WO2021251216A1 - Production method for carbamated cellulose fibers, and production method for carbamated filaments - Google Patents

Production method for carbamated cellulose fibers, and production method for carbamated filaments Download PDF

Info

Publication number
WO2021251216A1
WO2021251216A1 PCT/JP2021/020861 JP2021020861W WO2021251216A1 WO 2021251216 A1 WO2021251216 A1 WO 2021251216A1 JP 2021020861 W JP2021020861 W JP 2021020861W WO 2021251216 A1 WO2021251216 A1 WO 2021251216A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
cellulose
carbamate
fibers
acid
Prior art date
Application number
PCT/JP2021/020861
Other languages
French (fr)
Japanese (ja)
Inventor
貴章 今井
Original Assignee
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大王製紙株式会社 filed Critical 大王製紙株式会社
Publication of WO2021251216A1 publication Critical patent/WO2021251216A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate

Definitions

  • the present invention relates to a method for producing a carbamate-ized cellulose fiber and a method for producing a carbamate-ized fine fiber.
  • fine fibers such as cellulose nanofibers and microfiber cellulose (microfibrillated cellulose) have been in the limelight for use as reinforcing materials for resins.
  • the fine fibers are hydrophilic while the resin is hydrophobic, there is a problem in the dispersibility of the fine fibers in order to use the fine fibers as a reinforcing material for the resin. Therefore, the present inventors have proposed to replace the hydroxyl group of the fine fiber with a carbamate group (carbamate) (see Patent Document 1). According to this proposal, the dispersibility of the fine fibers is improved, and thus the reinforcing effect of the resin is improved.
  • a main problem to be solved by the present invention is to provide a method for producing a carbamate-ized cellulose fiber and a method for producing a carbamate-ized fine fiber, which can be sufficiently carved and can be carved in a short time.
  • the substitution rate of the carbamate group is 1 mmol / / even if the heat treatment time is short while suppressing damage to the cellulose fibers. It has been found that the temperature can be increased to g or more. The following means have led to the idea based on such knowledge.
  • the heat treatment is carried out under the condition that at least one of urea and a derivative of urea and citric acid are added to the cellulose fiber.
  • the amount of the citric acid added to the cellulose fibers is 0.1 to 10,000 ppm.
  • the amount of the urea and the derivative of the urea added to the cellulose fibers is 1 to 70%.
  • the heat treatment is carried out at 150 to 170 ° C.
  • it is a method for producing a carbamate-ized cellulose fiber and a method for producing a carbamate-ized fine fiber, which can be sufficiently carved and can be carved in a short time.
  • the embodiment of the present invention is an example of the present invention.
  • the scope of the present invention is not limited to the scope of the present embodiment.
  • the method for producing a carbamate-ized cellulose fiber of the present embodiment includes a step of heat-treating the cellulose fiber to replace a part or all of the hydroxy group (-OH group) of the cellulose fiber with the carbamate group. This substitution is performed so that the substitution rate is 1.0 mmol / g or more from the viewpoint of the reinforcing effect of the resin.
  • the heat treatment for carbamate is performed at 150 to 170 ° C.
  • the method for producing carbamate fine fibers includes, in addition to the above, a step of defibrating the cellulose fibers so that the average fiber width is 19 ⁇ m or less to obtain fine fibers.
  • This defibration may be performed after the raw material pulp is carbamate or before the raw material pulp is carbamate. However, it is preferable to defibrate the raw material pulp after carbamate it.
  • the carbamate-ized cellulose fiber in the method for producing a carbamate-ized cellulose fiber does not mean that the carbamate-ized fine fiber is excluded.
  • Fine fibers can be obtained by defibrating (miniaturizing) the raw material pulp (cellulose raw material). This defibration may be carried out so that the fine fibers become cellulose nanofibers or microfiber cellulose (microfibrillated cellulose). However, it is preferable to use microfiber cellulose. Microfiber cellulose improves the reinforcing effect of the resin. Further, although the microfiber cellulose is a fine fiber, it is easier to modify (carbamate) with a carbamate group than the cellulose nanofiber which is also a fine fiber. However, it is preferable to carbamate the raw material pulp before it is miniaturized, and in this case, the microfiber cellulose and the cellulose nanofiber are equivalent.
  • the microfiber cellulose means a fiber having an average fiber diameter (width) thicker than that of cellulose nanofibers.
  • the average fiber diameter is, for example, 0.1 to 19 ⁇ m, preferably 0.2 to 15 ⁇ m, and more preferably more than 0.5 to 10 ⁇ m.
  • the average fiber diameter of the microfiber cellulose is less than 0.1 ⁇ m (less than 0.1 ⁇ m), it is no different from that of cellulose nanofibers, and the effect of improving the strength (particularly bending elastic modulus) of the resin may be inferior.
  • the defibration time becomes long and a large amount of energy is required. Further, the dehydration property of the cellulose fiber slurry is deteriorated.
  • the microfiber cellulose When the dehydration property deteriorates, a large amount of energy is required for drying, and when a large amount of energy is applied to drying, the microfiber cellulose is thermally deteriorated and the strength may decrease. On the other hand, if the average fiber diameter of the microfiber cellulose exceeds (exceeds) 19 ⁇ m, it is no different from pulp, and the reinforcing effect may not be sufficient.
  • the method for measuring the average fiber diameter of fine fibers is as follows. First, 100 ml of an aqueous dispersion of fine fibers having a solid content concentration of 0.01 to 0.1% by mass is filtered through a membrane filter made of Teflon (registered trademark), and the solvent is replaced once with 100 ml of ethanol and three times with 20 ml of t-butanol. do. Next, it is freeze-dried and coated with osmium to prepare a sample. This sample is observed with an electron microscope SEM image at a magnification of 3,000 to 30,000 times depending on the width of the constituent fibers.
  • Fine fibers can be obtained by defibrating (miniaturizing) the raw material pulp.
  • the raw material pulp includes, for example, wood pulp made from broadleaf trees, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, hemp, carrot fiber, etc., recycled paper pulp made from recovered waste paper, waste paper, etc.
  • One type or two or more types can be selected and used from (DIP) and the like.
  • the above-mentioned various raw materials may be, for example, in the state of a crushed product (powder) called a cellulosic powder or the like.
  • wood pulp as the raw material pulp.
  • wood pulp for example, one kind or two or more kinds can be selected and used from chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP) and the like.
  • the hardwood kraft pulp may be hardwood bleached kraft pulp, hardwood unbleached kraft pulp, or hardwood semi-bleached kraft pulp.
  • the softwood kraft pulp may be softwood bleached kraft pulp, unbleached softwood kraft pulp, or semi-bleached softwood kraft pulp.
  • thermomechanical pulp examples include stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemi-grand pulp (CGP), thermo-grand pulp (TGP), and ground pulp (GP).
  • SGP stone ground pulp
  • PGW pressurized stone ground pulp
  • RGP refiner ground pulp
  • CGP chemi-grand pulp
  • TGP thermo-grand pulp
  • GP ground pulp
  • TMP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • RMP refiner mechanical pulp
  • BTMP bleached thermomechanical pulp
  • Raw pulp can be pretreated by a chemical method prior to defibration.
  • Pretreatment by chemical method includes, for example, hydrolysis of polysaccharide with acid (acid treatment), hydrolysis of polysaccharide with enzyme (enzyme treatment), swelling of polysaccharide with alkali (alkali treatment), oxidation of polysaccharide with oxidizing agent (acid treatment). Oxidation treatment), reduction of polysaccharides with a reducing agent (reduction treatment), and the like can be exemplified.
  • it is preferable to carry out an enzyme treatment it is preferable to carry out an enzyme treatment, and in addition, it is more preferable to carry out one or more treatments selected from an acid treatment, an alkali treatment and an oxidation treatment.
  • the enzyme treatment will be described in detail.
  • the enzyme used for the enzyme treatment it is preferable to use at least one of the cellulase-based enzyme and the hemicellulase-based enzyme, and it is more preferable to use both in combination.
  • the use of these enzymes facilitates the defibration of cellulose raw materials.
  • the cellulase-based enzyme causes the decomposition of cellulose in the coexistence of water.
  • hemicellulose-based enzymes induce the decomposition of hemicellulose in the presence of water.
  • cellulase-based enzymes examples include Trichoderma (Filamentous fungus), Acremonium (Filamentous fungus), Aspergillus (Filamentous fungus), Fanerochaete (Phanerochaete), Tramethes (Tra).
  • Enzymes can be used.
  • These cellulase-based enzymes can be purchased as reagents or commercial products.
  • cellulosein T2 manufactured by HPI
  • Meicerase manufactured by Meiji Seika
  • Novozyme 188 manufactured by Novozyme
  • Multifect CX10L manufactured by Genencore
  • cellulase-based enzyme GC220 manufactured by Genecore
  • EG encodedoglucanase
  • CBH cellobiohydrolase
  • hemicellulase-based enzyme for example, xylanase, which is an enzyme that decomposes xylan, mannase, which is an enzyme that decomposes mannan, and arabanase, which is an enzyme that decomposes araban, can be used.
  • xylanase which is an enzyme that decomposes xylan
  • mannase which is an enzyme that decomposes mannan
  • arabanase which is an enzyme that decomposes araban
  • pectinase which is an enzyme that decomposes pectin
  • Hemicellulose is a polysaccharide excluding pectins between the cellulose microfibrils of the plant cell wall. Hemicellulose is diverse and varies between wood types and cell wall layers. Glucomannan is the main component in the secondary walls of conifers, and 4-O-methylglucuronoxylan is the main component in the secondary walls of hardwoods. Therefore, when fine fibers are obtained from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. Further, when fine fibers are obtained from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.
  • NNKP softwood bleached kraft pulp
  • LKP hardwood bleached kraft pulp
  • the amount of enzyme added to the cellulose raw material is determined by, for example, the type of enzyme, the type of wood used as the raw material (conifer or hardwood), the type of mechanical pulp, and the like.
  • the amount of the enzyme added to the cellulose raw material is preferably 0.1 to 3% by mass, more preferably 0.3 to 2.5% by mass, and particularly preferably 0.5 to 2% by mass. If the amount of the enzyme added is less than 0.1% by mass, the effect of the addition of the enzyme may not be sufficiently obtained. On the other hand, if the amount of the enzyme added exceeds 3% by mass, cellulose may be saccharified and the yield of fine fibers may decrease. In addition, there is also a problem that the improvement of the effect corresponding to the increase in the addition amount cannot be recognized.
  • the temperature during the enzyme treatment is preferably 30 to 70 ° C, more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C, regardless of whether the cellulase-based enzyme or the hemicellulase-based enzyme is used as the enzyme. ..
  • the temperature at the time of enzyme treatment is 30 ° C. or higher, the enzyme activity is less likely to decrease, and the treatment time can be prevented from being prolonged.
  • the temperature at the time of enzyme treatment is 70 ° C. or lower, inactivation of the enzyme can be prevented.
  • the enzyme treatment time is determined by, for example, the type of enzyme, the temperature of the enzyme treatment, the pH at the time of the enzyme treatment, and the like.
  • the general enzyme treatment time is 0.5 to 24 hours.
  • a method for inactivating the enzyme for example, there are a method of adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher), a method of adding hot water at 80 to 100 ° C., and the like.
  • alkali treatment When alkali treatment is performed prior to defibration, some of the hydroxyl groups of hemicellulose and cellulose in pulp are dissociated, and the molecules are anionized, weakening intramolecular and intermolecular hydrogen bonds and promoting dispersion of cellulose raw materials in defibration. Ru.
  • alkali used for the alkali treatment examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, aqueous ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide and the like.
  • Organic alkali or the like can be used. However, from the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
  • the water retention of the fine fibers can be lowered, the crystallization degree can be increased, and the homogeneity can be increased. In this respect, if the water retention level of the fine fibers is low, dehydration is likely to occur, and the dehydration property of the cellulose fiber slurry is improved.
  • the raw material pulp is subjected to enzyme treatment, acid treatment, or oxidation treatment, the hemicellulose and the amorphous region of cellulose that the pulp has are decomposed. As a result, the energy of defibration can be reduced, and the uniformity and dispersibility of the cellulose fibers can be improved.
  • the pretreatment reduces the aspect ratio of the fine fibers, it is preferable to avoid excessive pretreatment when used as a reinforcing material for the resin.
  • beaters high-pressure homogenizers, homogenizers such as high-pressure homogenizers, stone mill type friction machines such as grinders and grinders, single-screw kneaders, multi-screw kneaders, kneader refiners, jet mills, etc. It can be done by beating the raw pulp using. However, it is preferable to use a refiner or a jet mill.
  • the average fiber length of the fine fibers is preferably 0.10 to 2.00 mm, more preferably 0.12 to 1.50 mm, and particularly preferably 0.15 to 1.00 mm. .. If the average fiber length is less than 0.10 mm, a three-dimensional network of fibers cannot be formed, the flexural modulus of the composite resin may decrease, and the reinforcing effect may not be improved. On the other hand, if the average fiber length exceeds 2.00 mm, the reinforcing effect may be insufficient because the length is the same as that of the raw material pulp.
  • the average fiber length of the cellulose raw material as a raw material for fine fibers is preferably 0.50 to 5.00 mm, more preferably 1.00 to 3.00 mm, and particularly preferably 1.50 to 2.50 mm. If the average fiber length of the cellulose raw material is less than 0.50 mm, the effect of reinforcing the resin of the defibrated fine fibers may not be sufficiently obtained. On the other hand, if the average fiber length exceeds 5.00 mm, it may be disadvantageous in terms of manufacturing cost at the time of defibration.
  • the average fiber length of fine fibers can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
  • the average fiber length of the fine fibers is a value measured by a fiber analyzer "FS5" manufactured by Valmet. The same applies to the fine rate (Fine rate) described below.
  • the fine ratio of the fine fibers is preferably 30% or more, more preferably 35 to 99%, and particularly preferably 40 to 95%.
  • the fine ratio is 30% or more, the proportion of homogeneous fibers is large, and the destruction of the composite resin is difficult to proceed.
  • the fine ratio exceeds 99%, the flexural modulus may be insufficient.
  • the fine ratio of fine fibers is the fine ratio of fine fibers, but it is more preferable to keep the fine ratio of the cellulose raw material, which is the raw material of fine fibers, within a predetermined range.
  • the fine ratio of the cellulose raw material as a raw material for fine fibers is preferably 1% or more, more preferably 3 to 20%, and particularly preferably 5 to 18%. If the fine ratio of the cellulose raw material before defibration is within the above range, it is considered that even if the fine fibers are defibrated so that the fine ratio is 30% or more, the damage to the fibers is small and the reinforcing effect of the resin is improved. ..
  • the fine rate can be adjusted by pretreatment such as enzyme treatment.
  • pretreatment such as enzyme treatment
  • the fiber itself may become tattered and the reinforcing effect of the resin may be reduced. Therefore, the amount of the enzyme added from this point of view is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. Further, it is also one of the selection frames that the enzyme treatment is not performed (addition amount: 0% by mass).
  • the "fine ratio” refers to the mass-based ratio of pulp fibers having a fiber length of 0.2 mm or less.
  • the aspect ratio of the fine fibers is preferably 2 to 15,000, more preferably 10 to 10,000. If the aspect ratio is less than 2, the three-dimensional network cannot be sufficiently constructed, and even if the average fiber length is 0.10 mm or more, the reinforcing effect may be insufficient. On the other hand, if the aspect ratio exceeds 15,000, the entanglement of the fine fibers becomes high, and the dispersion in the resin may be insufficient.
  • the aspect ratio is a value obtained by dividing the average fiber length by the average fiber width. It is considered that the larger the aspect ratio, the more places where catching occurs, so that the reinforcing effect increases, but on the other hand, the more catching, the lower the ductility of the resin.
  • the fibrillation rate of the fine fibers is preferably 1.0 to 30.0%, more preferably 1.5 to 20.0%, and particularly preferably 2.0 to 15.0%. If the fibrillation rate exceeds 30.0%, the contact area with water becomes too large, and dehydration may become difficult even if the fibers are defibrated within the range where the average fiber width remains 0.1 ⁇ m or more. be. On the other hand, if the fibrillation rate is lower than 1.0%, there are few hydrogen bonds between the fibrils, and there is a possibility that a strong three-dimensional network cannot be formed.
  • the fibrillation rate means that fine fibers are dissociated in accordance with JIS-P-8220: 2012 "Pulp-dissolution method", and the obtained dissociated pulp is referred to as FiberLab. (Kajaani) means a value measured using.
  • the crystallinity of the fine fibers is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more.
  • the heating temperature in carbamate formation is increased, but in the past, it was considered that the fibers would be damaged by this increase in temperature, and the temperature was not increased.
  • the heating temperature is raised to a high temperature, the heating time is shortened, so that the fibers are not exposed to heat for a long time, damage accumulation to the fibers can be suppressed, and a decrease in crystallinity can be suppressed.
  • the reinforcing effect of the resin is excellent, and it is extremely easy to set the crystallinity to 50% or more.
  • the crystallinity of the fine fibers is preferably 95% or less, more preferably 90% or less, and particularly preferably 85% or less. When the crystallinity exceeds 95%, the ratio of strong hydrogen bonds in the molecule increases, the fiber itself becomes rigid, and the dispersibility becomes inferior.
  • the crystallinity of the fine fibers can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, and micronization treatment.
  • the crystallinity is a value measured according to JIS K 0131 (1996).
  • the pulp viscosity of the fine fibers is preferably 2 cps or more, more preferably 4 cps or more. If the pulp viscosity of the fine fibers is less than 2 cps, it may be difficult to suppress the aggregation of the fine fibers.
  • the pulp viscosity is a value measured according to TAPPI T 230.
  • the freeness of the fine fiber is preferably 500 ml or less, more preferably 300 ml or less, and particularly preferably 100 ml or less. If the freeness of the fine fibers exceeds 500 ml, the effect of improving the strength of the resin may not be sufficiently obtained.
  • the freeness is a value measured in accordance with JIS P8121-2 (2012).
  • the zeta potential of the fine fiber is preferably ⁇ 150 to 20 mV, more preferably -100 to 0 mV, and particularly preferably -80 to -10 mV. If the zeta potential is lower than ⁇ 150 mV, the compatibility with the resin may be significantly reduced and the reinforcing effect may be insufficient. On the other hand, if the zeta potential exceeds 20 mV, the dispersion stability may decrease.
  • the water retention of the fine fibers is preferably 80 to 400%, more preferably 90 to 350%, and particularly preferably 100 to 300%. If the water retention level is less than 80%, the reinforcing effect may be insufficient because it is the same as the raw material pulp. On the other hand, when the degree of water retention exceeds 400%, the dehydration property tends to be inferior and the agglutination tends to occur. In this respect, the water retention degree of the fine fiber can be lowered by substituting the hydroxy group of the fiber with the carbamate group, and the dehydration property and the dryness can be improved.
  • the water retention of fine fibers can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, etc.
  • the degree of water retention is JAPAN TAPPI No. It is a value measured according to 26 (2000).
  • the fine fiber of this embodiment has a carbamate group.
  • a carbamate group is not particularly limited.
  • the cellulose raw material may be carbamate to have a carbamate group, or the fine fibers (defibrated cellulose raw material) may be carbamate to have a carbamate group.
  • the term "having a carbamic acid group” means a state in which a carbamic acid group (ester of carbamic acid) is introduced into the cellulose fiber.
  • the carbamate group is a group represented by —O—CO-NH—, for example, a group represented by —O—CO—NH 2 , —O—CONHR, —O—CO—NR 2, and the like. That is, the carbamate group can be represented by the following structural formula (1).
  • R is independently a saturated linear hydrocarbon group, a saturated branched chain hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated branched chain hydrocarbon group, and the like.
  • saturated linear hydrocarbon group examples include a linear alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group and a propyl group.
  • saturated branched chain hydrocarbon group examples include a branched chain alkyl group having 3 to 10 carbon atoms such as an isopropyl group, a sec-butyl group, an isobutyl group and a tert-butyl group.
  • saturated cyclic hydrocarbon group examples include cycloalkyl groups such as cyclopentyl group, cyclohexyl group and norbornyl group.
  • Examples of the unsaturated linear hydrocarbon group include a linear alkenyl group having 2 to 10 carbon atoms such as an ethenyl group, a propene-1-yl group and a propene-3-yl group, an ethynyl group and a propyne-1.
  • Examples thereof include a linear alkynyl group having 2 to 10 carbon atoms such as an yl group and a propyne-3-yl group.
  • Examples of the unsaturated branched chain hydrocarbon group include a branched chain alkenyl group having 3 to 10 carbon atoms such as a propene-2-yl group, a butene-2-yl group, and a butene-3-yl group, and butin-3.
  • a branched chain alkenyl group having 3 to 10 carbon atoms such as a propene-2-yl group, a butene-2-yl group, and a butene-3-yl group, and butin-3.
  • -A branched chain alkynyl group having 4 to 10 carbon atoms such as an yl group can be mentioned.
  • aromatic group examples include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and the like.
  • Examples of the inducing group include the above-mentioned saturated linear hydrocarbon group, saturated branched chain hydrocarbon group, saturated cyclic hydrocarbon group, unsaturated linear hydrocarbon group, unsaturated branched chain hydrocarbon group and aromatic.
  • Examples thereof include a group in which one or more hydrogen atoms contained in the group are substituted with a substituent (for example, a hydroxy group, a carboxy group, a halogen atom, etc.).
  • the fine fiber having a carbamate group in which a carbamate group is introduced, a part or all of the highly polar hydroxy group is replaced with a relatively low polarity carbamate group. Therefore, the fine fiber having a carbamate group has low hydrophilicity and high affinity with a resin having low polarity. As a result, the fine fiber having a carbamate group is excellent in uniform dispersibility with the resin. Further, the slurry of fine fibers having a carbamate group has low viscosity and good handleability.
  • the substitution rate of the carbamate group with respect to the hydroxy group of the fine fiber is preferably 1.0 to 5.0 mmol / g, more preferably 1.2 to 3.0 mmol / g, and particularly preferably 1.5 to 2.0 mmol / g. Is.
  • the substitution rate is 1.0 mmol / g or more, the effect of introducing the carbamate group, particularly the effect of improving the flexural modulus of the resin can be surely exhibited.
  • the substitution rate exceeds 5.0 mmol / g, the cellulose fibers may not be able to maintain the shape of the fibers, and the reinforcing effect of the resin may not be sufficiently obtained.
  • the substitution rate of the carbamate group exceeds 2.0 mmol / g, the average fiber length of the pulp becomes short when the raw material pulp is carbamate, and as a result, the average fiber length of the fine fibers tends to be less than 0.1 mm. There is a risk that sufficient resin reinforcement effect cannot be obtained.
  • carbamate of the raw material pulp the above substitution rate directly applies to the substitution rate of the carbamate group of the raw material pulp.
  • the hydroxyl group existing in the cellulose contributes to the hydrogen bond of the cellulose itself, and when it is compounded with the resin, the cellulose fibers aggregate by the hydrogen bond and act as a reinforcing fiber. Is hindered. Therefore, by substituting the hydroxyl group with a carbamate group (particularly, the substitution rate is 1.0 mmol / g or more), the hydrogen bond is weakened, the aggregation of the fiber is suppressed, and the fiber is effectively functioned as a reinforcing material.
  • the hydroxyl group is replaced with a carbamate group too much, the affinity with the resin is improved too much and there is a possibility that the hydroxyl group will be dissolved in the resin when it is compounded with the resin. When dissolved, it does not exist as a fiber but exists as a molecule, so it is considered that the reinforcing property is lost. Therefore, by setting the substitution rate to 1.0 to 2.0 mmol / g, it is possible to suppress excessive agglutination of the fibers themselves and to exist in the resin in the form of the reinforcing fibers and exhibit reinforcing properties. Think about it.
  • the substitution rate of the carbamate group means the amount of substance of the carbamate group contained in 1 g of the cellulose raw material having the carbamate group.
  • the substitution rate of the carbamate group is measured by measuring the N atoms present in the carbamate pulp by the Kjeldahl method, and the carbamateization rate per unit weight is calculated.
  • Cellulose is a polymer having anhydrous glucose as a structural unit, and has three hydroxy groups per structural unit.
  • the above substitution rate is the substitution rate of the carbamate group in the cellulose raw material.
  • carbamate formation will be described in detail.
  • the point of introducing a carbamate group (carbamate formation) into fine fibers is cellulose.
  • carbamating the raw material and then making it finer is a method of carbamating the raw material and then making it finer, and a method of making the cellulose raw material finer and then making it into carbamate.
  • the defibration of the cellulose raw material will be described first, and then the carbamate formation (modification) will be described. However, either defibration or carbamate can be done first.
  • carbamate it is preferable to carry out carbamate first and then defibrate. This is because the cellulose raw material before defibration has high dehydration efficiency, and the cellulose fibers are easily defibrated by heating accompanying carbamate formation.
  • carbamating first it can be said that it is a method for producing carbamated cellulose fibers even after the carbamating and before the defibration.
  • the step of carbamate-forming cellulose fibers can be mainly classified into, for example, a mixing treatment, a removal treatment, and a heat treatment.
  • the mixing treatment and the removing treatment can also be referred to as an adjustment treatment for preparing a mixture to be subjected to the heat treatment.
  • Carbamateization also has the advantage that it can be chemically modified without the use of organic solvents.
  • cellulose fibers and urea or a derivative of urea are mixed in a dispersion medium.
  • urea or urea for example, urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, a compound in which the hydrogen atom of urea is replaced with an alkyl group or the like can be used.
  • ureas and urea derivatives can be used alone or in combination of two or more. However, it is preferable to use urea.
  • the total amount (mixed amount) of urea or the like added to the cellulose fibers is preferably 1 to 70 (w / w)%, more preferably 5 to 50 (w / w)%, and particularly preferably 10 to 50 (w / w). )%.
  • the addition amount By increasing the addition amount to 1% or more, the efficiency of carbamate formation is improved. On the other hand, even if the addition amount exceeds 70%, the carbamate formation reaches a plateau.
  • the dispersion medium is usually water. However, other dispersion media such as alcohol and ether, or a mixture of water and another dispersion medium may be used.
  • cellulose fibers and urea may be added to water, cellulose fibers may be added to an aqueous solution of urea or the like, or urea or the like may be added to a slurry containing cellulose fibers. Further, in order to mix uniformly, the mixture may be stirred after the addition. Further, the dispersion liquid containing the cellulose fibers and urea or the like may contain other components.
  • the dispersion medium is removed from the dispersion liquid containing the cellulose fibers and urea obtained in the mixing treatment.
  • urea and the like can be efficiently reacted in the subsequent heat treatment.
  • dispersion medium by volatilizing the dispersion medium by heating. According to this method, only the dispersion medium can be efficiently removed while leaving components such as urea.
  • the lower limit of the heating temperature in the removal treatment is preferably 50 ° C, more preferably 70 ° C, and particularly preferably 90 ° C.
  • the upper limit of the heating temperature is preferably 120 ° C., more preferably 100 ° C. If the heating temperature exceeds 120 ° C., the dispersion medium and urea may react with each other and the urea may be decomposed independently.
  • the heating time in the removal treatment can be appropriately adjusted according to the solid content concentration of the dispersion liquid and the like. Specifically, for example, 6 to 24 hours.
  • the heating temperature in the heat treatment is preferably 150 to 170 ° C, more preferably 150 to 165 ° C, and particularly preferably 150 to 160 ° C.
  • the heating temperature is preferably 150 to 170 ° C, more preferably 150 to 165 ° C, and particularly preferably 150 to 160 ° C.
  • the substitution rate of the carbamate group can be set to 1 mmol / g or higher even in a short-time reaction.
  • the melting point of urea is about 134 ° C.
  • the heating time in the heat treatment is preferably 0.5 to 2.0 hours, more preferably 0.6 to 1.5 hours, and particularly preferably 0.7 to 1.0 hours.
  • the heating time is preferably 0.5 to 2.0 hours, more preferably 0.6 to 1.5 hours, and particularly preferably 0.7 to 1.0 hours.
  • the pH condition in the heat treatment becomes important.
  • the pH is preferably an alkaline condition of pH 9 or higher, more preferably pH 9 to 13, and particularly preferably pH 10 to 12.
  • the pH is 7 or less, preferably pH 3 to 7, and particularly preferably pH 4 to 7, which is an acidic condition or a neutral condition. Under neutral conditions of pH 7 to 8, the average fiber length of the cellulose fibers becomes short, and the reinforcing effect of the resin may be inferior.
  • the pH can be adjusted by adding an acidic compound (for example, acetic acid, citric acid, etc.) or an alkaline compound (for example, sodium hydroxide, calcium hydroxide, etc.) to the mixture.
  • an acidic compound for example, acetic acid, citric acid, etc.
  • an alkaline compound for example, sodium hydroxide, calcium hydroxide, etc.
  • the heat treatment for acidifying the pH is preferably carried out under the condition that 0.001 mmol or more of the organic acid ion is added to 1 g of the urea and the urea derivative (total mass of the urea and the urea derivative). It is more preferable to carry out under the condition of addition of 0.1 to 10.0 mmol, and particularly preferably to carry out under the condition of addition of 1.0 to 5.0 mmol.
  • the organic acid is added, the reaction of decomposing urea or the like into isocyanic acid and ammonia proceeds, the reaction with the cellulose fiber is promoted, and the carbamate formation reaction is carried out efficiently.
  • the organic acid ion is less than 0.001 mmol / g, such an effect may not be exhibited.
  • the organic acid ion exceeds 10.0 mmol / g, the effect of the organic acid ion reaches a plateau, unnecessary organic acid ion remains, and the carbamate formation reaction by urea may be inhibited.
  • the amount of citric acid added to the cellulose fibers is preferably 0.1 to 10,000 ppm, more preferably 1 to 7,000 ppm, and 10 to 5 It is particularly preferable to set it to 000 ppm. If the amount added is less than 0.1 ppm, the reaction of decomposing urea or the like into isocyanic acid and ammonia does not proceed well, so that the carbamate formation reaction may not proceed. On the other hand, if the addition amount exceeds 10,000 ppm, the hydroxyl group or carboxyl group of the organic acid may react with urea or the like and isocyanic acid, and urea or the like or isocyanic acid that contributes to carbamate formation may be consumed.
  • organic acid in addition to citric acid, for example, malic acid, tartrate acid, oxalic acid, acetic acid, formic acid, fumaric acid, lactic acid, butyric acid, succinic acid, organic acid salts of these organic acids and the like can be used.
  • citric acid for example, malic acid, tartrate acid, oxalic acid, acetic acid, formic acid, fumaric acid, lactic acid, butyric acid, succinic acid, organic acid salts of these organic acids and the like
  • hydroxy acid and hydroxy salt in combination
  • citric acid and citrate in combination.
  • urea and the like are decomposed into isocyanic acid and ammonia as described above, but this ammonia is neutralized by a hydroxy acid such as citric acid, and ammonia is reduced.
  • the amount of ammonia decreases, the production of ammonia progresses and carbamate formation progresses.
  • hydroxy acids include, for example, aliphatic hydroxy acids such as glycolic acid, lactic acid, tarthronic acid, glyceric acid, hydroxybutyric acid, malic acid, tartrate acid, isocitrate acid, mevalonic acid, pantoic acid, and ricinolic acid, and salicylic acid.
  • Vanillic acid, aromatic hydroxy acids such as citric acid and the like can be exemplified.
  • the addition ratio of the hydroxy acid salt to the hydroxy acid is preferably 1,000 parts by mass or less, more preferably 750 parts by mass or less, and 500 parts by mass or less with respect to 100 parts by mass of the hydroxy acid. Is particularly preferable.
  • the hydroxy salt is meaningful in combination with a hydroxy acid, and the lower limit can be said to be more than 0 parts by mass, but preferably 10 parts by mass or more.
  • the organic acid salt is added so that the pH in the system is within the above-mentioned pH.
  • the flexural modulus and bending elongation of the fibrous cellulose composite resin are improved. If the amount of hydroxy acid such as citric acid added is simply increased, the average fiber length of cellulose or the like may be shortened, but the combined use of hydroxy acid and hydroxy acid salt suppresses this possibility.
  • a hot air dryer for example, a paper machine, a dry pulp machine, or the like can be used.
  • the mixture after heat treatment may be washed. This washing may be performed with water or the like. By this washing, urea and the like remaining unreacted can be removed.
  • the cellulose fibers are dispersed in an aqueous medium to form a dispersion liquid (slurry).
  • a dispersion liquid slurry
  • the total amount of the aqueous medium is water, but an aqueous medium which is another liquid which is partially compatible with water can also be used.
  • the other liquid lower alcohols having 3 or less carbon atoms can be used.
  • the solid content concentration of the slurry is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass. If the solid content concentration is less than 0.1% by mass, excessive energy may be required for dehydration and drying. On the other hand, if the solid content concentration exceeds 10.0% by mass, the fluidity of the slurry itself is lowered, and for example, when a dispersant is used, it may not be possible to mix uniformly.
  • the carbamate-ized cellulose fiber If the carbamate-ized cellulose fiber is not defibrated, it is defibrated to obtain fine fibers (hereinafter, the same applies), and then mixed with an acid-modified resin.
  • the acid-modified resin the acid group is ionically bonded to a part or all of the carbamate group. This ionic bond improves the reinforcing effect of the resin.
  • an acid-modified polyolefin resin for example, an acid-modified polyolefin resin, an acid-modified epoxy resin, an acid-modified styrene-based elastomer resin, or the like can be used. However, it is preferable to use an acid-modified polyolefin resin.
  • the acid-modified polyolefin resin is a copolymer of an unsaturated carboxylic acid component and a polyolefin component.
  • polystyrene resin for example, one or two or more of alkene polymers such as ethylene, propylene, butadiene, and isoprene can be selected and used.
  • alkene polymers such as ethylene, propylene, butadiene, and isoprene
  • polypropylene resin which is a polymer of propylene.
  • the unsaturated carboxylic acid component for example, one or more of maleic anhydride, phthalic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, citric acid anhydride and the like can be selected and used.
  • maleic anhydrides it is preferable to use maleic anhydrides. Therefore, it is more preferable to use a maleic anhydride-modified polypropylene resin.
  • the mixed amount of the acid-modified resin is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the fine fibers.
  • the acid-modified resin is a maleic anhydride-modified polypropylene resin
  • the amount is preferably 1 to 200 parts by mass, more preferably 10 to 100 parts by mass. If the mixed amount of the acid-modified resin is less than 0.1 parts by mass, the improvement in strength may not be sufficient. On the other hand, if the mixing amount exceeds 1,000 parts by mass, it becomes excessive and the strength tends to decrease.
  • the weight average molecular weight of maleic anhydride-modified polypropylene is, for example, 1,000 to 100,000, preferably 3,000 to 50,000.
  • the acid value of maleic anhydride-modified polypropylene is preferably 0.5 mgKOH / g or more and 100 mgKOH / g or less, and more preferably 1 mgKOH / g or more and 50 mgKOH / g or less.
  • the MFR (melt flow rate) of the acid-modified resin is preferably 2,000 g / 10 minutes (190 ° C. / 2.16 kg) or less, more preferably 1,500 g / 10 minutes or less, and 500 g / 10 minutes or less. It is particularly preferably 10 minutes or less. If the MFR exceeds 2,000 g / 10 minutes, the dispersibility of the cellulose fibers may decrease.
  • the acid value is measured in accordance with JIS-K2501 and titrated with potassium hydroxide.
  • the MFR measurement is based on JIS-K7210, and is determined by the weight of the sample flowing out in 10 minutes with a load of 2.16 kg at 190 ° C.
  • the fine fibers are preferably mixed with a dispersant.
  • a dispersant a compound having an amine group and / or a hydroxyl group in an aromatic group and a compound having an amine group and / or a hydroxyl group in an aliphatic group are preferable.
  • Examples of compounds having an amine group and / or a hydroxyl group in aromatics include aniline, toluidin, trimethylaniline, anisidin, tyramine, histamine, tryptamine, phenol, dibutylhydroxytoluene, and bisphenol A. Classes, cresols, eugenols, gallic acid, guaiacol, picrinic acid, phenolphthalene, serotonin, dopamine, adrenaline, noradrenaline, timol, tyrosine, salicylic acid, methyl salicylate, anis alcohol.
  • Salicyl alcohols cinapyl alcohols, diphenidols, diphenylmethanols, cinnamyl alcohols, scopolamines, tryptofols, vanillyl alcohols, 3-phenyl-1-propanols, phenethyl alcohols, phenoxyethanols , Veratril alcohols, benzyl alcohols, benzoins, mandelic acids, manderonitriles, benzoic acids, phthalic acids, isophthalic acids, terephthalic acids, melitonic acids, silicic acids and the like.
  • Examples of compounds having an amine group and / or a hydroxyl group in aliphatics include capryl alcohols, 2-ethylhexanols, pelargone alcohols, caprin alcohols, undecyl alcohols, lauryl alcohols, and tridecyl alcohols.
  • Myristyl alcohols pentadecyl alcohols, cetanols, stearyl alcohols, erizyl alcohols, oleyl alcohols, linoleyl alcohols, methylamines, dimethylamines, trimethylamines, ethylamines, diethylamines, ethylenediamine , Triethanolamines, N, N-diisopropylethylamines, tetramethylethylenediamines, hexamethylenediamines, spermidins, spermins, amantadins, formic acids, acetic acids, propionic acids, butyric acids, valeric acids, Caproic acids, enanth acids, capricic acids, pelargonic acids, capric acids, lauric acids, myristic acids, palmitic acids, margalic acids, stearic acids, oleic acids, linoleic acids, linolenic acids, arachid
  • the above dispersants inhibit hydrogen bonds between cellulose fibers. Therefore, when the fine fibers and the resin are kneaded, the fine fibers are surely dispersed in the resin. Further, the above dispersant also has a role of improving the compatibility of the fine fibers and the resin. In this respect as well, the dispersibility of the fine fibers in the resin is improved.
  • polypropylene has a melting point of 160 ° C., and therefore, kneading of fine fibers and resin is performed at about 180 ° C.
  • a dispersant liquid
  • a resin having a low melting point generally has a low strength. Therefore, according to this method, the strength of the composite resin may decrease.
  • the mixing amount of the dispersant is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the fine fibers. If the mixing amount of the dispersant is less than 0.1 parts by mass, it may be considered that the improvement of the resin strength is not sufficient. On the other hand, if the mixing amount exceeds 1,000 parts by mass, the amount becomes excessive and the resin strength tends to decrease.
  • the above-mentioned acid-modified resin is intended to improve the compatibility by ionic bonding between the acid group and the carbamate group of the fine fiber, thereby enhancing the reinforcing effect, and because of its large molecular weight, it is easy to be compatible with the resin. It is considered that it contributes to the improvement of strength.
  • the above-mentioned dispersant intervenes between the hydroxyl groups of the fine fibers to prevent aggregation and thus improves the dispersibility in the resin, and has a smaller molecular weight than the acid-modified resin. It can enter a narrow space between fine fibers that an acid-modified resin cannot enter, and plays a role of improving dispersibility and strength.
  • the molecular weight of the acid-modified resin is preferably 2 to 2,000 times, preferably 5 to 1,000 times, the molecular weight of the dispersant.
  • the fine fibers of this embodiment are preferably mixed with a powder that does not interact with the cellulose fibers.
  • the reinforcing effect is improved.
  • the aqueous medium is removed to obtain a fibrous cellulose-containing material whose water content is adjusted to a predetermined range before the fine fibers are composited with the resin.
  • the cellulose fibers may irreversibly aggregate due to hydrogen bonds, and the reinforcing effect as the fibers may not be sufficiently exhibited. Therefore, by mixing a powder that does not interact with the cellulose fibers, hydrogen bonds between the cellulose fibers are physically inhibited.
  • non-interacting is included in the concept that covalent bonds, ionic bonds, and strong bonds by metal bonds do not occur with cellulose (that is, hydrogen bonds and van der Waals force bonds do not interact).
  • the strong bond is a bond having a binding energy of more than 100 kJ / mol.
  • the non-interacting powder is preferably at least one of an inorganic powder and a resin powder having little action of dissociating the hydroxyl group of the cellulose fiber into hydroxide ions when coexisting in the slurry. More preferably, it is an inorganic powder. Having such physical characteristics makes it possible to easily disperse the powder that does not interact with the cellulose fibers into the resin or the like when the fibrous cellulose-containing material is formed and then compounded with the resin. Further, particularly when it is an inorganic powder, it is advantageous in terms of operation.
  • a method for adjusting the water content of the fibrous cellulose-containing material for example, a method of directly applying an aqueous dispersion (a mixture of fibrous cellulose and non-interacting powder) to a metal drum as a heat source is used for drying (a mixture of fibrous cellulose and non-interacting powder).
  • a method of drying with a Yankee dryer or a cylinder dryer, etc. and a method of heating without directly contacting the water dispersion with a heat source, that is, a method of drying in air (for example, drying with a constant temperature dryer, etc.).
  • a method of drying in air for example, drying with a constant temperature dryer, etc.
  • the average particle size of the non-interacting powder is preferably 1 to 10,000 ⁇ m, more preferably 10 to 5,000 ⁇ m, and particularly preferably 100 to 1,000 ⁇ m. If the average particle size exceeds 10,000 ⁇ m, when the aqueous medium is removed from the fibrous cellulose slurry, it may enter into the gaps between the fine fibers and the effect of inhibiting aggregation may not be exhibited. On the other hand, if the average particle size is less than 1 ⁇ m, hydrogen bonds between the fine fibers may not be inhibited due to the fineness.
  • the powder that does not interact with the powder is a resin powder
  • the effect of inhibiting aggregation by entering the gaps between the fine fibers is effectively exhibited when the average particle size is in the above range.
  • it is economical because it has excellent kneadability with a resin and does not require a large amount of energy. Since the resin powder melts when kneaded with the resin and does not affect the appearance as particles, a powder having a large particle size can be effectively used.
  • the resin powder is an inorganic powder
  • the average particle size of the inorganic powder is in the above range, so that the effect of entering the gaps between the fine fibers and inhibiting aggregation is exhibited, but the inorganic powder is kneaded.
  • the size does not change significantly, so if the particle size is too large, it may affect the appearance as grains.
  • the resin powder physically intervenes between the fine fibers to inhibit hydrogen bonds, thereby improving the dispersibility of the fine fibers.
  • the acid-modified resin described above improves compatibility by ionic bonding an acid group and a carbamate group of fine fibers, thereby enhancing a reinforcing effect.
  • the dispersant inhibits hydrogen bonds between fine fibers in the same manner, but since the resin powder is micro-order, it physically intervenes and suppresses hydrogen bonds. Therefore, although the dispersibility is lower than that of the dispersant, the resin powder itself melts into a matrix, which does not contribute to deterioration of physical properties.
  • the dispersant since the dispersant is at the molecular level and is extremely small, it has a high effect of covering the fine fibers to inhibit hydrogen bonds and improving the dispersibility of the fine fibers. However, it may remain in the resin and work to reduce the physical properties.
  • the average particle size of non-interacting powder is a volume standard measured using a particle size distribution measuring device (for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by Horiba Seisakusho Co., Ltd.) with the powder as it is or in the state of an aqueous dispersion. It is a medium diameter calculated from the particle size distribution.
  • a particle size distribution measuring device for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by Horiba Seisakusho Co., Ltd.
  • Examples of the inorganic powder include simple substances and oxides of metal elements in Groups I to VIII of the Periodic Table of the Periodic Table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon elements. , Hydroxides, carbon salts, sulfates, silicates, sulfites, various clay minerals composed of these compounds, and the like can be exemplified. Specifically, for example, barium sulfate, calcium sulfate, magnesium sulfate, sodium sulfate, calcium sulfite, zinc oxide, heavy calcium carbonate, light calcium carbonate, aluminum borate, alumina, iron oxide, calcium titanate, aluminum hydroxide, etc.
  • Magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, clay, wallastnite, glass beads, glass powder, silica gel, dry silica, colloidal silica, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon , Glass fiber and the like can be exemplified.
  • a plurality of these inorganic fillers may be contained. Further, it may be contained in recycled paper pulp, or may be a so-called recycled filler obtained by regenerating an inorganic substance in paper sludge.
  • At least one inorganic powder selected from calcium carbonate, talc, white carbon, clay, calcined clay, titanium dioxide, aluminum hydroxide, recycled filler, etc. which are suitably used as fillers and pigments for papermaking. It is preferable to use at least one selected from calcium carbonate, talc, and clay, and it is more preferable to use at least one of light calcium carbonate and heavy calcium carbonate. Especially preferable.
  • calcium carbonate, talc, or clay it is easy to combine with a matrix such as a resin. Further, since it is a general-purpose inorganic material, there is an advantage that there are few restrictions on its use. Further, calcium carbonate is particularly preferable for the following reasons.
  • the same resin as that used when obtaining the composite resin can be used.
  • they may be different, but they are preferably the same.
  • the blending amount of the non-interacting powder is preferably 1 to 9900% by mass, more preferably 5 to 1900% by mass, and particularly preferably 10 to 900% by mass with respect to the fine fibers (cellulose fibers). If the blending amount is less than 1% by mass, it may enter into the gaps between the fine fibers and the action of suppressing aggregation may be insufficient. On the other hand, if the blending amount exceeds 9900% by mass, the function as fine fibers may not be exhibited. When the powder that does not interact with the powder is an inorganic powder, it is preferable to mix the powder in a ratio that does not interfere with thermal recycling.
  • Inorganic powder and resin powder can be used in combination as the non-interacting powder.
  • the inorganic powder and the resin powder exert an effect of preventing each other from agglutination even when the inorganic powder and the resin powder are mixed under the condition of agglutination.
  • powder with a small particle size has a large surface area and is more susceptible to the influence of intermolecular force than the influence of gravity, and as a result, it is more likely to aggregate. There is a risk that the powders will not loosen well in the slurry, or that the powders will aggregate when the water content is adjusted, and the effect of preventing the aggregation of fine fibers will not be fully exhibited.
  • the combined use of the inorganic powder and the resin powder can alleviate the agglutination of the powder itself.
  • the ratio of the average particle size of the inorganic powder to the average particle size of the resin powder is preferably 1: 0.1 to 1: 10,000, preferably 1: 1 to 1: 1,000. Is more preferable. Within this range, problems arise from the strength of its own cohesive force (for example, when mixing powder and fine fiber slurry, the powder does not loosen well in the slurry, or when adjusting the water content, the powder It is considered that the effect of preventing the agglomeration of fine fibers can be sufficiently exerted without causing the problem of agglomeration of fine fibers.).
  • the ratio of the mass% of the inorganic powder to the mass% of the resin powder is preferably 1: 0.01 to 1: 100, more preferably 1: 0.1 to 1:10.
  • the ratio of the mass% of the inorganic powder to the mass% of the resin powder is preferably 1: 0.01 to 1: 100, more preferably 1: 0.1 to 1:10.
  • a mixture of fine fibers (cellulose fibers), acid-modified resin, dispersant, non-interacting powder and the like is contained prior to kneading with the resin as described in detail below. It is preferable to use a fibrous cellulose-containing material having a water content of less than 18%.
  • This fibrous cellulose-containing material is usually a dried product. Further, this dried product is preferably pulverized into a powder. According to this form, the coloring of the fibrous cellulose composite resin obtained by kneading with the resin is reduced. In addition, it is not necessary to dry the fibrous cellulose when kneading with the resin, and the thermal efficiency is good. Further, when a powder that does not interact with the mixture or a dispersant is mixed, there is a low possibility that the cellulose fibers (fine fibers) will not be redispersed even if the mixture is dried.
  • the mixture is dehydrated if necessary prior to drying.
  • dehydrators such as belt presses, screw presses, filter presses, twin rolls, twin wire formers, valveless filters, center disk filters, membrane treatments, and centrifuges. Can be done using.
  • Drying of the mixture or dehydrated product is, for example, rotary kiln drying, disk drying, air flow drying, medium flow drying, spray drying, drum drying, screw conveyor drying, paddle drying, uniaxial kneading drying, multiaxial kneading drying, vacuum. It can be carried out by selectively using one kind or two or more kinds from drying, stirring drying and the like.
  • the dried mixture (dried product) is preferably crushed into a powder.
  • the pulverization of the dried product can be carried out by selecting or using one or more of, for example, a bead mill, a kneader, a disper, a twist mill, a cut mill, a hammer mill and the like.
  • the average particle size of the powder is preferably 1 to 10,000 ⁇ m, more preferably 10 to 5,000 ⁇ m, and particularly preferably 100 to 1,000 ⁇ m. If the average particle size of the powdery substance exceeds 10,000 ⁇ m, the kneadability with the resin may be inferior. On the other hand, it is not economical because a large amount of energy is required to make the average particle size of the powdery substance less than 1 ⁇ m.
  • the average particle size of the powder can be controlled not only by controlling the degree of crushing, but also by classifying using a classifying device such as a filter or a cyclone.
  • the bulk specific gravity of the mixture (powder) is preferably 0.03 to 1.0, more preferably 0.04 to 0.9, and particularly preferably 0.05 to 0.8.
  • the bulk specific density exceeds 1.0, it means that the hydrogen bonds between the fine fibers are stronger and it is not easy to disperse them in the resin.
  • making the bulk specific density less than 0.03 is disadvantageous in terms of transfer cost.
  • the bulk specific density is a value measured according to JIS K7365.
  • the water content of the mixture is preferably less than 18%, more preferably 0 to 17%, and particularly preferably 0 to 16%.
  • the water content is 18% or more, it may not be possible to reduce the coloring of the fibrous cellulose composite resin due to the components derived from the cellulose fibers.
  • the substitution rate of the carbamate group is 1 mmol / g or more, it may not be possible to reduce the coloring.
  • the microfiber cellulose and high-temperature water come into contact with each other when exposed to a high temperature of, for example, 180 ° C. or higher by melt-kneading or the like, resulting in a low molecular weight reaction of the microfiber cellulose. Is generated, a low-molecular-weight compound that causes coloring is generated, and it is considered that coloring by the low-molecular-weight compound proceeds in the kneading step.
  • the carbamate group is carbamate so that the substitution rate is 1 mmol / g or more, for example, the coloring-causing substance is removed in the washing step of the carbamate pulp, and the water content is further reduced to 18% or less. Therefore, it becomes possible to evaporate the high-temperature water before it comes into contact with the microfiber cellulose, and it is possible to prevent coloring.
  • the originally existing coloring-causing substance hemicellulose, etc.
  • the coloring-causing substance has a low molecular weight
  • the coloring-causing substance remains in the microfiber cellulose, the above-mentioned high-temperature water and the coloring-causing substance come into contact with each other, and the coloring becomes remarkable.
  • the water content content is a value calculated by the following formula, where the mass at the time when the sample is held at 105 ° C. for 6 hours or more using a constant temperature dryer and no change in mass is observed is taken as the mass after drying.
  • Moisture content (%) [(mass before drying-mass after drying) ⁇ mass before drying] x 100
  • the dehydrated and dried fine fibers may contain a resin other than the resin powder as a powder that does not interact with each other.
  • the resin is contained, the hydrogen bonds between the dehydrated and dried fine fibers are inhibited, and the dispersibility in the resin at the time of kneading can be improved.
  • Examples of the form of the resin contained in the dehydrated / dried fine fibers include powder, pellets, and sheets. However, powder (powder resin) is preferable.
  • the average particle size of the powdered resin contained in the dehydrated and dried fine fibers is preferably 1 to 10,000 ⁇ m, more preferably 10 to 5,000 ⁇ m, and particularly preferably 100 to 1,000 ⁇ m. If the average particle size exceeds 10,000 ⁇ m, it may not enter the kneading device due to the large particle size. On the other hand, if the average particle size is less than 1 ⁇ m, hydrogen bonds between the fine fibers may not be inhibited due to the fineness.
  • the resin such as the powder resin used here may be the same type as or different from the resin to be kneaded with the fine fibers (resin as the main raw material), but it is preferable that the resin is the same type.
  • the powder resin having an average particle diameter of 1 to 10,000 ⁇ m is preferably mixed in an aqueous dispersed state before dehydration and drying.
  • the powder resin can be uniformly dispersed among the fine fibers, the fine fibers can be uniformly dispersed in the composite resin after kneading, and the strength physical characteristics can be further improved. ..
  • the fibrous cellulose-containing material (resin reinforcing material) obtained as described above is kneaded with a resin to obtain a fibrous cellulose composite resin.
  • This kneading can be performed, for example, by a method of mixing the pellet-shaped resin and the reinforcing material, or by a method of first melting the resin and adding the reinforcing material to the melt.
  • the acid-modified resin, dispersant and the like can also be added at this stage.
  • kneading process for example, one or two or more types are selected and used from a single-screw or two-screw multi-screw kneader, a mixing roll, a kneader, a roll mill, a Banbury mixer, a screw press, a disperser, and the like. be able to.
  • a multi-screw kneader having two or more shafts. Two or more multi-axis kneaders with two or more axes may be used in parallel or in series.
  • the temperature of the kneading treatment is equal to or higher than the glass transition point of the resin and varies depending on the type of resin, but is preferably 80 to 280 ° C, more preferably 90 to 260 ° C, and 100 to 240 ° C. Is particularly preferable.
  • thermoplastic resin it is preferable to use at least one of a thermoplastic resin and a thermosetting resin.
  • thermoplastic resin examples include polyolefins such as polypropylene (PP) and polyethylene (PE), polyester resins such as aliphatic polyester resins and aromatic polyester resins, polyacrylic resins such as polystyrene, methacrylate and acrylate, and polyamide resins.
  • PP polypropylene
  • PE polyethylene
  • polyester resins such as aliphatic polyester resins and aromatic polyester resins
  • polyacrylic resins such as polystyrene, methacrylate and acrylate
  • polyamide resins One kind or two or more kinds can be selected and used from the polycarbonate resin, the polyacetal resin and the like.
  • polyester resin examples of the aliphatic polyester resin include polylactic acid and polycaprolactone, and examples of the aromatic polyester resin include polyethylene terephthalate, which are biodegradable. It is preferable to use a polyester resin having a above (simply also referred to as “biodegradable resin”).
  • biodegradable resin for example, one or more can be selected and used from among hydroxycarboxylic acid-based aliphatic polyesters, caprolactone-based aliphatic polyesters, dibasic acid polyesters and the like.
  • hydroxycarboxylic acid-based aliphatic polyester for example, a homopolymer of a hydroxycarboxylic acid such as lactic acid, malic acid, glucose acid, or 3-hydroxybutyric acid, or at least one of these hydroxycarboxylic acids is used.
  • a hydroxycarboxylic acid such as lactic acid, malic acid, glucose acid, or 3-hydroxybutyric acid
  • One type or two or more types can be selected and used from the polymers and the like.
  • polylactic acid a polymer of the above hydroxycarboxylic acid excluding lactic acid and lactic acid, polycaprolactone, and a polymer of at least one of the above hydroxycarboxylic acids and caprolactone, and polylactic acid is preferably used.
  • polylactic acid is preferably used. Especially preferred to use.
  • lactic acid for example, L-lactic acid, D-lactic acid and the like can be used, and these lactic acids may be used alone or two or more kinds may be selected and used.
  • caprolactone-based aliphatic polyester for example, one or more can be selected and used from a homopolymer of polycaprolactone, a copolymer of polycaprolactone and the like and the hydroxycarboxylic acid, and the like. ..
  • dibasic acid polyester for example, one or more of polybutylene succinate, polyethylene succinate, polybutylene adipate and the like can be selected and used.
  • the biodegradable resin may be used alone or in combination of two or more.
  • thermosetting resin examples include phenol resin, urea resin, melamine resin, furan resin, unsaturated polyester, diallyl phthalate resin, vinyl ester resin, epoxy resin, urethane resin, silicone resin, thermosetting polyimide resin and the like. Can be used. These resins can be used alone or in combination of two or more.
  • the resin may preferably contain an inorganic filler in a proportion that does not interfere with thermal recycling.
  • Examples of the inorganic filler include simple substances of metal elements in Groups I to VIII of the Periodic Table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon elements, and oxidation. Examples thereof include substances, hydroxides, carbon salts, sulfates, silicates, sulfites, and various clay minerals composed of these compounds.
  • aluminum, magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, claywa lastnite, glass beads, glass powder, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon, glass fiber and the like are exemplified. be able to.
  • a plurality of these inorganic fillers may be contained. Further, it may be contained in recycled paper pulp.
  • the mixing ratio of the resin to the fibrous cellulose (cellulose fiber) is preferably 9900 to 1, preferably 1900 to 66, and more preferably 900 to 100 with respect to 100 parts by mass of the fibrous cellulose.
  • the blending ratio of the fibrous cellulose in 100 parts by mass of the fibrous cellulose composite resin is 10 to 50 parts by mass, the strength of the resin composition, particularly the bending strength and the tensile elastic modulus can be remarkably improved.
  • the content ratio of the fibrous cellulose and the resin contained in the finally obtained resin composition is usually the same as the above-mentioned compounding ratio of the fibrous cellulose and the resin.
  • the difference between the solubility parameter (cal / cm 3 ) 1/2 (SP value) of the microfiber cellulose and the resin is the SP MFC value of the microfiber cellulose and the SP POL value of the resin.
  • SP value difference SP MFC value-SP POL value.
  • the difference in SP value is preferably 10 to 0.1, more preferably 8 to 0.5, and particularly preferably 5-1. If the difference in SP value exceeds 10, microfiber cellulose may not be dispersed in the resin and the reinforcing effect may not be obtained. On the other hand, if the difference in SP value is less than 0.1, the microfiber cellulose dissolves in the resin and does not function as a filler, so that the reinforcing effect cannot be obtained. In this respect, the smaller the difference between the SP POL value of the resin (solvent) and the SP MFC value of the microfiber cellulose (solute), the greater the reinforcing effect.
  • the solubility parameter (cal / cm 3 ) 1/2 (SP value) is a measure of the intramolecular force acting between the solvent and the solute, and the closer the SP value is to the solvent and solute, the higher the solubility. ..
  • the kneaded product of the fine fibers and the resin can be formed into a desired shape after being kneaded again if necessary.
  • the size, thickness, shape, etc. of this molding are not particularly limited, and may be, for example, sheet-shaped, pellet-shaped, powder-shaped, fibrous-shaped, or the like.
  • the temperature during the molding process is equal to or higher than the glass transition point of the resin and varies depending on the type of resin, but is, for example, 90 to 260 ° C, preferably 100 to 240 ° C.
  • Molding of the kneaded product can be performed by, for example, mold molding, injection molding, extrusion molding, hollow molding, foam molding, or the like. Further, the kneaded product may be spun into a fibrous form and mixed with the above-mentioned plant material or the like to form a mat shape or a board shape.
  • the mixed fiber can be, for example, a method of simultaneous deposition by an air ray or the like.
  • an apparatus for molding a kneaded product for example, one or two from injection molding machines, blow molding machines, hollow molding machines, blow molding machines, compression molding machines, extrusion molding machines, vacuum forming machines, pneumatic molding machines and the like. You can select and use more than one species.
  • the above molding can be performed after kneading, or the kneaded product is once cooled and made into chips by using a crusher or the like, and then the chips are put into a molding machine such as an extrusion molding machine or an injection molding machine. You can also do it.
  • a molding machine such as an extrusion molding machine or an injection molding machine. You can also do it.
  • molding is not an essential requirement of the present invention.
  • the fibrous cellulose may contain cellulose nanofibers together with microfiber cellulose.
  • Cellulose nanofibers are fine fibers like microfiber cellulose, and have a role of complementing microfiber cellulose for improving the strength of the resin.
  • the average fiber diameter (average fiber width; average diameter of single fibers) of the cellulose nanofibers is preferably 4 to 100 nm, more preferably 10 to 80 nm.
  • the fibrous cellulose may contain pulp. Pulp has a role of significantly improving the dehydration property of the cellulose fiber slurry. However, as in the case of cellulose nanofibers, it is most preferable that pulp is not blended, that is, the content is 0% by mass.
  • the resin composition includes kenaf, jute hemp, Manila hemp, sisal, ganpi, sansho, ⁇ , banana, pineapple, coco palm, corn, sugar cane, bagasse, palm, papyrus, reeds, esparto, etc.
  • Fibers derived from plant materials obtained from various plants such as sisal, wheat, rice, bamboo, various coniferous trees (sugi and hinoki, etc.), broadleaf trees and cotton may be contained or may be contained.
  • the resin composition for example, one or more selected from antistatic agents, flame retardants, antibacterial agents, colorants, radical scavengers, foaming agents, etc., and a range that does not impair the effects of the present invention. Can be added with. These raw materials may be added to the dispersion liquid of fibrous cellulose, added at the time of kneading the fine fibers and the resin, added to these kneaded products, or added by other methods. .. However, from the viewpoint of production efficiency, it is preferable to add it at the time of kneading the fine fibers and the resin.
  • the resin composition may contain an ethylene- ⁇ -olefin copolymer elastomer or a styrene-butadiene block copolymer as a rubber component.
  • ⁇ -olefins include butene, isobutene, pentene, hexene, methyl-pentene, octene, decene, dodecene and the like.
  • the washed carbamate-modified pulp is beaten using a beating machine until the Fine ratio (the ratio of fibers of 0.2 mm or less in the fiber length distribution measurement by FS5) becomes 77% or more, and the carbamate-modified microfiber cellulose (carbamate formation) is beaten. MFC (fine fiber)) was obtained.
  • the carbamate ratio, the average fiber length after carbamation and before beating, and the average fiber length after beating were measured.
  • the results are shown in Table 1.
  • the case where the carbamateization rate is 1 mmol / g or more is shown as ⁇ , and the case where the carbamateization rate is less than 1 mmol / g is shown as x.
  • the case of 1.0 mm or more is shown as ⁇ , and the case of less than 1.0 mm is shown as x.
  • the case of 0.8 mm or more was shown as ⁇
  • the case of 0.5 mm or more and less than 0.8 mm was shown as ⁇
  • the case of less than 0.5 mm was shown as x.
  • the carbamate formation rate could be 1 mmol / g or more even when the reaction time was 1 hour and 30 minutes. Therefore, it can be seen that when this carbamate MFC is used as a reinforcing material for the resin, the flexural modulus of the resin can be improved. Further, even when the heat treatment was performed at 170 ° C. for 3 hours, the average fiber length was 0.5 mm or more, indicating that the damage to the fibers was suppressed.
  • the carbamate formation rate can be 1 mmol / g or higher.
  • Table 2 shows the relationship between the carbamate formation rate and the flexural modulus.
  • a composite resin was prepared by the following method and the flexural modulus was measured. The measurement of flexural modulus was based on JIS K 7171: 1994. However, in the table, the flexural modulus of the resin itself is set to 1, and the case where the flexural modulus of the composite resin is 1.3 times or more is described as ⁇ , and the case where the flexural modulus of the composite resin is less than 1.3 times is described as x.
  • the obtained carbamate-modified pulp was diluted with distilled water and stirred, and dehydration washing was repeated twice.
  • the washed carbamate-modified pulp (concentration 3%) is refined using a beating machine (SDR) until the Fine ratio (the ratio of fibers of 0.2 mm or less in the fiber length distribution measurement by FS5) becomes 77% or more. By doing so, a carbamateized MFC aqueous dispersion was obtained.
  • SDR beating machine
  • PP powder Novatec PPMA3 pellets manufactured by Japan Polypropylene Corporation were processed into powder (500 ⁇ m or less through a sieve, medium diameter 123 ⁇ m). Further, as the MAPP powder, SCONA9212FA manufactured by BYK was used.
  • the present invention can be used as a method for producing a carbamateized cellulose fiber and a method for producing a carbamateized fine fiber.

Abstract

[Problem] To provide a production method for carbamated cellulose fibers and a production method for carbamated filaments whereby it is possible to achieve sufficient carbamation in a short period of time. [Solution] Provided is a production method for carbamated cellulose fibers, said method being characterized by having a step in which cellulose fibers are subjected to a heat treatment such that the hydroxy groups in the cellulose fibers are substituted with carbamate groups at a substitution rate of at least 1.0 mmol/g, wherein the heat treatment is carried out a 150-170°C. Also provided is a production method for carbamated filaments that has a step in which cellulose fibers are fibrillated until the average fiber width is at most 19 µm to produce filaments.

Description

カルバメート化セルロース繊維の製造方法及びカルバメート化微細繊維の製造方法Method for Producing Carbamate Cellulose Fiber and Method for Producing Carbamate Fine Fiber
 本発明は、カルバメート化セルロース繊維の製造方法及びカルバメート化微細繊維の製造方法に関するものである。 The present invention relates to a method for producing a carbamate-ized cellulose fiber and a method for producing a carbamate-ized fine fiber.
 近年、セルロースナノファイバーや、マイクロ繊維セルロース(ミクロフィブリル化セルロース)等の微細繊維は、樹脂の補強材としての使用が脚光を浴びている。もっとも、微細繊維が親水性であるのに対し、樹脂は疎水性であるため、微細繊維を樹脂の補強材として使用するには、当該微細繊維の分散性に問題があった。そこで、本発明者等は、微細繊維のヒドロキシル基をカルバメート基で置換する(カルバメート化)ことを提案した(特許文献1参照)。この提案によると、微細繊維の分散性が向上し、もって樹脂の補強効果が向上する。 In recent years, fine fibers such as cellulose nanofibers and microfiber cellulose (microfibrillated cellulose) have been in the limelight for use as reinforcing materials for resins. However, since the fine fibers are hydrophilic while the resin is hydrophobic, there is a problem in the dispersibility of the fine fibers in order to use the fine fibers as a reinforcing material for the resin. Therefore, the present inventors have proposed to replace the hydroxyl group of the fine fiber with a carbamate group (carbamate) (see Patent Document 1). According to this proposal, the dispersibility of the fine fibers is improved, and thus the reinforcing effect of the resin is improved.
 また、その後、数々の試験を重ねるなかで、カルバメート基の置換率が1mmol/g以上であると、樹脂の補強効果、例えば曲げ伸びが向上することを知見した。そこで、更にこの知見を前提に、カルバメート化をより短時間で行うことができないかが模索されるようになった。カルバメート化を単に短時間で行うだけでは、カルバメート基の置換率が1mmol/g以上にならないためである。 After that, through repeated tests, it was found that when the substitution rate of the carbamate group is 1 mmol / g or more, the reinforcing effect of the resin, for example, the bending elongation is improved. Therefore, based on this finding, it has become possible to search for the possibility of carbamate formation in a shorter time. This is because the substitution rate of the carbamate group does not exceed 1 mmol / g simply by performing the carbamate formation in a short time.
特開2019-1876号公報Japanese Unexamined Patent Publication No. 2019-1876
 本発明が解決しようとする主たる課題は、カルバメート化を十分に、かつ短時間で行うことができるカルバメート化セルロース繊維の製造方法及びカルバメート化微細繊維の製造方法を提供することにある。 A main problem to be solved by the present invention is to provide a method for producing a carbamate-ized cellulose fiber and a method for producing a carbamate-ized fine fiber, which can be sufficiently carved and can be carved in a short time.
 一般論としては反応を短時間で行うためには反応温度を上げることが考えられる。しかしながら、カルバメート基の置換率を上げるとセルロース繊維がダメージを受け易くなる。したがって、特許文献1では加熱処理の温度を上限200℃としているが、カルバメート基の置換率を上げる場合においては、セルロース繊維のダメージを抑えるとの観点から、通常、140℃程度で加熱処理を行っていた。つまり、カルバメート基の置換率を上げる場合、特に1mmol/g以上にする場合においては、反応温度を高温化するという発想が存在しなかった。もちろん、高温化すれば短時間でもカルバメート基の置換率を1mmol/g以上とすることができるなどという知見も存在しなかった。 As a general theory, it is conceivable to raise the reaction temperature in order to carry out the reaction in a short time. However, increasing the substitution rate of the carbamate group makes the cellulose fibers more susceptible to damage. Therefore, in Patent Document 1, the upper limit of the heat treatment temperature is 200 ° C., but when increasing the substitution rate of the carbamate group, the heat treatment is usually performed at about 140 ° C. from the viewpoint of suppressing damage to the cellulose fibers. Was there. That is, there was no idea of raising the reaction temperature when increasing the substitution rate of the carbamate group, especially when the substitution rate was 1 mmol / g or more. Of course, there was no finding that the substitution rate of the carbamate group could be increased to 1 mmol / g or more even in a short time by increasing the temperature.
 しかしながら、更に数々の試験を重ねていく中で、加熱処理の温度が所定の範囲内であれば、セルロース繊維のダメージを抑えつつ、加熱処理の時間が短時間でもカルバメート基の置換率を1mmol/g以上にすることができることを知見するに至った。このような知見のもと想到するに至ったのが次に示す手段である。 However, as a result of repeated numerous tests, if the temperature of the heat treatment is within a predetermined range, the substitution rate of the carbamate group is 1 mmol / / even if the heat treatment time is short while suppressing damage to the cellulose fibers. It has been found that the temperature can be increased to g or more. The following means have led to the idea based on such knowledge.
(請求項1に記載の手段)
 セルロース繊維を加熱処理して前記セルロース繊維のヒドロキシ基をカルバメート基で置換率1.0mmol/g以上となるように置換する工程を有し、
 前記加熱処理を150~170℃で行う、
 ことを特徴とするカルバメート化セルロース繊維の製造方法。
(Means according to claim 1)
It has a step of heat-treating the cellulose fiber and substituting the hydroxy group of the cellulose fiber with a carbamate group so that the substitution rate is 1.0 mmol / g or more.
The heat treatment is carried out at 150 to 170 ° C.
A method for producing a carbamate-ized cellulose fiber.
(請求項2に記載の手段)
 前記加熱処理は、前記セルロース繊維に尿素及び尿素の誘導体の少なくともいずれか一方並びにクエン酸が添加された条件で行い、
 前記セルロース繊維に対する前記クエン酸の添加量を0.1~10,000ppmとする、
 請求項1に記載のカルバメート化セルロース繊維の製造方法
(Means according to claim 2)
The heat treatment is carried out under the condition that at least one of urea and a derivative of urea and citric acid are added to the cellulose fiber.
The amount of the citric acid added to the cellulose fibers is 0.1 to 10,000 ppm.
The method for producing a carbamate-ized cellulose fiber according to claim 1.
(請求項3に記載の手段)
 前記セルロース繊維に対する前記尿素及び前記尿素の誘導体の添加量を1~70%とする、
 請求項2に記載のカルバメート化セルロース繊維の製造方法。
(Means according to claim 3)
The amount of the urea and the derivative of the urea added to the cellulose fibers is 1 to 70%.
The method for producing a carbamate-ized cellulose fiber according to claim 2.
(請求項4に記載の手段)
 セルロース繊維を加熱処理して前記セルロース繊維のヒドロキシ基をカルバメート基で置換率1.0mmol/g以上となるように置換する工程と、
 セルロース繊維を平均繊維幅が19μm以下となるように解繊して微細繊維とする工程とを有し、
 前記加熱処理を150~170℃で行う、
 ことを特徴とするカルバメート化微細繊維の製造方法。
(Means according to claim 4)
A step of heat-treating the cellulose fiber to replace the hydroxy group of the cellulose fiber with a carbamate group so that the substitution rate is 1.0 mmol / g or more.
It has a step of defibrating cellulose fibers so that the average fiber width is 19 μm or less to form fine fibers.
The heat treatment is carried out at 150 to 170 ° C.
A method for producing carbamate fine fibers.
(請求項5に記載の手段)
 前記加熱処理は、微細繊維の結晶化度が50%以上に留まるように行う、
 請求項4に記載のカルバメート化微細繊維の製造方法。
(Means according to claim 5)
The heat treatment is performed so that the crystallinity of the fine fibers remains at 50% or more.
The method for producing a carbamate fine fiber according to claim 4.
 本発明によると、カルバメート化を十分に、かつ短時間で行うことができるカルバメート化セルロース繊維の製造方法及びカルバメート化微細繊維の製造方法となる。 According to the present invention, it is a method for producing a carbamate-ized cellulose fiber and a method for producing a carbamate-ized fine fiber, which can be sufficiently carved and can be carved in a short time.
 次に、発明を実施するための形態を説明する。なお、本実施の形態は、本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。 Next, a mode for carrying out the invention will be described. The embodiment of the present invention is an example of the present invention. The scope of the present invention is not limited to the scope of the present embodiment.
 本形態のカルバメート化セルロース繊維の製造方法は、セルロース繊維を加熱処理してセルロース繊維のヒドロキシ基(-OH基)の一部又は全部をカルバメート基で置換する工程を有する。この置換は、樹脂の補強効果という観点から、置換率1.0mmol/g以上となるように行う。また、カルバメート化する際の加熱処理は、150~170℃で行う。さらに、カルバメート化微細繊維の製造方法は、以上に加えてセルロース繊維を平均繊維幅が19μm以下となるように解繊して微細繊維とする工程を有するものとする。この解繊は、原料パルプをカルバメート化した後に行っても、原料パルプをカルバメート化する前に行ってもよい。ただし、原料パルプをカルバメート化した後、解繊する方が好ましい。以下、詳細に説明する。なお、カルバメート化セルロース繊維の製造方法におけるカルバメート化セルロース繊維とは、カルバメート化微細繊維を除く趣旨ではない。 The method for producing a carbamate-ized cellulose fiber of the present embodiment includes a step of heat-treating the cellulose fiber to replace a part or all of the hydroxy group (-OH group) of the cellulose fiber with the carbamate group. This substitution is performed so that the substitution rate is 1.0 mmol / g or more from the viewpoint of the reinforcing effect of the resin. The heat treatment for carbamate is performed at 150 to 170 ° C. Further, the method for producing carbamate fine fibers includes, in addition to the above, a step of defibrating the cellulose fibers so that the average fiber width is 19 μm or less to obtain fine fibers. This defibration may be performed after the raw material pulp is carbamate or before the raw material pulp is carbamate. However, it is preferable to defibrate the raw material pulp after carbamate it. Hereinafter, it will be described in detail. The carbamate-ized cellulose fiber in the method for producing a carbamate-ized cellulose fiber does not mean that the carbamate-ized fine fiber is excluded.
(セルロース繊維)
 微細繊維は、原料パルプ(セルロース原料)を解繊(微細化)することで得ることができる。この解繊は、微細繊維がセルロースナノファイバーとなるように行っても、マイクロ繊維セルロース(ミクロフィブリル化セルロース)となるように行ってもよい。ただし、マイクロ繊維セルロースとなるように行う方が好ましい。マイクロ繊維セルロースの方が、樹脂の補強効果が向上する。また、マイクロ繊維セルロースは微細繊維であるが、同じく微細繊維であるセルロースナノファイバーよりもカルバメート基で変性する(カルバメート化)するのが容易である。ただし、微細化する前の原料パルプをカルバメート化するのが好ましく、この場合においては、マイクロ繊維セルロース及びセルロースナノファイバーは同等である。
(Cellulose fiber)
Fine fibers can be obtained by defibrating (miniaturizing) the raw material pulp (cellulose raw material). This defibration may be carried out so that the fine fibers become cellulose nanofibers or microfiber cellulose (microfibrillated cellulose). However, it is preferable to use microfiber cellulose. Microfiber cellulose improves the reinforcing effect of the resin. Further, although the microfiber cellulose is a fine fiber, it is easier to modify (carbamate) with a carbamate group than the cellulose nanofiber which is also a fine fiber. However, it is preferable to carbamate the raw material pulp before it is miniaturized, and in this case, the microfiber cellulose and the cellulose nanofiber are equivalent.
 本形態においてマイクロ繊維セルロースとは、セルロースナノファイバーよりも平均繊維径(幅)の太い繊維を意味する。具体的には、平均繊維径が、例えば0.1~19μm、好ましくは0.2~15μm、より好ましくは0.5超~10μmである。マイクロ繊維セルロースの平均繊維径が0.1μmを下回ると(未満になると)、セルロースナノファイバーであるのと変わらなくなり、樹脂の強度(特に曲げ弾性率)向上効果に劣るおそれがある。また、解繊時間が長くなり、大きなエネルギーが必要になる。さらに、セルロース繊維スラリーの脱水性が悪化する。脱水性が悪化すると、乾燥に大きなエネルギーが必要になり、乾燥に大きなエネルギーをかけるとマイクロ繊維セルロースが熱劣化して、強度が低下するおそれがある。他方、マイクロ繊維セルロースの平均繊維径が19μmを上回ると(超えると)、パルプであるのと変わらなくなり、補強効果が十分でなくなるおそれがある。 In this embodiment, the microfiber cellulose means a fiber having an average fiber diameter (width) thicker than that of cellulose nanofibers. Specifically, the average fiber diameter is, for example, 0.1 to 19 μm, preferably 0.2 to 15 μm, and more preferably more than 0.5 to 10 μm. When the average fiber diameter of the microfiber cellulose is less than 0.1 μm (less than 0.1 μm), it is no different from that of cellulose nanofibers, and the effect of improving the strength (particularly bending elastic modulus) of the resin may be inferior. In addition, the defibration time becomes long and a large amount of energy is required. Further, the dehydration property of the cellulose fiber slurry is deteriorated. When the dehydration property deteriorates, a large amount of energy is required for drying, and when a large amount of energy is applied to drying, the microfiber cellulose is thermally deteriorated and the strength may decrease. On the other hand, if the average fiber diameter of the microfiber cellulose exceeds (exceeds) 19 μm, it is no different from pulp, and the reinforcing effect may not be sufficient.
 本形態において微細繊維(マイクロ繊維セルロース及びセルロースナノファイバー)の平均繊維径の測定方法は、次のとおりである。
 まず、固形分濃度0.01~0.1質量%の微細繊維の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
In this embodiment, the method for measuring the average fiber diameter of fine fibers (microfiber cellulose and cellulose nanofibers) is as follows.
First, 100 ml of an aqueous dispersion of fine fibers having a solid content concentration of 0.01 to 0.1% by mass is filtered through a membrane filter made of Teflon (registered trademark), and the solvent is replaced once with 100 ml of ethanol and three times with 20 ml of t-butanol. do. Next, it is freeze-dried and coated with osmium to prepare a sample. This sample is observed with an electron microscope SEM image at a magnification of 3,000 to 30,000 times depending on the width of the constituent fibers. Specifically, two diagonal lines are drawn on the observation image, and three straight lines passing through the intersections of the diagonal lines are arbitrarily drawn. Further, the width of a total of 100 fibers intersecting with these three straight lines is visually measured. Then, the median diameter of the measured value is taken as the average fiber diameter.
 微細繊維は、原料パルプを解繊(微細化)することで得ることができる。原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、セルロース系パウダーなどと言われる粉砕物(粉状物)の状態等であってもよい。 Fine fibers can be obtained by defibrating (miniaturizing) the raw material pulp. The raw material pulp includes, for example, wood pulp made from broadleaf trees, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, hemp, carrot fiber, etc., recycled paper pulp made from recovered waste paper, waste paper, etc. One type or two or more types can be selected and used from (DIP) and the like. The above-mentioned various raw materials may be, for example, in the state of a crushed product (powder) called a cellulosic powder or the like.
 ただし、不純物の混入を可及的に避けるために、原料パルプとしては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。 However, in order to avoid contamination with impurities as much as possible, it is preferable to use wood pulp as the raw material pulp. As the wood pulp, for example, one kind or two or more kinds can be selected and used from chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP) and the like.
 広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。 The hardwood kraft pulp may be hardwood bleached kraft pulp, hardwood unbleached kraft pulp, or hardwood semi-bleached kraft pulp. Similarly, the softwood kraft pulp may be softwood bleached kraft pulp, unbleached softwood kraft pulp, or semi-bleached softwood kraft pulp.
 機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。 Examples of the mechanical pulp include stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemi-grand pulp (CGP), thermo-grand pulp (TGP), and ground pulp (GP). One or more of the thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), refiner mechanical pulp (RMP), bleached thermomechanical pulp (BTMP) and the like can be selected and used.
 原料パルプは、解繊するに先立って化学的手法によって前処理することができる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、酵素処理について詳細に説明する。 Raw pulp can be pretreated by a chemical method prior to defibration. Pretreatment by chemical method includes, for example, hydrolysis of polysaccharide with acid (acid treatment), hydrolysis of polysaccharide with enzyme (enzyme treatment), swelling of polysaccharide with alkali (alkali treatment), oxidation of polysaccharide with oxidizing agent (acid treatment). Oxidation treatment), reduction of polysaccharides with a reducing agent (reduction treatment), and the like can be exemplified. However, as the pretreatment by a chemical method, it is preferable to carry out an enzyme treatment, and in addition, it is more preferable to carry out one or more treatments selected from an acid treatment, an alkali treatment and an oxidation treatment. Hereinafter, the enzyme treatment will be described in detail.
 酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース原料の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を惹き起こす。 As the enzyme used for the enzyme treatment, it is preferable to use at least one of the cellulase-based enzyme and the hemicellulase-based enzyme, and it is more preferable to use both in combination. The use of these enzymes facilitates the defibration of cellulose raw materials. The cellulase-based enzyme causes the decomposition of cellulose in the coexistence of water. In addition, hemicellulose-based enzymes induce the decomposition of hemicellulose in the presence of water.
 セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。 Examples of the cellulase-based enzymes include Trichoderma (Filamentous fungus), Acremonium (Filamentous fungus), Aspergillus (Filamentous fungus), Fanerochaete (Phanerochaete), Tramethes (Tra). Genus Humicola, genus Humicola, genus Bacillus, genus Schizophyllum, genus Streptomyces, genus Pseudomonas, bacteria produced by Pseudomonas, etc. Enzymes can be used. These cellulase-based enzymes can be purchased as reagents or commercial products. Commercially available products include, for example, cellulosein T2 (manufactured by HPI), Meicerase (manufactured by Meiji Seika), Novozyme 188 (manufactured by Novozyme), Multifect CX10L (manufactured by Genencore), and cellulase-based enzyme GC220 (manufactured by Genecore). Manufactured by) and the like can be exemplified.
 また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)のいずれかもを使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。 Further, as the cellulase-based enzyme, either EG (endoglucanase) or CBH (cellobiohydrolase) can be used. EG and CBH may be used alone or in combination. Further, it may be used in combination with a hemicellulase-based enzyme.
 ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。 As the hemicellulase-based enzyme, for example, xylanase, which is an enzyme that decomposes xylan, mannase, which is an enzyme that decomposes mannan, and arabanase, which is an enzyme that decomposes araban, can be used. can. In addition, pectinase, which is an enzyme that decomposes pectin, can also be used.
 ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)から微細繊維を得る場合は、キシラナーゼを使用するのが好ましい。 Hemicellulose is a polysaccharide excluding pectins between the cellulose microfibrils of the plant cell wall. Hemicellulose is diverse and varies between wood types and cell wall layers. Glucomannan is the main component in the secondary walls of conifers, and 4-O-methylglucuronoxylan is the main component in the secondary walls of hardwoods. Therefore, when fine fibers are obtained from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. Further, when fine fibers are obtained from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.
 セルロース原料に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース原料に対する酵素の添加量は、好ましくは0.1~3質量%、より好ましくは0.3~2.5質量%、特に好ましくは0.5~2質量%である。酵素の添加量が0.1質量%を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、微細繊維の収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。 The amount of enzyme added to the cellulose raw material is determined by, for example, the type of enzyme, the type of wood used as the raw material (conifer or hardwood), the type of mechanical pulp, and the like. However, the amount of the enzyme added to the cellulose raw material is preferably 0.1 to 3% by mass, more preferably 0.3 to 2.5% by mass, and particularly preferably 0.5 to 2% by mass. If the amount of the enzyme added is less than 0.1% by mass, the effect of the addition of the enzyme may not be sufficiently obtained. On the other hand, if the amount of the enzyme added exceeds 3% by mass, cellulose may be saccharified and the yield of fine fibers may decrease. In addition, there is also a problem that the improvement of the effect corresponding to the increase in the addition amount cannot be recognized.
 酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。 When a cellulase-based enzyme is used as the enzyme, the pH at the time of enzyme treatment is preferably in a weakly acidic region (pH = 3.0 to 6.9) from the viewpoint of the reactivity of the enzyme. On the other hand, when a hemicellulase-based enzyme is used as the enzyme, the pH at the time of enzyme treatment is preferably in a weak alkaline region (pH = 7.1 to 10.0).
 酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が低下し難くなり、処理時間の長期化を防止することができる。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。 The temperature during the enzyme treatment is preferably 30 to 70 ° C, more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C, regardless of whether the cellulase-based enzyme or the hemicellulase-based enzyme is used as the enzyme. .. When the temperature at the time of enzyme treatment is 30 ° C. or higher, the enzyme activity is less likely to decrease, and the treatment time can be prevented from being prolonged. On the other hand, if the temperature at the time of enzyme treatment is 70 ° C. or lower, inactivation of the enzyme can be prevented.
 酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。 The enzyme treatment time is determined by, for example, the type of enzyme, the temperature of the enzyme treatment, the pH at the time of the enzyme treatment, and the like. However, the general enzyme treatment time is 0.5 to 24 hours.
 酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。 It is preferable to inactivate the enzyme after the enzyme treatment. As a method for inactivating the enzyme, for example, there are a method of adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher), a method of adding hot water at 80 to 100 ° C., and the like.
 次に、アルカリ処理の方法について説明する。
 解繊に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース原料の分散が促進される。
Next, the method of alkali treatment will be described.
When alkali treatment is performed prior to defibration, some of the hydroxyl groups of hemicellulose and cellulose in pulp are dissociated, and the molecules are anionized, weakening intramolecular and intermolecular hydrogen bonds and promoting dispersion of cellulose raw materials in defibration. Ru.
 アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。 Examples of the alkali used for the alkali treatment include sodium hydroxide, lithium hydroxide, potassium hydroxide, aqueous ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide and the like. Organic alkali or the like can be used. However, from the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
 解繊に先立って酵素処理や酸処理、酸化処理を施すと、微細繊維の保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、微細繊維の保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。 By performing enzyme treatment, acid treatment, and oxidation treatment prior to defibration, the water retention of the fine fibers can be lowered, the crystallization degree can be increased, and the homogeneity can be increased. In this respect, if the water retention level of the fine fibers is low, dehydration is likely to occur, and the dehydration property of the cellulose fiber slurry is improved.
 原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。結果、解繊のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。ただし、前処理は、微細繊維のアスペクト比を低下させるため、樹脂の補強材として使用する場合には、過度の前処理を避けるのが好ましい。 When the raw material pulp is subjected to enzyme treatment, acid treatment, or oxidation treatment, the hemicellulose and the amorphous region of cellulose that the pulp has are decomposed. As a result, the energy of defibration can be reduced, and the uniformity and dispersibility of the cellulose fibers can be improved. However, since the pretreatment reduces the aspect ratio of the fine fibers, it is preferable to avoid excessive pretreatment when used as a reinforcing material for the resin.
 原料パルプの解繊は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用して原料パルプを叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましい。 For defibration of raw pulp, for example, beaters, high-pressure homogenizers, homogenizers such as high-pressure homogenizers, stone mill type friction machines such as grinders and grinders, single-screw kneaders, multi-screw kneaders, kneader refiners, jet mills, etc. It can be done by beating the raw pulp using. However, it is preferable to use a refiner or a jet mill.
 微細繊維の平均繊維長(単繊維の長さの平均)は、好ましくは0.10~2.00mm、より好ましくは0.12~1.50mm、特に好ましくは0.15~1.00mmである。平均繊維長が0.10mmを下回ると、繊維同士の三次元ネットワークを形成できず、複合樹脂の曲げ弾性率等が低下するおそれがあり、補強効果が向上しないとされる可能性がある。他方、平均繊維長が2.00mmを上回ると、原料パルプと変わらない長さのため補強効果が不十分となるおそれがある。 The average fiber length of the fine fibers (average length of the single fibers) is preferably 0.10 to 2.00 mm, more preferably 0.12 to 1.50 mm, and particularly preferably 0.15 to 1.00 mm. .. If the average fiber length is less than 0.10 mm, a three-dimensional network of fibers cannot be formed, the flexural modulus of the composite resin may decrease, and the reinforcing effect may not be improved. On the other hand, if the average fiber length exceeds 2.00 mm, the reinforcing effect may be insufficient because the length is the same as that of the raw material pulp.
 微細繊維の原料となるセルロース原料の平均繊維長は、好ましくは0.50~5.00mm、より好ましくは1.00~3.00mm、特に好ましくは1.50~2.50mmである。セルロース原料の平均繊維長が0.50mmを下回ると、解繊処理した微細繊維の、樹脂の補強効果が十分得られない可能性がある。他方、平均繊維長が5.00mmを上回ると、解繊時の製造コストの面で不利となるおそれがある。 The average fiber length of the cellulose raw material as a raw material for fine fibers is preferably 0.50 to 5.00 mm, more preferably 1.00 to 3.00 mm, and particularly preferably 1.50 to 2.50 mm. If the average fiber length of the cellulose raw material is less than 0.50 mm, the effect of reinforcing the resin of the defibrated fine fibers may not be sufficiently obtained. On the other hand, if the average fiber length exceeds 5.00 mm, it may be disadvantageous in terms of manufacturing cost at the time of defibration.
 微細繊維の平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The average fiber length of fine fibers can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, and the like.
 本形態において微細繊維の平均繊維長は、バルメット社製の繊維分析計「FS5」によって測定した値である。なお、以下で説明するファイン率(Fine率)についても同様である。 In this embodiment, the average fiber length of the fine fibers is a value measured by a fiber analyzer "FS5" manufactured by Valmet. The same applies to the fine rate (Fine rate) described below.
 微細繊維のファイン率は、30%以上であるのが好ましく、35~99%であるのがより好ましく、40~95%であるのが特に好ましい。ファイン率が30%以上であると、均質な繊維の割合が多く、複合樹脂の破壊が進行し難くなる。ただし、ファイン率が99%を超えると、曲げ弾性率が不十分になる可能性がある。 The fine ratio of the fine fibers is preferably 30% or more, more preferably 35 to 99%, and particularly preferably 40 to 95%. When the fine ratio is 30% or more, the proportion of homogeneous fibers is large, and the destruction of the composite resin is difficult to proceed. However, if the fine ratio exceeds 99%, the flexural modulus may be insufficient.
 以上は微細繊維のファイン率であるが、微細繊維の原料となるセルロース原料のファイン率も所定の範囲内としておくこととより好ましいものとなる。具体的には、微細繊維の原料となるセルロース原料のファイン率が、1%以上であるのが好ましく、3~20%であるのがより好ましく、5~18%であるのが特に好ましい。解繊前のセルロース原料のファイン率が上記範囲内であれば、微細繊維のファイン率が30%以上になるように解繊したとしても繊維のダメージが少なく、樹脂の補強効果が向上すると考えられる。 The above is the fine ratio of fine fibers, but it is more preferable to keep the fine ratio of the cellulose raw material, which is the raw material of fine fibers, within a predetermined range. Specifically, the fine ratio of the cellulose raw material as a raw material for fine fibers is preferably 1% or more, more preferably 3 to 20%, and particularly preferably 5 to 18%. If the fine ratio of the cellulose raw material before defibration is within the above range, it is considered that even if the fine fibers are defibrated so that the fine ratio is 30% or more, the damage to the fibers is small and the reinforcing effect of the resin is improved. ..
 ファイン率の調整は、酵素処理等の前処理によって行うことができる。ただし、特に酵素処理する場合は、繊維自体がボロボロになって樹脂の補強効果が低下する可能性がある。したがって、この観点からの酵素の添加量は、2質量%以下であるのが好ましく、1質量%以下であるのがより好ましく、0.5質量%以下であるのが特に好ましい。また、酵素処理しない(添加量0質量%)のも1つの選択枠である。 The fine rate can be adjusted by pretreatment such as enzyme treatment. However, especially in the case of enzyme treatment, the fiber itself may become tattered and the reinforcing effect of the resin may be reduced. Therefore, the amount of the enzyme added from this point of view is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. Further, it is also one of the selection frames that the enzyme treatment is not performed (addition amount: 0% by mass).
 本形態において「ファイン率」とは、繊維長が0.2mm以下であるパルプ繊維の質量基準の割合をいう。 In this embodiment, the "fine ratio" refers to the mass-based ratio of pulp fibers having a fiber length of 0.2 mm or less.
 微細繊維のアスペクト比は、好ましくは2~15,000、より好ましくは10~10,000である。アスペクト比が2を下回ると、三次元ネットワークを十分に構築することができないため、たとえ平均繊維長が0.10mm以上であるとしても、補強効果が不十分となるおそれがある。他方、アスペクト比が15,000を上回ると、微細繊維同士の絡み合いが高くなり、樹脂中での分散が不十分となるおそれがある。 The aspect ratio of the fine fibers is preferably 2 to 15,000, more preferably 10 to 10,000. If the aspect ratio is less than 2, the three-dimensional network cannot be sufficiently constructed, and even if the average fiber length is 0.10 mm or more, the reinforcing effect may be insufficient. On the other hand, if the aspect ratio exceeds 15,000, the entanglement of the fine fibers becomes high, and the dispersion in the resin may be insufficient.
 本形態においてアスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるため補強効果が上がるが、他方で引っかかりが多くなる分、樹脂の延性が低下するものと考えられる。 In this embodiment, the aspect ratio is a value obtained by dividing the average fiber length by the average fiber width. It is considered that the larger the aspect ratio, the more places where catching occurs, so that the reinforcing effect increases, but on the other hand, the more catching, the lower the ductility of the resin.
 微細繊維のフィブリル化率は、好ましくは1.0~30.0%、より好ましくは1.5~20.0%、特に好ましくは2.0~15.0%である。フィブリル化率が30.0%を上回ると、水との接触面積が広くなり過ぎるため、たとえ平均繊維幅が0.1μm以上に留まる範囲で解繊したとしても、脱水が困難になる可能性がある。他方、フィブリル化率が1.0%下回ると、フィブリル同士の水素結合が少なく、強硬な三次元ネットワークを形成することができなくなるおそれがある。 The fibrillation rate of the fine fibers is preferably 1.0 to 30.0%, more preferably 1.5 to 20.0%, and particularly preferably 2.0 to 15.0%. If the fibrillation rate exceeds 30.0%, the contact area with water becomes too large, and dehydration may become difficult even if the fibers are defibrated within the range where the average fiber width remains 0.1 μm or more. be. On the other hand, if the fibrillation rate is lower than 1.0%, there are few hydrogen bonds between the fibrils, and there is a possibility that a strong three-dimensional network cannot be formed.
 本形態においてフィブリル化率とは、微細繊維をJIS-P-8220:2012「パルプ-離解方法」に準拠して離解し、得られた離解パルプをFiberLab.(Kajaani社)を用いて測定した値をいう。 In this embodiment, the fibrillation rate means that fine fibers are dissociated in accordance with JIS-P-8220: 2012 "Pulp-dissolution method", and the obtained dissociated pulp is referred to as FiberLab. (Kajaani) means a value measured using.
 微細繊維の結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、パルプ等の他の繊維との混合性は向上するものの、繊維自体の強度が低下するため、樹脂の強度を向上することができなくなるおそれがある。この点、本形態においては、カルバメート化における加熱温度を高温化するが、従前はこの高温化により繊維がダメージを受けると考え、高温化しなかった。しかしながら、加熱温度を高温化すると加熱時間が短くなるため、繊維が長時間熱に曝されるということがなくなり、繊維へのダメージ蓄積が抑えられ、また、結晶化度の低下を抑えられる。したがって、本形態によると、樹脂の補強効果に優れ、また、結晶化度を50%以上とするのも極めて容易である。他方、微細繊維の結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、分子内の強固な水素結合割合が多くなり、繊維自体が剛直となり、分散性が劣るようになる。 The crystallinity of the fine fibers is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more. When the crystallinity is less than 50%, the mixability with other fibers such as pulp is improved, but the strength of the fibers themselves is lowered, so that the strength of the resin may not be improved. In this respect, in this embodiment, the heating temperature in carbamate formation is increased, but in the past, it was considered that the fibers would be damaged by this increase in temperature, and the temperature was not increased. However, when the heating temperature is raised to a high temperature, the heating time is shortened, so that the fibers are not exposed to heat for a long time, damage accumulation to the fibers can be suppressed, and a decrease in crystallinity can be suppressed. Therefore, according to this embodiment, the reinforcing effect of the resin is excellent, and it is extremely easy to set the crystallinity to 50% or more. On the other hand, the crystallinity of the fine fibers is preferably 95% or less, more preferably 90% or less, and particularly preferably 85% or less. When the crystallinity exceeds 95%, the ratio of strong hydrogen bonds in the molecule increases, the fiber itself becomes rigid, and the dispersibility becomes inferior.
 微細繊維の結晶化度は、例えば、原料パルプの選定、前処理、微細化処理で任意に調整可能である。 The crystallinity of the fine fibers can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, and micronization treatment.
 本形態において結晶化度は、JIS K 0131(1996)に準拠して測定した値である。 In this embodiment, the crystallinity is a value measured according to JIS K 0131 (1996).
 微細繊維のパルプ粘度は、好ましくは2cps以上、より好ましくは4cps以上である。微細繊維のパルプ粘度が2cpsを下回ると、微細繊維の凝集を抑制するのが困難になるおそれがある。 The pulp viscosity of the fine fibers is preferably 2 cps or more, more preferably 4 cps or more. If the pulp viscosity of the fine fibers is less than 2 cps, it may be difficult to suppress the aggregation of the fine fibers.
 本形態においてパルプ粘度は、TAPPI T 230に準拠して測定した値である。 In this embodiment, the pulp viscosity is a value measured according to TAPPI T 230.
 微細繊維のフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下である。微細繊維のフリーネスが500mlを上回ると、樹脂の強度向上効果が十分に得られなくなるおそれがある。 The freeness of the fine fiber is preferably 500 ml or less, more preferably 300 ml or less, and particularly preferably 100 ml or less. If the freeness of the fine fibers exceeds 500 ml, the effect of improving the strength of the resin may not be sufficiently obtained.
 本形態においてフリーネスは、JIS P8121-2(2012)に準拠して測定した値である。 In this embodiment, the freeness is a value measured in accordance with JIS P8121-2 (2012).
 微細繊維のゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、樹脂との相溶性が著しく低下し補強効果が不十分となるおそれがある。他方、ゼータ電位が20mVを上回ると、分散安定性が低下するおそれがある。 The zeta potential of the fine fiber is preferably −150 to 20 mV, more preferably -100 to 0 mV, and particularly preferably -80 to -10 mV. If the zeta potential is lower than −150 mV, the compatibility with the resin may be significantly reduced and the reinforcing effect may be insufficient. On the other hand, if the zeta potential exceeds 20 mV, the dispersion stability may decrease.
 微細繊維の保水度は、好ましくは80~400%、より好ましくは90~350%、特に好ましくは100~300%である。保水度が80%を下回ると、原料パルプと変わらないため補強効果が不十分となるおそれがある。他方、保水度が400%を上回ると、脱水性が劣る傾向にあり、また、凝集し易くなる。この点、微細繊維の保水度は、当該繊維のヒドロキシ基がカルバメート基に置換されていることで、より低くすることができ、脱水性や乾燥性を高めることができる。 The water retention of the fine fibers is preferably 80 to 400%, more preferably 90 to 350%, and particularly preferably 100 to 300%. If the water retention level is less than 80%, the reinforcing effect may be insufficient because it is the same as the raw material pulp. On the other hand, when the degree of water retention exceeds 400%, the dehydration property tends to be inferior and the agglutination tends to occur. In this respect, the water retention degree of the fine fiber can be lowered by substituting the hydroxy group of the fiber with the carbamate group, and the dehydration property and the dryness can be improved.
 微細繊維の保水度は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。 The water retention of fine fibers can be arbitrarily adjusted by, for example, selection of raw material pulp, pretreatment, defibration, etc.
 本形態において保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。 In this embodiment, the degree of water retention is JAPAN TAPPI No. It is a value measured according to 26 (2000).
 本形態の微細繊維は、カルバメート基を有する。どのようにしてカルバメート基を有するものとされているかは特に限定されない。例えば、セルロース原料がカルバメート化されていることでカルバメート基を有するものであっても、微細繊維(解繊されたセルロース原料)がカルバメート化されることでカルバメート基を有するものであってもよい。 The fine fiber of this embodiment has a carbamate group. How it is supposed to have a carbamate group is not particularly limited. For example, the cellulose raw material may be carbamate to have a carbamate group, or the fine fibers (defibrated cellulose raw material) may be carbamate to have a carbamate group.
 なお、カルバメート基を有するとは、セルロース繊維にカルバメート基(カルバミン酸のエステル)が導入された状態を意味する。カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH2、-O-CONHR、-O-CO-NR2等で表わされる基である。つまり、カルバメート基は、下記の構造式(1)で示すことができる。 The term "having a carbamic acid group" means a state in which a carbamic acid group (ester of carbamic acid) is introduced into the cellulose fiber. The carbamate group is a group represented by —O—CO-NH—, for example, a group represented by —O—CO—NH 2 , —O—CONHR, —O—CO—NR 2, and the like. That is, the carbamate group can be represented by the following structural formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここでRは、それぞれ独立して、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。 Here, R is independently a saturated linear hydrocarbon group, a saturated branched chain hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated branched chain hydrocarbon group, and the like. An aromatic group and at least one of these inducing groups.
 飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。 Examples of the saturated linear hydrocarbon group include a linear alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group and a propyl group.
 飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。 Examples of the saturated branched chain hydrocarbon group include a branched chain alkyl group having 3 to 10 carbon atoms such as an isopropyl group, a sec-butyl group, an isobutyl group and a tert-butyl group.
 飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。 Examples of the saturated cyclic hydrocarbon group include cycloalkyl groups such as cyclopentyl group, cyclohexyl group and norbornyl group.
 不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。 Examples of the unsaturated linear hydrocarbon group include a linear alkenyl group having 2 to 10 carbon atoms such as an ethenyl group, a propene-1-yl group and a propene-3-yl group, an ethynyl group and a propyne-1. Examples thereof include a linear alkynyl group having 2 to 10 carbon atoms such as an yl group and a propyne-3-yl group.
 不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。 Examples of the unsaturated branched chain hydrocarbon group include a branched chain alkenyl group having 3 to 10 carbon atoms such as a propene-2-yl group, a butene-2-yl group, and a butene-3-yl group, and butin-3. -A branched chain alkynyl group having 4 to 10 carbon atoms such as an yl group can be mentioned.
 芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。 Examples of the aromatic group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and the like.
 誘導基としては、例えば、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。 Examples of the inducing group include the above-mentioned saturated linear hydrocarbon group, saturated branched chain hydrocarbon group, saturated cyclic hydrocarbon group, unsaturated linear hydrocarbon group, unsaturated branched chain hydrocarbon group and aromatic. Examples thereof include a group in which one or more hydrogen atoms contained in the group are substituted with a substituent (for example, a hydroxy group, a carboxy group, a halogen atom, etc.).
 カルバメート基を有する(カルバメート基が導入された)微細繊維においては、極性の高いヒドロキシ基の一部又は全部が、相対的に極性の低いカルバメート基に置換されている。したがって、カルバメート基を有する微細繊維は、親水性が低く、極性の低い樹脂等との親和性が高い。結果、カルバメート基を有する微細繊維は、樹脂との均一分散性に優れる。また、カルバメート基を有する微細繊維のスラリーは、粘性が低く、ハンドリング性が良い。 In the fine fiber having a carbamate group (in which a carbamate group is introduced), a part or all of the highly polar hydroxy group is replaced with a relatively low polarity carbamate group. Therefore, the fine fiber having a carbamate group has low hydrophilicity and high affinity with a resin having low polarity. As a result, the fine fiber having a carbamate group is excellent in uniform dispersibility with the resin. Further, the slurry of fine fibers having a carbamate group has low viscosity and good handleability.
 微細繊維のヒドロキシ基に対するカルバメート基の置換率は、好ましくは1.0~5.0mmol/g、より好ましくは1.2~3.0mmol/g、特に好ましくは1.5~2.0mmol/gである。置換率を1.0mmol/g以上にすると、カルバメート基を導入した効果、特に樹脂の曲げ弾性率の向上効果が確実に奏せられる。他方、置換率が5.0mmol/gを超えると、セルロース繊維が繊維の形状を保てなくなり、樹脂の補強効果が十分得られないおそれがある。また、カルバメート基の置換率が2.0mmol/gを超えると、原料パルプをカルバメート化する場合においてパルプの平均繊維長が短くなり、結果として微細繊維の平均繊維長が0.1mm未満となり易く、十分な樹脂補強効果が出せなくなるおそれがある。なお、原料パルプをカルバメート化する場合においては、以上の置換率が原料パルプのカルバメート基の置換率にそのまま当てはまる。 The substitution rate of the carbamate group with respect to the hydroxy group of the fine fiber is preferably 1.0 to 5.0 mmol / g, more preferably 1.2 to 3.0 mmol / g, and particularly preferably 1.5 to 2.0 mmol / g. Is. When the substitution rate is 1.0 mmol / g or more, the effect of introducing the carbamate group, particularly the effect of improving the flexural modulus of the resin can be surely exhibited. On the other hand, if the substitution rate exceeds 5.0 mmol / g, the cellulose fibers may not be able to maintain the shape of the fibers, and the reinforcing effect of the resin may not be sufficiently obtained. Further, when the substitution rate of the carbamate group exceeds 2.0 mmol / g, the average fiber length of the pulp becomes short when the raw material pulp is carbamate, and as a result, the average fiber length of the fine fibers tends to be less than 0.1 mm. There is a risk that sufficient resin reinforcement effect cannot be obtained. In the case of carbamate of the raw material pulp, the above substitution rate directly applies to the substitution rate of the carbamate group of the raw material pulp.
 以上をより詳細に説明すると、まず、セルロースに存在する水酸基は、セルロース自身の水素結合に寄与し、樹脂と複合化する場合にセルロース繊維同士が水素結合で凝集してし、補強繊維としての働きが阻害される。そこで、水酸基をカルバメート基で置換(特に、置換率1.0mmol/g以上。)することで、上記水素結合を弱め、繊維の凝集を抑えて補強材として効果的に機能させる。もっとも、カルバメート基で水酸基を置換し過ぎると、樹脂との親和性が向上し過ぎて樹脂と複合化した際に樹脂へ溶解するおそれがある。溶解した場合は、繊維として存在せずに分子として存在することになるため、補強性が失われてしまうと考えられる。そこで、置換率1.0~2.0mmol/gとすることで、繊維自身の過度の凝集を抑えつつ、補強繊維の形態のままで樹脂中に存在して補強性を発揮することができると考えるのである。 Explaining the above in more detail, first, the hydroxyl group existing in the cellulose contributes to the hydrogen bond of the cellulose itself, and when it is compounded with the resin, the cellulose fibers aggregate by the hydrogen bond and act as a reinforcing fiber. Is hindered. Therefore, by substituting the hydroxyl group with a carbamate group (particularly, the substitution rate is 1.0 mmol / g or more), the hydrogen bond is weakened, the aggregation of the fiber is suppressed, and the fiber is effectively functioned as a reinforcing material. However, if the hydroxyl group is replaced with a carbamate group too much, the affinity with the resin is improved too much and there is a possibility that the hydroxyl group will be dissolved in the resin when it is compounded with the resin. When dissolved, it does not exist as a fiber but exists as a molecule, so it is considered that the reinforcing property is lost. Therefore, by setting the substitution rate to 1.0 to 2.0 mmol / g, it is possible to suppress excessive agglutination of the fibers themselves and to exist in the resin in the form of the reinforcing fibers and exhibit reinforcing properties. Think about it.
 本形態においてカルバメート基の置換率(mmol/g)とは、カルバメート基を有するセルロース原料1gあたりに含まれるカルバメート基の物質量をいう。カルバメート基の置換率は、カルバメート化したパルプ内に存在するN原子をケルダール法によって測定し、単位重量当たりのカルバメート化率を算出する。また、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。なお、上記したように、微細繊維とする前、つまり解繊する前にカルバメート化した場合は、以上の置換率がセルロース原料におけるカルバメート基の置換率ということになる。 In this embodiment, the substitution rate of the carbamate group (mmol / g) means the amount of substance of the carbamate group contained in 1 g of the cellulose raw material having the carbamate group. The substitution rate of the carbamate group is measured by measuring the N atoms present in the carbamate pulp by the Kjeldahl method, and the carbamateization rate per unit weight is calculated. Cellulose is a polymer having anhydrous glucose as a structural unit, and has three hydroxy groups per structural unit. As described above, in the case of carbamate before making fine fibers, that is, before defibration, the above substitution rate is the substitution rate of the carbamate group in the cellulose raw material.
<カルバメート化>
 ここでカルバメート化について、詳細に説明する。
 微細繊維(解繊前にカルバメート化する場合は、セルロース原料。以下、同様であり、単に「セルロース繊維」ともいう。)にカルバメート基を導入する(カルバメート化)点については、前述したようにセルロース原料をカルバメート化してから微細化する方法と、セルロース原料を微細化してからカルバメート化する方法とがある。この点、本明細書においては、先にセルロース原料の解繊について説明し、その後にカルバメート化(変性)について説明している。しかしながら、解繊及びカルバメート化は、どちらを先に行うこともできる。ただし、先にカルバメート化を行い、その後に、解繊をする方が好ましい。解繊する前のセルロース原料は脱水効率が高く、また、カルバメート化に伴う加熱によってセルロース繊維が解繊され易い状態になるためである。なお、先にカルバメート化を行う場合に関して、カルバメート化を行った後、解繊を行う前の段階までも、カルバメート化セルロース繊維の製造方法ということができる。
<Carbamate>
Here, carbamate formation will be described in detail.
As described above, the point of introducing a carbamate group (carbamate formation) into fine fibers (cellulose raw material when carbamate before defibration; the same applies hereinafter, also simply referred to as "cellulose fiber") is cellulose. There are a method of carbamating the raw material and then making it finer, and a method of making the cellulose raw material finer and then making it into carbamate. In this regard, in the present specification, the defibration of the cellulose raw material will be described first, and then the carbamate formation (modification) will be described. However, either defibration or carbamate can be done first. However, it is preferable to carry out carbamate first and then defibrate. This is because the cellulose raw material before defibration has high dehydration efficiency, and the cellulose fibers are easily defibrated by heating accompanying carbamate formation. Regarding the case of carbamating first, it can be said that it is a method for producing carbamated cellulose fibers even after the carbamating and before the defibration.
 セルロース繊維をカルバメート化する工程は、例えば、混合処理、除去処理、及び加熱処理に、主に区分することができる。なお、混合処理及び除去処理は合わせて、加熱処理に供される混合物を調製する調整処理ということもできる。また、カルバメート化は、有機溶剤を使用せずに化学変性することができるという利点を有する。 The step of carbamate-forming cellulose fibers can be mainly classified into, for example, a mixing treatment, a removal treatment, and a heat treatment. The mixing treatment and the removing treatment can also be referred to as an adjustment treatment for preparing a mixture to be subjected to the heat treatment. Carbamateization also has the advantage that it can be chemically modified without the use of organic solvents.
 混合処理においては、セルロース繊維と尿素や尿素の誘導体(以下、単に「尿素等」ともいう。)とを分散媒中で混合する。 In the mixing treatment, cellulose fibers and urea or a derivative of urea (hereinafter, also simply referred to as "urea or the like") are mixed in a dispersion medium.
 尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素や尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。 As the derivative of urea or urea, for example, urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, a compound in which the hydrogen atom of urea is replaced with an alkyl group or the like can be used. can. These ureas and urea derivatives can be used alone or in combination of two or more. However, it is preferable to use urea.
 セルロース繊維に対する尿素等の合計添加量(混合量)は、好ましくは1~70(w/w)%、より好ましくは5~50(w/w)%、特に好ましくは10~50(w/w)%である。添加量を1%以上にすることで、カルバメート化の効率が向上する。他方、添加量が70%を上回っても、カルバメート化は頭打ちになる。 The total amount (mixed amount) of urea or the like added to the cellulose fibers is preferably 1 to 70 (w / w)%, more preferably 5 to 50 (w / w)%, and particularly preferably 10 to 50 (w / w). )%. By increasing the addition amount to 1% or more, the efficiency of carbamate formation is improved. On the other hand, even if the addition amount exceeds 70%, the carbamate formation reaches a plateau.
 分散媒は、通常、水である。ただし、アルコール、エーテル等の他の分散媒や、水と他の分散媒との混合物を用いてもよい。 The dispersion medium is usually water. However, other dispersion media such as alcohol and ether, or a mixture of water and another dispersion medium may be used.
 混合処理においては、例えば、水にセルロース繊維及び尿素等を添加しても、尿素等の水溶液にセルロース繊維を添加しても、セルロース繊維を含むスラリーに尿素等を添加してもよい。また、均一に混合するために、添加後、攪拌してもよい。さらに、セルロース繊維と尿素等とを含む分散液には、その他の成分が含まれていてもよい。 In the mixing treatment, for example, cellulose fibers and urea may be added to water, cellulose fibers may be added to an aqueous solution of urea or the like, or urea or the like may be added to a slurry containing cellulose fibers. Further, in order to mix uniformly, the mixture may be stirred after the addition. Further, the dispersion liquid containing the cellulose fibers and urea or the like may contain other components.
 除去処理においては、混合処理において得られたセルロース繊維及び尿素等を含む分散液から分散媒を除去する。分散媒を除去することで、これに続く加熱処理において効率的に尿素等を反応させることができる。 In the removal treatment, the dispersion medium is removed from the dispersion liquid containing the cellulose fibers and urea obtained in the mixing treatment. By removing the dispersion medium, urea and the like can be efficiently reacted in the subsequent heat treatment.
 分散媒の除去は、加熱によって分散媒を揮発させることで行うのが好ましい。この方法によると、尿素等の成分を残したまま分散媒のみを効率的に除去することができる。 It is preferable to remove the dispersion medium by volatilizing the dispersion medium by heating. According to this method, only the dispersion medium can be efficiently removed while leaving components such as urea.
 除去処理における加熱温度の下限は、分散媒が水である場合は、好ましくは50℃、より好ましくは70℃、特に好ましくは90℃である。加熱温度を50℃以上にすることで効率的に分散媒を揮発させる(除去する)ことができる。他方、加熱温度の上限は、好ましくは120℃、より好ましくは100℃である。加熱温度が120℃を上回ると、分散媒と尿素が反応し、尿素が単独分解するおそれがある。 When the dispersion medium is water, the lower limit of the heating temperature in the removal treatment is preferably 50 ° C, more preferably 70 ° C, and particularly preferably 90 ° C. By setting the heating temperature to 50 ° C. or higher, the dispersion medium can be efficiently volatilized (removed). On the other hand, the upper limit of the heating temperature is preferably 120 ° C., more preferably 100 ° C. If the heating temperature exceeds 120 ° C., the dispersion medium and urea may react with each other and the urea may be decomposed independently.
 除去処理における加熱時間は、分散液の固形分濃度等に応じて適宜調節することができる。具体的には、例えば、6~24時間である。 The heating time in the removal treatment can be appropriately adjusted according to the solid content concentration of the dispersion liquid and the like. Specifically, for example, 6 to 24 hours.
 除去処理に続く加熱処理においては、セルロース繊維と尿素等との混合物を加熱処理する。この加熱処理において、セルロース繊維のヒドロキシ基の一部又は全部が尿素等と反応してカルバメート基に置換される。より詳細には、尿素等が加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸はとても反応性が高く、例えば、下記の反応式(2)に示すようにセルロース繊維の水酸基にカルバメート基が形成される。
 NH2-CO-NH2 → H-N=C=O + NH3 …(1)
 Cell-OH + H-N=C=O → Cell-CO-NH2 …(2)
In the heat treatment following the removal treatment, a mixture of cellulose fibers and urea or the like is heat-treated. In this heat treatment, a part or all of the hydroxy groups of the cellulose fibers react with urea or the like and are replaced with carbamate groups. More specifically, when urea or the like is heated, it is decomposed into isocyanic acid and ammonia as shown in the following reaction formula (1). Isocyanic acid is very reactive, and for example, a carbamate group is formed at the hydroxyl group of the cellulose fiber as shown in the following reaction formula (2).
NH 2- CO-NH 2 → H-N = C = O + NH 3 ... (1)
Cell-OH + HN = C = O → Cell-CO-NH 2 … (2)
 加熱処理における加熱温度は、好ましくは150~170℃、より好ましくは150~165℃、特に好ましくは150~160℃である。加熱温度を150℃以上とすることで、短時間の反応でもカルバメート基の置換率を1mmol/g以上とすることができる。他方、加熱温度を170℃以下とすることで、繊維のダメージを抑えることができる。なお、尿素の融点は、約134℃である。 The heating temperature in the heat treatment is preferably 150 to 170 ° C, more preferably 150 to 165 ° C, and particularly preferably 150 to 160 ° C. By setting the heating temperature to 150 ° C. or higher, the substitution rate of the carbamate group can be set to 1 mmol / g or higher even in a short-time reaction. On the other hand, by setting the heating temperature to 170 ° C. or lower, damage to the fibers can be suppressed. The melting point of urea is about 134 ° C.
 加熱処理における加熱時間は、好ましくは0.5~2.0時間、より好ましくは0.6~1.5時間、特に好ましくは0.7~1.0時間である。加熱時間を0.5時間以上にすることで、カルバメート化反応を確実に行うことができる。ただし、加熱時間2.0時間を超えると、セルロース繊維がダメージを受ける(劣化する)おそれがある。 The heating time in the heat treatment is preferably 0.5 to 2.0 hours, more preferably 0.6 to 1.5 hours, and particularly preferably 0.7 to 1.0 hours. By setting the heating time to 0.5 hours or more, the carbamate formation reaction can be reliably carried out. However, if the heating time exceeds 2.0 hours, the cellulose fibers may be damaged (deteriorated).
 このように加熱時間の長期化は、セルロース繊維の劣化を招く。そこで、加熱処理におけるpH条件が重要となる。pHは、好ましくはpH9以上、より好ましくはpH9~13、特に好ましくはpH10~12のアルカリ性条件である。また、次善の策として、pH7以下、好ましくはpH3~7、特に好ましくはpH4~7の酸性条件又は中性条件である。pH7~8の中性条件であると、セルロース繊維の平均繊維長が短くなり、樹脂の補強効果に劣る可能性がある。これに対し、pH9以上のアルカリ性条件であると、セルロース繊維の反応性が高まり、尿素等への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。他方、pH7以下の酸性条件であると、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。ただし、可能であれば、アルカリ性条件で加熱処理する方が好ましい。酸性条件であるとセルロースの酸加水分解が進行するおそれがあるためである。 Thus, prolonged heating time causes deterioration of cellulose fibers. Therefore, the pH condition in the heat treatment becomes important. The pH is preferably an alkaline condition of pH 9 or higher, more preferably pH 9 to 13, and particularly preferably pH 10 to 12. Further, as the next best measure, the pH is 7 or less, preferably pH 3 to 7, and particularly preferably pH 4 to 7, which is an acidic condition or a neutral condition. Under neutral conditions of pH 7 to 8, the average fiber length of the cellulose fibers becomes short, and the reinforcing effect of the resin may be inferior. On the other hand, under alkaline conditions of pH 9 or higher, the reactivity of the cellulose fibers is enhanced, the reaction with urea or the like is promoted, and the carbamate-forming reaction is carried out efficiently, so that the average fiber length of the cellulose fibers should be sufficiently secured. Can be done. On the other hand, under acidic conditions of pH 7 or less, the reaction of decomposing urea or the like into isocyanic acid and ammonia proceeds, the reaction with cellulose fibers is promoted, and the carbamate formation reaction is performed efficiently, so that the average fiber length of the cellulose fibers is sufficient. Can be secured. However, if possible, it is preferable to heat-treat under alkaline conditions. This is because acid hydrolysis of cellulose may proceed under acidic conditions.
 pHの調整は、混合物に酸性化合物(例えば、酢酸、クエン酸等。)やアルカリ性化合物(例えば、水酸化ナトリウム、水酸化カルシウム等。)を添加すること等によって行うことができる。 The pH can be adjusted by adding an acidic compound (for example, acetic acid, citric acid, etc.) or an alkaline compound (for example, sodium hydroxide, calcium hydroxide, etc.) to the mixture.
 ただし、pHを酸性にする場合の加熱処理は、尿素及び尿素の誘導体1g(尿素及び尿素の誘導体の合計質量)に対して有機酸イオンが0.001mmol以上添加された条件で行うのが好ましく、0.1~10.0mmol添加された条件で行うのがより好ましく、1.0~5.0mmol添加された条件で行うのが特に好ましい。有機酸が添加されていることで、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応する。ただし、有機酸イオンが0.001mmol/gを下回ると、かかる効果が奏せられないおそれがある。他方、有機酸イオンが10.0mmol/gを上回ると、有機酸イオンの効果が頭打ちとなり、不要な有機酸イオンが残存し、尿素によるカルバメート化反応が阻害されるおそれがある。 However, the heat treatment for acidifying the pH is preferably carried out under the condition that 0.001 mmol or more of the organic acid ion is added to 1 g of the urea and the urea derivative (total mass of the urea and the urea derivative). It is more preferable to carry out under the condition of addition of 0.1 to 10.0 mmol, and particularly preferably to carry out under the condition of addition of 1.0 to 5.0 mmol. When the organic acid is added, the reaction of decomposing urea or the like into isocyanic acid and ammonia proceeds, the reaction with the cellulose fiber is promoted, and the carbamate formation reaction is carried out efficiently. However, if the organic acid ion is less than 0.001 mmol / g, such an effect may not be exhibited. On the other hand, when the organic acid ion exceeds 10.0 mmol / g, the effect of the organic acid ion reaches a plateau, unnecessary organic acid ion remains, and the carbamate formation reaction by urea may be inhibited.
 ただし、有機酸としてクエン酸を使用する場合は、セルロース繊維に対するクエン酸の添加量を0.1~10,000ppmとするのが好ましく、1~7,000ppmとするのがより好ましく、10~5,000ppmとするのが特に好ましい。添加量が0.1ppmを下回ると、尿素等からイソシアン酸及びアンモニアに分解する反応がうまく進行しなくなることから、カルバメート化反応が進行しなくなるおそれがある。他方、添加量が10,000ppmを上回ると、有機酸の持つ水酸基やカルボキシル基等が尿素等やイソシアン酸と反応し、カルバメート化に寄与する尿素等やイソシアン酸が消費されてしまうおそれがある。 However, when citric acid is used as the organic acid, the amount of citric acid added to the cellulose fibers is preferably 0.1 to 10,000 ppm, more preferably 1 to 7,000 ppm, and 10 to 5 It is particularly preferable to set it to 000 ppm. If the amount added is less than 0.1 ppm, the reaction of decomposing urea or the like into isocyanic acid and ammonia does not proceed well, so that the carbamate formation reaction may not proceed. On the other hand, if the addition amount exceeds 10,000 ppm, the hydroxyl group or carboxyl group of the organic acid may react with urea or the like and isocyanic acid, and urea or the like or isocyanic acid that contributes to carbamate formation may be consumed.
 有機酸としては、クエン酸の他、例えば、リンゴ酸、酒石酸、シュウ酸、酢酸、ギ酸、フマル酸、乳酸、酪酸、コハク酸、これら有機酸の有機酸塩等を使用することができる。ただし、ヒドロキシ酸及びヒドロキシ酸塩を併用するのが好ましく、クエン酸及びクエン酸塩を併用するのがより好ましい。酸性条件においては、前述したように尿素等がイソシアン酸及びアンモニアに分解されるが、このアンモニアがクエン酸等のヒドロキシ酸によって中和され、アンモニアが減少する。アンモニアが減少すると、アンモニアの生成が進み、カルバメート化が進む。もっとも、単純にクエン酸等のヒドロキシ酸の量を増やすと、クエン酸等のヒドロキシ酸が酸性化を進めるだけに消費されるものとなる。しかしながら、ヒドロキシ酸塩が併用されていると、このヒドロキシ酸塩がバッファーになり、ヒドロキシ酸塩からヒドロキシ酸が生成され、アンモニアの中和、アンモニアの生成進み、カルバメート化が進む。 As the organic acid, in addition to citric acid, for example, malic acid, tartrate acid, oxalic acid, acetic acid, formic acid, fumaric acid, lactic acid, butyric acid, succinic acid, organic acid salts of these organic acids and the like can be used. However, it is preferable to use hydroxy acid and hydroxy salt in combination, and it is more preferable to use citric acid and citrate in combination. Under acidic conditions, urea and the like are decomposed into isocyanic acid and ammonia as described above, but this ammonia is neutralized by a hydroxy acid such as citric acid, and ammonia is reduced. When the amount of ammonia decreases, the production of ammonia progresses and carbamate formation progresses. However, if the amount of hydroxy acid such as citric acid is simply increased, the hydroxy acid such as citric acid is consumed only for advancing acidification. However, when a hydroxy acid salt is used in combination, this hydroxy acid salt becomes a buffer, a hydroxy acid is produced from the hydroxy acid salt, neutralization of ammonia, production of ammonia progresses, and carbamate formation proceeds.
 ヒドロキシ酸としては、クエン酸の他、例えば、グリコール酸、乳酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、リンゴ酸、酒石酸、イソクエン酸、メバロン酸、パントイン酸、リシノール酸等の脂肪族ヒドロキシ酸、サリチル酸、バニリン酸、没食子酸等の芳香族ヒドロキシ酸等を例示することができる。 In addition to citric acid, hydroxy acids include, for example, aliphatic hydroxy acids such as glycolic acid, lactic acid, tarthronic acid, glyceric acid, hydroxybutyric acid, malic acid, tartrate acid, isocitrate acid, mevalonic acid, pantoic acid, and ricinolic acid, and salicylic acid. , Vanillic acid, aromatic hydroxy acids such as citric acid and the like can be exemplified.
 以上の観点からヒドロキシ酸に対するヒドロキシ酸塩の添加割合は、ヒドロキシ酸100質量部に対して1,000質量部以下であるのが好ましく、750質量部以下であるのがより好ましく、500質量部以下であるのが特に好ましい。なお、ヒドロキシ酸塩はヒドロキシ酸との併用に意味があり、下限値は0質量部超ということができるが、好ましくは10質量部以上である。 From the above viewpoint, the addition ratio of the hydroxy acid salt to the hydroxy acid is preferably 1,000 parts by mass or less, more preferably 750 parts by mass or less, and 500 parts by mass or less with respect to 100 parts by mass of the hydroxy acid. Is particularly preferable. The hydroxy salt is meaningful in combination with a hydroxy acid, and the lower limit can be said to be more than 0 parts by mass, but preferably 10 parts by mass or more.
 また、有機酸塩の添加割合は、系内のpHが前述のpH内に含まれるように添加することが望ましい。このような条件を満たすことで、繊維状セルロース複合樹脂の曲げ弾性率や曲げ伸びが向上する。なお、単にクエン酸等のヒドロキシ酸の添加量を増やすだけであると、セルロース等の平均繊維長が短くなるおそれがあるが、ヒドロキシ酸及びヒドロキシ酸塩の併用は、このおそれを抑制する。 Further, it is desirable that the organic acid salt is added so that the pH in the system is within the above-mentioned pH. By satisfying such conditions, the flexural modulus and bending elongation of the fibrous cellulose composite resin are improved. If the amount of hydroxy acid such as citric acid added is simply increased, the average fiber length of cellulose or the like may be shortened, but the combined use of hydroxy acid and hydroxy acid salt suppresses this possibility.
 加熱処理において加熱する装置としては、例えば、熱風乾燥機、抄紙機、ドライパルプマシン等を使用することができる。 As a device for heating in the heat treatment, for example, a hot air dryer, a paper machine, a dry pulp machine, or the like can be used.
 加熱処理後の混合物は、洗浄してもよい。この洗浄は、水等で行えばよい。この洗浄によって未反応で残留している尿素等を除去することができる。 The mixture after heat treatment may be washed. This washing may be performed with water or the like. By this washing, urea and the like remaining unreacted can be removed.
(スラリー)
 セルロース繊維は、必要により、水系媒体中に分散して分散液(スラリー)にする。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する他の液体である水系媒体も使用することができる。他の液体としては、炭素数3以下の低級アルコール類等を使用することができる。
(slurry)
If necessary, the cellulose fibers are dispersed in an aqueous medium to form a dispersion liquid (slurry). It is particularly preferable that the total amount of the aqueous medium is water, but an aqueous medium which is another liquid which is partially compatible with water can also be used. As the other liquid, lower alcohols having 3 or less carbon atoms can be used.
 スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%である。固形分濃度が0.1質量%を下回ると、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい、例えば分散剤を使用する場合において均一に混合できなくなるおそれがある。 The solid content concentration of the slurry is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass. If the solid content concentration is less than 0.1% by mass, excessive energy may be required for dehydration and drying. On the other hand, if the solid content concentration exceeds 10.0% by mass, the fluidity of the slurry itself is lowered, and for example, when a dispersant is used, it may not be possible to mix uniformly.
(酸変性樹脂)
 カルバメート化したセルロース繊維は、解繊していない場合は解繊して微細繊維とした後(以下、同様。)、酸変性樹脂と混合する。酸変性樹脂は、酸基がカルバメート基の一部又は全部とイオン結合する。このイオン結合により、樹脂の補強効果が向上する。
(Acid-modified resin)
If the carbamate-ized cellulose fiber is not defibrated, it is defibrated to obtain fine fibers (hereinafter, the same applies), and then mixed with an acid-modified resin. In the acid-modified resin, the acid group is ionically bonded to a part or all of the carbamate group. This ionic bond improves the reinforcing effect of the resin.
 酸変性樹脂としては、例えば、酸変性ポリオレフィン樹脂、酸変性エポキシ樹脂、酸変性スチレン系エラストマー樹脂等を使用することができる。ただし、酸変性ポリオレフィン樹脂を使用するのが好ましい。酸変性ポリオレフィン樹脂は、不飽和カルボン酸成分とポリオレフィン成分との共重合体である。 As the acid-modified resin, for example, an acid-modified polyolefin resin, an acid-modified epoxy resin, an acid-modified styrene-based elastomer resin, or the like can be used. However, it is preferable to use an acid-modified polyolefin resin. The acid-modified polyolefin resin is a copolymer of an unsaturated carboxylic acid component and a polyolefin component.
 ポリオレフィン成分としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン等のアルケンの重合体の中から1種又は2種以上を選択して使用することができる。ただし、好適には、プロピレンの重合体であるポリプロピレン樹脂を用いることが好ましい。 As the polyolefin component, for example, one or two or more of alkene polymers such as ethylene, propylene, butadiene, and isoprene can be selected and used. However, it is preferable to use a polypropylene resin which is a polymer of propylene.
 不飽和カルボン酸成分としては、例えば、無水マレイン酸類、無水フタル酸類、無水イタコン酸類、無水シトラコン酸類、無水クエン酸類等の中から1種又は2種以上を選択して使用することができる。ただし、好適には、無水マレイン酸類を使用するのが好ましい。したがって、無水マレイン酸変性ポリプロピレン樹脂を用いるのがより好ましい。 As the unsaturated carboxylic acid component, for example, one or more of maleic anhydride, phthalic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, citric acid anhydride and the like can be selected and used. However, it is preferable to use maleic anhydrides. Therefore, it is more preferable to use a maleic anhydride-modified polypropylene resin.
 酸変性樹脂の混合量は、微細繊維100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。特に酸変性樹脂が無水マレイン酸変性ポリプロピレン樹脂である場合は、好ましくは1~200質量部、より好ましくは10~100質量部である。酸性変性樹脂の混合量が0.1質量部を下回ると強度の向上が十分ではなくなるおそれがある。他方、混合量が1,000質量部を上回ると、過剰となり強度が低下する傾向となる。 The mixed amount of the acid-modified resin is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the fine fibers. In particular, when the acid-modified resin is a maleic anhydride-modified polypropylene resin, the amount is preferably 1 to 200 parts by mass, more preferably 10 to 100 parts by mass. If the mixed amount of the acid-modified resin is less than 0.1 parts by mass, the improvement in strength may not be sufficient. On the other hand, if the mixing amount exceeds 1,000 parts by mass, it becomes excessive and the strength tends to decrease.
 無水マレイン酸変性ポリプロピレンの重量平均分子量は、例えば1,000~100,000、好ましくは3,000~50,000である。 The weight average molecular weight of maleic anhydride-modified polypropylene is, for example, 1,000 to 100,000, preferably 3,000 to 50,000.
 また、無水マレイン酸変性ポリプロピレンの酸価は、0.5mgKOH/g以上、100mgKOH/g以下が好ましく、1mgKOH/g以上、50mgKOH/g以下がより好ましい。 The acid value of maleic anhydride-modified polypropylene is preferably 0.5 mgKOH / g or more and 100 mgKOH / g or less, and more preferably 1 mgKOH / g or more and 50 mgKOH / g or less.
 さらに、酸変性樹脂のMFR(メルトフローレート)が2,000g/10分(190℃/2.16kg)以下であるのが好ましく、1,500g/10分以下であるのがより好ましく、500g/10分以下であるのが特に好ましい。MFRが2,000g/10分を上回ると、セルロース繊維の分散性が低下する可能性がある。 Further, the MFR (melt flow rate) of the acid-modified resin is preferably 2,000 g / 10 minutes (190 ° C. / 2.16 kg) or less, more preferably 1,500 g / 10 minutes or less, and 500 g / 10 minutes or less. It is particularly preferably 10 minutes or less. If the MFR exceeds 2,000 g / 10 minutes, the dispersibility of the cellulose fibers may decrease.
 なお、酸価の測定は、JIS-K2501に準拠し、水酸化カリウムで滴定する。また、MFRの測定は、JIS-K7210に準拠し、190℃で2.16kgの荷重を載せ、10分間に流れ出る試料の重量で決める。 The acid value is measured in accordance with JIS-K2501 and titrated with potassium hydroxide. The MFR measurement is based on JIS-K7210, and is determined by the weight of the sample flowing out in 10 minutes with a load of 2.16 kg at 190 ° C.
(分散剤)
 微細繊維は、好ましくは分散剤と混合する。分散剤としては、芳香族類にアミン基及び/又は水酸基を有する化合物、脂肪族類にアミン基及び/又は水酸基を有する化合物が好ましい。
(Dispersant)
The fine fibers are preferably mixed with a dispersant. As the dispersant, a compound having an amine group and / or a hydroxyl group in an aromatic group and a compound having an amine group and / or a hydroxyl group in an aliphatic group are preferable.
 芳香族類にアミン基及び/又は水酸基を有する化合物としては、例えば、アニリン類、トルイジン類、トリメチルアニリン類、アニシジン類、チラミン類、ヒスタミン類、トリプタミン類、フェノール類、ジブチルヒドロキシトルエン類、ビスフェノールA類、クレゾール類、オイゲノール類、没食子酸類、グアイアコール類、ピクリン酸類、フェノールフタレイン類、セロトニン類、ドーパミン類、アドレナリン類、ノルアドレナリン類、チモール類、チロシン類、サリチル酸類、サリチル酸メチル類、アニスアルコール類、サリチルアルコール類、シナピルアルコール類、ジフェニドール類、ジフェニルメタノール類、シンナミルアルコール類、スコポラミン類、トリプトフォール類、バニリルアルコール類、3-フェニル‐1-プロパノール類、フェネチルアルコール類、フェノキシエタノール類、ベラトリルアルコール類、ベンジルアルコール類、ベンゾイン類、マンデル酸類、マンデロニトリル類、安息香酸類、フタル酸類、イソフタル酸類、テレフタル酸類、メリト酸類、ケイ皮酸類などが挙げられる。 Examples of compounds having an amine group and / or a hydroxyl group in aromatics include aniline, toluidin, trimethylaniline, anisidin, tyramine, histamine, tryptamine, phenol, dibutylhydroxytoluene, and bisphenol A. Classes, cresols, eugenols, gallic acid, guaiacol, picrinic acid, phenolphthalene, serotonin, dopamine, adrenaline, noradrenaline, timol, tyrosine, salicylic acid, methyl salicylate, anis alcohol. , Salicyl alcohols, cinapyl alcohols, diphenidols, diphenylmethanols, cinnamyl alcohols, scopolamines, tryptofols, vanillyl alcohols, 3-phenyl-1-propanols, phenethyl alcohols, phenoxyethanols , Veratril alcohols, benzyl alcohols, benzoins, mandelic acids, manderonitriles, benzoic acids, phthalic acids, isophthalic acids, terephthalic acids, melitonic acids, silicic acids and the like.
 また、脂肪族類にアミン基及び/又は水酸基を有する化合物としては、例えば、カプリルアルコール類、2-エチルヘキサノール類、ペラルゴンアルコール類、カプリンアルコール類、ウンデシルアルコール類、ラウリルアルコール類、トリデシルアルコール類、ミリスチルアルコール類、ペンタデシルアルコール類、セタノール類、ステアリルアルコール類、エライジルアルコール類、オレイルアルコール類、リノレイルアルコール類、メチルアミン類、ジメチルアミン類、トリメチルアミン類、エチルアミン類、ジエチルアミン類、エチレンジアミン類、トリエタノールアミン類、N,N-ジイソプロピルエチルアミン類、テトラメチルエチレンジアミン類、ヘキサメチレンジアミン類、スペルミジン類、スペルミン類、アマンタジン類、ギ酸類、酢酸類、プロピオン酸類、酪酸類、吉草酸類、カプロン酸類、エナント酸類、カプリル酸類、ペラルゴン酸類、カプリン酸類、ラウリン酸類、ミリスチン酸類、パルミチン酸類、マルガリン酸類、ステアリン酸類、オレイン酸類、リノール酸類、リノレン酸類、アラキドン酸類、エイコサペンタエン酸類、ドコサヘキサエン酸類、ソルビン酸類などが挙げられる。 Examples of compounds having an amine group and / or a hydroxyl group in aliphatics include capryl alcohols, 2-ethylhexanols, pelargone alcohols, caprin alcohols, undecyl alcohols, lauryl alcohols, and tridecyl alcohols. , Myristyl alcohols, pentadecyl alcohols, cetanols, stearyl alcohols, erizyl alcohols, oleyl alcohols, linoleyl alcohols, methylamines, dimethylamines, trimethylamines, ethylamines, diethylamines, ethylenediamine , Triethanolamines, N, N-diisopropylethylamines, tetramethylethylenediamines, hexamethylenediamines, spermidins, spermins, amantadins, formic acids, acetic acids, propionic acids, butyric acids, valeric acids, Caproic acids, enanth acids, capricic acids, pelargonic acids, capric acids, lauric acids, myristic acids, palmitic acids, margalic acids, stearic acids, oleic acids, linoleic acids, linolenic acids, arachidonic acids, eicosapentaenoic acids, docosahexaenoic acids, sorbins. Examples include acids.
 以上の分散剤は、セルロース繊維同士の水素結合を阻害する。したがって、微細繊維及び樹脂の混練に際して微細繊維が樹脂中において確実に分散するようになる。また、以上の分散剤は、微細繊維及び樹脂の相溶性を向上させる役割も有する。この点でも微細繊維の樹脂中における分散性が向上する。 The above dispersants inhibit hydrogen bonds between cellulose fibers. Therefore, when the fine fibers and the resin are kneaded, the fine fibers are surely dispersed in the resin. Further, the above dispersant also has a role of improving the compatibility of the fine fibers and the resin. In this respect as well, the dispersibility of the fine fibers in the resin is improved.
 なお、微細繊維及び樹脂の混練に際して、別途、相溶剤(薬剤)を添加することも考えられるが、この段階で薬剤を添加するよりも、予め微細繊維と分散剤(薬剤)とを混合して繊維状セルロース含有物としておく方が、微細繊維に対する薬剤の纏わりつきが均一になり、樹脂との相溶性向上効果が高くなる。 It is conceivable to add a phase solvent (drug) separately when kneading the fine fibers and the resin, but rather than adding a chemical at this stage, the fine fibers and the dispersant (drug) are mixed in advance. When the fibrous cellulose-containing material is used, the chemicals are more uniformly attached to the fine fibers, and the effect of improving the compatibility with the resin is enhanced.
 また、例えば、ポリプロピレンは融点が160℃であり、したがって微細繊維及び樹脂の混練は、180℃程度で行う。しかるに、この状態で分散剤(液)を添加すると、一瞬で乾燥してしまう。そこで、融点の低い樹脂を使用してマスターバッチ(微細繊維の濃度の濃い複合樹脂)を作製し、その後に通常の樹脂で濃度を下げる方法が存在する。しかしながら、融点の低い樹脂は一般的に強度が低い。したがって、当該方法によると、複合樹脂の強度が下がるおそれがある。 Further, for example, polypropylene has a melting point of 160 ° C., and therefore, kneading of fine fibers and resin is performed at about 180 ° C. However, if a dispersant (liquid) is added in this state, it dries in an instant. Therefore, there is a method of producing a masterbatch (composite resin having a high concentration of fine fibers) using a resin having a low melting point, and then lowering the concentration with a normal resin. However, a resin having a low melting point generally has a low strength. Therefore, according to this method, the strength of the composite resin may decrease.
 分散剤の混合量は、微細繊維100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。分散剤の混合量が0.1質量部を下回ると、樹脂強度の向上が十分ではないとされるおそれがある。他方、混合量が1,000質量部を上回ると、過剰となり樹脂強度が低下する傾向となる。 The mixing amount of the dispersant is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the fine fibers. If the mixing amount of the dispersant is less than 0.1 parts by mass, it may be considered that the improvement of the resin strength is not sufficient. On the other hand, if the mixing amount exceeds 1,000 parts by mass, the amount becomes excessive and the resin strength tends to decrease.
 この点、前述した酸変性樹脂は酸基と微細繊維のカルバメート基とがイオン結合することで相溶性を向上し、もって補強効果を上げるためのものであり、分子量が大きいため樹脂とも馴染み易く、強度向上に寄与していると考えられる。一方、上記の分散剤は、微細繊維同士の水酸基同士の間に介在して凝集を防ぎ、もって樹脂中での分散性を向上するものであり、また、分子量が酸変性樹脂に比べ小さいため、酸変性樹脂が入り込めないような微細繊維間の狭いスペースに入ることができ、分散性を向上して強度向上する役割を果たす。以上のような観点から、上記酸変性樹脂の分子量は、分散剤の分子量の2~2,000倍、好ましくは5~1,000倍であると好適である。 In this respect, the above-mentioned acid-modified resin is intended to improve the compatibility by ionic bonding between the acid group and the carbamate group of the fine fiber, thereby enhancing the reinforcing effect, and because of its large molecular weight, it is easy to be compatible with the resin. It is considered that it contributes to the improvement of strength. On the other hand, the above-mentioned dispersant intervenes between the hydroxyl groups of the fine fibers to prevent aggregation and thus improves the dispersibility in the resin, and has a smaller molecular weight than the acid-modified resin. It can enter a narrow space between fine fibers that an acid-modified resin cannot enter, and plays a role of improving dispersibility and strength. From the above viewpoint, the molecular weight of the acid-modified resin is preferably 2 to 2,000 times, preferably 5 to 1,000 times, the molecular weight of the dispersant.
(相互作用しない粉末)
 本形態の微細繊維は、セルロース繊維と相互作用しない粉末と混合すると好適である。相互作用しない粉末と混合することで、補強効果が向上する。この点、本形態においては、微細繊維を樹脂と複合化する前に、水系媒体を除去して含有水分率が所定の範囲に調節された繊維状セルロース含有物とする。しかしながら、水系媒体を除去する際にセルロース繊維同士が水素結合により不可逆的に凝集し、繊維としての補強効果を十分に発揮できなくなる可能性がある。そこで、セルロース繊維と相互作用しない粉末を混合することで、セルロース繊維同士の水素結合を物理的に阻害するものである。
(Powder that does not interact)
The fine fibers of this embodiment are preferably mixed with a powder that does not interact with the cellulose fibers. By mixing with non-interacting powder, the reinforcing effect is improved. In this respect, in this embodiment, the aqueous medium is removed to obtain a fibrous cellulose-containing material whose water content is adjusted to a predetermined range before the fine fibers are composited with the resin. However, when the aqueous medium is removed, the cellulose fibers may irreversibly aggregate due to hydrogen bonds, and the reinforcing effect as the fibers may not be sufficiently exhibited. Therefore, by mixing a powder that does not interact with the cellulose fibers, hydrogen bonds between the cellulose fibers are physically inhibited.
 ここで、相互作用しないとは、セルロースと共有結合、イオン結合、金属結合による強固な結合をしないことを意味する(つまり、水素結合、ファンデルワールス力による結合は相互作用しないという概念に含まれる。)。好ましくは、強固な結合は、結合エネルギーが100kJ/molを超える結合である。 Here, "non-interacting" is included in the concept that covalent bonds, ionic bonds, and strong bonds by metal bonds do not occur with cellulose (that is, hydrogen bonds and van der Waals force bonds do not interact). .). Preferably, the strong bond is a bond having a binding energy of more than 100 kJ / mol.
 相互作用しない粉末は、好ましくは、スラリー中で共存した際に、セルロース繊維の持つ水酸基を水酸化物イオンへ解離させる作用の少ない無機粉末及び樹脂粉末の少なくともいずれか一方である。より好ましくは、無機粉末である。かかる物性を有すると、繊維状セルロース含有物とした後に樹脂と複合化した際に、セルロース繊維と相互作用しない粉末を樹脂等へ容易に分散することができるようになる。また、特に無機粉末であると、操業上有利である。具体的には、繊維状セルロース含有物の含有水分率調節方法としては、例えば、熱源である金属ドラムに水分散体(繊維状セルロースや相互作用しない粉末の混合液)を直接あてる方法で乾燥(例えば、ヤンキードライヤーやシリンダードライヤーによる乾燥等。)する方法と、熱源に水分散体を直接触れさせずに加温する方法、つまり空気中で乾燥(例えば、恒温乾燥機による乾燥等。)する方法とが存在する。しかるに、樹脂粉末を使用すると、加温した金属板(例えば、ヤンキードライヤー、シリンダードライヤー等。)に接触させて乾燥した際に、金属板表面に皮膜ができ熱伝導が悪化し、乾燥効率が著しく低下する。このような問題が生じ難い点で、無機粉末は有利である。 The non-interacting powder is preferably at least one of an inorganic powder and a resin powder having little action of dissociating the hydroxyl group of the cellulose fiber into hydroxide ions when coexisting in the slurry. More preferably, it is an inorganic powder. Having such physical characteristics makes it possible to easily disperse the powder that does not interact with the cellulose fibers into the resin or the like when the fibrous cellulose-containing material is formed and then compounded with the resin. Further, particularly when it is an inorganic powder, it is advantageous in terms of operation. Specifically, as a method for adjusting the water content of the fibrous cellulose-containing material, for example, a method of directly applying an aqueous dispersion (a mixture of fibrous cellulose and non-interacting powder) to a metal drum as a heat source is used for drying (a mixture of fibrous cellulose and non-interacting powder). For example, a method of drying with a Yankee dryer or a cylinder dryer, etc.) and a method of heating without directly contacting the water dispersion with a heat source, that is, a method of drying in air (for example, drying with a constant temperature dryer, etc.). And exists. However, when resin powder is used, when it is brought into contact with a heated metal plate (for example, a Yankee dryer, a cylinder dryer, etc.) and dried, a film is formed on the surface of the metal plate, the heat conduction deteriorates, and the drying efficiency becomes remarkable. descend. Inorganic powders are advantageous in that such problems are unlikely to occur.
 相互作用しない粉末の平均粒子径は、1~10,000μmが好ましく、10~5,000μmがより好ましく、100~1,000μmが特に好ましい。平均粒子径が10,000μmを超えると、繊維状セルローススラリーから水系媒体を除去する際に、微細繊維同士の間隙に入って凝集を阻害する効果が発揮できないおそれがある。他方、平均粒子径が1μm未満であると、微細なために微細繊維同士の水素結合を阻害することができないおそれがある。 The average particle size of the non-interacting powder is preferably 1 to 10,000 μm, more preferably 10 to 5,000 μm, and particularly preferably 100 to 1,000 μm. If the average particle size exceeds 10,000 μm, when the aqueous medium is removed from the fibrous cellulose slurry, it may enter into the gaps between the fine fibers and the effect of inhibiting aggregation may not be exhibited. On the other hand, if the average particle size is less than 1 μm, hydrogen bonds between the fine fibers may not be inhibited due to the fineness.
 特に相互作用しない粉末が樹脂粉末である場合においては、平均粒子径が上記範囲にあることにより微細繊維同士の間隙に入って凝集を阻害する効果が効果的に発揮されるようになる。しかも、樹脂との混練性に優れ、大きなエネルギーが不要となり経済的である。なお、樹脂粉末は樹脂との混練時に溶融し粒として外観に影響を与えなくなるため、大きな粒子径のものも効果的に使用することができる。他方、樹脂粉末が無機粉末である場合においても無機粉末の平均粒子径が上記範囲にあることで微細繊維同士の間隙に入って凝集を阻害する効果が発揮されるが、無機粉体は混練してもサイズは大きく変わらないため、粒径が大きすぎると粒として外観に影響を与える可能性がある。 In particular, when the powder that does not interact with the powder is a resin powder, the effect of inhibiting aggregation by entering the gaps between the fine fibers is effectively exhibited when the average particle size is in the above range. Moreover, it is economical because it has excellent kneadability with a resin and does not require a large amount of energy. Since the resin powder melts when kneaded with the resin and does not affect the appearance as particles, a powder having a large particle size can be effectively used. On the other hand, even when the resin powder is an inorganic powder, the average particle size of the inorganic powder is in the above range, so that the effect of entering the gaps between the fine fibers and inhibiting aggregation is exhibited, but the inorganic powder is kneaded. However, the size does not change significantly, so if the particle size is too large, it may affect the appearance as grains.
 なお、樹脂粉末は物理的に微細繊維同士の間に介在することで水素結合を阻害し、もって微細繊維の分散性を向上する。これに対し、前述した酸変性樹脂は、酸基と微細繊維のカルバメート基とをイオン結合することで相溶性を向上し、もって補強効果を上げる。この点、分散剤が微細繊維同士の水素結合を阻害する点は同じであるが、樹脂粉末はマイクロオーダーであるため、物理的に介在して水素結合を抑制する。したがって、分散性が分散剤にくらべ低いものの、樹脂粉末自身が溶融してマトリックスになるため物性低下に寄与しない。一方、分散剤は分子レベルであり、極めて小さいため微細繊維を覆うようにして水素結合を阻害し、微細繊維の分散性を向上する効果は高い。しかしながら、樹脂中に残り、物性低下に働く可能性がある。 The resin powder physically intervenes between the fine fibers to inhibit hydrogen bonds, thereby improving the dispersibility of the fine fibers. On the other hand, the acid-modified resin described above improves compatibility by ionic bonding an acid group and a carbamate group of fine fibers, thereby enhancing a reinforcing effect. In this respect, the dispersant inhibits hydrogen bonds between fine fibers in the same manner, but since the resin powder is micro-order, it physically intervenes and suppresses hydrogen bonds. Therefore, although the dispersibility is lower than that of the dispersant, the resin powder itself melts into a matrix, which does not contribute to deterioration of physical properties. On the other hand, since the dispersant is at the molecular level and is extremely small, it has a high effect of covering the fine fibers to inhibit hydrogen bonds and improving the dispersibility of the fine fibers. However, it may remain in the resin and work to reduce the physical properties.
 相互作用しない粉末の平均粒子径は、粉体をそのまま又は水分散体の状態で粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)を用いて測定される体積基準粒度分布から算出される中位径である。 The average particle size of non-interacting powder is a volume standard measured using a particle size distribution measuring device (for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by Horiba Seisakusho Co., Ltd.) with the powder as it is or in the state of an aqueous dispersion. It is a medium diameter calculated from the particle size distribution.
 無機粉末としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレー、ワラストナイト、ガラスビーズ、ガラスパウダー、シリカゲル、乾式シリカ、コロイダルシリカ、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機充填剤は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよいし、製紙スラッジ中の無機物を再生したいわゆる再生填料等であってもよい。 Examples of the inorganic powder include simple substances and oxides of metal elements in Groups I to VIII of the Periodic Table of the Periodic Table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon elements. , Hydroxides, carbon salts, sulfates, silicates, sulfites, various clay minerals composed of these compounds, and the like can be exemplified. Specifically, for example, barium sulfate, calcium sulfate, magnesium sulfate, sodium sulfate, calcium sulfite, zinc oxide, heavy calcium carbonate, light calcium carbonate, aluminum borate, alumina, iron oxide, calcium titanate, aluminum hydroxide, etc. Magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, clay, wallastnite, glass beads, glass powder, silica gel, dry silica, colloidal silica, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon , Glass fiber and the like can be exemplified. A plurality of these inorganic fillers may be contained. Further, it may be contained in recycled paper pulp, or may be a so-called recycled filler obtained by regenerating an inorganic substance in paper sludge.
 ただし、製紙用の填料や顔料として好適に使用される炭酸カルシウム、タルク、ホワイトカーボン、クレー、焼成クレー、二酸化チタン、水酸化アルミニウム及び再生填料等の中から選択される少なくとも1種以上の無機粉末を使用するのが好ましく、炭酸カルシウム、タルク、クレーの中からから選択される少なくとも1種以上を使用するのがより好ましく、軽質炭酸カルシウム及び重質炭酸カルシウムの少なくともいずれか一方を使用するのが特に好ましい。炭酸カルシウム、タルク、クレーを使用すると、樹脂等のマトリックスとの複合化が容易である。また、汎用的な無機材料であるため、用途の制限が生じることが少ないとのメリットがある。さらに、炭酸カルシウムは下記の理由から特に好ましい。軽質炭酸カルシウムを使用する場合は、粉末のサイズや形状を一定に制御しやすくなる。このため、微細繊維のサイズや形状に合わせて、間隙に入り込んで微細繊維同士の凝集を抑制する効果を生じやすくするようにサイズや形状を調整して、ピンポイントで効果を発揮しやすくできるメリットがある。また、重質炭酸カルシウムを使用すると、重質炭酸カルシウムが不定形であることから、スラリー中に様々なサイズの繊維が存在する場合でも、水系媒体除去時に繊維が凝集する過程において、間隙に入り込んで微細繊維同士の凝集を抑制することができるとのメリットがある。 However, at least one inorganic powder selected from calcium carbonate, talc, white carbon, clay, calcined clay, titanium dioxide, aluminum hydroxide, recycled filler, etc., which are suitably used as fillers and pigments for papermaking. It is preferable to use at least one selected from calcium carbonate, talc, and clay, and it is more preferable to use at least one of light calcium carbonate and heavy calcium carbonate. Especially preferable. When calcium carbonate, talc, or clay is used, it is easy to combine with a matrix such as a resin. Further, since it is a general-purpose inorganic material, there is an advantage that there are few restrictions on its use. Further, calcium carbonate is particularly preferable for the following reasons. When light calcium carbonate is used, it becomes easier to control the size and shape of the powder to be constant. For this reason, there is a merit that the size and shape can be adjusted so as to easily generate the effect of suppressing the aggregation of the fine fibers by entering the gap according to the size and shape of the fine fibers, and the effect can be easily exerted in a pinpoint manner. There is. In addition, when heavy calcium carbonate is used, since the heavy calcium carbonate is amorphous, even if fibers of various sizes are present in the slurry, they enter the gap in the process of agglomeration of the fibers when the aqueous medium is removed. There is a merit that the aggregation of fine fibers can be suppressed.
 一方、樹脂粉末としては、複合樹脂を得る際に使用する樹脂と同様のものを使用することができる。もちろん、異種であってもよいが、同種である方が好ましい。 On the other hand, as the resin powder, the same resin as that used when obtaining the composite resin can be used. Of course, they may be different, but they are preferably the same.
 相互作用しない粉末の配合量は、微細繊維(セルロース繊維)に対して、好ましくは1~9900質量%、より好ましくは5~1900質量%、特に好ましくは10~900質量%である。配合量が1質量%を下回ると、微細繊維の間隙に入って凝集抑制する作用が不足となるおそれがある。他方、配合量が9900質量%を上回ると、微細繊維としての機能を発揮できなくなるおそれがある。なお、相互作用しない粉末が無機粉末である場合は、サーマルリサイクルに支障が出ない割合で配合するのが好ましい。 The blending amount of the non-interacting powder is preferably 1 to 9900% by mass, more preferably 5 to 1900% by mass, and particularly preferably 10 to 900% by mass with respect to the fine fibers (cellulose fibers). If the blending amount is less than 1% by mass, it may enter into the gaps between the fine fibers and the action of suppressing aggregation may be insufficient. On the other hand, if the blending amount exceeds 9900% by mass, the function as fine fibers may not be exhibited. When the powder that does not interact with the powder is an inorganic powder, it is preferable to mix the powder in a ratio that does not interfere with thermal recycling.
 相互作用しない粉末としては、無機粉末及び樹脂粉末を併用することもできる。無機粉末及び樹脂粉末を併用すると、無機粉体同士や樹脂粉末同士が凝集する条件で混合した場合でも無機粉末及び樹脂粉末がお互いに凝集を防ぐような効果を発揮する。また、粒径が小さい粉体は表面積が大きく重力の影響よりも分子間力の影響を受けやすく、その結果として凝集しやすくなるため、粉体と微細繊維スラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、含有水分率の調節時に粉体同士が凝集することで、微細繊維の凝集を防ぐ効果が十分に発揮されなくなったりするおそれがある。しかしながら、無機粉末及び樹脂粉末を併用すると、自身の凝集を緩和することができると考えられる。 Inorganic powder and resin powder can be used in combination as the non-interacting powder. When the inorganic powder and the resin powder are used in combination, the inorganic powder and the resin powder exert an effect of preventing each other from agglutination even when the inorganic powder and the resin powder are mixed under the condition of agglutination. In addition, powder with a small particle size has a large surface area and is more susceptible to the influence of intermolecular force than the influence of gravity, and as a result, it is more likely to aggregate. There is a risk that the powders will not loosen well in the slurry, or that the powders will aggregate when the water content is adjusted, and the effect of preventing the aggregation of fine fibers will not be fully exhibited. However, it is considered that the combined use of the inorganic powder and the resin powder can alleviate the agglutination of the powder itself.
 無機粉末及び樹脂粉末を併用する場合、無機粉末の平均粒径:樹脂粉末の平均粒径の比は、1:0.1~1:10,000が好ましく、1:1~1:1,000がより好ましい。この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体と微細繊維スラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、含有水分率の調節時に粉体同士が凝集したりする問題。)が発生せずに、微細繊維の凝集を防ぐ効果を十分に発揮できるようになると考えられる。 When the inorganic powder and the resin powder are used in combination, the ratio of the average particle size of the inorganic powder to the average particle size of the resin powder is preferably 1: 0.1 to 1: 10,000, preferably 1: 1 to 1: 1,000. Is more preferable. Within this range, problems arise from the strength of its own cohesive force (for example, when mixing powder and fine fiber slurry, the powder does not loosen well in the slurry, or when adjusting the water content, the powder It is considered that the effect of preventing the agglomeration of fine fibers can be sufficiently exerted without causing the problem of agglomeration of fine fibers.).
 無機粉末及び樹脂粉末を併用する場合、無機粉末の質量%:樹脂粉末の質量%の比は、1:0.01~1:100が好ましく、1:0.1~1:10がより好ましい。この範囲にあると、異種粉体同士が自身の凝集を阻害することが可能になると考えられる。つまり、この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体と微細繊維スラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、含有水分率の調節時に粉体同士が凝集したりする問題。)が発生せずに、微細繊維の凝集を防ぐ効果を十分に発揮できるようになると考えられる。 When the inorganic powder and the resin powder are used in combination, the ratio of the mass% of the inorganic powder to the mass% of the resin powder is preferably 1: 0.01 to 1: 100, more preferably 1: 0.1 to 1:10. Within this range, it is considered possible for dissimilar powders to inhibit their own aggregation. In other words, if it is within this range, problems arise from the strength of its own cohesive force (for example, when the powder and the fine fiber slurry are mixed, the powder does not loosen well in the slurry, or when the water content is adjusted. It is considered that the effect of preventing the agglomeration of fine fibers can be sufficiently exerted without causing the problem that the powders agglomerate with each other.).
(複合樹脂の製造方法)
 繊維状セルロース複合樹脂を製造するにあたって、微細繊維(セルロース繊維)及び酸変性樹脂、分散剤、相互作用しない粉末等の混合物は、以下で詳細に説明するように、樹脂と混練するに先立って含有水分率が18%未満の繊維状セルロース含有物とすると好適である。この繊維状セルロース含有物は、通常、乾燥体である。また、この乾燥体は、好ましくは粉砕して粉状物にする。この形態によると、樹脂と混練して得る繊維状セルロース複合樹脂の着色が低減される。また、樹脂との混練に際して繊維状セルロースを乾燥させる必要がなく、熱効率が良い。さらに、混合物に相互作用しない粉末や、分散剤が混合されている場合は、当該混合物を乾燥したとしても、セルロース繊維(微細繊維)が再分散しなくなるおそれが低い。
(Manufacturing method of composite resin)
In producing the fibrous cellulose composite resin, a mixture of fine fibers (cellulose fibers), acid-modified resin, dispersant, non-interacting powder and the like is contained prior to kneading with the resin as described in detail below. It is preferable to use a fibrous cellulose-containing material having a water content of less than 18%. This fibrous cellulose-containing material is usually a dried product. Further, this dried product is preferably pulverized into a powder. According to this form, the coloring of the fibrous cellulose composite resin obtained by kneading with the resin is reduced. In addition, it is not necessary to dry the fibrous cellulose when kneading with the resin, and the thermal efficiency is good. Further, when a powder that does not interact with the mixture or a dispersant is mixed, there is a low possibility that the cellulose fibers (fine fibers) will not be redispersed even if the mixture is dried.
 混合物は、乾燥するに先立って必要により脱水して脱水物にする。この脱水は、例えば、ベルトプレス、スクリュープレス、フィルタープレス、ツインロール、ツインワイヤーフォーマ、バルブレスフィルタ、センターディスクフィルタ、膜処理、遠心分離機等の脱水装置の中から1種又は2種以上を選択使用して行うことができる。 The mixture is dehydrated if necessary prior to drying. For this dehydration, for example, one or two or more types are selected from dehydrators such as belt presses, screw presses, filter presses, twin rolls, twin wire formers, valveless filters, center disk filters, membrane treatments, and centrifuges. Can be done using.
 混合物、あるいは脱水物の乾燥は、例えば、ロータリーキルン乾燥、円板式乾燥、気流式乾燥、媒体流動乾燥、スプレー乾燥、ドラム乾燥、スクリューコンベア乾燥、パドル式乾燥、一軸混練乾燥、多軸混練乾燥、真空乾燥、攪拌乾燥等の中から1種又は2種以上を選択使用して行うことができる。 Drying of the mixture or dehydrated product is, for example, rotary kiln drying, disk drying, air flow drying, medium flow drying, spray drying, drum drying, screw conveyor drying, paddle drying, uniaxial kneading drying, multiaxial kneading drying, vacuum. It can be carried out by selectively using one kind or two or more kinds from drying, stirring drying and the like.
 乾燥した混合物(乾燥物)は、粉砕して粉状物にするのが好ましい。乾燥物の粉砕は、例えば、ビーズミル、ニーダー、ディスパー、ツイストミル、カットミル、ハンマーミル等の中から1種又は2種以上を選択使用して行うことができる。 The dried mixture (dried product) is preferably crushed into a powder. The pulverization of the dried product can be carried out by selecting or using one or more of, for example, a bead mill, a kneader, a disper, a twist mill, a cut mill, a hammer mill and the like.
 粉状物の平均粒子径は、好ましくは1~10,000μm、より好ましくは10~5,000μm、特に好ましくは100~1,000μmである。粉状物の平均粒子径が10,000μmを上回ると、樹脂との混練性に劣るものになるおそれがある。他方、粉状物の平均粒子径が1μmを下回るものにするには大きなエネルギーが必要になるため、経済的でない。 The average particle size of the powder is preferably 1 to 10,000 μm, more preferably 10 to 5,000 μm, and particularly preferably 100 to 1,000 μm. If the average particle size of the powdery substance exceeds 10,000 μm, the kneadability with the resin may be inferior. On the other hand, it is not economical because a large amount of energy is required to make the average particle size of the powdery substance less than 1 μm.
 粉状物の平均粒子径の制御は、粉砕の程度を制御することのほか、フィルター、サイクロン等の分級装置を使用した分級によることができる。 The average particle size of the powder can be controlled not only by controlling the degree of crushing, but also by classifying using a classifying device such as a filter or a cyclone.
 混合物(粉状物)の嵩比重は、好ましくは0.03~1.0、より好ましくは0.04~0.9、特に好ましくは0.05~0.8である。嵩比重が1.0を超えるということは微細繊維同士の水素結合がより強固であり、樹脂中で分散させることは容易ではなくなることを意味する。他方、嵩比重が0.03を下回るものにするのは、移送コストの面から不利である。 The bulk specific gravity of the mixture (powder) is preferably 0.03 to 1.0, more preferably 0.04 to 0.9, and particularly preferably 0.05 to 0.8. When the bulk specific density exceeds 1.0, it means that the hydrogen bonds between the fine fibers are stronger and it is not easy to disperse them in the resin. On the other hand, making the bulk specific density less than 0.03 is disadvantageous in terms of transfer cost.
 嵩比重は、JIS K7365に準じて測定した値である。 The bulk specific density is a value measured according to JIS K7365.
 混合物(繊維状セルロース含有物)の含有水分率は、好ましくは18%未満、より好ましくは0~17%、特に好ましくは0~16%である。含有水分率が18%以上になると、セルロース繊維由来の成分に起因して繊維状セルロース複合樹脂の着色を低減することができない可能性がある。特にカルバメート基の置換率を1mmol/g以上とする場合においては、着色を低減することができない可能性がある。 The water content of the mixture (fibrous cellulose-containing material) is preferably less than 18%, more preferably 0 to 17%, and particularly preferably 0 to 16%. When the water content is 18% or more, it may not be possible to reduce the coloring of the fibrous cellulose composite resin due to the components derived from the cellulose fibers. In particular, when the substitution rate of the carbamate group is 1 mmol / g or more, it may not be possible to reduce the coloring.
 なお、含有水分率が18%以上であると、溶融混練等で例えば180℃以上の高温に晒された際に、マイクロ繊維セルロースと高温水とが接触し、マイクロ繊維セルロースの低分子化反応等が起こり、着色の要因となる低分子化合物が生成し、混練工程で低分子化合物による着色が進行すると考えられる。しかるに、カルバメート基の置換率が1mmol/g以上となるようにカルバメート化した場合においては、例えば、カルバメート化パルプの洗浄工程で着色原因物質が除去され、更に含有水分率を18%以下とすることで、高温水がマイクロ繊維セルロースと接触する前に蒸発させることが可能となり、着色を防止できるのである。 When the water content is 18% or more, the microfiber cellulose and high-temperature water come into contact with each other when exposed to a high temperature of, for example, 180 ° C. or higher by melt-kneading or the like, resulting in a low molecular weight reaction of the microfiber cellulose. Is generated, a low-molecular-weight compound that causes coloring is generated, and it is considered that coloring by the low-molecular-weight compound proceeds in the kneading step. However, when the carbamate group is carbamate so that the substitution rate is 1 mmol / g or more, for example, the coloring-causing substance is removed in the washing step of the carbamate pulp, and the water content is further reduced to 18% or less. Therefore, it becomes possible to evaporate the high-temperature water before it comes into contact with the microfiber cellulose, and it is possible to prevent coloring.
 ちなみに、もともと存在する着色原因物質(ヘミセルロース等)が低分子化すると水溶化し、カルバメート化パルプの洗浄工程で着色原因物質を除去することが可能となる。着色原因物質がマイクロ繊維セルロースに残留すると、上記した高温水と着色原因物質とが接触して着色が顕著になるのである。 By the way, when the originally existing coloring-causing substance (hemicellulose, etc.) has a low molecular weight, it becomes water-soluble, and it becomes possible to remove the coloring-causing substance in the washing process of the carbamate pulp. When the coloring-causing substance remains in the microfiber cellulose, the above-mentioned high-temperature water and the coloring-causing substance come into contact with each other, and the coloring becomes remarkable.
 含有水分率は、定温乾燥機を用いて、試料を105℃で6時間以上保持し質量の変動が認められなくなった時点の質量を乾燥後質量とし、下記式にて算出した値である。
 含有水分率(%)=[(乾燥前質量-乾燥後質量)÷乾燥前質量]×100
The water content content is a value calculated by the following formula, where the mass at the time when the sample is held at 105 ° C. for 6 hours or more using a constant temperature dryer and no change in mass is observed is taken as the mass after drying.
Moisture content (%) = [(mass before drying-mass after drying) ÷ mass before drying] x 100
 脱水・乾燥した微細繊維には、相互作用しない粉末としての樹脂粉末以外の樹脂が含まれていても良い。樹脂が含まれていると、脱水・乾燥した微細繊維同士の水素結合が阻害され、混練の際の樹脂中での分散性を向上することができる。 The dehydrated and dried fine fibers may contain a resin other than the resin powder as a powder that does not interact with each other. When the resin is contained, the hydrogen bonds between the dehydrated and dried fine fibers are inhibited, and the dispersibility in the resin at the time of kneading can be improved.
 脱水・乾燥した微細繊維に含まれる樹脂の形態としては、例えば、粉末状、ペレット状、シート状等が挙げられる。ただし、粉末状(粉末樹脂)が好ましい。 Examples of the form of the resin contained in the dehydrated / dried fine fibers include powder, pellets, and sheets. However, powder (powder resin) is preferable.
 粉末状とする場合、脱水・乾燥した微細繊維に含まれる粉末樹脂の平均粒子径は、1~10,000μmが好ましく、10~5,000μmがより好ましく、100~1,000μmが特に好ましい。平均粒子径が10,000μmを超えると、粒子径が大きいために混練装置内に入らないおそれがある。他方、平均粒子径が1μm未満であると、微細なために微細繊維同士の水素結合を阻害することができないおそれがある。なお、ここで使用する粉末樹脂等の樹脂は、微細繊維と混練する樹脂(主原料としての樹脂)と同種であっても異種であってもよいが、同種である方が好ましい。 In the case of powder, the average particle size of the powdered resin contained in the dehydrated and dried fine fibers is preferably 1 to 10,000 μm, more preferably 10 to 5,000 μm, and particularly preferably 100 to 1,000 μm. If the average particle size exceeds 10,000 μm, it may not enter the kneading device due to the large particle size. On the other hand, if the average particle size is less than 1 μm, hydrogen bonds between the fine fibers may not be inhibited due to the fineness. The resin such as the powder resin used here may be the same type as or different from the resin to be kneaded with the fine fibers (resin as the main raw material), but it is preferable that the resin is the same type.
 平均粒子径1~10,000μmの粉末樹脂は、脱水・乾燥前の水系分散状態で混合するのが好ましい。水系分散状態で混合することで、粉末樹脂を微細繊維間に均一に分散することができ、混練後の複合樹脂中に微細繊維を均一に分散できることができ、強度物性をより向上することができる。 The powder resin having an average particle diameter of 1 to 10,000 μm is preferably mixed in an aqueous dispersed state before dehydration and drying. By mixing in an aqueous-based dispersed state, the powder resin can be uniformly dispersed among the fine fibers, the fine fibers can be uniformly dispersed in the composite resin after kneading, and the strength physical characteristics can be further improved. ..
 以上のようにして得た繊維状セルロース含有物(樹脂の補強材)は、樹脂と混練し、繊維状セルロース複合樹脂を得る。この混練は、例えば、ペレット状の樹脂と補強材とを混ぜ合わす方法によることのほか、樹脂をまず溶融し、この溶融物の中に補強材を添加するという方法によることもできる。なお、酸変性樹脂や分散剤等は、この段階で添加することもできる。 The fibrous cellulose-containing material (resin reinforcing material) obtained as described above is kneaded with a resin to obtain a fibrous cellulose composite resin. This kneading can be performed, for example, by a method of mixing the pellet-shaped resin and the reinforcing material, or by a method of first melting the resin and adding the reinforcing material to the melt. The acid-modified resin, dispersant and the like can also be added at this stage.
 混練処理には、例えば、単軸又は二軸以上の多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザー等の中から1種又は2種以上を選択して使用することができる。これらの中では、二軸以上の多軸混練機を使用することが好ましい。二軸以上の多軸混練機を2機以上、並列又は直列にして、使用しても良い。 For the kneading process, for example, one or two or more types are selected and used from a single-screw or two-screw multi-screw kneader, a mixing roll, a kneader, a roll mill, a Banbury mixer, a screw press, a disperser, and the like. be able to. Among these, it is preferable to use a multi-screw kneader having two or more shafts. Two or more multi-axis kneaders with two or more axes may be used in parallel or in series.
 混練処理の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、80~280℃とするのが好ましく、90~260℃とするのがより好ましく、100~240℃とするのが特に好ましい。 The temperature of the kneading treatment is equal to or higher than the glass transition point of the resin and varies depending on the type of resin, but is preferably 80 to 280 ° C, more preferably 90 to 260 ° C, and 100 to 240 ° C. Is particularly preferable.
 樹脂としては、熱可塑性樹脂又は熱硬化性樹脂の少なくともいずれか一方を使用するのが好ましい。 As the resin, it is preferable to use at least one of a thermoplastic resin and a thermosetting resin.
 熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン、脂肪族ポリエステル樹脂や芳香族ポリエステル樹脂等のポリエステル樹脂、ポリスチレン、メタアクリレート、アクリレート等のポリアクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の中から1種又は2種以上を選択して使用することができる。 Examples of the thermoplastic resin include polyolefins such as polypropylene (PP) and polyethylene (PE), polyester resins such as aliphatic polyester resins and aromatic polyester resins, polyacrylic resins such as polystyrene, methacrylate and acrylate, and polyamide resins. One kind or two or more kinds can be selected and used from the polycarbonate resin, the polyacetal resin and the like.
 ただし、ポリオレフィン及びポリエステル樹脂の少なくともいずれか一方を使用するのが好ましい。また、ポリオレフィンとしては、ポリプロピレンを使用するのが好ましい。さらに、ポリエステル樹脂としては、脂肪族ポリエステル樹脂として、例えば、ポリ乳酸、ポリカプロラクトン等を例示することができ、芳香族ポリエステル樹脂として、例えば、ポリエチレンテレフタレート等を例示することができるが、生分解性を有するポリエステル樹脂(単に「生分解性樹脂」ともいう。)を使用するのが好ましい。 However, it is preferable to use at least one of polyolefin and polyester resin. Moreover, it is preferable to use polypropylene as the polyolefin. Further, as the polyester resin, examples of the aliphatic polyester resin include polylactic acid and polycaprolactone, and examples of the aromatic polyester resin include polyethylene terephthalate, which are biodegradable. It is preferable to use a polyester resin having a above (simply also referred to as “biodegradable resin”).
 生分解性樹脂としては、例えば、ヒドロキシカルボン酸系脂肪族ポリエステル、カプロラクトン系脂肪族ポリエステル、二塩基酸ポリエステル等の中から1種又は2種以上を選択して使用することができる。 As the biodegradable resin, for example, one or more can be selected and used from among hydroxycarboxylic acid-based aliphatic polyesters, caprolactone-based aliphatic polyesters, dibasic acid polyesters and the like.
 ヒドロキシカルボン酸系脂肪族ポリエステルとしては、例えば、乳酸、リンゴ酸、グルコース酸、3-ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体や、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等の中から1種又は2種以上を選択して使用することができる。ただし、ポリ乳酸、乳酸と乳酸を除く上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体を使用するのが好ましく、ポリ乳酸を使用するのが特に好ましい。 As the hydroxycarboxylic acid-based aliphatic polyester, for example, a homopolymer of a hydroxycarboxylic acid such as lactic acid, malic acid, glucose acid, or 3-hydroxybutyric acid, or at least one of these hydroxycarboxylic acids is used. One type or two or more types can be selected and used from the polymers and the like. However, it is preferable to use polylactic acid, a polymer of the above hydroxycarboxylic acid excluding lactic acid and lactic acid, polycaprolactone, and a polymer of at least one of the above hydroxycarboxylic acids and caprolactone, and polylactic acid is preferably used. Especially preferred to use.
 この乳酸としては、例えば、L-乳酸やD-乳酸等を使用することができ、これらの乳酸を単独で使用しても、2種以上を選択して使用してもよい。 As this lactic acid, for example, L-lactic acid, D-lactic acid and the like can be used, and these lactic acids may be used alone or two or more kinds may be selected and used.
 カプロラクトン系脂肪族ポリエステルとしては、例えば、ポリカプロラクトンの単独重合体や、ポリカプロラクトン等と上記ヒドロキシカルボン酸との共重合体等の中から1種又は2種以上を選択して使用することができる。 As the caprolactone-based aliphatic polyester, for example, one or more can be selected and used from a homopolymer of polycaprolactone, a copolymer of polycaprolactone and the like and the hydroxycarboxylic acid, and the like. ..
 二塩基酸ポリエステルとしては、例えば、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の中から1種又は2種以上を選択して使用することができる。 As the dibasic acid polyester, for example, one or more of polybutylene succinate, polyethylene succinate, polybutylene adipate and the like can be selected and used.
 生分解性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。 The biodegradable resin may be used alone or in combination of two or more.
 熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレタン系樹脂、シリコーン樹脂、熱硬化性ポリイミド系樹脂等を使用することができる。これらの樹脂は、単独で又は二種以上組み合わせて使用することができる。 Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, furan resin, unsaturated polyester, diallyl phthalate resin, vinyl ester resin, epoxy resin, urethane resin, silicone resin, thermosetting polyimide resin and the like. Can be used. These resins can be used alone or in combination of two or more.
 樹脂には、無機充填剤が、好ましくはサーマルリサイクルに支障が出ない割合で含有されていてもよい。 The resin may preferably contain an inorganic filler in a proportion that does not interfere with thermal recycling.
 無機充填剤としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。 Examples of the inorganic filler include simple substances of metal elements in Groups I to VIII of the Periodic Table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon elements, and oxidation. Examples thereof include substances, hydroxides, carbon salts, sulfates, silicates, sulfites, and various clay minerals composed of these compounds.
 具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、シリカ、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレーワラストナイト、ガラスビーズ、ガラスパウダー、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機充填剤は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよい。 Specifically, for example, barium sulfate, calcium sulfate, magnesium sulfate, sodium sulfate, calcium sulfite, zinc oxide, silica, heavy calcium carbonate, light calcium carbonate, aluminum borate, alumina, iron oxide, calcium titanate, hydroxylation. Examples of aluminum, magnesium hydroxide, calcium hydroxide, sodium hydroxide, magnesium carbonate, calcium silicate, claywa lastnite, glass beads, glass powder, silica sand, silica stone, quartz powder, diatomaceous earth, white carbon, glass fiber and the like are exemplified. be able to. A plurality of these inorganic fillers may be contained. Further, it may be contained in recycled paper pulp.
 繊維状セルロース(セルロース繊維)に対する樹脂の配合割合は、好ましくは繊維状セルロース100質量部に対して樹脂が9900~1、好ましくは1900~66、より好ましくは900~100である。特に繊維状セルロース複合樹脂100質量部中の繊維状セルロースの配合割合が10~50質量部であると、樹脂組成物の強度、特に曲げ強度及び引張り弾性率の強度を著しく向上させることができる。 The mixing ratio of the resin to the fibrous cellulose (cellulose fiber) is preferably 9900 to 1, preferably 1900 to 66, and more preferably 900 to 100 with respect to 100 parts by mass of the fibrous cellulose. In particular, when the blending ratio of the fibrous cellulose in 100 parts by mass of the fibrous cellulose composite resin is 10 to 50 parts by mass, the strength of the resin composition, particularly the bending strength and the tensile elastic modulus can be remarkably improved.
 なお、最終的に得られ樹脂組成物に含まれる繊維状セルロース及び樹脂の含有割合は、通常、繊維状セルロース及び樹脂の上記配合割合と同じとなる。 The content ratio of the fibrous cellulose and the resin contained in the finally obtained resin composition is usually the same as the above-mentioned compounding ratio of the fibrous cellulose and the resin.
 微細繊維がマイクロ繊維セルロースである場合においてマイクロ繊維セルロース及び樹脂の溶解パラメータ(cal/cm31/2(SP値)の差は、マイクロ繊維セルロースのSPMFC値、樹脂のSPPOL値とすると、SP値の差=SPMFC値-SPPOL値とすることができる。SP値の差は10~0.1が好ましく、8~0.5がより好ましく、5~1が特に好ましい。SP値の差が10を超えると、樹脂中でマイクロ繊維セルロースが分散せず、補強効果を得ることはできない可能性がある。他方、SP値の差が0.1未満であるとマイクロ繊維セルロースが樹脂に溶解してしまい、フィラーとして機能せず、補強効果が得られない。この点、樹脂(溶媒)のSPPOL値とマイクロ繊維セルロース(溶質)のSPMFC値の差が小さい程、補強効果が大きい。 When the fine fiber is microfiber cellulose, the difference between the solubility parameter (cal / cm 3 ) 1/2 (SP value) of the microfiber cellulose and the resin is the SP MFC value of the microfiber cellulose and the SP POL value of the resin. , SP value difference = SP MFC value-SP POL value. The difference in SP value is preferably 10 to 0.1, more preferably 8 to 0.5, and particularly preferably 5-1. If the difference in SP value exceeds 10, microfiber cellulose may not be dispersed in the resin and the reinforcing effect may not be obtained. On the other hand, if the difference in SP value is less than 0.1, the microfiber cellulose dissolves in the resin and does not function as a filler, so that the reinforcing effect cannot be obtained. In this respect, the smaller the difference between the SP POL value of the resin (solvent) and the SP MFC value of the microfiber cellulose (solute), the greater the reinforcing effect.
 なお、溶解パラメータ(cal/cm31/2(SP値)とは、溶媒-溶質間に作用する分子間力を表す尺度であり、SP値が近い溶媒と溶質であるほど、溶解度が増す。 The solubility parameter (cal / cm 3 ) 1/2 (SP value) is a measure of the intramolecular force acting between the solvent and the solute, and the closer the SP value is to the solvent and solute, the higher the solubility. ..
(成形処理)
 微細繊維及び樹脂の混練物は、必要により再度混練する等した後、所望の形状に成形することができる。この成形の大きさや厚さ、形状等は、特に限定されず、例えば、シート状、ペレット状、粉末状、繊維状等とすることができる。
(Molding process)
The kneaded product of the fine fibers and the resin can be formed into a desired shape after being kneaded again if necessary. The size, thickness, shape, etc. of this molding are not particularly limited, and may be, for example, sheet-shaped, pellet-shaped, powder-shaped, fibrous-shaped, or the like.
 成形処理の際の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、例えば90~260℃、好ましくは100~240℃である。 The temperature during the molding process is equal to or higher than the glass transition point of the resin and varies depending on the type of resin, but is, for example, 90 to 260 ° C, preferably 100 to 240 ° C.
 混練物の成形は、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等によることができる。また、混練物を紡糸して繊維状にし、前述した植物材料等と混繊してマット形状、ボード形状とすることもできる。混繊は、例えば、エアーレイにより同時堆積させる方法等によることができる。 Molding of the kneaded product can be performed by, for example, mold molding, injection molding, extrusion molding, hollow molding, foam molding, or the like. Further, the kneaded product may be spun into a fibrous form and mixed with the above-mentioned plant material or the like to form a mat shape or a board shape. The mixed fiber can be, for example, a method of simultaneous deposition by an air ray or the like.
 混練物を成形する装置としては、例えば、射出成形機、吹込成形機、中空成形機、ブロー成形機、圧縮成形機、押出成形機、真空成形機、圧空成形機等の中から1種又は2種以上を選択して使用することができる。 As an apparatus for molding a kneaded product, for example, one or two from injection molding machines, blow molding machines, hollow molding machines, blow molding machines, compression molding machines, extrusion molding machines, vacuum forming machines, pneumatic molding machines and the like. You can select and use more than one species.
 以上の成形は、混練に続いて行うことも、混練物をいったん冷却し、破砕機等を使用してチップ化した後、このチップを押出成形機や射出成形機等の成形機に投入して行うこともできる。もちろん、成形は、本発明の必須の要件ではない。 The above molding can be performed after kneading, or the kneaded product is once cooled and made into chips by using a crusher or the like, and then the chips are put into a molding machine such as an extrusion molding machine or an injection molding machine. You can also do it. Of course, molding is not an essential requirement of the present invention.
(その他の組成物)
 繊維状セルロースには、マイクロ繊維セルロースと共にセルロースナノファイバーが含まれていてもよい。セルロースナノファイバーは、マイクロ繊維セルロースと同様に微細繊維であり、樹脂の強度向上にとってマイクロ繊維セルロースを補完する役割を有する。ただし、可能であれば、微細繊維としてセルロースナノファイバーを含むことなくマイクロ繊維セルロースのみによる方が好ましい。なお、セルロースナノファイバーの平均繊維径(平均繊維幅。単繊維の直径平均。)は、好ましくは4~100nm、より好ましくは10~80nmである。
(Other compositions)
The fibrous cellulose may contain cellulose nanofibers together with microfiber cellulose. Cellulose nanofibers are fine fibers like microfiber cellulose, and have a role of complementing microfiber cellulose for improving the strength of the resin. However, if possible, it is preferable to use only microfiber cellulose without containing cellulose nanofibers as fine fibers. The average fiber diameter (average fiber width; average diameter of single fibers) of the cellulose nanofibers is preferably 4 to 100 nm, more preferably 10 to 80 nm.
 また、繊維状セルロースには、パルプが含まれていてもよい。パルプは、セルロース繊維スラリーの脱水性を大幅に向上する役割を有する。ただし、パルプについてもセルロースナノファイバーの場合と同様に、配合しないのが、つまり含有率0質量%であるのが最も好ましい。 Further, the fibrous cellulose may contain pulp. Pulp has a role of significantly improving the dehydration property of the cellulose fiber slurry. However, as in the case of cellulose nanofibers, it is most preferable that pulp is not blended, that is, the content is 0% by mass.
 樹脂組成物には、微細繊維やパルプ等のほか、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物材料に由来する繊維を含ませることもでき、含まれていてもよい。 In addition to fine fibers and pulp, the resin composition includes kenaf, jute hemp, Manila hemp, sisal, ganpi, sansho, 楮, banana, pineapple, coco palm, corn, sugar cane, bagasse, palm, papyrus, reeds, esparto, etc. Fibers derived from plant materials obtained from various plants such as sisal, wheat, rice, bamboo, various coniferous trees (sugi and hinoki, etc.), broadleaf trees and cotton may be contained or may be contained.
 樹脂組成物には、例えば、帯電防止剤、難燃剤、抗菌剤、着色剤、ラジカル捕捉剤、発泡剤等の中から1種又は2種以上を選択して、本発明の効果を阻害しない範囲で添加することができる。これらの原料は、繊維状セルロースの分散液に添加しても、微細繊維及び樹脂の混練の際に添加しても、これらの混練物に添加しても、その他の方法で添加してもよい。ただし、製造効率の面からは、微細繊維及び樹脂の混練の際に添加するのが好ましい。 For the resin composition, for example, one or more selected from antistatic agents, flame retardants, antibacterial agents, colorants, radical scavengers, foaming agents, etc., and a range that does not impair the effects of the present invention. Can be added with. These raw materials may be added to the dispersion liquid of fibrous cellulose, added at the time of kneading the fine fibers and the resin, added to these kneaded products, or added by other methods. .. However, from the viewpoint of production efficiency, it is preferable to add it at the time of kneading the fine fibers and the resin.
 樹脂組成物には、ゴム成分として、エチレン-αオレフィン共重合エラストマー又はスチレン-ブタジエンブロック共重合体が含有されていてもよい。α-オレフィンの例としては、例えば、ブテン、イソブテン、ペンテン、ヘキセン、メチル-ペンテン、オクテン、デセン、ドデセン等が挙げられる。 The resin composition may contain an ethylene-α-olefin copolymer elastomer or a styrene-butadiene block copolymer as a rubber component. Examples of α-olefins include butene, isobutene, pentene, hexene, methyl-pentene, octene, decene, dodecene and the like.
 次に、本発明の実施例を説明する。
 水分率10%以下の針葉樹クラフトパルプと固形分濃度10%の尿素水溶液と20%クエン酸水溶液とを用いて、固形分換算の質量比でパルプ:尿素:クエン酸=100:50:0.1となるように混合した後、105℃で乾燥させた。次に、所定の反応温度、反応時間で加熱処理してカルバメート変性パルプ(カルバメート化パルプ)を得た。得られたカルバメート変性パルプは、蒸留水で希釈攪拌して脱水洗浄を2回繰り返した。洗浄したカルバメート変性パルプを叩解機を用いてFine率(FS5による繊維長分布測定で0.2mm以下の繊維の割合)が77%以上となるまでで叩解して、カルバメート変性マイクロ繊維セルロース(カルバメート化MFC(微細繊維))を得た。
Next, an embodiment of the present invention will be described.
Using coniferous kraft pulp with a water content of 10% or less, an aqueous urea solution with a solid content concentration of 10%, and a 20% aqueous solution of citric acid, the mass ratio in terms of solid content is pulp: urea: citric acid = 100: 50: 0.1. After mixing so as to be, it was dried at 105 ° C. Next, heat treatment was performed at a predetermined reaction temperature and reaction time to obtain carbamate-modified pulp (carbamate-modified pulp). The obtained carbamate-modified pulp was diluted with distilled water and stirred, and dehydration washing was repeated twice. The washed carbamate-modified pulp is beaten using a beating machine until the Fine ratio (the ratio of fibers of 0.2 mm or less in the fiber length distribution measurement by FS5) becomes 77% or more, and the carbamate-modified microfiber cellulose (carbamate formation) is beaten. MFC (fine fiber)) was obtained.
 得られたカルバメート化MFCについて、カルバメート化率並びに、カルバメート化後、叩解前の平均繊維長、及び叩解後の平均繊維長を測定した。結果を表1に示した。なお、カルバメート化率については、反応後のカルバメート化パルプをFTIR測定し、C=OとO-Hの吸収スペクトルのピーク高さの比を基に算出した。カルバメート化が進むほど、O-Hは減少し、O=Cが増加する。ただし、表中には、カルバメート化率が1mmol/g以上の場合を○、1mmol/g未満の場合を×として示した。また、叩解前の平均繊維長については、1.0mm以上の場合を〇、1.0mm未満の場合を×として示した。また、叩解後の平均繊維長については、0.8mm以上の場合を◎、0.5mm以上かつ0.8mm未満の場合を〇、0.5mm未満の場合を×として示した。 For the obtained carbamate MFC, the carbamate ratio, the average fiber length after carbamation and before beating, and the average fiber length after beating were measured. The results are shown in Table 1. The carbamate ratio was calculated by FTIR measurement of the carbamate pulp after the reaction and based on the ratio of the peak heights of the absorption spectra of C = O and OH. As the carbamation progresses, OH decreases and O = C increases. However, in the table, the case where the carbamateization rate is 1 mmol / g or more is shown as ◯, and the case where the carbamateization rate is less than 1 mmol / g is shown as x. Regarding the average fiber length before beating, the case of 1.0 mm or more is shown as ◯, and the case of less than 1.0 mm is shown as x. Regarding the average fiber length after beating, the case of 0.8 mm or more was shown as ⊚, the case of 0.5 mm or more and less than 0.8 mm was shown as ◯, and the case of less than 0.5 mm was shown as x.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(考察)
 例えば170℃で加熱した場合においては反応時間を1時間、30分とした場合においてもカルバメート化率を1mmol/g以上とすることができた。したがって、このカルバメート化MFCを樹脂の補強材として使用した場合においては、樹脂の曲げ弾性率を向上させることができることが分かる。また、170℃で3時間加熱処理した場合においても平均繊維長が0.5mm以上となっており、繊維のダメージが抑えられていることが分かる。
(Discussion)
For example, when heated at 170 ° C., the carbamate formation rate could be 1 mmol / g or more even when the reaction time was 1 hour and 30 minutes. Therefore, it can be seen that when this carbamate MFC is used as a reinforcing material for the resin, the flexural modulus of the resin can be improved. Further, even when the heat treatment was performed at 170 ° C. for 3 hours, the average fiber length was 0.5 mm or more, indicating that the damage to the fibers was suppressed.
 また、反応温度が150℃以上であればカルバメート化率を1mmol/g以上とすることができることが分かる。 Further, it can be seen that if the reaction temperature is 150 ° C. or higher, the carbamate formation rate can be 1 mmol / g or higher.
 なお、カルバメート化率と曲げ弾性率との関係を表2に示した。この試験は、以下の方法で複合樹脂を作製し、曲げ弾性率を測定したものである。曲げ弾性率の測定は、JIS K 7171:1994に準拠した。ただし、表中には、樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率が1.3倍以上の場合を○、1.3倍未満の場合を×として記載することとした。 Table 2 shows the relationship between the carbamate formation rate and the flexural modulus. In this test, a composite resin was prepared by the following method and the flexural modulus was measured. The measurement of flexural modulus was based on JIS K 7171: 1994. However, in the table, the flexural modulus of the resin itself is set to 1, and the case where the flexural modulus of the composite resin is 1.3 times or more is described as ◯, and the case where the flexural modulus of the composite resin is less than 1.3 times is described as x.
(複合樹脂の作製)
 水分率10%以下の針葉樹クラフトパルプと固形分濃度10%の尿素水溶液と各種pH調整液とを、固形分換算の質量比でパルプ:尿素:クエン酸=100:50:0.4の配合となるように混合した後、105℃で乾燥させた。その後、反応時間1時間、反応温度160℃で加熱処理し、カルバメート変性パルプを得た(カルバメート化率1.0mmol/g)。
(Making composite resin)
A mixture of coniferous kraft pulp with a water content of 10% or less, an aqueous urea solution with a solid content concentration of 10%, and various pH adjustment solutions in a mass ratio in terms of solid content of pulp: urea: citric acid = 100: 50: 0.4. After mixing so as to be, it was dried at 105 ° C. Then, it was heat-treated at a reaction time of 160 ° C. for a reaction time of 1 hour to obtain a carbamate-modified pulp (carbamate conversion rate 1.0 mmol / g).
 得られたカルバメート変性パルプを蒸留水で希釈攪拌して脱水洗浄を2回繰り返した。 The obtained carbamate-modified pulp was diluted with distilled water and stirred, and dehydration washing was repeated twice.
 洗浄したカルバメート変性パルプ(濃度3%)は、叩解機(SDR)を用いて、Fine率(FS5による繊維長分布測定における0.2mm以下の繊維の割合)が77%以上となるまでで微細化することでカルバメート化MFC水分散液を得た。 The washed carbamate-modified pulp (concentration 3%) is refined using a beating machine (SDR) until the Fine ratio (the ratio of fibers of 0.2 mm or less in the fiber length distribution measurement by FS5) becomes 77% or more. By doing so, a carbamateized MFC aqueous dispersion was obtained.
 次に、この水分散液(繊維濃度3%)にPP粉末及びMAPP粉末を加え(カルバメート化MFC:PP粉末:MAPP=55.0:17.5:27.5)、混合してスラリーとした。このスラリーは、ドラムドライヤ-で加熱乾燥(140℃、3rpm)してカルバメート化MFC乾燥体を得た。なお、PP粉末としては日本ポリプロ社のノバテックPPMA3ペレットを粉末状(500μm以下のふるい通過分、中位径123μm)に加工したものを使用した。また、MAPP粉末としてはBYK社のSCONA9212FAを使用した。 Next, PP powder and MAPP powder were added to this aqueous dispersion (fiber concentration 3%) (carbamate MFC: PP powder: MAPP = 55.0: 17.5: 27.5) and mixed to form a slurry. .. This slurry was heated and dried (140 ° C., 3 rpm) with a drum dryer to obtain a carbamate MFC dried product. As the PP powder, Novatec PPMA3 pellets manufactured by Japan Polypropylene Corporation were processed into powder (500 μm or less through a sieve, medium diameter 123 μm). Further, as the MAPP powder, SCONA9212FA manufactured by BYK was used.
 次に、上記カルバメート化MFC乾燥体を二軸混練機で混練して(180℃、200rpm)ペレットとした。このペレットは、カルバメート化MFC10%となるようにPPペレットと混合し(カルバメート化MFCペレット:PPペレット=10:45)、二軸混練機で混練(180℃、200rpm)してペレット状に加工後、射出成型して曲げ試験片を作製した。 Next, the carbamateized MFC dried product was kneaded with a twin-screw kneader (180 ° C., 200 rpm) to obtain pellets. These pellets are mixed with PP pellets so as to have a carbamate MFC of 10% (carbamate MFC pellets: PP pellets = 10:45), kneaded with a twin-screw kneader (180 ° C., 200 rpm), and processed into pellets. , Injection molding was performed to prepare a bending test piece.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明は、カルバメート化セルロース繊維の製造方法及びカルバメート化微細繊維の製造方法として利用可能である。 The present invention can be used as a method for producing a carbamateized cellulose fiber and a method for producing a carbamateized fine fiber.

Claims (5)

  1.  セルロース繊維を加熱処理して前記セルロース繊維のヒドロキシ基をカルバメート基で置換率1.0mmol/g以上となるように置換する工程を有し、
     前記加熱処理を150~170℃で行う、
     ことを特徴とするカルバメート化セルロース繊維の製造方法。
    It has a step of heat-treating the cellulose fiber and substituting the hydroxy group of the cellulose fiber with a carbamate group so that the substitution rate is 1.0 mmol / g or more.
    The heat treatment is carried out at 150 to 170 ° C.
    A method for producing a carbamate-ized cellulose fiber.
  2.  前記加熱処理は、前記セルロース繊維に尿素及び尿素の誘導体の少なくともいずれか一方並びにクエン酸が添加された条件で行い、
     前記セルロース繊維に対する前記クエン酸の添加量を0.1~10,000ppmとする、
     請求項1に記載のカルバメート化セルロース繊維の製造方法
    The heat treatment is carried out under the condition that at least one of urea and a derivative of urea and citric acid are added to the cellulose fiber.
    The amount of the citric acid added to the cellulose fibers is 0.1 to 10,000 ppm.
    The method for producing a carbamate-ized cellulose fiber according to claim 1.
  3.  前記セルロース繊維に対する前記尿素及び前記尿素の誘導体の添加量を1~70%とする、
     請求項2に記載のカルバメート化セルロース繊維の製造方法。
    The amount of the urea and the derivative of the urea added to the cellulose fibers is 1 to 70%.
    The method for producing a carbamate-ized cellulose fiber according to claim 2.
  4.  セルロース繊維を加熱処理して前記セルロース繊維のヒドロキシ基をカルバメート基で置換率1.0mmol/g以上となるように置換する工程と、
     セルロース繊維を平均繊維幅が19μm以下となるように解繊して微細繊維とする工程とを有し、
     前記加熱処理を150~170℃で行う、
     ことを特徴とするカルバメート化微細繊維の製造方法。
    A step of heat-treating the cellulose fiber to replace the hydroxy group of the cellulose fiber with a carbamate group so that the substitution rate is 1.0 mmol / g or more.
    It has a step of defibrating cellulose fibers so that the average fiber width is 19 μm or less to form fine fibers.
    The heat treatment is carried out at 150 to 170 ° C.
    A method for producing carbamate fine fibers.
  5.  前記加熱処理は、微細繊維の結晶化度が50%以上に留まるように行う、
     請求項4に記載のカルバメート化微細繊維の製造方法。
    The heat treatment is performed so that the crystallinity of the fine fibers remains at 50% or more.
    The method for producing a carbamate fine fiber according to claim 4.
PCT/JP2021/020861 2020-06-10 2021-06-01 Production method for carbamated cellulose fibers, and production method for carbamated filaments WO2021251216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101017A JP7150783B2 (en) 2020-06-10 2020-06-10 Method for producing carbamated cellulose fibers and method for producing carbamated fine fibers
JP2020-101017 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021251216A1 true WO2021251216A1 (en) 2021-12-16

Family

ID=78845583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020861 WO2021251216A1 (en) 2020-06-10 2021-06-01 Production method for carbamated cellulose fibers, and production method for carbamated filaments

Country Status (2)

Country Link
JP (1) JP7150783B2 (en)
WO (1) WO2021251216A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024051836A (en) * 2022-09-30 2024-04-11 大王製紙株式会社 Method for producing carbamate cellulose fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635246A1 (en) * 1995-09-04 1997-03-06 Inst Wlokien Chem Prepn. of cellulose carbamate forming stable spinning soln.
US5906926A (en) * 1997-04-15 1999-05-25 Zimmer Aktiengesellschaft Method for modified manufacture of cellulose carbamate
WO2018230600A1 (en) * 2017-06-14 2018-12-20 国立大学法人京都大学 Fine cellulose fibers, production method therefor, slurry, and composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635246A1 (en) * 1995-09-04 1997-03-06 Inst Wlokien Chem Prepn. of cellulose carbamate forming stable spinning soln.
US5906926A (en) * 1997-04-15 1999-05-25 Zimmer Aktiengesellschaft Method for modified manufacture of cellulose carbamate
WO2018230600A1 (en) * 2017-06-14 2018-12-20 国立大学法人京都大学 Fine cellulose fibers, production method therefor, slurry, and composite

Also Published As

Publication number Publication date
JP7150783B2 (en) 2022-10-11
JP2021195406A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
WO2020203147A1 (en) Fibrous cellulose composite resin and production method therefor, and resin reinforcing material
JP2020163651A5 (en)
JP7088888B2 (en) Method for manufacturing fibrous cellulose composite resin
JP2021031662A5 (en)
JP7048671B2 (en) Method for producing fibrous cellulose-containing material, fibrous cellulose composite resin, and fibrous cellulose-containing material
WO2021193119A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and fibrous cellulose production method
WO2021182180A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose composite resin
JP2022089848A5 (en)
WO2022030391A1 (en) Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
WO2021256247A1 (en) Fibrous cellulose and fibrous cellulose composite resin
JP2021195483A5 (en)
WO2021251216A1 (en) Production method for carbamated cellulose fibers, and production method for carbamated filaments
WO2021177289A1 (en) Fibrous cellulose-containing product, fibrous cellulose composite resin, and method for producing fibrous cellulose-containing product
WO2021182181A1 (en) Method for producing fibrous cellulose, and method for producing fibrous cellulose composite resin
WO2021193120A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and fibrous cellulose production method
JP7213296B2 (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for producing fibrous cellulose-containing material
WO2022091581A1 (en) Method for producing cellulose-fiber-containing substance and method for producing cellulose-fiber composite resin
JP7483418B2 (en) Method for producing fibrous cellulose and method for producing fibrous cellulose composite resin
WO2023162433A1 (en) Fibrous cellulose, fibrous cellulose composite resin, and method for producing fibrous cellulose
JP2023064943A (en) Fibrous cellulose composite resin
JP2023142300A (en) Fibrous cellulose composite resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21820867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21820867

Country of ref document: EP

Kind code of ref document: A1