027825A1 (en) Varnish for porous polyimide film production and method for producing porous polyimide film using same
JP7069745B2 (en) Polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
JP2020104105A (en) Porous film manufacturing method, method for manufacturing composition for manufacture of porous film, and porous film
JP6904109B2 (en) Method for producing polyimide precursor solution and porous polyimide film
WO2022091915A1 (en) Varnish for production of polyimide porous membrane
TWI797220B (en) Porous polyimide film original fabric (original fabric), its production method and composition
JP6441148B2 (en) Porous polyamideimide film-forming varnish, porous polyamideimide film, separator and secondary battery using the same
JP6147069B2 (en) Unbaked composite film, polyimide-fine particle composite film, and method for producing porous polyimide film
JP7498595B2 (en) Varnish composition, method for producing precursor film of polyimide porous film, and method for producing polyimide porous film
WO2022091912A1 (en) Vinyl-based resin particles
CN112111219A (en) Varnish composition, precursor film of polyimide porous film, method for producing precursor film of polyimide porous film, and method for producing polyimide porous film
WO2023106056A1 (en) Crosslinked acrylic polymer particle for producing separators
JP7381228B2 (en) Varnish composition, method for producing a varnish composition, method for producing a precursor film for a porous polyimide membrane, precursor film for a porous polyimide membrane, and method for producing a porous polyimide membrane
JP2023012734A (en) Crosslinked polymethyl methacrylate particles for the production of separators
JP2022012380A (en) Crosslinked polymethyl methacrylate particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559059

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180074412.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886034

Country of ref document: EP

Kind code of ref document: A1