WO2022091798A1 - Honeycomb seal and rotary machine - Google Patents
Honeycomb seal and rotary machine Download PDFInfo
- Publication number
- WO2022091798A1 WO2022091798A1 PCT/JP2021/038035 JP2021038035W WO2022091798A1 WO 2022091798 A1 WO2022091798 A1 WO 2022091798A1 JP 2021038035 W JP2021038035 W JP 2021038035W WO 2022091798 A1 WO2022091798 A1 WO 2022091798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- partition wall
- honeycomb seal
- strength
- honeycomb
- rotor
- Prior art date
Links
- 238000005192 partition Methods 0.000 claims abstract description 74
- 238000007789 sealing Methods 0.000 claims abstract description 32
- 230000007547 defect Effects 0.000 claims description 21
- 230000002950 deficient Effects 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 239000000567 combustion gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/44—Free-space packings
Definitions
- the present disclosure relates to honeycomb seals and rotary machines.
- the present application claims priority with respect to Japanese Patent Application No. 2020-182710 filed in Japan on October 30, 2020, the contents of which are incorporated herein by reference.
- Patent Document 1 discloses a honeycomb seal used for a gas turbine or the like.
- the honeycomb seal is a kind of so-called abradable seal, and is a free-cutting body (seal member) that is interposed between the stator and the rotor and is cut by the fins on the rotor side.
- the honeycomb seal itself is cut into the fins in the turbine casing to secure a suitable clearance between the honeycomb seals and the fins.
- the inside of the turbine casing becomes hot during the operation of the gas turbine, so that the partition wall of the honeycomb seal is subjected to high-temperature oxidative thinning, and the sealing performance may be deteriorated. Further, if the thickness of the partition wall is increased, the machinability of the honeycomb seal by the fins of the moving blades deteriorates.
- the present disclosure has been made to solve the above problems, and an object of the present invention is to provide a honeycomb seal and a rotary machine capable of improving machinability while suppressing deterioration of sealing performance. ..
- the honeycomb seal according to the present disclosure includes a honeycomb structure in which a plurality of holes arranged so as to be recessed from the sealing surface are partitioned by a partition wall, and the partition wall is the hole portion. It has a high-strength portion and a low-strength portion having a lower strength than the high-strength portion at different positions in the depth direction.
- the rotary machine according to the present disclosure includes a rotor that rotates around an axis, a stator that surrounds the rotor, and a sealing device that seals a space between the rotor and the stator. It has the honeycomb seal provided on one of the rotor and the stator, and fins provided on the other of the rotor and the stator so as to face the honeycomb seal.
- the gas turbine 1 includes a compressor 2 that generates compressed air, a combustor 9 that produces combustion gas by mixing fuel with compressed air and burning it, and combustion. It comprises a gas-driven turbine 10.
- the compressor 2 has a compressor rotor 3 that rotates around the axis ⁇ , and a compressor casing 4 that covers the compressor rotor 3 from the outer peripheral side.
- the compressor rotor 3 has a columnar shape extending along the axis ⁇ .
- Each compressor blade stage 5 has a plurality of compressor blades arranged at intervals in the circumferential direction of the axis ⁇ on the outer peripheral surface of the compressor rotor 3.
- the compressor casing 4 has a cylindrical shape centered on the axis ⁇ .
- a plurality of compressor stationary blade stages 7 arranged at intervals in the axis ⁇ direction are provided on the inner peripheral surface of the compressor casing 4. These compressor static blade stages 7 are alternately arranged with respect to the above-mentioned compressor moving blade stage 5 when viewed from the axis ⁇ direction.
- Each compressor stationary blade stage 7 has a plurality of compressor stationary blades arranged at intervals in the circumferential direction of the axis ⁇ on the inner peripheral surface of the compressor casing 4.
- the combustor 9 is provided between the compressor 2 and the turbine 10 continuing to the downstream side (right side in FIG. 1).
- the compressed air generated by the compressor 2 is mixed with the fuel inside the combustor 9 to become a premixed gas. Combustion of this premixed gas in the combustor 9 produces high-temperature and high-pressure combustion gas, and the combustion gas is guided into the turbine 10.
- the turbine 10 has a rotor 11 that rotates about an axis ⁇ and a stator 12 that surrounds the rotor 11.
- FIG. 2 is an enlarged view of part II of FIG. Hereinafter, it will be described with reference to FIG.
- the rotor 11 has a rotary shaft 11a and a plurality of turbine blade stages 20.
- the rotating shaft 11a has a columnar shape extending along the axis ⁇ .
- the rotating shaft 11a is integrally connected to the compressor rotor 3 in the axis ⁇ direction to form a gas turbine rotor that rotates around the axis ⁇ .
- the plurality of turbine blade stages 20 are provided on the outer peripheral surface of the rotating shaft 11a, and are arranged at intervals in the axis ⁇ direction.
- Each turbine blade stage 20 has a plurality of turbine blades 30 and an annular shroud 42.
- the plurality of turbine blades 30 are arranged on the outer peripheral surface of the rotor 11 at intervals in the circumferential direction of the axis ⁇ .
- the shroud 42 is provided at the blade tips of a plurality of turbine blades 30, and is integrated with the turbine blades 30 arranged in the circumferential direction of the axis ⁇ to increase the rigidity of the turbine blade stage 20.
- the stator 12 has a turbine casing 15, a plurality of turbine stationary blade stages 13, and an annular holding ring 40.
- the turbine casing 15 has a cylindrical shape centered on the axis ⁇ .
- the plurality of turbine stationary blade stages 13 are provided on the inner peripheral side of the turbine casing 15, and are arranged at intervals in the axis ⁇ direction. These turbine blade stages 13 are alternately arranged with respect to the turbine blade stage 20 when viewed from the axis ⁇ direction.
- Each turbine vane stage 13 has a plurality of turbine vanes 14 arranged at intervals in the circumferential direction of the axis ⁇ near the inner peripheral surface of the turbine casing 15.
- the holding ring 40 is provided in an annular shape over the inner peripheral surface of the turbine casing 15.
- the holding ring 40 is provided to prevent the high-temperature and high-pressure combustion gas from coming into direct contact with the turbine casing 15.
- the number of holding rings 40 is the same as the number of stages of the turbine blade stage 20 on the inner peripheral surface of the turbine casing 15 so as to correspond to the turbine blade stage 20.
- the turbine vane 14 is supported across the holding rings 40 adjacent to each other in the axis ⁇ direction.
- a sealing device between the turbine blade 30 and the holding ring 40 to prevent combustion gas from leaking from between the turbine blade 30 and the holding ring 40 to the space near the turbine stationary blade 14 existing in the subsequent stage. 50 is provided. That is, the sealing device 50 seals the space between the rotor 11 and the stator 12.
- the sealing device 50 has a honeycomb seal 44 and fins 43.
- the honeycomb seal 44 is provided on the inner peripheral surface of the holding ring 40.
- the fin 43 is provided on the outer peripheral surface of the shroud 42, and the radial outer end portion of the fin 43 faces the honeycomb seal 44 through a minute gap.
- honeycomb seal 44 of the first embodiment will be described with reference to FIGS. 3 and 4.
- FIG. 3 is a schematic view showing a part of the honeycomb seal 44.
- the honeycomb seal 44 includes a honeycomb structure 45.
- the surface of the honeycomb structure 45 facing outward in the radial direction is an outer peripheral surface fixed to the holding ring 40.
- the surface of the honeycomb structure 45 facing inward in the radial direction is a sealing surface 46 facing the fin 43.
- the inside of the honeycomb structure 45 has a structure in which a plurality of holes arranged so as to be recessed from the sealing surface 46 are partitioned by a partition wall 47.
- the honeycomb structure 45 is a structure as a free-cutting body having a continuous honeycomb shape composed of a substantially regular hexagonal void and a partition wall 47.
- the sealing surface 46 is a virtual surface formed by an end surface of the partition wall 47 of the honeycomb structure 45 facing the turbine blade 30 side, and is close to the radial outer end portion of the fin 43.
- the partition wall 47 is made of a material that is softer than the material of the fin 43.
- a free-cutting material containing a metal such as nickel is adopted as the material of the partition wall 47.
- the partition wall 47 has a high-strength portion 48 and a low-strength portion 49 having a lower strength than the high-strength portion 48 at different positions in the depth direction H of the hole portion.
- FIG. 4 is a cross-sectional view of one partition wall 47 of the honeycomb structure 45 shown in FIG. 3 in the IV-IV direction.
- the high-strength portion 48 is a thick portion 48a having a predetermined plate thickness.
- the low-strength portion 49 is a thin-walled portion 49a having a plate thickness thinner than that of the thick-walled portion 48a.
- a plurality of thick portions 48a and thin wall portions 49a are formed alternately in the depth direction H of the holes of the partition wall 47.
- the depth direction H shown in the text of the present specification is a direction substantially orthogonal to the sealing surface 46 of the honeycomb structure 45 and toward the holding ring 40 from the sealing surface 46 in the hole portion.
- the surface of the partition wall 47 facing the inside of the hole has a substantially sinusoidal shape wavy in the depth direction H.
- the waveforms of the pair of surfaces facing the inside of the hole of the partition wall 47 are formed substantially symmetrically with respect to the center line C of the cross section of the partition wall 47.
- the wavelength ⁇ and the amplitude A of the waveform of the surface facing the inside of the hole of the partition wall 47 are selected to be suitable values at the time of manufacturing the honeycomb structure 45.
- the wavelength ⁇ of the waveform (sine wave) of the surface facing the inside of the hole of the partition wall 47 is 10 to 100 ⁇ m. More preferably, it is 25 to 50 ⁇ m.
- the amplitude A of the waveform (sine wave) of the surface facing the inside of the hole of the partition wall 47 is 10 to 100 ⁇ m. More preferably, it is 12 to 25 ⁇ m.
- the thick portion 48a is a part of the partition wall 47, and the thick portion 48a is sandwiched between a portion of the surface of the partition wall 47 facing the inside of the pair of holes, which is a convex portion (corresponding to a mountain portion of a wave) and a portion in the vicinity thereof. It is a part.
- the thin-walled portion 49a is a part of the partition wall 47, and the thin-walled portion 49a is a portion of the surface of the partition wall 47 facing the inside of the pair of holes, which is sandwiched between a portion (corresponding to a valley of a wave) and a portion in the vicinity thereof. ..
- the thin-walled portion 49a is thinner than the thick-walled portion 48a, it is less susceptible to stress applied to the partition wall 47 than the thick-walled portion 48a. Therefore, when stress is applied, it is likely to break starting from the thin portion 49a.
- the operation of the fin 43 according to the present embodiment will be described.
- the turbine blades 30 in the turbine casing 15 may thermally expand, and the rotor 11 may be shaken.
- the radially outer end of the fin 43 which was located radially inside the seal surface 46, advances radially outward from the seal surface 46, and the fin 43 joins the honeycomb structure 45.
- the end of the fin 43 comes into contact with the honeycomb structure 45, stress is applied to the partition wall 47 of the honeycomb structure 45 in contact with the end of the fin 43 in the rotational direction of the fin 43.
- the honeycomb seal 44 has a configuration in which a plurality of thick portions 48a and thin portions 49a are alternately formed in the depth direction H of the holes of the partition wall 47.
- the thin wall portion 49a existing at the position closest to the sealing surface 46 becomes the starting point of the partition wall 47. Part of it breaks. That is, the partition wall 47 from the sealing surface 46 to the thin-walled portion 49a located at the nearest position is easily cut by the tip portion of the fin 43. Therefore, the machinability of the honeycomb seal 44 can be improved.
- each thin-walled portion 49a is cut by the fins 43 in order from the sealing surface 46.
- the partition wall 47 is not cut excessively. Therefore, the partition wall 47 can be efficiently cut, and the honeycomb seal 44 can be used for a long period of time.
- the plate thickness of the thin portion 49a is set to a thickness that can secure high temperature oxidation resistance, machinability can be ensured. Further, the presence of the thick portion 48a can ensure the high temperature oxidation resistance of the entire partition wall 47 and suppress the deterioration of the sealing performance.
- honeycomb seal 44 of the second embodiment of the present disclosure has the same configuration as that of the first embodiment except for the configuration of the partition wall 47.
- the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
- FIG. 5 is a cross-sectional view taken along the line VV of one partition wall 47 of the honeycomb structure 45 shown in FIG.
- the partition wall 47 has a high-strength portion 48 and a low-strength portion 49 having a lower strength than the high-strength portion 48, as in the first embodiment, at different positions in the depth direction H of the hole portion.
- the partition wall 47 has a plurality of defects 49c which are voids in the plate thickness (the surface and the inside of the partition wall 47).
- the defects 49c are scattered in the plate thickness of the partition wall 47, and the defects 49c are intentionally created in the molding process of the partition wall 47.
- the defect 49c is a crack extending from the surface to the inside or a gap as a closed space existing inside.
- the low-strength portion 49 is a part of the partition wall 47, and is a portion in the vicinity of the defect 49c including the defect 49c. That is, the low-strength portion 49 is a defective portion 49b having a defect 49c in the plate thickness of the partition wall 47.
- the high-strength portion 48 is a part of the partition wall 47 and is a portion having no defect 49c. That is, the high-strength portion 48 is a defect-free portion 48b having no defect 49c in the plate thickness of the partition wall 47.
- the defective portion 49b has a defect 49c in the plate thickness, so that the defective portion 49b has a lower strength than the non-defect portion 48b, and the fins. It is vulnerable to stress applied in the rotation direction of 43. Therefore, when stress is applied, it is easy to break from the defective portion 49b as a starting point.
- the honeycomb seal 44 according to the second embodiment of the present disclosure has a configuration in which a plurality of defective portions 48b and defective portions 49b are alternately formed in the depth direction H of the hole portion of the partition wall 47.
- the defective partition wall 49b existing at the position closest to the sealing surface 46 becomes the starting point of the partition wall 47. Part of is broken. That is, the partition wall 47 from the sealing surface 46 to the defective portion 49b existing at the nearest position is easily cut by the tip portion of the fin 43. Therefore, the machinability of the honeycomb seal 44 can be improved.
- each defective portion 49b is cut by the fin 43 in order from the sealing surface 46.
- the partition wall 47 is not cut excessively. Therefore, the partition wall 47 can be efficiently cut, and the honeycomb seal 44 can be used for a long period of time.
- the machinability can be improved by the presence of the defective portion 49b, and the plate thickness does not need to be suppressed, so that the high temperature oxidation resistance can be ensured.
- the partition wall 47 of the honeycomb structure 45 of the above embodiment may be manufactured by a laminating molding (AM) process using a 3D printer using a powder material.
- AM laminating molding
- the honeycomb structure 45 of the above embodiment is a structure in which a honeycomb structure composed of a substantially regular hexagonal void and a partition wall 47 is continuous, but is not limited to a substantially hexagonal shape. ..
- the defect 49c is formed in the manufacturing process of the honeycomb structure 45, but the partition wall 47 is manufactured by a method in which the defect 49c is not formed, and the surface is cut out to intentionally scratch or crack. , And using them as defects 49c, a defective portion 49b may be created later.
- the partition wall 47 of the honeycomb structure 45 has a thick portion 48a and a defect-free portion 48b, a thin portion 49a, and a thin portion 49a.
- the defective portion 49b may coexist.
- honeycomb seal 44 of the above embodiment is provided on the stator 12 side and faces the fin 43 on the rotor 11 side, but the honeycomb seal 44 is provided on the rotor 11 side and is provided on the stator 12 side. It may be configured to face the fin 43.
- honeycomb seal 44 of the above embodiment is the honeycomb seal 44 used for the gas turbine 1, but may be used for other rotating machines such as a steam turbine.
- honeycomb seal 44 and the rotating machine according to the embodiment are grasped as follows, for example.
- the honeycomb seal 44 includes a honeycomb structure 45 in which a plurality of holes arranged so as to be recessed from the sealing surface 46 are partitioned by a partition wall 47, and the partition wall 47 is the hole.
- a high-strength portion 48 and a low-strength portion 49 having a lower strength than the high-strength portion 48 are provided at different positions in the depth direction H of the portions.
- the honeycomb seal 44 according to the second aspect is the honeycomb seal 44 of (1), and the high-strength portion 48 and the low-strength portion 49 alternately have a plurality of each in the depth direction H. It may be formed.
- the low-strength portion 49 of the partition wall 47 existing at the position closest to the sealing surface 46 becomes the starting point and causes breakage. Therefore, the portion from the end portion of the partition wall 47 to the low-strength portion 49 is cut by the fin 43 in order from the sealing surface 46, and the partition wall 47 is not cut excessively.
- the honeycomb seal 44 according to the third aspect is the honeycomb seal 44 of (1) or (2), and the high-strength portion 48 is a thick portion 48a having a predetermined plate thickness.
- the low-strength portion 49 may be a thin-walled portion 49a having a plate thickness thinner than that of the thick-walled portion 48a.
- the thin portion 49a closest to the fin 43 breaks. Further, the thick portion 48a ensures the high temperature oxidation resistance of the entire partition wall 47.
- the honeycomb seal 44 according to the fourth aspect is the honeycomb seal 44 of (1) or (2), and the high-strength portion 48 does not have a defect 49c in the plate thickness of the partition wall 47.
- the defect-free portion 48b, and the low-strength portion 49 may be a defective portion 49b having a defect 49c in the plate thickness of the partition wall 47.
- the defective portion 49b closest to the fin 43 breaks. Further, the presence of the defective portion 49b can improve the machinability, and it is not necessary to suppress the plate thickness, so that the high temperature oxidation resistance can be ensured.
- the rotating machine is a sealing device 50 that seals the rotor 11 that rotates around the axis ⁇ , the stator 12 that surrounds the rotor 11, and the space between the rotor 11 and the stator 12.
- the sealing device 50 comprises the honeycomb seal 44 according to any one of (1) to (4) provided on one of the rotor 11 and the stator 12, and the rotor 11 and the stator 12. On the other hand, it has fins 43 provided so as to face the honeycomb seal 44.
- Low-strength part 49a Thin-walled part 49b . Defected part 49c . Defect 50 ... Sealing device ⁇ ... Axis H ... Depth direction ⁇ ... Turbine A ... Fluctuation C ... Center line
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
A honeycomb seal provided with a honeycomb structure in which a plurality of hole portions arranged so as to be recessed from a sealing surface are defined by partition walls. The partition wall has a high-strength portion and a low-strength portion having a lower strength than that of the high-strength portion at different positions in the depth direction of the hole portion. Accordingly, the low-strength portion of the partition wall causes a rupture when a fin contacts the honeycomb structure.
Description
本開示は、ハニカムシール、及び回転機械に関する。
本願は、2020年10月30日に日本に出願された特願2020-182710号について優先権を主張し、その内容をここに援用する。 The present disclosure relates to honeycomb seals and rotary machines.
The present application claims priority with respect to Japanese Patent Application No. 2020-182710 filed in Japan on October 30, 2020, the contents of which are incorporated herein by reference.
本願は、2020年10月30日に日本に出願された特願2020-182710号について優先権を主張し、その内容をここに援用する。 The present disclosure relates to honeycomb seals and rotary machines.
The present application claims priority with respect to Japanese Patent Application No. 2020-182710 filed in Japan on October 30, 2020, the contents of which are incorporated herein by reference.
特許文献1には、ガスタービン等に用いられるハニカムシールが開示されている。ハニカムシールは、いわゆるアブレイダブルシールの一種であり、ステータとロータの間に介在し、ロータ側のフィンによって切削される快削体(シール部材)である。ハニカムシールは、ハニカムシール自身がタービンケーシング内のフィンに切削されることで、フィンとの間に好適なクリアランスを確保する。
Patent Document 1 discloses a honeycomb seal used for a gas turbine or the like. The honeycomb seal is a kind of so-called abradable seal, and is a free-cutting body (seal member) that is interposed between the stator and the rotor and is cut by the fins on the rotor side. In the honeycomb seal, the honeycomb seal itself is cut into the fins in the turbine casing to secure a suitable clearance between the honeycomb seals and the fins.
ところで、特許文献1に記載されたハニカムシールでは、ガスタービンの運転中にタービンケーシング内が高温となることで、ハニカムシールの隔壁に高温酸化減肉が生じ、シール性能が劣化する場合がある。
また、隔壁の板厚を厚くすると動翼のフィンによるハニカムシールの被削性が悪化してしまう。 By the way, in the honeycomb seal described inPatent Document 1, the inside of the turbine casing becomes hot during the operation of the gas turbine, so that the partition wall of the honeycomb seal is subjected to high-temperature oxidative thinning, and the sealing performance may be deteriorated.
Further, if the thickness of the partition wall is increased, the machinability of the honeycomb seal by the fins of the moving blades deteriorates.
また、隔壁の板厚を厚くすると動翼のフィンによるハニカムシールの被削性が悪化してしまう。 By the way, in the honeycomb seal described in
Further, if the thickness of the partition wall is increased, the machinability of the honeycomb seal by the fins of the moving blades deteriorates.
本開示は、上記課題を解決するためになされたものであって、シール性能の劣化を抑制しつつ、被削性を向上させることができるハニカムシール、及び回転機械を提供することを目的とする。
The present disclosure has been made to solve the above problems, and an object of the present invention is to provide a honeycomb seal and a rotary machine capable of improving machinability while suppressing deterioration of sealing performance. ..
上記課題を解決するために、本開示に係るハニカムシールは、シール面から凹むように配列された複数の孔部が隔壁によって区画形成されたハニカム構造体を備え、前記隔壁は、前記孔部の深さ方向の異なる位置に、高強度部と該高強度部よりも強度が低い低強度部とを有する。
また、本開示に係る回転機械は、軸線回りに回転するロータと、前記ロータを囲うステータと、前記ロータと前記ステータとの間の空間をシールするシール装置と、を備え、前記シール装置は、前記ロータ及び前記ステータの一方に設けられた上記のハニカムシールと、前記ロータ及び前記ステータの他方に前記ハニカムシールに対向して設けられたフィンと、を有する。 In order to solve the above problems, the honeycomb seal according to the present disclosure includes a honeycomb structure in which a plurality of holes arranged so as to be recessed from the sealing surface are partitioned by a partition wall, and the partition wall is the hole portion. It has a high-strength portion and a low-strength portion having a lower strength than the high-strength portion at different positions in the depth direction.
Further, the rotary machine according to the present disclosure includes a rotor that rotates around an axis, a stator that surrounds the rotor, and a sealing device that seals a space between the rotor and the stator. It has the honeycomb seal provided on one of the rotor and the stator, and fins provided on the other of the rotor and the stator so as to face the honeycomb seal.
また、本開示に係る回転機械は、軸線回りに回転するロータと、前記ロータを囲うステータと、前記ロータと前記ステータとの間の空間をシールするシール装置と、を備え、前記シール装置は、前記ロータ及び前記ステータの一方に設けられた上記のハニカムシールと、前記ロータ及び前記ステータの他方に前記ハニカムシールに対向して設けられたフィンと、を有する。 In order to solve the above problems, the honeycomb seal according to the present disclosure includes a honeycomb structure in which a plurality of holes arranged so as to be recessed from the sealing surface are partitioned by a partition wall, and the partition wall is the hole portion. It has a high-strength portion and a low-strength portion having a lower strength than the high-strength portion at different positions in the depth direction.
Further, the rotary machine according to the present disclosure includes a rotor that rotates around an axis, a stator that surrounds the rotor, and a sealing device that seals a space between the rotor and the stator. It has the honeycomb seal provided on one of the rotor and the stator, and fins provided on the other of the rotor and the stator so as to face the honeycomb seal.
本開示によれば、シール性能の劣化を抑制しつつ、被削性を向上させることができるハニカムシール、及び回転機械を提供することができる。
According to the present disclosure, it is possible to provide a honeycomb seal and a rotary machine capable of improving machinability while suppressing deterioration of sealing performance.
(第一実施形態)
(ガスタービン) (First Embodiment)
(gas turbine)
(ガスタービン) (First Embodiment)
(gas turbine)
図1に示すように、本実施形態に係るガスタービン1は、圧縮空気を生成する圧縮機2と、圧縮空気に燃料を混合して燃焼させることで燃焼ガスを生成する燃焼器9と、燃焼ガスによって駆動されるタービン10と、を備えている。
As shown in FIG. 1, the gas turbine 1 according to the present embodiment includes a compressor 2 that generates compressed air, a combustor 9 that produces combustion gas by mixing fuel with compressed air and burning it, and combustion. It comprises a gas-driven turbine 10.
(圧縮機)
圧縮機2は、軸線О回りに回転する圧縮機ロータ3と、圧縮機ロータ3を外周側から覆う圧縮機ケーシング4と、を有している。圧縮機ロータ3は、軸線Оに沿って延びる柱状をなしている。圧縮機ロータ3の外周面上には、軸線О方向に間隔をあけて配列された複数の圧縮機動翼段5が設けられている。各圧縮機動翼段5は、圧縮機ロータ3の外周面上で軸線Оの周方向に間隔をあけて配列された複数の圧縮機動翼を有している。 (Compressor)
Thecompressor 2 has a compressor rotor 3 that rotates around the axis О, and a compressor casing 4 that covers the compressor rotor 3 from the outer peripheral side. The compressor rotor 3 has a columnar shape extending along the axis О. On the outer peripheral surface of the compressor rotor 3, a plurality of compressor moving blade stages 5 arranged at intervals in the axis О direction are provided. Each compressor blade stage 5 has a plurality of compressor blades arranged at intervals in the circumferential direction of the axis О on the outer peripheral surface of the compressor rotor 3.
圧縮機2は、軸線О回りに回転する圧縮機ロータ3と、圧縮機ロータ3を外周側から覆う圧縮機ケーシング4と、を有している。圧縮機ロータ3は、軸線Оに沿って延びる柱状をなしている。圧縮機ロータ3の外周面上には、軸線О方向に間隔をあけて配列された複数の圧縮機動翼段5が設けられている。各圧縮機動翼段5は、圧縮機ロータ3の外周面上で軸線Оの周方向に間隔をあけて配列された複数の圧縮機動翼を有している。 (Compressor)
The
圧縮機ケーシング4は、軸線Оを中心とする筒状をなしている。圧縮機ケーシング4の内周面には、軸線О方向に間隔をあけて配列された複数の圧縮機静翼段7が設けられている。これらの圧縮機静翼段7は、上記の圧縮機動翼段5に対して、軸線О方向から見て交互に配列されている。各圧縮機静翼段7は、圧縮機ケーシング4の内周面上で、軸線Оの周方向に間隔をあけて配列された複数の圧縮機静翼を有している。
The compressor casing 4 has a cylindrical shape centered on the axis О. A plurality of compressor stationary blade stages 7 arranged at intervals in the axis О direction are provided on the inner peripheral surface of the compressor casing 4. These compressor static blade stages 7 are alternately arranged with respect to the above-mentioned compressor moving blade stage 5 when viewed from the axis О direction. Each compressor stationary blade stage 7 has a plurality of compressor stationary blades arranged at intervals in the circumferential direction of the axis О on the inner peripheral surface of the compressor casing 4.
(燃焼器)
燃焼器9は、圧縮機2と、下流側(図1の右側)へ続くタービン10との間に設けられている。圧縮機2で生成された圧縮空気は、燃焼器9内部で燃料と混合されて予混合ガスとなる。燃焼器9内で、この予混合ガスが燃焼することで高温高圧の燃焼ガスが生成され、燃焼ガスはタービン10内へと導かれる。 (Combustor)
Thecombustor 9 is provided between the compressor 2 and the turbine 10 continuing to the downstream side (right side in FIG. 1). The compressed air generated by the compressor 2 is mixed with the fuel inside the combustor 9 to become a premixed gas. Combustion of this premixed gas in the combustor 9 produces high-temperature and high-pressure combustion gas, and the combustion gas is guided into the turbine 10.
燃焼器9は、圧縮機2と、下流側(図1の右側)へ続くタービン10との間に設けられている。圧縮機2で生成された圧縮空気は、燃焼器9内部で燃料と混合されて予混合ガスとなる。燃焼器9内で、この予混合ガスが燃焼することで高温高圧の燃焼ガスが生成され、燃焼ガスはタービン10内へと導かれる。 (Combustor)
The
(タービン)
タービン10は、軸線О回りに回転するロータ11と、ロータ11を囲うステータ12と、を有している。
図2は図1のII部を拡大した図である。以下、図2も参照して説明する。 (Turbine)
Theturbine 10 has a rotor 11 that rotates about an axis О and a stator 12 that surrounds the rotor 11.
FIG. 2 is an enlarged view of part II of FIG. Hereinafter, it will be described with reference to FIG.
タービン10は、軸線О回りに回転するロータ11と、ロータ11を囲うステータ12と、を有している。
図2は図1のII部を拡大した図である。以下、図2も参照して説明する。 (Turbine)
The
FIG. 2 is an enlarged view of part II of FIG. Hereinafter, it will be described with reference to FIG.
ロータ11は、回転軸11aと、複数のタービン動翼段20と、を有している。
回転軸11aは、軸線Оに沿って延びる柱状をなしている。回転軸11aは、上記の圧縮機ロータ3に軸線О方向に一体に連結されることで、軸線О回りに回転するガスタービンロータを形成する。 Therotor 11 has a rotary shaft 11a and a plurality of turbine blade stages 20.
The rotatingshaft 11a has a columnar shape extending along the axis О. The rotating shaft 11a is integrally connected to the compressor rotor 3 in the axis О direction to form a gas turbine rotor that rotates around the axis О.
回転軸11aは、軸線Оに沿って延びる柱状をなしている。回転軸11aは、上記の圧縮機ロータ3に軸線О方向に一体に連結されることで、軸線О回りに回転するガスタービンロータを形成する。 The
The rotating
複数のタービン動翼段20は、回転軸11aの外周面に設けられており、軸線О方向に間隔をあけて配列されている。
各タービン動翼段20は、複数のタービン動翼30と、環状のシュラウド42と、を有している。 The plurality ofturbine blade stages 20 are provided on the outer peripheral surface of the rotating shaft 11a, and are arranged at intervals in the axis О direction.
Eachturbine blade stage 20 has a plurality of turbine blades 30 and an annular shroud 42.
各タービン動翼段20は、複数のタービン動翼30と、環状のシュラウド42と、を有している。 The plurality of
Each
複数のタービン動翼30は、ロータ11の外周面上で、軸線Оの周方向に間隔をあけて配列されている。
シュラウド42は、複数のタービン動翼30の翼先端に設けられており、軸線Оの周方向に配列したタービン動翼30と一体となることでタービン動翼段20の剛性を高めている。 The plurality ofturbine blades 30 are arranged on the outer peripheral surface of the rotor 11 at intervals in the circumferential direction of the axis О.
Theshroud 42 is provided at the blade tips of a plurality of turbine blades 30, and is integrated with the turbine blades 30 arranged in the circumferential direction of the axis О to increase the rigidity of the turbine blade stage 20.
シュラウド42は、複数のタービン動翼30の翼先端に設けられており、軸線Оの周方向に配列したタービン動翼30と一体となることでタービン動翼段20の剛性を高めている。 The plurality of
The
ステータ12は、タービンケーシング15と、複数のタービン静翼段13と、環状の保持環40と、を有している。
The stator 12 has a turbine casing 15, a plurality of turbine stationary blade stages 13, and an annular holding ring 40.
タービンケーシング15は、軸線Оを中心とする筒状をなしている。
複数のタービン静翼段13は、タービンケーシング15の内周側に設けられており、軸線О方向に間隔をあけて配列されている。これらのタービン静翼段13は、上記のタービン動翼段20に対して、軸線О方向から見て交互に配列されている。
各タービン静翼段13は、タービンケーシング15の内周面付近で、軸線Оの周方向に間隔をあけて配列された複数のタービン静翼14を有している。 Theturbine casing 15 has a cylindrical shape centered on the axis О.
The plurality of turbinestationary blade stages 13 are provided on the inner peripheral side of the turbine casing 15, and are arranged at intervals in the axis О direction. These turbine blade stages 13 are alternately arranged with respect to the turbine blade stage 20 when viewed from the axis О direction.
Eachturbine vane stage 13 has a plurality of turbine vanes 14 arranged at intervals in the circumferential direction of the axis О near the inner peripheral surface of the turbine casing 15.
複数のタービン静翼段13は、タービンケーシング15の内周側に設けられており、軸線О方向に間隔をあけて配列されている。これらのタービン静翼段13は、上記のタービン動翼段20に対して、軸線О方向から見て交互に配列されている。
各タービン静翼段13は、タービンケーシング15の内周面付近で、軸線Оの周方向に間隔をあけて配列された複数のタービン静翼14を有している。 The
The plurality of turbine
Each
保持環40は、タービンケーシング15の内周面にわたって環状に設けられている。保持環40は、高温高圧の燃焼ガスが直接タービンケーシング15に接触するのを防止するために設けられている。保持環40は、タービン動翼段20に対応するようにタービンケーシング15の内周面にタービン動翼段20の段数と同じ個数が設けられている。
図2に示すように、タービン静翼14は、軸線О方向に隣り合う保持環40同士の間にまたがって支持されている。 Theholding ring 40 is provided in an annular shape over the inner peripheral surface of the turbine casing 15. The holding ring 40 is provided to prevent the high-temperature and high-pressure combustion gas from coming into direct contact with the turbine casing 15. The number of holding rings 40 is the same as the number of stages of the turbine blade stage 20 on the inner peripheral surface of the turbine casing 15 so as to correspond to the turbine blade stage 20.
As shown in FIG. 2, theturbine vane 14 is supported across the holding rings 40 adjacent to each other in the axis О direction.
図2に示すように、タービン静翼14は、軸線О方向に隣り合う保持環40同士の間にまたがって支持されている。 The
As shown in FIG. 2, the
タービン動翼30と保持環40との間には、タービン動翼30と保持環40の間から後段に存在するタービン静翼14付近の空間へ燃焼ガスが漏出するのを防止するためのシール装置50が設けられている。つまり、シール装置50は、ロータ11とステータ12との間の空間をシールしている。
A sealing device between the turbine blade 30 and the holding ring 40 to prevent combustion gas from leaking from between the turbine blade 30 and the holding ring 40 to the space near the turbine stationary blade 14 existing in the subsequent stage. 50 is provided. That is, the sealing device 50 seals the space between the rotor 11 and the stator 12.
シール装置50は、ハニカムシール44と、フィン43と、を有している。
ハニカムシール44は、保持環40の内周面に設けられている。
フィン43は、シュラウド42の外周面に設けられており、フィン43の径方向外側の端部は、微小な間隙を介してハニカムシール44に対向している。 Thesealing device 50 has a honeycomb seal 44 and fins 43.
Thehoneycomb seal 44 is provided on the inner peripheral surface of the holding ring 40.
Thefin 43 is provided on the outer peripheral surface of the shroud 42, and the radial outer end portion of the fin 43 faces the honeycomb seal 44 through a minute gap.
ハニカムシール44は、保持環40の内周面に設けられている。
フィン43は、シュラウド42の外周面に設けられており、フィン43の径方向外側の端部は、微小な間隙を介してハニカムシール44に対向している。 The
The
The
以下、第一実施形態のハニカムシール44を図3及び図4も参照して説明する。
Hereinafter, the honeycomb seal 44 of the first embodiment will be described with reference to FIGS. 3 and 4.
(ハニカムシール)
図3はハニカムシール44の一部分を示した模式図である。
ハニカムシール44は、ハニカム構造体45を備えている。ハニカム構造体45における径方向外側を向く面は保持環40に固定される外周面とされている。ハニカム構造体45における径方向内側を向く面はフィン43に対向するシール面46とされている。ハニカム構造体45内は、シール面46から凹むように配列された複数の孔部が隔壁47によって区画形成された構造をなしている。
ハニカム構造体45は、略正六角形の空隙と隔壁47から構成されるハチの巣形状が連続した快削体としての構造体である。シール面46は、ハニカム構造体45の隔壁47のタービン動翼30側を向く端面によって形成される仮想的な面であり、フィン43の径方向外側の端部に近接している。 (Honeycomb seal)
FIG. 3 is a schematic view showing a part of thehoneycomb seal 44.
Thehoneycomb seal 44 includes a honeycomb structure 45. The surface of the honeycomb structure 45 facing outward in the radial direction is an outer peripheral surface fixed to the holding ring 40. The surface of the honeycomb structure 45 facing inward in the radial direction is a sealing surface 46 facing the fin 43. The inside of the honeycomb structure 45 has a structure in which a plurality of holes arranged so as to be recessed from the sealing surface 46 are partitioned by a partition wall 47.
Thehoneycomb structure 45 is a structure as a free-cutting body having a continuous honeycomb shape composed of a substantially regular hexagonal void and a partition wall 47. The sealing surface 46 is a virtual surface formed by an end surface of the partition wall 47 of the honeycomb structure 45 facing the turbine blade 30 side, and is close to the radial outer end portion of the fin 43.
図3はハニカムシール44の一部分を示した模式図である。
ハニカムシール44は、ハニカム構造体45を備えている。ハニカム構造体45における径方向外側を向く面は保持環40に固定される外周面とされている。ハニカム構造体45における径方向内側を向く面はフィン43に対向するシール面46とされている。ハニカム構造体45内は、シール面46から凹むように配列された複数の孔部が隔壁47によって区画形成された構造をなしている。
ハニカム構造体45は、略正六角形の空隙と隔壁47から構成されるハチの巣形状が連続した快削体としての構造体である。シール面46は、ハニカム構造体45の隔壁47のタービン動翼30側を向く端面によって形成される仮想的な面であり、フィン43の径方向外側の端部に近接している。 (Honeycomb seal)
FIG. 3 is a schematic view showing a part of the
The
The
(隔壁)
隔壁47は、フィン43の材料よりも軟質の材料で形成される。隔壁47の材料には、例えばニッケル等の金属を含んだ快削材が採用される。隔壁47は、孔部の深さ方向Hの異なる位置に、高強度部48と該高強度部48よりも強度が低い低強度部49とを有している。 (Septum)
Thepartition wall 47 is made of a material that is softer than the material of the fin 43. As the material of the partition wall 47, a free-cutting material containing a metal such as nickel is adopted. The partition wall 47 has a high-strength portion 48 and a low-strength portion 49 having a lower strength than the high-strength portion 48 at different positions in the depth direction H of the hole portion.
隔壁47は、フィン43の材料よりも軟質の材料で形成される。隔壁47の材料には、例えばニッケル等の金属を含んだ快削材が採用される。隔壁47は、孔部の深さ方向Hの異なる位置に、高強度部48と該高強度部48よりも強度が低い低強度部49とを有している。 (Septum)
The
図4は、図3に示すハニカム構造体45の一の隔壁47のIV-IV線方向の断面図である。図4に示すように、高強度部48は、所定の板厚を有する厚肉部48aである。低強度部49は、厚肉部48aの板厚よりも薄い板厚を有する薄肉部49aである。複数の厚肉部48a及び薄肉部49aは、隔壁47の孔部の深さ方向Hに交互にそれぞれ複数が形成されている。
本明細書の文中で示す深さ方向Hとは、ハニカム構造体45のシール面46に対して略直交し、孔部内でシール面46から保持環40へ向かう方向である。 FIG. 4 is a cross-sectional view of onepartition wall 47 of the honeycomb structure 45 shown in FIG. 3 in the IV-IV direction. As shown in FIG. 4, the high-strength portion 48 is a thick portion 48a having a predetermined plate thickness. The low-strength portion 49 is a thin-walled portion 49a having a plate thickness thinner than that of the thick-walled portion 48a. A plurality of thick portions 48a and thin wall portions 49a are formed alternately in the depth direction H of the holes of the partition wall 47.
The depth direction H shown in the text of the present specification is a direction substantially orthogonal to the sealingsurface 46 of the honeycomb structure 45 and toward the holding ring 40 from the sealing surface 46 in the hole portion.
本明細書の文中で示す深さ方向Hとは、ハニカム構造体45のシール面46に対して略直交し、孔部内でシール面46から保持環40へ向かう方向である。 FIG. 4 is a cross-sectional view of one
The depth direction H shown in the text of the present specification is a direction substantially orthogonal to the sealing
図4に示すように、隔壁47の孔部内を向く表面は、深さ方向Hに波打った略正弦波形状をなしている。隔壁47の孔部内を向く一対の表面の波形は、隔壁47の断面の中心線Cを中心に略左右対称に形成されている。隔壁47の孔部内を向く表面の波形の波長λ及び振幅Aは、ハニカム構造体45の製造時に好適な値が選択される。
隔壁47の孔部内を向く表面の波形(正弦波)の波長λは、10~100μmである。より好ましくは、25~50μmである。
隔壁47の孔部内を向く表面の波形(正弦波)の振幅Aは、10~100μmである。より好ましくは、12~25μmである。 As shown in FIG. 4, the surface of thepartition wall 47 facing the inside of the hole has a substantially sinusoidal shape wavy in the depth direction H. The waveforms of the pair of surfaces facing the inside of the hole of the partition wall 47 are formed substantially symmetrically with respect to the center line C of the cross section of the partition wall 47. The wavelength λ and the amplitude A of the waveform of the surface facing the inside of the hole of the partition wall 47 are selected to be suitable values at the time of manufacturing the honeycomb structure 45.
The wavelength λ of the waveform (sine wave) of the surface facing the inside of the hole of thepartition wall 47 is 10 to 100 μm. More preferably, it is 25 to 50 μm.
The amplitude A of the waveform (sine wave) of the surface facing the inside of the hole of thepartition wall 47 is 10 to 100 μm. More preferably, it is 12 to 25 μm.
隔壁47の孔部内を向く表面の波形(正弦波)の波長λは、10~100μmである。より好ましくは、25~50μmである。
隔壁47の孔部内を向く表面の波形(正弦波)の振幅Aは、10~100μmである。より好ましくは、12~25μmである。 As shown in FIG. 4, the surface of the
The wavelength λ of the waveform (sine wave) of the surface facing the inside of the hole of the
The amplitude A of the waveform (sine wave) of the surface facing the inside of the hole of the
厚肉部48aは、隔壁47の一部分であり、厚肉部48aは、一対の孔部内を向く隔壁47表面の、凸部(波の山部に相当)となる部分及びその近傍部分に挟まれる部分である。
薄肉部49aは、隔壁47の一部分であり、薄肉部49aは、一対の孔部内を向く隔壁47表面の、凹部(波の谷部に相当)となる部分及びその近傍部分に挟まれる部分である。 Thethick portion 48a is a part of the partition wall 47, and the thick portion 48a is sandwiched between a portion of the surface of the partition wall 47 facing the inside of the pair of holes, which is a convex portion (corresponding to a mountain portion of a wave) and a portion in the vicinity thereof. It is a part.
The thin-walled portion 49a is a part of the partition wall 47, and the thin-walled portion 49a is a portion of the surface of the partition wall 47 facing the inside of the pair of holes, which is sandwiched between a portion (corresponding to a valley of a wave) and a portion in the vicinity thereof. ..
薄肉部49aは、隔壁47の一部分であり、薄肉部49aは、一対の孔部内を向く隔壁47表面の、凹部(波の谷部に相当)となる部分及びその近傍部分に挟まれる部分である。 The
The thin-
これにより、薄肉部49aは厚肉部48aよりも板厚が薄いため、厚肉部48aと比較して隔壁47にかかる応力に弱い。したがって、応力がかかった際は、薄肉部49aを起点に破断しやすい。
As a result, since the thin-walled portion 49a is thinner than the thick-walled portion 48a, it is less susceptible to stress applied to the partition wall 47 than the thick-walled portion 48a. Therefore, when stress is applied, it is likely to break starting from the thin portion 49a.
(作用効果)
続いて、本実施形態に係るフィン43の動作について説明する。ガスタービン1の高温運転時には、タービンケーシング15内のタービン動翼30が熱膨張することや、ロータ11に軸ぶれ等が生じることがある。このような場合、シール面46よりも径方向内側に位置していたフィン43の径方向外側の端部が、シール面46よりも径方向外側へと進出し、フィン43がハニカム構造体45に接触する。フィン43の端部がハニカム構造体45に接触した際、フィン43の端部と接触したハニカム構造体45の隔壁47には、フィン43の回転方向に向かう応力がかかる。 (Action effect)
Subsequently, the operation of thefin 43 according to the present embodiment will be described. During high-temperature operation of the gas turbine 1, the turbine blades 30 in the turbine casing 15 may thermally expand, and the rotor 11 may be shaken. In such a case, the radially outer end of the fin 43, which was located radially inside the seal surface 46, advances radially outward from the seal surface 46, and the fin 43 joins the honeycomb structure 45. Contact. When the end of the fin 43 comes into contact with the honeycomb structure 45, stress is applied to the partition wall 47 of the honeycomb structure 45 in contact with the end of the fin 43 in the rotational direction of the fin 43.
続いて、本実施形態に係るフィン43の動作について説明する。ガスタービン1の高温運転時には、タービンケーシング15内のタービン動翼30が熱膨張することや、ロータ11に軸ぶれ等が生じることがある。このような場合、シール面46よりも径方向内側に位置していたフィン43の径方向外側の端部が、シール面46よりも径方向外側へと進出し、フィン43がハニカム構造体45に接触する。フィン43の端部がハニカム構造体45に接触した際、フィン43の端部と接触したハニカム構造体45の隔壁47には、フィン43の回転方向に向かう応力がかかる。 (Action effect)
Subsequently, the operation of the
本開示の第一実施形態に係るハニカムシール44は、厚肉部48a及び薄肉部49aが、隔壁47の孔部の深さ方向Hに交互にそれぞれ複数が形成されている構成である。上記の構成によれば、フィン43の端部がハニカム構造体45に接触し、隔壁47に応力がかかると、シール面46から最も近い位置に存在する薄肉部49aが起点となって隔壁47の一部が破断する。すなわち、シール面46から最も近い位置に存在する薄肉部49aまでの隔壁47は、フィン43の先端部によって容易に切削される。したがって、ハニカムシール44の被削性を向上させることができる。
The honeycomb seal 44 according to the first embodiment of the present disclosure has a configuration in which a plurality of thick portions 48a and thin portions 49a are alternately formed in the depth direction H of the holes of the partition wall 47. According to the above configuration, when the end portion of the fin 43 comes into contact with the honeycomb structure 45 and stress is applied to the partition wall 47, the thin wall portion 49a existing at the position closest to the sealing surface 46 becomes the starting point of the partition wall 47. Part of it breaks. That is, the partition wall 47 from the sealing surface 46 to the thin-walled portion 49a located at the nearest position is easily cut by the tip portion of the fin 43. Therefore, the machinability of the honeycomb seal 44 can be improved.
また、上記の構成によれば、各薄肉部49aは、シール面46から近い順にフィン43によって切削される。これにより、余分に隔壁47が切削されることがない。したがって、効率的に隔壁47が切削され、長期にわたってハニカムシール44を使用することができる。
Further, according to the above configuration, each thin-walled portion 49a is cut by the fins 43 in order from the sealing surface 46. As a result, the partition wall 47 is not cut excessively. Therefore, the partition wall 47 can be efficiently cut, and the honeycomb seal 44 can be used for a long period of time.
また、上記の構成によれば、板厚を抑える必要がなくなり、薄肉部49aの板厚を高温酸化耐性が確保可能な厚さとしても、被削性を担保することができる。また、厚肉部48aが存在することで、隔壁47全体の高温酸化耐性を担保することができ、シール性能の劣化が抑制できる。
Further, according to the above configuration, it is not necessary to suppress the plate thickness, and even if the plate thickness of the thin portion 49a is set to a thickness that can secure high temperature oxidation resistance, machinability can be ensured. Further, the presence of the thick portion 48a can ensure the high temperature oxidation resistance of the entire partition wall 47 and suppress the deterioration of the sealing performance.
(第二実施形態)
以下、本開示の第二実施形態のハニカムシール44について、図5を参照して説明する。第二実施形態のハニカムシール44は、隔壁47の構成以外は第一実施形態と同様の構成をなしている。第一実施形態と同様の構成要素については同一の符号を付して詳細な説明を省略する。 (Second embodiment)
Hereinafter, thehoneycomb seal 44 of the second embodiment of the present disclosure will be described with reference to FIG. The honeycomb seal 44 of the second embodiment has the same configuration as that of the first embodiment except for the configuration of the partition wall 47. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
以下、本開示の第二実施形態のハニカムシール44について、図5を参照して説明する。第二実施形態のハニカムシール44は、隔壁47の構成以外は第一実施形態と同様の構成をなしている。第一実施形態と同様の構成要素については同一の符号を付して詳細な説明を省略する。 (Second embodiment)
Hereinafter, the
(隔壁)
図5は、図3に示すハニカム構造体45の一の隔壁47のV-V線方向の断面図である。
隔壁47は、孔部の深さ方向Hの異なる位置に、第一実施形態と同様に高強度部48と該高強度部48よりも強度が低い低強度部49を有している。図5に示すように、隔壁47は、板厚内(隔壁47の表面及び内部)における空隙である欠陥49cを複数有している。 (Septum)
FIG. 5 is a cross-sectional view taken along the line VV of onepartition wall 47 of the honeycomb structure 45 shown in FIG.
Thepartition wall 47 has a high-strength portion 48 and a low-strength portion 49 having a lower strength than the high-strength portion 48, as in the first embodiment, at different positions in the depth direction H of the hole portion. As shown in FIG. 5, the partition wall 47 has a plurality of defects 49c which are voids in the plate thickness (the surface and the inside of the partition wall 47).
図5は、図3に示すハニカム構造体45の一の隔壁47のV-V線方向の断面図である。
隔壁47は、孔部の深さ方向Hの異なる位置に、第一実施形態と同様に高強度部48と該高強度部48よりも強度が低い低強度部49を有している。図5に示すように、隔壁47は、板厚内(隔壁47の表面及び内部)における空隙である欠陥49cを複数有している。 (Septum)
FIG. 5 is a cross-sectional view taken along the line VV of one
The
欠陥49cは、隔壁47の板厚内に散在しており、欠陥49cは、隔壁47の造形過程で意図的に作られる。欠陥49cは、表面から内部に及ぶクラックや、内部に存在する閉空間としての隙間である。
低強度部49は、隔壁47の一部分であり、欠陥49cを含む該欠陥49c近傍部分である。つまり、低強度部49は、隔壁47の板厚内に欠陥49cを有する有欠陥部49bである。
高強度部48は、隔壁47の一部分であり、欠陥49cを有していない部分である。つまり、高強度部48は、隔壁47の板厚内に欠陥49cを有さない無欠陥部48bである。 Thedefects 49c are scattered in the plate thickness of the partition wall 47, and the defects 49c are intentionally created in the molding process of the partition wall 47. The defect 49c is a crack extending from the surface to the inside or a gap as a closed space existing inside.
The low-strength portion 49 is a part of the partition wall 47, and is a portion in the vicinity of the defect 49c including the defect 49c. That is, the low-strength portion 49 is a defective portion 49b having a defect 49c in the plate thickness of the partition wall 47.
The high-strength portion 48 is a part of the partition wall 47 and is a portion having no defect 49c. That is, the high-strength portion 48 is a defect-free portion 48b having no defect 49c in the plate thickness of the partition wall 47.
低強度部49は、隔壁47の一部分であり、欠陥49cを含む該欠陥49c近傍部分である。つまり、低強度部49は、隔壁47の板厚内に欠陥49cを有する有欠陥部49bである。
高強度部48は、隔壁47の一部分であり、欠陥49cを有していない部分である。つまり、高強度部48は、隔壁47の板厚内に欠陥49cを有さない無欠陥部48bである。 The
The low-
The high-
したがって、欠陥49cが隔壁47の板厚内に散在していることから、複数の有欠陥部49b及び無欠陥部48bは、隔壁47の孔部の深さ方向Hに交互にそれぞれ複数が形成されている。
Therefore, since the defects 49c are scattered in the plate thickness of the partition wall 47, a plurality of defective portions 49b and non-defect portions 48b are alternately formed in the depth direction H of the holes of the partition wall 47. ing.
これにより、ハニカム構造体45がフィン43に切削される際、有欠陥部49bは板厚内に欠陥49cを有しているため、有欠陥部49bは無欠陥部48bよりも強度が低く、フィン43の回転方向にかかる応力に弱い。したがって、応力がかかった際は、有欠陥部49bを起点に破断しやすい。
As a result, when the honeycomb structure 45 is cut into the fins 43, the defective portion 49b has a defect 49c in the plate thickness, so that the defective portion 49b has a lower strength than the non-defect portion 48b, and the fins. It is vulnerable to stress applied in the rotation direction of 43. Therefore, when stress is applied, it is easy to break from the defective portion 49b as a starting point.
(作用効果)
本開示の第二実施形態に係るハニカムシール44は、無欠陥部48b及び有欠陥部49bが、隔壁47の孔部の深さ方向Hに交互にそれぞれ複数が形成されている構成である。上記の構成によれば、フィン43の端部がハニカム構造体45に接触し、隔壁47に応力がかかると、シール面46から最も近い位置に存在する有欠陥部49bが起点となって隔壁47の一部が破断する。すなわち、シール面46から最も近い位置に存在する有欠陥部49bまでの隔壁47は、フィン43の先端部によって容易に切削される。したがって、ハニカムシール44の被削性を向上させることができる。 (Action effect)
Thehoneycomb seal 44 according to the second embodiment of the present disclosure has a configuration in which a plurality of defective portions 48b and defective portions 49b are alternately formed in the depth direction H of the hole portion of the partition wall 47. According to the above configuration, when the end portion of the fin 43 comes into contact with the honeycomb structure 45 and stress is applied to the partition wall 47, the defective partition wall 49b existing at the position closest to the sealing surface 46 becomes the starting point of the partition wall 47. Part of is broken. That is, the partition wall 47 from the sealing surface 46 to the defective portion 49b existing at the nearest position is easily cut by the tip portion of the fin 43. Therefore, the machinability of the honeycomb seal 44 can be improved.
本開示の第二実施形態に係るハニカムシール44は、無欠陥部48b及び有欠陥部49bが、隔壁47の孔部の深さ方向Hに交互にそれぞれ複数が形成されている構成である。上記の構成によれば、フィン43の端部がハニカム構造体45に接触し、隔壁47に応力がかかると、シール面46から最も近い位置に存在する有欠陥部49bが起点となって隔壁47の一部が破断する。すなわち、シール面46から最も近い位置に存在する有欠陥部49bまでの隔壁47は、フィン43の先端部によって容易に切削される。したがって、ハニカムシール44の被削性を向上させることができる。 (Action effect)
The
また、上記の構成によれば、各有欠陥部49bは、シール面46から近い順にフィン43によって切削される。これにより、余分に隔壁47が切削されることがない。したがって、効率的に隔壁47が切削され、長期にわたってハニカムシール44を使用することができる。
Further, according to the above configuration, each defective portion 49b is cut by the fin 43 in order from the sealing surface 46. As a result, the partition wall 47 is not cut excessively. Therefore, the partition wall 47 can be efficiently cut, and the honeycomb seal 44 can be used for a long period of time.
また、上記の構成によれば、有欠陥部49bがあることで被削性を向上させることができ、板厚を抑える必要がなくなるため高温酸化耐性を担保することができる。
Further, according to the above configuration, the machinability can be improved by the presence of the defective portion 49b, and the plate thickness does not need to be suppressed, so that the high temperature oxidation resistance can be ensured.
(その他の実施形態)
以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成は各実施形態の構成に限られるものではなく、本開示の要旨を逸脱しない範囲内での構成の付加、省略、置換、及びその他の変更が可能である。また、本開示は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 (Other embodiments)
Although the embodiments of the present disclosure have been described in detail with reference to the drawings, the specific configuration is not limited to the configurations of the respective embodiments, and the addition of the configurations within the range not deviating from the gist of the present disclosure. It can be omitted, replaced, and other changes. Also, the present disclosure is not limited by embodiments, but only by the claims.
以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成は各実施形態の構成に限られるものではなく、本開示の要旨を逸脱しない範囲内での構成の付加、省略、置換、及びその他の変更が可能である。また、本開示は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 (Other embodiments)
Although the embodiments of the present disclosure have been described in detail with reference to the drawings, the specific configuration is not limited to the configurations of the respective embodiments, and the addition of the configurations within the range not deviating from the gist of the present disclosure. It can be omitted, replaced, and other changes. Also, the present disclosure is not limited by embodiments, but only by the claims.
なお、上記の実施形態のハニカム構造体45の隔壁47は、粉末材料を用いた3Dプリンタによる積層造形(AM)のプロセスで製造されてよい。
The partition wall 47 of the honeycomb structure 45 of the above embodiment may be manufactured by a laminating molding (AM) process using a 3D printer using a powder material.
また、上記の実施形態のハニカム構造体45は、略正六角形の空隙と隔壁47から構成されるハチの巣形状が連続した構造体であるが、略六角形の形状に限定されることはない。
Further, the honeycomb structure 45 of the above embodiment is a structure in which a honeycomb structure composed of a substantially regular hexagonal void and a partition wall 47 is continuous, but is not limited to a substantially hexagonal shape. ..
また、上記の第二実施形態では、欠陥49cはハニカム構造体45の製造過程で形成されるが、欠陥49cが形成されない方法で隔壁47を製造し、表面を切り欠いて意図的に傷やクラックを作り、それらを欠陥49cとして、後から有欠陥部49bを作ってもよい。
Further, in the second embodiment described above, the defect 49c is formed in the manufacturing process of the honeycomb structure 45, but the partition wall 47 is manufactured by a method in which the defect 49c is not formed, and the surface is cut out to intentionally scratch or crack. , And using them as defects 49c, a defective portion 49b may be created later.
また、上記の第一実施形態及び第二実施形態は、それぞれ独立の構成として記載されているが、ハニカム構造体45の隔壁47に厚肉部48a及び無欠陥部48bと、薄肉部49a及び有欠陥部49bとが併存していてもよい。
Further, although the first embodiment and the second embodiment described above are described as independent configurations, the partition wall 47 of the honeycomb structure 45 has a thick portion 48a and a defect-free portion 48b, a thin portion 49a, and a thin portion 49a. The defective portion 49b may coexist.
また、上記の実施形態のハニカムシール44は、ステータ12側に設けられて、ロータ11側のフィン43と対向する構成であるが、ロータ11側にハニカムシール44を設け、ステータ12側に設けたフィン43と対向する構成としてもよい。
Further, the honeycomb seal 44 of the above embodiment is provided on the stator 12 side and faces the fin 43 on the rotor 11 side, but the honeycomb seal 44 is provided on the rotor 11 side and is provided on the stator 12 side. It may be configured to face the fin 43.
また、上記の実施形態のハニカムシール44は、ガスタービン1に用いられるハニカムシール44であるが、蒸気タービン等の他の回転機械に用いられてもよい。
Further, the honeycomb seal 44 of the above embodiment is the honeycomb seal 44 used for the gas turbine 1, but may be used for other rotating machines such as a steam turbine.
<付記>
実施形態に記載のハニカムシール44、及び回転機械は、例えば以下のように把握される。 <Additional Notes>
Thehoneycomb seal 44 and the rotating machine according to the embodiment are grasped as follows, for example.
実施形態に記載のハニカムシール44、及び回転機械は、例えば以下のように把握される。 <Additional Notes>
The
(1)第1の態様に係るハニカムシール44は、シール面46から凹むように配列された複数の孔部が隔壁47によって区画形成されたハニカム構造体45を備え、前記隔壁47は、前記孔部の深さ方向Hの異なる位置に、高強度部48と該高強度部48よりも強度が低い低強度部49とを有する。
(1) The honeycomb seal 44 according to the first aspect includes a honeycomb structure 45 in which a plurality of holes arranged so as to be recessed from the sealing surface 46 are partitioned by a partition wall 47, and the partition wall 47 is the hole. A high-strength portion 48 and a low-strength portion 49 having a lower strength than the high-strength portion 48 are provided at different positions in the depth direction H of the portions.
これにより、フィン43がハニカム構造体45に接触した際に隔壁47の低強度部49が破断を起こすため、ハニカム構造体45の切削性を向上させることができる。
As a result, when the fin 43 comes into contact with the honeycomb structure 45, the low-strength portion 49 of the partition wall 47 breaks, so that the machinability of the honeycomb structure 45 can be improved.
(2)第2の態様に係るハニカムシール44は、(1)のハニカムシール44であって、前記高強度部48と前記低強度部49とは、前記深さ方向Hに交互にそれぞれ複数が形成されていてもよい。
(2) The honeycomb seal 44 according to the second aspect is the honeycomb seal 44 of (1), and the high-strength portion 48 and the low-strength portion 49 alternately have a plurality of each in the depth direction H. It may be formed.
これにより、シール面46から最も近い位置に存在する隔壁47の低強度部49が起点となって破断を起こす。したがって、シール面46から近い順に隔壁47の端部から低強度部49までの部分がフィン43によって切削され、余分に隔壁47が切削されることがない。
As a result, the low-strength portion 49 of the partition wall 47 existing at the position closest to the sealing surface 46 becomes the starting point and causes breakage. Therefore, the portion from the end portion of the partition wall 47 to the low-strength portion 49 is cut by the fin 43 in order from the sealing surface 46, and the partition wall 47 is not cut excessively.
(3)第3の態様に係るハニカムシール44は、(1)または(2)のハニカムシール44であって、前記高強度部48は、所定の板厚を有する厚肉部48aであり、前記低強度部49は、前記厚肉部48aの板厚よりも薄い板厚を有する薄肉部49aであってもよい。
(3) The honeycomb seal 44 according to the third aspect is the honeycomb seal 44 of (1) or (2), and the high-strength portion 48 is a thick portion 48a having a predetermined plate thickness. The low-strength portion 49 may be a thin-walled portion 49a having a plate thickness thinner than that of the thick-walled portion 48a.
これにより、フィン43がハニカム構造体45に接触した際にフィン43に最も近い薄肉部49aで破断を起こす。また、厚肉部48aが隔壁47全体の高温酸化耐性を担保する。
As a result, when the fin 43 comes into contact with the honeycomb structure 45, the thin portion 49a closest to the fin 43 breaks. Further, the thick portion 48a ensures the high temperature oxidation resistance of the entire partition wall 47.
(4)第4の態様に係るハニカムシール44は、(1)または(2)のハニカムシール44であって、前記高強度部48は、前記隔壁47の板厚内に欠陥49cを有さない無欠陥部48bであり、前記低強度部49は、前記隔壁47の板厚内に欠陥49cを有する有欠陥部49bであってもよい。
(4) The honeycomb seal 44 according to the fourth aspect is the honeycomb seal 44 of (1) or (2), and the high-strength portion 48 does not have a defect 49c in the plate thickness of the partition wall 47. The defect-free portion 48b, and the low-strength portion 49 may be a defective portion 49b having a defect 49c in the plate thickness of the partition wall 47.
これにより、フィン43がハニカム構造体45に接触した際にフィン43に最も近い有欠陥部49bで破断を起こす。また、有欠陥部49bがあることで被削性を向上させることができ、板厚を抑える必要がなくなるため高温酸化耐性を担保することができる。
As a result, when the fin 43 comes into contact with the honeycomb structure 45, the defective portion 49b closest to the fin 43 breaks. Further, the presence of the defective portion 49b can improve the machinability, and it is not necessary to suppress the plate thickness, so that the high temperature oxidation resistance can be ensured.
(5)第5の態様に係る回転機械は、軸線О回りに回転するロータ11と、前記ロータ11を囲うステータ12と、前記ロータ11と前記ステータ12との間の空間をシールするシール装置50と、を備え、前記シール装置50は、前記ロータ11及び前記ステータ12の一方に設けられた(1)から(4)のいずれかに記載のハニカムシール44と、前記ロータ11及び前記ステータ12の他方に前記ハニカムシール44に対向して設けられたフィン43と、を有する。
(5) The rotating machine according to the fifth aspect is a sealing device 50 that seals the rotor 11 that rotates around the axis О, the stator 12 that surrounds the rotor 11, and the space between the rotor 11 and the stator 12. The sealing device 50 comprises the honeycomb seal 44 according to any one of (1) to (4) provided on one of the rotor 11 and the stator 12, and the rotor 11 and the stator 12. On the other hand, it has fins 43 provided so as to face the honeycomb seal 44.
これにより、ハニカムシール44の被削性を向上させた回転機械を提供することができる。
Thereby, it is possible to provide a rotary machine having improved machinability of the honeycomb seal 44.
本開示によれば、シール性能の劣化を抑制しつつ、被削性を向上させることができるハニカムシール、及び回転機械を提供することができる。
According to the present disclosure, it is possible to provide a honeycomb seal and a rotary machine capable of improving machinability while suppressing deterioration of sealing performance.
1…ガスタービン 2…圧縮機 3…圧縮機ロータ 4…圧縮機ケーシング 5…圧縮機動翼段 7…圧縮機静翼段 9…燃焼器 10…タービン 11…ロータ 11a…回転軸 12…ステータ 13…タービン静翼段 14…タービン静翼 15…タービンケーシング 20…タービン動翼段 30…タービン動翼 40…保持環 42…シュラウド 43…フィン 44…ハニカムシール 45…ハニカム構造体 46…シール面 47…隔壁 48…高強度部 48a…厚肉部 48b…無欠陥部 49…低強度部 49a…薄肉部 49b…有欠陥部 49c…欠陥 50…シール装置 О…軸線 H…深さ方向 λ…波長 A…振幅 C…中心線
1 ... Gas turbine 2 ... Compressor 3 ... Compressor rotor 4 ... Compressor casing 5 ... Compressor moving blade stage 7 ... Compressor static blade stage 9 ... Combustor 10 ... Turbine 11 ... Rotor 11a ... Rotating shaft 12 ... Stator 13 ... Turbine stationary wing stage 14 ... Turbine stationary wing 15 ... Turbine casing 20 ... Turbine moving wing stage 30 ... Turbine moving wing 40 ... Holding ring 42 ... Shroud 43 ... Fin 44 ... Honeycomb seal 45 ... Honeycomb structure 46 ... Seal surface 47 ... Partition wall 48 ... High-strength part 48a ... Thick-walled part 48b ... Defect-free part 49 ... Low-strength part 49a ... Thin-walled part 49b ... Defected part 49c ... Defect 50 ... Sealing device О ... Axis H ... Depth direction λ ... Turbine A ... Fluctuation C ... Center line
Claims (5)
- シール面から凹むように配列された複数の孔部が隔壁によって区画形成されたハニカム構造体を備え、
前記隔壁は、前記孔部の深さ方向の異なる位置に、高強度部と該高強度部よりも強度が低い低強度部とを有するハニカムシール。 A honeycomb structure in which a plurality of holes arranged so as to be recessed from the sealing surface are partitioned by a partition wall is provided.
The partition wall is a honeycomb seal having a high-strength portion and a low-strength portion having a lower strength than the high-strength portion at different positions in the depth direction of the hole portion. - 前記高強度部と前記低強度部とは、前記深さ方向に交互にそれぞれ複数が形成されている請求項1に記載のハニカムシール。 The honeycomb seal according to claim 1, wherein a plurality of the high-strength portion and the low-strength portion are alternately formed in the depth direction.
- 前記高強度部は、所定の板厚を有する厚肉部であり、
前記低強度部は、前記厚肉部の板厚よりも薄い板厚を有する薄肉部である請求項1又は2に記載のハニカムシール。 The high-strength portion is a thick portion having a predetermined plate thickness, and is a thick portion.
The honeycomb seal according to claim 1 or 2, wherein the low-strength portion is a thin-walled portion having a plate thickness thinner than that of the thick-walled portion. - 前記高強度部は、前記隔壁の板厚内に欠陥を有さない無欠陥部であり、
前記低強度部は、前記隔壁の板厚内に欠陥を有する有欠陥部である請求項1又は2のいずれか一項に記載のハニカムシール。 The high-strength portion is a defect-free portion having no defect in the plate thickness of the partition wall.
The honeycomb seal according to any one of claims 1 or 2, wherein the low-strength portion is a defective portion having a defect in the plate thickness of the partition wall. - 軸線回りに回転するロータと、
前記ロータを囲うステータと、
前記ロータと前記ステータとの間の空間をシールするシール装置と、を備え、
前記シール装置は、
前記ロータ及び前記ステータの一方に設けられた請求項1から4のいずれか一項に記載のハニカムシールと、
前記ロータ及び前記ステータの他方に前記ハニカムシールに対向して設けられたフィンと、
を有する回転機械。 A rotor that rotates around the axis and
The stator surrounding the rotor and
A sealing device for sealing the space between the rotor and the stator.
The sealing device is
The honeycomb seal according to any one of claims 1 to 4 provided on one of the rotor and the stator.
Fins provided on the other side of the rotor and the stator facing the honeycomb seal, and
Rotating machine with.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020182710 | 2020-10-30 | ||
JP2020-182710 | 2020-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022091798A1 true WO2022091798A1 (en) | 2022-05-05 |
Family
ID=81382536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/038035 WO2022091798A1 (en) | 2020-10-30 | 2021-10-14 | Honeycomb seal and rotary machine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022091798A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014231797A (en) * | 2013-05-29 | 2014-12-11 | 三菱日立パワーシステムズ株式会社 | Gas turbine |
JP2016027287A (en) * | 2015-11-19 | 2016-02-18 | 三菱重工業株式会社 | Seal device |
JP2016153654A (en) * | 2012-11-13 | 2016-08-25 | 三菱重工コンプレッサ株式会社 | Rotary machine |
-
2021
- 2021-10-14 WO PCT/JP2021/038035 patent/WO2022091798A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016153654A (en) * | 2012-11-13 | 2016-08-25 | 三菱重工コンプレッサ株式会社 | Rotary machine |
JP2014231797A (en) * | 2013-05-29 | 2014-12-11 | 三菱日立パワーシステムズ株式会社 | Gas turbine |
JP2016027287A (en) * | 2015-11-19 | 2016-02-18 | 三菱重工業株式会社 | Seal device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101845996B (en) | Device and system for reducing second air flow in gas turbine | |
JP4474088B2 (en) | Method for reducing seal tooth wear, honeycomb seal and gas turbine engine | |
RU2604777C2 (en) | Gas turbine engine guide vanes sealing device | |
KR101716010B1 (en) | Turbine | |
US9145788B2 (en) | Retrofittable interstage angled seal | |
JP5717904B1 (en) | Stator blade, gas turbine, split ring, stator blade remodeling method, and split ring remodeling method | |
JP6184173B2 (en) | gas turbine | |
US9109458B2 (en) | Turbomachinery seal | |
JP2010159876A (en) | System and method for providing compliant rotating seal | |
JP6143523B2 (en) | Turbine shroud assembly and method of forming the same | |
WO2013146637A1 (en) | Seal member, turbine, and gas turbine | |
WO2017142011A1 (en) | Sealing device and rotary machine | |
JP2013083251A (en) | Gas turbine engine airfoil tip recess | |
JP6422308B2 (en) | Gas turbine with seal structure | |
WO2017150365A1 (en) | Seal structure and turbomachine | |
WO2022091798A1 (en) | Honeycomb seal and rotary machine | |
US10208612B2 (en) | Gas turbine sealing band arrangement having an underlap seal | |
KR20150058561A (en) | Gas turbine and the outer shroud | |
JP2017110647A (en) | Anti-corner-leakage seal in gas turbine | |
JPH11200810A (en) | Labyrinth seal mechanism | |
JP7020977B2 (en) | Rotating machine | |
JP2008309051A (en) | Cooling structure for turbine shroud | |
WO2021039811A1 (en) | Swirl breaker assembly and rotating machine | |
US20210348523A1 (en) | Reduced radial clearance seal system | |
US10822982B2 (en) | Seal for a gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21885917 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21885917 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |