WO2022091594A1 - Method for manufacturing segmented laminated core, and segmented laminated core - Google Patents

Method for manufacturing segmented laminated core, and segmented laminated core Download PDF

Info

Publication number
WO2022091594A1
WO2022091594A1 PCT/JP2021/033052 JP2021033052W WO2022091594A1 WO 2022091594 A1 WO2022091594 A1 WO 2022091594A1 JP 2021033052 W JP2021033052 W JP 2021033052W WO 2022091594 A1 WO2022091594 A1 WO 2022091594A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
die
metal plate
punch
cutting line
Prior art date
Application number
PCT/JP2021/033052
Other languages
French (fr)
Japanese (ja)
Inventor
尚 松永
広一 荒川
大輔 小宮
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Publication of WO2022091594A1 publication Critical patent/WO2022091594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present disclosure relates to a method for manufacturing a split-type laminated core and a split-type laminated core.
  • Patent Document 1 when a metal plate is cut and bent and pushed back, a plurality of cutting lines are punched out from the metal plate and a punched member provided in advance on the yoke material is punched out from the metal plate.
  • a method for manufacturing a split-type stator laminated iron core which comprises laminating a plurality of punched members to form a laminated body.
  • the yoke material includes a plurality of yoke pieces, and the ends of adjacent yoke pieces are temporarily connected to each other via a cutting wire. Therefore, by applying an external force to the laminated body, the yoke material can be individualized into a plurality of yoke pieces along the cutting line.
  • the pushback process of Patent Document 1 includes pressing a portion of a metal plate that has been cut and bent by a stripper and a die in a pushback station. As a result, the cut and bent portion is completely pushed back to the original metal plate so as to be flush with the metal plate, and a cutting line in the punched member is formed. However, in this case, the holding force between the temporarily connected yoke pieces at the cutting line becomes strong, and a large force may be required to separate the yoke members into individual pieces.
  • the present disclosure describes a split-type laminated iron core that can be separated into individual pieces with a smaller force and a method for manufacturing the same.
  • An example of a method for manufacturing a split-type laminated iron core is to advance a punch toward a die hole provided in a die and partially push the metal plate into the die hole with the punch to form a predetermined portion of the metal plate. Includes cutting and bending along a predetermined cutting line to form a cut and bent piece containing a first end face and a base metal portion containing a second end face corresponding to the first end face. May be good.
  • An example of this method is to push back the cut and bent piece to the base material portion, and to form the cut and bent piece and the base metal portion through a cutting line formed by the boundary between the first end face and the second end face. May further include temporary connection.
  • Examples of the method further include punching a metal plate so as to include a portion to form a plurality of metal plates exhibiting an annular shape, and laminating a plurality of metal plates to form a laminated body. May include. When viewed from the advance direction of the punch, at least a part of the outer shape of the punch corresponding to the cutting line may be located outside the contour of the die hole.
  • An example of the split type laminated iron core may be configured by laminating a plurality of metal plates exhibiting an annular shape.
  • the metal plate material may include a first divided piece and a second divided piece arranged in the circumferential direction and divided by a predetermined cutting line.
  • the first divided piece and the second divided piece may be temporarily connected via a cutting line composed of the first end face of the first divided piece and the second end face of the second divided piece. ..
  • the first end face and the second end face may each include a region having a shear cross section in almost the entire area.
  • FIG. 1 is a perspective view showing an example of a split type stator laminated iron core.
  • FIG. 2 is an enlarged perspective view showing part II of FIG. 1.
  • FIG. 3 is a top view showing a punched member constituting the stator laminated iron core of FIG. 1.
  • FIG. 4 is an enlarged top view showing the IV portion of FIG.
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a perspective view schematically showing each end face of the cut and bent piece and the base material portion in FIG.
  • FIG. 7 is an enlarged top view showing the VII portion of FIG.
  • FIG. 8 is a sectional view taken along line VIII-VIII of FIG.
  • FIG. 9 is a perspective view schematically showing each end face of the cut and bent piece and the base material portion in FIG.
  • FIG. 10 is a schematic view showing an example of an apparatus for manufacturing a stator laminated iron core.
  • FIG. 11 is a schematic cross-sectional view showing an example of a press working apparatus.
  • FIG. 12 is a top view showing an example of a plurality of dies constituting the second punching unit.
  • FIG. 13 is a top view showing an example of a die and a punch for cutting and bending by reverse clearance.
  • FIG. 14 is a sectional view taken along line XIV-XIV of FIG.
  • FIG. 15 is a top view showing an example of a die and a punch for cutting and bending with a positive clearance.
  • FIG. 16 is a cross-sectional view taken along the line XVI-XVI of FIG. FIG.
  • FIG. 17 is a cross-sectional view showing an example of the relationship between the incompletely pushed back portion of the metal plate and the die and stripper.
  • FIG. 18 is a cross-sectional view showing an example of a processing unit forming a punching member, and is a diagram for explaining a state in which a metal plate material is punched out from a metal plate and stacked.
  • FIG. 19 is a diagram for explaining how the stator laminated iron core is discharged from the press working apparatus in the machining unit of FIG.
  • FIG. 20 is a diagram partially showing an example of a press working layout of a metal plate.
  • FIG. 21 is a diagram showing a subsequent portion of FIG. 20 in the press working layout of the metal plate.
  • FIG. 22 is a diagram showing a subsequent portion of FIG. 21 in the press working layout of the metal plate.
  • stator laminated iron core 1 split type laminated iron core
  • the stator laminated iron core 1 is a part of the stator (stator).
  • the stator is configured by attaching a winding (not shown) to the stator laminated iron core 1.
  • a motor is configured by combining a stator and a rotor.
  • the stator laminated iron core 1 has a cylindrical shape.
  • a through hole 1a that penetrates the stator laminated iron core 1 is provided in the central portion of the stator laminated iron core 1 so as to extend along the central axis Ax.
  • the through hole 1a extends in the height direction (lamination direction) of the stator laminated iron core 1.
  • a rotor can be arranged in the through hole 1a.
  • the stator laminated iron core 1 is a laminated body in which a plurality of punched members W (metal plate material, another metal plate material) are stacked.
  • the stator laminated iron core 1 may be configured by laminating a plurality of punching members W.
  • "Transposition” means stacking a plurality of punching members W while relatively shifting the angles of the punching members W.
  • the rolling stacking is mainly carried out for the purpose of offsetting the plate thickness deviation of the punched member W and increasing the flatness, parallelism and squareness of the stator laminated iron core 1.
  • the rolling angle may be set to any size.
  • the stator laminated iron core 1 includes a yoke 2, a plurality of teeth portions 3, and a plurality of caulking portions 4.
  • the yoke 2 has an annular shape and extends so as to surround the central axis Ax. As illustrated in FIG. 1 and the like, the yoke 2 may have an annular shape.
  • the plurality of teeth portions 3 extend along the radial direction of the yoke 2 from the inner edge of the yoke 2 toward the central axis Ax side. That is, the plurality of teeth portions 3 project from the inner edge of the yoke 2 toward the central axis Ax.
  • the plurality of tooth portions 3 may be arranged at substantially equal intervals in the circumferential direction of the yoke 2. As illustrated in FIG. 1 and the like, the stator laminated iron core 1 may include 12 teeth portions 3.
  • a slot 5, which is a space for arranging windings, is defined between the adjacent teeth portions 3.
  • the caulking portion 4 may be provided on the yoke 2, for example. Although not shown, the caulking portion 4 may be provided in each tooth portion 3, for example.
  • the punching members W adjacent to each other in the stacking direction may be held by the caulking portion 4.
  • the plurality of punched members W may be held by various known methods instead of the caulking portion 4. For example, the plurality of punched members W may be joined to each other by using, for example, an adhesive or a resin material, or may be joined to each other by welding.
  • the stator laminated iron core is provided by providing a temporary caulking to the punching member W, holding a plurality of punching members W through the temporary caulking to obtain a laminated body, and then removing the temporary caulking from the laminated body. You may get 1.
  • the "temporary caulking” means caulking that is used to temporarily integrate a plurality of punched members W and is removed in the process of manufacturing the product (stator laminated iron core 1).
  • the punched member W is a plate-like body in which a metal plate MS (for example, an electromagnetic steel plate) described later is punched into a predetermined shape, and has a shape corresponding to the stator laminated iron core 1.
  • a through hole Wa is provided in the central portion of the punching member W.
  • the punching member W has a yoke material W2 corresponding to the yoke 2 and a plurality of tooth pieces W3 corresponding to each tooth portion 3.
  • a slot W5 corresponding to the slot 5 is defined between the adjacent tooth pieces W3.
  • the yoke material W2 is provided with a plurality of cutting lines CL1 and a plurality of cutting lines CL2 (another cutting line) so as to cross between the inner peripheral edge and the outer peripheral edge of the yoke material W2.
  • the plurality of cutting lines CL1 and CL2 may be arranged alternately at substantially equal intervals in the circumferential direction of the yoke material W2.
  • the yoke material W2 may be provided with six cutting lines CL1 and CL2.
  • the yoke material W2 is composed of 12 yoke pieces W2a (first divided piece, second divided piece). That is, the yoke material W2 may include a plurality of yoke pieces W2a divided by the cutting lines CL1 and CL2. The plurality of yoke pieces W2a may be arranged in the circumferential direction of the yoke material W2.
  • the cutting lines CL1 and CL2 may be referred to as "incomplete pushback" in the present specification after the metal plate MS is cut and bent and the cut and bent portion is partially pushed back. ), And it is formed by temporarily connecting to the original position of the metal plate MS. That is, one adjacent yoke piece W2a and the other yoke pieces W2a are partially temporarily connected via the cutting lines CL1 and CL2. Therefore, as shown in FIG. 2, a step is formed between the ends of one adjacent yoke piece W2a and another yoke piece W2a. The size of the step may be about 10% to 40% of the plate thickness of the punched member W (metal plate MS).
  • the size of the step may be, for example, about 0.05 mm to 0.2 mm.
  • cutting and bending as used herein means cutting and bending.
  • Cut and bend portion means a portion that has been cut and bent.
  • the cutting lines CL1 and CL2 may have an uneven shape as illustrated in FIGS. 2 to 4 and 7. Specifically, the edge CLa of one yoke piece W2a (upper side in FIG. 4, left side in FIG. 7) adjacent to each other in the circumferential direction of the yoke material W2 exhibits a concave shape (a shape in which the center is recessed in a rectangular shape). The edge of the other yoke piece W2a (lower side in FIG. 4, right side in FIG. 7) may have a convex shape (a shape in which the center protrudes in a rectangular shape).
  • the cutting line CL1 is formed by cutting and bending with a reverse clearance.
  • the cutting line CL1 includes an end surface S1a (first end surface) of one yoke piece W2a (upper side in FIG. 4) adjacent to each other in the circumferential direction of the yoke material W2 and another yoke piece W2a ( It is composed of the boundary of the end face S1b (second end face) of (lower side of FIG. 4).
  • the "reverse clearance" means that the diameter of the punch to be cut and bent is larger than the diameter of the die hole.
  • each of the end faces S1a and S1b is composed of a shear cross section SA. As shown in FIGS. 5 and 6, the end face S1a and the end face S1b are partially in contact with each other in the shear cross section SA. That is, the end face S1a and the end face S1b do not completely overlap each other.
  • the cutting line CL2 is formed by cutting and bending with a positive clearance.
  • the cutting line CL2 is an end face S2a of one yoke piece W2a (left side in FIG. 4) and another yoke piece W2a (right side in FIG. 7) adjacent to each other in the circumferential direction of the yoke material W2. It is composed of the boundaries of the end faces S2b.
  • the "positive clearance" means that the diameter of the punch to be cut and bent is smaller than the diameter of the die hole. At this time, when the punch is inserted into the die, there is a gap between the outer wall surface of the punch and the inner wall surface of the die hole.
  • the end faces S2a and S2b are composed of a shear cross section SA and a fracture surface SB, respectively.
  • the shear section SA and the fracture surface SB are provided side by side in the plate thickness direction (vertical direction, stacking direction) of the yoke piece W2a.
  • the shear section SA is located on the upper surface side
  • the fracture surface SB is located on the lower surface side.
  • the shear section SA is located on the lower surface side
  • the fracture surface SB is located on the upper surface side.
  • the end face S2a and the end face S2b are partially in contact with each other in the shear cross section SA (see region R in FIGS. 8 and 9). That is, the end face S2a and the end face S2b do not completely overlap each other.
  • the shear section SA and the fracture surface SB are not in contact with each other.
  • Each tooth piece W3 extends along the radial direction of the yoke material W2 from the inner edge of the yoke material W2 toward the central axis Ax side. That is, each tooth piece W3 projects from the inner edge of the yoke material W2 toward the central axis Ax.
  • One plate member W6 may be formed by integrally providing one tooth piece W3 on one yoke piece W2a. That is, the punching member W may be configured by temporarily connecting a plurality of plate members W6 in the circumferential direction of the yoke member W2 via the cutting lines CL1 and CL2.
  • the stator laminated iron core 1 is formed by laminating a plurality of punching members W as described above. More specifically, the plurality of punching members W are laminated so that the yoke members W2, the tooth pieces W3, and the cutting lines CL1 and CL2 overlap each other in the stacking direction. Therefore, when a predetermined force is applied to the stator laminated core 1 to separate the stator laminated core 1 at the cutting lines CL1 and CL2, one stator laminated core 1 to a plurality of core pieces 6 (FIG. 1). In the example, 12 iron core pieces 6) are obtained.
  • the iron core piece 6 is a laminated body in which a plurality of plate materials W6 are laminated. In other words, the stator laminated iron core 1 is configured by combining a plurality of iron core pieces 6.
  • One iron core piece 6 is composed of one yoke portion 2a and one tooth portion 3.
  • the yoke portion 2a is a part of the yoke 2 when the yoke 2 is separated by the cutting lines CL1 and CL2. That is, the stator laminated iron core 1 is integrated by temporarily connecting the adjacent iron core pieces 6 in the circumferential direction of the central axis Ax at the end portions (cutting lines CL1 and CL2) of the yoke portion 2a.
  • the cutting line group G may be composed of only a plurality of cutting lines CL1.
  • the cutting line group G may be composed of only a plurality of cutting lines CL2.
  • the cutting line group G may be configured to include at least one cutting line CL1 and at least one cutting line CL2.
  • the cutting lines CL1 and CL2 may be arranged alternately in the stacking direction as illustrated in FIG. 2, and the cutting lines CL1 and CL2 are regularly arranged. Alternatively, they may be arranged irregularly.
  • the manufacturing apparatus 100 is configured to manufacture the stator laminated iron core 1 from the strip-shaped metal plate MS.
  • the manufacturing apparatus 100 includes an anchorer 110, a delivery apparatus 120, a press working apparatus 130, an annealing furnace 200, and a controller Ctr (control unit).
  • the uncoiler 110 is configured to rotatably hold the coil material 111.
  • the coil material 111 is a metal plate MS wound in a coil shape (spiral shape).
  • the delivery device 120 includes a pair of rollers 121 and 122 that sandwich the metal plate MS from above and below.
  • the pair of rollers 121 and 122 are configured to rotate and stop based on an instruction signal from the controller Ctr, and intermittently and sequentially deliver the metal plate MS toward the press working apparatus 130.
  • the press working apparatus 130 is configured to operate based on an instruction signal from the controller Ctr.
  • the press working device 130 may be configured to form, for example, a plurality of punching members W by sequentially cutting or bending or punching the metal plate MS sent out by the sending device 120 by a plurality of punches. ..
  • the press working apparatus 130 may be configured to sequentially stack a plurality of punching members W obtained by punching to form a stator laminated iron core 1.
  • the stator laminated iron core 1 formed by the press working apparatus 130 may be, for example, transported to the annealing furnace 200 by a conveyor Cv, or may be manually transported to the annealing furnace 200. The details of the press working apparatus 130 will be described later.
  • the annealing furnace 200 is configured to operate based on an instruction signal from the controller Ctr.
  • the annealing furnace 200 is configured to heat the stator laminated iron core 1 conveyed from the press working apparatus 130 at a predetermined temperature (for example, about 750 ° C. to 800 ° C.) for a predetermined time (for example, about 1 hour). ..
  • a predetermined temperature for example, about 750 ° C. to 800 ° C.
  • a predetermined time for example, about 1 hour.
  • the controller Ctr is, for example, a transmission device 120, a press working device 130, an annealing furnace 200, and a conveyor Cv based on a program recorded on a non-transient recording medium (not shown) or an operation input from an operator. Is configured to generate a signal to operate.
  • the controller Ctr is configured to transmit the signal to the delivery device 120, the press working device 130, the annealing furnace 200, and the conveyor Cv, respectively.
  • the press working apparatus 130 includes a lower die 140, an upper die 150, and a press machine 160.
  • the lower mold 140 includes a base 141, a die holder 142, a die plate 143 (holding member), and a plurality of guide posts 144.
  • the base 141 is fixed on the floor, for example, and functions as a base for the entire press working apparatus 130.
  • the die holder 142 is supported on the base 141.
  • a plurality of discharge holes C1 to C5 are formed in the die holder 142.
  • the discharge holes C1 to C5 may extend vertically inside the die holder 142. Materials punched from the metal plate MS (for example, punched member W, waste material, etc.) are discharged into the discharge holes C1 to C5.
  • the die plate 143 is configured to press the metal plate MS together with a plurality of punches P1 to P5.
  • the die plate 143 includes a plurality of dies D1 to D5.
  • the dies D1 to D5 are respectively arranged at positions corresponding to the punches P1 to P5, and include die holes D1a to D5a through which the corresponding punches P1 to P5 can be inserted.
  • the dies D1 to D5 are arranged in this order from the upstream side to the downstream side in the transport direction of the metal plate MS.
  • the die D1 together with the punch P1 constitutes a first punching unit for punching the metal plate MS.
  • the metal piece punched out from the metal plate MS by the first punching unit is discharged to the outside of the press working apparatus 130 through the discharge hole C1.
  • the die D2, together with the punch P2, constitutes a second punching unit for cutting and bending the metal plate MS. The details of the second punching unit will be described later.
  • the die D3, together with the punch P3, constitutes a third punching unit for punching or half punching the metal plate MS.
  • the metal piece punched out from the metal plate MS by the third punching unit is discharged to the outside of the press working apparatus 130 through the discharge hole C3.
  • the die D4, together with the punch P4, constitutes a fourth punching unit for punching the metal plate MS.
  • the metal piece punched out from the metal plate MS by the fourth punching unit is discharged to the outside of the press working apparatus 130 through the discharge hole C4.
  • the die D5, together with the punch P5, constitutes a fifth punching unit for punching the metal plate MS.
  • the punching member W punched out from the metal plate MS by the first punching unit is discharged to the outside of the press working apparatus 130 through the discharge hole C5. The details of the fifth punching unit will be described later.
  • the plurality of guide posts 144 extend linearly upward from the die holder 142.
  • the plurality of guide posts 144, together with the guide bush 151a described later, are configured to guide the upper die 150 in the vertical direction.
  • the plurality of guide posts 144 may be attached to the upper mold 150 so as to extend downward from the upper mold 150.
  • the upper die 150 includes a punch holder 151, a stripper 152 (holding member), a plurality of punches P1 to P5, and a pilot pin (not shown).
  • the punch holder 151 is arranged above the die holder 142 and the die plate 143 so as to face each other.
  • the punch holder 151 is configured to hold a plurality of punches P1 to P5 on the lower surface side thereof.
  • the punch holder 151 is provided with a plurality of guide bushes 151a.
  • the plurality of guide bushes 151a are respectively positioned so as to correspond to the plurality of guide posts 144.
  • the guide bush 151a has a cylindrical shape, and the guide post 144 can pass through the internal space of the guide bush 151a.
  • the guide bush 151a may be provided on the lower die 140.
  • the punch holder 151 is provided with a plurality of through holes 151b.
  • a step-like step is formed on the inner peripheral surface of the through hole 151b. Therefore, the diameter of the lower part of the through hole 151b is set smaller than the diameter of the upper part of the through hole 151b.
  • the stripper 152 is configured to remove the metal plate MS that has bitten into the punches P1 to P5 from the punches P1 to P5 when the metal plate MS is pressed by the punches P1 to P5.
  • the stripper 152 is arranged between the dies D1 to D5 and the punch holder 151.
  • the stripper 152 is connected to the punch holder 151 via the connecting member 153.
  • the connecting member 153 includes a long main body portion and a head provided at the upper end of the main body portion.
  • the main body of the connecting member 153 is inserted under the through hole 151b, and can move up and down in the through hole 151b.
  • the lower end of the main body of the connecting member 153 is fixed to the stripper 152.
  • an urging member 154 for example, a compression coil spring or the like
  • an urging member 154 configured to exert an urging force in a direction for separating the punch holder 151 and the stripper 152 is attached to them. May be.
  • the head of the connecting member 153 is arranged above the through hole 151b.
  • the outer shape of the head of the connecting member 153 is set to be larger than the outer shape of the main body of the connecting member 153 when viewed from above. Therefore, the head of the connecting member 153 can move up and down in the upper part of the through hole 151b.
  • the step of the through hole 151b functions as a stopper, the head of the connecting member 153 cannot move to the lower part of the through hole 151b. Therefore, the stripper 152 is suspended and held by the punch holder 151 so that it can move up and down relatively with respect to the punch holder 151.
  • the stripper 152 is provided with through holes at positions corresponding to punches P1 to P5, respectively. Each through hole extends in the vertical direction. Each through hole communicates with the corresponding die holes D1a to D5a when viewed from above.
  • the lower portions of the punches P1 to P5 are housed in each through hole. The lower portions of the punches P1 to P5 are each slidable in each through hole.
  • the press machine 160 is configured to move the upper die 150 up and down.
  • the press machine 160 includes a crankshaft 161, a fixing member 162, a connecting member 163, and a drive mechanism 164.
  • the crankshaft 161 includes a spindle (crank journal), an eccentric shaft (crank pin) located eccentrically from the spindle, and a connecting member (crank arm) connecting them.
  • the fixing member 162 is fixed to a fixed wall or the like, and is configured to rotatably hold the main shaft of the crankshaft 161.
  • the connecting member 163 connects the crankshaft 161 and the punch holder 151.
  • An eccentric shaft of the crankshaft 161 is rotatably connected to one end of the connecting member 163.
  • a punch holder 151 is connected to the other end of the connecting member 163 via a rotating shaft (not shown).
  • the drive mechanism 164 is connected to the main shaft of the crankshaft 161 via, for example, a flywheel, a gearbox, or the like (not shown).
  • the drive mechanism 164 operates based on the instruction signal from the controller Ctr to rotate the spindle of the crankshaft 161.
  • the eccentric axis makes a circular motion around the spindle.
  • the punch holder 151 reciprocates up and down between the top dead center and the bottom dead center.
  • the second punching unit includes a plurality of units U1 for performing cutting and bending with reverse clearance, and a plurality of units U2 for performing cutting and bending with forward clearance.
  • the plurality of units U1 and the plurality of units U2 are arranged on the die plate 143 so as to exhibit a circular shape as a whole in the plan view shown in FIG.
  • the plurality of units U1 and the plurality of units U2 may be alternately arranged in the direction (circumferential direction) in which they are arranged.
  • the unit U1 includes a pushback plate Ua, an urging member Ub, a die D2A, and a punch P2A, as shown in FIGS. 13 and 14.
  • the pushback plate Ua is arranged in the die hole D2a of the die D2A and is urged upward by the urging member Ub.
  • the die hole D2a of the die D2A has a substantially rectangular shape when viewed from above, and is outward from one long side Ea (the long side on the left side of FIG. 13) of the central part. Includes protruding parts and protrusions.
  • the shapes of the long side Ea and the contour Eb of the protruding portion correspond to the cutting line CL1.
  • the punch P2A When the direction in which the upper die 150 is located is defined as upward with respect to the lower die 140, the punch P2A is arranged above the die hole D2a of the die D2A so as to have a one-to-one correspondence with the die D2A.
  • the view of the second punching unit in a plan view shown in FIG. 12 has the same meaning as the view of the second punching unit from above.
  • the punch P2A has a shape corresponding to the die hole D2a of the die D2A when viewed from above.
  • the punch P2A includes a central portion having a substantially rectangular shape when viewed from above, and a protruding portion protruding outward from one long side Qa (the long side on the left side of FIG. 13) of the central portion.
  • the one long side Qa of the punch P2A and the contour Qb of the protruding portion are located outside the one long side Ea of the die hole D2a of the die D2A and the contour Eb of the protruding portion. That is, in the plan view shown in FIG. 12, the portion constituting the long side Qa of one of the punches P2A and the contour Qb of the protruding portion is the long side Ea of one of the die holes D2a of the die D2A and the contour Eb of the protruding portion. It overlaps with the parts that make up. Therefore, as shown in FIG. 14, the reverse clearance H1 exists in the overlapping portion between the punch P2A and the die hole D2a of the die D2A.
  • the size of the reverse clearance H1 may be, for example, about 1% to 2% of the plate thickness of the punched member W (metal plate MS). Alternatively, when the plate thickness of the punched member W (metal plate MS) is about 0.50 mm, the size of the reverse clearance H1 may be, for example, about 5 ⁇ m to 10 ⁇ m.
  • the cut and bent piece MSa and the base material portion MSb are formed as shown in FIG.
  • the base metal portion MSb is the remaining portion that cannot be cut and bent.
  • the cut and bent piece MSa is partially press-fitted into the base material portion MSb by the pushback plate Ua and the urging member Ub (incomplete pushback processing).
  • a shear cross section SA is formed on most of the end faces of the cut and bent piece MSa and the base metal portion MSb.
  • the unit U2 includes a pushback plate Ua, an urging member Ub, a die D2B, and a punch P2B, as shown in FIGS. 15 and 16.
  • the pushback plate Ua is arranged in the die hole D2a of the die D2B and is urged upward by the urging member Ub.
  • the die hole D2a of the die D2B has the same shape as the die hole D2a of the die D2A. That is, the die hole D2a of the die D2B has a central portion having a substantially rectangular shape when viewed from above, and a protruding portion protruding outward from one long side Ec (long side on the left side in FIG. 15) of the central portion. including.
  • the shape of the one long side Ec and the contour Ed of the protruding portion corresponds to the cutting line CL2.
  • the punch P2B is arranged above the die hole D2a of the die D2B so as to have a one-to-one correspondence with the die D2B.
  • the punch P2B has a shape corresponding to the die hole D2a of the die D2B when viewed from above.
  • the punch P2B includes a central portion having a substantially rectangular shape when viewed from above, and a protruding portion protruding outward from one long side Qc (the long side on the left side of FIG. 15) of the central portion.
  • the one long side Qc of the punch P2B and the contour Qd of the protruding portion are located inside the one long side Ec of the die hole D2a of the die D2A and the contour Ed of the protruding portion. Therefore, as shown in FIG. 16, a positive clearance H2 exists at a portion where the punch P2B and the die hole D2a of the die D2B are separated from each other.
  • the size of the positive clearance H2 may be, for example, about 1% to 2% of the plate thickness of the punched member W (metal plate MS). Alternatively, when the plate thickness of the punched member W (metal plate MS) is about 0.50 mm, the size of the positive clearance H2 may be, for example, about 5 ⁇ m to 10 ⁇ m.
  • the cut and bent piece MSc (another cut and bent piece) and the base metal are formed.
  • Part MSd is formed.
  • the base material portion MSd is a portion of the metal plate MS corresponding to the cut and bent piece MSc, and is a portion that cannot be cut and bent.
  • the cut and bent piece MSc is partially press-fitted into the base material portion MSd by the pushback plate Ua and the urging member Ub (incomplete pushback processing).
  • a fracture surface SB and a shear section SA are formed on the end face of the cut and bent piece MSc in the order from top to bottom.
  • Shear section SA and fracture surface SB are formed on the end face of the base metal portion MSd in the order from top to bottom.
  • the die D5 is held on the die plate 143 so as to be rotatable around a central axis extending along the vertical direction.
  • a rotary holder 171 for holding the die D5 may be provided on the die plate 143, and a drive mechanism 172 for rotationally driving the rotary holder 171 may be connected to the rotary holder 171.
  • the drive mechanism 172 rotates the die D5 around the central axis of the die D5 based on the instruction signal from the controller Ctr. Therefore, after the punching member W punched out from the metal plate MS is stacked on the punching member W punched out in advance, the die D5 rotates by a predetermined angle, so that the subsequent punching member W precedes. It is transposed with respect to the punching member W to be punched.
  • the drive mechanism 172 may be composed of, for example, a combination of a rotary motor, gears, a timing belt, and the like.
  • a drive mechanism 173, a cylinder 174, and a pusher 175 are arranged in the discharge hole C5.
  • the drive mechanism 173 is configured to drive the cylinder 174 in the vertical direction based on an instruction signal from the controller Ctr.
  • the cylinder 174 is configured to support the punched member W punched out from the metal plate MS by the punch P5. This prevents the punched member W from falling.
  • the cylinder 174 may be driven by the drive mechanism 173 so as to intermittently move downward each time the punching member W is stacked on the cylinder 174, for example.
  • the cylinder 174 is driven so that its surface is lowered to a position equal to the surface of the conveyor Cv. It may be driven by a mechanism 173 (see FIG. 19).
  • the pusher 175 is configured to push the stator laminated iron core 1 on the cylinder 174 to the conveyor Cv based on the instruction signal from the controller Ctr.
  • the stator laminated iron core 1 delivered to the conveyor Cv is conveyed to the annealing furnace 200 and heat-treated.
  • a plurality of openings V may be formed in the stripper 152.
  • the opening V may be a through hole or a non-penetrating recess.
  • the opening V may be provided.
  • the plurality of openings V may be formed on the die plate 143, or may be formed on both the die plate 143 and the stripper 152.
  • the press machine 160 When the metal plate MS is intermittently sent to the press processing device 130 by the delivery device 120 and the predetermined portion of the metal plate MS reaches the first processing unit, the press machine 160 operates and the upper mold 150 is moved to the lower mold 140. Push down toward. Even after the stripper 152 reaches the metal plate MS and the metal plate MS is sandwiched between the stripper 152 and the die plate 143, the press machine 160 pushes the upper die 150 downward.
  • the stripper 152 does not move, but the punch holder 151 and the punches P1 to P5 continue to descend. Therefore, the tip portion of the punch P1 moves downward in each through hole of the stripper 152, and further reaches the vicinity of the die hole D1a of the die D1. In this process, the punch P1 punches the metal plate MS along the die hole D1a of the die D1. As a result, a plurality of through holes R1 and a plurality of through holes R2 are formed in the metal plate MS (see position X1 in FIG. 20).
  • the plurality of through holes R1 have a shape corresponding to the slot W5 of the punching member W, and are arranged radially as a whole.
  • the plurality of through holes R2 have a rectangular shape and are arranged in a radial pattern.
  • the through hole R2 is located radially outward of the through hole R1.
  • the punched waste material is discharged from the discharge hole C1. After that, the press machine 160 operates to raise the upper die 150.
  • the upper mold 150 is moved up and down by the press machine 160 in the same manner as described above. Then, the metal plate MS is cut and bent and incompletely pushed back by the punch P2 and the die D2. As a result, cutting lines CL1 and CL2 are formed between the through hole R1 and the through hole R2 (see position X2 in FIG. 20).
  • the upper mold 150 is moved up and down by the press machine 160 in the same manner as described above. Then, the metal plate MS is punched or half punched by the punch P3 and the die D3. As a result, a plurality of caulked portions 4 are formed at predetermined positions of the metal plate MS (see position X3 in FIG. 21). The punched waste material is discharged from the discharge hole C3.
  • the upper mold 150 is moved up and down by the press machine 160 in the same manner as described above.
  • the metal plate MS is punched by the punch P4 and the die D4.
  • a through hole R3 having a circular shape is formed (see position X4 in FIG. 21).
  • the punched waste material is discharged from the discharge hole C4.
  • the through hole R3 has a shape corresponding to the through hole Wa of the punching member W, and partially overlaps the inside of the plurality of through holes R1. By communicating the through hole R3 with the through hole R1, a plurality of tooth pieces W3 are formed.
  • the upper mold 150 is moved up and down by the press machine 160 in the same manner as described above. Then, the metal plate MS is punched by the punch P5 and the die D5. As a result, the punching member W is formed (see position X5 in FIG. 22).
  • the punched member W is laminated in the die hole D5a with respect to the punched member W punched in advance, and is mutually held by the caulking portion 4.
  • the controller Ctr instructs the drive mechanism 172 before the punching process of the metal plate MS by the punch P5 is performed, and the punching member in the die hole D5a is instructed.
  • the die D5 may be rotated by a predetermined angle together with W.
  • the rolling angle is, for example, 30 °.
  • the rolling angle may be 60 °, 90 ° or 90 °.
  • the cutting lines CL1 and the cutting lines CL2 appear alternately in the stacking direction for any of the cutting line groups G of the stator laminated iron core 1.
  • the rolling angle is 60 °, either the cutting line CL1 or the cutting line CL2 appears in the single cutting line group G of the fixed laminated iron core 1 in the stacking direction.
  • stator laminated iron core 1 When a predetermined number of punching members W are laminated in the die hole D5a, the stator laminated iron core 1 is formed (see FIG. 18). The stator laminated iron core 1 is pushed out to the conveyor Cv by the pusher 175 and conveyed to the annealing furnace 200. After that, when the stator laminated iron core 1 is heat-treated in the annealing furnace 200, strain is removed from the punching member W, and the stator laminated iron core 1 is completed.
  • a punch is advanced toward a die hole provided in the die, and the metal plate is partially pushed into the die hole with the punch to form a predetermined portion of the metal plate.
  • An example of this method is to push back the cut and bent piece to the base material portion, and to form the cut and bent piece and the base metal portion through a cutting line formed by the boundary between the first end face and the second end face. May further include temporary connection.
  • Examples of the method further include punching a metal plate so as to include a portion to form a plurality of metal plates exhibiting an annular shape, and laminating a plurality of metal plates to form a laminated body.
  • a metal plate so as to include a portion to form a plurality of metal plates exhibiting an annular shape
  • laminating a plurality of metal plates to form a laminated body May include.
  • At least a part of the outer shape of the punch corresponding to the cutting line may be located outside the contour of the die hole when viewed from the advance direction of the punch.
  • each of the punch and the die includes an overlapping portion where the punch and the die partially overlap each other when viewed from the advance direction of the punch. Therefore, when the bent piece and the base metal portion are formed by the cutting and bending process, the portion of the first end face and the second end face corresponding to the overlap portion becomes a substantially sheared cross section. Since the shear section is smoother than the fracture surface, the holding force between the first end face and the second end
  • another punch is advanced toward another die hole provided in another die, and the metal plate is partially used for another die hole with another punch.
  • a predetermined other part of the metal plate is cut and bent along a predetermined different cutting line to form another cutting piece including the third end face and a fourth corresponding to the third end face. It may further include forming another base metal portion including the end face of the.
  • the above method further pushes back another piece of cut and bent against another base metal portion via another cutting line formed by the boundary between the third end face and the fourth end face. It may include temporarily connecting another cutting piece and another base material portion.
  • the above method may include punching a metal plate to include another portion to form a plurality of different metal plate materials exhibiting an annular shape.
  • a metal plate When viewed from the advance direction of another punch, at least a part of the outer shape corresponding to another cutting line of another punch overlaps with the contour of another die hole or is located inward of another die hole. You may be doing it.
  • Forming a laminate includes laminating at least one of a plurality of metal plates and at least one of a plurality of other metal plates such that a cutting line and another cutting line overlap. You may.
  • a group of cutting lines in which a cutting line having a relatively small holding force and another cutting line having a relatively large holding force are arranged in a row in the stacking direction of the laminated body is formed in the laminated body. Therefore, by adjusting the number of metal plates constituting the laminated body and the number of other metal plates, the holding force in the cutting line group changes. Therefore, it is possible to adjust the force required to separate the laminated body into individual pieces in the cutting line group.
  • the above-mentioned method for manufacturing a split-type laminated iron core may further include annealing the laminated body after forming the laminated body.
  • Annealing is a process for removing the strain remaining inside the metal plate material constituting the laminated body. Since the metal plate material thermally expands due to heating during annealing, the holding force between the first end face and the second end face temporarily connected via the cutting wire may increase. However, as described above, since the holding force of the first end face and the second end face corresponding to the overlapping portion is small, the metal plate material has a smaller force in the cutting line even after annealing. It becomes possible to individualize with.
  • forming a laminated body may include transposing a plurality of metal plates.
  • the types of cutting wires overlapping in the stacking direction can be adjusted. Therefore, it is possible to control the force required to separate the laminated body into individual pieces in the cutting line group without increasing the types of metal plate materials.
  • the above-mentioned split type laminated iron core may be configured by laminating a plurality of metal plates exhibiting an annular shape.
  • the metal plate material may include a first divided piece and a second divided piece arranged in the circumferential direction and divided by a predetermined cutting line.
  • the first divided piece and the second divided piece may be temporarily connected via a cutting line composed of the first end face of the first divided piece and the second end face of the second divided piece. ..
  • the first end face and the second end face may each include a region having a shear cross section in almost the entire area. In this case, it is possible to provide a split type laminated iron core capable of individualizing a metal plate material with a smaller force in a cutting wire.
  • one adjacent yoke piece W2a and another yoke piece W2a are partially temporarily connected via the cutting lines CL1 and CL2 by incomplete pushback processing.
  • the adjacent yoke pieces W2a may be completely pushed back to each other. That is, in any of the cutting lines CL1 and CL2, there may not be a step between adjacent yoke pieces W2a.
  • adjacent yoke pieces W2a may be completely pushed back to each other at any of the cutting lines CL1 and CL2. In this case, the number of openings V formed in the die plate 143 or the stripper 152 may be appropriately reduced.
  • the end faces S1a and S1b may each include a region composed of a shear cross section SA and a fracture surface SB and a region substantially composed of a shear cross section SA.
  • at least a part of the outer shape of the punch corresponding to the cutting line may be located outside the contour of the die hole.
  • At least one cutting line may be formed by a die and a punch having a reverse clearance H1. All cutting lines may be formed by dies and punches with reverse clearance H1. In these cases, the reverse clearance H1 may be present in a part of the die and the punch, or the reverse clearance H1 may be present in the whole of the die and the punch.
  • At least one cutting line may be formed by a die and a punch having a positive clearance H2.
  • the cutting line has an uneven shape when viewed from above, but the cutting line extends along the radial direction of the yoke material W2 and in the circumferential direction of the yoke material W2.
  • a line segment extending along the line segment it may have another shape such as a crank shape or a step shape.
  • Each line segment may have various shapes such as a straight line, a curved line, and an arc shape.
  • at least one corner may be cut out in a straight line (for example, a trapezoidal shape or the like), and at least one corner may be cut out in an arc shape (for example, an arc shape). You may be asked.
  • This technique may be applied not only to the stator laminated iron core 1 but also to the rotor laminated iron core.
  • One adjacent yoke piece W2a and another yoke piece W2a form a cutting line CL1 so that the end faces S1a and S1b do not completely overlap each other and the end faces 12a and S1b partially abut against each other in the shear cross section SA. It is partially temporarily connected via. Further, one yoke piece W2a and another yoke piece W2a adjacent to each other are cut lines so that the end faces S2a and S2b do not completely overlap each other and the end faces S2a and S2b partially abut each other in the shear cross section SA. It is partially temporarily connected via CL2.
  • a step is formed between one adjacent yoke piece W2a and another yoke piece W2a.
  • the area in contact with the adjacent yoke pieces W2a in the shear cross section SA at the end faces S2a and S2b is smaller.
  • the holding force between one adjacent yoke piece W2a and the other yoke pieces W2a becomes small. Therefore, the iron core pieces 6 can be separated into individual pieces with a smaller force.
  • the size of the step can be set to 10% to 40% of the plate thickness of the punching member W.
  • the shape of the stator laminated iron core 1 tends to be maintained unless an external force for separating the iron core pieces 6 into individual pieces is positively applied to the stator laminated iron core 1. Therefore, while reducing the holding force between the iron core pieces 6, it is possible to prevent the iron core pieces 6 from being unintentionally separated into individual pieces.
  • the end faces S1a and S1b are substantially composed of a shear cross section SA.
  • the fracture surface SB has relatively severe irregularities, whereas the shear section SA is relatively smooth, so that the holding force between the iron core pieces 6 on the end faces S1a and S1b is relatively small. Therefore, the iron core pieces 6 can be separated into individual pieces with a smaller force.
  • An opening V can be formed in at least one of the die plate 143 and the stripper 152.
  • the portion where the metal plate MS is incompletely pushed back is opened in the second punching unit. It may be arranged in the portion V. In this case, when processing the metal plate MS, a region of the metal plate MS excluding the vicinity of the portion is sandwiched between the die plate 143 and the stripper 152.
  • the one long side Qa of the punch P2A and the contour Qb of the protruding portion may be located outside the one long side Ea of the die hole D2a of the die D2A and the contour Eb of the protruding portion. That is, the portion constituting the long side Qa of one of the punches P2A and the contour Qb of the protruding portion has the contour Eb of one of the long sides Ea and the protruding portion of the die hole D2a of the die D2A when viewed from above. It constitutes an overlapping part that overlaps with the constituent parts.
  • the portion of each end face of the cut / bent piece MSa and the base material portion MSb that corresponds to the overlapping portion becomes substantially a shear cross section SA. Since the shear section SA is smoother than the fracture surface SB, the holding force between the relevant portions tends to be smaller. Therefore, the punching member W can be individualized with a smaller force on the cutting line CL1.
  • the stator laminated iron core 1 is composed of a cutting line group G in which a cutting line CL1 having a relatively small holding force and a cutting line CL2 having a relatively large holding force are arranged in a row in the stacking direction. Therefore, by adjusting the number of overlapping cutting lines CL1 and CL2, the holding force in the cutting line group G changes. Therefore, it is possible to control the force required to separate the stator laminated iron core 1 in the cutting line group G.
  • the stator laminated iron core 1 can be heat-treated in the annealing furnace 200. Due to the thermal expansion of the punching member W during annealing, the holding force between the end faces of the adjacent yoke pieces W2a may increase. However, as described above, of the end faces of the cut and bent piece MSa and the base material portion MSb, the holding connection force of the portion corresponding to the incomplete pushback processed portion or the overlap portion is small, so that annealing is performed. Even after that, the punching member W can be individualized with a smaller force at the cutting line CL1.
  • a plurality of punched members W can be rolled up to form a stator laminated iron core 1.
  • a plurality of types of cutting lines CL1 and CL2 having different holding powers are provided in one punching member W, and the punching members W are appropriately transposed so that the cutting lines CL1 and CL2 overlapping in the stacking direction are overlapped with each other. You can adjust the type. Therefore, it is possible to adjust the force required to separate the stator laminated iron core 1 in the cutting line group G without increasing the types of punching members W.
  • MSc cutting and bending piece (Another cut and bent piece), P2A ... Punch, P2B ... Punch (another punch), S1a ... End face (first end face), S1b ... End face (second end face), SA ... Sheep cross section, SB ... Fracture cross section , U1, U2 ... Unit, V ... Opening, W ... Punching member (metal plate material, another metal plate material), W2 ... York material, W2a ... York piece (first divided piece, second divided piece).

Abstract

This method for manufacturing a segmented laminated core (1) comprises: advancing a punch (P2A) toward a die hole (D2a) provided in a die (D2A) and partially pressing a metal sheet (MS) into the die hole (D2a) with the punch (P2A) so as to perform cut-and-bend processing on a prescribed portion of the metal sheet (MS) along a prescribed cutting line, thereby forming a cut-and-bent piece (MSa) which includes a first end face and a base material part (MSb) which includes a second end face corresponding to the first end face; performing push-back processing on the cut-and-bent piece (MSa) with respect to the base material part (MSb), thereby temporarily connecting the cut-and-bent piece (MSa) and the base material part (MSb), with a cutting line therebetween which is constituted by the border between the first end face and the second end face; performing punching on the metal sheet (MS) so as to include said portion, thereby forming a plurality of ring-shaped metal sheet members; and laminating the plurality of metal sheet members to produce a laminated body. In a view from the direction of advancement of the punch (P2A), at least part of the outer shape of the punch (P2A) which corresponds to the cutting line is positioned outward of the outline of the die hole (D2a).

Description

分割型積層鉄心の製造方法及び分割型積層鉄心Manufacturing method of split type laminated iron core and split type laminated iron core
 本開示は、分割型積層鉄心の製造方法及び分割型積層鉄心に関する。 The present disclosure relates to a method for manufacturing a split-type laminated core and a split-type laminated core.
 特許文献1は、金属板が切り曲げ加工及びプッシュバック加工されることにより、複数の切断線がヨーク材に予め設けられた打抜部材を、金属板から打ち抜くことと、金属板から打ち抜かれた複数の打抜部材を積層して、積層体を形成することとを含む、分割型固定子積層鉄心の製造方法を開示している。ヨーク材は、複数のヨーク片を含んでおり、隣り合うヨーク片の端部同士が切断線を介して仮接続されて構成されている。そのため、積層体に外力を付与することにより、切断線に沿ってヨーク材を複数のヨーク片に個片化することができる。 In Patent Document 1, when a metal plate is cut and bent and pushed back, a plurality of cutting lines are punched out from the metal plate and a punched member provided in advance on the yoke material is punched out from the metal plate. Disclosed is a method for manufacturing a split-type stator laminated iron core, which comprises laminating a plurality of punched members to form a laminated body. The yoke material includes a plurality of yoke pieces, and the ends of adjacent yoke pieces are temporarily connected to each other via a cutting wire. Therefore, by applying an external force to the laminated body, the yoke material can be individualized into a plurality of yoke pieces along the cutting line.
日本国特開2005-318763号公報Japanese Patent Application Laid-Open No. 2005-318763
 特許文献1のプッシュバック加工は、プッシュバックステーションにおいて、金属板のうち切り曲げ加工された部位を、ストリッパとダイとによって押圧することを含む。これにより、切り曲げ加工された部位は、金属板と面一となるように元の金属板に完全に押し戻され、打抜部材における切断線が形成される。しかしながら、この場合、切断線において仮接続されたヨーク片同士の保持力が強固となり、ヨーク材を個片化するのに大きな力を要する場合がある。 The pushback process of Patent Document 1 includes pressing a portion of a metal plate that has been cut and bent by a stripper and a die in a pushback station. As a result, the cut and bent portion is completely pushed back to the original metal plate so as to be flush with the metal plate, and a cutting line in the punched member is formed. However, in this case, the holding force between the temporarily connected yoke pieces at the cutting line becomes strong, and a large force may be required to separate the yoke members into individual pieces.
 そこで、本開示は、より小さな力で個片化することが可能な分割型積層鉄心及びその製造方法を説明する。 Therefore, the present disclosure describes a split-type laminated iron core that can be separated into individual pieces with a smaller force and a method for manufacturing the same.
 分割型積層鉄心の製造方法の一例は、ダイに設けられたダイ孔に向けてパンチを進出させて、金属板をパンチでダイ孔に対して部分的に押し込むことにより、金属板の所定の部位を所定の切断線に沿って切り曲げ加工して、第1の端面を含む切り曲げ片と、第1の端面に対応する第2の端面を含む母材部とを形成することを含んでいてもよい。当該方法の一例は、切り曲げ片を母材部に対してプッシュバック加工して、第1の端面及び第2の端面の境界によって構成される切断線を介して切り曲げ片と母材部とを仮接続することをさらに含んでいてもよい。当該方法の一例は、またさらに、部位を含むように金属板を打ち抜き加工して、環状を呈する複数の金属板材を形成することと、複数の金属板材を積層して積層体を形成することとを含んでいてもよい。パンチの進出方向から見て、パンチのうち切断線に対応する外形の少なくとも一部が、ダイ孔の輪郭よりも外方に位置していてもよい。 An example of a method for manufacturing a split-type laminated iron core is to advance a punch toward a die hole provided in a die and partially push the metal plate into the die hole with the punch to form a predetermined portion of the metal plate. Includes cutting and bending along a predetermined cutting line to form a cut and bent piece containing a first end face and a base metal portion containing a second end face corresponding to the first end face. May be good. An example of this method is to push back the cut and bent piece to the base material portion, and to form the cut and bent piece and the base metal portion through a cutting line formed by the boundary between the first end face and the second end face. May further include temporary connection. Examples of the method further include punching a metal plate so as to include a portion to form a plurality of metal plates exhibiting an annular shape, and laminating a plurality of metal plates to form a laminated body. May include. When viewed from the advance direction of the punch, at least a part of the outer shape of the punch corresponding to the cutting line may be located outside the contour of the die hole.
 分割型積層鉄心の一例は、環状を呈する金属板材が複数積層されて構成されていてもよい。金属板材は、その周方向において並び且つ所定の切断線によって分割された第1の分割片及び第2の分割片を含んでいてもよい。第1の分割片の第1の端面及び第2の分割片の第2の端面によって構成される切断線を介して第1の分割片と第2の分割片とが仮接続されていてもよい。第1の端面及び第2の端面はそれぞれ、ほぼ全域が剪断面である領域を含んでいてもよい。 An example of the split type laminated iron core may be configured by laminating a plurality of metal plates exhibiting an annular shape. The metal plate material may include a first divided piece and a second divided piece arranged in the circumferential direction and divided by a predetermined cutting line. The first divided piece and the second divided piece may be temporarily connected via a cutting line composed of the first end face of the first divided piece and the second end face of the second divided piece. .. The first end face and the second end face may each include a region having a shear cross section in almost the entire area.
 本開示に係る分割型積層鉄心の製造方法及び分割型積層鉄心によれば、より小さな力で個片化することが可能となる。 According to the method for manufacturing a split-type laminated iron core and the split-type laminated iron core according to the present disclosure, it is possible to separate the pieces with a smaller force.
図1は、分割型の固定子積層鉄心の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a split type stator laminated iron core. 図2は、図1のII部を拡大して示す斜視図である。FIG. 2 is an enlarged perspective view showing part II of FIG. 1. 図3は、図1の固定子積層鉄心を構成する打抜部材を示す上面図である。FIG. 3 is a top view showing a punched member constituting the stator laminated iron core of FIG. 1. 図4は、図3のIV部を拡大して示す上面図である。FIG. 4 is an enlarged top view showing the IV portion of FIG. 図5は、図4のV-V線断面図である。FIG. 5 is a sectional view taken along line VV of FIG. 図6は、図5における切り曲げ片及び母材部の各端面を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing each end face of the cut and bent piece and the base material portion in FIG. 図7は、図3のVII部を拡大して示す上面図である。FIG. 7 is an enlarged top view showing the VII portion of FIG. 図8は、図7のVIII-VIII線断面図である。FIG. 8 is a sectional view taken along line VIII-VIII of FIG. 図9は、図8における切り曲げ片及び母材部の各端面を模式的に示す斜視図である。FIG. 9 is a perspective view schematically showing each end face of the cut and bent piece and the base material portion in FIG. 図10は、固定子積層鉄心の製造装置の一例を示す概略図である。FIG. 10 is a schematic view showing an example of an apparatus for manufacturing a stator laminated iron core. 図11は、プレス加工装置の一例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing an example of a press working apparatus. 図12は、第2の打抜ユニットを構成する複数のダイの一例を示す上面図である。FIG. 12 is a top view showing an example of a plurality of dies constituting the second punching unit. 図13は、逆クリアランスによる切り曲げ加工のためのダイ及びパンチの一例を示す上面図である。FIG. 13 is a top view showing an example of a die and a punch for cutting and bending by reverse clearance. 図14は、図13のXIV-XIV線断面図である。FIG. 14 is a sectional view taken along line XIV-XIV of FIG. 図15は、正クリアランスによる切り曲げ加工のためのダイ及びパンチの一例を示す上面図である。FIG. 15 is a top view showing an example of a die and a punch for cutting and bending with a positive clearance. 図16は、図15のXVI-XVI線断面図である。FIG. 16 is a cross-sectional view taken along the line XVI-XVI of FIG. 図17は、金属板のうち不完全プッシュバックされた部位と、ダイ及びストリッパとの関係の一例を示す断面図である。FIG. 17 is a cross-sectional view showing an example of the relationship between the incompletely pushed back portion of the metal plate and the die and stripper. 図18は、打抜部材を形成する加工ユニットの一例を示す断面図であり、金属板から金属板材を打ち抜いて転積する様子を説明するための図である。FIG. 18 is a cross-sectional view showing an example of a processing unit forming a punching member, and is a diagram for explaining a state in which a metal plate material is punched out from a metal plate and stacked. 図19は、図18の加工ユニットにおいて、固定子積層鉄心をプレス加工装置から排出する様子を説明するための図である。FIG. 19 is a diagram for explaining how the stator laminated iron core is discharged from the press working apparatus in the machining unit of FIG. 図20は、金属板のプレス加工のレイアウトの一例を部分的に示す図である。FIG. 20 is a diagram partially showing an example of a press working layout of a metal plate. 図21は、金属板のプレス加工のレイアウトのうち図20の後続部分を示す図である。FIG. 21 is a diagram showing a subsequent portion of FIG. 20 in the press working layout of the metal plate. 図22は、金属板のプレス加工のレイアウトのうち図21の後続部分を示す図である。FIG. 22 is a diagram showing a subsequent portion of FIG. 21 in the press working layout of the metal plate.
 以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。なお、本明細書において、図の上側、下側、右側、左側というときは、符号の向きを基準とすることとする。 In the following description, the same code will be used for the same element or the element having the same function, and duplicate description will be omitted. In the present specification, the terms upper side, lower side, right side, and left side of the figure are referred to as the orientation of the reference numerals.
 [固定子積層鉄心の構成]
 まず、図1~図9を参照して、固定子積層鉄心1(分割型積層鉄心)の構成について説明する。固定子積層鉄心1は、固定子(ステータ)の一部である。固定子は、固定子積層鉄心1に巻線(図示せず)が取り付けられることにより構成される。固定子と回転子(ロータ)とが組み合わせられることにより、電動機(モータ)が構成される。
[Structure of stator laminated iron core]
First, the configuration of the stator laminated iron core 1 (split type laminated iron core) will be described with reference to FIGS. 1 to 9. The stator laminated iron core 1 is a part of the stator (stator). The stator is configured by attaching a winding (not shown) to the stator laminated iron core 1. A motor is configured by combining a stator and a rotor.
 固定子積層鉄心1は、円筒形状を呈している。固定子積層鉄心1の中央部分には、中心軸Axに沿って延びるように固定子積層鉄心1を貫通する貫通孔1aが設けられている。貫通孔1aは、固定子積層鉄心1の高さ方向(積層方向)に延びている。貫通孔1a内には、回転子が配置可能である。 The stator laminated iron core 1 has a cylindrical shape. A through hole 1a that penetrates the stator laminated iron core 1 is provided in the central portion of the stator laminated iron core 1 so as to extend along the central axis Ax. The through hole 1a extends in the height direction (lamination direction) of the stator laminated iron core 1. A rotor can be arranged in the through hole 1a.
 固定子積層鉄心1は、複数の打抜部材W(金属板材、別の金属板材)が積み重ねられた積層体である。固定子積層鉄心1は、複数の打抜部材Wが転積されて構成されていてもよい。「転積」とは、打抜部材W同士の角度を相対的にずらしつつ、複数の打抜部材Wを積層することをいう。転積は、主に打抜部材Wの板厚偏差を相殺して、固定子積層鉄心1の平面度、平行度及び直角度を高めることを目的に実施される。転積の角度は、任意の大きさに設定されていてもよい。 The stator laminated iron core 1 is a laminated body in which a plurality of punched members W (metal plate material, another metal plate material) are stacked. The stator laminated iron core 1 may be configured by laminating a plurality of punching members W. "Transposition" means stacking a plurality of punching members W while relatively shifting the angles of the punching members W. The rolling stacking is mainly carried out for the purpose of offsetting the plate thickness deviation of the punched member W and increasing the flatness, parallelism and squareness of the stator laminated iron core 1. The rolling angle may be set to any size.
 固定子積層鉄心1は、ヨーク2と、複数のティース部3と、複数のカシメ部4を含む。ヨーク2は、環状を呈しており、中心軸Axを囲むように延びている。図1等に例示されるようにおり、ヨーク2は円環状を呈していてもよい。複数のティース部3は、ヨーク2の内縁から中心軸Ax側に向かうようにヨーク2の径方向に沿って延びている。すなわち、複数のティース部3は、ヨーク2の内縁から中心軸Axに向けて突出している。複数のティース部3は、ヨーク2の周方向において、略等間隔で並んでいてもよい。図1等に例示されるように、固定子積層鉄心1は、12個のティース部3を含んでいてもよい。隣り合うティース部3の間には、巻線を配置するための空間であるスロット5が画定されている。 The stator laminated iron core 1 includes a yoke 2, a plurality of teeth portions 3, and a plurality of caulking portions 4. The yoke 2 has an annular shape and extends so as to surround the central axis Ax. As illustrated in FIG. 1 and the like, the yoke 2 may have an annular shape. The plurality of teeth portions 3 extend along the radial direction of the yoke 2 from the inner edge of the yoke 2 toward the central axis Ax side. That is, the plurality of teeth portions 3 project from the inner edge of the yoke 2 toward the central axis Ax. The plurality of tooth portions 3 may be arranged at substantially equal intervals in the circumferential direction of the yoke 2. As illustrated in FIG. 1 and the like, the stator laminated iron core 1 may include 12 teeth portions 3. A slot 5, which is a space for arranging windings, is defined between the adjacent teeth portions 3.
 カシメ部4は、例えば、ヨーク2に設けられていてもよい。図示はしていないが、カシメ部4は、例えば、各ティース部3に設けられていてもよい。積層方向において隣り合う打抜部材W同士は、カシメ部4によって保持されていてもよい。複数の打抜部材W同士は、カシメ部4に代えて、種々の公知の方法にて保持されてもよい。例えば、複数の打抜部材W同士は、例えば、接着剤又は樹脂材料を用いて互いに接合されてもよいし、溶接によって互いに接合されてもよい。あるいは、打抜部材Wに仮カシメを設け、仮カシメを介して複数の打抜部材Wを保持して積層体を得た後、仮カシメを当該積層体から除去することによって、固定子積層鉄心1を得てもよい。なお、「仮カシメ」とは、複数の打抜部材Wを一時的に一体化させるのに使用され且つ製品(固定子積層鉄心1)を製造する過程において取り除かれるカシメを意味する。 The caulking portion 4 may be provided on the yoke 2, for example. Although not shown, the caulking portion 4 may be provided in each tooth portion 3, for example. The punching members W adjacent to each other in the stacking direction may be held by the caulking portion 4. The plurality of punched members W may be held by various known methods instead of the caulking portion 4. For example, the plurality of punched members W may be joined to each other by using, for example, an adhesive or a resin material, or may be joined to each other by welding. Alternatively, the stator laminated iron core is provided by providing a temporary caulking to the punching member W, holding a plurality of punching members W through the temporary caulking to obtain a laminated body, and then removing the temporary caulking from the laminated body. You may get 1. The "temporary caulking" means caulking that is used to temporarily integrate a plurality of punched members W and is removed in the process of manufacturing the product (stator laminated iron core 1).
 ここで、図2~図9を参照して、打抜部材Wについてさらに詳しく説明する。打抜部材Wは、後述する金属板MS(例えば、電磁鋼板)が所定形状に打ち抜かれた板状体であり、固定子積層鉄心1に対応する形状を呈している。図3に示されるように、打抜部材Wの中央部分には、貫通孔Waが設けられている。打抜部材Wは、図2及び図3に示されるように、ヨーク2に対応するヨーク材W2と、各ティース部3に対応する複数のティース片W3とを有している。隣り合うティース片W3の間には、スロット5に対応するスロットW5が画定されている。 Here, the punching member W will be described in more detail with reference to FIGS. 2 to 9. The punched member W is a plate-like body in which a metal plate MS (for example, an electromagnetic steel plate) described later is punched into a predetermined shape, and has a shape corresponding to the stator laminated iron core 1. As shown in FIG. 3, a through hole Wa is provided in the central portion of the punching member W. As shown in FIGS. 2 and 3, the punching member W has a yoke material W2 corresponding to the yoke 2 and a plurality of tooth pieces W3 corresponding to each tooth portion 3. A slot W5 corresponding to the slot 5 is defined between the adjacent tooth pieces W3.
 ヨーク材W2には、ヨーク材W2の内周縁と外周縁との間を横断するように、複数の切断線CL1及び複数の切断線CL2(別の切断線)が設けられている。複数の切断線CL1,CL2は、ヨーク材W2の周方向において、略等間隔で交互に並んでいてもよい。 The yoke material W2 is provided with a plurality of cutting lines CL1 and a plurality of cutting lines CL2 (another cutting line) so as to cross between the inner peripheral edge and the outer peripheral edge of the yoke material W2. The plurality of cutting lines CL1 and CL2 may be arranged alternately at substantially equal intervals in the circumferential direction of the yoke material W2.
 図1及び図3に例示されるように、ヨーク材W2には、切断線CL1,CL2が6本ずつ設けられていてもよい。この場合、ヨーク材W2は、12個のヨーク片W2a(第1の分割片、第2の分割片)で構成される。すなわち、ヨーク材W2は、切断線CL1,CL2によって分割された複数のヨーク片W2aを含んでいてもよい。複数のヨーク片W2aは、ヨーク材W2の周方向に並んでいてもよい。 As illustrated in FIGS. 1 and 3, the yoke material W2 may be provided with six cutting lines CL1 and CL2. In this case, the yoke material W2 is composed of 12 yoke pieces W2a (first divided piece, second divided piece). That is, the yoke material W2 may include a plurality of yoke pieces W2a divided by the cutting lines CL1 and CL2. The plurality of yoke pieces W2a may be arranged in the circumferential direction of the yoke material W2.
 詳しくは後述するが、切断線CL1,CL2は、金属板MSを切り曲げ加工した後、切り曲げ部位を部分的にプッシュバック(本明細書において、「不完全プッシュバック」と称することがある。)して、金属板MSの元の位置に仮接続することにより、形成されている。すなわち、隣り合う一のヨーク片W2a及び他のヨーク片W2a同士は、切断線CL1,CL2を介して部分的に仮接続されている。そのため、図2に示されるように、隣り合う一のヨーク片W2a及び他のヨーク片W2aの端部同士の間に段差が形成されている。段差の大きさは、打抜部材W(金属板MS)の板厚の10%~40%程度であってもよい。打抜部材W(金属板MS)の板厚が0.50mm程度である場合には、段差の大きさは、例えば、0.05mm~0.2mm程度であってもよい。
 なお本明細書でいう「切り曲げ加工」とは、切断加工および曲げ加工を施す加工を意味する。「切り曲げ部位」とは、切断加工および曲げ加工が施された部位を意味する。
As will be described in detail later, the cutting lines CL1 and CL2 may be referred to as "incomplete pushback" in the present specification after the metal plate MS is cut and bent and the cut and bent portion is partially pushed back. ), And it is formed by temporarily connecting to the original position of the metal plate MS. That is, one adjacent yoke piece W2a and the other yoke pieces W2a are partially temporarily connected via the cutting lines CL1 and CL2. Therefore, as shown in FIG. 2, a step is formed between the ends of one adjacent yoke piece W2a and another yoke piece W2a. The size of the step may be about 10% to 40% of the plate thickness of the punched member W (metal plate MS). When the plate thickness of the punched member W (metal plate MS) is about 0.50 mm, the size of the step may be, for example, about 0.05 mm to 0.2 mm.
The term "cutting and bending" as used herein means cutting and bending. "Cut and bend portion" means a portion that has been cut and bent.
 切断線CL1,CL2は、図2~図4及び図7に例示されるように、凹凸形状を呈していてもよい。具体的には、ヨーク材W2の周方向において隣り合う一のヨーク片W2a(図4の上側、図7の左側)の端縁CLaが凹形状(中央が矩形状に窪んだ形状)を呈しており、他のヨーク片W2a(図4の下側、図7の右側)の端縁が凸形状(中央が矩形状に突出した形状)を呈していてもよい。 The cutting lines CL1 and CL2 may have an uneven shape as illustrated in FIGS. 2 to 4 and 7. Specifically, the edge CLa of one yoke piece W2a (upper side in FIG. 4, left side in FIG. 7) adjacent to each other in the circumferential direction of the yoke material W2 exhibits a concave shape (a shape in which the center is recessed in a rectangular shape). The edge of the other yoke piece W2a (lower side in FIG. 4, right side in FIG. 7) may have a convex shape (a shape in which the center protrudes in a rectangular shape).
 詳しくは後述するが、切断線CL1は、逆クリアランスによる切り曲げ加工で形成されている。切断線CL1は、図4に例示されるように、ヨーク材W2の周方向において隣り合う一のヨーク片W2a(図4の上側)の端面S1a(第1の端面)及び他のヨーク片W2a(図4の下側)の端面S1b(第2の端面)の境界によって構成されている。
 なお、「逆クリアランス」とは、切り曲げ加工を行うパンチの径が、ダイ孔の径よりも大きいことを意味する。
As will be described in detail later, the cutting line CL1 is formed by cutting and bending with a reverse clearance. As illustrated in FIG. 4, the cutting line CL1 includes an end surface S1a (first end surface) of one yoke piece W2a (upper side in FIG. 4) adjacent to each other in the circumferential direction of the yoke material W2 and another yoke piece W2a ( It is composed of the boundary of the end face S1b (second end face) of (lower side of FIG. 4).
The "reverse clearance" means that the diameter of the punch to be cut and bent is larger than the diameter of the die hole.
 端面S1a,S1bはそれぞれ、図6に示されるように、ほぼ剪断面SAによって構成されている。図5及び図6に示されるように、端面S1aと端面S1bとは、剪断面SAにおいて互いに部分的に当接している。すなわち、端面S1aと端面S1bとは、完全に重なり合ってはいない。 As shown in FIG. 6, each of the end faces S1a and S1b is composed of a shear cross section SA. As shown in FIGS. 5 and 6, the end face S1a and the end face S1b are partially in contact with each other in the shear cross section SA. That is, the end face S1a and the end face S1b do not completely overlap each other.
 詳しくは後述するが、切断線CL2は、正クリアランスによる切り曲げ加工で形成されている。切断線CL2は、図7に例示されるように、ヨーク材W2の周方向において隣り合う一のヨーク片W2a(図4の左側)の端面S2a及び他のヨーク片W2a(図7の右側)の端面S2bの境界によって構成されている。
 なお、「正クリアランス」とは、切り曲げ加工を行うパンチの径が、ダイ孔の径よりも小さいことを意味する。このとき、パンチがダイに挿入されると、パンチの外壁面とダイ孔の内壁面との間に隙間が存在する。
As will be described in detail later, the cutting line CL2 is formed by cutting and bending with a positive clearance. As illustrated in FIG. 7, the cutting line CL2 is an end face S2a of one yoke piece W2a (left side in FIG. 4) and another yoke piece W2a (right side in FIG. 7) adjacent to each other in the circumferential direction of the yoke material W2. It is composed of the boundaries of the end faces S2b.
The "positive clearance" means that the diameter of the punch to be cut and bent is smaller than the diameter of the die hole. At this time, when the punch is inserted into the die, there is a gap between the outer wall surface of the punch and the inner wall surface of the die hole.
 端面S2a,S2bはそれぞれ、図9に示されるように、剪断面SA及び破断面SBによって構成されている。剪断面SA及び破断面SBは、ヨーク片W2aの板厚方向(上下方向、積層方向)に並んで設けられている。一のヨーク片W2a(図8及び図9の左側)において、剪断面SAは上面側に位置しており、破断面SBは下面側に位置している。他のヨーク片W2a(図8及び図9の右側)において、剪断面SAは下面側に位置しており、破断面SBは上面側に位置している。 As shown in FIG. 9, the end faces S2a and S2b are composed of a shear cross section SA and a fracture surface SB, respectively. The shear section SA and the fracture surface SB are provided side by side in the plate thickness direction (vertical direction, stacking direction) of the yoke piece W2a. In one yoke piece W2a (left side of FIGS. 8 and 9), the shear section SA is located on the upper surface side, and the fracture surface SB is located on the lower surface side. In the other yoke pieces W2a (right side of FIGS. 8 and 9), the shear section SA is located on the lower surface side, and the fracture surface SB is located on the upper surface side.
 図8及び図9に示されるように、端面S2aと端面S2bとは、剪断面SAにおいて互いに部分的に当接している(図8及び図9における領域R参照)。すなわち、端面S2aと端面S2bとは、完全に重なり合ってはいない。一方で、端面S2a,S2bにおいて、剪断面SAと破断面SBとは当接していない。 As shown in FIGS. 8 and 9, the end face S2a and the end face S2b are partially in contact with each other in the shear cross section SA (see region R in FIGS. 8 and 9). That is, the end face S2a and the end face S2b do not completely overlap each other. On the other hand, in the end faces S2a and S2b, the shear section SA and the fracture surface SB are not in contact with each other.
 各ティース片W3は、ヨーク材W2の内縁から中心軸Ax側に向かうようにヨーク材W2の径方向に沿って延びている。すなわち、各ティース片W3は、ヨーク材W2の内縁から中心軸Axに向けて突出している。一つのティース片W3が一つのヨーク片W2aに一体的に設けられることにより、一つの板材W6が形成されていてもよい。すなわち、打抜部材Wは、ヨーク材W2の周方向において複数の板材W6が切断線CL1,CL2を介して仮接続されることにより構成されていてもよい。 Each tooth piece W3 extends along the radial direction of the yoke material W2 from the inner edge of the yoke material W2 toward the central axis Ax side. That is, each tooth piece W3 projects from the inner edge of the yoke material W2 toward the central axis Ax. One plate member W6 may be formed by integrally providing one tooth piece W3 on one yoke piece W2a. That is, the punching member W may be configured by temporarily connecting a plurality of plate members W6 in the circumferential direction of the yoke member W2 via the cutting lines CL1 and CL2.
 図1に戻って、固定子積層鉄心1は、上述のとおり複数の打抜部材Wが積層されたものである。より詳しくは、複数の打抜部材Wは、ヨーク材W2同士、ティース片W3同士及び切断線CL1,CL2同士が、積層方向において互いに重なり合うように積層されている。そのため、固定子積層鉄心1に所定の力を付与して固定子積層鉄心1を切断線CL1,CL2において個片化すると、一つの固定子積層鉄心1から、複数の鉄心片6(図1の例では12個の鉄心片6)が得られる。鉄心片6は、複数の板材W6が積層された積層体である。換言すれば、固定子積層鉄心1は、複数の鉄心片6が組み合わされて構成されている。 Returning to FIG. 1, the stator laminated iron core 1 is formed by laminating a plurality of punching members W as described above. More specifically, the plurality of punching members W are laminated so that the yoke members W2, the tooth pieces W3, and the cutting lines CL1 and CL2 overlap each other in the stacking direction. Therefore, when a predetermined force is applied to the stator laminated core 1 to separate the stator laminated core 1 at the cutting lines CL1 and CL2, one stator laminated core 1 to a plurality of core pieces 6 (FIG. 1). In the example, 12 iron core pieces 6) are obtained. The iron core piece 6 is a laminated body in which a plurality of plate materials W6 are laminated. In other words, the stator laminated iron core 1 is configured by combining a plurality of iron core pieces 6.
 一つの鉄心片6は、一つのヨーク部2aと、一つのティース部3とで構成されている。ヨーク部2aは、ヨーク2が切断線CL1,CL2で分離されたときのヨーク2の一部分である。すなわち、固定子積層鉄心1は、中心軸Axの周方向において隣り合う鉄心片6がヨーク部2aの端部(切断線CL1,CL2)において仮接続されることにより一体化されたものである。 One iron core piece 6 is composed of one yoke portion 2a and one tooth portion 3. The yoke portion 2a is a part of the yoke 2 when the yoke 2 is separated by the cutting lines CL1 and CL2. That is, the stator laminated iron core 1 is integrated by temporarily connecting the adjacent iron core pieces 6 in the circumferential direction of the central axis Ax at the end portions (cutting lines CL1 and CL2) of the yoke portion 2a.
 積層方向において互いに重なり合う複数の切断線を切断線群Gと規定する場合、切断線群Gは、複数の切断線CL1のみで構成されていてもよい。切断線群Gは、複数の切断線CL2のみで構成されていてもよい。切断線群Gは、少なくとも一つの切断線CL1と、少なくとも一つの切断線CL2とを含んで構成されていてもよい。切断線群Gが切断線CL1,CL2を含む場合、図2に例示されるように、積層方向において切断線CL1,CL2が交互に並んでいてもよいし、切断線CL1,CL2が規則的に又は不規則的に並んでいてもよい。 When a plurality of cutting lines overlapping each other in the stacking direction are defined as a cutting line group G, the cutting line group G may be composed of only a plurality of cutting lines CL1. The cutting line group G may be composed of only a plurality of cutting lines CL2. The cutting line group G may be configured to include at least one cutting line CL1 and at least one cutting line CL2. When the cutting line group G includes the cutting lines CL1 and CL2, the cutting lines CL1 and CL2 may be arranged alternately in the stacking direction as illustrated in FIG. 2, and the cutting lines CL1 and CL2 are regularly arranged. Alternatively, they may be arranged irregularly.
 [固定子積層鉄心の製造装置]
 続いて、図10を参照して、固定子積層鉄心の製造装置100について説明する。製造装置100は、帯状の金属板MSから固定子積層鉄心1を製造するように構成されている。製造装置100は、アンコイラー110と、送出装置120と、プレス加工装置130と、焼鈍炉200と、コントローラCtr(制御部)とを備える。
[Manufacturing equipment for stator laminated iron core]
Subsequently, with reference to FIG. 10, the stator laminated iron core manufacturing apparatus 100 will be described. The manufacturing apparatus 100 is configured to manufacture the stator laminated iron core 1 from the strip-shaped metal plate MS. The manufacturing apparatus 100 includes an anchorer 110, a delivery apparatus 120, a press working apparatus 130, an annealing furnace 200, and a controller Ctr (control unit).
 アンコイラー110は、コイル材111を回転自在に保持するように構成されている。コイル材111は、金属板MSがコイル状(渦巻状)に巻回されたものである。送出装置120は、金属板MSを上下から挟み込む一対のローラ121,122を含む。一対のローラ121,122は、コントローラCtrからの指示信号に基づいて回転及び停止し、金属板MSをプレス加工装置130に向けて間欠的に順次送り出すように構成されている。 The uncoiler 110 is configured to rotatably hold the coil material 111. The coil material 111 is a metal plate MS wound in a coil shape (spiral shape). The delivery device 120 includes a pair of rollers 121 and 122 that sandwich the metal plate MS from above and below. The pair of rollers 121 and 122 are configured to rotate and stop based on an instruction signal from the controller Ctr, and intermittently and sequentially deliver the metal plate MS toward the press working apparatus 130.
 プレス加工装置130は、コントローラCtrからの指示信号に基づいて動作するように構成されている。プレス加工装置130は、例えば、送出装置120によって送り出される金属板MSを複数のパンチにより順次、切り曲げ加工または打ち抜き加工して、複数の打抜部材Wを形成するように構成されていてもよい。プレス加工装置130は、打ち抜き加工によって得られた複数の打抜部材Wを順次積層して固定子積層鉄心1を形成するように構成されていてもよい。プレス加工装置130によって形成された固定子積層鉄心1は、例えば、コンベアCvによって焼鈍炉200に搬送されてもよいし、人手によって焼鈍炉200に搬送されてもよい。プレス加工装置130の詳細については、後述する。 The press working apparatus 130 is configured to operate based on an instruction signal from the controller Ctr. The press working device 130 may be configured to form, for example, a plurality of punching members W by sequentially cutting or bending or punching the metal plate MS sent out by the sending device 120 by a plurality of punches. .. The press working apparatus 130 may be configured to sequentially stack a plurality of punching members W obtained by punching to form a stator laminated iron core 1. The stator laminated iron core 1 formed by the press working apparatus 130 may be, for example, transported to the annealing furnace 200 by a conveyor Cv, or may be manually transported to the annealing furnace 200. The details of the press working apparatus 130 will be described later.
 焼鈍炉200は、コントローラCtrからの指示信号に基づいて動作するように構成されている。焼鈍炉200は、プレス加工装置130から搬送された固定子積層鉄心1を、所定温度(例えば、750℃~800℃程度)で所定時間(例えば、1時間程度)加熱するように構成されている。焼鈍炉200によって固定子積層鉄心1が加熱されることにより、打抜部材Wに付着しているオイル(スタンピングオイル)が蒸発して除去されると共に、打抜部材Wの内部に残留している歪みが除去される。 The annealing furnace 200 is configured to operate based on an instruction signal from the controller Ctr. The annealing furnace 200 is configured to heat the stator laminated iron core 1 conveyed from the press working apparatus 130 at a predetermined temperature (for example, about 750 ° C. to 800 ° C.) for a predetermined time (for example, about 1 hour). .. When the stator laminated iron core 1 is heated by the annealing furnace 200, the oil (stamping oil) adhering to the punching member W is evaporated and removed, and remains inside the punching member W. The distortion is removed.
 コントローラCtrは、例えば、非一過性の記録媒体(図示せず)に記録されているプログラム又はオペレータからの操作入力等に基づいて、送出装置120、プレス加工装置130、焼鈍炉200及びコンベアCvを動作させるための信号を生成するように構成されている。コントローラCtrは、送出装置120、プレス加工装置130、焼鈍炉200及びコンベアCvに当該信号をそれぞれ送信するように構成されている。 The controller Ctr is, for example, a transmission device 120, a press working device 130, an annealing furnace 200, and a conveyor Cv based on a program recorded on a non-transient recording medium (not shown) or an operation input from an operator. Is configured to generate a signal to operate. The controller Ctr is configured to transmit the signal to the delivery device 120, the press working device 130, the annealing furnace 200, and the conveyor Cv, respectively.
 [プレス加工装置の詳細]
 続いて、図11~図19を参照して、プレス加工装置130の詳細について説明する。プレス加工装置130は、図11に示されるように、下型140と、上型150と、プレス機160とを含む。下型140は、ベース141と、ダイホルダ142と、ダイプレート143(挟持部材)と、複数のガイドポスト144とを含む。
[Details of press processing equipment]
Subsequently, the details of the press working apparatus 130 will be described with reference to FIGS. 11 to 19. As shown in FIG. 11, the press working apparatus 130 includes a lower die 140, an upper die 150, and a press machine 160. The lower mold 140 includes a base 141, a die holder 142, a die plate 143 (holding member), and a plurality of guide posts 144.
 ベース141は、例えば床面上に固定されており、プレス加工装置130全体の土台として機能する。ダイホルダ142は、ベース141上に支持されている。ダイホルダ142には、複数の排出孔C1~C5が形成されている。排出孔C1~C5は、ダイホルダ142の内部を上下方向に延びていてもよい。排出孔C1~C5には、金属板MSから打ち抜かれた材料(例えば、打抜部材W、廃材等)が排出される。 The base 141 is fixed on the floor, for example, and functions as a base for the entire press working apparatus 130. The die holder 142 is supported on the base 141. A plurality of discharge holes C1 to C5 are formed in the die holder 142. The discharge holes C1 to C5 may extend vertically inside the die holder 142. Materials punched from the metal plate MS (for example, punched member W, waste material, etc.) are discharged into the discharge holes C1 to C5.
 ダイプレート143は、複数のパンチP1~P5と共に金属板MSをプレス加工するように構成されている。ダイプレート143は、複数のダイD1~D5を含む。ダイD1~D5はそれぞれ、パンチP1~P5に対応する位置に配置されており、対応するパンチP1~P5が挿通可能なダイ孔D1a~D5aを含む。ダイD1~D5は、金属板MSの搬送方向において、上流側から下流側に向けてこの順に並んでいる。 The die plate 143 is configured to press the metal plate MS together with a plurality of punches P1 to P5. The die plate 143 includes a plurality of dies D1 to D5. The dies D1 to D5 are respectively arranged at positions corresponding to the punches P1 to P5, and include die holes D1a to D5a through which the corresponding punches P1 to P5 can be inserted. The dies D1 to D5 are arranged in this order from the upstream side to the downstream side in the transport direction of the metal plate MS.
 ダイD1は、パンチP1と共に、金属板MSを打抜加工するための第1の打抜ユニットを構成している。第1の打抜ユニットによって金属板MSから打ち抜かれた金属片は、排出孔C1を通じてプレス加工装置130の外部に排出される。ダイD2は、パンチP2と共に、金属板MSを切り曲げ加工するための第2の打抜ユニットを構成している。第2の打抜ユニットの詳細については後述する。 The die D1 together with the punch P1 constitutes a first punching unit for punching the metal plate MS. The metal piece punched out from the metal plate MS by the first punching unit is discharged to the outside of the press working apparatus 130 through the discharge hole C1. The die D2, together with the punch P2, constitutes a second punching unit for cutting and bending the metal plate MS. The details of the second punching unit will be described later.
 ダイD3は、パンチP3と共に、金属板MSを打抜加工又は半抜加工するための第3の打抜ユニットを構成している。第3の打抜ユニットによって金属板MSから打ち抜かれた金属片は、排出孔C3を通じてプレス加工装置130の外部に排出される。ダイD4は、パンチP4と共に、金属板MSを打抜加工するための第4の打抜ユニットを構成している。第4の打抜ユニットによって金属板MSから打ち抜かれた金属片は、排出孔C4を通じてプレス加工装置130の外部に排出される。 The die D3, together with the punch P3, constitutes a third punching unit for punching or half punching the metal plate MS. The metal piece punched out from the metal plate MS by the third punching unit is discharged to the outside of the press working apparatus 130 through the discharge hole C3. The die D4, together with the punch P4, constitutes a fourth punching unit for punching the metal plate MS. The metal piece punched out from the metal plate MS by the fourth punching unit is discharged to the outside of the press working apparatus 130 through the discharge hole C4.
 ダイD5は、パンチP5と共に、金属板MSを打抜加工するための第5の打抜ユニットを構成している。第1の打抜ユニットによって金属板MSから打ち抜かれた打抜部材Wは、排出孔C5を通じてプレス加工装置130の外部に排出される。第5の打抜ユニットの詳細については後述する。 The die D5, together with the punch P5, constitutes a fifth punching unit for punching the metal plate MS. The punching member W punched out from the metal plate MS by the first punching unit is discharged to the outside of the press working apparatus 130 through the discharge hole C5. The details of the fifth punching unit will be described later.
 複数のガイドポスト144は、図11に示されるように、ダイホルダ142から上方に向けて直線状に延びている。複数のガイドポスト144は、後述のガイドブッシュ151aと共に、上型150を上下方向に案内するように構成されている。なお、複数のガイドポスト144は、上型150から下方に向けて延びるように上型150に取り付けられていてもよい。 As shown in FIG. 11, the plurality of guide posts 144 extend linearly upward from the die holder 142. The plurality of guide posts 144, together with the guide bush 151a described later, are configured to guide the upper die 150 in the vertical direction. The plurality of guide posts 144 may be attached to the upper mold 150 so as to extend downward from the upper mold 150.
 上型150は、パンチホルダ151と、ストリッパ152(挟持部材)と、複数のパンチP1~P5と、パイロットピン(図示せず)とを含む。パンチホルダ151は、ダイホルダ142及びダイプレート143と対向するようにこれらの上方に配置されている。パンチホルダ151は、その下面側において複数のパンチP1~P5を保持するように構成されている。 The upper die 150 includes a punch holder 151, a stripper 152 (holding member), a plurality of punches P1 to P5, and a pilot pin (not shown). The punch holder 151 is arranged above the die holder 142 and the die plate 143 so as to face each other. The punch holder 151 is configured to hold a plurality of punches P1 to P5 on the lower surface side thereof.
 パンチホルダ151には、複数のガイドブッシュ151aが設けられている。複数のガイドブッシュ151aはそれぞれ、複数のガイドポスト144に対応するように位置している。ガイドブッシュ151aは円筒状を呈しており、ガイドポスト144がガイドブッシュ151aの内部空間を挿通可能である。なお、ガイドポスト144が上型150に取り付けられている場合には、ガイドブッシュ151aが下型140に設けられていてもよい。 The punch holder 151 is provided with a plurality of guide bushes 151a. The plurality of guide bushes 151a are respectively positioned so as to correspond to the plurality of guide posts 144. The guide bush 151a has a cylindrical shape, and the guide post 144 can pass through the internal space of the guide bush 151a. When the guide post 144 is attached to the upper die 150, the guide bush 151a may be provided on the lower die 140.
 パンチホルダ151には、複数の貫通孔151bが設けられている。貫通孔151bの内周面には、階段状の段差が形成されている。そのため、貫通孔151bの下部の径は、貫通孔151bの上部の径よりも小さく設定されている。 The punch holder 151 is provided with a plurality of through holes 151b. A step-like step is formed on the inner peripheral surface of the through hole 151b. Therefore, the diameter of the lower part of the through hole 151b is set smaller than the diameter of the upper part of the through hole 151b.
 ストリッパ152は、パンチP1~P5で金属板MSをプレス加工する際にパンチP1~P5に食いついた金属板MSをパンチP1~P5から取り除くように構成されている。ストリッパ152は、ダイD1~D5とパンチホルダ151との間に配置されている。 The stripper 152 is configured to remove the metal plate MS that has bitten into the punches P1 to P5 from the punches P1 to P5 when the metal plate MS is pressed by the punches P1 to P5. The stripper 152 is arranged between the dies D1 to D5 and the punch holder 151.
 ストリッパ152は、接続部材153を介してパンチホルダ151と接続されている。接続部材153は、長尺状の本体部と、本体部の上端に設けられた頭部とを含む。接続部材153の本体部は、貫通孔151bの下部に挿通されており、貫通孔151b内を上下に移動可能である。接続部材153の本体部の下端は、ストリッパ152に固定されている。接続部材153の本体部の周囲には、パンチホルダ151とストリッパ152とを離隔させる方向の付勢力をこれらに作用させるように構成された付勢部材154(例えば、圧縮コイルばねなど)が取り付けられていてもよい。 The stripper 152 is connected to the punch holder 151 via the connecting member 153. The connecting member 153 includes a long main body portion and a head provided at the upper end of the main body portion. The main body of the connecting member 153 is inserted under the through hole 151b, and can move up and down in the through hole 151b. The lower end of the main body of the connecting member 153 is fixed to the stripper 152. Around the main body of the connecting member 153, an urging member 154 (for example, a compression coil spring or the like) configured to exert an urging force in a direction for separating the punch holder 151 and the stripper 152 is attached to them. May be.
 接続部材153の頭部は、貫通孔151bの上部に配置されている。接続部材153の頭部の外形は、上方から見たときに、接続部材153の本体部の外形よりも大きく設定されている。そのため、接続部材153の頭部は、貫通孔151bの上部を上下に移動可能である。しかし、貫通孔151bの段差がストッパとして機能するので、接続部材153の頭部は、貫通孔151bの下部には移動できないようになっている。そのため、ストリッパ152は、パンチホルダ151に対して相対的に上下移動可能となるように、パンチホルダ151に吊り下げられて保持されている。 The head of the connecting member 153 is arranged above the through hole 151b. The outer shape of the head of the connecting member 153 is set to be larger than the outer shape of the main body of the connecting member 153 when viewed from above. Therefore, the head of the connecting member 153 can move up and down in the upper part of the through hole 151b. However, since the step of the through hole 151b functions as a stopper, the head of the connecting member 153 cannot move to the lower part of the through hole 151b. Therefore, the stripper 152 is suspended and held by the punch holder 151 so that it can move up and down relatively with respect to the punch holder 151.
 ストリッパ152には、パンチP1~P5に対応する位置に貫通孔がそれぞれ設けられている。各貫通孔はそれぞれ、上下方向に延びている。各貫通孔はそれぞれ、上方から見たときに、対応するダイ孔D1a~D5aと連通する。各貫通孔内にはそれぞれ、パンチP1~P5の下部が収容されている。パンチP1~P5の下部はそれぞれ、各貫通孔内においてスライド可能である。 The stripper 152 is provided with through holes at positions corresponding to punches P1 to P5, respectively. Each through hole extends in the vertical direction. Each through hole communicates with the corresponding die holes D1a to D5a when viewed from above. The lower portions of the punches P1 to P5 are housed in each through hole. The lower portions of the punches P1 to P5 are each slidable in each through hole.
 プレス機160は、上型150を上下に移動させるように構成されている。プレス機160は、クランクシャフト161と、固定部材162と、連結部材163と、駆動機構164とを含む。クランクシャフト161は、主軸(クランクジャーナル)と、主軸から偏心して位置する偏心軸(クランクピン)と、これらを接続する接続部材(クランクアーム)とを含む。 The press machine 160 is configured to move the upper die 150 up and down. The press machine 160 includes a crankshaft 161, a fixing member 162, a connecting member 163, and a drive mechanism 164. The crankshaft 161 includes a spindle (crank journal), an eccentric shaft (crank pin) located eccentrically from the spindle, and a connecting member (crank arm) connecting them.
 固定部材162は、固定壁等に固定されており、クランクシャフト161の主軸を回転可能に保持するように構成されている。連結部材163は、クランクシャフト161とパンチホルダ151とを連結している。連結部材163の一端部には、クランクシャフト161の偏心軸が回転可能に接続されている。連結部材163の他端部には、回転軸(図示せず)を介して、パンチホルダ151が接続されている。 The fixing member 162 is fixed to a fixed wall or the like, and is configured to rotatably hold the main shaft of the crankshaft 161. The connecting member 163 connects the crankshaft 161 and the punch holder 151. An eccentric shaft of the crankshaft 161 is rotatably connected to one end of the connecting member 163. A punch holder 151 is connected to the other end of the connecting member 163 via a rotating shaft (not shown).
 駆動機構164は、例えば、フライホイールやギアボックスなど(図示せず)を介して、クランクシャフト161の主軸に接続されている。駆動機構164は、コントローラCtrからの指示信号に基づいて動作し、クランクシャフト161の主軸を回転させる。クランクシャフト161の主軸が回転すると、偏心軸が主軸周りを円運動する。これに伴い、パンチホルダ151が上死点と下死点との間で上下に往復運動する。 The drive mechanism 164 is connected to the main shaft of the crankshaft 161 via, for example, a flywheel, a gearbox, or the like (not shown). The drive mechanism 164 operates based on the instruction signal from the controller Ctr to rotate the spindle of the crankshaft 161. When the spindle of the crankshaft 161 rotates, the eccentric axis makes a circular motion around the spindle. Along with this, the punch holder 151 reciprocates up and down between the top dead center and the bottom dead center.
 ここで、上述した第2の打抜ユニットの構成について、図12~図17を参照して、より詳細に説明する。第2の打抜ユニットは、図12に示されるように、逆クリアランスによる切り曲げ加工を行うための複数のユニットU1と、正クリアランスによる切り曲げ加工を行うための複数のユニットU2とを含む。複数のユニットU1と、複数のユニットU2とは、図12に示す平面視において全体として円形状を呈するように、ダイプレート143に配置されている。図12に例示されるように、複数のユニットU1と、複数のユニットU2とは、これらが並ぶ方向(周方向)において、交互に配置されていてもよい。 Here, the configuration of the second punching unit described above will be described in more detail with reference to FIGS. 12 to 17. As shown in FIG. 12, the second punching unit includes a plurality of units U1 for performing cutting and bending with reverse clearance, and a plurality of units U2 for performing cutting and bending with forward clearance. The plurality of units U1 and the plurality of units U2 are arranged on the die plate 143 so as to exhibit a circular shape as a whole in the plan view shown in FIG. As illustrated in FIG. 12, the plurality of units U1 and the plurality of units U2 may be alternately arranged in the direction (circumferential direction) in which they are arranged.
 ユニットU1は、図13及び図14に示されるように、プッシュバックプレートUaと、付勢部材Ubと、ダイD2Aと、パンチP2Aとを含む。プッシュバックプレートUaは、ダイD2Aのダイ孔D2a内に配置されており、付勢部材Ubによって上方に向けて付勢されている。 The unit U1 includes a pushback plate Ua, an urging member Ub, a die D2A, and a punch P2A, as shown in FIGS. 13 and 14. The pushback plate Ua is arranged in the die hole D2a of the die D2A and is urged upward by the urging member Ub.
 ダイD2Aのダイ孔D2aは、図13に示されるように、上方から見て、略矩形状を呈する中央部と、中央部の一方の長辺Ea(図13の左側の長辺)から外方に突出した突出部とを含む。当該一方の長辺Ea及び突出部の輪郭Ebの形状が、切断線CL1に対応している。 As shown in FIG. 13, the die hole D2a of the die D2A has a substantially rectangular shape when viewed from above, and is outward from one long side Ea (the long side on the left side of FIG. 13) of the central part. Includes protruding parts and protrusions. The shapes of the long side Ea and the contour Eb of the protruding portion correspond to the cutting line CL1.
 下型140に対して上型150が位置する方向を上方と定義した場合、パンチP2Aは、ダイD2Aと一対一で対応するように、ダイD2Aのダイ孔D2aの上方に配置されている。なお、図12に示す平面視の第2の打抜ユニットの図は、第2の打抜ユニットを上方から見た図と同義である。パンチP2Aは、上方から見て、ダイD2Aのダイ孔D2aと対応する形状を呈している。パンチP2Aは、上方から見て、略矩形状を呈する中央部と、中央部の一方の長辺Qa(図13の左側の長辺)から外方に突出した突出部とを含む。 When the direction in which the upper die 150 is located is defined as upward with respect to the lower die 140, the punch P2A is arranged above the die hole D2a of the die D2A so as to have a one-to-one correspondence with the die D2A. The view of the second punching unit in a plan view shown in FIG. 12 has the same meaning as the view of the second punching unit from above. The punch P2A has a shape corresponding to the die hole D2a of the die D2A when viewed from above. The punch P2A includes a central portion having a substantially rectangular shape when viewed from above, and a protruding portion protruding outward from one long side Qa (the long side on the left side of FIG. 13) of the central portion.
 パンチP2Aの一方の長辺Qa及び突出部の輪郭Qbは、ダイD2Aのダイ孔D2aの一方の長辺Ea及び突出部の輪郭Ebの外方に位置している。すなわち、図12に示す平面視において、パンチP2Aのうち一方の長辺Qa及び突出部の輪郭Qbを構成する部分は、ダイD2Aのダイ孔D2aのうち一方の長辺Ea及び突出部の輪郭Ebを構成する部分と重なり合っている。そのため、図14に示されるように、パンチP2AとダイD2Aのダイ孔D2aとの重複部分には、逆クリアランスH1が存在している。逆クリアランスH1の大きさは、例えば、打抜部材W(金属板MS)の板厚の1%~2%程度であってもよい。あるいは、打抜部材W(金属板MS)の板厚が0.50mm程度である場合には、逆クリアランスH1の大きさは、例えば、5μm~10μm程度であってもよい。 The one long side Qa of the punch P2A and the contour Qb of the protruding portion are located outside the one long side Ea of the die hole D2a of the die D2A and the contour Eb of the protruding portion. That is, in the plan view shown in FIG. 12, the portion constituting the long side Qa of one of the punches P2A and the contour Qb of the protruding portion is the long side Ea of one of the die holes D2a of the die D2A and the contour Eb of the protruding portion. It overlaps with the parts that make up. Therefore, as shown in FIG. 14, the reverse clearance H1 exists in the overlapping portion between the punch P2A and the die hole D2a of the die D2A. The size of the reverse clearance H1 may be, for example, about 1% to 2% of the plate thickness of the punched member W (metal plate MS). Alternatively, when the plate thickness of the punched member W (metal plate MS) is about 0.50 mm, the size of the reverse clearance H1 may be, for example, about 5 μm to 10 μm.
 パンチP2AとダイD2Aのダイ孔D2aとによって金属板MSが切り曲げ加工されると、図14に示されるように、切り曲げ片MSaと、母材部MSbとが形成される。母材部MSbは、切り曲げられない残りの部分である。切り曲げ片MSaは、プッシュバックプレートUa及び付勢部材Ubによって、母材部MSbに部分的に圧入される(不完全プッシュバック加工)。切り曲げ片MSa及び母材部MSbの各端面の大部分には、剪断面SAが形成される。 When the metal plate MS is cut and bent by the punch P2A and the die hole D2a of the die D2A, the cut and bent piece MSa and the base material portion MSb are formed as shown in FIG. The base metal portion MSb is the remaining portion that cannot be cut and bent. The cut and bent piece MSa is partially press-fitted into the base material portion MSb by the pushback plate Ua and the urging member Ub (incomplete pushback processing). A shear cross section SA is formed on most of the end faces of the cut and bent piece MSa and the base metal portion MSb.
 ユニットU2は、図15及び図16に示されるように、プッシュバックプレートUaと、付勢部材Ubと、ダイD2Bと、パンチP2Bとを含む。プッシュバックプレートUaは、ダイD2Bのダイ孔D2a内に配置されており、付勢部材Ubによって上方に向けて付勢されている。 The unit U2 includes a pushback plate Ua, an urging member Ub, a die D2B, and a punch P2B, as shown in FIGS. 15 and 16. The pushback plate Ua is arranged in the die hole D2a of the die D2B and is urged upward by the urging member Ub.
 ダイD2Bのダイ孔D2aは、図15に示されるように、ダイD2Aのダイ孔D2aと同様の形状を呈している。すなわち、ダイD2Bのダイ孔D2aは、上方から見て、略矩形状を呈する中央部と、中央部の一方の長辺Ec(図15の左側の長辺)から外方に突出した突出部とを含む。当該一方の長辺Ec及び突出部の輪郭Edの形状が、切断線CL2に対応している。 As shown in FIG. 15, the die hole D2a of the die D2B has the same shape as the die hole D2a of the die D2A. That is, the die hole D2a of the die D2B has a central portion having a substantially rectangular shape when viewed from above, and a protruding portion protruding outward from one long side Ec (long side on the left side in FIG. 15) of the central portion. including. The shape of the one long side Ec and the contour Ed of the protruding portion corresponds to the cutting line CL2.
 パンチP2Bは、ダイD2Bと一対一で対応するように、ダイD2Bのダイ孔D2aの上方に配置されている。パンチP2Bは、上方から見て、ダイD2Bのダイ孔D2aと対応する形状を呈している。パンチP2Bは、上方から見て、略矩形状を呈する中央部と、中央部の一方の長辺Qc(図15の左側の長辺)から外方に突出した突出部とを含む。 The punch P2B is arranged above the die hole D2a of the die D2B so as to have a one-to-one correspondence with the die D2B. The punch P2B has a shape corresponding to the die hole D2a of the die D2B when viewed from above. The punch P2B includes a central portion having a substantially rectangular shape when viewed from above, and a protruding portion protruding outward from one long side Qc (the long side on the left side of FIG. 15) of the central portion.
 パンチP2Bの一方の長辺Qc及び突出部の輪郭Qdは、ダイD2Aのダイ孔D2aの一方の長辺Ec及び突出部の輪郭Edの内側に位置している。そのため、図16に示されるように、パンチP2BとダイD2Bのダイ孔D2aとの離間部分には、正クリアランスH2が存在している。正クリアランスH2の大きさは、例えば、打抜部材W(金属板MS)の板厚の1%~2%程度であってもよい。あるいは、打抜部材W(金属板MS)の板厚が0.50mm程度である場合には、正クリアランスH2の大きさは、例えば、5μm~10μm程度であってもよい。 The one long side Qc of the punch P2B and the contour Qd of the protruding portion are located inside the one long side Ec of the die hole D2a of the die D2A and the contour Ed of the protruding portion. Therefore, as shown in FIG. 16, a positive clearance H2 exists at a portion where the punch P2B and the die hole D2a of the die D2B are separated from each other. The size of the positive clearance H2 may be, for example, about 1% to 2% of the plate thickness of the punched member W (metal plate MS). Alternatively, when the plate thickness of the punched member W (metal plate MS) is about 0.50 mm, the size of the positive clearance H2 may be, for example, about 5 μm to 10 μm.
 パンチP2BとダイD2Bのダイ孔D2aとの間で金属板MSが切り曲げ加工されると、図15および図16に示されるように、切り曲げ片MSc(別の切り曲げ片)と、母材部MSdとが形成される。母材部MSdは、金属板MSのうち切り曲げ片MScに対応する部分であって、切り曲げられない部分である。切り曲げ片MScは、プッシュバックプレートUa及び付勢部材Ubによって、母材部MSdに部分的に圧入される(不完全プッシュバック加工)。切り曲げ片MScの端面には、上から下に向かう順に、破断面SB及び剪断面SAが形成される。母材部MSdの端面には、上から下に向かう順に、剪断面SA及び破断面SBが形成される。 When the metal plate MS is cut and bent between the punch P2B and the die hole D2a of the die D2B, as shown in FIGS. 15 and 16, the cut and bent piece MSc (another cut and bent piece) and the base metal are formed. Part MSd is formed. The base material portion MSd is a portion of the metal plate MS corresponding to the cut and bent piece MSc, and is a portion that cannot be cut and bent. The cut and bent piece MSc is partially press-fitted into the base material portion MSd by the pushback plate Ua and the urging member Ub (incomplete pushback processing). A fracture surface SB and a shear section SA are formed on the end face of the cut and bent piece MSc in the order from top to bottom. Shear section SA and fracture surface SB are formed on the end face of the base metal portion MSd in the order from top to bottom.
 次に、上述した第5の打抜ユニットの構成について、図18及び図19を参照して、より詳細に説明する。ダイD5は、鉛直方向に沿って延びる中心軸周りに回転可能となるように、ダイプレート143に保持されている。ダイD5を保持する回転ホルダ171がダイプレート143に設けられており、回転ホルダ171を回転駆動させる駆動機構172が回転ホルダ171に接続されていてもよい。 Next, the configuration of the fifth punching unit described above will be described in more detail with reference to FIGS. 18 and 19. The die D5 is held on the die plate 143 so as to be rotatable around a central axis extending along the vertical direction. A rotary holder 171 for holding the die D5 may be provided on the die plate 143, and a drive mechanism 172 for rotationally driving the rotary holder 171 may be connected to the rotary holder 171.
 駆動機構172は、コントローラCtrからの指示信号に基づいて、ダイD5の中心軸周りにダイD5を回転させる。そのため、金属板MSから打ち抜かれた打抜部材Wが、先行して打ち抜かれた打抜部材W上に積み重ねられた後に、ダイD5が所定角度回転することで、後続の打抜部材Wが先行する打抜部材Wに対して転積される。駆動機構172は、例えば、回転モータ、歯車、タイミングベルト等の組み合わせによって構成されていてもよい。 The drive mechanism 172 rotates the die D5 around the central axis of the die D5 based on the instruction signal from the controller Ctr. Therefore, after the punching member W punched out from the metal plate MS is stacked on the punching member W punched out in advance, the die D5 rotates by a predetermined angle, so that the subsequent punching member W precedes. It is transposed with respect to the punching member W to be punched. The drive mechanism 172 may be composed of, for example, a combination of a rotary motor, gears, a timing belt, and the like.
 排出孔C5内には、駆動機構173と、シリンダ174と、プッシャ175とが配置されている。駆動機構173は、コントローラCtrからの指示信号に基づいて、シリンダ174を上下方向に駆動するように構成されている。 A drive mechanism 173, a cylinder 174, and a pusher 175 are arranged in the discharge hole C5. The drive mechanism 173 is configured to drive the cylinder 174 in the vertical direction based on an instruction signal from the controller Ctr.
 シリンダ174は、パンチP5によって金属板MSから打ち抜かれた打抜部材Wを支持するように構成されている。これにより、打ち抜かれた打抜部材Wの落下が防止される。シリンダ174は、例えば、シリンダ174上に打抜部材Wが積み重ねられるごとに間欠的に下方に移動するように、駆動機構173によって駆動されてもよい。シリンダ174上において打抜部材Wが所定枚数まで積層され、固定子積層鉄心1が形成されると、シリンダ174は、その表面がコンベアCvの表面と同一高さとなる位置まで降下するように、駆動機構173によって駆動されてもよい(図19参照)。 The cylinder 174 is configured to support the punched member W punched out from the metal plate MS by the punch P5. This prevents the punched member W from falling. The cylinder 174 may be driven by the drive mechanism 173 so as to intermittently move downward each time the punching member W is stacked on the cylinder 174, for example. When the punching members W are stacked up to a predetermined number on the cylinder 174 and the stator laminated iron core 1 is formed, the cylinder 174 is driven so that its surface is lowered to a position equal to the surface of the conveyor Cv. It may be driven by a mechanism 173 (see FIG. 19).
 プッシャ175は、コントローラCtrからの指示信号に基づいて、シリンダ174上の固定子積層鉄心1をコンベアCvに押し出すように構成されている。コンベアCvに払い出された固定子積層鉄心1は、焼鈍炉200に搬送されて、加熱処理される。 The pusher 175 is configured to push the stator laminated iron core 1 on the cylinder 174 to the conveyor Cv based on the instruction signal from the controller Ctr. The stator laminated iron core 1 delivered to the conveyor Cv is conveyed to the annealing furnace 200 and heat-treated.
 ところで、図17に示されるように、ストリッパ152に複数の開口部Vが形成されていてもよい。開口部Vは、貫通孔であってもよいし、非貫通の凹部であってもよい。開口部Vが設けられることにより、第2の打抜ユニットにおいて金属板MSが不完全プッシュバック加工された部位がダイプレート143及びストリッパ152によって挟持されない。これにより、切り曲げ片MSa,MScがそれぞれ母材部MSb,MSdに完全に圧入されることを防ぐことができる。第2の打抜ユニットにおいて金属板MSがダイプレート143およびストリッパ152に挟持される際に切り曲げ片MSa(MSc)と母材部MSb(MSd)との部分的圧入部分を覆うように、複数の開口部Vが設けられていてもよい。ダイプレート143及びストリッパ152によって金属板MSが挟持される際に、当該部位が開口部V内に位置する。なお、複数の開口部Vは、ダイプレート143に形成されていてもよいし、ダイプレート143及びストリッパ152の双方に形成されていてもよい。 By the way, as shown in FIG. 17, a plurality of openings V may be formed in the stripper 152. The opening V may be a through hole or a non-penetrating recess. By providing the opening V, the portion where the metal plate MS is incompletely pushed back in the second punching unit is not sandwiched by the die plate 143 and the stripper 152. This makes it possible to prevent the cut and bent pieces MSa and MSc from being completely press-fitted into the base metal portions MSb and MSd, respectively. When the metal plate MS is sandwiched between the die plate 143 and the stripper 152 in the second punching unit, a plurality of pieces so as to cover the partially press-fitted portion between the cut and bent piece MSa (MSc) and the base metal portion MSb (MSd). The opening V may be provided. When the metal plate MS is sandwiched by the die plate 143 and the stripper 152, the portion is located in the opening V. The plurality of openings V may be formed on the die plate 143, or may be formed on both the die plate 143 and the stripper 152.
 [固定子積層鉄心の製造方法]
 続いて、図20~図22を参照して、固定子積層鉄心1の製造方法について説明する。
[Manufacturing method of stator laminated iron core]
Subsequently, a method for manufacturing the stator laminated iron core 1 will be described with reference to FIGS. 20 to 22.
 金属板MSが送出装置120によって間欠的にプレス加工装置130に送り出され、金属板MSの所定部位が第1の加工ユニットに到達すると、プレス機160が動作して、上型150を下型140に向けて下方に押し出す。ストリッパ152が金属板MSに到達して、ストリッパ152とダイプレート143とで金属板MSが挟持された後も、プレス機160が上型150を下方に向けて押し出す。 When the metal plate MS is intermittently sent to the press processing device 130 by the delivery device 120 and the predetermined portion of the metal plate MS reaches the first processing unit, the press machine 160 operates and the upper mold 150 is moved to the lower mold 140. Push down toward. Even after the stripper 152 reaches the metal plate MS and the metal plate MS is sandwiched between the stripper 152 and the die plate 143, the press machine 160 pushes the upper die 150 downward.
 このとき、ストリッパ152は移動しないが、パンチホルダ151及びパンチP1~P5は引き続き降下する。そのため、パンチP1の先端部は、ストリッパ152の各貫通孔内を下方に移動し、さらにダイD1のダイ孔D1a近傍まで到達する。この過程で、パンチP1が金属板MSをダイD1のダイ孔D1aに沿って打ち抜く。これにより、複数の貫通孔R1及び複数の貫通孔R2が金属板MSに形成される(図20の位置X1参照)。 At this time, the stripper 152 does not move, but the punch holder 151 and the punches P1 to P5 continue to descend. Therefore, the tip portion of the punch P1 moves downward in each through hole of the stripper 152, and further reaches the vicinity of the die hole D1a of the die D1. In this process, the punch P1 punches the metal plate MS along the die hole D1a of the die D1. As a result, a plurality of through holes R1 and a plurality of through holes R2 are formed in the metal plate MS (see position X1 in FIG. 20).
 複数の貫通孔R1は、打抜部材WのスロットW5に対応する形状を呈しており、全体として放射状に並んでいる。複数の貫通孔R2は、矩形状を呈しており、放射状に並んでいる。貫通孔R2は、貫通孔R1の径方向外方に位置している。打ち抜かれた廃材は、排出孔C1から排出される。その後、プレス機160が動作して、上型150を上昇させる。 The plurality of through holes R1 have a shape corresponding to the slot W5 of the punching member W, and are arranged radially as a whole. The plurality of through holes R2 have a rectangular shape and are arranged in a radial pattern. The through hole R2 is located radially outward of the through hole R1. The punched waste material is discharged from the discharge hole C1. After that, the press machine 160 operates to raise the upper die 150.
 次に、金属板MSが送出装置120によって間欠的に送り出され、金属板MSの所定部位が第2の加工ユニットに到達すると、上記と同様に、プレス機160によって上型150が上下に移動して、パンチP2及びダイD2による金属板MSの切り曲げ加工及び不完全プッシュバック加工が行われる。これにより、貫通孔R1と貫通孔R2との間に切断線CL1,CL2が形成される(図20の位置X2参照)。 Next, when the metal plate MS is intermittently sent out by the delivery device 120 and the predetermined portion of the metal plate MS reaches the second processing unit, the upper mold 150 is moved up and down by the press machine 160 in the same manner as described above. Then, the metal plate MS is cut and bent and incompletely pushed back by the punch P2 and the die D2. As a result, cutting lines CL1 and CL2 are formed between the through hole R1 and the through hole R2 (see position X2 in FIG. 20).
 次に、金属板MSが送出装置120によって間欠的に送り出され、金属板MSの所定部位が第3の加工ユニットに到達すると、上記と同様に、プレス機160によって上型150が上下に移動して、パンチP3及びダイD3による金属板MSの打抜加工又は半抜加工が行われる。これにより、金属板MSの所定箇所に複数のカシメ部4が形成される(図21の位置X3参照)。打ち抜かれた廃材は、排出孔C3から排出される。 Next, when the metal plate MS is intermittently sent out by the delivery device 120 and the predetermined portion of the metal plate MS reaches the third processing unit, the upper mold 150 is moved up and down by the press machine 160 in the same manner as described above. Then, the metal plate MS is punched or half punched by the punch P3 and the die D3. As a result, a plurality of caulked portions 4 are formed at predetermined positions of the metal plate MS (see position X3 in FIG. 21). The punched waste material is discharged from the discharge hole C3.
 次に、金属板MSが送出装置120によって間欠的に送り出され、金属板MSの所定部位が第4の加工ユニットに到達すると、上記と同様に、プレス機160によって上型150が上下動して、パンチP4及びダイD4による金属板MSの打抜加工が行われる。これにより、円形状を呈する貫通孔R3が形成される(図21の位置X4参照)。打ち抜かれた廃材は、排出孔C4から排出される。 Next, when the metal plate MS is intermittently sent out by the delivery device 120 and the predetermined portion of the metal plate MS reaches the fourth processing unit, the upper mold 150 is moved up and down by the press machine 160 in the same manner as described above. , The metal plate MS is punched by the punch P4 and the die D4. As a result, a through hole R3 having a circular shape is formed (see position X4 in FIG. 21). The punched waste material is discharged from the discharge hole C4.
 貫通孔R3は、打抜部材Wの貫通孔Waに対応する形状を呈しており、複数の貫通孔R1の内側と部分的に重なり合っている。貫通孔R3が貫通孔R1と連通することにより、複数のティース片W3が形成される。 The through hole R3 has a shape corresponding to the through hole Wa of the punching member W, and partially overlaps the inside of the plurality of through holes R1. By communicating the through hole R3 with the through hole R1, a plurality of tooth pieces W3 are formed.
 次に、金属板MSが送出装置120によって間欠的に送り出され、金属板MSの所定部位が第5の加工ユニットに到達すると、上記と同様に、プレス機160によって上型150が上下に移動して、パンチP5及びダイD5による金属板MSの打抜加工が行われる。これにより、打抜部材Wが形成される(図22の位置X5参照)。 Next, when the metal plate MS is intermittently sent out by the delivery device 120 and the predetermined portion of the metal plate MS reaches the fifth processing unit, the upper mold 150 is moved up and down by the press machine 160 in the same manner as described above. Then, the metal plate MS is punched by the punch P5 and the die D5. As a result, the punching member W is formed (see position X5 in FIG. 22).
 打ち抜かれた打抜部材Wは、先行して打ち抜かれた打抜部材Wに対してダイ孔D5a内において積層されつつ、カシメ部4によって相互に保持される。このとき、打抜部材Wの転積を行うために、パンチP5による金属板MSの打抜加工が行われる前に、コントローラCtrが駆動機構172に指示して、ダイ孔D5a内の打抜部材Wと共にダイD5を所定角度回転させてもよい。6つの切断線CL1及び6つの切断線CL2が設けられると共に、切断線CL1,CL2が周方向において交互に並ぶ打抜部材Wを転積する場合、転積の角度は、例えば、30°であってもよいし、60°であってもよいし、90°であってもよい。転積の角度が30°または90°の場合、固定子積層鉄心1のいずれの切断線群Gについても、積層方向において切断線CL1と切断線CL2とが交互に出現する。転積の角度が60°の場合、固定積層鉄心1の単一の切断線群Gには、積層方向において切断線CL1または切断線CL2のいずれかが出現する。 The punched member W is laminated in the die hole D5a with respect to the punched member W punched in advance, and is mutually held by the caulking portion 4. At this time, in order to carry out the rolling of the punching member W, the controller Ctr instructs the drive mechanism 172 before the punching process of the metal plate MS by the punch P5 is performed, and the punching member in the die hole D5a is instructed. The die D5 may be rotated by a predetermined angle together with W. When six cutting lines CL1 and six cutting lines CL2 are provided and the punching members W in which the cutting lines CL1 and CL2 are alternately arranged in the circumferential direction are rolled, the rolling angle is, for example, 30 °. It may be 60 °, 90 ° or 90 °. When the rolling angle is 30 ° or 90 °, the cutting lines CL1 and the cutting lines CL2 appear alternately in the stacking direction for any of the cutting line groups G of the stator laminated iron core 1. When the rolling angle is 60 °, either the cutting line CL1 or the cutting line CL2 appears in the single cutting line group G of the fixed laminated iron core 1 in the stacking direction.
 ダイ孔D5a内において、所定枚数の打抜部材Wが積層されると、固定子積層鉄心1が形成される(図18参照)。固定子積層鉄心1は、プッシャ175によってコンベアCvに押し出され、焼鈍炉200に搬送される。その後、固定子積層鉄心1が焼鈍炉200において加熱処理されると、打抜部材Wから歪みが除去され、固定子積層鉄心1が完成する。 When a predetermined number of punching members W are laminated in the die hole D5a, the stator laminated iron core 1 is formed (see FIG. 18). The stator laminated iron core 1 is pushed out to the conveyor Cv by the pusher 175 and conveyed to the annealing furnace 200. After that, when the stator laminated iron core 1 is heat-treated in the annealing furnace 200, strain is removed from the punching member W, and the stator laminated iron core 1 is completed.
 [作用]
 上記の分割型積層鉄心の製造方法は、ダイに設けられたダイ孔に向けてパンチを進出させて、金属板をパンチでダイ孔に対して部分的に押し込むことにより、金属板の所定の部位を所定の切断線に沿って切り曲げ加工して、第1の端面を含む切り曲げ片と、第1の端面に対応する第2の端面を含む母材部とを形成することを含んでいてもよい。当該方法の一例は、切り曲げ片を母材部に対してプッシュバック加工して、第1の端面及び第2の端面の境界によって構成される切断線を介して切り曲げ片と母材部とを仮接続することをさらに含んでいてもよい。当該方法の一例は、またさらに、部位を含むように金属板を打ち抜き加工して、環状を呈する複数の金属板材を形成することと、複数の金属板材を積層して積層体を形成することとを含んでいてもよい。パンチの進出方向から見て、パンチのうち切断線に対応する外形の少なくとも一部が、ダイ孔の輪郭よりも外方に位置していてもよい。この場合、パンチ及びダイはそれぞれ、パンチの進出方向から見て、パンチとダイとが部分的に重なり合うオーバーラップ部を含む。そのため、切り曲げ加工により折り曲げ片及び母材部が形成されると、第1の端面及び第2の端面のうちオーバーラップ部に対応する箇所がほぼ剪断面となる。破断面と比較して剪断面は平滑であるので、第1の端面及び第2の端面のうちオーバーラップ部に対応する箇所同士の保持力が小さくなる傾向にある。したがって、切断線において金属板材をより小さな力で個片化することが可能となる。
[Action]
In the above method for manufacturing a split-type laminated iron core, a punch is advanced toward a die hole provided in the die, and the metal plate is partially pushed into the die hole with the punch to form a predetermined portion of the metal plate. Includes cutting and bending along a predetermined cutting line to form a cut and bent piece containing a first end face and a base metal portion containing a second end face corresponding to the first end face. May be good. An example of this method is to push back the cut and bent piece to the base material portion, and to form the cut and bent piece and the base metal portion through a cutting line formed by the boundary between the first end face and the second end face. May further include temporary connection. Examples of the method further include punching a metal plate so as to include a portion to form a plurality of metal plates exhibiting an annular shape, and laminating a plurality of metal plates to form a laminated body. May include. At least a part of the outer shape of the punch corresponding to the cutting line may be located outside the contour of the die hole when viewed from the advance direction of the punch. In this case, each of the punch and the die includes an overlapping portion where the punch and the die partially overlap each other when viewed from the advance direction of the punch. Therefore, when the bent piece and the base metal portion are formed by the cutting and bending process, the portion of the first end face and the second end face corresponding to the overlap portion becomes a substantially sheared cross section. Since the shear section is smoother than the fracture surface, the holding force between the first end face and the second end face corresponding to the overlapped portion tends to be small. Therefore, it is possible to individualize the metal plate material with a smaller force in the cutting line.
 上記の分割型積層鉄心の製造方法は、別のダイに設けられた別のダイ孔に向けて別のパンチを進出させて、金属板を別のパンチで別のダイ孔に対して部分的に押し込むことにより、金属板の所定の別の部位を所定の別の切断線に沿って切り曲げ加工して、第3の端面を含む別の切り曲げ片と、第3の端面に対応する第4の端面を含む別の母材部とを形成することをさらに含んでいてもよい。上記の方法は、またさらに、別の切り曲げ片を別の母材部に対してプッシュバック加工して、第3の端面及び第4の端面の境界によって構成される別の切断線を介して別の切り曲げ片と別の母材部とを仮接続することを含んでいてもよい。加えて、上記の方法は、別の部位を含むように金属板を打ち抜き加工して、環状を呈する複数の別の金属板材を形成することを含んでいてもよい。別のパンチの進出方向から見て、別のパンチのうち別の切断線に対応する外形の少なくとも一部が、別のダイ孔の輪郭と重なりあうか又は別のダイ孔よりも内方に位置していてもよい。積層体を形成することは、切断線及び別の切断線が重なり合うように、複数の金属板材のうちの少なくとも一つと、複数の別の金属板材のうちの少なくとも一つとを積層することを含んでいてもよい。この場合、積層体の積層方向において、比較的保持力が小さい切断線と、比較的保持力が大きい別の切断線とが一列に並んだ切断線群が積層体に構成される。そのため、積層体を構成する金属板材の数及び別の金属板材の数を調節することにより、切断線群における保持力が変化する。したがって、積層体を切断線群において個片化するのに要する力を調節することが可能となる。 In the above method for manufacturing a split-type laminated iron core, another punch is advanced toward another die hole provided in another die, and the metal plate is partially used for another die hole with another punch. By pushing, a predetermined other part of the metal plate is cut and bent along a predetermined different cutting line to form another cutting piece including the third end face and a fourth corresponding to the third end face. It may further include forming another base metal portion including the end face of the. The above method further pushes back another piece of cut and bent against another base metal portion via another cutting line formed by the boundary between the third end face and the fourth end face. It may include temporarily connecting another cutting piece and another base material portion. In addition, the above method may include punching a metal plate to include another portion to form a plurality of different metal plate materials exhibiting an annular shape. When viewed from the advance direction of another punch, at least a part of the outer shape corresponding to another cutting line of another punch overlaps with the contour of another die hole or is located inward of another die hole. You may be doing it. Forming a laminate includes laminating at least one of a plurality of metal plates and at least one of a plurality of other metal plates such that a cutting line and another cutting line overlap. You may. In this case, a group of cutting lines in which a cutting line having a relatively small holding force and another cutting line having a relatively large holding force are arranged in a row in the stacking direction of the laminated body is formed in the laminated body. Therefore, by adjusting the number of metal plates constituting the laminated body and the number of other metal plates, the holding force in the cutting line group changes. Therefore, it is possible to adjust the force required to separate the laminated body into individual pieces in the cutting line group.
 上記の分割型積層鉄心の製造方法は、積層体を形成することの後に、積層体を焼鈍することをさらに含んでいてもよい。焼鈍は、積層体を構成する金属板材の内部に残留している歪みを除去するための処理である。焼鈍時の加熱により金属板材が熱膨張するので、切断線を介して仮接続されている第1の端面及び第2の端面同士の保持力が大きくなることがある。しかしながら、上記のように、第1の端面及び第2の端面のうちオーバーラップ部に対応する箇所の保持力が小さくなっているので、焼鈍を経た後でも、切断線において金属板材をより小さな力で個片化することが可能となる。 The above-mentioned method for manufacturing a split-type laminated iron core may further include annealing the laminated body after forming the laminated body. Annealing is a process for removing the strain remaining inside the metal plate material constituting the laminated body. Since the metal plate material thermally expands due to heating during annealing, the holding force between the first end face and the second end face temporarily connected via the cutting wire may increase. However, as described above, since the holding force of the first end face and the second end face corresponding to the overlapping portion is small, the metal plate material has a smaller force in the cutting line even after annealing. It becomes possible to individualize with.
 上記の分割型積層鉄心の製造方法において、積層体を形成することは、複数の金属板材を転積することを含んでいてもよい。この場合、保持力の異なる複数種類の切断線を一つの金属板材に設けておき、当該金属板材を適宜転積することにより、積層方向において重なり合う切断線の種類を調節できる。そのため、金属板材の種類を増やすことなく、積層体を切断線群において個片化するのに要する力をコントロールすることが可能となる。 In the above-mentioned method for manufacturing a split-type laminated iron core, forming a laminated body may include transposing a plurality of metal plates. In this case, by providing a plurality of types of cutting wires having different holding powers on one metal plate material and appropriately transposing the metal plate materials, the types of cutting wires overlapping in the stacking direction can be adjusted. Therefore, it is possible to control the force required to separate the laminated body into individual pieces in the cutting line group without increasing the types of metal plate materials.
 上記の分割型積層鉄心は、環状を呈する金属板材が複数積層されて構成されていてもよい。金属板材は、その周方向において並び且つ所定の切断線によって分割された第1の分割片及び第2の分割片を含んでいてもよい。第1の分割片の第1の端面及び第2の分割片の第2の端面によって構成される切断線を介して第1の分割片と第2の分割片とが仮接続されていてもよい。第1の端面及び第2の端面はそれぞれ、ほぼ全域が剪断面である領域を含んでいてもよい。この場合、切断線において金属板材をより小さな力で個片化することが可能な分割型積層鉄心を提供することができる。 The above-mentioned split type laminated iron core may be configured by laminating a plurality of metal plates exhibiting an annular shape. The metal plate material may include a first divided piece and a second divided piece arranged in the circumferential direction and divided by a predetermined cutting line. The first divided piece and the second divided piece may be temporarily connected via a cutting line composed of the first end face of the first divided piece and the second end face of the second divided piece. .. The first end face and the second end face may each include a region having a shear cross section in almost the entire area. In this case, it is possible to provide a split type laminated iron core capable of individualizing a metal plate material with a smaller force in a cutting wire.
 [変形例]
 本明細書における開示はすべての点で例示であって制限的なものではないと考えられるべきである。請求の範囲及びその要旨を逸脱しない範囲において、以上の例に対して種々の省略、置換、変更などが行われてもよい。
[Modification example]
The disclosure herein should be considered exemplary and not restrictive in all respects. Various omissions, substitutions, changes, etc. may be made to the above examples within the scope of the claims and the gist thereof.
 (1)以上の例では、隣り合う一のヨーク片W2a及び他のヨーク片W2a同士が、不完全プッシュバック加工により、切断線CL1,CL2を介して部分的に仮接続されていた。しかしながら、いずれかの切断線CL1,CL2において、隣り合うヨーク片W2a同士が完全にプッシュバックされてもよい。すなわち、いずれかの切断線CL1,CL2において、隣り合うヨーク片W2a同士の間に段差が存在していなくてもよい。あるいは、いずれの切断線CL1,CL2においても、隣り合うヨーク片W2a同士が完全にプッシュバックされてもよい。この場合、ダイプレート143又はストリッパ152に形成される開口部Vの数を適宜減らしてもよい。 (1) In the above examples, one adjacent yoke piece W2a and another yoke piece W2a are partially temporarily connected via the cutting lines CL1 and CL2 by incomplete pushback processing. However, at any of the cutting lines CL1 and CL2, the adjacent yoke pieces W2a may be completely pushed back to each other. That is, in any of the cutting lines CL1 and CL2, there may not be a step between adjacent yoke pieces W2a. Alternatively, adjacent yoke pieces W2a may be completely pushed back to each other at any of the cutting lines CL1 and CL2. In this case, the number of openings V formed in the die plate 143 or the stripper 152 may be appropriately reduced.
 (2)端面S1a,S1bはそれぞれ、剪断面SA及び破断面SBによって構成された領域と、ほぼ剪断面SAによって構成された領域とを含んでいてもよい。この場合、パンチのうち切断線に対応する外形の少なくとも一部が、ダイ孔の輪郭よりも外方に位置していてもよい。 (2) The end faces S1a and S1b may each include a region composed of a shear cross section SA and a fracture surface SB and a region substantially composed of a shear cross section SA. In this case, at least a part of the outer shape of the punch corresponding to the cutting line may be located outside the contour of the die hole.
 (3)少なくとも一つの切断線が、逆クリアランスH1を有するダイ及びパンチによって形成されていてもよい。全ての切断線が、逆クリアランスH1を有するダイ及びパンチによって形成されていてもよい。これらの場合、ダイ及びパンチの一部に逆クリアランスH1が存在していてもよいし、ダイ及びパンチの全体に逆クリアランスH1が存在していてもよい。 (3) At least one cutting line may be formed by a die and a punch having a reverse clearance H1. All cutting lines may be formed by dies and punches with reverse clearance H1. In these cases, the reverse clearance H1 may be present in a part of the die and the punch, or the reverse clearance H1 may be present in the whole of the die and the punch.
 (4)少なくとも一つの切断線が、正クリアランスH2を有するダイ及びパンチによって形成されていてもよい。 (4) At least one cutting line may be formed by a die and a punch having a positive clearance H2.
 (5)積層方向に並ぶ複数の切断線は、その全てが積層方向において重なり合っていなくてもよい。 (5) The plurality of cutting lines lined up in the stacking direction do not have to all overlap in the stacking direction.
 (6)以上の例では、上方から見たときに、切断線が凹凸形状を呈していたが、切断線がヨーク材W2の径方向に沿って延びる線分と、ヨーク材W2の周方向に沿って延びる線分とを含んでいれば、クランク状、階段状等の他の形状を呈していてもよい。各線分は、直線状、曲線状、弧状等の種々の形状を呈していてもよい。例えば、図4において、少なくとも一方の角部が直線状に切り欠かれてもよい(例えば、台形状等であってもよい)し、少なくとも一方の角部が弧状(例えば円弧状)に切り欠かれてもよい。 (6) In the above examples, the cutting line has an uneven shape when viewed from above, but the cutting line extends along the radial direction of the yoke material W2 and in the circumferential direction of the yoke material W2. As long as it includes a line segment extending along the line segment, it may have another shape such as a crank shape or a step shape. Each line segment may have various shapes such as a straight line, a curved line, and an arc shape. For example, in FIG. 4, at least one corner may be cut out in a straight line (for example, a trapezoidal shape or the like), and at least one corner may be cut out in an arc shape (for example, an arc shape). You may be asked.
 (7)以上の例では、内側に回転子が配置されるインナーロータタイプの固定子積層鉄心1について説明したが、外側に回転子が配置されるアウターロータタイプの固定子積層鉄心にも本技術を適用してもよい。 (7) In the above example, the inner rotor type stator laminated iron core 1 in which the rotor is arranged inside has been described, but the present technology also applies to the outer rotor type stator laminated iron core in which the rotor is arranged outside. May be applied.
 (8)固定子積層鉄心1のみならず、回転子積層鉄心に本技術を適用してもよい。 (8) This technique may be applied not only to the stator laminated iron core 1 but also to the rotor laminated iron core.
 [他の例]
 端面S1a,S1bが完全に重なり合わず、且つ、端面12a,S1bが剪断面SAにおいて互いに部分的に当接するように、隣り合う一のヨーク片W2a及び他のヨーク片W2a同士が切断線CL1を介して部分的に仮接続されている。また、端面S2a,S2bが完全に重なり合わず、且つ、端面S2a,S2bが剪断面SAにおいて互いに部分的に当接するように、隣り合う一のヨーク片W2a及び他のヨーク片W2a同士が切断線CL2を介して部分的に仮接続されている。換言すれば、隣り合う一のヨーク片W2a及び他のヨーク片W2aの間に段差が形成されている。この場合、特許文献1の分割型積層鉄心と比較して、端面S2a,S2bにおける剪断面SAにおいて隣り合うヨーク片W2aが当接する面積は小さくなる。これにより、隣り合う一のヨーク片W2a及び他のヨーク片W2a同士の保持力が小さくなる。そのため、鉄心片6同士をより小さな力で個片化することが可能となる。
[Other examples]
One adjacent yoke piece W2a and another yoke piece W2a form a cutting line CL1 so that the end faces S1a and S1b do not completely overlap each other and the end faces 12a and S1b partially abut against each other in the shear cross section SA. It is partially temporarily connected via. Further, one yoke piece W2a and another yoke piece W2a adjacent to each other are cut lines so that the end faces S2a and S2b do not completely overlap each other and the end faces S2a and S2b partially abut each other in the shear cross section SA. It is partially temporarily connected via CL2. In other words, a step is formed between one adjacent yoke piece W2a and another yoke piece W2a. In this case, as compared with the split type laminated iron core of Patent Document 1, the area in contact with the adjacent yoke pieces W2a in the shear cross section SA at the end faces S2a and S2b is smaller. As a result, the holding force between one adjacent yoke piece W2a and the other yoke pieces W2a becomes small. Therefore, the iron core pieces 6 can be separated into individual pieces with a smaller force.
 段差の大きさは、打抜部材Wの板厚の10%~40%に設定されうる。この場合、鉄心片6同士を個片化するための外力を固定子積層鉄心1に積極的に加えなければ、固定子積層鉄心1の形状が維持される傾向にある。そのため、鉄心片6同士の保持力を小さくしつつ、鉄心片6同士が意図せず不意に個片化されてしまうことを抑制できる。 The size of the step can be set to 10% to 40% of the plate thickness of the punching member W. In this case, the shape of the stator laminated iron core 1 tends to be maintained unless an external force for separating the iron core pieces 6 into individual pieces is positively applied to the stator laminated iron core 1. Therefore, while reducing the holding force between the iron core pieces 6, it is possible to prevent the iron core pieces 6 from being unintentionally separated into individual pieces.
 端面S1a,S1bは、ほぼ剪断面SAによって構成されている。破断面SBは比較的凹凸が激しいのに対して、剪断面SAは比較的平滑であるので、端面S1a,S1bにおける鉄心片6同士の保持力が比較的小さくなる。そのため、鉄心片6同士をさらに小さな力で個片化することが可能となる。 The end faces S1a and S1b are substantially composed of a shear cross section SA. The fracture surface SB has relatively severe irregularities, whereas the shear section SA is relatively smooth, so that the holding force between the iron core pieces 6 on the end faces S1a and S1b is relatively small. Therefore, the iron core pieces 6 can be separated into individual pieces with a smaller force.
 ダイプレート143及びストリッパ152の少なくとも一方に開口部Vが形成されうる。パンチホルダ151が下死点に至るタイミング(ダイプレート143及びストリッパ152によって金属板MSが挟持されるタイミング)において、第2の打抜ユニットにおいて金属板MSが不完全プッシュバック加工された部位が開口部V内に配置されうる。この場合、金属板MSの加工に際して、金属板MSのうち当該部位近傍を除いた領域が、ダイプレート143及びストリッパ152で挟持される。そのため、金属板MSの加工時における金属板MSのずれを抑制しつつ、切り曲げ片MSa,MScの母材部MSb,MSdに対する不完全な圧入状態を形成することが可能となる。これにより、隣り合う一のヨーク片W2a及び他のヨーク片W2a同士が切断線CL1,CL2を介して部分的に仮接続された分割型積層鉄心1を作製することができる。 An opening V can be formed in at least one of the die plate 143 and the stripper 152. At the timing when the punch holder 151 reaches the bottom dead point (the timing when the metal plate MS is sandwiched by the die plate 143 and the stripper 152), the portion where the metal plate MS is incompletely pushed back is opened in the second punching unit. It may be arranged in the portion V. In this case, when processing the metal plate MS, a region of the metal plate MS excluding the vicinity of the portion is sandwiched between the die plate 143 and the stripper 152. Therefore, it is possible to form an incomplete press-fitting state of the cut and bent pieces MSa and MSc with respect to the base material portions MSb and MSd while suppressing the displacement of the metal plate MS during processing of the metal plate MS. As a result, it is possible to manufacture a split type laminated iron core 1 in which one yoke piece W2a adjacent to each other and another yoke piece W2a are temporarily temporarily connected to each other via the cutting lines CL1 and CL2.
 パンチP2Aの一方の長辺Qa及び突出部の輪郭Qbは、ダイD2Aのダイ孔D2aの一方の長辺Ea及び突出部の輪郭Ebの外方に位置していてもよい。すなわち、パンチP2Aのうち一方の長辺Qa及び突出部の輪郭Qbを構成する部分は、上方から見たときに、ダイD2Aのダイ孔D2aのうち一方の長辺Ea及び突出部の輪郭Ebを構成する部分と重なり合うオーバーラップ部を構成している。そのため、切り曲げ加工により切り曲げ片MSa及び母材部MSbが形成されると、切り曲げ片MSa及び母材部MSbの各端面のうちオーバーラップ部に対応する箇所がほぼ剪断面SAとなる。破断面SBと比較して剪断面SAは平滑であるので、当該箇所同士の保持力が小さくなる傾向にある。したがって、切断線CL1において打抜部材Wをより小さな力で個片化することが可能となる。 The one long side Qa of the punch P2A and the contour Qb of the protruding portion may be located outside the one long side Ea of the die hole D2a of the die D2A and the contour Eb of the protruding portion. That is, the portion constituting the long side Qa of one of the punches P2A and the contour Qb of the protruding portion has the contour Eb of one of the long sides Ea and the protruding portion of the die hole D2a of the die D2A when viewed from above. It constitutes an overlapping part that overlaps with the constituent parts. Therefore, when the cut / bent piece MSa and the base material portion MSb are formed by the cutting / bending process, the portion of each end face of the cut / bent piece MSa and the base material portion MSb that corresponds to the overlapping portion becomes substantially a shear cross section SA. Since the shear section SA is smoother than the fracture surface SB, the holding force between the relevant portions tends to be smaller. Therefore, the punching member W can be individualized with a smaller force on the cutting line CL1.
 切断線CL1,CL2が重なり合うように、複数の打抜部材Wを積層している。この場合、積層方向において、比較的保持力が小さい切断線CL1と、比較的保持力が大きい切断線CL2とが一列に並んだ切断線群Gが固定子積層鉄心1に構成される。そのため、切断線CL1,CL2の重なり合いの数を調節することにより、切断線群Gにおける保持力が変化する。したがって、固定子積層鉄心1を切断線群Gにおいて個片化するのに要する力をコントロールすることが可能となる。 A plurality of punching members W are laminated so that the cutting lines CL1 and CL2 overlap. In this case, the stator laminated iron core 1 is composed of a cutting line group G in which a cutting line CL1 having a relatively small holding force and a cutting line CL2 having a relatively large holding force are arranged in a row in the stacking direction. Therefore, by adjusting the number of overlapping cutting lines CL1 and CL2, the holding force in the cutting line group G changes. Therefore, it is possible to control the force required to separate the stator laminated iron core 1 in the cutting line group G.
 複数の打抜部材Wが積層されて固定子積層鉄心1が形成された後に、固定子積層鉄心1が焼鈍炉200において加熱処理されうる。焼鈍の際の打抜部材Wの熱膨張により、隣り合うヨーク片W2aの端面同士の保持力が大きくなることがある。しかしながら、上述のとおり、切り曲げ片MSa及び母材部MSbの各端面のうち、不完全プッシュバック加工された箇所又はオーバーラップ部に対応する箇所の保持接続力が小さくなっているので、焼鈍を経た後でも、切断線CL1において打抜部材Wをより小さな力で個片化することが可能となる。 After the plurality of punching members W are laminated to form the stator laminated iron core 1, the stator laminated iron core 1 can be heat-treated in the annealing furnace 200. Due to the thermal expansion of the punching member W during annealing, the holding force between the end faces of the adjacent yoke pieces W2a may increase. However, as described above, of the end faces of the cut and bent piece MSa and the base material portion MSb, the holding connection force of the portion corresponding to the incomplete pushback processed portion or the overlap portion is small, so that annealing is performed. Even after that, the punching member W can be individualized with a smaller force at the cutting line CL1.
 複数の打抜部材Wが転積されて固定子積層鉄心1が形成されうる。この場合、保持力の異なる複数種類の切断線CL1,CL2を一つの打抜部材Wに設けておき、当該打抜部材Wを適宜転積することにより、積層方向において重なり合う切断線CL1,CL2の種類を調節できる。そのため、打抜部材Wの種類を増やすことなく、固定子積層鉄心1を切断線群Gにおいて個片化するのに要する力を調節することが可能となる。 A plurality of punched members W can be rolled up to form a stator laminated iron core 1. In this case, a plurality of types of cutting lines CL1 and CL2 having different holding powers are provided in one punching member W, and the punching members W are appropriately transposed so that the cutting lines CL1 and CL2 overlapping in the stacking direction are overlapped with each other. You can adjust the type. Therefore, it is possible to adjust the force required to separate the stator laminated iron core 1 in the cutting line group G without increasing the types of punching members W.
  本開示は、2020年10月26日に出願された日本国特許出願(日本国特願2020-178694号)に開示された内容を適宜援用する。 This disclosure appropriately incorporates the content disclosed in the Japanese patent application filed on October 26, 2020 (Japanese Patent Application No. 2020-178694).
 1…固定子積層鉄心(分割型積層鉄心、積層体)、2…ヨーク、100…固定子積層鉄心の製造装置、130…プレス加工装置、143…ダイプレート(挟持部材)、152…ストリッパ(挟持部材)、200…焼鈍炉、CL1…切断線(切断線、別の切断線)、CL2…切断線(別の切断線)、Ctr…コントローラ(制御部)、D2…ダイ、D2a…ダイ孔(ダイ孔、別のダイ孔)、D2A…ダイ、D2B…ダイ(別のダイ)、G…切断線群、MS…金属板、MSa…切り曲げ片、MSb…母材部、MSc…切り曲げ片(別の切り曲げ片)、P2A…パンチ、P2B…パンチ(別のパンチ)、S1a…端面(第1の端面)、S1b…端面(第2の端面)、SA…剪断面、SB…破断面、U1,U2…ユニット、V…開口部、W…打抜部材(金属板材、別の金属板材)、W2…ヨーク材、W2a…ヨーク片(第1の分割片、第2の分割片)。 1 ... Stator laminated iron core (split type laminated core, laminated body), 2 ... York, 100 ... Stator laminated iron core manufacturing equipment, 130 ... Press processing equipment, 143 ... Die plate (pinching member), 152 ... Stripper (pinching member) (Member), 200 ... Abrasive furnace, CL1 ... Cutting line (cutting line, another cutting line), CL2 ... Cutting line (another cutting line), Ctr ... Controller (control unit), D2 ... Die, D2a ... Die hole (member) Die hole, another die hole), D2A ... die, D2B ... die (another die), G ... cutting line group, MS ... metal plate, MSa ... cutting and bending piece, MSb ... base material part, MSc ... cutting and bending piece (Another cut and bent piece), P2A ... Punch, P2B ... Punch (another punch), S1a ... End face (first end face), S1b ... End face (second end face), SA ... Sheep cross section, SB ... Fracture cross section , U1, U2 ... Unit, V ... Opening, W ... Punching member (metal plate material, another metal plate material), W2 ... York material, W2a ... York piece (first divided piece, second divided piece).

Claims (5)

  1.  ダイに設けられたダイ孔に向けてパンチを進出させて、金属板を前記パンチで前記ダイ孔に対して部分的に押し込むことにより、前記金属板の所定の部位を所定の切断線に沿って切り曲げ加工して、第1の端面を含む切り曲げ片と、前記第1の端面に対応する第2の端面を含む母材部とを形成することと、
     前記切り曲げ片を前記母材部に対してプッシュバック加工して、前記第1の端面及び前記第2の端面の境界によって構成される前記切断線を介して前記切り曲げ片と前記母材部とを仮接続することと、
     前記部位を含むように前記金属板を打ち抜き加工して、環状を呈する複数の金属板材を形成することと、
     前記複数の金属板材を積層して積層体を形成することとを含み、
     前記パンチの進出方向から見て、前記パンチのうち前記切断線に対応する外形の少なくとも一部が、前記ダイ孔の輪郭よりも外方に位置している、分割型積層鉄心の製造方法。
    By advancing the punch toward the die hole provided in the die and partially pushing the metal plate into the die hole with the punch, a predetermined portion of the metal plate is formed along a predetermined cutting line. By cutting and bending, a cut and bent piece including the first end face and a base metal portion including the second end face corresponding to the first end face are formed.
    The cut and bent piece is pushed back to the base material portion, and the cut and bent piece and the base material portion are formed through the cutting line formed by the boundary between the first end face and the second end face. Temporarily connecting with
    By punching out the metal plate so as to include the portion, a plurality of metal plate materials exhibiting an annular shape are formed.
    Including laminating the plurality of metal plates to form a laminated body.
    A method for manufacturing a split-type laminated iron core, wherein at least a part of the outer shape of the punch corresponding to the cutting line is located outside the contour of the die hole when viewed from the advance direction of the punch.
  2.  別のダイに設けられた別のダイ孔に向けて別のパンチを進出させて、前記金属板を前記別のパンチで前記別のダイ孔に対して部分的に押し込むことにより、前記金属板の所定の別の部位を所定の別の切断線に沿って切り曲げ加工して、第3の端面を含む別の切り曲げ片と、前記第3の端面に対応する第4の端面を含む別の母材部とを形成することと、
     前記別の切り曲げ片を前記別の母材部に対してプッシュバック加工して、前記第3の端面及び前記第4の端面の境界によって構成される前記別の切断線を介して前記別の切り曲げ片と前記別の母材部とを仮接続することと、
     前記別の部位を含むように前記金属板を打ち抜き加工して、環状を呈する複数の別の金属板材を形成することとをさらに含み、
     前記別のパンチの進出方向から見て、前記別のパンチのうち前記別の切断線に対応する外形の少なくとも一部が、前記別のダイ孔の輪郭と重なりあうか又は前記別のダイ孔よりも内方に位置しており、
     前記積層体を形成することは、前記切断線及び前記別の切断線が重なり合うように、前記複数の金属板材のうちの少なくとも一つと、前記複数の別の金属板材のうちの少なくとも一つとを積層することを含む、請求項1に記載の方法。
    By advancing another punch toward another die hole provided in another die and partially pushing the metal plate into the other die hole with the other punch, the metal plate can be formed. A predetermined different part is cut and bent along a predetermined different cutting line, and another cut and bent piece including a third end face and another including a fourth end face corresponding to the third end face. Forming the base metal part and
    The other cut and bent piece is pushed back to the other base material portion, and the other cutting line is formed by the boundary between the third end face and the fourth end face. Temporarily connecting the cut and bent piece to the other base material,
    Further comprising punching the metal plate to include the other portion to form a plurality of different metal plate materials exhibiting an annular shape.
    Whether at least a part of the outer shape of the other punch corresponding to the other cutting line overlaps with the contour of the other die hole or is more than the other die hole when viewed from the advance direction of the other punch. Is also located inward,
    To form the laminated body, at least one of the plurality of metal plates and at least one of the plurality of other metal plates are laminated so that the cutting line and the other cutting lines overlap each other. The method of claim 1, wherein the method comprises:
  3.  前記積層体を形成することの後に、前記積層体を焼鈍することをさらに含む、請求項1又は2に記載の方法。 The method according to claim 1 or 2, further comprising annealing the laminate after forming the laminate.
  4.  前記積層体を形成することは、前記複数の金属板材を転積することを含む、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein forming the laminated body includes laminating the plurality of metal plates.
  5.  環状を呈する金属板材が複数積層されて構成される分割型積層鉄心であって、
     前記金属板材は、その周方向において並び且つ所定の切断線によって分割された第1の分割片及び第2の分割片を含み、
     前記第1の分割片の第1の端面及び前記第2の分割片の第2の端面によって構成される前記切断線を介して前記第1の分割片と前記第2の分割片とが仮接続されており、
     前記第1の端面及び前記第2の端面はそれぞれ、ほぼ全域が剪断面である領域を含む、分割型積層鉄心。
    It is a split-type laminated iron core composed of a plurality of annular metal plates laminated together.
    The metal plate includes a first division piece and a second division piece arranged in the circumferential direction and divided by a predetermined cutting line.
    The first divided piece and the second divided piece are temporarily connected via the cutting line composed of the first end surface of the first divided piece and the second end surface of the second divided piece. Has been
    The first end face and the second end face are each a split type laminated iron core including a region having a shear cross section in almost the entire area.
PCT/JP2021/033052 2020-10-26 2021-09-08 Method for manufacturing segmented laminated core, and segmented laminated core WO2022091594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178694A JP2022069811A (en) 2020-10-26 2020-10-26 Manufacturing method of split type laminated iron core and split type laminated iron core
JP2020-178694 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022091594A1 true WO2022091594A1 (en) 2022-05-05

Family

ID=81382274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033052 WO2022091594A1 (en) 2020-10-26 2021-09-08 Method for manufacturing segmented laminated core, and segmented laminated core

Country Status (2)

Country Link
JP (1) JP2022069811A (en)
WO (1) WO2022091594A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219696A (en) * 1992-01-31 1993-08-27 Kuroda Precision Ind Ltd Strip material for wound stator iron core, and method and system for manufacturing wound stator iron core using the material
JP2001300647A (en) * 2000-04-24 2001-10-30 Sankyo Seiki Mfg Co Ltd Manufacturing method of pressed part and manufacturing method of laminated core for motor
JP2004357349A (en) * 2003-05-27 2004-12-16 Nakamura Mfg Co Ltd Manufacturing method of iron core piece
JP2005318763A (en) * 2004-04-30 2005-11-10 Mitsui High Tec Inc Method of manufacturing laminated core and mold apparatus
JP2018201300A (en) * 2017-05-26 2018-12-20 株式会社三井ハイテック Heat treatment tool and manufacturing method of laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219696A (en) * 1992-01-31 1993-08-27 Kuroda Precision Ind Ltd Strip material for wound stator iron core, and method and system for manufacturing wound stator iron core using the material
JP2001300647A (en) * 2000-04-24 2001-10-30 Sankyo Seiki Mfg Co Ltd Manufacturing method of pressed part and manufacturing method of laminated core for motor
JP2004357349A (en) * 2003-05-27 2004-12-16 Nakamura Mfg Co Ltd Manufacturing method of iron core piece
JP2005318763A (en) * 2004-04-30 2005-11-10 Mitsui High Tec Inc Method of manufacturing laminated core and mold apparatus
JP2018201300A (en) * 2017-05-26 2018-12-20 株式会社三井ハイテック Heat treatment tool and manufacturing method of laminate

Also Published As

Publication number Publication date
JP2022069811A (en) 2022-05-12

Similar Documents

Publication Publication Date Title
US3283399A (en) Method of forming electromagnetic cores
JP7288825B2 (en) LAMINATED CORE MANUFACTURING APPARATUS AND LAMINATED CORE MANUFACTURING METHOD
EP3093964B1 (en) Method for manufacturing workpiece and method for manufacturing laminated core
WO2012043632A1 (en) Layered body manufacturing device and layered body manufacturing method
US10532387B2 (en) Progressive processing method
WO2022091593A1 (en) Split-type laminated iron core, and method for manufacturing split-type laminated iron core
JP3722539B2 (en) Manufacturing method of annular laminated iron core and progressive mold apparatus
US20190372439A1 (en) Method of manufacturing stacked core and apparatus for manufacturing stacked core
JP7459110B2 (en) Multi-layer precision punching process for manufacturing metal parts and precision punching device for carrying out such a process
WO2022091594A1 (en) Method for manufacturing segmented laminated core, and segmented laminated core
JP2008109785A (en) Method of manufacturing armature, and regularly sending mold
CN105471196B (en) The manufacturing method and manufacturing device of laminated core
JP2019054727A (en) Method for manufacturing laminated iron core
JP6600166B2 (en) Progressive press working method
JP6652460B2 (en) Laminated core manufacturing apparatus and laminated core manufacturing method
JPH0236332B2 (en)
TW202126413A (en) Plate material cutting device
JP5735880B2 (en) Iron core manufacturing equipment
JP5557690B2 (en) Iron core manufacturing equipment
JP2021125953A (en) Manufacturing method of laminated iron core and manufacturing device of laminated iron core
JP2000153319A (en) Press die for punching blank for iron core of motor and punching method
JP5557691B2 (en) Iron core manufacturing method and iron core manufacturing apparatus
JP3442559B2 (en) Steel core punching equipment
JP7146687B2 (en) mold equipment
GB943822A (en) Metal laminated structures for electro-magnetic devices and methods of making such structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885713

Country of ref document: EP

Kind code of ref document: A1