WO2022091580A1 - Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin - Google Patents

Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin Download PDF

Info

Publication number
WO2022091580A1
WO2022091580A1 PCT/JP2021/032647 JP2021032647W WO2022091580A1 WO 2022091580 A1 WO2022091580 A1 WO 2022091580A1 JP 2021032647 W JP2021032647 W JP 2021032647W WO 2022091580 A1 WO2022091580 A1 WO 2022091580A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
fiber
mixing
resin
fibrous cellulose
Prior art date
Application number
PCT/JP2021/032647
Other languages
French (fr)
Japanese (ja)
Inventor
貴章 今井
一紘 松末
隆之介 青木
Original Assignee
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021140049A external-priority patent/JP7213926B2/en
Application filed by 大王製紙株式会社 filed Critical 大王製紙株式会社
Publication of WO2022091580A1 publication Critical patent/WO2022091580A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres

Definitions

  • the present invention relates to a method for producing fibrous cellulose and a method for producing a fibrous cellulose composite resin.
  • microfiber cellulose microfibrillated cellulose
  • fine fibers are useful as a reinforcing material, they are hydrophilic and repel each other with a resin having hydrophobic properties, so that it may not be possible to sufficiently bring out the effect of the resin as a reinforcing material.
  • modification treatment such as imparting a hydrophobic group to fine fibers to impart hydrophobicity similar to that of a resin and enhancing the affinity with the resin to have a reinforcing effect. has been proposed.
  • Patent Document 1 describes, as a technique for imparting a hydrophobic group to fine fibers, "modified cellulose fiber esterified by adding cyclic polybasic acid anhydride (a) having a hydrophobic group to the cellulose fiber and having 15 or more carbon atoms. (A) ”is disclosed, and the modified cellulose fiber-containing resin composition containing the modified cellulose fiber (A) and the dispersion resin (B) is excellent in dispersibility and mechanical strength with respect to the resin for molding material. I am proposing that it will be.
  • Patent Document 2 a step of reacting cellulose having a hydroxyl group with a resin having an anhydrous polybasic acid structure in the molecule to obtain modified cellulose and a step of refining the obtained modified cellulose are performed in the same step.
  • Patent Document 1 states that it is desirable that the substitution rate (reaction rate) of the acid anhydride with respect to the cellulose fiber is within a predetermined range, but it is sufficient regarding what kind of production method should be adopted to improve the substitution rate. No consideration has been given.
  • Patent Document 2 states that cellulose and a resin having an anhydrous polybasic acid structure in the molecule are reacted at a predetermined ratio to produce modified cellulose nanofibers, but this also relates to improving the substitution rate. However, sufficient consideration has not been given. Based on these points, the present inventor thinks that there may be room for further improvement of the substitution rate, and the problem to be solved by the present invention is a fibrous form obtained by improving the substitution rate of the modification treatment. A method for producing cellulose and a method for producing a fibrous cellulose composite resin will be provided.
  • the present inventors have obtained the finding that the substitution rate is affected by the mixing condition of the cellulose fiber and the drug, and if the mixture is sufficiently mixed, the substitution rate will be improved. Therefore, the aspects of the invention completed based on this finding are as follows.
  • the carbamate step comprises a mixing step of mixing the cellulose fiber and at least one of urea and a derivative of urea, and a heating step of heating the cellulose fiber after the mixing step.
  • the mixing step includes a step of adding the drug to the cellulose fiber and a step of mixing the cellulosic fiber and the added drug.
  • the mixing step is When 0.2% by mass of the dissociated liquid prepared by dissociating the cellulose fibers obtained by mixing with water to a uniform concentration and then allowing it to stand, the sedimentation rate at the interface of the dissociated cellulose fibers However, it should be less than 60% after 10 minutes of standing.
  • a method for producing fibrous cellulose which is characterized by the above.
  • Carbamate formation of the cellulose fiber can be carried out through a mixing step of mixing the cellulose fiber and the above-mentioned agent and a heating step of promoting the reaction. In the mixing step, it is preferable to add a chemical to the cellulose fibers and mix them.
  • the hydroxyl groups of the individual fibers that form the unmodified cellulose fibers are hydrogen bonded to each other.
  • the hydroxyl group of the cellulose fiber is replaced with a carbamate group to obtain a modified cellulose fiber. Since the hydroxyl group of the modified cellulose fiber is substituted with a carbamate group, the hydrogen bond is weakened and the modified cellulose fiber is more easily dissociated than the unmodified cellulose fiber.
  • the cellulose fibers When the dissociated liquid prepared by dispersing the dissociated cellulose fibers in a solvent is made uniform and then allowed to stand, the cellulose fibers begin to precipitate and are separated into a cellulose fiber phase and a supernatant phase to form an interface of the cellulose fibers. It will settle over time. Specifically, it can be considered as follows. Cellulose fibers before the addition of the drug contain air inside the fibers. Most of the chemicals adhering to the fiber adhere to the surface of the fiber, and the cellulose fiber which hardly adheres to the inside of the fiber retains air inside the fiber even after the carbamate step. This cellulose fiber is difficult to settle because air still remains inside the fiber. On the other hand, in the cellulose fiber in which the chemical has penetrated into the fiber, air is pushed out to the outside of the fiber by the penetration of the chemical in the fiber, and the amount of air remaining in the fiber is small, so that it is easy to settle.
  • the effect of the drug permeating into the inside of the cellulose fiber is obtained, and carbamate formation is promoted not only on the surface of the cellulose fiber but also inside, so that the substitution rate of the carbamate group is improved. It has become.
  • the carbamate step comprises a mixing step of mixing the cellulose fiber and at least one of urea and a derivative of urea, and a heating step of heating the cellulose fiber after the mixing step.
  • the mixing step is (1) When the mixing step includes a step of adding the drug to the cellulose fiber and a step of mixing the cellulosic fiber and the added drug, the sedimentation rate becomes less than 60% after 10 minutes of standing. (2) When the mixing step comprises only the step of adding the drug to the cellulose fibers, the sedimentation rate becomes 60% or more after 10 minutes of standing.
  • a method for producing fibrous cellulose which is characterized by the above.
  • the mixing step consists only of the step of adding the drug to the cellulose fiber
  • the effect of the drug permeating into the cellulose fiber is less likely to be so, and air remains inside the fiber, making it difficult to settle.
  • the sedimentation rate differs depending on the presence or absence of the mixing step, and the carbamate group substitution rate is superior in the case where the mixing step has a mixing step than in the case where the mixing step consists only of the step of adding the drug to the cellulose fibers. It becomes a thing.
  • the sedimentation rate in the case of (1) above is less than 60% and the sedimentation rate in the case of (2) above is 60 or more, even a type of cellulose fiber that does not easily react with a drug is (1). ) Has the effect of penetrating the inside of the fiber, so that the production method has an improved substitution rate of the carbamate group.
  • the step of adding the drug is carried out with the addition amount of the drug per 1 g of the cellulose fiber being 10 g or less.
  • the heating step is performed at a heating temperature of 200 ° C. or lower and a heating time of 15 hours or less.
  • Cellulose fibers cause irreversible thermal denaturation when exposed to high temperatures for a long time, which may make it difficult to use as a material for fibrous cellulose composite resin. Under the conditions of the above aspect, heat denaturation is unlikely to occur. Further, even under the conditions of the above embodiment, since the drug has penetrated into the cellulose fiber, the reaction conversion rate of the carbamate-forming reaction does not decrease.
  • the carbamate step is performed without adding an organic solvent.
  • the mixing step is performed by adding 0.1 g or more and 99 g or less of the dispersion medium per 1 g of the cellulose fiber.
  • a dispersion medium because the cellulose fibers are less likely to aggregate, but adding a large amount of the dispersion medium may dilute the drug and reduce the reaction efficiency. With the above addition amount, the permeation of the drug into the cellulose fiber is not suppressed, and it is easy to adjust the substitution rate to a desired value.
  • the substitution rate of the carbamate group with respect to the fibrous cellulose is 1 to 2 mmol / g.
  • the fibrous cellulose composite resin produced from this as a raw material has excellent strength and is preferable.
  • Fibrous cellulose is obtained by the method according to any one of the first to seventh aspects, and the fibrous cellulose and the resin are mixed.
  • a method for producing a fibrous cellulose composite resin is obtained by the method according to any one of the first to seventh aspects, and the fibrous cellulose and the resin are mixed.
  • the chemical permeates the inside of the cellulose fiber to produce fibrous cellulose, so that the substitution efficiency of the carbamate group is improved and the desired strength is obtained. It is possible to manufacture the provided fibrous cellulose composite resin.
  • the step of defibrating the cellulose fiber into fibrous cellulose is a step of defibrating the fibrous cellulose so that the average fiber width is 0.1 to 19 ⁇ m.
  • the method for producing fibrous cellulose according to any one of the first to eighth aspects.
  • the strength of the fibrous cellulose composite resin is increased.
  • it is a method for producing a fibrous cellulose obtained by improving the substitution rate of the modification treatment, and a method for producing a fibrous cellulose composite resin.
  • the embodiment of the present invention is an example of the present invention.
  • the scope of the present invention is not limited to the scope of the present embodiment.
  • the method for producing fibrous cellulose of the present embodiment includes a step of carbamate the cellulose fiber and a step of defibrating the cellulose fiber into fibrous cellulose, and the step of carbamate is the cellulose fiber, urea and the like. It has a mixing step of mixing at least one of the agents of the urea derivative and a heating step of heating the cellulose fibers after the mixing step, and the mixing step includes a step of adding the agent to the cellulose fibers. It is carried out by having a step of mixing the cellulose fiber and the added agent.
  • the raw material pulp (cellulose raw material) is defibrated to obtain fibrous cellulose.
  • the average fiber width of the fibrous cellulose is not particularly limited. However, it is more preferable to defibrate so as to obtain microfiber cellulose (microfibrillated cellulose) having an average fiber width of 0.1 to 19 ⁇ m.
  • the microfiber cellulose having an average fiber width in the above range has an effect of reinforcing the resin used for the composite, and the strength of the composite resin produced from the microfiber cellulose as a material is remarkably improved.
  • Microfibers Cellulose is easier to modify (carbamate) with carbamate groups than fine fibers with a smaller average fiber width, that is, cellulose nanofibers.
  • Carbamate can be carried out using either undefibrated cellulose fibers or defibrated microfiber cellulose or cellulose nanofibers, but in the step of mixing, the fibers are to some extent. It is more preferable to carbamate the cellulose fibers before defibration because the lumpy state is easier to mix.
  • fibrous cellulose having an average fiber width (diameter) of 0.1 to 19 ⁇ m is referred to as microfiber cellulose, microfibrillated cellulose, or MFC.
  • microfiber cellulose means a fiber having an average fiber diameter (width) larger than that of cellulose nanofiber.
  • the average fiber diameter is, for example, 0.1 to 19 ⁇ m, preferably 0.2 to 15 ⁇ m, and more preferably more than 0.5 to 10 ⁇ m. If the average fiber diameter of the microfiber cellulose is less than 0.1 ⁇ m, it can be said that it is an equivalent of cellulose nanofibers, and the effect of improving the strength (particularly bending elastic modulus) of the resin may not be sufficiently exhibited. In addition, it is uneconomical because it takes a lot of time and a large amount of energy to defiber. Further, when the fibers are made into a slurry, the dehydration property deteriorates.
  • Deterioration of dehydration requires a large amount of energy for drying when it is desired to obtain a dried product of fibers, and excessive energy application may damage the fibers and may not have the effect of improving the strength of the resin. be.
  • the average fiber diameter is 50 nm or less, the thermal decomposition temperature is remarkably lowered, so that the heat resistance is lowered, which makes it unsuitable for kneading with a resin.
  • the average fiber diameter of the microfiber cellulose exceeds 19 ⁇ m, there is almost no difference from the pulp, and there is a possibility that the reinforcing effect cannot be obtained.
  • the method for measuring the average fiber diameter of fine fibers is as follows. First, 100 ml of an aqueous dispersion of fine fibers having a solid content concentration of 0.01 to 0.1% by mass is filtered through a Teflon (registered trademark) membrane filter, and the solvent is replaced once with 100 ml of ethanol and three times with 20 ml of t-butanol. do. Next, it is freeze-dried and coated with osmium to prepare a sample. This sample is observed with an electron microscope SEM image at a magnification of 3,000 to 30,000 times depending on the width of the constituent fibers.
  • Teflon registered trademark
  • microfiber cellulose can be obtained by defibrating (miniaturizing) the cellulose raw material.
  • the raw material pulp includes, for example, wood pulp made from broadleaf trees, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, hemp, carrot fiber, etc., recycled paper pulp made from recovered waste paper, waste paper, etc.
  • One type or two or more types can be selected and used from (DIP) and the like.
  • the above-mentioned various raw materials may be, for example, in the state of a crushed product (powder) called a cellulosic powder or the like.
  • the wood pulp for example, one kind or two or more kinds can be selected and used from chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP) and the like.
  • hardwood kraft pulp hardwood bleached kraft pulp, hardwood unbleached kraft pulp, hardwood semi-bleached kraft pulp and the like can be used.
  • softwood kraft pulp softwood bleached kraft pulp, softwood unbleached kraft pulp, and softwood semi-bleached kraft pulp can be used.
  • the mechanical pulp can be used without particular limitation, and for example, stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemi-grand pulp (CGP), thermo-grand pulp ( Select one or more from TGP), ground pulp (GP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), refiner mechanical pulp (RMP), bleached thermomechanical pulp (BTMP), etc. Can be used.
  • SGP stone ground pulp
  • PGW pressurized stone ground pulp
  • RGP refiner ground pulp
  • CGP chemi-grand pulp
  • CGP thermo-grand pulp
  • Select one or more from TGP ground pulp
  • GP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • RMP refiner mechanical pulp
  • BTMP bleached thermomechanical pulp
  • Cellulose fiber (raw material pulp) can be pretreated by a chemical method prior to defibration.
  • Pretreatment by chemical method includes, for example, hydrolysis of polysaccharide with acid (acid treatment), hydrolysis of polysaccharide with enzyme (enzyme treatment), swelling of polysaccharide with alkali (alkali treatment), oxidation of polysaccharide with oxidizing agent (acid treatment). Oxidation treatment), reduction of polysaccharides with a reducing agent (reduction treatment), and the like can be exemplified.
  • enzyme treatment is particularly preferable because the fibers are not damaged. It is preferable to perform one or more treatments selected from acid treatment, alkali treatment, and oxidation treatment in addition to the enzyme treatment because defibration is facilitated.
  • the pretreatment is a treatment for facilitating the defibration of the cellulose fiber (raw material pulp), and may be performed before the step of carbamate-forming the cellulose fiber, or may be performed after the pretreatment after the step of carbamate formation.
  • the step of defibrating may be performed.
  • the enzyme treatment will be described in detail.
  • the enzyme used for the enzyme treatment it is preferable to use at least one of the cellulase-based enzyme and the hemicellulase-based enzyme, and it is more preferable to use both in combination.
  • the use of these enzymes facilitates the defibration of cellulose raw materials.
  • the cellulase-based enzyme causes the decomposition of cellulose in the coexistence of water.
  • hemicellulose-based enzymes induce the decomposition of hemicellulose in the presence of water.
  • cellulase-based enzymes examples include Trichoderma (Filamentous fungus), Acremonium (Filamentous fungus), Aspergillus (Filamentous fungus), Fanerochaete (Phanerochaete), Tramethes (Tra).
  • Enzymes can be used.
  • These cellulase-based enzymes can be purchased as reagents or commercial products.
  • cellulosein T2 manufactured by HPI
  • Meicerase manufactured by Meiji Seika
  • Novozyme 188 manufactured by Novozyme
  • Multifect CX10L manufactured by Genencore
  • cellulase-based enzyme GC220 manufactured by Genecore
  • EG encodedoglucanase
  • CBH cellobiohydrolase
  • hemicellulase-based enzyme for example, xylanase, which is an enzyme that decomposes xylan, mannase, which is an enzyme that decomposes mannan, and arabanase, which is an enzyme that decomposes alabang, can be used.
  • xylanase which is an enzyme that decomposes xylan
  • mannase which is an enzyme that decomposes mannan
  • arabanase which is an enzyme that decomposes alabang
  • pectinase which is an enzyme that decomposes pectin
  • Hemicellulose is a polysaccharide excluding pectins between the cellulose microfibrils of the plant cell wall. Hemicellulose is diverse and varies between wood types and cell wall layers. Glucomannan is the main component in the secondary walls of conifers, and 4-O-methylglucuronoxylan is the main component in the secondary walls of hardwoods. Therefore, when fine fibers are obtained from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. Further, when fine fibers are obtained from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.
  • NNKP softwood bleached kraft pulp
  • LKP hardwood bleached kraft pulp
  • the amount of enzyme added to the cellulose fiber is determined by, for example, the type of enzyme, the type of wood used as a raw material (conifer or hardwood), the type of mechanical pulp, and the like.
  • the amount of the enzyme added to 100 parts by mass of the cellulose raw material is preferably 0.1 to 3 parts by mass, more preferably 0.3 to 2.5 parts by mass, and particularly preferably 0.5 to 2 parts by mass. If the amount of the enzyme added is less than 0.1 parts by mass, the effect of adding the enzyme may not be sufficiently obtained. On the other hand, if the amount of the enzyme added exceeds 3% by mass, cellulose may be saccharified and the yield of cellulose fibers may decrease. In addition, there is also a problem that the improvement of the effect corresponding to the increase in the addition amount cannot be recognized.
  • the temperature during the enzyme treatment is preferably 30 to 70 ° C, more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C, regardless of whether the cellulase-based enzyme or the hemicellulase-based enzyme is used as the enzyme. ..
  • the temperature at the time of enzyme treatment is 30 ° C. or higher, the enzyme activity is likely to be activated, and the enzyme treatment is completed in a short time.
  • the temperature at the time of enzyme treatment is 70 ° C. or lower, inactivation of the enzyme can be prevented.
  • the enzyme treatment time is determined by, for example, the type of enzyme, the temperature of the enzyme treatment, the pH at the time of the enzyme treatment, and the like.
  • the general enzyme treatment time is 0.5 to 24 hours.
  • a method for inactivating the enzyme for example, there are a method of adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher), a method of adding hot water at 80 to 100 ° C., and the like.
  • alkali used for the alkali treatment examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, aqueous ammonia solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide and the like.
  • Organic alkali or the like can be used. However, from the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
  • the pretreatment prior to defibration, but when the pretreatment is applied, the water retention degree of the microfiber cellulose can be lowered, the crystallinity can be increased, and the homogeneity can be increased. If the water retention level of the microfiber cellulose is low, dehydration is likely to occur, and the dehydration property of the cellulose fiber slurry is improved.
  • the pretreatment decomposes hemicellulose and the amorphous region of cellulose contained in pulp. When the amorphous region is decomposed, the energy of defibration can be reduced, and the uniformity and dispersibility of the defibrated microfiber cellulose can be improved. However, since the pretreatment lowers the aspect ratio of the microfiber cellulose, it is preferable to avoid excessive pretreatment when it is used as a reinforcing material for the resin.
  • the dissociation step is a step of dispersing pulp (cellulose fibers) in which fibers are aggregated to form a sheet shape or the like into independent fibers, and can be performed by a dissociation device.
  • the disassembling device include a hand mixer, a tab type pulper, a drum type pulper, and a household mixer.
  • the average fiber length (average length of single fibers) of cellulose is preferably 0.10 to 2.00 mm, more preferably 0.12 to 1.50 mm, and particularly preferably 0.12 to 1.50 mm. It is 0.15 to 1.00. If the average fiber length is less than 0.10 mm, a three-dimensional network of fibers cannot be formed, the flexural modulus of the composite resin may decrease, and the reinforcing effect may not be improved. On the other hand, if the average fiber length exceeds 2.00 mm, the reinforcing effect may be insufficient because the length is the same as that of the raw material pulp.
  • the average fiber length of the pulp (cellulose fiber) used as a raw material in this embodiment is preferably 1.0 to 5.0 mm, more preferably 1.2 to 4.5 mm, and particularly preferably 1.5 to 4. It is 0 mm. If the average fiber length is less than 1.0 mm, the effect of reinforcing the resin by the microfiber cellulose obtained by defibrating the cellulose fiber may not be sufficiently obtained. On the other hand, if the average fiber length exceeds 5.0 mm, the energy required for defibration between the cellulose fibers is large, which may be disadvantageous in terms of manufacturing cost.
  • the defibration of the cellulose fibers is preferably performed so that the average fiber length ratio is less than 30, more preferably 2 to 20, and 1.5 to 10. Especially preferable.
  • the average fiber length ratio is 30 or more, the mechanical shearing to the fiber becomes excessive and the damage to the fiber increases. Therefore, the fiber may become too short or the strength of the fiber itself may decrease, and as a result, the resin reinforcing effect when composited with the resin may not be exhibited.
  • the average fiber length ratio is a value obtained by dividing the average fiber length of the cellulose fibers before defibration by the average fiber length of the cellulose fibers after defibration (average fiber length before defibration / average after defibration). Fiber length).
  • the average fiber length of the cellulose fiber can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
  • the average fiber length of the cellulose fiber is a value measured by a fiber analyzer "FS5" manufactured by Valmet. The same applies to the fine rate (Fine rate) described below.
  • the average size of pulp (cellulose fiber) used as a raw material in this embodiment is preferably 8 ⁇ 10 -5 to 1 ⁇ 10 ⁇ 2 mm 3 , more preferably 1 ⁇ 10 -4 to 2, in terms of average volume. It is preferably 1 ⁇ 70 -3 mm 3 , more preferably 3 ⁇ 10 -4 to 5 ⁇ 10 -3 mm 3 . If the average volume of the cellulose fibers is less than 8 ⁇ 10 -5 mm 3 , the cellulose fibers may not come into contact with each other or be pressed against each other (difficult to be pressed) in the mixing process. It becomes difficult for the drug to penetrate into the inside.
  • the pressure applied to the cellulose fibers will be biased in the mixing process, resulting in uneven penetration of the drug and deflated microfiber cellulose. May not be homogeneous.
  • the fine ratio of the microfiber cellulose obtained by defibration is preferably 30% or more, more preferably 35 to 99%, and particularly preferably 40 to 95%.
  • the fine ratio is 30% or more, the proportion of homogeneous fibers is large, and the destruction of the composite resin is difficult to proceed.
  • the fine ratio exceeds 99%, the flexural modulus may be insufficient.
  • the fine ratio of microfiber cellulose that is, the cellulose fiber after defibration, but it is more preferable to keep the fine ratio of the cellulose fiber before defibration within a predetermined range.
  • the fine ratio of the cellulose fibers before defibration is preferably 1% or more, more preferably 3 to 20%, and particularly preferably 5 to 18%. If the fine ratio of the cellulose fiber before defibration is within the above range, even if the fine ratio of the microfiber cellulose is defibrated to be 30% or more, the damage to the fiber is small and the reinforcing effect of the resin is considered to be improved. Be done.
  • the fine rate can be adjusted by pretreatment such as enzyme treatment.
  • pretreatment such as enzyme treatment.
  • the bonded state in the fiber may be partially destroyed, and the reinforcing effect of the resin may be reduced. Therefore, it is better to reduce the addition rate of the enzyme, for example, it is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. Further, it is also one of the selection frames that the enzyme treatment is not performed (addition amount: 0% by mass).
  • the "fine ratio” refers to the mass-based ratio of pulp fibers having a fiber length of 0.2 mm or less.
  • the aspect ratio of the microfiber cellulose is preferably 2 to 15,000, more preferably 10 to 10,000. If the aspect ratio is less than 2, the three-dimensional network cannot be sufficiently constructed, and even if the average fiber length is 0.10 mm or more, the reinforcing effect may be insufficient. On the other hand, if the aspect ratio exceeds 15,000, the microfiber celluloses are often entangled with each other, and the dispersion in the resin may be insufficient.
  • the aspect ratio is a value obtained by dividing the average fiber length by the average fiber width. It is considered that the larger the aspect ratio, the more places where catching occurs, so that the reinforcing effect increases, but on the other hand, the more catching, the lower the ductility of the resin.
  • the fibrillation rate of the microfiber cellulose is preferably 1 to 30%, more preferably 1.5 to 20%, and particularly preferably 2 to 15%. If the fibrillation rate exceeds 30%, there are many bonds between microfiber cellulose and water molecules per unit area, which may make dehydration difficult. On the other hand, when the fibrillation rate is less than 1%, the amount of fibrils bonded to water molecules is small, and the three-dimensional network formed by hydrogen bonds may not be rigid.
  • the fibrillation rate refers to the dissociation of cellulose fibers in accordance with JIS-P-8220: 2012 "Pulp-Dissolution Method", and the obtained dissociated pulp is referred to as FiberLab. (Kajaani) means a value measured using.
  • the crystallinity of the microfiber cellulose is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more. If the crystallinity is less than 50%, the strength of the fiber itself may decrease, and the strength of the resin may not be improved. Further, if the crystallinity is less than 50%, the heat resistance of the carbamate microfiber cellulose may be insufficient. If the crystallinity is low, the thermal decomposition reaction of the microfiber cellulose immediately proceeds due to the heat applied from the outside. On the other hand, the crystallinity of the microfiber cellulose is preferably 95% or less, more preferably 90% or less, and particularly preferably 85% or less. When the crystallinity exceeds 95%, the amount of hydrogen bonds in the cellulose molecule and between the cellulose molecules becomes large, and the dispersibility becomes inferior.
  • microfiber cellulose The crystallinity of microfiber cellulose can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, and micronization treatment.
  • the crystallinity is a value measured according to JIS K 0131 (1996).
  • the pulp viscosity of the microfiber cellulose is preferably 2 cps or more, more preferably 4 cps or more. If the pulp viscosity of the microfiber cellulose is less than 2 cps, the dispersibility of the microfiber cellulose may be deteriorated.
  • the pulp viscosity is a value measured according to TAPPI T 230.
  • the freeness of the microfiber cellulose is preferably 500 ml or less, more preferably 300 ml or less, particularly preferably 100 ml or less, and the lower limit is not particularly limited, and is preferably 10 ml or more. If the freeness of the microfiber cellulose exceeds 500 ml, the effect of improving the strength of the resin may not be sufficiently obtained.
  • the freeness is a value measured in accordance with JIS P8121-2 (2012).
  • the zeta potential of the microfiber cellulose is preferably ⁇ 150 to 20 mV, more preferably -100 to 0 mV, and particularly preferably -80 to -10 mV. If the zeta potential is lower than ⁇ 150 mV, the compatibility with the resin may be significantly reduced and the reinforcing effect may be insufficient. On the other hand, if the zeta potential exceeds 20 mV, the dispersion stability may decrease.
  • the water retention of the microfiber cellulose is preferably 80 to 400%, more preferably 90 to 350%, and particularly preferably 100 to 300%. If the water retention level is less than 80%, the water retention level is the same as that of the raw material pulp, and the reinforcing effect may be insufficient. On the other hand, if the water retention level exceeds 400%, it becomes difficult to dry.
  • the water retention rate of the microfiber cellulose tends to be lower as the substitution rate of the carbamate group in the microfiber cellulose is higher. Therefore, the water retention rate can be set to a desired value by adjusting the substitution rate.
  • the water retention level of the microfiber cellulose can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
  • the degree of water retention is JAPAN TAPPI No. It is a value measured according to 26 (2000).
  • the microfiber cellulose of this embodiment has a carbamate group.
  • the carbamate-ized microfiber cellulose may be, for example, one in which the raw material cellulose fiber is carbamateized and defibrated to become microfiber cellulose, or the microfiber cellulose is carbamateized to be carbamate. It may be made into microfiber cellulose.
  • carbamate means that a carbamate group (ester of carbamic acid) has been introduced into the cellulose fiber or microfiber cellulose.
  • the carbamate group is a group represented by -O-CO-NH-, and examples thereof include a group represented by -O-CO-NH 2 , -O-CONHR, -O-CO-NR 2 , and the like. can.
  • the carbamate group can be represented by the following structural formula (1).
  • R is independently a saturated linear hydrocarbon group, a saturated branched chain hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated branched chain hydrocarbon group, and the like.
  • Examples of the saturated linear hydrocarbon group include a linear alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group and a propyl group.
  • Examples of the saturated branched chain hydrocarbon group include a branched chain alkyl group having 3 to 10 carbon atoms such as an isopropyl group, a sec-butyl group, an isobutyl group and a tert-butyl group.
  • Examples of the saturated cyclic hydrocarbon group include cycloalkyl groups such as cyclopentyl group, cyclohexyl group and norbornyl group.
  • Examples of the unsaturated linear hydrocarbon group include a linear alkenyl group having 2 to 10 carbon atoms such as an ethenyl group, a propene-1-yl group and a propene-3-yl group, an ethynyl group and a propyne-1. Examples thereof include a linear alkynyl group having 2 to 10 carbon atoms such as an yl group and a propyne-3-yl group.
  • Examples of the unsaturated branched chain hydrocarbon group include a branched chain alkenyl group having 3 to 10 carbon atoms such as a propene-2-yl group, a butene-2-yl group, and a butene-3-yl group, and butin-3.
  • -A branched chain alkynyl group having 4 to 10 carbon atoms such as an yl group
  • the aromatic group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and the like.
  • the inducing group include the above-mentioned saturated linear hydrocarbon group, saturated branched chain hydrocarbon group, saturated cyclic hydrocarbon group, unsaturated linear hydrocarbon group, unsaturated branched chain hydrocarbon group and aromatic. Examples thereof include a group in which one or more hydrogen atoms contained in the group are substituted with a substituent (for example, a hydroxy group, a carboxy group, a halogen atom, etc.).
  • microfiber cellulose having a carbamate group in which a carbamate group is introduced, a part or all of the hydroxy group as a polar group is replaced with a carbamate group which is a relatively non-polar group.
  • Microfiber cellulose having a carbamate group is more non-polar than microfiber cellulose which is not carbamate as a single substance, that is, is hydrophobic, and therefore has a weak repulsion with a resin having a hydrophobic property. Therefore, the microfiber cellulose having a carbamate group mixed with the resin does not easily aggregate with each other, has good dispersibility, and adheres to the resin. Further, the slurry of microfiber cellulose having a carbamate group has low viscosity and good handleability.
  • the substitution rate of the carbamate group with respect to the hydroxy group of the microfiber cellulose (or cellulose fiber) is preferably 1 to 2 mmol / g, more preferably 1.1 to 1. It is 9.9 mmol / g, particularly preferably 1.2 to 1.8 mmol / g.
  • the substitution rate is 1.0 mmol / g or more, the effect of introducing the carbamate group, particularly the effect of improving the flexural modulus of the resin can be surely exhibited.
  • microfiber cellulose having a substitution rate of 1.0 mmol / g or more has hydrophobicity, so that it has a weak repulsion with the resin and is appropriately dispersed in the resin. It is considered that the strength of the resin is unlikely to occur and the strength is uniform.
  • substitution rate of the carbamate group exceeds 2 mmol / g, the strength of the composite resin decreases. This is because microfiber cellulose forms a strong three-dimensional network by hydrogen bonding, but if the substitution rate of the carbamate group is too high, the hydroxy groups that contribute to the formation of the three-dimensional network are relatively reduced. Therefore, it is considered that it becomes difficult to form a three-dimensional network rigidly.
  • the substitution rate of the carbamate group means the amount of substance of the carbamate group contained in 1 g of the cellulose fiber having the carbamate group.
  • the substitution rate of the carbamate group is measured by measuring the N atoms present in the carbamate pulp by the Kjeldahl method, and the carbamateization rate per unit weight is calculated.
  • Cellulose is a polymer having anhydrous glucose as a structural unit, and has three hydroxy groups per structural unit.
  • the cellulose raw material is carbamate.
  • carbamate carbamate group
  • cellulose fiber cellulose raw material when carbamate before defibration; the same applies hereinafter, also simply referred to as "cellulose fiber”
  • carbamate there are a method of making the cellulose material finer and then making it finer, and a method of making the cellulose raw material finer and then making it into a carbamate.
  • carbamate it is preferable to carry out carbamate first and then defibrate. This is because the cellulose raw material before defibration has high dehydration efficiency, and the cellulose raw material is easily defibrated by heating accompanying carbamate formation.
  • the step of carbamate-forming cellulose fibers can be divided into a mixing step and a heating step, and the mixing step can be further subdivided into a step consisting of only an addition step and a step consisting of a step of mixing with the addition step. Further, for carbamate formation, a mixing step may be performed, and a heating step may be performed through a disintegration step and / or a defibration step.
  • the carbamate step may or may not be carried out with the addition of an organic solvent.
  • an organic solvent When an organic solvent is added, it is preferable to use an organic solvent that does not have reactivity with the carboxy group of the cellulose fiber.
  • the organic solvent include hydrocarbon solvents such as cyclohexane, toluene and xylene, halogen solvents such as methylene chloride, chloroform and dichloroethane, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, N, N-.
  • Amid solvents such as dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, carboxylic acid solvents such as acetic acid, propionic acid and butyric acid, ether solvents such as tetrahydrofuran, diethyl ether, isopropyl ether and 1,4-dioxane.
  • a solvent can be mentioned.
  • concentration of the drug in the reaction system decreases, the encounter rate between the cellulose fiber as the reactant and the drug decreases, which may lead to a decrease in the substitution rate of the carbamate group. It is desirable to do this without adding an organic solvent.
  • the mixing step is a step of mixing the drug with the cellulose fibers. It consists of a process of putting a cellulose raw material (cellulose fiber) and a drug in a container such as a container, a bag, and a tank, and mixing the cellulose fiber and the drug.
  • the addition step is a step of adding a drug to the cellulose fiber.
  • the whole amount of the drug may be added to the container containing the cellulose fiber at a time, or it may be divided into several portions and added little by little.
  • the amount of the drug added per 1 g of cellulose fiber is preferably 10 g or less, more preferably 5 g or less, still more preferably 1 g or less. Since this embodiment has a step of mixing, carbamate formation is promoted by the above addition amount.
  • the lower limit of the addition amount is preferably 0.05 g, more preferably 0.1 g. If the addition rate is 0.01 g, this embodiment has an excellent substitution rate for carbamate formation.
  • the mixing step is a step of mixing the cellulose fibers and the added chemicals.
  • the drug is infiltrated into the surface and inside of the cellulose fibers.
  • the chemicals adhere to the surface of the cellulose fibers, and the chemicals on the surface gradually permeate the inside of the cellulose fibers in the process of mutual contact, rubbing, and pressing of the cellulose fibers to which the chemicals have adhered. It will come to go. Whether or not the drug has sufficiently penetrated into the cellulose fibers can be evaluated by, for example, putting the cellulose fibers subjected to the mixing step into the aqueous phase and measuring the degree of sedimentation.
  • the drug for example urea
  • the cellulose fibers subjected to the mixing step settle faster than the cellulose fibers not subjected to the step. Even if the cellulose fibers that have undergone the mixing step are rinsed with water or the like, the chemicals that adhere to the fiber surface easily run off, but the chemicals that have penetrated into the fibers do not easily run off.
  • the sedimentation rate at the interface of the above can be set to less than 60%, preferably 59% or less, more preferably 58% or less after 10 minutes of standing.
  • the sedimentation rate can be calculated by the following formula.
  • [Number 1] (Precipitation rate (%)) ⁇ (Water volume of dissociation liquid)-(Depth from the liquid surface of dissociation liquid to the interface of cellulose fibers in dissociation liquid) ⁇ / (Water volume of dissociation liquid) ⁇ 100 If the sedimentation rate 10 minutes after standing is 60% or more, the penetration of the drug into the cellulose fibers is not sufficient. This is because chemicals, especially urea and the like, have a large specific gravity with respect to water, and cellulose fibers with insufficient penetration of chemicals are less likely to settle in water. Cellulose fibers in which the chemicals have sufficiently penetrated into the fibers contain a large amount of chemicals having a relatively large specific gravity, so that they tend to settle in water.
  • the sedimentation rate was measured in accordance with JIS M 0201: 1974 (coal preparation wastewater test method). A certain amount of slurry was put into a container and allowed to stand for a certain period of time, and the amount of change in the sedimentation interface per unit time was used. You can ask. Further, the settling speed can also be measured in accordance with JIS M 0201: 1974, and can be obtained from the amount of change in the settling interface per unit time by putting a certain amount of slurry into a container and allowing it to stand for a certain period of time.
  • the water volume of the dissociated liquid means the depth from the liquid surface to the bottom surface of the dissociated liquid when the dissociated liquid is placed in a container for measuring the sedimentation rate.
  • the mixing step comprises (1) a step of adding the drug to the cellulose fiber and a step of mixing the cellulosic fiber and the added drug, the sedimentation rate is 60 after 10 minutes of standing. %, Preferably 59% or less, more preferably 58% or less.
  • the mixing step comprises only the step of adding the drug to the cellulose fibers, the sedimentation rate is 10 minutes after standing. It may be 60% or more, more preferably 63% or more, still more preferably 65% or more. At this time, the settling rate in the case of (1) is expressed as "Pmix +", and the settling rate in the case of (2) is expressed as "Pmix-".
  • the [settlement rate (Pmix +)]-[settlement rate (Pmix-)] (that is, the difference in the settling rate) is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more.
  • the sedimentation rate the cellulose fiber in which the drug is sufficiently permeated into the cellulose fiber is more than the cellulose fiber in which the drug is sufficiently permeated (manufactured without the mixing step). It will be big. It is considered that this is because the chemical having a high specific density permeated into the inside of the cellulose fiber and the specific gravity of the cellulose fiber as a whole increased.
  • the sedimentation rate (d (%) / dt) is the amount of change in the sedimentation rate per unit time.
  • the drug is preferably 0.5 mmol or more per 1 g of the cellulose fiber. It can be said that it contains more preferably 1.0 mmol or more, still more preferably 1.5 mmol or more. Whether or not the drug has sufficiently penetrated into the fibers of cellulose (that is, the degree of penetration) can be evaluated by, for example, the following mathematical formula.
  • [Number 2] (Permeability) (Mass g of cellulose fiber containing drug)-(Mass g of dried cellulose fiber)
  • the mass of the cellulose fiber containing the drug means the mass of the cellulose fiber that has undergone the mixing step after being dried (105 ° C., 1 hour).
  • the mass g of the drug and the substance amount mmol of the drug are appropriately converted and obtained.
  • Cellulose fibers produced without the mixing step are relatively difficult to settle, and the reaction conversion rate between the cellulose fibers and the drug is also low.
  • the dissociation occurred. It is advisable to carry out the mixing step so that the time required for completion is preferably 15 minutes or less, more preferably 12 minutes or less, still more preferably 10 minutes or less. If the time required for the disaggregation to be completed exceeds 15 minutes, the drug may not sufficiently penetrate into the cellulose fibers.
  • a cellulose fiber liquid obtained by adding the cellulose fiber obtained in the case where the mixing step (2) consists only of the step of adding the drug to the cellulose fiber into water to have a solid content concentration of 0.2% by mass is prepared. When the fibers are disintegrated at 800 rpm, the time required for the dissolution to be completed is 20 minutes or more.
  • the method of mixing is not particularly limited, but can be performed as follows as an example. It is possible to put the cellulose fibers and the chemicals into a cylindrical tank equipped with a mixing mixer such as a concrete mixer or a mortar mixer, a stirring blade or a circulation machine, and mix them. If you want to do a small amount, put the cellulose fiber and the medicine in the container and mix them with a mixing mixer such as a hand mixer, or put the cellulose fiber and the medicine in the bag and pickle the pickles from the outside of the bag. It can be a method of mixing the materials as if they were kneaded or kneaded.
  • the time for mixing the cellulose fiber and the drug is not particularly limited, but preferably 1 minute or more, more preferably 5 minutes or more, still more preferably 10 minutes or more, because the drug sufficiently penetrates into the cellulose fiber.
  • the mixing time may be preferably 24 hours or less, more preferably 12 hours or less, still more preferably 6 hours or less. Even if it is mixed for more than 24 hours, the effect corresponding to it is not achieved.
  • the rotation speed at the time of mixing is not particularly limited, but the lower limit is preferably 1 rpm or more, more preferably 10 rpm or more, further preferably 100 rpm or more, and the upper limit is preferably 100,000 rpm or less, more preferably 10000 rpm or less. It is good to say.
  • Examples of the drug used in the mixing step include urea or a derivative of urea (hereinafter, also simply referred to as "urea or the like").
  • urea or the like a derivative of urea or urea
  • urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea a compound in which the hydrogen atom of urea is replaced with an alkyl group or the like can be used.
  • ureas or derivatives of urea can be used alone or in combination of two or more. However, it is preferable to use urea.
  • the lower limit of the mixed mass ratio of urea or the like (urea or the like / cellulose fiber) to the cellulose fiber is preferably 10/100 or more, more preferably 20/100 or more.
  • the upper limit is preferably 300/100 or less, more preferably 200/100 or less.
  • the step of mixing can be performed only with cellulose fibers and a chemical, but a dispersion medium which is a liquid medium may be further added.
  • Water is usually preferable as the dispersion medium.
  • another liquid medium such as alcohol or ether, or a mixture of water and another dispersion medium may be used.
  • cellulose fibers, urea or the like may be added to the dispersion medium
  • cellulose fibers may be added to an aqueous solution of urea or the like
  • urea or the like may be added to the slurry containing the cellulose fibers.
  • the dispersion liquid containing the cellulose fibers and urea or the like may contain other components.
  • a step of adding 99 g or less, more preferably 66 g or less, still more preferably 49 g or less of the dispersion medium per 1 g of the cellulose fibers and mixing them is performed.
  • 0.1 g or more more preferably 1 g or more, still more preferably 2 g or more, and mix them. If the amount of the dispersion medium per 1 g of the cellulose fiber exceeds 99 g, the amount of the cellulose fiber in the entire dispersion liquid is small, so that it is difficult for the chemicals to adhere to the entire cellulose fiber evenly, and the defibration may not be uniform. There is. Further, if the amount of the dispersion medium per 1 g of the cellulose fiber is less than 0.1 g, the effect of adding the dispersion medium may not be expected.
  • the drying step is a step of removing the dispersion medium from the dispersion liquid containing the cellulose fibers and urea obtained in the mixing step, and can also be referred to as a removal step. By removing the dispersion medium, urea and the like can be efficiently reacted in the subsequent heat treatment. Even after the drying step, the chemical remains on the surface and inside of the fiber.
  • the set temperature in the drying step is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and particularly preferably 90 ° C. or higher.
  • the upper limit of the set temperature is preferably 120 ° C, more preferably 100 ° C. If the heating temperature exceeds 120 ° C., the dispersion medium and urea chemically react with each other, and the reaction conversion rate between the cellulose fibers and urea may decrease.
  • the drying time applied to the drying step can be appropriately adjusted according to the solid content concentration of the dispersion liquid and the like. Specifically, the drying time is, for example, 24 hours or less, preferably 20 hours or less, more preferably 18 hours or less, and particularly preferably 16 hours or less. On the other hand, it is better to dry for at least 6 hours to remove the dispersion medium. When the drying time is within the above range, almost the entire amount of the dispersion medium is removed from the cellulose fibers, and the thermal denaturation of the fibers due to long-term drying can be reliably suppressed.
  • the cellulose fibers subjected to the heating step are dried so that the moisture content is 10% or less, preferably 0 to 9%, and more preferably 0 to 8%. Is preferable.
  • the substitution rate of the carbamate group can be easily set to 1 mmol / g or more.
  • the heating step is a step of heating a mixture of cellulose fibers and a drug (urea or the like) after the mixing step (or drying step).
  • a part or all of the hydroxy groups of the cellulose fiber chemically react with urea or the like and are replaced with carbamate groups.
  • the reaction process is as follows. When urea or the like is heated, it is decomposed into isocyanic acid and ammonia as shown in the following reaction formula (1). Isocyanic acid is very reactive and unstable, for example, the carboxy group of cellulose is replaced with a carbamate group as shown in the following reaction formula (2).
  • the cellulose fiber used in the heating step of this embodiment has a large number of reaction sites between the hydroxy group and the drug in the cellulose fiber because the drug adheres to and permeates the fiber surface and the inside, and is relatively large. It is believed that the drug reacts with the hydroxy group. Further, although the water content of the cellulose fibers that have undergone the drying step has evaporated, the chemicals remain on the surface and inside, so that the hydrogen bonds are weakened by the chemicals at the places where the chemicals remain. Therefore, the cellulose fiber is excellent in the substitution efficiency of carbamate formation, and is easily dissociated and defibrated. It is considered that the action of weakening the hydrogen bond by the drug is due to the fact that a part of the water molecule forming the hydrogen bond is replaced with the urea molecule.
  • the temperature for heating the mixture is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, particularly preferably urea melting point (about 134 ° C.) or higher, still more preferably 140 ° C. or higher, most preferably.
  • the temperature should be 150 ° C. or higher.
  • the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and particularly preferably 170 ° C. or lower. If the heating temperature exceeds 200 ° C., the cellulose fibers may be decomposed or heat-denatured, and the reinforcing effect of the resin may be insufficient.
  • the heating time in the heating step is preferably 1 minute or longer, more preferably 5 minutes or longer, and particularly preferably 30 minutes. If the heating time is less than 1 minute, the chemical reaction may not be completed. On the other hand, the heating time is preferably 15 hours or less, more preferably 10 hours or less, and particularly preferably 5 hours or less. Since the chemical reaction is completed by heating for 15 hours, there is no advantage in heating beyond that time.
  • the temperature and time conditions are mainly different between the drying process and the heating process. Since the main purpose of the drying step is to vaporize and remove the dispersion medium adhering to the cellulose fibers, the treatment is performed at a low temperature and for a long time. Since the main purpose of the heating step is to promote the chemical reaction within the range where the cellulose fibers do not deteriorate, the treatment is performed at a high temperature and for a short time. The drying step may be omitted, but it is better to do so. If the heating step is performed in a non-drying state, water or steam exposed to a high temperature state may break the acetal bond to which glucose constituting cellulose is bound and damage the fiber. In addition, urea or the like to be used for carbamate formation of the cellulose fiber may chemically react with the water adhering to the cellulose fiber and be consumed, and further addition of urea may be required.
  • the pH is preferably an alkaline condition of pH 9 or higher, more preferably pH 9 to 13, and particularly preferably pH 10 to 12.
  • the pH may be 7 or less, preferably pH 3 to 7, particularly preferably pH 4 to 7, under acidic or neutral conditions.
  • the average fiber length of the cellulose fibers becomes short, and the reinforcing effect of the resin may be inferior.
  • a hot air dryer for example, a paper machine, a dry pulp machine, or the like can be used.
  • the mixture after the heating step may be washed for use in the next step.
  • This washing may be performed with water or the like. By this washing, residual unreacted urea and the like and by-products can be removed.
  • both defibration and carbamating can be performed first, but in the case of the washing, it is preferable to deflate after carbamating rather than carbamate after defibration. This is because when the cellulose fiber is defibrated, the water retention (degree) increases and it becomes difficult to dehydrate, and when the fiber is finely divided, it tends to irreversibly aggregate when it dries. For example, assuming that the water retention of pulp is 100%, the water retention of microfiber cellulose after defibration is as high as about 300%.
  • a dispersion liquid slurry
  • the water-based medium it is particularly preferable that the whole amount is water, but an water-based medium which is a liquid which is partially compatible with water can be used.
  • the liquid lower alcohols having 3 or less carbon atoms can be used.
  • the solid content concentration of the slurry is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass. If the solid content concentration is less than 0.1% by mass, a large amount of slurry is prepared for producing the composite resin, which is complicated and may require excessive energy for dehydration and drying. On the other hand, if the solid content concentration exceeds 10.0% by mass, the fluidity of the slurry itself is lowered, and the slurry itself cannot be mixed uniformly, which is not convenient.
  • the microfiber cellulose is preferably mixed with an acid-modified resin.
  • the acid group ionically bonds with a part or all of the carbamate group. This ionic bond improves the reinforcing effect of the resin.
  • an acid-modified polyolefin resin for example, an acid-modified polyolefin resin, an acid-modified epoxy resin, an acid-modified styrene-based elastomer resin, or the like can be used. However, it is preferable to use an acid-modified polyolefin resin.
  • the acid-modified polyolefin resin is a copolymer of an unsaturated carboxylic acid component and a polyolefin component.
  • polystyrene resin for example, one or two or more of alkene polymers such as ethylene, propylene, butadiene, and isoprene can be selected and used.
  • alkene polymers such as ethylene, propylene, butadiene, and isoprene
  • polypropylene resin which is a polymer of propylene.
  • the unsaturated carboxylic acid component for example, one or more can be selected and used from among maleic anhydrides, phthalic anhydrides, itaconic anhydrides, citraconic anhydrides, citrate anhydrides and the like.
  • maleic anhydrides it is preferable to use maleic anhydrides. That is, it is preferable to use a maleic anhydride-modified polypropylene resin.
  • the mixed amount of the acid-modified resin is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the microfiber cellulose.
  • the acid-modified resin is a maleic anhydride-modified polypropylene resin
  • the amount is preferably 1 to 200 parts by mass, more preferably 10 to 100 parts by mass. If the mixed amount of the acid-modified resin is less than 0.1 parts by mass, the improvement in strength is not sufficient. On the other hand, if the mixing amount exceeds 1,000 parts by mass, it becomes excessive and the strength tends to decrease.
  • the weight average molecular weight of maleic anhydride-modified polypropylene is, for example, 1,000 to 100,000, preferably 3,000 to 50,000.
  • the acid value of maleic anhydride-modified polypropylene is preferably 0.5 mgKOH / g or more and 100 mgKOH / g or less, and more preferably 1 mgKOH / g or more and 50 mgKOH / g or less.
  • the MFR (melt flow rate) of the acid-modified resin is preferably 2000 g / 10 minutes (190 ° C. / 2.16 kg) or less, more preferably 1500 g / 10 minutes or less, and 500 g / 10 minutes or less. It is particularly preferable to have it. If the MFR exceeds 2000 g / 10 minutes, the dispersibility of the cellulose fibers may decrease.
  • the acid value is measured in accordance with JIS-K2501 and titrated with potassium hydroxide.
  • the MFR measurement is based on JIS-K7210, and is determined by the weight of the sample flowing out in 10 minutes with a load of 2.16 kg at 190 ° C.
  • the microfiber cellulose of this embodiment is preferably mixed with a dispersant.
  • a dispersant When a dispersant is mixed with the microfiber cellulose, it becomes difficult for the microfiber cellulose to aggregate with each other. This is because the dispersant has a function of inhibiting hydrogen bonds between microfiber celluloses.
  • the dispersant By mixing the dispersant, the dispersibility of the microfiber cellulose with respect to the resin is improved when the microfiber cellulose and the resin are kneaded.
  • the dispersant also has a role of improving the compatibility of the microfiber cellulose and the resin.
  • a compound having an amine group and / or a hydroxyl group in an aromatic group and a compound having an amine group and / or a hydroxyl group in an aliphatic group are preferable.
  • Examples of compounds having an amine group and / or a hydroxyl group in aromatics include aniline, toluidin, trimethylaniline, anisidin, tyramine, histamine, tryptamine, phenol, dibutylhydroxytoluene, and bisphenol A. Classes, cresols, eugenols, gallic acids, guaiacols, picric acids, phenolphthalenes, serotonins, dopamines, adrenaline, noradrenaline, timoles, tyrosine, salicylic acids, methyl salicylates, anis alcohols.
  • Salicylic alcohols cinapyl alcohols, diphenidols, diphenylmethanols, cinnamyl alcohols, scopolamines, tryptofols, vanillyl alcohols, 3-phenyl-1-propanols, phenethyl alcohols, phenoxyethanols , Veratril alcohols, benzyl alcohols, benzoins, mandelic acids, manderonitriles, benzoic acids, phthalic acids, isophthalic acids, terephthalic acids, melitonic acids, silicic acids and the like.
  • Examples of compounds having an amine group and / or a hydroxyl group in aliphatics include capryl alcohols, 2-ethylhexanols, pelargone alcohols, caprin alcohols, undecyl alcohols, lauryl alcohols, tridecyl alcohols, and the like.
  • Myristyl alcohols pentadecyl alcohols, cetanols, stearyl alcohols, eleidyl alcohols, oleyl alcohols, linoleil alcohols, methylamines, dimethylamines, trimethylamines, ethylamines, diethylamines, ethylenediamines, Triethanolamines, N, N-diisopropylethylamines, tetramethylethylenediamines, hexamethylenediamines, spermidins, spermins, amantadins, formic acids, acetic acids, propionic acids, butyric acids, valeric acids, caproic acids.
  • Enant acids capricic acids, pelargonic acids, capric acids, lauric acids, myristic acids, palmitic acids, margalic acids, stearic acids, oleic acids, linoleic acids, linolenic acids, arachidonic acids, eikosapentaenoic acids, docosahexaenoic acids, sorbic acids, etc. Can be mentioned.
  • the mixing amount of the dispersant is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the microfiber cellulose. If the mixing amount of the dispersant is less than 0.1 parts by mass, the effect of adding the dispersant is weak, and the strength of the resin may not be sufficiently improved. On the other hand, if the mixing amount exceeds 1,000 parts by mass, the dispersibility of the microfiber cellulose may decrease due to the excess dispersant.
  • the above-mentioned acid-modified resin is intended to improve compatibility by ionic bonding between an acid group and a carbamate group of microfiber cellulose, thereby enhancing a reinforcing effect, and because of its large molecular weight, it is dispersed together with a resin for kneading.
  • Cheap The dispersant intervenes between the hydroxy groups between the microfiber celluloses to prevent aggregation, and since the molecular weight is smaller than that of the acid-modified resin, the space between the microfiber celluloses is narrow so that the acid-modified resin cannot enter. It can enter the space and plays a role in improving the dispersibility of microfiber cellulose. Therefore, the molecular weight of the acid-modified resin is preferably 2 to 2,000 times, preferably 5 to 1,000 times, the molecular weight of the dispersant.
  • the microfiber cellulose of this embodiment It is preferable to mix the microfiber cellulose of this embodiment with the powder. By mixing with the powder, the microfiber cellulose is suppressed from agglomeration and can be in a form capable of exhibiting the reinforcing property of the resin. It is advisable to adjust the water content of the microfiber cellulose to a predetermined range until it is compounded with the resin. As a result, the dispersibility with the resin deteriorates, and the effect of reinforcing the resin may not be sufficiently exerted.
  • the powder used should have poor reactivity with microfiber cellulose. Poor reactivity means that it is difficult to promote chemical reactions such as covalent bonds, ionic bonds, metal bonds, hydrogen bonds, and van der Waals forces. It can also be said that the powder has an activation energy of more than 100 kJ / mol when the powder and the microfiber cellulose chemically react with each other.
  • an inorganic powder or a resin powder can be selected and used, but an inorganic powder is preferable.
  • Inorganic powder is preferable because it has a reaction suppressing effect because it is difficult to dissociate the carboxy group of the cellulose fiber into hydroxide ion.
  • Inorganic powder is particularly advantageous in terms of operation. This is because, as a method for adjusting the water content of the fibrous cellulose-containing material, for example, a method of directly applying a mixed solution of fibrous cellulose and powder to a metal drum as a heat source and drying the mixture, or a method of mixing the mixture with a heat source. A method of heating the liquid without directly touching it can be mentioned as a method of adjusting the water content.
  • the resin powder when it is brought into contact with a heated metal plate (for example, a Yankee dryer, a cylinder dryer, etc.) and dried, a film is formed on the surface of the metal plate, the heat conduction is deteriorated, and the drying efficiency is remarkably high. If it is an inorganic powder, there is a concern that it will decrease. Such a problem is unlikely to occur.
  • a heated metal plate for example, a Yankee dryer, a cylinder dryer, etc.
  • the average particle size of the powder is preferably 1 to 10,000 ⁇ m, more preferably 10 to 5,000 ⁇ m, and particularly preferably 100 to 1,000 ⁇ m. If the average particle size exceeds 10,000 ⁇ m, the effect of inhibiting aggregation by entering the gaps between the fibers of cellulose may be impaired. If the average particle size is less than 1 ⁇ m, the particle size of the powder is too small for the cellulose fibers, and the effect of inhibiting the aggregation of the cellulose fibers with each other may not be exhibited.
  • the resin powder has the role of inhibiting hydrogen bonds by physically intervening in the gaps between the cellulose fibers and improving the dispersibility of the microfiber cellulose.
  • the acid-modified resin described above improves compatibility and enhances the reinforcing effect by ionic bonding an acid group and a carbamate group of microfiber cellulose.
  • the dispersant has the same action of inhibiting hydrogen bonds between microfiber celluloses, but since the particle size of the resin powder is micro-order, it physically intervenes and suppresses hydrogen bonds. Although the dispersibility of the resin powder is lower than that of the dispersant, the resin powder itself melts and forms a matrix, so that it does not contribute to deterioration of physical properties.
  • the dispersant since the dispersant has a particle size at the molecular level and is extremely small, it has a high effect of covering the microfiber cellulose to inhibit hydrogen bonds and improving the dispersibility of the microfiber cellulose. However, it may remain in the resin and cause deterioration of physical properties.
  • the average particle size of the powder is determined from the volume-based particle size distribution measured using a particle size distribution measuring device (for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA, Ltd.) with the powder as it is or in the state of an aqueous dispersion. It is the calculated medium diameter.
  • a particle size distribution measuring device for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA, Ltd.
  • Examples of the inorganic powder include simple substances and oxides of metal elements in Groups I to VIII of the Periodic Table of the Periodic Table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon elements. , Hydroxides, carbon salts, sulfates, silicates, sulfites, various clay minerals composed of these compounds, and the like can be exemplified. Specifically, for example, barium sulfate, calcium sulfate, magnesium sulfate, sodium sulfate, calcium sulfite, zinc oxide, heavy calcium carbonate, light calcium carbonate, aluminum borate, alumina, iron oxide, calcium titanate, aluminum hydroxide, etc.
  • Magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, clay, wallastnite, glass beads, glass powder, silica gel, dry silica, colloidal silica, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon , Glass fiber and the like can be exemplified.
  • a plurality of these inorganic fillers may be contained. Further, it may be contained in recycled paper pulp, or may be a so-called recycled filler obtained by regenerating an inorganic substance in paper sludge.
  • At least one inorganic powder selected from calcium carbonate, talc, white carbon, clay, calcined clay, titanium dioxide, aluminum hydroxide, recycled fillers, etc. which are suitably used as fillers and pigments for papermaking. It is more preferable to use at least one selected from calcium carbonate, talc, and clay, and it is particularly preferable to use at least one of light calcium carbonate and heavy calcium carbonate. .. Calcium carbonate, talc, and clay are easy to combine with a matrix such as a resin, and since they are general-purpose inorganic materials, they have merits such as less limitation of use. In addition, calcium carbonate is particularly preferred.
  • the size and shape of the light calcium carbonate powder can be controlled as desired, and the powder can be molded so as to enter the gap according to the size and shape of the cellulose fibers, so that the effect of suppressing the aggregation of the cellulose fibers can be easily produced. ..
  • the cellulose fibers since heavy calcium carbonate is amorphous, even if fibers of various sizes are present in the slurry, the cellulose fibers enter the gaps in the process of removing the aqueous medium during the drying step and aggregating the fibers. Mutual aggregation can be suppressed.
  • the resin used for the resin powder is not particularly limited, and various resins can be used, but it is preferable to use the same resin as the resin used for obtaining the composite resin because the use can be selected with one resin.
  • the mixing ratio of the powder is preferably 0.01 to 99 parts by mass, more preferably 0.05 to 19 parts by mass, and particularly preferably 0.1 to 9 parts by mass with respect to 1 part by mass of fibrous cellulose (microfiber cellulose). It is a mass part. If the mixing ratio of the powder to the fibrous cellulose is less than 0.01 parts by mass, the powder may be insufficient, and the action of entering the gaps between the cellulose fibers to suppress aggregation may be insufficient. If the mixing ratio exceeds 99 parts by mass, the fibers may be buried in the powder, which may hinder the kneading process of the fibrous cellulose and the resin.
  • Both the inorganic powder and the resin powder exemplified as the powder can be used in combination.
  • the inorganic powder and the resin powder are used together, even if either the inorganic powder or the resin powder is mixed under the condition of agglomeration, the effect of preventing the agglomeration is exhibited by mixing both the inorganic powder and the resin powder. Will be done.
  • powder with a small particle size has a relatively large surface area and tends to be easily aggregated due to the action of intramolecular force in addition to the action of gravity.
  • the particle size is small. Aggregation of powders is suppressed.
  • the ratio of the average particle size of the inorganic powder to the average particle size of the resin powder is preferably 1: 0.1 to 1: 10000, and is preferably 1: 1 to 1: 1000. Is more preferable.
  • the mixture of fibrous cellulose (microfiber cellulose), acid-modified resin, dispersant, powder and the like to be kneaded with the resin is preferably a dried product having a moisture content of less than 18%.
  • the dried product is preferably pulverized into a powder.
  • the coloring of the fibrous cellulose composite resin obtained by kneading with the resin is reduced.
  • the composite resin exhibits a yellowish color.
  • the composite resin produced from the powdery substance exhibits a color close to the original color of the resin.
  • a powdery substance in the form of a powdery substance, it is easily dried, and it is not necessary to dare to dry the fibrous cellulose when kneading with the resin, and the thermal efficiency of kneading is good.
  • a powder or a dispersant is mixed in the mixture, there is a low possibility that the fibrous cellulose (microfiber cellulose) will not be redispersed even if the mixture is dried.
  • the mixture When the mixture is dried to make a dried product, it is recommended to dehydrate it to make a dehydrated product before drying.
  • This dehydration can be performed using a dehydrator.
  • the dehydrating device include a belt press, a screw press, a filter press, a twin roll, a twin wire former, a valveless filter, a center disk filter, a membrane treatment, a centrifuge and the like.
  • the mixture or dehydrated product can be dried using a drying device.
  • the drying device include rotary kiln drying, disk drying, air flow drying, medium flow drying, spray drying, drum drying, screw conveyor drying, paddle drying, uniaxial kneading drying, multiaxial kneading drying, vacuum drying, and stirring drying. And so on.
  • the above-mentioned powdery substance can be crushed by using a crushing device.
  • the crushing device include a bead mill, a kneader, a disper, a twist mill, a cut mill, a hammer mill and the like.
  • the average particle size of the powder is preferably 10,000 ⁇ m or less, more preferably 10 to 5,000 ⁇ m, and particularly preferably 100 to 1,000 ⁇ m. If the average particle size exceeds 10,000 ⁇ m, it may not be easily dried. On the other hand, it is not necessary to strictly set the lower limit of the average particle size, but for example, it is not economical to make the average particle size less than 1 ⁇ m because a large amount of energy is required.
  • the average particle size of the powder can be controlled by classification using a classification device (filter, cyclone, etc.).
  • the bulk specific gravity of the mixture (powder) is preferably 0.03 to 1.0, more preferably 0.04 to 0.9, and particularly preferably 0.05 to 0.8.
  • the bulk specific density exceeds 1.0, strong aggregation is formed by hydrogen bonds between the fibrous celluloses, and it becomes difficult to disperse them in the resin.
  • the bulk specific density is less than 0.03, the mixture and the fibrous cellulose are separated by gravity in the kneading process, and excellent dispersibility is not maintained. Poor composite resin, etc. may be manufactured and the product may not be uniform.
  • the bulk specific density is a value measured according to JIS K7365.
  • the water content of the mixture is preferably less than 18%, more preferably 0 to 17%, and particularly preferably 0 to 16%.
  • the fibrous cellulose composite resin may be colored.
  • the substitution rate of the carbamate group is 1 mmol / g or more, it may not be possible to reduce the coloring.
  • hemicellulose which is one of the constituent substances of cellulose (coloring causative substance)
  • coloring causative substance can be reduced in molecular weight to make it water-soluble, and the coloring causative substance can be removed in the washing step of carbamate pulp. If the coloring-causing substance remains in the microfiber cellulose, the resin and the coloring-causing substance come into contact with each other during the kneading step, and the coloring becomes remarkable.
  • the moisture content is a value calculated by the following formula, where the mass at the time when the sample is held at 105 ° C. for 6 hours or more using a constant temperature dryer and no change in mass is observed is taken as the mass after drying.
  • Moisture content (%) [(mass before drying-mass after drying) ⁇ mass before drying] x 100
  • the fibrous cellulose-containing material (resin reinforcing material) obtained as described above is kneaded with a resin to obtain a fibrous cellulose composite resin.
  • This kneading can be performed, for example, by a method of mixing the pellet-shaped resin and the reinforcing material, or by a method of first melting the resin and adding the reinforcing material to the melt.
  • the acid-modified resin, dispersant and the like can also be added at this stage.
  • one or two or more types are selected from a single-screw kneader, a multi-screw kneader with two or more shafts, a mixing roll, a kneader, a roll mill, a Banbury mixer, a screw press, a disperser, and the like.
  • a mixing roll for example, a kneader, a roll mill, a Banbury mixer, a screw press, a disperser, and the like.
  • Two or more multi-axis kneaders with two or more axes may be used in parallel or in series.
  • the temperature of the kneading step is preferably equal to or higher than the glass transition point of the resin, and varies depending on the type of resin, but is preferably 80 to 280 ° C, more preferably 90 to 260 ° C, and 100 to 240 ° C. It is particularly preferable to do so.
  • thermoplastic resin it is preferable to use at least one of a thermoplastic resin and a thermosetting resin.
  • thermoplastic resin examples include polyolefins such as polypropylene (PP) and polyethylene (PE), polyester resins such as aliphatic polyester resins and aromatic polyester resins, polyacrylic resins such as polystyrene, methacrylate and acrylate, and polyamide resins.
  • PP polypropylene
  • PE polyethylene
  • polyester resins such as aliphatic polyester resins and aromatic polyester resins
  • polyacrylic resins such as polystyrene, methacrylate and acrylate
  • polyamide resins One kind or two or more kinds can be selected and used from the polycarbonate resin, the polyacetal resin and the like.
  • polyester resin examples of the aliphatic polyester resin include polylactic acid and polycaprolactone, and examples of the aromatic polyester resin include polyethylene terephthalate, which are biodegradable. It is preferable to use a polyester resin having a above (simply also referred to as “biodegradable resin”).
  • biodegradable resin for example, one or more of hydroxycarboxylic acid-based aliphatic polyester, caprolactone-based aliphatic polyester, dibasic acid polyester and the like can be selected and used.
  • hydroxycarboxylic acid-based aliphatic polyester for example, a homopolymer of a hydroxycarboxylic acid such as lactic acid, malic acid, glucose acid, or 3-hydroxybutyric acid, or at least one of these hydroxycarboxylic acids is used.
  • a hydroxycarboxylic acid such as lactic acid, malic acid, glucose acid, or 3-hydroxybutyric acid, or at least one of these hydroxycarboxylic acids.
  • polylactic acid a polymer of the above hydroxycarboxylic acid excluding lactic acid and lactic acid, polycaprolactone, and a polymer of at least one of the above hydroxycarboxylic acids and caprolactone, and polylactic acid is preferably used.
  • the lactic acid for example, L-lactic acid, D-lactic acid and the like can be used, and these lactic acids may be used alone or two or more kinds may be selected and used.
  • caprolactone-based aliphatic polyester for example, one or more can be selected and used from a homopolymer of polycaprolactone, a copolymer of polycaprolactone and the like and the hydroxycarboxylic acid, and the like. ..
  • dibasic acid polyester for example, one or more of polybutylene succinate, polyethylene succinate, polybutylene adipate and the like can be selected and used.
  • the biodegradable resin may be used alone or in combination of two or more.
  • thermosetting resin examples include phenol resin, urea resin, melamine resin, furan resin, unsaturated polyester, diallyl phthalate resin, vinyl ester resin, epoxy resin, urethane resin, silicone resin, thermosetting polyimide resin and the like. Can be used. These resins can be used alone or in combination of two or more.
  • the resin may contain an inorganic filler, and the inorganic filler may be, for example, a periodic table of Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, silicon element and the like.
  • the inorganic filler may be, for example, a periodic table of Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, silicon element and the like. Examples thereof include elemental substances of metal elements in groups I to VIII, oxides, hydroxides, carbon salts, sulfates, silicates, sulfites, and various clay minerals composed of these compounds.
  • aluminum, magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, claywa lastnite, glass beads, glass powder, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon, glass fiber and the like are exemplified. be able to.
  • a plurality of these inorganic fillers may be contained. Further, it may be contained in recycled paper pulp.
  • the ratio of the fibrous cellulose is lower than the above range of the compounding ratio, the amount of the fibrous cellulose is small, so that the strength of the three-dimensional network formed by the fibrous celluloses connecting the resins in the composite resin is weak and the resin is reinforced. It will be less effective.
  • the ratio of the fibrous cellulose is higher than the above range of the blending ratio, even if the fibrous cellulose has a reinforcing effect of the resin, the strength inherent in the resin is not exhibited, and when the composite resin is used. It may not have the desired strength.
  • the content ratio of the fibrous cellulose and the resin contained in the finally obtained composite resin is usually the same as the above-mentioned compounding ratio of the fibrous cellulose and the resin.
  • the difference between the solubility parameter (cal / cm 3 ) 1/2 (SP value) of the microfiber cellulose and the resin is the SPMLC value of the microfiber cellulose and the SPPOL value of the resin. can do.
  • the difference in SP value is preferably 10 to 0.1, more preferably 8 to 0.5, and particularly preferably 5-1. If the difference in SP value exceeds 10, the dispersibility of the microfiber cellulose in the resin is insufficient, and it may not be possible to obtain the reinforcing effect. On the other hand, if the difference in SP value is less than 0.1, the microfiber cellulose dissolves in the resin and does not function as a filler, so that the reinforcing effect cannot be obtained. It can be said that the smaller the difference between the SPPOL value of the resin (solvent) and the SPMFC value of the microfiber cellulose (solute), the greater the reinforcing effect.
  • the solubility parameter (cal / cm 3 ) 1/2 (SP value) is a measure of the intramolecular force acting between the solvent and the solute, and the closer the SP value is to the solvent and solute, the higher the solubility. ..
  • the fibrous cellulose-containing substance and the kneaded resin can be kneaded again if necessary, and then formed into a desired shape.
  • the size, thickness, shape, etc. of this molding are not particularly limited, and may be, for example, sheet-like, pellet-like, powder-like, fibrous-like, or the like.
  • the temperature at which the molding step is performed is preferably equal to or higher than the glass transition point of the resin, and varies depending on the type of resin, but for example, 90 to 260 ° C, preferably 100 to 240 ° C may be sufficient for kneading.
  • Molding of the kneaded product can be performed by, for example, mold molding, injection molding, extrusion molding, hollow molding, foam molding, or the like. It is also possible to spin the kneaded material into a fibrous form and mix it with a plant material or the like to form a mat shape or a board shape.
  • the mixed fiber can be, for example, a method of simultaneous deposition by an air ray or the like.
  • an apparatus for molding a kneaded product for example, one or two from injection molding machines, blow molding machines, hollow molding machines, blow molding machines, compression molding machines, extrusion molding machines, vacuum molding machines, pressure molding machines and the like. You can select and use more than one species.
  • Examples of materials that are mixed as plant materials include kenaf, jute hemp, Manila hemp, sisal hemp, ganpi, mitsumata, cypress, banana, pineapple, coco palm, corn, sugar cane, bagasse, palm, papyrus, reeds, esparto, and surviving glass.
  • Examples thereof include fibers derived from plant materials obtained from various plants such as wheat, rice, bamboo, various coniferous trees (such as cedar and cypress), broad-leaved trees and cotton.
  • the above molding can be performed after kneading, or the kneaded product is once cooled and made into chips by using a crusher or the like, and then the chips are put into a molding machine such as an extrusion molding machine or an injection molding machine. You can also do it.
  • a molding machine such as an extrusion molding machine or an injection molding machine. You can also do it.
  • molding is not an essential requirement of the present invention.
  • the sheet of coniferous bleached kraft pulp used in the examples was made into a sheet shape having a solid content concentration of about 50% and a solid content concentration of about 100 to 2000 g / m 2 by removing water from the pulp dispersion liquid to a size of about 5 x 5 cm. It is cut out and has a volume of 8 to 20 cm 3 .
  • Test examples used in the examples were prepared by the following procedure.
  • Test Example 1 A sheet of coniferous bleached kraft pulp (NBKP) was placed in a container, urea, citric acid, and water were added and mixed to obtain a mixed solution.
  • the mixing amount was the amount shown in Table 1.
  • the mixing method was to put a mixing mixer (Blender Vitaprep 3 manufactured by Vitamix Co., Ltd. for home use) in the mixed solution and mix at 3000 rpm for 10 minutes.
  • the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain a dried product.
  • the drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device.
  • the heating method was a method of leaving the dried product at 140 ° C. for 3 hours in a constant temperature device.
  • Test Example 2 (1) A sheet of coniferous bleached kraft pulp (NBKP) was placed in a container, urea, citric acid, and water were added to prepare a mixed solution, and the mixture was left for 10 minutes. The mixing amount was the amount shown in Table 1. (2) After the operation of (1) above, the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain a dried product. The drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device. (3) After heating the dried product, it was allowed to cool to room temperature to obtain a modified cellulose fiber (Test Example 2). The heating method was a method of leaving the dried product at 140 ° C. for 3 hours in a constant temperature device.
  • Test examples were prepared as follows.
  • [Test Example 3] (1) Put 9 g of a sheet of softwood bleached kraft pulp (NBKP) having a solid content concentration of 50% by mass in a container, add 9 g of 25% urea water, 0.005 mg of citric acid, and 90 g of water to prepare a mixed solution, and mix the mixture. The liquid was mixed. The mixing method was to put a mixing mixer (Blender Vitaprep 3 manufactured by Vitamix Co., Ltd. for home use) in the mixed solution and mix at 3000 rpm for 10 minutes. (2) After the operation of (1) above, the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain cellulose fibers (Test Example 3). The drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device.
  • NNKP softwood bleached kraft pulp
  • Test Example 4 (1) Put 9 g of a sheet of softwood bleached kraft pulp (NBKP) having a solid content concentration of 50% by mass in a container, add 9 g of 25% urea water, 0.005 mg of citric acid, and 90 g of water to prepare a mixed solution, and mix the mixture. The liquid was allowed to stand for 10 minutes. (2) After the operation of (1) above, the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain cellulose fibers (Test Example 4). The drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device.
  • NNKP softwood bleached kraft pulp
  • 0.1 g of the obtained cellulose fiber (Test Example 3 or Test Example 4) was put into a container containing 50 g of water, stirred at a rotation speed of 800 rpm, and the elapsed time until the dissociation was completed was measured. The dissociation was judged to be completed when the number of agglomerates having a major axis of 5 mm or more present in the dispersion was less than one. The results are shown in Table 2. As the container, a clear wide-mouthed bottle (transparent) manufactured by Sanpo Kasei Co., Ltd. was used.
  • Test Example 3 It is probable that in Test Example 3, urea permeated into the inside of the cellulose fiber, hydrogen bonds between the cellulose fibers were inhibited by the urea and weakened, and water molecules entered the inside of the fiber, so that it became easy to disintegrate.
  • the heating method was a method of leaving the dried product at 140 ° C. for 3 hours in a constant temperature device.
  • the obtained cellulose fiber was diluted and stirred with distilled water, dehydrated and washed twice, and then distilled water was added to adjust the solid content concentration to 3% to obtain an aqueous dispersion of cellulose fiber.
  • rice field (4)
  • the aqueous dispersion of cellulose fibers was defibrated so that the average fiber width was 16 ⁇ m to obtain an aqueous dispersion of fibrous cellulose having a solid content concentration of 3%.
  • the carbamate formation rate was measured for the obtained aqueous dispersion of fibrous cellulose dehydrated and then dried at 105 ° C. for 3 hours.
  • An aqueous dispersion of fibrous cellulose, polypropylene resin powder (Novatec PP MA3), and maleic anhydride-modified polypropylene are mixed in a dry weight ratio of 10:85: 5, and dried by heating at 105 ° C. I got something. This was kneaded with a twin-screw kneader under the conditions of 180 ° C. and 200 rpm to obtain a kneaded product.
  • the kneaded product was molded at 180 ° C.
  • the measured flexural modulus was evaluated as follows.
  • the flexural modulus ratio calculated by dividing the flexural modulus of Test Example X (X is any of 6, 7, 8 or 9) by the flexural modulus of Test Example 5, that is, the flexural modulus of Test Example X.
  • the ratio is 1.1 or less is " ⁇ ", Those with more than 1.1 to less than 1.2 are " ⁇ ", Those with 1.2 or more were marked with " ⁇ ".
  • the fibrous cellulose composite resin having a carbamating rate of 1 to 2 mmol / g, for example, Test Example 7 and Test Example 8, has an improved flexural modulus as compared with Test Example 5 which is a non-carbamate fibrous cellulose composite resin. It has a favorable strength.
  • the present invention can be used as a method for producing fibrous cellulose and a method for producing a fibrous cellulose composite resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide: a method for producing fibrous cellulose, wherein the substitution rate of a modification treatment is improved; and a method for producing a fibrous cellulose composite resin. [Solution] This method for producing fibrous cellulose comprises: a step for carbamating cellulose fibers; and a step for fibrillating the cellulose fibers into fibrous cellulose. The carbamating step comprises: a mixing step wherein the cellulose fibers and at least one agent selected from among urea and a urea derivative are mixed with each other; and a heating step wherein the cellulose fibers are heated after the mixing step. The mixing step comprises: a step for adding the agent to the cellulose fibers; and a step for mixing up the cellulose fibers and the added agent, said step being carried out such that the precipitation rate of disintegrated cellulose fibers at the interface after 10 minutes standing is less than 60% if a 0.2 mass% disintegration liquid that is obtained by disintegrating the cellulose fibers, which have been obtained by the mixing step, in water is made to have a uniform concentration and subsequently left at rest. In a method for producing a fibrous cellulose composite resin according to the present invention, fibrous cellulose is obtained by the above-descried method, and the fibrous cellulose and a resin are mixed with each other.

Description

繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
 本発明は、繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法に関するものである。 The present invention relates to a method for producing fibrous cellulose and a method for producing a fibrous cellulose composite resin.
 近年、原料パルプを解繊して得られるセルロースナノファイバーや、マイクロ繊維セルロース(ミクロフィブリル化セルロース)等の微細繊維は、樹脂の補強材としての使用が注目され、研究開発が進められている。微細繊維は、補強材として有用ではあるが、親水性であり、疎水性の性質を有する樹脂とは反発し合うので、そのことが、樹脂の補強材としての効果を十分に引き出せていないのではないかという問題がある。この問題に対しては、微細繊維に疎水基を付与する等の変性処理を行い、樹脂と同様の疎水性の性質を付与し、樹脂との親和性を高めることで補強効果を持たせるという技術が提案されている。 In recent years, cellulose nanofibers obtained by defibrating raw pulp and fine fibers such as microfiber cellulose (microfibrillated cellulose) have attracted attention for their use as reinforcing materials for resins, and research and development are underway. Although fine fibers are useful as a reinforcing material, they are hydrophilic and repel each other with a resin having hydrophobic properties, so that it may not be possible to sufficiently bring out the effect of the resin as a reinforcing material. There is a problem of not being there. To solve this problem, a technique of performing modification treatment such as imparting a hydrophobic group to fine fibers to impart hydrophobicity similar to that of a resin and enhancing the affinity with the resin to have a reinforcing effect. Has been proposed.
 特許文献1は、微細繊維に疎水基を付与する技術として、「セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)」を開示し、この変性セルロース繊維(A)と分散用樹脂(B)とを含む変性セルロース繊維含有樹脂組成物が、成形材料用樹脂に対する分散性や機械的強度に優れたものになる、との提案をしている。 Patent Document 1 describes, as a technique for imparting a hydrophobic group to fine fibers, "modified cellulose fiber esterified by adding cyclic polybasic acid anhydride (a) having a hydrophobic group to the cellulose fiber and having 15 or more carbon atoms. (A) ”is disclosed, and the modified cellulose fiber-containing resin composition containing the modified cellulose fiber (A) and the dispersion resin (B) is excellent in dispersibility and mechanical strength with respect to the resin for molding material. I am proposing that it will be.
 特許文献2は、「水酸基を有するセルロースに無水多塩基酸構造を分子内に有する樹脂を反応させて変性セルロースを得る工程と、得られた変性セルロースを微細化処理する工程とを同一工程で行う変性セルロースナノファイバーの製造方法であって、該無水多塩基酸構造は、カルボキシル基が分子内で脱水縮合し環状構造を形成した環状無水多塩基酸構造であることを特徴とする変性セルロースナノファイバーの製造方法」に関する技術を提案し、この技術によれば、溶剤中に分散しやすい変性セルロースナノファイバーを簡便に製造できる、としている。 In Patent Document 2, "a step of reacting cellulose having a hydroxyl group with a resin having an anhydrous polybasic acid structure in the molecule to obtain modified cellulose and a step of refining the obtained modified cellulose are performed in the same step. A method for producing a modified cellulose nanofiber, wherein the anhydrous polybasic acid structure is a cyclic anhydrous polybasic acid structure in which a carboxyl group is dehydrated and condensed in the molecule to form a cyclic structure. According to this technology, it is possible to easily produce modified cellulose nanofibers that are easily dispersed in a solvent.
WO2015/040884号WO2015 / 040884 特開2016-216605号公報Japanese Unexamined Patent Publication No. 2016-216605
 特許文献1は、酸無水物のセルロース繊維に対する置換率(反応率)が所定範囲であることが望ましいとしているが、どのような製造方法を採れば、置換率を向上させることができるかに関して十分な考慮がなされていない。特許文献2は、セルロースと無水多塩基酸構造を分子内に有する樹脂とを所定の比率で反応させて、変性セルロースナノファイバーを製造するとしているが、これもまた置換率を向上させることに関しては、やはり十分な考慮がなされていない。これらの点を踏まえ、本発明者は、置換率をより向上させる余地があるのではないかと考え、本発明が解決しようとする課題を、変性処理の置換率が向上されて得られた繊維状セルロースの製造方法、及び繊維状セルロース複合樹脂の製造方法を提供することとする。 Patent Document 1 states that it is desirable that the substitution rate (reaction rate) of the acid anhydride with respect to the cellulose fiber is within a predetermined range, but it is sufficient regarding what kind of production method should be adopted to improve the substitution rate. No consideration has been given. Patent Document 2 states that cellulose and a resin having an anhydrous polybasic acid structure in the molecule are reacted at a predetermined ratio to produce modified cellulose nanofibers, but this also relates to improving the substitution rate. However, sufficient consideration has not been given. Based on these points, the present inventor thinks that there may be room for further improvement of the substitution rate, and the problem to be solved by the present invention is a fibrous form obtained by improving the substitution rate of the modification treatment. A method for producing cellulose and a method for producing a fibrous cellulose composite resin will be provided.
 置換率は、セルロース繊維と薬剤の混ざり具合の影響を受け、十分に混ざり合っていれば、向上されたものとなる、との知見を本発明者等は得た。そこで、この知見に基づき完成させた発明の態様が次に示すものである。 The present inventors have obtained the finding that the substitution rate is affected by the mixing condition of the cellulose fiber and the drug, and if the mixture is sufficiently mixed, the substitution rate will be improved. Therefore, the aspects of the invention completed based on this finding are as follows.
 [第1の態様]
 セルロース繊維をカルバメート化する工程と、セルロース繊維を繊維状セルロースに解繊する工程と、を有し、
 前記カルバメート化する工程は、セルロース繊維と、尿素及び尿素の誘導体の少なくともいずれか一方の薬剤とを混合する混合工程と、混合工程後にセルロース繊維を加熱する加熱工程と、を有し、
 前記混合工程は、セルロース繊維に前記薬剤を添加する工程と、セルロース繊維と添加された前記薬剤を混ぜ合わせる工程とを有し、
 前記混ぜ合わせる工程は、
  水に混合工程を行って得たセルロース繊維を離解させて調製した0.2質量%の離解液を、均一な濃度にした後、静置させた場合に、離解したセルロース繊維の界面の沈降率が、静置10分後に60%未満となるように、行う、
 ことを特徴とする繊維状セルロースの製造方法。
 ここで、沈降率は、次の算式により求まる。
(沈降率(%))={(離解液の水嵩)-(離解液の液面から離解液中のセルロース繊維界面までの深さ)}/(離解液の水嵩)×100
[First aspect]
It has a step of carbamate the cellulose fiber and a step of defibrating the cellulose fiber into fibrous cellulose.
The carbamate step comprises a mixing step of mixing the cellulose fiber and at least one of urea and a derivative of urea, and a heating step of heating the cellulose fiber after the mixing step.
The mixing step includes a step of adding the drug to the cellulose fiber and a step of mixing the cellulosic fiber and the added drug.
The mixing step is
When 0.2% by mass of the dissociated liquid prepared by dissociating the cellulose fibers obtained by mixing with water to a uniform concentration and then allowing it to stand, the sedimentation rate at the interface of the dissociated cellulose fibers However, it should be less than 60% after 10 minutes of standing.
A method for producing fibrous cellulose, which is characterized by the above.
Here, the sedimentation rate can be obtained by the following formula.
(Precipitation rate (%)) = {(Water volume of dissociation liquid)-(Depth from the liquid surface of dissociation liquid to the interface of cellulose fibers in dissociation liquid)} / (Water volume of dissociation liquid) × 100
 パルプのセルロース繊維にカルバメート基を付加すると、セルロース繊維が疎水的になり、セルロース繊維相互の水素結合が弱まって、解繊し易くなる。セルロース繊維のカルバメート化は、セルロース繊維と上記薬剤を混合する混合工程と、反応を促進させる加熱工程を経て行うことができる。混合工程では、セルロース繊維に薬剤を添加して、混ぜ合わせる工程とするとよい。 When a carbamate group is added to the cellulose fibers of pulp, the cellulose fibers become hydrophobic, the hydrogen bonds between the cellulose fibers are weakened, and the fibers are easily defibrated. Carbamate formation of the cellulose fiber can be carried out through a mixing step of mixing the cellulose fiber and the above-mentioned agent and a heating step of promoting the reaction. In the mixing step, it is preferable to add a chemical to the cellulose fibers and mix them.
 従来より、セルロース繊維を疎水化するにあたり、セルロース繊維を疎水化するための薬剤を添加して化学反応をさせていたが、研究を進めた結果、化学反応させる前提として、セルロース繊維と薬剤が十分に混じり合っていないのではないかとの見解に達した。例えば、スラリー状のセルロース繊維に薬剤を添加したとしても、セルロース繊維に付着する薬剤は、セルロース繊維の表面及びその周辺に付着するが、セルロース繊維の内部にほとんど浸透せずあまり付着していないものと推測される。セルロース繊維の内部、すなわち薬剤の付着量が少ない箇所は、そもそも反応物たる薬剤が少ない、又はないので加熱して化学反応させようとしてもカルバメート化が促進されないと考えられる。結果、本来であればカルバメート化されたことによる容易なセルロース繊維の離解が、カルバメート化されていないために起こり難くなっている。 Conventionally, when making cellulose fibers hydrophobic, a chemical reaction was carried out by adding a chemical for making the cellulose fibers hydrophobic, but as a result of proceeding with research, the cellulose fibers and the chemicals are sufficient as a prerequisite for the chemical reaction. I came to the view that it might not be mixed with. For example, even if a chemical is added to a slurry-like cellulose fiber, the chemical that adheres to the cellulose fiber adheres to the surface of the cellulose fiber and its surroundings, but hardly penetrates into the inside of the cellulose fiber and does not adhere so much. It is presumed. It is considered that carbamate formation is not promoted even if a chemical reaction is attempted by heating the inside of the cellulose fiber, that is, the portion where the amount of the chemical adhered is small or not, because the chemical as a reactant is small or absent in the first place. As a result, the easy dissociation of cellulose fibers due to carbamization is less likely to occur because they are not carbamated.
 具体的には次のように考えることができる。未変性のセルロース繊維を形成する個々の繊維の水酸基は、繊維相互に水素結合している。このセルロース繊維をカルバメート化処理すると、セルロース繊維の水酸基がカルバメート基に置換され、変性されたセルロース繊維となる。変性セルロース繊維は、水酸基がカルバメート基に置換されているので、水素結合が弱まり、未変性のセルロース繊維よりも容易に離解される。一方で、繊維内部にまで薬剤が浸透しているセルロース繊維であれば、繊維表面の水酸基のみならず、繊維内部の水酸基もカルバメート基に置換されるので、水素結合がより弱まり、さらに容易に離解される。 Specifically, it can be thought of as follows. The hydroxyl groups of the individual fibers that form the unmodified cellulose fibers are hydrogen bonded to each other. When the cellulose fiber is carbamate-treated, the hydroxyl group of the cellulose fiber is replaced with a carbamate group to obtain a modified cellulose fiber. Since the hydroxyl group of the modified cellulose fiber is substituted with a carbamate group, the hydrogen bond is weakened and the modified cellulose fiber is more easily dissociated than the unmodified cellulose fiber. On the other hand, in the case of a cellulose fiber in which a drug has penetrated into the fiber, not only the hydroxyl group on the fiber surface but also the hydroxyl group inside the fiber is replaced with a carbamate group, so that the hydrogen bond is weakened more easily and the fiber is dissociated more easily. Will be done.
 離解されたセルロース繊維を溶媒に分散させて調整した離解液を均一にした後、静置させると、セルロース繊維が沈殿し始め、セルロース繊維の相と上澄み相に分かれて、セルロース繊維の界面が形成され時間経過とともに沈降する。具体的には、次のように考えることができる。薬剤が添加される前のセルロース繊維は、繊維内部に空気が含まれたものとなっている。繊維に付着する薬剤の大部分が当該繊維表面に付着し、繊維内部にほとんど付着していないセルロース繊維は、カルバメート化する工程を経ても、繊維内部に空気が残る。このセルロース繊維は、繊維内部に依然として空気が残っているので、沈降し難いものとなる。一方、繊維内部にまで薬剤が浸透したセルロース繊維は、繊維内部において空気が薬剤の浸透により繊維外部へ押し出されており、繊維内部に残る空気が少ないので、沈降し易いものとなる。 When the dissociated liquid prepared by dispersing the dissociated cellulose fibers in a solvent is made uniform and then allowed to stand, the cellulose fibers begin to precipitate and are separated into a cellulose fiber phase and a supernatant phase to form an interface of the cellulose fibers. It will settle over time. Specifically, it can be considered as follows. Cellulose fibers before the addition of the drug contain air inside the fibers. Most of the chemicals adhering to the fiber adhere to the surface of the fiber, and the cellulose fiber which hardly adheres to the inside of the fiber retains air inside the fiber even after the carbamate step. This cellulose fiber is difficult to settle because air still remains inside the fiber. On the other hand, in the cellulose fiber in which the chemical has penetrated into the fiber, air is pushed out to the outside of the fiber by the penetration of the chemical in the fiber, and the amount of air remaining in the fiber is small, so that it is easy to settle.
 本態様の製造方法によれば、薬剤がセルロース繊維の内部に浸透する効果が得られ、セルロース繊維の表面のみならず内部でもカルバメート化が促進されるので、カルバメート基の置換率が向上されたものとなっている。 According to the production method of this embodiment, the effect of the drug permeating into the inside of the cellulose fiber is obtained, and carbamate formation is promoted not only on the surface of the cellulose fiber but also inside, so that the substitution rate of the carbamate group is improved. It has become.
 [第2の態様]
 セルロース繊維をカルバメート化する工程と、セルロース繊維を繊維状セルロースに解繊する工程と、を有し、
 前記カルバメート化する工程は、セルロース繊維と、尿素及び尿素の誘導体の少なくともいずれか一方の薬剤とを混合する混合工程と、混合工程後にセルロース繊維を加熱する加熱工程と、を有し、
 前記混合工程は、
 (1)当該混合工程が、セルロース繊維に前記薬剤を添加する工程と、セルロース繊維と添加された前記薬剤を混ぜ合わせる工程とからなる場合は、沈降率が静置10分後に60%未満となり、
 (2)当該混合工程が、セルロース繊維に前記薬剤を添加する工程のみからなる場合は、前記沈降率が、静置10分後に60%以上となる、
 ように行う、
 ことを特徴とする繊維状セルロースの製造方法。
 ここで、前記沈降率は、水に混合工程を行って得たセルロース繊維を離解させて調製した0.2質量%の離解液を、均一な濃度にした後、静置させた場合に、離解したセルロース繊維の界面の沈降率であり、次の算式により求まる。
(沈降率(%))={(離解液の水嵩)-(離解液の液面から離解液中のセルロース繊維界面までの深さ)}/(離解液の水嵩)×100
[Second aspect]
It has a step of carbamate the cellulose fiber and a step of defibrating the cellulose fiber into fibrous cellulose.
The carbamate step comprises a mixing step of mixing the cellulose fiber and at least one of urea and a derivative of urea, and a heating step of heating the cellulose fiber after the mixing step.
The mixing step is
(1) When the mixing step includes a step of adding the drug to the cellulose fiber and a step of mixing the cellulosic fiber and the added drug, the sedimentation rate becomes less than 60% after 10 minutes of standing.
(2) When the mixing step comprises only the step of adding the drug to the cellulose fibers, the sedimentation rate becomes 60% or more after 10 minutes of standing.
To do,
A method for producing fibrous cellulose, which is characterized by the above.
Here, the sedimentation rate is determined when 0.2% by mass of the dissociated liquid prepared by dissociating the cellulose fibers obtained by performing a mixing step with water to a uniform concentration and then allowing it to stand. It is the sedimentation rate of the interface of the cellulose fiber, which can be obtained by the following formula.
(Precipitation rate (%)) = {(Water volume of dissociation liquid)-(Depth from the liquid surface of dissociation liquid to the interface of cellulose fibers in dissociation liquid)} / (Water volume of dissociation liquid) × 100
 混合工程が、セルロース繊維に前記薬剤を添加する工程のみからなる場合は、セルロース繊維内部へ薬剤が浸透する効果がそうされにくく、空気が繊維内部に残留し、沈降がし難いものとなる。混ぜ合わせる工程の有無で、沈降率が異なり、混合工程が混ぜ合わせる工程を有する場合のほうが、混合工程がセルロース繊維に前記薬剤を添加する工程のみからなる場合よりもカルバメート基の置換率が優れたものとなる。 When the mixing step consists only of the step of adding the drug to the cellulose fiber, the effect of the drug permeating into the cellulose fiber is less likely to be so, and air remains inside the fiber, making it difficult to settle. The sedimentation rate differs depending on the presence or absence of the mixing step, and the carbamate group substitution rate is superior in the case where the mixing step has a mixing step than in the case where the mixing step consists only of the step of adding the drug to the cellulose fibers. It becomes a thing.
 また、上記(1)の場合の沈降率が60%未満であり、上記(2)の場合の沈降率が60以上なので、薬剤との反応がしにくい種類のセルロース繊維であっても、(1)では、薬剤が繊維内部に浸透する効果が奏されるので、カルバメート基の置換率が向上された製造方法となっている。 Further, since the sedimentation rate in the case of (1) above is less than 60% and the sedimentation rate in the case of (2) above is 60 or more, even a type of cellulose fiber that does not easily react with a drug is (1). ) Has the effect of penetrating the inside of the fiber, so that the production method has an improved substitution rate of the carbamate group.
 [第3の態様]
 前記薬剤を添加する工程は、セルロース繊維1gあたりの前記薬剤の添加量を10g以下として、行う、
 請求項1又は請求項2に記載の繊維状セルロースの製造方法。
[Third aspect]
The step of adding the drug is carried out with the addition amount of the drug per 1 g of the cellulose fiber being 10 g or less.
The method for producing fibrous cellulose according to claim 1 or 2.
 従来のカルバメート化手法では、置換率を高めるために、薬剤の添加量を増加させたり、加熱工程での熱エネルギーを増加させたりしていた。しかしながら、当該手法は、製造コストの増大につながることが懸念された。これに対して、本態様であれば、薬剤のコストを低減化しつつ置換率を高める効果がある。 In the conventional carbamate method, in order to increase the substitution rate, the amount of the drug added was increased or the heat energy in the heating process was increased. However, there was concern that this method would lead to an increase in manufacturing costs. On the other hand, this embodiment has the effect of increasing the replacement rate while reducing the cost of the drug.
 [第4の態様]
 前記加熱工程は、加熱温度200℃以下、かつ加熱時間15時間以下で行う、
 第1~第3の態様のいずれかの態様の繊維状セルロースの製造方法。
[Fourth aspect]
The heating step is performed at a heating temperature of 200 ° C. or lower and a heating time of 15 hours or less.
A method for producing fibrous cellulose according to any one of the first to third aspects.
 セルロース繊維は高温に長時間晒されると不可逆的な熱変性を引き起こし、繊維状セルロース複合樹脂の材料として用いることが困難となるおそれがある。上記態様の条件であれば、熱変性を起こし難い。また、上記態様の条件であっても、薬剤がセルロース繊維の内部に浸透しているので、カルバメート化反応の反応転化率が低下することはない。 Cellulose fibers cause irreversible thermal denaturation when exposed to high temperatures for a long time, which may make it difficult to use as a material for fibrous cellulose composite resin. Under the conditions of the above aspect, heat denaturation is unlikely to occur. Further, even under the conditions of the above embodiment, since the drug has penetrated into the cellulose fiber, the reaction conversion rate of the carbamate-forming reaction does not decrease.
 [第5の態様]
 前記カルバメート化する工程は、有機溶剤を添加しないで行う、
 第1~第4の態様のいずれかの態様の繊維状セルロースの製造方法。
[Fifth aspect]
The carbamate step is performed without adding an organic solvent.
A method for producing fibrous cellulose according to any one of the first to fourth aspects.
 従来のカルバメート化手法では、セルロース繊維に対する疎水基の置換反応及び/又は付加反応を促進させるため、有機溶剤の存在下で行う場合があった。しかしながら、有機溶剤は、引火リスクや漏洩リスクがあり、取り扱いが煩雑である。本態様であれば、そのようなリスクを回避でき、取り扱い時に設置が望まれるドラフトチャンバー等の設備を設けなくてもよい。 In the conventional carbamate method, in order to promote the substitution reaction and / or addition reaction of the hydrophobic group to the cellulose fiber, it may be carried out in the presence of an organic solvent. However, organic solvents have a risk of ignition and a risk of leakage, and are complicated to handle. In this embodiment, such a risk can be avoided, and it is not necessary to provide equipment such as a fume hood that is desired to be installed at the time of handling.
 [第6の態様]
 前記混ぜ合わせる工程は、セルロース繊維1gあたり分散媒を0.1g以上、99g以下添加して行う、
 第3の態様の繊維状セルロースの製造方法。
[Sixth aspect]
The mixing step is performed by adding 0.1 g or more and 99 g or less of the dispersion medium per 1 g of the cellulose fiber.
A method for producing fibrous cellulose according to a third aspect.
 分散媒を添加すると、セルロース繊維が凝集し難くなり好ましいが、分散媒の多量の添加は、薬剤を希釈化させてしまい、反応効率の低下を招くおそれがある。上記添加量であれば、薬剤のセルロース繊維内部への浸透が抑制されることがなく、所望の置換率に調整しやすい。 It is preferable to add a dispersion medium because the cellulose fibers are less likely to aggregate, but adding a large amount of the dispersion medium may dilute the drug and reduce the reaction efficiency. With the above addition amount, the permeation of the drug into the cellulose fiber is not suppressed, and it is easy to adjust the substitution rate to a desired value.
 [第7の態様]
 繊維状セルロースに対するカルバメート基の置換率が1~2mmol/gである、
 第1~第6の態様のいずれかの態様の繊維状セルロースの製造方法。
[7th aspect]
The substitution rate of the carbamate group with respect to the fibrous cellulose is 1 to 2 mmol / g.
The method for producing fibrous cellulose according to any one of the first to sixth aspects.
 上記置換率の繊維状セルロースであれば、これを原料として製造された繊維状セルロース複合樹脂が優れた強度を備えたものとなり、好ましい。 If the fibrous cellulose has the above substitution rate, the fibrous cellulose composite resin produced from this as a raw material has excellent strength and is preferable.
 [第8の態様]
 第1~第7の態様のいずれかの方法によって繊維状セルロースを得、この繊維状セルロースと樹脂とを混合する、
 ことを特徴とする繊維状セルロース複合樹脂の製造方法。
[Eighth aspect]
Fibrous cellulose is obtained by the method according to any one of the first to seventh aspects, and the fibrous cellulose and the resin are mixed.
A method for producing a fibrous cellulose composite resin.
 第1~第7の態様の製造方法は、薬剤がセルロース繊維の内部に浸透させて、繊維状セルロースを製造するものなので、カルバメート化基の置換効率が向上されたものであり、所望の強度が備わった繊維状セルロース複合樹脂を製造できる。 In the production method of the first to seventh aspects, the chemical permeates the inside of the cellulose fiber to produce fibrous cellulose, so that the substitution efficiency of the carbamate group is improved and the desired strength is obtained. It is possible to manufacture the provided fibrous cellulose composite resin.
 [第9の態様]
 セルロース繊維を繊維状セルロースに解繊する工程は、平均繊維幅が0.1~19μmの繊維状セルロースとなるように解繊を行う工程である、
 第1~第8のいずれかの態様の繊維状セルロースの製造方法。
[9th aspect]
The step of defibrating the cellulose fiber into fibrous cellulose is a step of defibrating the fibrous cellulose so that the average fiber width is 0.1 to 19 μm.
The method for producing fibrous cellulose according to any one of the first to eighth aspects.
 繊維状セルロースの平均繊維幅が0.1~19μmの範囲に収まるように解繊することで、繊維状セルロース複合樹脂の強度が高まる。 By defibrating the fibrous cellulose so that the average fiber width is within the range of 0.1 to 19 μm, the strength of the fibrous cellulose composite resin is increased.
 本発明によると、変性処理の置換率が向上されて得られた繊維状セルロースの製造方法、及び繊維状セルロース複合樹脂の製造方法となる。 According to the present invention, it is a method for producing a fibrous cellulose obtained by improving the substitution rate of the modification treatment, and a method for producing a fibrous cellulose composite resin.
 次に、発明を実施するための形態を説明する。なお、本実施の形態は、本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。 Next, a mode for carrying out the invention will be described. The embodiment of the present invention is an example of the present invention. The scope of the present invention is not limited to the scope of the present embodiment.
 本形態の繊維状セルロースの製造方法は、セルロース繊維をカルバメート化する工程と、セルロース繊維を繊維状セルロースに解繊する工程と、を有し、前記カルバメート化する工程は、セルロース繊維と、尿素及び尿素の誘導体の少なくともいずれか一方の薬剤とを混合する混合工程と、混合工程後にセルロース繊維を加熱する加熱工程と、を有し、前記混合工程は、セルロース繊維に前記薬剤を添加する工程と、セルロース繊維と添加された前記薬剤を混ぜ合わせる工程とを有して、行う。以下、詳細に説明する。 The method for producing fibrous cellulose of the present embodiment includes a step of carbamate the cellulose fiber and a step of defibrating the cellulose fiber into fibrous cellulose, and the step of carbamate is the cellulose fiber, urea and the like. It has a mixing step of mixing at least one of the agents of the urea derivative and a heating step of heating the cellulose fibers after the mixing step, and the mixing step includes a step of adding the agent to the cellulose fibers. It is carried out by having a step of mixing the cellulose fiber and the added agent. Hereinafter, it will be described in detail.
 (繊維状セルロース)
 本形態の方法においては、原料パルプ(セルロース原料)を解繊して繊維状セルロースを得る。繊維状セルロースの平均繊維幅は特に限定されない。しかしながら、平均繊維幅が0.1~19μmのマイクロ繊維セルロース(ミクロフィブリル化セルロース)となるように解繊するのがより好ましい。平均繊維幅が上記範囲であるマイクロ繊維セルロースは、複合化に用いられる樹脂を補強する効果を備え、同マイクロ繊維セルロースを材料に製造された複合樹脂の強度は著しく向上する。マイクロ繊維セルロースは、より平均繊維幅が小さい微細繊維、すなわちセルロースナノファイバーよりもカルバメート基で変性する(カルバメート化)のが容易である。カルバメート化は、解繊前のセルロース繊維であっても、解繊されて得られたマイクロ繊維セルロースやセルロースナノファイバーであっても、行うことができるが、混ぜ合わせる工程においては、繊維がある程度、塊状状態である方が混ぜ合わせが容易であることから、解繊前のセルロース繊維をカルバメート化するのがより好ましい。
(Fibrous cellulose)
In the method of this embodiment, the raw material pulp (cellulose raw material) is defibrated to obtain fibrous cellulose. The average fiber width of the fibrous cellulose is not particularly limited. However, it is more preferable to defibrate so as to obtain microfiber cellulose (microfibrillated cellulose) having an average fiber width of 0.1 to 19 μm. The microfiber cellulose having an average fiber width in the above range has an effect of reinforcing the resin used for the composite, and the strength of the composite resin produced from the microfiber cellulose as a material is remarkably improved. Microfibers Cellulose is easier to modify (carbamate) with carbamate groups than fine fibers with a smaller average fiber width, that is, cellulose nanofibers. Carbamate can be carried out using either undefibrated cellulose fibers or defibrated microfiber cellulose or cellulose nanofibers, but in the step of mixing, the fibers are to some extent. It is more preferable to carbamate the cellulose fibers before defibration because the lumpy state is easier to mix.
 なお、本形態においては、平均繊維幅(径)が0.1~19μmの繊維状セルロースを、マイクロ繊維セルロース、あるいはミクロフィブリル化セルロース、あるいはMFCという。 In this embodiment, fibrous cellulose having an average fiber width (diameter) of 0.1 to 19 μm is referred to as microfiber cellulose, microfibrillated cellulose, or MFC.
 本形態において、マイクロ繊維セルロースは、セルロースナノファイバーよりも平均繊維径(幅)の太い繊維を意味する。具体的には、平均繊維径が、例えば0.1~19μm、好ましくは0.2~15μm、より好ましくは0.5超~10μmである。マイクロ繊維セルロースの平均繊維径が0.1μm未満だと、もはやセルロースナノファイバーの同等物といえ、樹脂の強度(特に曲げ弾性率)の向上効果が十分に発揮されないおそれがある。また、解繊に多くの時間と大きなネルギーを要することとなり不経済である。さらに、繊維をスラリー状にしたとき脱水性が悪化する。脱水性の悪化は、繊維の乾燥物を得たいときに乾燥に大きなエネルギーが必要になるし、過大なエネルギーの付与は、繊維を傷める原因となり、樹脂の強度を向上する効果が奏されないおそれがある。特に、平均繊維径が50nm以下になると、熱分解温度が著しく低下するため、耐熱性が低下し、樹脂との混練に不向きなものとなる。他方、マイクロ繊維セルロースの平均繊維径が19μmを超えると、もはやパルプとの差がほとんどなく、補強効果が得られなくなるおそれがある。 In this embodiment, microfiber cellulose means a fiber having an average fiber diameter (width) larger than that of cellulose nanofiber. Specifically, the average fiber diameter is, for example, 0.1 to 19 μm, preferably 0.2 to 15 μm, and more preferably more than 0.5 to 10 μm. If the average fiber diameter of the microfiber cellulose is less than 0.1 μm, it can be said that it is an equivalent of cellulose nanofibers, and the effect of improving the strength (particularly bending elastic modulus) of the resin may not be sufficiently exhibited. In addition, it is uneconomical because it takes a lot of time and a large amount of energy to defiber. Further, when the fibers are made into a slurry, the dehydration property deteriorates. Deterioration of dehydration requires a large amount of energy for drying when it is desired to obtain a dried product of fibers, and excessive energy application may damage the fibers and may not have the effect of improving the strength of the resin. be. In particular, when the average fiber diameter is 50 nm or less, the thermal decomposition temperature is remarkably lowered, so that the heat resistance is lowered, which makes it unsuitable for kneading with a resin. On the other hand, when the average fiber diameter of the microfiber cellulose exceeds 19 μm, there is almost no difference from the pulp, and there is a possibility that the reinforcing effect cannot be obtained.
 本形態において微細繊維(マイクロ繊維セルロース及びセルロースナノファイバー)の平均繊維径の測定方法は、次のとおりである。
 まず、固形分濃度0.01~0.1質量%の微細繊維の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
In this embodiment, the method for measuring the average fiber diameter of fine fibers (microfiber cellulose and cellulose nanofibers) is as follows.
First, 100 ml of an aqueous dispersion of fine fibers having a solid content concentration of 0.01 to 0.1% by mass is filtered through a Teflon (registered trademark) membrane filter, and the solvent is replaced once with 100 ml of ethanol and three times with 20 ml of t-butanol. do. Next, it is freeze-dried and coated with osmium to prepare a sample. This sample is observed with an electron microscope SEM image at a magnification of 3,000 to 30,000 times depending on the width of the constituent fibers. Specifically, two diagonal lines are drawn on the observation image, and three straight lines passing through the intersections of the diagonal lines are arbitrarily drawn. Further, the width of a total of 100 fibers intersecting with these three straight lines is visually measured. Then, the medium diameter of the measured value is taken as the average fiber diameter.
 前述したようにマイクロ繊維セルロースは、セルロース原料を解繊(微細化)することで得ることができる。原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、セルロース系パウダーなどと言われる粉砕物(粉状物)の状態等であってもよい。ただし、不純物の混入を可及的に避けるために、原料パルプとしては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。 As described above, microfiber cellulose can be obtained by defibrating (miniaturizing) the cellulose raw material. The raw material pulp includes, for example, wood pulp made from broadleaf trees, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, hemp, carrot fiber, etc., recycled paper pulp made from recovered waste paper, waste paper, etc. One type or two or more types can be selected and used from (DIP) and the like. The above-mentioned various raw materials may be, for example, in the state of a crushed product (powder) called a cellulosic powder or the like. However, in order to avoid contamination with impurities as much as possible, it is preferable to use wood pulp as the raw material pulp. As the wood pulp, for example, one kind or two or more kinds can be selected and used from chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP) and the like.
 広葉樹クラフトパルプは、広葉樹晒クラフトパルプ、広葉樹未晒クラフトパルプ、広葉樹半晒クラフトパルプ等を用いることができる。針葉樹クラフトパルプは、針葉樹晒クラフトパルプ、針葉樹未晒クラフトパルプ、針葉樹半晒クラフトパルプを用いることができる。 As the hardwood kraft pulp, hardwood bleached kraft pulp, hardwood unbleached kraft pulp, hardwood semi-bleached kraft pulp and the like can be used. As the softwood kraft pulp, softwood bleached kraft pulp, softwood unbleached kraft pulp, and softwood semi-bleached kraft pulp can be used.
 機械パルプは、特に限定なく使用することができるが、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。 The mechanical pulp can be used without particular limitation, and for example, stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemi-grand pulp (CGP), thermo-grand pulp ( Select one or more from TGP), ground pulp (GP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), refiner mechanical pulp (RMP), bleached thermomechanical pulp (BTMP), etc. Can be used.
 セルロース繊維(原料パルプ)は、解繊するに先立って化学的手法によって前処理することができる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。これらの処理のうち特に酵素処理は繊維が傷まず好ましい。酵素処理に加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すと、解繊が容易になされ好ましい。 Cellulose fiber (raw material pulp) can be pretreated by a chemical method prior to defibration. Pretreatment by chemical method includes, for example, hydrolysis of polysaccharide with acid (acid treatment), hydrolysis of polysaccharide with enzyme (enzyme treatment), swelling of polysaccharide with alkali (alkali treatment), oxidation of polysaccharide with oxidizing agent (acid treatment). Oxidation treatment), reduction of polysaccharides with a reducing agent (reduction treatment), and the like can be exemplified. Of these treatments, enzyme treatment is particularly preferable because the fibers are not damaged. It is preferable to perform one or more treatments selected from acid treatment, alkali treatment, and oxidation treatment in addition to the enzyme treatment because defibration is facilitated.
 前処理は、セルロース繊維(原料パルプ)の解繊を容易にする処理であり、セルロース繊維のカルバメート化する工程の前に行ってもよいし、カルバメート化する工程の後に前処理を行って、その後解繊する工程を行ってもよい。
以下、酵素処理について詳細に説明する。
The pretreatment is a treatment for facilitating the defibration of the cellulose fiber (raw material pulp), and may be performed before the step of carbamate-forming the cellulose fiber, or may be performed after the pretreatment after the step of carbamate formation. The step of defibrating may be performed.
Hereinafter, the enzyme treatment will be described in detail.
 酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース原料の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を惹き起こす。 As the enzyme used for the enzyme treatment, it is preferable to use at least one of the cellulase-based enzyme and the hemicellulase-based enzyme, and it is more preferable to use both in combination. The use of these enzymes facilitates the defibration of cellulose raw materials. The cellulase-based enzyme causes the decomposition of cellulose in the coexistence of water. In addition, hemicellulose-based enzymes induce the decomposition of hemicellulose in the presence of water.
 セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。 Examples of the cellulase-based enzymes include Trichoderma (Filamentous fungus), Acremonium (Filamentous fungus), Aspergillus (Filamentous fungus), Fanerochaete (Phanerochaete), Tramethes (Tra). Genus Humicola, genus Humicola, genus Bacillus, genus Schizophyllum, genus Streptomyces, genus Pseudomonas, bacteria produced by Pseudomonas, etc. Enzymes can be used. These cellulase-based enzymes can be purchased as reagents or commercial products. Commercially available products include, for example, cellulosein T2 (manufactured by HPI), Meicerase (manufactured by Meiji Seika), Novozyme 188 (manufactured by Novozyme), Multifect CX10L (manufactured by Genencore), and cellulase-based enzyme GC220 (manufactured by Genecore). Manufactured by) and the like can be exemplified.
 また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)を使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。 Further, as the cellulase-based enzyme, EG (endoglucanase) and CBH (cellobiohydrolase) can also be used. EG and CBH may be used alone or in combination. Further, it may be used in combination with a hemicellulase-based enzyme.
 ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。 As the hemicellulase-based enzyme, for example, xylanase, which is an enzyme that decomposes xylan, mannase, which is an enzyme that decomposes mannan, and arabanase, which is an enzyme that decomposes alabang, can be used. can. In addition, pectinase, which is an enzyme that decomposes pectin, can also be used.
 ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)から微細繊維を得る場合は、キシラナーゼを使用するのが好ましい。 Hemicellulose is a polysaccharide excluding pectins between the cellulose microfibrils of the plant cell wall. Hemicellulose is diverse and varies between wood types and cell wall layers. Glucomannan is the main component in the secondary walls of conifers, and 4-O-methylglucuronoxylan is the main component in the secondary walls of hardwoods. Therefore, when fine fibers are obtained from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. Further, when fine fibers are obtained from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.
 セルロース繊維に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース原料100質量部に対する酵素の添加量は、好ましくは0.1~3質量部、より好ましくは0.3~2.5質量部、特に好ましくは0.5~2質量部である。酵素の添加量が0.1質量部を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、セルロース繊維の収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。 The amount of enzyme added to the cellulose fiber is determined by, for example, the type of enzyme, the type of wood used as a raw material (conifer or hardwood), the type of mechanical pulp, and the like. However, the amount of the enzyme added to 100 parts by mass of the cellulose raw material is preferably 0.1 to 3 parts by mass, more preferably 0.3 to 2.5 parts by mass, and particularly preferably 0.5 to 2 parts by mass. If the amount of the enzyme added is less than 0.1 parts by mass, the effect of adding the enzyme may not be sufficiently obtained. On the other hand, if the amount of the enzyme added exceeds 3% by mass, cellulose may be saccharified and the yield of cellulose fibers may decrease. In addition, there is also a problem that the improvement of the effect corresponding to the increase in the addition amount cannot be recognized.
 酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素反応の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。 When a cellulase-based enzyme is used as the enzyme, the pH at the time of enzyme treatment is preferably in a weakly acidic region (pH = 3.0 to 6.9) from the viewpoint of the reactivity of the enzyme reaction. On the other hand, when a hemicellulase-based enzyme is used as the enzyme, the pH at the time of enzyme treatment is preferably in a weak alkaline region (pH = 7.1 to 10.0).
 酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が活発化し易くなり、短時間で酵素処理が完結する。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。 The temperature during the enzyme treatment is preferably 30 to 70 ° C, more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C, regardless of whether the cellulase-based enzyme or the hemicellulase-based enzyme is used as the enzyme. .. When the temperature at the time of enzyme treatment is 30 ° C. or higher, the enzyme activity is likely to be activated, and the enzyme treatment is completed in a short time. On the other hand, if the temperature at the time of enzyme treatment is 70 ° C. or lower, inactivation of the enzyme can be prevented.
 酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。 The enzyme treatment time is determined by, for example, the type of enzyme, the temperature of the enzyme treatment, the pH at the time of the enzyme treatment, and the like. However, the general enzyme treatment time is 0.5 to 24 hours.
 酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。 It is preferable to inactivate the enzyme after the enzyme treatment. As a method for inactivating the enzyme, for example, there are a method of adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher), a method of adding hot water at 80 to 100 ° C., and the like.
 次に、アルカリ処理の方法について説明する。
 解繊に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース原料の分散が促進される。
Next, the method of alkali treatment will be described.
When alkali treatment is performed prior to defibration, the hydroxyl groups of hemicellulose and cellulose in pulp are partially dissociated, and the molecules are anionized, weakening intramolecular and intermolecular hydrogen bonds and promoting dispersion of cellulose raw materials in defibration. Ru.
 アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。 Examples of the alkali used for the alkali treatment include sodium hydroxide, lithium hydroxide, potassium hydroxide, aqueous ammonia solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide and the like. Organic alkali or the like can be used. However, from the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
 以上解繊に先立つ前処理の一例を示したが、前処理を施すと、マイクロ繊維セルロースの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。マイクロ繊維セルロースの保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。また、前処理をすると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。非晶領域が分解されると、解繊のエネルギーを低減することができ、解繊されたマイクロ繊維セルロースの均一性や分散性を向上することができる。ただし、前処理は、マイクロ繊維セルロースのアスペクト比を低下させるため、樹脂の補強材として使用する場合には、過度の前処理を避けるのが好ましい。 The above is an example of the pretreatment prior to defibration, but when the pretreatment is applied, the water retention degree of the microfiber cellulose can be lowered, the crystallinity can be increased, and the homogeneity can be increased. If the water retention level of the microfiber cellulose is low, dehydration is likely to occur, and the dehydration property of the cellulose fiber slurry is improved. In addition, the pretreatment decomposes hemicellulose and the amorphous region of cellulose contained in pulp. When the amorphous region is decomposed, the energy of defibration can be reduced, and the uniformity and dispersibility of the defibrated microfiber cellulose can be improved. However, since the pretreatment lowers the aspect ratio of the microfiber cellulose, it is preferable to avoid excessive pretreatment when it is used as a reinforcing material for the resin.
 (離解工程)
 セルロース繊維は解繊するに先立って、離解してもよい。離解工程は、繊維同士が凝集してシート形状等となっているパルプ(セルロース繊維)を独立した繊維に分散させる工程であり、離解装置によって行うことができる。離解装置としては、ハンドミキサー、タブ式パルバー、ドラム式パルパー、家庭用ミキサー等を例示できる。
(Dissociation process)
Cellulose fibers may be dissociated prior to defibration. The dissociation step is a step of dispersing pulp (cellulose fibers) in which fibers are aggregated to form a sheet shape or the like into independent fibers, and can be performed by a dissociation device. Examples of the disassembling device include a hand mixer, a tab type pulper, a drum type pulper, and a household mixer.
 (解繊する工程)
 セルロース繊維の解繊は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用してセルロース繊維を叩解することによって行うことができる。特に、リファイナーやジェットミルを使用して行うと繊維の損傷が抑制でき、繊維が均質なものになるので好ましい。
(Process of defibrating)
For defibration of cellulose fibers, for example, beaters, high-pressure homogenizers, homogenizers such as high-pressure homogenizers, stone mill type friction machines such as grinders and grinders, single-screw kneaders, multi-screw kneaders, kneader refiners, jet mills, etc. It can be done by beating the cellulose fibers using. In particular, it is preferable to use a refiner or a jet mill because damage to the fibers can be suppressed and the fibers become homogeneous.
 セルロース繊維を解繊して得るマイクロ繊維セルロースの平均繊維長(単繊維の長さの平均)は、好ましくは0.10~2.00mm、より好ましくは0.12~1.50mm、特に好ましくは0.15~1.00である。平均繊維長が0.10mmを下回ると、繊維同士の三次元ネットワークを形成できず、複合樹脂の曲げ弾性率等が低下するおそれがあり、補強効果が向上しないとされる可能性がある。他方、平均繊維長が2.00mmを上回ると、原料パルプと変わらない長さのため補強効果が不十分となるおそれがある。 Microfiber obtained by defibrating cellulose fibers The average fiber length (average length of single fibers) of cellulose is preferably 0.10 to 2.00 mm, more preferably 0.12 to 1.50 mm, and particularly preferably 0.12 to 1.50 mm. It is 0.15 to 1.00. If the average fiber length is less than 0.10 mm, a three-dimensional network of fibers cannot be formed, the flexural modulus of the composite resin may decrease, and the reinforcing effect may not be improved. On the other hand, if the average fiber length exceeds 2.00 mm, the reinforcing effect may be insufficient because the length is the same as that of the raw material pulp.
 また、本形態に用いる原料であるパルプ(セルロース繊維)の平均繊維長は、好ましくは1.0~5.0mm、より好ましくは1.2~4.5mm、特に好ましくは1.5~4.0mmである。平均繊維長が1.0mmを下回ると、当該セルロース繊維を解繊して得たマイクロ繊維セルロースによる樹脂の補強効果が十分に得られないおそれがある。他方、平均繊維長が5.0mmを上回ると、セルロース繊維相互の解繊にかかるエネルギーが大きく、製造コストの面で不利となるおそれがある。 The average fiber length of the pulp (cellulose fiber) used as a raw material in this embodiment is preferably 1.0 to 5.0 mm, more preferably 1.2 to 4.5 mm, and particularly preferably 1.5 to 4. It is 0 mm. If the average fiber length is less than 1.0 mm, the effect of reinforcing the resin by the microfiber cellulose obtained by defibrating the cellulose fiber may not be sufficiently obtained. On the other hand, if the average fiber length exceeds 5.0 mm, the energy required for defibration between the cellulose fibers is large, which may be disadvantageous in terms of manufacturing cost.
 さらに、セルロース繊維の解繊は、平均繊維長比が30未満となるように行うのが好ましく、2~20となるように行うのがより好ましく、1.5~10となるように行うのが特に好ましい。平均繊維長比が30以上になると、繊維への機械的せん断が過多となり、繊維へのダメージが多くなる。したがって、繊維が短くなり過ぎたり、繊維自体の強度が低下したりし、結果、樹脂と複合化した際の樹脂補強効果が発現しなくなるおそれがある。 Further, the defibration of the cellulose fibers is preferably performed so that the average fiber length ratio is less than 30, more preferably 2 to 20, and 1.5 to 10. Especially preferable. When the average fiber length ratio is 30 or more, the mechanical shearing to the fiber becomes excessive and the damage to the fiber increases. Therefore, the fiber may become too short or the strength of the fiber itself may decrease, and as a result, the resin reinforcing effect when composited with the resin may not be exhibited.
 本形態において、平均繊維長比とは、解繊前におけるセルロース繊維の平均繊維長を解繊後におけるセルロース繊維の平均繊維長で除した値(解繊前の平均繊維長/解繊後の平均繊維長)である。 In this embodiment, the average fiber length ratio is a value obtained by dividing the average fiber length of the cellulose fibers before defibration by the average fiber length of the cellulose fibers after defibration (average fiber length before defibration / average after defibration). Fiber length).
 セルロース繊維の平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The average fiber length of the cellulose fiber can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
 本形態においてセルロース繊維の平均繊維長は、バルメット社製の繊維分析計「FS5」によって測定した値である。なお、以下で説明するファイン率(Fine率)についても同様である。 In this embodiment, the average fiber length of the cellulose fiber is a value measured by a fiber analyzer "FS5" manufactured by Valmet. The same applies to the fine rate (Fine rate) described below.
 本形態に用いる原料であるパルプ(セルロース繊維)の大きさの平均は、平均体積で表すと、好ましくは8×10-5~1×10-2mm3、より好ましくは1×10-4~1×70-3mm3、さらに好ましくは3×10-4~5×10-3mm3であるとよい。セルロース繊維の平均体積が8×10-5mm3を下回ると、混ぜ合わせる工程で、セルロース繊維が相互に接触する頻度が少なかったり、押し付け合わされなかったり(押圧されにくかったり)するので、セルロース繊維の内部への薬剤の浸透がしにくくなる。他方、セルロース繊維の平均体積が1×10-2mm3を上回ると、混ぜ合わせる工程で、セルロース繊維に加わる圧力に偏りが生じるので、薬剤の浸透にムラが生じ、解繊されたマイクロ繊維セルロースが均質なものとならないおそれがある。 The average size of pulp (cellulose fiber) used as a raw material in this embodiment is preferably 8 × 10 -5 to 1 × 10 −2 mm 3 , more preferably 1 × 10 -4 to 2, in terms of average volume. It is preferably 1 × 70 -3 mm 3 , more preferably 3 × 10 -4 to 5 × 10 -3 mm 3 . If the average volume of the cellulose fibers is less than 8 × 10 -5 mm 3 , the cellulose fibers may not come into contact with each other or be pressed against each other (difficult to be pressed) in the mixing process. It becomes difficult for the drug to penetrate into the inside. On the other hand, if the average volume of the cellulose fibers exceeds 1 × 10 −2 mm 3 , the pressure applied to the cellulose fibers will be biased in the mixing process, resulting in uneven penetration of the drug and deflated microfiber cellulose. May not be homogeneous.
 解繊して得たマイクロ繊維セルロースのファイン率は、30%以上であるのが好ましく、35~99%であるのがより好ましく、40~95%であるのが特に好ましい。ファイン率が30%以上であると、均質な繊維の割合が多く、複合樹脂の破壊が進行し難くなる。ただし、ファイン率が99%を超えると、曲げ弾性率が不十分になる可能性がある。 The fine ratio of the microfiber cellulose obtained by defibration is preferably 30% or more, more preferably 35 to 99%, and particularly preferably 40 to 95%. When the fine ratio is 30% or more, the proportion of homogeneous fibers is large, and the destruction of the composite resin is difficult to proceed. However, if the fine ratio exceeds 99%, the flexural modulus may be insufficient.
 以上はマイクロ繊維セルロース、つまり解繊後のセルロース繊維のファイン率であるが、解繊前のセルロース繊維のファイン率も所定の範囲内としておくとより好ましいものとなる。具体的には、解繊前のセルロース繊維のファイン率が、1%以上であるのが好ましく、3~20%であるのがより好ましく、5~18%であるのが特に好ましい。解繊前のセルロース繊維のファイン率が上記範囲内であれば、マイクロ繊維セルロースのファイン率が30%以上になるように解繊したとしても繊維のダメージが少なく、樹脂の補強効果が向上すると考えられる。 The above is the fine ratio of microfiber cellulose, that is, the cellulose fiber after defibration, but it is more preferable to keep the fine ratio of the cellulose fiber before defibration within a predetermined range. Specifically, the fine ratio of the cellulose fibers before defibration is preferably 1% or more, more preferably 3 to 20%, and particularly preferably 5 to 18%. If the fine ratio of the cellulose fiber before defibration is within the above range, even if the fine ratio of the microfiber cellulose is defibrated to be 30% or more, the damage to the fiber is small and the reinforcing effect of the resin is considered to be improved. Be done.
 ファイン率の調整は、酵素処理等の前処理によって行うことができる。ただし、特に酵素処理する場合は、繊維内の結合状態が部分的に破壊されてしまい、樹脂の補強効果が低下する場合がある。よって、酵素の添加率は、少なくした方がよく、例えば2質量%以下であるのが好ましく、1質量%以下であるのがより好ましく、0.5質量%以下であるのが特に好ましい。また、酵素処理しない(添加量0質量%)のも1つの選択枠である。 The fine rate can be adjusted by pretreatment such as enzyme treatment. However, especially in the case of enzymatic treatment, the bonded state in the fiber may be partially destroyed, and the reinforcing effect of the resin may be reduced. Therefore, it is better to reduce the addition rate of the enzyme, for example, it is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. Further, it is also one of the selection frames that the enzyme treatment is not performed (addition amount: 0% by mass).
 本形態において「ファイン率」とは、繊維長が0.2mm以下であるパルプ繊維の質量基準の割合をいう。 In this embodiment, the "fine ratio" refers to the mass-based ratio of pulp fibers having a fiber length of 0.2 mm or less.
 マイクロ繊維セルロースのアスペクト比は、好ましくは2~15,000、より好ましくは10~10,000である。アスペクト比が2を下回ると、三次元ネットワークを十分に構築することができないため、たとえ平均繊維長が0.10mm以上であるとしても、補強効果が不十分となるおそれがある。他方、アスペクト比が15,000を上回ると、マイクロ繊維セルロース相互の絡み合いが多くなり、樹脂中での分散が不十分となるおそれがある。 The aspect ratio of the microfiber cellulose is preferably 2 to 15,000, more preferably 10 to 10,000. If the aspect ratio is less than 2, the three-dimensional network cannot be sufficiently constructed, and even if the average fiber length is 0.10 mm or more, the reinforcing effect may be insufficient. On the other hand, if the aspect ratio exceeds 15,000, the microfiber celluloses are often entangled with each other, and the dispersion in the resin may be insufficient.
 本形態においてアスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるため補強効果が上がるが、他方で引っかかりが多くなる分、樹脂の延性が低下するものと考えられる。 In this embodiment, the aspect ratio is a value obtained by dividing the average fiber length by the average fiber width. It is considered that the larger the aspect ratio, the more places where catching occurs, so that the reinforcing effect increases, but on the other hand, the more catching, the lower the ductility of the resin.
 マイクロ繊維セルロースのフィブリル化率は、好ましくは1~30%、より好ましくは1.5~20%、特に好ましくは2~15%である。フィブリル化率が30%を上回ると、単位面積当たりのマイクロ繊維セルロースと水分子との結合が多く、脱水が困難になる可能性がある。他方、フィブリル化率が1%を下回ると、フィブリルは、水分子との結合量が少なく、水素結合によって形成される三次元ネットワークが強硬なものとならなくなるおそれがある。 The fibrillation rate of the microfiber cellulose is preferably 1 to 30%, more preferably 1.5 to 20%, and particularly preferably 2 to 15%. If the fibrillation rate exceeds 30%, there are many bonds between microfiber cellulose and water molecules per unit area, which may make dehydration difficult. On the other hand, when the fibrillation rate is less than 1%, the amount of fibrils bonded to water molecules is small, and the three-dimensional network formed by hydrogen bonds may not be rigid.
 本形態においてフィブリル化率とは、セルロース繊維をJIS-P-8220:2012「パルプ-離解方法」に準拠して離解し、得られた離解パルプをFiberLab.(Kajaani社)を用いて測定した値をいう。 In this embodiment, the fibrillation rate refers to the dissociation of cellulose fibers in accordance with JIS-P-8220: 2012 "Pulp-Dissolution Method", and the obtained dissociated pulp is referred to as FiberLab. (Kajaani) means a value measured using.
 マイクロ繊維セルロースの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上であるとよい。結晶化度が50%を下回ると、繊維自体の強度が低下して、樹脂の強度を向上することができなくなるおそれがある。また、結晶化度が50%を下回ると、カルバメート化されたマイクロ繊維セルロースの耐熱性が不十分になるおそれがある。結晶化度が低いと外部から加えられた熱によってただちにマイクロ繊維セルロースの熱分解反応が進んでしまう。他方、マイクロ繊維セルロースの結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、セルロース分子内及びセルロース分子間での水素結合の量が多くなり、分散性が劣るようになる。 The crystallinity of the microfiber cellulose is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more. If the crystallinity is less than 50%, the strength of the fiber itself may decrease, and the strength of the resin may not be improved. Further, if the crystallinity is less than 50%, the heat resistance of the carbamate microfiber cellulose may be insufficient. If the crystallinity is low, the thermal decomposition reaction of the microfiber cellulose immediately proceeds due to the heat applied from the outside. On the other hand, the crystallinity of the microfiber cellulose is preferably 95% or less, more preferably 90% or less, and particularly preferably 85% or less. When the crystallinity exceeds 95%, the amount of hydrogen bonds in the cellulose molecule and between the cellulose molecules becomes large, and the dispersibility becomes inferior.
 マイクロ繊維セルロースの結晶化度は、例えば、原料パルプの選定、前処理、微細化処理で任意に調整可能である。 The crystallinity of microfiber cellulose can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, and micronization treatment.
 本形態において結晶化度は、JIS K 0131(1996)に準拠して測定した値である。 In this embodiment, the crystallinity is a value measured according to JIS K 0131 (1996).
 マイクロ繊維セルロースのパルプ粘度は、好ましくは2cps以上、より好ましくは4cps以上である。マイクロ繊維セルロースのパルプ粘度が2cpsを下回ると、マイクロ繊維セルロースの分散性が悪化するおそれがある。 The pulp viscosity of the microfiber cellulose is preferably 2 cps or more, more preferably 4 cps or more. If the pulp viscosity of the microfiber cellulose is less than 2 cps, the dispersibility of the microfiber cellulose may be deteriorated.
 本形態においてパルプ粘度は、TAPPI T 230に準拠して測定した値である。 In this embodiment, the pulp viscosity is a value measured according to TAPPI T 230.
 マイクロ繊維セルロースのフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下であり、また、下限は特に限定されず、好ましくは10ml以上であるとよい。マイクロ繊維セルロースのフリーネスが500mlを上回ると、樹脂の強度向上効果が十分に得られなくなるおそれがある。 The freeness of the microfiber cellulose is preferably 500 ml or less, more preferably 300 ml or less, particularly preferably 100 ml or less, and the lower limit is not particularly limited, and is preferably 10 ml or more. If the freeness of the microfiber cellulose exceeds 500 ml, the effect of improving the strength of the resin may not be sufficiently obtained.
 本形態においてフリーネスは、JIS P8121-2(2012)に準拠して測定した値である。 In this embodiment, the freeness is a value measured in accordance with JIS P8121-2 (2012).
 マイクロ繊維セルロースのゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、樹脂との相溶性が著しく低下し補強効果が不十分となるおそれがある。他方、ゼータ電位が20mVを上回ると、分散安定性が低下するおそれがある。 The zeta potential of the microfiber cellulose is preferably −150 to 20 mV, more preferably -100 to 0 mV, and particularly preferably -80 to -10 mV. If the zeta potential is lower than −150 mV, the compatibility with the resin may be significantly reduced and the reinforcing effect may be insufficient. On the other hand, if the zeta potential exceeds 20 mV, the dispersion stability may decrease.
 マイクロ繊維セルロースの保水度は、好ましくは80~400%、より好ましくは90~350%、特に好ましくは100~300%である。保水度が80%を下回ると、原料パルプの保水度と変わらず、補強効果が不十分となるおそれがある。他方、保水度が400%を上回ると、乾燥し難いものとなる。マイクロ繊維セルロースの保水度は、マイクロ繊維セルロースにおけるカルバメート基の置換率が高いほど、低くなる傾向にあるので、当該置換率を調節することで、保水度を所望の値にすることができる。 The water retention of the microfiber cellulose is preferably 80 to 400%, more preferably 90 to 350%, and particularly preferably 100 to 300%. If the water retention level is less than 80%, the water retention level is the same as that of the raw material pulp, and the reinforcing effect may be insufficient. On the other hand, if the water retention level exceeds 400%, it becomes difficult to dry. The water retention rate of the microfiber cellulose tends to be lower as the substitution rate of the carbamate group in the microfiber cellulose is higher. Therefore, the water retention rate can be set to a desired value by adjusting the substitution rate.
 マイクロ繊維セルロースの保水度は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The water retention level of the microfiber cellulose can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
 本形態において保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。 In this embodiment, the degree of water retention is JAPAN TAPPI No. It is a value measured according to 26 (2000).
 本形態のマイクロ繊維セルロースは、カルバメート基を有する。カルバメート化されたマイクロ繊維セルロースは、例えば、原料であるセルロース繊維がカルバメート化され、解繊されてマイクロ繊維セルロースとなったものであってもよいし、マイクロ繊維セルロースがカルバメート化されて、カルバメート化されたマイクロ繊維セルロースとなったものであってもよい。 The microfiber cellulose of this embodiment has a carbamate group. The carbamate-ized microfiber cellulose may be, for example, one in which the raw material cellulose fiber is carbamateized and defibrated to become microfiber cellulose, or the microfiber cellulose is carbamateized to be carbamate. It may be made into microfiber cellulose.
 カルバメート基を有する(すなわち、カルバメート化された)とは、セルロース繊維又はマイクロ繊維セルロースにカルバメート基(カルバミン酸のエステル)が導入された、を意味する。カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH2、-O-CONHR、-O-CO-NR2等で表わされる基を挙げることができる。カルバメート基は、下記の構造式(1)で示すことができる。 Having a carbamate group (ie, carbamate) means that a carbamate group (ester of carbamic acid) has been introduced into the cellulose fiber or microfiber cellulose. The carbamate group is a group represented by -O-CO-NH-, and examples thereof include a group represented by -O-CO-NH 2 , -O-CONHR, -O-CO-NR 2 , and the like. can. The carbamate group can be represented by the following structural formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここでRは、それぞれ独立して、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。 Here, R is independently a saturated linear hydrocarbon group, a saturated branched chain hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated branched chain hydrocarbon group, and the like. An aromatic group and at least one of these inducing groups.
 飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。誘導基としては、例えば、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。 Examples of the saturated linear hydrocarbon group include a linear alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group and a propyl group. Examples of the saturated branched chain hydrocarbon group include a branched chain alkyl group having 3 to 10 carbon atoms such as an isopropyl group, a sec-butyl group, an isobutyl group and a tert-butyl group. Examples of the saturated cyclic hydrocarbon group include cycloalkyl groups such as cyclopentyl group, cyclohexyl group and norbornyl group. Examples of the unsaturated linear hydrocarbon group include a linear alkenyl group having 2 to 10 carbon atoms such as an ethenyl group, a propene-1-yl group and a propene-3-yl group, an ethynyl group and a propyne-1. Examples thereof include a linear alkynyl group having 2 to 10 carbon atoms such as an yl group and a propyne-3-yl group. Examples of the unsaturated branched chain hydrocarbon group include a branched chain alkenyl group having 3 to 10 carbon atoms such as a propene-2-yl group, a butene-2-yl group, and a butene-3-yl group, and butin-3. -A branched chain alkynyl group having 4 to 10 carbon atoms such as an yl group can be mentioned. Examples of the aromatic group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and the like. Examples of the inducing group include the above-mentioned saturated linear hydrocarbon group, saturated branched chain hydrocarbon group, saturated cyclic hydrocarbon group, unsaturated linear hydrocarbon group, unsaturated branched chain hydrocarbon group and aromatic. Examples thereof include a group in which one or more hydrogen atoms contained in the group are substituted with a substituent (for example, a hydroxy group, a carboxy group, a halogen atom, etc.).
 カルバメート基を有する(カルバメート基が導入された)マイクロ繊維セルロースは、極性基たるヒドロキシ基の一部又は全部が、相対的に非極性基であるカルバメート基に置換されている。カルバメート基を有するマイクロ繊維セルロースは、単体としてカルバメート化されていないマイクロ繊維セルロースよりも非極性的であり、すなわち疎水的であるので、疎水性の性質を有する樹脂等との反発が弱い。したがって、樹脂に混ぜたカルバメート基を有するマイクロ繊維セルロースは、相互に凝集し難く、分散性よく、樹脂に付着する。また、カルバメート基を有するマイクロ繊維セルロースのスラリーは、粘性が低く、ハンドリング性が良い。 In the microfiber cellulose having a carbamate group (in which a carbamate group is introduced), a part or all of the hydroxy group as a polar group is replaced with a carbamate group which is a relatively non-polar group. Microfiber cellulose having a carbamate group is more non-polar than microfiber cellulose which is not carbamate as a single substance, that is, is hydrophobic, and therefore has a weak repulsion with a resin having a hydrophobic property. Therefore, the microfiber cellulose having a carbamate group mixed with the resin does not easily aggregate with each other, has good dispersibility, and adheres to the resin. Further, the slurry of microfiber cellulose having a carbamate group has low viscosity and good handleability.
 マイクロ繊維セルロース(又はセルロース繊維)のヒドロキシ基に対するカルバメート基の置換率(マイクロ繊維セルロース1gに対する置換されたカルバメート基のmmol比)は、好ましくは1~2mmol/g、より好ましくは1.1~1.9mmol/g、特に好ましくは1.2~1.8mmol/gである。置換率を1.0mmol/g以上にすると、カルバメート基を導入した効果、特に樹脂の曲げ弾性率の向上効果が確実に奏せられる。これは、置換率が1.0mmol/g以上であるマイクロ繊維セルロースは、疎水性を有するので樹脂との反発が弱く、樹脂に対して適度に分散するので、製造される複合樹脂単体において、局所的な強度の強弱が生じにくく、均質なものとなると考えられる。他方、カルバメート基の置換率が2mmol/gを超えると、複合樹脂の強度が低下する。これは、マイクロ繊維セルロースは、水素結合により強硬な三次元ネットワークが形成されるものであるが、カルバメート基の置換率が高すぎると、三次元ネットワーク形成に寄与するヒドロキシ基が相対的に減少するので、三次元ネットワークを強硬に形成することが困難になることによるものと考えられる。 The substitution rate of the carbamate group with respect to the hydroxy group of the microfiber cellulose (or cellulose fiber) (the mmol ratio of the substituted carbamate group with respect to 1 g of the microfiber cellulose) is preferably 1 to 2 mmol / g, more preferably 1.1 to 1. It is 9.9 mmol / g, particularly preferably 1.2 to 1.8 mmol / g. When the substitution rate is 1.0 mmol / g or more, the effect of introducing the carbamate group, particularly the effect of improving the flexural modulus of the resin can be surely exhibited. This is because microfiber cellulose having a substitution rate of 1.0 mmol / g or more has hydrophobicity, so that it has a weak repulsion with the resin and is appropriately dispersed in the resin. It is considered that the strength of the resin is unlikely to occur and the strength is uniform. On the other hand, when the substitution rate of the carbamate group exceeds 2 mmol / g, the strength of the composite resin decreases. This is because microfiber cellulose forms a strong three-dimensional network by hydrogen bonding, but if the substitution rate of the carbamate group is too high, the hydroxy groups that contribute to the formation of the three-dimensional network are relatively reduced. Therefore, it is considered that it becomes difficult to form a three-dimensional network rigidly.
 本形態においてカルバメート基の置換率(mmol/g)とは、カルバメート基を有するセルロース繊維1gあたりに含まれるカルバメート基の物質量をいう。カルバメート基の置換率は、カルバメート化したパルプ内に存在するN原子をケルダール法によって測定し、単位重量当たりのカルバメート化率を算出する。また、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。 In this embodiment, the substitution rate of the carbamate group (mmol / g) means the amount of substance of the carbamate group contained in 1 g of the cellulose fiber having the carbamate group. The substitution rate of the carbamate group is measured by measuring the N atoms present in the carbamate pulp by the Kjeldahl method, and the carbamateization rate per unit weight is calculated. Cellulose is a polymer having anhydrous glucose as a structural unit, and has three hydroxy groups per structural unit.
 (カルバメート化)
 マイクロ繊維セルロース(解繊前にカルバメート化する場合は、セルロース原料。以下、同様であり、単に「セルロース繊維」ともいう。)にカルバメート基を導入する(カルバメート化)方法については、セルロース原料をカルバメート化してから微細化する方法と、セルロース原料を微細化してからカルバメート化する方法とがある。しかしながら、先にカルバメート化を行い、その後に、解繊をする方が好ましい。解繊する前のセルロース原料は脱水効率が高く、カルバメート化に伴う加熱によってセルロース原料が解繊され易い状態になるためである。
(Carbamate)
Regarding the method of introducing a carbamate group (carbamate) into microfiber cellulose (cellulose raw material when carbamate before defibration; the same applies hereinafter, also simply referred to as "cellulose fiber"), the cellulose raw material is carbamate. There are a method of making the cellulose material finer and then making it finer, and a method of making the cellulose raw material finer and then making it into a carbamate. However, it is preferable to carry out carbamate first and then defibrate. This is because the cellulose raw material before defibration has high dehydration efficiency, and the cellulose raw material is easily defibrated by heating accompanying carbamate formation.
 セルロース繊維をカルバメート化する工程は、混合工程と加熱工程に区分でき、混合工程はさらに添加工程のみからなる工程と、添加工程と混ぜ合わせる工程からなる工程に細分できる。また、カルバメート化は、混合工程を行い、離解工程及び/又は解繊工程を経て、加熱工程を行ってもよい。 The step of carbamate-forming cellulose fibers can be divided into a mixing step and a heating step, and the mixing step can be further subdivided into a step consisting of only an addition step and a step consisting of a step of mixing with the addition step. Further, for carbamate formation, a mixing step may be performed, and a heating step may be performed through a disintegration step and / or a defibration step.
 カルバメート化する工程では、有機溶剤を加えて行うこともできるし、加えないで行うこともできる。有機溶剤を加える場合は、セルロース繊維のカルボキシ基との反応性を有しない有機溶剤を用いるとよい。有機溶剤としては、例えば、シクロヘキサン、トルエン、キシレンなどの炭化水素系溶媒、塩化メチレン、クロロホルム、ジクロロエタンなどのハロゲン系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒、酢酸、プロピオン酸、酪酸などのカルボン酸系溶媒、テトラヒドロフラン、ジエチルエーテル、イソプロピルエーテル、1,4-ジオキサンなどのエーテル系溶媒を挙げることができる。しかしながら、有機溶剤を加えると、反応系における薬剤の濃度が薄まり、反応物質たるセルロース繊維と薬剤との遭遇率が低下し、カルバメート基の置換率低下を招く場合があるため、カルバメート化する工程は、有機溶剤を添加しないで行う方が望ましい。 The carbamate step may or may not be carried out with the addition of an organic solvent. When an organic solvent is added, it is preferable to use an organic solvent that does not have reactivity with the carboxy group of the cellulose fiber. Examples of the organic solvent include hydrocarbon solvents such as cyclohexane, toluene and xylene, halogen solvents such as methylene chloride, chloroform and dichloroethane, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, N, N-. Amid solvents such as dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, carboxylic acid solvents such as acetic acid, propionic acid and butyric acid, ether solvents such as tetrahydrofuran, diethyl ether, isopropyl ether and 1,4-dioxane. A solvent can be mentioned. However, when an organic solvent is added, the concentration of the drug in the reaction system decreases, the encounter rate between the cellulose fiber as the reactant and the drug decreases, which may lead to a decrease in the substitution rate of the carbamate group. It is desirable to do this without adding an organic solvent.
 (混合工程)
 混合工程は、セルロース繊維に薬剤を混合する工程である。容器、袋、槽等の容れ物にセルロース原料(セルロース繊維)と薬剤を入れ、セルロース繊維と薬剤を混ぜ合わせる工程からなる。
(Mixing process)
The mixing step is a step of mixing the drug with the cellulose fibers. It consists of a process of putting a cellulose raw material (cellulose fiber) and a drug in a container such as a container, a bag, and a tank, and mixing the cellulose fiber and the drug.
 (添加工程)
 添加工程はセルロース繊維に薬剤を添加する工程である。セルロース繊維を入れた容れ物に薬剤の全量を一度に添加してもよいし、いくつかに分けて少量ずつ添加してもよい。
(Addition process)
The addition step is a step of adding a drug to the cellulose fiber. The whole amount of the drug may be added to the container containing the cellulose fiber at a time, or it may be divided into several portions and added little by little.
 添加工程では、セルロース繊維1gあたりの前記薬剤の添加量を10g以下、より好ましくは5g以下、さらに好ましく1g以下とするとよい。本形態は、混ぜ合わせる工程を有するので上記添加量でカルバメート化が促進される。また、当該添加量は、下限を0.05g、より好ましくは0.1gとするとよい。当該添加率が0.01gあれば、本形態は、カルバメート化の置換率に優れたものとなる。 In the addition step, the amount of the drug added per 1 g of cellulose fiber is preferably 10 g or less, more preferably 5 g or less, still more preferably 1 g or less. Since this embodiment has a step of mixing, carbamate formation is promoted by the above addition amount. The lower limit of the addition amount is preferably 0.05 g, more preferably 0.1 g. If the addition rate is 0.01 g, this embodiment has an excellent substitution rate for carbamate formation.
 (混ぜ合わせる工程)
 混ぜ合わせる工程はセルロース繊維と添加された薬剤を混ぜ合わせる工程である。混ぜ合わせる工程で、セルロース繊維の表面及び内部に薬剤を浸透させる。混ぜ合わせることによって、セルロース繊維表面に薬剤が付着し、薬剤が付着したセルロース繊維が相互に接触したり、擦れたり、押し当てられたりする過程で、表面の薬剤が徐々にセルロース繊維内部に浸透していくようになる。薬剤が十分にセルロース繊維内部に浸透したかは、例えば混ぜ合わせる工程を行ったセルロース繊維を水相に投入して、沈降度合いを測定することで評価することができる。薬剤、例えば尿素は水よりも比重が大きいので、混ぜ合わせる工程を行ったセルロース繊維は、当該工程を行わないセルロース繊維よりも速く沈降する。なお、混ぜ合わせる工程を行ったセルロース繊維を水等ですすいだとしても、繊維表面に付着する薬剤は流れ落ち易いが、繊維内部にまで浸透した薬剤は流れ落ちにくい。
(Mixing process)
The mixing step is a step of mixing the cellulose fibers and the added chemicals. In the mixing process, the drug is infiltrated into the surface and inside of the cellulose fibers. By mixing, the chemicals adhere to the surface of the cellulose fibers, and the chemicals on the surface gradually permeate the inside of the cellulose fibers in the process of mutual contact, rubbing, and pressing of the cellulose fibers to which the chemicals have adhered. It will come to go. Whether or not the drug has sufficiently penetrated into the cellulose fibers can be evaluated by, for example, putting the cellulose fibers subjected to the mixing step into the aqueous phase and measuring the degree of sedimentation. Since the drug, for example urea, has a higher specific density than water, the cellulose fibers subjected to the mixing step settle faster than the cellulose fibers not subjected to the step. Even if the cellulose fibers that have undergone the mixing step are rinsed with water or the like, the chemicals that adhere to the fiber surface easily run off, but the chemicals that have penetrated into the fibers do not easily run off.
 混ぜ合わせる工程は、水に混合工程を行って得たセルロース繊維を離解させて調製した0.2質量%の離解液を、均一な濃度にした後、静置させた場合に、離解したセルロース繊維の界面の沈降率が、静置10分後に60%未満、好ましくは59%以下、より好ましくは58%以下となるように、行うことができる。沈降率は次の数式で求めることができる。
[数1]
(沈降率(%))={(離解液の水嵩)-(離解液の液面から離解液中のセルロース繊維界面までの深さ)}/(離解液の水嵩)×100
 上記静置後10分後の沈降率が60%以上だと、セルロースの繊維内部への薬剤の浸透が十分ではない。というのも、薬剤、特に尿素等は水に対して比重が大きく、薬剤の浸透が不十分なセルロース繊維ほど、水中で沈降し難い。繊維内部に薬剤が十分に浸透したセルロース繊維であれば、相対的に比重の大きな薬剤を多く含むので水中で沈降し易いものとなる。沈降率は、JIS M 0201:1974(選炭廃水試験方法)に準拠して測定したものであり、容器にスラリーを一定量投入して一定時間静置し、単位時間あたりの沈降界面の変化量から求めることができる。また、沈降速度についてもJIS M 0201:1974に準拠して測定でき、容器にスラリーを一定量投入して一定時間静置し、単位時間あたりの沈降界面の変化量から求めることができる。なお、離解液の水嵩とは、離解液を沈降率測定用の容器に入れた場合の、離解液の液面から底面までの深さをいう。
In the mixing step, 0.2% by mass of the dissociated liquid prepared by dissociating the cellulose fibers obtained by mixing the cellulose fibers with water to a uniform concentration is allowed to stand, and then the dissociated cellulose fibers are allowed to stand. The sedimentation rate at the interface of the above can be set to less than 60%, preferably 59% or less, more preferably 58% or less after 10 minutes of standing. The sedimentation rate can be calculated by the following formula.
[Number 1]
(Precipitation rate (%)) = {(Water volume of dissociation liquid)-(Depth from the liquid surface of dissociation liquid to the interface of cellulose fibers in dissociation liquid)} / (Water volume of dissociation liquid) × 100
If the sedimentation rate 10 minutes after standing is 60% or more, the penetration of the drug into the cellulose fibers is not sufficient. This is because chemicals, especially urea and the like, have a large specific gravity with respect to water, and cellulose fibers with insufficient penetration of chemicals are less likely to settle in water. Cellulose fibers in which the chemicals have sufficiently penetrated into the fibers contain a large amount of chemicals having a relatively large specific gravity, so that they tend to settle in water. The sedimentation rate was measured in accordance with JIS M 0201: 1974 (coal preparation wastewater test method). A certain amount of slurry was put into a container and allowed to stand for a certain period of time, and the amount of change in the sedimentation interface per unit time was used. You can ask. Further, the settling speed can also be measured in accordance with JIS M 0201: 1974, and can be obtained from the amount of change in the settling interface per unit time by putting a certain amount of slurry into a container and allowing it to stand for a certain period of time. The water volume of the dissociated liquid means the depth from the liquid surface to the bottom surface of the dissociated liquid when the dissociated liquid is placed in a container for measuring the sedimentation rate.
 混合工程は、(1)当該混合工程が、セルロース繊維に前記薬剤を添加する工程と、セルロース繊維と添加された前記薬剤を混ぜ合わせる工程とからなる場合は、沈降率が静置10分後に60%未満、好ましくは59%以下、より好ましくは58%以下となり、(2)当該混合工程が、セルロース繊維に前記薬剤を添加する工程のみからなる場合は、前記沈降率が、静置10分後に60%以上、より好ましくは63%以上、さらに好ましくは65%以上となる、ように行ってもよい。このとき、当該(1)の場合の沈降率を「Pmix+」と表し、当該(2)の場合の沈降率を「Pmix-」と表す。 When the mixing step comprises (1) a step of adding the drug to the cellulose fiber and a step of mixing the cellulosic fiber and the added drug, the sedimentation rate is 60 after 10 minutes of standing. %, Preferably 59% or less, more preferably 58% or less. (2) When the mixing step comprises only the step of adding the drug to the cellulose fibers, the sedimentation rate is 10 minutes after standing. It may be 60% or more, more preferably 63% or more, still more preferably 65% or more. At this time, the settling rate in the case of (1) is expressed as "Pmix +", and the settling rate in the case of (2) is expressed as "Pmix-".
 また、[沈降率(Pmix+)]-[沈降率(Pmix-)](すなわち、沈降率差)が、好ましくは1%以上、より好ましくは2%以上、さらに好ましくは3%以上となるように混合工程を行うと、セルロース繊維は内部に薬剤が十分に浸透されたものとなっており、カルバメート基の置換効率の向上化がなされているので、望ましい。 Further, the [settlement rate (Pmix +)]-[settlement rate (Pmix-)] (that is, the difference in the settling rate) is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more. When the mixing step is performed, the cellulose fibers are sufficiently infiltrated with the drug, and the substitution efficiency of the carbamate group is improved, which is desirable.
 また、沈降速度についても、セルロースの繊維内部への薬剤の浸透が十分になされたセルロース繊維の方が、薬剤の浸透が不十分な(混ぜ合わせる工程を行わないで製造された)セルロース繊維よりも大きいものとなる。これは、比重の大きな薬剤がセルロース繊維の繊維内部に浸透したことでセルロース繊維全体としても比重が増加したことによるものと考えられる。なお、沈降速度(d(%)/dt)とは、単位時間あたりの沈降率の変化量である。 Also, regarding the sedimentation rate, the cellulose fiber in which the drug is sufficiently permeated into the cellulose fiber is more than the cellulose fiber in which the drug is sufficiently permeated (manufactured without the mixing step). It will be big. It is considered that this is because the chemical having a high specific density permeated into the inside of the cellulose fiber and the specific gravity of the cellulose fiber as a whole increased. The sedimentation rate (d (%) / dt) is the amount of change in the sedimentation rate per unit time.
 セルロースの繊維内部への薬剤の浸透が十分になされたセルロース繊維とは、薬剤の浸透の程度により厳密な定義は難しいが、例えば、セルロース繊維1gに対して、薬剤が好ましくは0.5mmol以上、より好ましくは1.0mmol以上、さらに好ましくは1.5mmol以上含むものをいうことができる。セルロースの繊維内部への薬剤の浸透が十分になされたか否か(すなわち浸透度合)は、例えば次の数式で評価することができる。
[数2]
 (浸透度合)=(薬剤を含むセルロース繊維の質量g)-(乾燥したセルロース繊維の質量g)
 ここで、薬剤を含むセルロース繊維の質量とは、混合工程を経たセルロース繊維を乾燥(105℃、1時間)させた後の質量をいう。薬剤の質量gと薬剤の物質量mmolは適宜換算して求める。
Although it is difficult to strictly define a cellulose fiber in which the drug has sufficiently penetrated into the inside of the cellulose fiber depending on the degree of penetration of the drug, for example, the drug is preferably 0.5 mmol or more per 1 g of the cellulose fiber. It can be said that it contains more preferably 1.0 mmol or more, still more preferably 1.5 mmol or more. Whether or not the drug has sufficiently penetrated into the fibers of cellulose (that is, the degree of penetration) can be evaluated by, for example, the following mathematical formula.
[Number 2]
(Permeability) = (Mass g of cellulose fiber containing drug)-(Mass g of dried cellulose fiber)
Here, the mass of the cellulose fiber containing the drug means the mass of the cellulose fiber that has undergone the mixing step after being dried (105 ° C., 1 hour). The mass g of the drug and the substance amount mmol of the drug are appropriately converted and obtained.
 混ぜ合わせる工程を行わないで製造されたセルロース繊維は、沈降が相対的にし難く、またセルロース繊維と薬剤との反応転化率も低いものとなる。 Cellulose fibers produced without the mixing step are relatively difficult to settle, and the reaction conversion rate between the cellulose fibers and the drug is also low.
 混合工程のうちの添加工程と混ぜ合わせる工程とを行って得たセルロース繊維を水に投入して固形分濃度を0.2質量%としたセルロース繊維液を800rpmで離解させたときに、離解が完了するまでに要する時間が、好ましくは15分以下、より好ましくは12分以下、さらに好ましくは10分以下となるように、混ぜ合わせる工程を行うとよい。当該離解が完了するまでに要する時間が15分を上回ると、セルロース繊維の内部に薬剤が十分に浸透していないおそれがある。他方、上記(2)混合工程が、セルロース繊維に前記薬剤を添加する工程のみからなる場合によって得たセルロース繊維を、水に投入して固形分濃度を0.2質量%としたセルロース繊維液を800rpmで離解させたときに、離解が完了するまでに要する時間は、20分以上となる。 When the cellulose fiber obtained by performing the addition step and the mixing step in the mixing step was put into water and the cellulose fiber liquid having a solid content concentration of 0.2% by mass was dissociated at 800 rpm, the dissociation occurred. It is advisable to carry out the mixing step so that the time required for completion is preferably 15 minutes or less, more preferably 12 minutes or less, still more preferably 10 minutes or less. If the time required for the disaggregation to be completed exceeds 15 minutes, the drug may not sufficiently penetrate into the cellulose fibers. On the other hand, a cellulose fiber liquid obtained by adding the cellulose fiber obtained in the case where the mixing step (2) consists only of the step of adding the drug to the cellulose fiber into water to have a solid content concentration of 0.2% by mass is prepared. When the fibers are disintegrated at 800 rpm, the time required for the dissolution to be completed is 20 minutes or more.
 混ぜ合わせる方法は、特に限定されないが、一例に次のように行うことができる。コンクリートミキサーやモルタルミキサー等の混合ミキサー、撹拌翼や回流機が備わる円筒タンクにセルロース繊維と薬剤を投入して、混ぜ合わせる方法とすることができる。また、少量行う場合には、容器にセルロース繊維と薬剤を投入して、ハンドミキサー等の混合ミキサーで混ぜ合わせたり、袋にセルロース繊維と薬剤を入れて袋の外側から、漬物を漬ける際に具材を揉んだり捏ねたりするように、混ぜ合わせたりする方法とすることができる。 The method of mixing is not particularly limited, but can be performed as follows as an example. It is possible to put the cellulose fibers and the chemicals into a cylindrical tank equipped with a mixing mixer such as a concrete mixer or a mortar mixer, a stirring blade or a circulation machine, and mix them. If you want to do a small amount, put the cellulose fiber and the medicine in the container and mix them with a mixing mixer such as a hand mixer, or put the cellulose fiber and the medicine in the bag and pickle the pickles from the outside of the bag. It can be a method of mixing the materials as if they were kneaded or kneaded.
 セルロース繊維と薬剤を混ぜ合わせる時間は、特に限定されないが、好ましくは1分以上、より好ましくは5分以上、さらに好ましくは10分以上とすると薬剤がセルロース繊維内部に十分に浸透するのでよい。また、当該混ぜ合わせる時間は、好ましくは24時間以下、より好ましくは12時間以下、さらに好ましくは6時間以下であればよい。24時間超混ぜ合わせても、それに見合う効果が奏されない。混ぜ合わせる際の回転速度は、特に限定されないが、下限を好ましくは1rpm以上、より好ましくは10rpm以上とするとよく、さらに好ましくは100rpm以上とするとよく、上限を好ましくは100000rpm以下、より好ましくは10000rpm以下とするとよい。 The time for mixing the cellulose fiber and the drug is not particularly limited, but preferably 1 minute or more, more preferably 5 minutes or more, still more preferably 10 minutes or more, because the drug sufficiently penetrates into the cellulose fiber. The mixing time may be preferably 24 hours or less, more preferably 12 hours or less, still more preferably 6 hours or less. Even if it is mixed for more than 24 hours, the effect corresponding to it is not achieved. The rotation speed at the time of mixing is not particularly limited, but the lower limit is preferably 1 rpm or more, more preferably 10 rpm or more, further preferably 100 rpm or more, and the upper limit is preferably 100,000 rpm or less, more preferably 10000 rpm or less. It is good to say.
 混ぜ合わせる工程で用いる薬剤は、尿素又は尿素の誘導体(以下、単に「尿素等」ともいう。)を挙げることができる。尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素又は尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。 Examples of the drug used in the mixing step include urea or a derivative of urea (hereinafter, also simply referred to as "urea or the like"). As the derivative of urea or urea, for example, urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, a compound in which the hydrogen atom of urea is replaced with an alkyl group or the like can be used. can. These ureas or derivatives of urea can be used alone or in combination of two or more. However, it is preferable to use urea.
 セルロース繊維に対する尿素等の混合質量比(尿素等/セルロース繊維)の下限は、好ましくは10/100以上、より好ましくは20/100以上である。他方、上限は、好ましくは300/100以下、より好ましくは200/100以下である。混合質量比を10/100以上にすることで、カルバメート化の効率が向上する。他方、混合質量比が200/100を上回っても、カルバメート化は頭打ちになる。 The lower limit of the mixed mass ratio of urea or the like (urea or the like / cellulose fiber) to the cellulose fiber is preferably 10/100 or more, more preferably 20/100 or more. On the other hand, the upper limit is preferably 300/100 or less, more preferably 200/100 or less. By setting the mixed mass ratio to 10/100 or more, the efficiency of carbamate formation is improved. On the other hand, even if the mixed mass ratio exceeds 200/100, the carbamation reaches a plateau.
 (分散媒)
 混ぜ合わせる工程は、セルロース繊維と薬剤のみで行うことができるが、液媒体である分散媒をさらに添加してもよい。分散媒としては、通常、水を用いるとよい。また、アルコール、エーテル等の他の液媒体や、水と他の分散媒との混合物を用いてもよい。
(Dispersion medium)
The step of mixing can be performed only with cellulose fibers and a chemical, but a dispersion medium which is a liquid medium may be further added. Water is usually preferable as the dispersion medium. Further, another liquid medium such as alcohol or ether, or a mixture of water and another dispersion medium may be used.
 混ぜ合わせる工程においては、例えば、分散媒にセルロース繊維及び尿素等を添加しても、尿素等の水溶液にセルロース繊維を添加しても、セルロース繊維を含むスラリーに尿素等を添加してもよい。さらに、セルロース繊維と尿素等とを含む分散液には、その他の成分が含まれていてもよい。セルロース繊維と尿素等に分散媒を添加して分散液の状態にした場合は、セルロース繊維1gあたり分散媒を99g以下、より好ましくは66g以下、さらに好ましくは49g以下添加して混ぜ合わせる工程を行うとよく、0.1g以上、より好ましくは1g以上、さらに好ましくは2g以上添加して混ぜ合わせる工程を行うとよい。セルロース繊維1gあたりの分散媒の量が99gを上回ると、分散液全体に占めるセルロース繊維の量が少ないため、セルロース繊維全体に万遍に薬剤が付着し難く、解繊が一様になされないおそれがある。また、セルロース繊維1gあたりの分散媒の量が0.1gを下回ると、分散媒を添加する効果が望めないおそれがある。 In the mixing step, for example, cellulose fibers, urea or the like may be added to the dispersion medium, cellulose fibers may be added to an aqueous solution of urea or the like, or urea or the like may be added to the slurry containing the cellulose fibers. Further, the dispersion liquid containing the cellulose fibers and urea or the like may contain other components. When a dispersion medium is added to the cellulose fibers and urea to prepare a dispersion liquid, a step of adding 99 g or less, more preferably 66 g or less, still more preferably 49 g or less of the dispersion medium per 1 g of the cellulose fibers and mixing them is performed. It is preferable to add 0.1 g or more, more preferably 1 g or more, still more preferably 2 g or more, and mix them. If the amount of the dispersion medium per 1 g of the cellulose fiber exceeds 99 g, the amount of the cellulose fiber in the entire dispersion liquid is small, so that it is difficult for the chemicals to adhere to the entire cellulose fiber evenly, and the defibration may not be uniform. There is. Further, if the amount of the dispersion medium per 1 g of the cellulose fiber is less than 0.1 g, the effect of adding the dispersion medium may not be expected.
 (乾燥工程)
 混合工程の次は加熱工程に移行するが、混合工程と加熱工程の間に乾燥工程を挿入することもできる。乾燥工程は、混合工程において得られたセルロース繊維及び尿素等を含む分散液から分散媒を除去する工程であり、除去工程ということもできる。分散媒を除去することで、これに続く加熱処理において効率的に尿素等を反応させることができる。なお、乾燥工程を行っても、薬剤は繊維の表面及び内部に残る。
(Drying process)
After the mixing step, the heating step is performed, but a drying step can be inserted between the mixing step and the heating step. The drying step is a step of removing the dispersion medium from the dispersion liquid containing the cellulose fibers and urea obtained in the mixing step, and can also be referred to as a removal step. By removing the dispersion medium, urea and the like can be efficiently reacted in the subsequent heat treatment. Even after the drying step, the chemical remains on the surface and inside of the fiber.
 分散媒の除去は、加熱によって分散媒を揮発させることで行うのが好ましい。この方法によると、尿素等の成分をほぼ残したまま分散媒のみを効率的に除去することができる。 It is preferable to remove the dispersion medium by volatilizing the dispersion medium by heating. According to this method, it is possible to efficiently remove only the dispersion medium while leaving almost all the components such as urea.
 乾燥工程における設定温度は、分散媒が水である場合は、好ましくは50℃以上、より好ましくは70℃以上、特に好ましくは90℃以上であるとよい。設定温度を50℃以上にすることで効率的に分散媒を揮発させる(除去する)ことができる。他方、設定温度の上限は、好ましくは120℃、より好ましくは100℃である。加熱温度が120℃を上回ると、分散媒と尿素が化学反応し、セルロース繊維と尿素との反応転化率が低下するおそれがある。 When the dispersion medium is water, the set temperature in the drying step is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and particularly preferably 90 ° C. or higher. By setting the set temperature to 50 ° C. or higher, the dispersion medium can be efficiently volatilized (removed). On the other hand, the upper limit of the set temperature is preferably 120 ° C, more preferably 100 ° C. If the heating temperature exceeds 120 ° C., the dispersion medium and urea chemically react with each other, and the reaction conversion rate between the cellulose fibers and urea may decrease.
 乾燥工程にかける乾燥時間は、分散液の固形分濃度等に応じて適宜調節することができる。具体的には、乾燥時間は、例えば24時間以下、好ましくは20時間以下、より好ましくは18時間以下、特に好ましくは16時間以下である。他方、分散媒を除去するため最低でも6時間は乾燥させたほうがよい。乾燥時間が上記範囲であれば、分散媒のほぼ全量がセルロース繊維から除去され、かつ長時間の乾燥による繊維の熱変性を確実に抑えることができる。 The drying time applied to the drying step can be appropriately adjusted according to the solid content concentration of the dispersion liquid and the like. Specifically, the drying time is, for example, 24 hours or less, preferably 20 hours or less, more preferably 18 hours or less, and particularly preferably 16 hours or less. On the other hand, it is better to dry for at least 6 hours to remove the dispersion medium. When the drying time is within the above range, almost the entire amount of the dispersion medium is removed from the cellulose fibers, and the thermal denaturation of the fibers due to long-term drying can be reliably suppressed.
 以上のように、加熱工程に先立って、乾燥工程を設けると好適である。特にこの乾燥工程においては、加熱工程に供せられるセルロース繊維の水分率が10%以下となるように、好ましくは0~9%となるように、より好ましくは0~8%となるように乾燥を行うと好適である。加熱工程に先立ってセルロース繊維の水分率が10%以下となるように乾燥を行っておくことで、カルバメート基の置換率を容易に1mmol/g以上とすることができるようになる。加熱工程に先立って乾燥工程を行っておくことで、カルバメート基の置換効率が向上する利点がある。 As described above, it is preferable to provide a drying step prior to the heating step. In particular, in this drying step, the cellulose fibers subjected to the heating step are dried so that the moisture content is 10% or less, preferably 0 to 9%, and more preferably 0 to 8%. Is preferable. By drying the cellulose fibers so that the moisture content is 10% or less prior to the heating step, the substitution rate of the carbamate group can be easily set to 1 mmol / g or more. By performing the drying step prior to the heating step, there is an advantage that the substitution efficiency of the carbamate group is improved.
 (加熱工程)
 加熱工程は、混合工程(又は乾燥工程)後にセルロース繊維と薬剤(尿素等)との混合物を加熱する工程である。加熱工程では、セルロース繊維のヒドロキシ基の一部又は全部が尿素等と化学反応してカルバメート基に置換される。反応過程は、およそ次のとおりとなる。尿素等は加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。イソシアン酸はとても反応性が高く不安定であり、例えば、下記の反応式(2)に示すようにセルロースのカルボキシ基がカルバメート基に置換される。
 NH2-CO-NH2 → H-N=C=O + NH3 …(1)
 Cell-OH + H-N=C=O → Cell-O-CO-NH2 …(2)
(Heating process)
The heating step is a step of heating a mixture of cellulose fibers and a drug (urea or the like) after the mixing step (or drying step). In the heating step, a part or all of the hydroxy groups of the cellulose fiber chemically react with urea or the like and are replaced with carbamate groups. The reaction process is as follows. When urea or the like is heated, it is decomposed into isocyanic acid and ammonia as shown in the following reaction formula (1). Isocyanic acid is very reactive and unstable, for example, the carboxy group of cellulose is replaced with a carbamate group as shown in the following reaction formula (2).
NH 2 -CO-NH 2 → H-N = C = O + NH 3 ... (1)
Cell-OH + HN = C = O → Cell-O-CO-NH 2 … (2)
 本態様の加熱工程に供されるセルロース繊維は、繊維表面及び内部に、薬剤が付着し、浸透している分、セルロース繊維内のヒドロキシ基と薬剤との反応部位が多く、相対的に多くの薬剤がヒドロキシ基と反応すると考えられる。また、乾燥工程を経たセルロース繊維は、水分が蒸発しているが、薬剤が表面及び内部に残存しているので、薬剤が残存している箇所においては、薬剤によって水素結合が弱まっている。そのため、当該セルロース繊維は、カルバメート化の置換効率に優れ、また、離解や解繊が容易に起こり易いものとなっている。薬剤によって水素結合を弱める作用については、水素結合を形成する水分子の一部が尿素分子に置き換わっていることによるものと考えられる。 The cellulose fiber used in the heating step of this embodiment has a large number of reaction sites between the hydroxy group and the drug in the cellulose fiber because the drug adheres to and permeates the fiber surface and the inside, and is relatively large. It is believed that the drug reacts with the hydroxy group. Further, although the water content of the cellulose fibers that have undergone the drying step has evaporated, the chemicals remain on the surface and inside, so that the hydrogen bonds are weakened by the chemicals at the places where the chemicals remain. Therefore, the cellulose fiber is excellent in the substitution efficiency of carbamate formation, and is easily dissociated and defibrated. It is considered that the action of weakening the hydrogen bond by the drug is due to the fact that a part of the water molecule forming the hydrogen bond is replaced with the urea molecule.
 加熱工程では、混合物を加熱する温度(加熱温度)を、好ましくは120℃以上、より好ましくは130℃以上、特に好ましくは尿素の融点(約134℃)以上、さらに好ましくは140℃以上、最も好ましくは150℃以上とするとよい。加熱する温度が120℃を下回ると、上記置換反応が促進されにくい。一方、加熱する温度は、好ましくは200℃以下、より好ましくは180℃以下、特に好ましくは170℃以下であるとよい。加熱温度が200℃を上回ると、セルロース繊維が分解したり熱変性したりして、樹脂の補強効果が不十分となるおそれがある。 In the heating step, the temperature for heating the mixture (heating temperature) is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, particularly preferably urea melting point (about 134 ° C.) or higher, still more preferably 140 ° C. or higher, most preferably. The temperature should be 150 ° C. or higher. When the heating temperature is lower than 120 ° C., the substitution reaction is less likely to be promoted. On the other hand, the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and particularly preferably 170 ° C. or lower. If the heating temperature exceeds 200 ° C., the cellulose fibers may be decomposed or heat-denatured, and the reinforcing effect of the resin may be insufficient.
 加熱工程における加熱時間は、好ましくは1分以上、より好ましくは5分以上、特に好ましくは30分であるとよい。加熱時間が1分を下回ると化学反応が完結しないおそれがある。他方、加熱時間は、好ましくは15時間以下、より好ましくは10時間以下、特に好ましくは5時間以下であるとよい。15時間加熱すれば化学反応が完結するので、その時間を超えて加熱するのは利点がない。 The heating time in the heating step is preferably 1 minute or longer, more preferably 5 minutes or longer, and particularly preferably 30 minutes. If the heating time is less than 1 minute, the chemical reaction may not be completed. On the other hand, the heating time is preferably 15 hours or less, more preferably 10 hours or less, and particularly preferably 5 hours or less. Since the chemical reaction is completed by heating for 15 hours, there is no advantage in heating beyond that time.
 以上のように、乾燥工程と加熱工程とでは、温度及び時間の条件が主に異なる。乾燥工程はセルロース繊維に付着する分散媒を気化して飛ばすのが主目的であるため、低温で、かつ長時間処理を行う。加熱工程は、セルロース繊維が劣化しない範囲で化学反応を促進させるのが主目的であるため、高温で、かつ短時間処理を行う。乾燥工程は省略してもよいが、行ったほうがよりよい。乾燥しない状態で加熱工程を行うと、高温状態に晒された水や蒸気が、セルロースを構成するグルコースが結合しているアセタール結合を解裂させ、繊維を傷める場合がある。また、セルロース繊維のカルバメート化に用いられるべき尿素等が、セルロース繊維に付着する水分と化学反応して消費してしまい、尿素のさらなる添加が必要になる場合がある。 As described above, the temperature and time conditions are mainly different between the drying process and the heating process. Since the main purpose of the drying step is to vaporize and remove the dispersion medium adhering to the cellulose fibers, the treatment is performed at a low temperature and for a long time. Since the main purpose of the heating step is to promote the chemical reaction within the range where the cellulose fibers do not deteriorate, the treatment is performed at a high temperature and for a short time. The drying step may be omitted, but it is better to do so. If the heating step is performed in a non-drying state, water or steam exposed to a high temperature state may break the acetal bond to which glucose constituting cellulose is bound and damage the fiber. In addition, urea or the like to be used for carbamate formation of the cellulose fiber may chemically react with the water adhering to the cellulose fiber and be consumed, and further addition of urea may be required.
 加熱工程においては、反応温度及び反応時間の他に、pHを調整することも化学反応が促進され好ましい。pHは、好ましくはpH9以上、より好ましくはpH9~13、特に好ましくはpH10~12のアルカリ性条件であるとよい。又は、pH7以下、好ましくはpH3~7、特に好ましくはpH4~7の酸性条件又は中性条件であるとよい。ただし、pH7超~8の弱アルカリ性条件であると、セルロース繊維の平均繊維長が短くなり、樹脂の補強効果に劣る可能性がある。これに対し、pH9以上のアルカリ性条件であると、セルロース繊維の反応性が高まり、尿素等への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。他方、pH7以下の酸性条件であると、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。ただし、酸性条件であるとセルロースの一部が酸加水分解する場合があるため、アルカリ性条件で加熱処理する方が好ましい。pHの調整は、混合物に酸性化合物(例えば、酢酸、クエン酸等。)やアルカリ性化合物(例えば、水酸化ナトリウム、水酸化カルシウム等。)を添加すること等によって行うことができる。 In the heating step, it is preferable to adjust the pH in addition to the reaction temperature and the reaction time because the chemical reaction is promoted. The pH is preferably an alkaline condition of pH 9 or higher, more preferably pH 9 to 13, and particularly preferably pH 10 to 12. Alternatively, the pH may be 7 or less, preferably pH 3 to 7, particularly preferably pH 4 to 7, under acidic or neutral conditions. However, under weakly alkaline conditions of more than pH 7 to 8, the average fiber length of the cellulose fibers becomes short, and the reinforcing effect of the resin may be inferior. On the other hand, under alkaline conditions of pH 9 or higher, the reactivity of the cellulose fibers is enhanced, the reaction with urea or the like is promoted, and the carbamate-forming reaction is carried out efficiently, so that the average fiber length of the cellulose fibers should be sufficiently secured. Can be done. On the other hand, under acidic conditions of pH 7 or less, the reaction of decomposing urea or the like into isocyanic acid and ammonia proceeds, the reaction with cellulose fibers is promoted, and the carbamate formation reaction is performed efficiently, so that the average fiber length of the cellulose fibers is sufficient. Can be secured. However, it is preferable to heat-treat under alkaline conditions because a part of cellulose may be acid hydrolyzed under acidic conditions. The pH can be adjusted by adding an acidic compound (for example, acetic acid, citric acid, etc.) or an alkaline compound (for example, sodium hydroxide, calcium hydroxide, etc.) to the mixture.
 加熱工程において加熱する装置としては、例えば、熱風乾燥機、抄紙機、ドライパルプマシン等を使用することができる。 As a device for heating in the heating step, for example, a hot air dryer, a paper machine, a dry pulp machine, or the like can be used.
 加熱工程後の混合物は、次工程に供するために洗浄してもよい。この洗浄は、水等で行えばよい。この洗浄によって残留している未反応の尿素等や副生成物等を除去することができる。ただし、前述したように解繊及びカルバメート化はいずれをも先に行うことができるが、前記洗浄を行う場合は、解繊後にカルバメート化するよりも、カルバメート化後に解繊する方が好ましい。これは、セルロース繊維を解繊すると、保水性(度)が上がって脱水しづらくなることや、繊維が微細化されていると乾燥した際に不可逆的に凝集し易くなること等による。なお、例えば、パルプの保水度が100%であるとすると、解繊後のマイクロ繊維セルロースの保水度は300%程度にもなる。 The mixture after the heating step may be washed for use in the next step. This washing may be performed with water or the like. By this washing, residual unreacted urea and the like and by-products can be removed. However, as described above, both defibration and carbamating can be performed first, but in the case of the washing, it is preferable to deflate after carbamating rather than carbamate after defibration. This is because when the cellulose fiber is defibrated, the water retention (degree) increases and it becomes difficult to dehydrate, and when the fiber is finely divided, it tends to irreversibly aggregate when it dries. For example, assuming that the water retention of pulp is 100%, the water retention of microfiber cellulose after defibration is as high as about 300%.
 (スラリー)
 マイクロ繊維セルロースは、水系媒体中に分散させて分散液(スラリー)にしておくと保管、取り扱いが容易にでき好ましい。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する液体である水系媒体を使用することができる。液体としては、炭素数3以下の低級アルコール類等を使用することができる。
(slurry)
It is preferable to disperse the microfiber cellulose in an aqueous medium to prepare a dispersion liquid (slurry) because it can be easily stored and handled. As the water-based medium, it is particularly preferable that the whole amount is water, but an water-based medium which is a liquid which is partially compatible with water can be used. As the liquid, lower alcohols having 3 or less carbon atoms can be used.
 スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%にしておくとよい。固形分濃度が0.1質量%を下回ると、複合樹脂の製造にスラリーを多量に用意することになり、煩雑であるし、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい、均一に混合できなくなり使い勝手がよくない。 The solid content concentration of the slurry is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass. If the solid content concentration is less than 0.1% by mass, a large amount of slurry is prepared for producing the composite resin, which is complicated and may require excessive energy for dehydration and drying. On the other hand, if the solid content concentration exceeds 10.0% by mass, the fluidity of the slurry itself is lowered, and the slurry itself cannot be mixed uniformly, which is not convenient.
 (酸変性樹脂)
 マイクロ繊維セルロースは、好ましくは酸変性樹脂と混合する。酸変性樹脂を混合すると、酸基がカルバメート基の一部又は全部とイオン結合する。このイオン結合により、樹脂の補強効果が向上する。
(Acid-modified resin)
The microfiber cellulose is preferably mixed with an acid-modified resin. When the acid-modified resin is mixed, the acid group ionically bonds with a part or all of the carbamate group. This ionic bond improves the reinforcing effect of the resin.
 酸変性樹脂としては、例えば、酸変性ポリオレフィン樹脂、酸変性エポキシ樹脂、酸変性スチレン系エラストマー樹脂等を使用することができる。ただし、酸変性ポリオレフィン樹脂を使用するのが好ましい。酸変性ポリオレフィン樹脂は、不飽和カルボン酸成分とポリオレフィン成分との共重合体である。 As the acid-modified resin, for example, an acid-modified polyolefin resin, an acid-modified epoxy resin, an acid-modified styrene-based elastomer resin, or the like can be used. However, it is preferable to use an acid-modified polyolefin resin. The acid-modified polyolefin resin is a copolymer of an unsaturated carboxylic acid component and a polyolefin component.
 ポリオレフィン成分としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン等のアルケンの重合体の中から1種又は2種以上を選択して使用することができる。ただし、好適には、プロピレンの重合体であるポリプロピレン樹脂を用いることが好ましい。 As the polyolefin component, for example, one or two or more of alkene polymers such as ethylene, propylene, butadiene, and isoprene can be selected and used. However, it is preferable to use a polypropylene resin which is a polymer of propylene.
 不飽和カルボン酸成分としては、例えば、無水マレイン酸類、無水フタル酸類、無水イタコン酸類、無水シトラコン酸類、無水クエン酸類等の中から1種又は2種以上を選択して使用することができる。ただし、好適には、無水マレイン酸類を使用するのが好ましい。つまり、無水マレイン酸変性ポリプロピレン樹脂を用いることが好ましい。 As the unsaturated carboxylic acid component, for example, one or more can be selected and used from among maleic anhydrides, phthalic anhydrides, itaconic anhydrides, citraconic anhydrides, citrate anhydrides and the like. However, it is preferable to use maleic anhydrides. That is, it is preferable to use a maleic anhydride-modified polypropylene resin.
 酸変性樹脂の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。特に酸変性樹脂が無水マレイン酸変性ポリプロピレン樹脂である場合は、好ましくは1~200質量部、より好ましくは10~100質量部である。酸性変性樹脂の混合量が0.1質量部を下回ると強度の向上が十分ではない。他方、混合量が1,000質量部を上回ると、過剰となり強度が低下する傾向となる。 The mixed amount of the acid-modified resin is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the microfiber cellulose. In particular, when the acid-modified resin is a maleic anhydride-modified polypropylene resin, the amount is preferably 1 to 200 parts by mass, more preferably 10 to 100 parts by mass. If the mixed amount of the acid-modified resin is less than 0.1 parts by mass, the improvement in strength is not sufficient. On the other hand, if the mixing amount exceeds 1,000 parts by mass, it becomes excessive and the strength tends to decrease.
 無水マレイン酸変性ポリプロピレンの重量平均分子量は、例えば1,000~100,000、好ましくは3,000~50,000である。 The weight average molecular weight of maleic anhydride-modified polypropylene is, for example, 1,000 to 100,000, preferably 3,000 to 50,000.
 また、無水マレイン酸変性ポリプロピレンの酸価は、0.5mgKOH/g以上、100mgKOH/g以下が好ましく、1mgKOH/g以上、50mgKOH/g以下がより好ましい。 The acid value of maleic anhydride-modified polypropylene is preferably 0.5 mgKOH / g or more and 100 mgKOH / g or less, and more preferably 1 mgKOH / g or more and 50 mgKOH / g or less.
 さらに、酸変性樹脂のMFR(メルトフローレート)が2000g/10分(190℃/2.16kg)以下であるのが好ましく、1500g/10分以下であるのがより好ましく、500g/10分以下であるのが特に好ましい。MFRが2000g/10分を上回ると、セルロース繊維の分散性が低下する可能性がある。 Further, the MFR (melt flow rate) of the acid-modified resin is preferably 2000 g / 10 minutes (190 ° C. / 2.16 kg) or less, more preferably 1500 g / 10 minutes or less, and 500 g / 10 minutes or less. It is particularly preferable to have it. If the MFR exceeds 2000 g / 10 minutes, the dispersibility of the cellulose fibers may decrease.
 なお、酸価の測定は、JIS-K2501に準拠し、水酸化カリウムで滴定する。また、MFRの測定は、JIS-K7210に準拠し、190℃で2.16kgの荷重を載せ、10分間に流れ出る試料の重量で決める。 The acid value is measured in accordance with JIS-K2501 and titrated with potassium hydroxide. The MFR measurement is based on JIS-K7210, and is determined by the weight of the sample flowing out in 10 minutes with a load of 2.16 kg at 190 ° C.
 (分散剤)
 本形態のマイクロ繊維セルロースは、好ましくは分散剤と混合しておくとよい。マイクロ繊維セルロースに分散剤が混在していると、マイクロ繊維セルロースが相互に凝集し難くなる。これは、分散剤がマイクロ繊維セルロース相互の水素結合を阻害する働きがあるからである。分散剤の混在により、マイクロ繊維セルロース及び樹脂の混練に際して、樹脂に対するマイクロ繊維セルロースの分散性が向上する。また、分散剤はマイクロ繊維セルロース及び樹脂の相溶性を向上させる役割も有する。
(Dispersant)
The microfiber cellulose of this embodiment is preferably mixed with a dispersant. When a dispersant is mixed with the microfiber cellulose, it becomes difficult for the microfiber cellulose to aggregate with each other. This is because the dispersant has a function of inhibiting hydrogen bonds between microfiber celluloses. By mixing the dispersant, the dispersibility of the microfiber cellulose with respect to the resin is improved when the microfiber cellulose and the resin are kneaded. The dispersant also has a role of improving the compatibility of the microfiber cellulose and the resin.
 分散剤としては、芳香族類にアミン基及び/又は水酸基を有する化合物、脂肪族類にアミン基及び/又は水酸基を有する化合物が好ましい。 As the dispersant, a compound having an amine group and / or a hydroxyl group in an aromatic group and a compound having an amine group and / or a hydroxyl group in an aliphatic group are preferable.
 芳香族類にアミン基及び/又は水酸基を有する化合物としては、例えば、アニリン類、トルイジン類、トリメチルアニリン類、アニシジン類、チラミン類、ヒスタミン類、トリプタミン類、フェノール類、ジブチルヒドロキシトルエン類、ビスフェノールA類、クレゾール類、オイゲノール類、没食子酸類、グアイアコール類、ピクリン酸類、フェノールフタレイン類、セロトニン類、ドーパミン類、アドレナリン類、ノルアドレナリン類、チモール類、チロシン類、サリチル酸類、サリチル酸メチル類、アニスアルコール類、サリチルアルコール類、シナピルアルコール類、ジフェニドール類、ジフェニルメタノール類、シンナミルアルコール類、スコポラミン類、トリプトフォール類、バニリルアルコール類、3-フェニル‐1-プロパノール類、フェネチルアルコール類、フェノキシエタノール類、ベラトリルアルコール類、ベンジルアルコール類、ベンゾイン類、マンデル酸類、マンデロニトリル類、安息香酸類、フタル酸類、イソフタル酸類、テレフタル酸類、メリト酸類、ケイ皮酸類などが挙げられる。 Examples of compounds having an amine group and / or a hydroxyl group in aromatics include aniline, toluidin, trimethylaniline, anisidin, tyramine, histamine, tryptamine, phenol, dibutylhydroxytoluene, and bisphenol A. Classes, cresols, eugenols, gallic acids, guaiacols, picric acids, phenolphthalenes, serotonins, dopamines, adrenaline, noradrenaline, timoles, tyrosine, salicylic acids, methyl salicylates, anis alcohols. , Salicylic alcohols, cinapyl alcohols, diphenidols, diphenylmethanols, cinnamyl alcohols, scopolamines, tryptofols, vanillyl alcohols, 3-phenyl-1-propanols, phenethyl alcohols, phenoxyethanols , Veratril alcohols, benzyl alcohols, benzoins, mandelic acids, manderonitriles, benzoic acids, phthalic acids, isophthalic acids, terephthalic acids, melitonic acids, silicic acids and the like.
 脂肪族類にアミン基及び/又は水酸基を有する化合物としては、例えば、カプリルアルコール類、2-エチルヘキサノール類、ペラルゴンアルコール類、カプリンアルコール類、ウンデシルアルコール類、ラウリルアルコール類、トリデシルアルコール類、ミリスチルアルコール類、ペンタデシルアルコール類、セタノール類、ステアリルアルコール類、エライジルアルコール類、オレイルアルコール類、リノレイルアルコール類、メチルアミン類、ジメチルアミン類、トリメチルアミン類、エチルアミン類、ジエチルアミン類、エチレンジアミン類、トリエタノールアミン類、N,N-ジイソプロピルエチルアミン類、テトラメチルエチレンジアミン類、ヘキサメチレンジアミン類、スペルミジン類、スペルミン類、アマンタジン類、ギ酸類、酢酸類、プロピオン酸類、酪酸類、吉草酸類、カプロン酸類、エナント酸類、カプリル酸類、ペラルゴン酸類、カプリン酸類、ラウリン酸類、ミリスチン酸類、パルミチン酸類、マルガリン酸類、ステアリン酸類、オレイン酸類、リノール酸類、リノレン酸類、アラキドン酸類、エイコサペンタエン酸類、ドコサヘキサエン酸類、ソルビン酸類などが挙げられる。 Examples of compounds having an amine group and / or a hydroxyl group in aliphatics include capryl alcohols, 2-ethylhexanols, pelargone alcohols, caprin alcohols, undecyl alcohols, lauryl alcohols, tridecyl alcohols, and the like. Myristyl alcohols, pentadecyl alcohols, cetanols, stearyl alcohols, eleidyl alcohols, oleyl alcohols, linoleil alcohols, methylamines, dimethylamines, trimethylamines, ethylamines, diethylamines, ethylenediamines, Triethanolamines, N, N-diisopropylethylamines, tetramethylethylenediamines, hexamethylenediamines, spermidins, spermins, amantadins, formic acids, acetic acids, propionic acids, butyric acids, valeric acids, caproic acids. , Enant acids, capricic acids, pelargonic acids, capric acids, lauric acids, myristic acids, palmitic acids, margalic acids, stearic acids, oleic acids, linoleic acids, linolenic acids, arachidonic acids, eikosapentaenoic acids, docosahexaenoic acids, sorbic acids, etc. Can be mentioned.
 分散剤の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。分散剤の混合量が0.1質量部を下回ると、分散剤を加えた効果が弱く、樹脂の強度向上が十分になされないおそれがある。他方、混合量が1,000質量部を上回ると、過剰な分散剤によってマイクロ繊維セルロースの分散性が低下するおそれがある。 The mixing amount of the dispersant is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the microfiber cellulose. If the mixing amount of the dispersant is less than 0.1 parts by mass, the effect of adding the dispersant is weak, and the strength of the resin may not be sufficiently improved. On the other hand, if the mixing amount exceeds 1,000 parts by mass, the dispersibility of the microfiber cellulose may decrease due to the excess dispersant.
 前述した酸変性樹脂は酸基とマイクロ繊維セルロースのカルバメート基とがイオン結合することで相溶性を向上し、もって補強効果を上げるためのものであり、分子量が大きいため混練用の樹脂とともに分散しやすい。分散剤は、マイクロ繊維セルロース間のヒドロキシ基相互に介在して凝集を防ぐものであり、また、分子量が酸変性樹脂に比べ小さいため、酸変性樹脂が入り込めないようなマイクロ繊維セルロース間の狭いスペースに入ることができ、マイクロ繊維セルロースの分散性を向上する役割を果たす。したがって、上記酸変性樹脂の分子量は、分散剤の分子量の2~2,000倍、好ましくは5~1,000倍であると好適である。 The above-mentioned acid-modified resin is intended to improve compatibility by ionic bonding between an acid group and a carbamate group of microfiber cellulose, thereby enhancing a reinforcing effect, and because of its large molecular weight, it is dispersed together with a resin for kneading. Cheap. The dispersant intervenes between the hydroxy groups between the microfiber celluloses to prevent aggregation, and since the molecular weight is smaller than that of the acid-modified resin, the space between the microfiber celluloses is narrow so that the acid-modified resin cannot enter. It can enter the space and plays a role in improving the dispersibility of microfiber cellulose. Therefore, the molecular weight of the acid-modified resin is preferably 2 to 2,000 times, preferably 5 to 1,000 times, the molecular weight of the dispersant.
 (粉末)
 本形態のマイクロ繊維セルロースは、粉末と混合しておくと好適である。粉末と混合しておくことで、マイクロ繊維セルロースは凝集化が抑制され、樹脂の補強性を発揮できる形態とすることができる。マイクロ繊維セルロースは、樹脂と複合化するまでは、含有水分率を所定の範囲に調節しておくとよく、当該範囲を超えると水系媒体を除去する過程で、マイクロ繊維セルロースが相互に水素結合して凝集化してしまい、樹脂との分散性が悪化して、樹脂を補強する効果を十分に発揮できなくなる可能性がある。
(Powder)
It is preferable to mix the microfiber cellulose of this embodiment with the powder. By mixing with the powder, the microfiber cellulose is suppressed from agglomeration and can be in a form capable of exhibiting the reinforcing property of the resin. It is advisable to adjust the water content of the microfiber cellulose to a predetermined range until it is compounded with the resin. As a result, the dispersibility with the resin deteriorates, and the effect of reinforcing the resin may not be sufficiently exerted.
 用いる粉末は、マイクロ繊維セルロースとの反応性に乏しいものであるとよい。反応性に乏しいとは、化学的な反応、例えば共有結合、イオン結合、金属結合、水素結合、ファンデルワールス力による結合が促進し難い、ということを意味する。また、粉末とマイクロ繊維セルロースとが化学反応する際の活性化エネルギーが100kJ/molを超える粉末、ということもできる。 The powder used should have poor reactivity with microfiber cellulose. Poor reactivity means that it is difficult to promote chemical reactions such as covalent bonds, ionic bonds, metal bonds, hydrogen bonds, and van der Waals forces. It can also be said that the powder has an activation energy of more than 100 kJ / mol when the powder and the microfiber cellulose chemically react with each other.
 粉末は、無機性粉末や樹脂粉末を選択して用いることができるが、好ましくは無機性のものが良い。無機性粉末であれば、セルロースの繊維が有するカルボキシ基を水酸化物イオンへ解離させ難いので、反応抑制効果があり、好ましい。特に無機粉末であると、操業上有利である。というのも、繊維状セルロース含有物の含有水分率の調節手法としては、例えば、熱源である金属ドラムに、繊維状セルロースと粉末の混合液を直接あてて、乾燥する手法や、熱源に当該混合液を直接触れさせずに加温する手法等を、含有水分率の調製手法として挙げることができる。しかしながら、樹脂粉末を使用すると、加温した金属板(例えば、ヤンキードライヤー、シリンダードライヤー等。)に接触させて乾燥した際に、金属板表面に皮膜ができ熱伝導が悪化し、乾燥効率が著しく低下する懸念があり、無機性粉末であれば。このような問題が生じ難い。 As the powder, an inorganic powder or a resin powder can be selected and used, but an inorganic powder is preferable. Inorganic powder is preferable because it has a reaction suppressing effect because it is difficult to dissociate the carboxy group of the cellulose fiber into hydroxide ion. Inorganic powder is particularly advantageous in terms of operation. This is because, as a method for adjusting the water content of the fibrous cellulose-containing material, for example, a method of directly applying a mixed solution of fibrous cellulose and powder to a metal drum as a heat source and drying the mixture, or a method of mixing the mixture with a heat source. A method of heating the liquid without directly touching it can be mentioned as a method of adjusting the water content. However, when the resin powder is used, when it is brought into contact with a heated metal plate (for example, a Yankee dryer, a cylinder dryer, etc.) and dried, a film is formed on the surface of the metal plate, the heat conduction is deteriorated, and the drying efficiency is remarkably high. If it is an inorganic powder, there is a concern that it will decrease. Such a problem is unlikely to occur.
 粉末の平均粒子径は、1~10,000μmが好ましく、10~5,000μmがより好ましく、100~1,000μmが特に好ましい。平均粒子径が10,000μmを超えると、セルロースの繊維相互の間隙に入って凝集を阻害する効果が損なわれるおそれがある。平均粒子径が1μm未満であると、セルロースの繊維に対して粉末の粒子径が小さ過ぎ、セルロースの繊維相互の凝集化を阻害する効果が発揮されないおそれがある。 The average particle size of the powder is preferably 1 to 10,000 μm, more preferably 10 to 5,000 μm, and particularly preferably 100 to 1,000 μm. If the average particle size exceeds 10,000 μm, the effect of inhibiting aggregation by entering the gaps between the fibers of cellulose may be impaired. If the average particle size is less than 1 μm, the particle size of the powder is too small for the cellulose fibers, and the effect of inhibiting the aggregation of the cellulose fibers with each other may not be exhibited.
 樹脂粉末は、物理的にセルロースの繊維相互の隙間に介在することで水素結合を阻害し、マイクロ繊維セルロースの分散性を向上する役割がある。一方で前述した酸変性樹脂は、酸基とマイクロ繊維セルロースのカルバメート基とをイオン結合することで相溶性を向上して補強効果を上げるものである。分散剤がマイクロ繊維セルロース相互の水素結合を阻害する作用は同じであるが、樹脂粉末は粒子径がマイクロオーダーであるため、物理的に介在して水素結合を抑制するものである。樹脂粉末は、分散性が分散剤に比べ低いものの、樹脂粉末自身が溶融してマトリックス化するため、物性低下に寄与しない。一方、分散剤は、粒子径が分子レベルであり、極めて小さいためマイクロ繊維セルロースを覆うようにして水素結合を阻害し、マイクロ繊維セルロースの分散性を向上する効果は高い。しかしながら、樹脂中に残り、物性低下をもたらす可能性がある。 The resin powder has the role of inhibiting hydrogen bonds by physically intervening in the gaps between the cellulose fibers and improving the dispersibility of the microfiber cellulose. On the other hand, the acid-modified resin described above improves compatibility and enhances the reinforcing effect by ionic bonding an acid group and a carbamate group of microfiber cellulose. The dispersant has the same action of inhibiting hydrogen bonds between microfiber celluloses, but since the particle size of the resin powder is micro-order, it physically intervenes and suppresses hydrogen bonds. Although the dispersibility of the resin powder is lower than that of the dispersant, the resin powder itself melts and forms a matrix, so that it does not contribute to deterioration of physical properties. On the other hand, since the dispersant has a particle size at the molecular level and is extremely small, it has a high effect of covering the microfiber cellulose to inhibit hydrogen bonds and improving the dispersibility of the microfiber cellulose. However, it may remain in the resin and cause deterioration of physical properties.
 粉末の平均粒子径は、粉体をそのまま又は水分散体の状態で粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)を用いて測定される体積基準粒度分布から算出される中位径である。 The average particle size of the powder is determined from the volume-based particle size distribution measured using a particle size distribution measuring device (for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA, Ltd.) with the powder as it is or in the state of an aqueous dispersion. It is the calculated medium diameter.
 無機粉末としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレー、ワラストナイト、ガラスビーズ、ガラスパウダー、シリカゲル、乾式シリカ、コロイダルシリカ、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機充填剤は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよいし、製紙スラッジ中の無機物を再生したいわゆる再生填料等であってもよい。 Examples of the inorganic powder include simple substances and oxides of metal elements in Groups I to VIII of the Periodic Table of the Periodic Table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon elements. , Hydroxides, carbon salts, sulfates, silicates, sulfites, various clay minerals composed of these compounds, and the like can be exemplified. Specifically, for example, barium sulfate, calcium sulfate, magnesium sulfate, sodium sulfate, calcium sulfite, zinc oxide, heavy calcium carbonate, light calcium carbonate, aluminum borate, alumina, iron oxide, calcium titanate, aluminum hydroxide, etc. Magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, clay, wallastnite, glass beads, glass powder, silica gel, dry silica, colloidal silica, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon , Glass fiber and the like can be exemplified. A plurality of these inorganic fillers may be contained. Further, it may be contained in recycled paper pulp, or may be a so-called recycled filler obtained by regenerating an inorganic substance in paper sludge.
 製紙用の填料や顔料として好適に使用される炭酸カルシウム、タルク、ホワイトカーボン、クレー、焼成クレー、二酸化チタン、水酸化アルミニウム及び再生填料等の中から選択される少なくとも1種以上の無機粉末を使用するのが好ましく、炭酸カルシウム、タルク、クレーの中からから選択される少なくとも1種以上を使用するのがより好ましく、軽質炭酸カルシウム及び重質炭酸カルシウムの少なくともいずれか一方を使用するのが特に好ましい。炭酸カルシウム、タルク、クレーは、樹脂等のマトリックスとの複合化が容易であり、汎用的な無機材料であるため、用途の制限が生じることが少ない等のメリットがある。さらに、炭酸カルシウムは特に好ましい。軽質炭酸カルシウムの粉末は、サイズや形状を所望に制御でき、セルロース繊維のサイズや形状に合わせて、間隙に入り込むよう成形して、セルロース繊維相互の凝集を抑制する効果を生じ易くすることができる。また、重質炭酸カルシウムは、不定形であるので、スラリー中に様々なサイズの繊維が存在する場合でも、乾燥工程時に水系媒体が除去されて繊維が凝集する過程において、間隙に入り込んでセルロース繊維相互の凝集を抑制することができる。 Uses at least one inorganic powder selected from calcium carbonate, talc, white carbon, clay, calcined clay, titanium dioxide, aluminum hydroxide, recycled fillers, etc., which are suitably used as fillers and pigments for papermaking. It is more preferable to use at least one selected from calcium carbonate, talc, and clay, and it is particularly preferable to use at least one of light calcium carbonate and heavy calcium carbonate. .. Calcium carbonate, talc, and clay are easy to combine with a matrix such as a resin, and since they are general-purpose inorganic materials, they have merits such as less limitation of use. In addition, calcium carbonate is particularly preferred. The size and shape of the light calcium carbonate powder can be controlled as desired, and the powder can be molded so as to enter the gap according to the size and shape of the cellulose fibers, so that the effect of suppressing the aggregation of the cellulose fibers can be easily produced. .. In addition, since heavy calcium carbonate is amorphous, even if fibers of various sizes are present in the slurry, the cellulose fibers enter the gaps in the process of removing the aqueous medium during the drying step and aggregating the fibers. Mutual aggregation can be suppressed.
 樹脂粉末に用いる樹脂は、特に限定されずに種々のものを用いることができるが、複合樹脂を得る際に使用する樹脂と同様のものを使用すると、一つの樹脂で用途を選択でき好ましい。 The resin used for the resin powder is not particularly limited, and various resins can be used, but it is preferable to use the same resin as the resin used for obtaining the composite resin because the use can be selected with one resin.
 粉末の混合比は、繊維状セルロース(マイクロ繊維セルロース)1質量部に対して、好ましくは0.01~99質量部、より好ましくは0.05~19質量部、特に好ましくは0.1~9質量部である。繊維状セルロースに対する粉末の混合比が0.01質量部を下回ると、粉末が不足し、セルロース繊維の間隙に入って凝集抑制する作用が不十分となるおそれがある。当該混合比が99質量部を上回ると、繊維が粉末に埋もれてしまい、繊維状セルロースと樹脂の混錬工程に支障をきたすおそれがある。 The mixing ratio of the powder is preferably 0.01 to 99 parts by mass, more preferably 0.05 to 19 parts by mass, and particularly preferably 0.1 to 9 parts by mass with respect to 1 part by mass of fibrous cellulose (microfiber cellulose). It is a mass part. If the mixing ratio of the powder to the fibrous cellulose is less than 0.01 parts by mass, the powder may be insufficient, and the action of entering the gaps between the cellulose fibers to suppress aggregation may be insufficient. If the mixing ratio exceeds 99 parts by mass, the fibers may be buried in the powder, which may hinder the kneading process of the fibrous cellulose and the resin.
 粉末として例示した無機粉末及び樹脂粉末は双方を併用することもできる。無機粉末及び樹脂粉末を併用すると、無機粉体と樹脂粉末のどちらか一方が凝集する条件で混合した場合でも無機粉末及び樹脂粉末の双方を混合しておくことで、凝集化を防ぐ効果が発揮される。一般的に、粒子径が小さい粉末は相対的に表面積が大きく重力作用のほかに分子間力の作用を受け、凝集化し易い傾向にあるが、無機粉末及び樹脂粉末を併用すると、粒子径が小さい粉末相互の凝集化が抑制される。この観点より、無機粉末及び樹脂粉末を併用する場合、無機粉末の平均粒子径:樹脂粉末の平均粒子径の比は、1:0.1~1:10000が好ましく、1:1~1:1000がより好ましい。 Both the inorganic powder and the resin powder exemplified as the powder can be used in combination. When the inorganic powder and the resin powder are used together, even if either the inorganic powder or the resin powder is mixed under the condition of agglomeration, the effect of preventing the agglomeration is exhibited by mixing both the inorganic powder and the resin powder. Will be done. In general, powder with a small particle size has a relatively large surface area and tends to be easily aggregated due to the action of intramolecular force in addition to the action of gravity. However, when the inorganic powder and the resin powder are used in combination, the particle size is small. Aggregation of powders is suppressed. From this point of view, when the inorganic powder and the resin powder are used in combination, the ratio of the average particle size of the inorganic powder to the average particle size of the resin powder is preferably 1: 0.1 to 1: 10000, and is preferably 1: 1 to 1: 1000. Is more preferable.
 (製造方法)
 樹脂との混練に供される、繊維状セルロース(マイクロ繊維セルロース)及び酸変性樹脂、分散剤、粉末等の混合物は、含有水分率を18%未満とする乾燥体としておくとよい。この乾燥体は、好ましくは粉砕して粉状物にする。粉状物の形態にすると、樹脂と混練して得られる繊維状セルロース複合樹脂の着色が低減される。一般にセルロース繊維と樹脂から複合樹脂を製造すると、複合樹脂が黄色味がかった色彩を呈する。しかしながら、当該粉状物から製造された複合樹脂は、樹脂の本来の色彩に近い色彩を呈する。また、粉状物の形態であれば、容易に乾燥し、樹脂との混練に際して繊維状セルロースを敢えて乾燥させる必要がなく、混錬の熱効率が良い。混合物に粉末や、分散剤が混合されている場合は、当該混合物を乾燥したとしても、繊維状セルロース(マイクロ繊維セルロース)が再分散しなくなるおそれが低い。
(Production method)
The mixture of fibrous cellulose (microfiber cellulose), acid-modified resin, dispersant, powder and the like to be kneaded with the resin is preferably a dried product having a moisture content of less than 18%. The dried product is preferably pulverized into a powder. In the form of a powder, the coloring of the fibrous cellulose composite resin obtained by kneading with the resin is reduced. Generally, when a composite resin is produced from a cellulose fiber and a resin, the composite resin exhibits a yellowish color. However, the composite resin produced from the powdery substance exhibits a color close to the original color of the resin. Further, in the form of a powdery substance, it is easily dried, and it is not necessary to dare to dry the fibrous cellulose when kneading with the resin, and the thermal efficiency of kneading is good. When a powder or a dispersant is mixed in the mixture, there is a low possibility that the fibrous cellulose (microfiber cellulose) will not be redispersed even if the mixture is dried.
 混合物を乾燥して乾燥体とする場合は、乾燥させる前に脱水して脱水物にするとよい。この脱水は、脱水装置を用いて行うことができる。脱水装置としては、例えば、ベルトプレス、スクリュープレス、フィルタープレス、ツインロール、ツインワイヤーフォーマ、バルブレスフィルタ、センターディスクフィルタ、膜処理、遠心分離機等を挙げることができる。 When the mixture is dried to make a dried product, it is recommended to dehydrate it to make a dehydrated product before drying. This dehydration can be performed using a dehydrator. Examples of the dehydrating device include a belt press, a screw press, a filter press, a twin roll, a twin wire former, a valveless filter, a center disk filter, a membrane treatment, a centrifuge and the like.
 混合物、あるいは脱水物の乾燥は、乾燥装置を用いて行うことができる。乾燥装置としては、例えば、ロータリーキルン乾燥、円板式乾燥、気流式乾燥、媒体流動乾燥、スプレー乾燥、ドラム乾燥、スクリューコンベア乾燥、パドル式乾燥、一軸混練乾燥、多軸混練乾燥、真空乾燥、攪拌乾燥等を挙げることができる。 The mixture or dehydrated product can be dried using a drying device. Examples of the drying device include rotary kiln drying, disk drying, air flow drying, medium flow drying, spray drying, drum drying, screw conveyor drying, paddle drying, uniaxial kneading drying, multiaxial kneading drying, vacuum drying, and stirring drying. And so on.
 前述の粉状物とする場合の粉砕は、粉砕装置を用いて行うことができる。粉砕装置としては、例えば、ビーズミル、ニーダー、ディスパー、ツイストミル、カットミル、ハンマーミル等を挙げることができる。 The above-mentioned powdery substance can be crushed by using a crushing device. Examples of the crushing device include a bead mill, a kneader, a disper, a twist mill, a cut mill, a hammer mill and the like.
 粉状物は、平均粒子径が好ましくは10,000μm以下、より好ましくは10~5,000μm、特に好ましくは100~1,000μmであるとよい。平均粒子径が10,000μmを上回ると、容易な乾燥がなされないおそれがある。他方、平均粒子径の下限は厳密に定める必要はないが、例えば、平均粒子径が1μmを下回るものにすることは、大きなエネルギーが必要になるため、経済的でない。 The average particle size of the powder is preferably 10,000 μm or less, more preferably 10 to 5,000 μm, and particularly preferably 100 to 1,000 μm. If the average particle size exceeds 10,000 μm, it may not be easily dried. On the other hand, it is not necessary to strictly set the lower limit of the average particle size, but for example, it is not economical to make the average particle size less than 1 μm because a large amount of energy is required.
 粉状物の平均粒子径の制御は、分級装置(フィルター、サイクロン等)を使用した分級によることができる。 The average particle size of the powder can be controlled by classification using a classification device (filter, cyclone, etc.).
 混合物(粉状物)の嵩比重は、好ましくは0.03~1.0、より好ましくは0.04~0.9、特に好ましくは0.05~0.8であるとよい。嵩比重が1.0を超えると繊維状セルロース相互の水素結合により強固な凝集がなされ、樹脂中で分散させることが困難となる。他方、嵩比重が0.03を下回ると、混錬工程で混合物と繊維状セルロースとに重力による分離作用が働き、優れた分散性が保たれず、補強効果に優れる複合樹脂や、補強効果に乏しい複合樹脂等が製造され、均質な製品にならないおそれがある。 The bulk specific gravity of the mixture (powder) is preferably 0.03 to 1.0, more preferably 0.04 to 0.9, and particularly preferably 0.05 to 0.8. When the bulk specific density exceeds 1.0, strong aggregation is formed by hydrogen bonds between the fibrous celluloses, and it becomes difficult to disperse them in the resin. On the other hand, when the bulk specific density is less than 0.03, the mixture and the fibrous cellulose are separated by gravity in the kneading process, and excellent dispersibility is not maintained. Poor composite resin, etc. may be manufactured and the product may not be uniform.
 嵩比重は、JIS K7365に準じて測定した値である。 The bulk specific density is a value measured according to JIS K7365.
 混合物(繊維状セルロース含有物)の含有水分率は、好ましくは18%未満、より好ましくは0~17%、特に好ましくは0~16%である。含有水分率が18%以上になると、繊維状セルロース複合樹脂は、着色したものとなるおそれがある。特にカルバメート基の置換率を1mmol/g以上とする場合においては、着色を低減することができない可能性がある。 The water content of the mixture (fibrous cellulose-containing material) is preferably less than 18%, more preferably 0 to 17%, and particularly preferably 0 to 16%. When the water content is 18% or more, the fibrous cellulose composite resin may be colored. In particular, when the substitution rate of the carbamate group is 1 mmol / g or more, it may not be possible to reduce the coloring.
 着色を低減するには、例えばセルロースの一構成物質であるヘミセルロース等(着色原因物質)を低分子化して水溶化し、カルバメート化パルプの洗浄工程で着色原因物質を除去する手法を採り得る。着色原因物質がマイクロ繊維セルロースに残留していると、混錬工程の際に、樹脂と着色原因物質とが接触して着色が顕著になってしまう。 In order to reduce coloring, for example, hemicellulose, which is one of the constituent substances of cellulose (coloring causative substance), can be reduced in molecular weight to make it water-soluble, and the coloring causative substance can be removed in the washing step of carbamate pulp. If the coloring-causing substance remains in the microfiber cellulose, the resin and the coloring-causing substance come into contact with each other during the kneading step, and the coloring becomes remarkable.
 含有水分率は、定温乾燥機を用いて、試料を105℃で6時間以上保持し質量の変動が認められなくなった時点の質量を乾燥後質量とし、下記式にて算出した値である。
 含有水分率(%)=[(乾燥前質量-乾燥後質量)÷乾燥前質量]×100
The moisture content is a value calculated by the following formula, where the mass at the time when the sample is held at 105 ° C. for 6 hours or more using a constant temperature dryer and no change in mass is observed is taken as the mass after drying.
Moisture content (%) = [(mass before drying-mass after drying) ÷ mass before drying] x 100
 (混練工程)
 以上のようにして得た繊維状セルロース含有物(樹脂の補強材)は、樹脂と混練し、繊維状セルロース複合樹脂を得る。この混練は、例えば、ペレット状の樹脂と補強材とを混ぜ合わす方法によることのほか、樹脂をまず溶融し、この溶融物の中に補強材を添加するという方法によることもできる。なお、酸変性樹脂や分散剤等は、この段階で添加することもできる。
(Kneading process)
The fibrous cellulose-containing material (resin reinforcing material) obtained as described above is kneaded with a resin to obtain a fibrous cellulose composite resin. This kneading can be performed, for example, by a method of mixing the pellet-shaped resin and the reinforcing material, or by a method of first melting the resin and adding the reinforcing material to the melt. The acid-modified resin, dispersant and the like can also be added at this stage.
 混練工程には、例えば、単軸混練機、又は二軸以上の多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザー等の中から1種又は2種以上を選択して使用することができる。これらの中では、二軸以上の多軸混練機を使用することが好ましい。二軸以上の多軸混練機を2機以上、並列又は直列にして、使用しても良い。 For the kneading process, for example, one or two or more types are selected from a single-screw kneader, a multi-screw kneader with two or more shafts, a mixing roll, a kneader, a roll mill, a Banbury mixer, a screw press, a disperser, and the like. Can be used. Among these, it is preferable to use a multi-screw kneader having two or more shafts. Two or more multi-axis kneaders with two or more axes may be used in parallel or in series.
 混練工程の温度は、樹脂のガラス転移点以上であるとよく、樹脂の種類によって異なるが、80~280℃とするのが好ましく、90~260℃とするのがより好ましく、100~240℃とするのが特に好ましい。 The temperature of the kneading step is preferably equal to or higher than the glass transition point of the resin, and varies depending on the type of resin, but is preferably 80 to 280 ° C, more preferably 90 to 260 ° C, and 100 to 240 ° C. It is particularly preferable to do so.
 樹脂としては、熱可塑性樹脂又は熱硬化性樹脂の少なくともいずれか一方を使用するのが好ましい。 As the resin, it is preferable to use at least one of a thermoplastic resin and a thermosetting resin.
 熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン、脂肪族ポリエステル樹脂や芳香族ポリエステル樹脂等のポリエステル樹脂、ポリスチレン、メタアクリレート、アクリレート等のポリアクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の中から1種又は2種以上を選択して使用することができる。 Examples of the thermoplastic resin include polyolefins such as polypropylene (PP) and polyethylene (PE), polyester resins such as aliphatic polyester resins and aromatic polyester resins, polyacrylic resins such as polystyrene, methacrylate and acrylate, and polyamide resins. One kind or two or more kinds can be selected and used from the polycarbonate resin, the polyacetal resin and the like.
 ただし、ポリオレフィン及びポリエステル樹脂の少なくともいずれか一方を使用するのが好ましい。また、ポリオレフィンとしては、ポリプロピレンを使用するのが好ましい。さらに、ポリエステル樹脂としては、脂肪族ポリエステル樹脂として、例えば、ポリ乳酸、ポリカプロラクトン等を例示することができ、芳香族ポリエステル樹脂として、例えば、ポリエチレンテレフタレート等を例示することができるが、生分解性を有するポリエステル樹脂(単に「生分解性樹脂」ともいう。)を使用するのが好ましい。 However, it is preferable to use at least one of polyolefin and polyester resin. Moreover, it is preferable to use polypropylene as the polyolefin. Further, as the polyester resin, examples of the aliphatic polyester resin include polylactic acid and polycaprolactone, and examples of the aromatic polyester resin include polyethylene terephthalate, which are biodegradable. It is preferable to use a polyester resin having a above (simply also referred to as “biodegradable resin”).
 生分解性樹脂としては、例えば、ヒドロキシカルボン酸系脂肪族ポリエステル、カプロラクトン系脂肪族ポリエステル、二塩基酸ポリエステル等の中から1種又は2種以上を選択して使用することができる。 As the biodegradable resin, for example, one or more of hydroxycarboxylic acid-based aliphatic polyester, caprolactone-based aliphatic polyester, dibasic acid polyester and the like can be selected and used.
 ヒドロキシカルボン酸系脂肪族ポリエステルとしては、例えば、乳酸、リンゴ酸、グルコース酸、3-ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体や、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等の中から1種又は2種以上を選択して使用することができる。ただし、ポリ乳酸、乳酸と乳酸を除く上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体を使用するのが好ましく、ポリ乳酸を使用するのが特に好ましい。この乳酸としては、例えば、L-乳酸やD-乳酸等を使用することができ、これらの乳酸を単独で使用しても、2種以上を選択して使用してもよい。 As the hydroxycarboxylic acid-based aliphatic polyester, for example, a homopolymer of a hydroxycarboxylic acid such as lactic acid, malic acid, glucose acid, or 3-hydroxybutyric acid, or at least one of these hydroxycarboxylic acids is used. One type or two or more types can be selected and used from the polymers and the like. However, it is preferable to use polylactic acid, a polymer of the above hydroxycarboxylic acid excluding lactic acid and lactic acid, polycaprolactone, and a polymer of at least one of the above hydroxycarboxylic acids and caprolactone, and polylactic acid is preferably used. Especially preferred to use. As the lactic acid, for example, L-lactic acid, D-lactic acid and the like can be used, and these lactic acids may be used alone or two or more kinds may be selected and used.
 カプロラクトン系脂肪族ポリエステルとしては、例えば、ポリカプロラクトンの単独重合体や、ポリカプロラクトン等と上記ヒドロキシカルボン酸との共重合体等の中から1種又は2種以上を選択して使用することができる。 As the caprolactone-based aliphatic polyester, for example, one or more can be selected and used from a homopolymer of polycaprolactone, a copolymer of polycaprolactone and the like and the hydroxycarboxylic acid, and the like. ..
 二塩基酸ポリエステルとしては、例えば、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の中から1種又は2種以上を選択して使用することができる。 As the dibasic acid polyester, for example, one or more of polybutylene succinate, polyethylene succinate, polybutylene adipate and the like can be selected and used.
 生分解性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。 The biodegradable resin may be used alone or in combination of two or more.
 熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレタン系樹脂、シリコーン樹脂、熱硬化性ポリイミド系樹脂等を使用することができる。これらの樹脂は、単独で又は二種以上組み合わせて使用することができる。 Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, furan resin, unsaturated polyester, diallyl phthalate resin, vinyl ester resin, epoxy resin, urethane resin, silicone resin, thermosetting polyimide resin and the like. Can be used. These resins can be used alone or in combination of two or more.
 樹脂には、無機充填剤が含有されていてもよく、無機充填剤としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。 The resin may contain an inorganic filler, and the inorganic filler may be, for example, a periodic table of Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, silicon element and the like. Examples thereof include elemental substances of metal elements in groups I to VIII, oxides, hydroxides, carbon salts, sulfates, silicates, sulfites, and various clay minerals composed of these compounds.
 具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、シリカ、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレーワラストナイト、ガラスビーズ、ガラスパウダー、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機充填剤は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよい。 Specifically, for example, barium sulfate, calcium sulfate, magnesium sulfate, sodium sulfate, calcium sulfite, zinc oxide, silica, heavy calcium carbonate, light calcium carbonate, aluminum borate, alumina, iron oxide, calcium titanate, hydroxylation. Examples of aluminum, magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, claywa lastnite, glass beads, glass powder, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon, glass fiber and the like are exemplified. be able to. A plurality of these inorganic fillers may be contained. Further, it may be contained in recycled paper pulp.
 繊維状セルロース(マイクロ繊維セルロース)と樹脂との配合比は、好ましくは繊維状セルロース:樹脂=1~99質量%:99~1質量%、より好ましくは5~95質量%:95~5質量%、さらに好ましくは10~90質量%:90~10質量%であるとよい。繊維状セルロースの割合が上記配合比の範囲よりも低いと、繊維状セルロースが少ないので、複合樹脂中の樹脂間をつなぐ繊維状セルロースが相互に形成する三次元ネットワークの強度が弱く、樹脂の補強効果に乏しいものとなる。他方、繊維状セルロースの割合が上記配合率の範囲よりも高いと、繊維状セルロースが樹脂の補強効果を有しているとしても、樹脂本来に備わる強度が発揮されず、複合樹脂としたときに所望の強度が備わったものとならないおそれがある。 The blending ratio of the fibrous cellulose (microfiber cellulose) and the resin is preferably fibrous cellulose: resin = 1 to 99% by mass: 99 to 1% by mass, more preferably 5 to 95% by mass: 95 to 5% by mass. , More preferably 10 to 90% by mass: 90 to 10% by mass. When the ratio of the fibrous cellulose is lower than the above range of the compounding ratio, the amount of the fibrous cellulose is small, so that the strength of the three-dimensional network formed by the fibrous celluloses connecting the resins in the composite resin is weak and the resin is reinforced. It will be less effective. On the other hand, when the ratio of the fibrous cellulose is higher than the above range of the blending ratio, even if the fibrous cellulose has a reinforcing effect of the resin, the strength inherent in the resin is not exhibited, and when the composite resin is used. It may not have the desired strength.
 なお、最終的に得られる複合樹脂に含まれる繊維状セルロース及び樹脂の含有割合は、通常、繊維状セルロース及び樹脂の上記配合比と同じとなる。 The content ratio of the fibrous cellulose and the resin contained in the finally obtained composite resin is usually the same as the above-mentioned compounding ratio of the fibrous cellulose and the resin.
 マイクロ繊維セルロース及び樹脂の溶解パラメータ(cal/cm31/2(SP値)の差は、マイクロ繊維セルロースのSPMFC値、樹脂のSPPOL値とすると、SP値の差=SPMFC値-SPPOL値とすることができる。SP値の差は10~0.1が好ましく、8~0.5がより好ましく、5~1が特に好ましい。SP値の差が10を超えると、樹脂中におけるマイクロ繊維セルロースの分散性が不十分であり、補強効果を得ることはできない可能性がある。他方、SP値の差が0.1未満であるとマイクロ繊維セルロースが樹脂に溶解してしまい、フィラーとして機能せず、補強効果が得られない。樹脂(溶媒)のSPPOL値とマイクロ繊維セルロース(溶質)のSPMFC値の差が小さい程、補強効果が大きいといえる。 The difference between the solubility parameter (cal / cm 3 ) 1/2 (SP value) of the microfiber cellulose and the resin is the SPMLC value of the microfiber cellulose and the SPPOL value of the resin. can do. The difference in SP value is preferably 10 to 0.1, more preferably 8 to 0.5, and particularly preferably 5-1. If the difference in SP value exceeds 10, the dispersibility of the microfiber cellulose in the resin is insufficient, and it may not be possible to obtain the reinforcing effect. On the other hand, if the difference in SP value is less than 0.1, the microfiber cellulose dissolves in the resin and does not function as a filler, so that the reinforcing effect cannot be obtained. It can be said that the smaller the difference between the SPPOL value of the resin (solvent) and the SPMFC value of the microfiber cellulose (solute), the greater the reinforcing effect.
 なお、溶解パラメータ(cal/cm31/2(SP値)とは、溶媒-溶質間に作用する分子間力を表す尺度であり、SP値が近い溶媒と溶質であるほど、溶解度が増す。 The solubility parameter (cal / cm 3 ) 1/2 (SP value) is a measure of the intramolecular force acting between the solvent and the solute, and the closer the SP value is to the solvent and solute, the higher the solubility. ..
 (成形工程)
 繊維状セルロース含有物及び樹脂の混練物は、必要により再度混練する等した後、所望の形状に成形することができる。この成形の大きさや厚さ、形状等は、特に限定されず、例えば、シート状、ペレット状、粉末状、繊維状等とすることができる。
(Molding process)
The fibrous cellulose-containing substance and the kneaded resin can be kneaded again if necessary, and then formed into a desired shape. The size, thickness, shape, etc. of this molding are not particularly limited, and may be, for example, sheet-like, pellet-like, powder-like, fibrous-like, or the like.
 成形工程を行う際の温度は、樹脂のガラス転移点以上であるとよく、樹脂の種類によって異なるが、例えば90~260℃、好ましくは100~240℃であると十分な混練がなされよい。 The temperature at which the molding step is performed is preferably equal to or higher than the glass transition point of the resin, and varies depending on the type of resin, but for example, 90 to 260 ° C, preferably 100 to 240 ° C may be sufficient for kneading.
 混練物の成形は、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等により行うことができる。また、混練物を紡糸して繊維状にし、植物材料等と混繊してマット形状、ボード形状とすることもできる。混繊は、例えば、エアーレイにより同時堆積させる方法等によることができる。混練物を成形する装置としては、例えば、射出成形機、吹込成形機、中空成形機、ブロー成形機、圧縮成形機、押出成形機、真空成形機、圧空成形機等の中から1種又は2種以上を選択して使用することができる。 Molding of the kneaded product can be performed by, for example, mold molding, injection molding, extrusion molding, hollow molding, foam molding, or the like. It is also possible to spin the kneaded material into a fibrous form and mix it with a plant material or the like to form a mat shape or a board shape. The mixed fiber can be, for example, a method of simultaneous deposition by an air ray or the like. As an apparatus for molding a kneaded product, for example, one or two from injection molding machines, blow molding machines, hollow molding machines, blow molding machines, compression molding machines, extrusion molding machines, vacuum molding machines, pressure molding machines and the like. You can select and use more than one species.
 植物材料等として混繊するものの例としては、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物材料に由来する繊維を挙げることができる。 Examples of materials that are mixed as plant materials include kenaf, jute hemp, Manila hemp, sisal hemp, ganpi, mitsumata, cypress, banana, pineapple, coco palm, corn, sugar cane, bagasse, palm, papyrus, reeds, esparto, and surviving glass. Examples thereof include fibers derived from plant materials obtained from various plants such as wheat, rice, bamboo, various coniferous trees (such as cedar and cypress), broad-leaved trees and cotton.
 以上の成形は、混練に続いて行うことも、混練物をいったん冷却し、破砕機等を使用してチップ化した後、このチップを押出成形機や射出成形機等の成形機に投入して行うこともできる。もちろん、成形は、本発明の必須の要件ではない。 The above molding can be performed after kneading, or the kneaded product is once cooled and made into chips by using a crusher or the like, and then the chips are put into a molding machine such as an extrusion molding machine or an injection molding machine. You can also do it. Of course, molding is not an essential requirement of the present invention.
 次に、本発明の実施例を説明する。実施例で用いた針葉樹晒クラフトパルプのシートは、パルプ分散液から水分を除去して、固形分濃度50%程度、100~2000g/m2程度のシート形状としたものを、5×5cm程度に切り取ったものであり、体積が8~20cm3からなるものである。 Next, an embodiment of the present invention will be described. The sheet of coniferous bleached kraft pulp used in the examples was made into a sheet shape having a solid content concentration of about 50% and a solid content concentration of about 100 to 2000 g / m 2 by removing water from the pulp dispersion liquid to a size of about 5 x 5 cm. It is cut out and has a volume of 8 to 20 cm 3 .
 実施例に用いる試験例は以下の手順で調製した。
 [試験例1]
 (1)容器に針葉樹晒クラフトパルプ(NBKP)のシートを入れ、尿素、クエン酸、水を添加して混ぜ合わせ、混合液を得た。混合量は、表1に記載する量とした。混ぜ合わせ方は、混合ミキサー(家庭用ミキサー バイタミックス社製 ブレンダーバイタプレップ3)を混合液内に入れて、3000rpm、10分間混ぜ合わせる方法とした。
 (2)上記(1)の操作後、混合液から液分を除去して、残留物を取り出し乾燥させて乾燥物を得た。乾燥の方法は、恒温装置内で105℃、3時間、残留物を放置する方法とした。
 (3)乾燥物を加熱した後、室温まで放冷して変性セルロース繊維(試験例1)を得た。加熱の方法は、恒温装置内で140℃、3時間、当該乾燥物を放置する方法とした。
The test examples used in the examples were prepared by the following procedure.
[Test Example 1]
(1) A sheet of coniferous bleached kraft pulp (NBKP) was placed in a container, urea, citric acid, and water were added and mixed to obtain a mixed solution. The mixing amount was the amount shown in Table 1. The mixing method was to put a mixing mixer (Blender Vitaprep 3 manufactured by Vitamix Co., Ltd. for home use) in the mixed solution and mix at 3000 rpm for 10 minutes.
(2) After the operation of (1) above, the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain a dried product. The drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device.
(3) After heating the dried product, it was allowed to cool to room temperature to obtain a modified cellulose fiber (Test Example 1). The heating method was a method of leaving the dried product at 140 ° C. for 3 hours in a constant temperature device.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [試験例2]
 (1)容器に針葉樹晒クラフトパルプ(NBKP)のシートを入れ、尿素、クエン酸、水を添加して混合液とし、10分間放置した。混合量は、表1に記載する量とした。
 (2)上記(1)の操作後、混合液から液分を除去して、残留物を取り出し乾燥させて乾燥物を得た。乾燥の方法は、恒温装置内で105℃、3時間、残留物を放置する方法とした。
 (3)乾燥物を加熱した後、室温まで放冷して変性セルロース繊維(試験例2)を得た。加熱方法は、恒温装置内で140℃、3時間、当該乾燥物を放置する方法とした。
[Test Example 2]
(1) A sheet of coniferous bleached kraft pulp (NBKP) was placed in a container, urea, citric acid, and water were added to prepare a mixed solution, and the mixture was left for 10 minutes. The mixing amount was the amount shown in Table 1.
(2) After the operation of (1) above, the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain a dried product. The drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device.
(3) After heating the dried product, it was allowed to cool to room temperature to obtain a modified cellulose fiber (Test Example 2). The heating method was a method of leaving the dried product at 140 ° C. for 3 hours in a constant temperature device.
 (置換率比較試験)
 試験操作、手順は次のとおりである。
 上記のとおりに調製した試験例についてFTIR測定を行った。FTIR測定は、測定機器「Thermo社製、型番NICOLET iS10」で行った。
 測定で得られたC=Oの吸収スペクトル透過率(%C=O)とO-Hの吸収スペクトル透過率(%O-H)の比(%C=O)/(%O-H)を算出して、カルバメート基の置換率(mmol/g)を求めた。置換率比較試験の結果については、置換率は、試験例1が1.29mmol/g、試験例2が0.95mmol/gであった。
(Replacement rate comparison test)
The test operation and procedure are as follows.
FTIR measurement was performed on the test examples prepared as described above. The FTIR measurement was performed with the measuring device "Thermo, model number NICOLET iS10".
Calculate the ratio (% C = O ) / (% OH ) of the absorption spectrum transmittance (% C = O ) of C = O obtained by the measurement and the absorption spectrum transmittance (% OH ) of OH. The substitution rate (mmol / g) of the carbamate group was determined. Regarding the results of the substitution rate comparative test, the substitution rate was 1.29 mmol / g in Test Example 1 and 0.95 mmol / g in Test Example 2.
 (離解試験)
 以下のとおり、試験例を調製した。
 [試験例3]
 (1)容器に、固形分濃度50質量%の針葉樹晒クラフトパルプ(NBKP)のシート9gを入れ、25%尿素水9g、クエン酸0.005mg、水90gを添加して混合液とし、この混合液を混ぜ合わせた。混ぜ合わせ方は、混合液内に混合ミキサー(家庭用ミキサー バイタミックス社製 ブレンダーバイタプレップ3)を入れて、3000rpm、10分間混ぜ合わせる方法とした。
 (2)上記(1)の操作後、混合液から液分を除去して、残留物を取り出し乾燥させてセルロース繊維(試験例3)を得た。乾燥の方法は、恒温装置内で105℃、3時間、当該残留物を放置する方法とした。
(Dissociation test)
Test examples were prepared as follows.
[Test Example 3]
(1) Put 9 g of a sheet of softwood bleached kraft pulp (NBKP) having a solid content concentration of 50% by mass in a container, add 9 g of 25% urea water, 0.005 mg of citric acid, and 90 g of water to prepare a mixed solution, and mix the mixture. The liquid was mixed. The mixing method was to put a mixing mixer (Blender Vitaprep 3 manufactured by Vitamix Co., Ltd. for home use) in the mixed solution and mix at 3000 rpm for 10 minutes.
(2) After the operation of (1) above, the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain cellulose fibers (Test Example 3). The drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device.
 [試験例4]
 (1)容器に、固形分濃度50質量%の針葉樹晒クラフトパルプ(NBKP)のシート9gを入れ、25%尿素水9g、クエン酸0.005mg、水90gを添加して混合液とし、この混合液を10分間静置した。
 (2)上記(1)の操作後、混合液から液分を除去して、残留物を取り出し乾燥させてセルロース繊維(試験例4)を得た。乾燥の方法は、恒温装置内で105℃、3時間、当該残留物を放置する方法とした。
[Test Example 4]
(1) Put 9 g of a sheet of softwood bleached kraft pulp (NBKP) having a solid content concentration of 50% by mass in a container, add 9 g of 25% urea water, 0.005 mg of citric acid, and 90 g of water to prepare a mixed solution, and mix the mixture. The liquid was allowed to stand for 10 minutes.
(2) After the operation of (1) above, the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain cellulose fibers (Test Example 4). The drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device.
 上記得られたセルロース繊維(試験例3又は試験例4)0.1gを、水50gが入った容器に投入して、回転数800rpmで撹拌して離解が完了するまでの経過時間を測定した。離解は、分散液中に存在する長径5mm以上の凝集物が1個未満となったことをもって完了と判断した。結果を表2に示す。上記容器は、三宝化成社製、クリヤ広口瓶(透明)を用いた。 0.1 g of the obtained cellulose fiber (Test Example 3 or Test Example 4) was put into a container containing 50 g of water, stirred at a rotation speed of 800 rpm, and the elapsed time until the dissociation was completed was measured. The dissociation was judged to be completed when the number of agglomerates having a major axis of 5 mm or more present in the dispersion was less than one. The results are shown in Table 2. As the container, a clear wide-mouthed bottle (transparent) manufactured by Sanpo Kasei Co., Ltd. was used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験例3は、尿素がセルロース繊維の内部に浸透して、セルロース繊維相互の水素結合が尿素によって阻害され弱まり、水分子が繊維内部に入り込んだことによって、離解し易くなったものと考えられる。 It is probable that in Test Example 3, urea permeated into the inside of the cellulose fiber, hydrogen bonds between the cellulose fibers were inhibited by the urea and weakened, and water molecules entered the inside of the fiber, so that it became easy to disintegrate.
 (沈降率試験)
 上記、離解試験で調製したセルロース繊維(試験例3又は試験例4)0.1gを、水50gが入った容器に投入して、回転数1500rpmで10分間撹拌して完全に離解させて離解液にした。この離解液の濃度を均一にした後、静置して、時間経過に伴う離解液の液面からセルロース繊維の界面までの深さを測定して、沈降率を算出した。結果を表3に示す。ここで、沈降率は、次の算式[数1]により求めた。上記容器は、三宝化成社製、クリヤ広口瓶(透明)を用いた。
 [数1]
(沈降率(%))={(離解液の水嵩)-(離解液の液面から離解液中のセルロース繊維界面までの深さ)}/(離解液の水嵩)×100
(Settling rate test)
0.1 g of the cellulose fiber (Test Example 3 or Test Example 4) prepared in the above-mentioned dissociation test is put into a container containing 50 g of water, and the mixture is stirred at a rotation speed of 1500 rpm for 10 minutes to completely dissociate and dissociate the liquid. I made it. After making the concentration of the dissociated liquid uniform, it was allowed to stand, and the depth from the liquid surface of the dissociated liquid to the interface of the cellulose fibers with the passage of time was measured to calculate the sedimentation rate. The results are shown in Table 3. Here, the sedimentation rate was calculated by the following formula [Equation 1]. As the container, a clear wide-mouthed bottle (transparent) manufactured by Sanpo Kasei Co., Ltd. was used.
[Number 1]
(Precipitation rate (%)) = {(Water volume of dissociation liquid)-(Depth from the liquid surface of dissociation liquid to the interface of cellulose fibers in dissociation liquid)} / (Water volume of dissociation liquid) × 100
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 尿素が、繊維内部にまで浸透し、離解した後も繊維内部に残留しているので、試験例3の方が沈降しやすかった。 Urea penetrated into the fiber and remained inside the fiber even after dissociation, so Test Example 3 was easier to settle.
 (曲げ強度試験)
 [試験例5]~[試験例9]
 (1)容器に針葉樹晒クラフトパルプ(NBKP)のシートを入れ、尿素、クエン酸、水を添加して混ぜ合わせ、混合液を得た。混合量は、表4に記載する量とした。混ぜ合わせ方は、混合ミキサー(家庭用ミキサー バイタミックス社製 ブレンダーバイタプレップ3)を混合液内に入れて、3000rpm、10分間混ぜ合わせる方法とした。
 (2)上記(1)の操作後、混合液から液分を除去して、残留物を取り出し乾燥させて乾燥物を得た。乾燥の方法は、恒温装置内で105℃、3時間、残留物を放置する方法とした。
 (3)乾燥物を加熱した後、室温まで放冷してセルロース繊維を得た。加熱の方法は、恒温装置内で140℃、3時間、当該乾燥物を放置する方法とした。なお、得られたセルロース繊維は蒸留水で希釈攪拌して、脱水洗浄を2回繰り返した後に、蒸留水を加えて固形分濃度3%となるように調製し、セルロース繊維の水分散体を得た。
 (4)セルロース繊維の水分散体を平均繊維幅が16μmになるように解繊して、固形分濃度3%の繊維状セルロースの水分散体を得た。なお、得られた繊維状セルロースの水分散体を脱水した後、105℃で3時間乾燥させたものについてカルバメート化率を測定した。
 (5)繊維状セルロースの水分散体とポリプロピレン樹脂の粉末(ノバテックPP MA3)と、無水マレイン酸変性ポリプロピレンを10:85:5の乾燥重量比で配合して、105℃で加熱乾燥して乾燥物を得た。これを180℃、200rpmの条件で二軸混練機にて混練し、混練物を得た。
 (6)混練物を180℃で成形して直方体状の繊維状セルロース複合樹脂(試験例5~試験例9)を得た。繊維状セルロース複合樹脂の寸法は、長さ59mm×幅9.6mm×厚み3.8mmとした。
 (7)繊維状セルロース複合樹脂について、曲げ弾性率をJIS K7171:2008に準拠して測定した。
(Bending strength test)
[Test Example 5] to [Test Example 9]
(1) A sheet of coniferous bleached kraft pulp (NBKP) was placed in a container, urea, citric acid, and water were added and mixed to obtain a mixed solution. The mixing amount was the amount shown in Table 4. The mixing method was to put a mixing mixer (Blender Vitaprep 3 manufactured by Vitamix Co., Ltd. for home use) in the mixed solution and mix at 3000 rpm for 10 minutes.
(2) After the operation of (1) above, the liquid component was removed from the mixed liquid, and the residue was taken out and dried to obtain a dried product. The drying method was a method of leaving the residue at 105 ° C. for 3 hours in a constant temperature device.
(3) After heating the dried product, it was allowed to cool to room temperature to obtain cellulose fibers. The heating method was a method of leaving the dried product at 140 ° C. for 3 hours in a constant temperature device. The obtained cellulose fiber was diluted and stirred with distilled water, dehydrated and washed twice, and then distilled water was added to adjust the solid content concentration to 3% to obtain an aqueous dispersion of cellulose fiber. rice field.
(4) The aqueous dispersion of cellulose fibers was defibrated so that the average fiber width was 16 μm to obtain an aqueous dispersion of fibrous cellulose having a solid content concentration of 3%. The carbamate formation rate was measured for the obtained aqueous dispersion of fibrous cellulose dehydrated and then dried at 105 ° C. for 3 hours.
(5) An aqueous dispersion of fibrous cellulose, polypropylene resin powder (Novatec PP MA3), and maleic anhydride-modified polypropylene are mixed in a dry weight ratio of 10:85: 5, and dried by heating at 105 ° C. I got something. This was kneaded with a twin-screw kneader under the conditions of 180 ° C. and 200 rpm to obtain a kneaded product.
(6) The kneaded product was molded at 180 ° C. to obtain a rectangular parallelepiped fibrous cellulose composite resin (Test Examples 5 to 9). The dimensions of the fibrous cellulose composite resin were 59 mm in length × 9.6 mm in width × 3.8 mm in thickness.
(7) For the fibrous cellulose composite resin, the flexural modulus was measured according to JIS K7171: 2008.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 測定した曲げ弾性率を次のように評価した。試験例X(Xは6、7、8、9のいずれか)の曲げ弾性率を、試験例5の曲げ弾性率で除して算出された曲げ弾性率比、すなわち試験例Xの曲げ弾性率比が、
 1.1以下であるものを「△」、
 1.1超~1.2未満であるものを「〇」、
 1.2以上であるものを「◎」とした。
 カルバメート化率が1~2mmol/gである繊維状セルロース複合樹脂、例えば試験例7、試験例8は、カルバメート化していない繊維状セルロース複合樹脂である試験例5よりも曲げ弾性率が向上されており、好ましい強度を備えたものとなっている。
The measured flexural modulus was evaluated as follows. The flexural modulus ratio calculated by dividing the flexural modulus of Test Example X (X is any of 6, 7, 8 or 9) by the flexural modulus of Test Example 5, that is, the flexural modulus of Test Example X. The ratio is
1.1 or less is "△",
Those with more than 1.1 to less than 1.2 are "○",
Those with 1.2 or more were marked with "◎".
The fibrous cellulose composite resin having a carbamating rate of 1 to 2 mmol / g, for example, Test Example 7 and Test Example 8, has an improved flexural modulus as compared with Test Example 5 which is a non-carbamate fibrous cellulose composite resin. It has a favorable strength.
 本発明は、繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法として利用可能である。 The present invention can be used as a method for producing fibrous cellulose and a method for producing a fibrous cellulose composite resin.

Claims (9)

  1.  セルロース繊維をカルバメート化する工程と、セルロース繊維を繊維状セルロースに解繊する工程と、を有し、
     前記カルバメート化する工程は、セルロース繊維と、尿素及び尿素の誘導体の少なくともいずれか一方の薬剤とを混合する混合工程と、混合工程後にセルロース繊維を加熱する加熱工程と、を有し、
     前記混合工程は、セルロース繊維に前記薬剤を添加する工程と、セルロース繊維と添加された前記薬剤を混ぜ合わせる工程とを有し、
     前記混ぜ合わせる工程は、
      水に混合工程を行って得たセルロース繊維を離解させて調製した0.2質量%の離解液を、均一な濃度にした後、静置させた場合に、離解したセルロース繊維の界面の沈降率が、静置10分後に60%未満となるように、行う、
     ことを特徴とする繊維状セルロースの製造方法。
     ここで、沈降率は、次の算式により求まる。
    (沈降率(%))={(離解液の水嵩)-(離解液の液面から離解液中のセルロース繊維界面までの深さ)}/(離解液の水嵩)×100
    It has a step of carbamate the cellulose fiber and a step of defibrating the cellulose fiber into fibrous cellulose.
    The carbamate step comprises a mixing step of mixing the cellulose fiber and at least one of urea and a derivative of urea, and a heating step of heating the cellulose fiber after the mixing step.
    The mixing step includes a step of adding the drug to the cellulose fiber and a step of mixing the cellulosic fiber and the added drug.
    The mixing step is
    When 0.2% by mass of the dissociated liquid prepared by dissociating the cellulose fibers obtained by mixing with water to a uniform concentration and then allowing it to stand, the sedimentation rate at the interface of the dissociated cellulose fibers However, it should be less than 60% after 10 minutes of standing.
    A method for producing fibrous cellulose, which is characterized by the above.
    Here, the sedimentation rate can be obtained by the following formula.
    (Precipitation rate (%)) = {(Water volume of dissociation liquid)-(Depth from the liquid surface of dissociation liquid to the interface of cellulose fibers in dissociation liquid)} / (Water volume of dissociation liquid) × 100
  2.  セルロース繊維をカルバメート化する工程と、セルロース繊維を繊維状セルロースに解繊する工程と、を有し、
     前記カルバメート化する工程は、セルロース繊維と、尿素及び尿素の誘導体の少なくともいずれか一方の薬剤とを混合する混合工程と、混合工程後にセルロース繊維を加熱する加熱工程と、を有し、
     前記混合工程は、
     (1)当該混合工程が、セルロース繊維に前記薬剤を添加する工程と、セルロース繊維と添加された前記薬剤を混ぜ合わせる工程とからなる場合は、沈降率が静置10分後に60%未満となり、
     (2)当該混合工程が、セルロース繊維に前記薬剤を添加する工程のみからなる場合は、沈降率が、静置10分後に60%以上となる、
     ように行う、
     ことを特徴とする繊維状セルロースの製造方法。
     ここで、前記沈降率は、水に混合工程を行って得たセルロース繊維を離解させて調製した0.2質量%の離解液を、均一な濃度にした後、静置させた場合に、離解したセルロース繊維の界面の沈降率であり、次の算式により求まる。
    (沈降率(%))={(離解液の水嵩)-(離解液の液面から離解液中のセルロース繊維界面までの深さ)}/(離解液の水嵩)×100
    It has a step of carbamate the cellulose fiber and a step of defibrating the cellulose fiber into fibrous cellulose.
    The carbamate step comprises a mixing step of mixing the cellulose fiber and at least one of urea and a derivative of urea, and a heating step of heating the cellulose fiber after the mixing step.
    The mixing step is
    (1) When the mixing step includes a step of adding the drug to the cellulose fiber and a step of mixing the cellulosic fiber and the added drug, the sedimentation rate becomes less than 60% after 10 minutes of standing.
    (2) When the mixing step comprises only the step of adding the drug to the cellulose fibers, the sedimentation rate becomes 60% or more after 10 minutes of standing.
    To do,
    A method for producing fibrous cellulose, which is characterized by the above.
    Here, the sedimentation rate is determined when 0.2% by mass of the dissociated liquid prepared by dissociating the cellulose fibers obtained by performing a mixing step with water to a uniform concentration and then allowing it to stand. It is the sedimentation rate of the interface of the cellulose fiber, which can be obtained by the following formula.
    (Precipitation rate (%)) = {(Water volume of dissociation liquid)-(Depth from the liquid surface of dissociation liquid to the interface of cellulose fibers in dissociation liquid)} / (Water volume of dissociation liquid) × 100
  3.  前記薬剤を添加する工程は、セルロース繊維1gあたりの前記薬剤の添加量を10g以下として、行う、
     請求項1又は請求項2に記載の繊維状セルロースの製造方法。
    The step of adding the drug is carried out with the addition amount of the drug per 1 g of the cellulose fiber being 10 g or less.
    The method for producing fibrous cellulose according to claim 1 or 2.
  4.  前記加熱工程は、加熱温度200℃以下、かつ加熱時間15時間以下で行う、
     請求項1~3のいずれか1項に記載の繊維状セルロースの製造方法。
    The heating step is performed at a heating temperature of 200 ° C. or lower and a heating time of 15 hours or less.
    The method for producing fibrous cellulose according to any one of claims 1 to 3.
  5.  前記カルバメート化する工程は、有機溶剤を添加しないで行う、
     請求項1~4のいずれか1項に記載の繊維状セルロースの製造方法。
    The carbamate step is performed without adding an organic solvent.
    The method for producing fibrous cellulose according to any one of claims 1 to 4.
  6.  前記混ぜ合わせる工程は、セルロース繊維1gあたり分散媒を0.1g以上、99g以下添加して行う、
     請求項3に記載の繊維状セルロースの製造方法。
    The mixing step is performed by adding 0.1 g or more and 99 g or less of the dispersion medium per 1 g of the cellulose fiber.
    The method for producing fibrous cellulose according to claim 3.
  7.  繊維状セルロースに対するカルバメート基の置換率が1~2mmol/gである、
     請求項1~6のいずれか1項に記載の繊維状セルロースの製造方法。
    The substitution rate of the carbamate group with respect to the fibrous cellulose is 1 to 2 mmol / g.
    The method for producing fibrous cellulose according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか1項に記載の方法によって繊維状セルロースを得、この繊維状セルロースと樹脂とを混合する、
     ことを特徴とする繊維状セルロース複合樹脂の製造方法。
    A fibrous cellulose is obtained by the method according to any one of claims 1 to 7, and the fibrous cellulose and a resin are mixed.
    A method for producing a fibrous cellulose composite resin.
  9.  セルロース繊維を繊維状セルロースに解繊する工程は、平均繊維幅が0.1~19μmの繊維状セルロースとなるように解繊を行う工程である、
     請求項1~8のいずれか1項に記載の繊維状セルロースの製造方法。
    The step of defibrating the cellulose fiber into fibrous cellulose is a step of defibrating the fibrous cellulose so that the average fiber width is 0.1 to 19 μm.
    The method for producing fibrous cellulose according to any one of claims 1 to 8.
PCT/JP2021/032647 2020-10-26 2021-09-06 Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin WO2022091580A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-178630 2020-10-26
JP2020178630 2020-10-26
JP2021-140049 2021-08-30
JP2021140049A JP7213926B2 (en) 2020-10-26 2021-08-30 Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin

Publications (1)

Publication Number Publication Date
WO2022091580A1 true WO2022091580A1 (en) 2022-05-05

Family

ID=81384026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032647 WO2022091580A1 (en) 2020-10-26 2021-09-06 Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin

Country Status (1)

Country Link
WO (1) WO2022091580A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223615A1 (en) * 2022-05-16 2023-11-23 パナソニックIpマネジメント株式会社 Composite resin molded body and method for producing same
WO2023238458A1 (en) * 2022-06-10 2023-12-14 大王製紙株式会社 Method for producing carbamated cellulose fibers and method for producing carbamated cellulose fine fibers
WO2024070062A1 (en) * 2022-09-30 2024-04-04 大王製紙株式会社 Fibrous cellulose composite resin, fibrous cellulose-containing material, and production method of fibrous cellulose composite resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001876A (en) * 2017-06-14 2019-01-10 国立大学法人京都大学 Fine cellulose fiber, manufacturing method therefor, slurry, and composite
JP2020163651A (en) * 2019-03-29 2020-10-08 大王製紙株式会社 Fibrous cellulose composite resin, manufacturing method thereof, and resin reinforcing material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001876A (en) * 2017-06-14 2019-01-10 国立大学法人京都大学 Fine cellulose fiber, manufacturing method therefor, slurry, and composite
JP2020163651A (en) * 2019-03-29 2020-10-08 大王製紙株式会社 Fibrous cellulose composite resin, manufacturing method thereof, and resin reinforcing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223615A1 (en) * 2022-05-16 2023-11-23 パナソニックIpマネジメント株式会社 Composite resin molded body and method for producing same
WO2023238458A1 (en) * 2022-06-10 2023-12-14 大王製紙株式会社 Method for producing carbamated cellulose fibers and method for producing carbamated cellulose fine fibers
WO2024070062A1 (en) * 2022-09-30 2024-04-04 大王製紙株式会社 Fibrous cellulose composite resin, fibrous cellulose-containing material, and production method of fibrous cellulose composite resin

Similar Documents

Publication Publication Date Title
WO2020203147A1 (en) Fibrous cellulose composite resin and production method therefor, and resin reinforcing material
JP7088888B2 (en) Method for manufacturing fibrous cellulose composite resin
JP2020163651A5 (en)
JP2021031662A5 (en)
WO2022091580A1 (en) Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
JP7483418B2 (en) Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
CN115516023B (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for producing fibrous cellulose-containing material
WO2021182180A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose composite resin
WO2021193119A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and fibrous cellulose production method
JP2022089848A5 (en)
JP7097928B2 (en) Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
WO2021256247A1 (en) Fibrous cellulose and fibrous cellulose composite resin
JP2021195483A5 (en)
WO2021177289A1 (en) Fibrous cellulose-containing product, fibrous cellulose composite resin, and method for producing fibrous cellulose-containing product
WO2021193120A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and fibrous cellulose production method
WO2021251216A1 (en) Production method for carbamated cellulose fibers, and production method for carbamated filaments
JP7213926B2 (en) Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
JP7213296B2 (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for producing fibrous cellulose-containing material
JP7449323B2 (en) Fibrous cellulose composite resin
WO2022091581A1 (en) Method for producing cellulose-fiber-containing substance and method for producing cellulose-fiber composite resin
JP2022152279A (en) Manufacturing method of micro-fiber cellulose, manufacturing method of micro-fiber cellulose composite resin, and micro-fiber cellulose
WO2024009668A1 (en) Fibrous cellulose composite resin
WO2023162433A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose
JP2024008128A5 (en)
JP2024078170A (en) Cellulose fiber composite resin and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885699

Country of ref document: EP

Kind code of ref document: A1