WO2022091547A1 - Glove - Google Patents

Glove Download PDF

Info

Publication number
WO2022091547A1
WO2022091547A1 PCT/JP2021/031296 JP2021031296W WO2022091547A1 WO 2022091547 A1 WO2022091547 A1 WO 2022091547A1 JP 2021031296 W JP2021031296 W JP 2021031296W WO 2022091547 A1 WO2022091547 A1 WO 2022091547A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
urethane resin
copper
mass
glove
Prior art date
Application number
PCT/JP2021/031296
Other languages
French (fr)
Japanese (ja)
Inventor
寛樹 田中
俊介 河中
幸介 藤田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022543109A priority Critical patent/JPWO2022091547A1/ja
Priority to CN202180063611.9A priority patent/CN116194007A/en
Publication of WO2022091547A1 publication Critical patent/WO2022091547A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves

Definitions

  • the present invention relates to a glove having a film made of a urethane resin composition containing a visible light responsive photocatalyst.
  • rubber As rubber generally used as a material having rubber elasticity, natural rubber, isoprene rubber, chloroprene rubber, nitrile rubber and the like are used. When these are used for gloves, allergies due to proteins contained in natural rubber and allergies due to vulcanizing agents and vulcanization accelerators used for these rubbers in general may become a problem.
  • urethane resin having rubber elasticity that does not contain the above substances is promising.
  • rubber latex has been widely used in glove processing, and an alternative to urethane dispersion (a urethane resin dispersed in water, etc.) that can be used in the same manufacturing equipment is particularly promising.
  • the problem to be solved by the present invention is to provide gloves having antiviral properties by using a urethane resin containing water.
  • the present invention provides gloves characterized by having a film formed of a urethane resin composition containing a urethane resin (A), a visible light responsive photocatalyst (B), and water (C). be.
  • the glove of the present invention has excellent antiviral properties. Further, since the urethane resin composition containing water is used, the environmental load at the time of manufacturing gloves is small. Therefore, the glove of the present invention can be suitably used as an industrial glove used in various fields such as the chemical industry field, the food field, and the medical field, and can be particularly preferably used as a medical glove. ..
  • the gloves of the present invention have a film formed of a urethane resin composition containing a urethane resin (A), a visible light responsive photocatalyst (B), and water (C).
  • the urethane resin (A) can be dispersed in water (B) described later, and has, for example, a hydrophilic group such as an anionic group, a cationic group, or a nonionic group; forced with an emulsifier.
  • a substance dispersed in water (B) can be used.
  • These urethane resins (A) may be used alone or in combination of two or more. Among these, it is preferable to use a urethane resin having a hydrophilic group from the viewpoint of ease of emulsification, and more preferably to use a urethane resin having an anionic group from the viewpoint of ease of glove processing.
  • Examples of the method for obtaining the urethane resin having an anionic group include a method using one or more compounds selected from the group consisting of a compound having a carboxyl group and a compound having a sulfonyl group as a raw material.
  • 2,2-dimethylol propionic acid 2,2-dimethylol butyric acid, 2,2-dimethylol butyric acid, 2,2-valeric acid and the like can be used. These compounds may be used alone or in combination of two or more.
  • Examples of the compound having a sulfonyl group include 3,4-diaminobutane sulfonic acid, 3,6-diamino-2-toluene sulfonic acid, 2,6-diaminobenzene sulfonic acid, and N- (2-aminoethyl)-.
  • 2-aminosulfonic acid, N- (2-aminoethyl) -2-aminoethylsulfonic acid, N-2-aminoethane-2-aminosulfonic acid, N- (2-aminoethyl) - ⁇ -alanine; salts thereof Can be used. These compounds may be used alone or in combination of two or more.
  • the carboxyl group and the sulfonyl group may be partially or completely neutralized with a basic compound in the urethane resin composition.
  • a basic compound for example, organic amines such as ammonia, triethylamine, pyridine, and morpholine; alkanolamines such as monoethanolamine and dimethylethanolamine; and metal base compounds containing sodium, potassium, lithium, calcium and the like are used. Can be done.
  • Examples of the method for obtaining the urethane resin having a cationic group include a method using one or more compounds having an amino group as a raw material.
  • Examples of the compound having an amino group include compounds having primary and secondary amino groups such as triethylenetetramine and diethylenetriamine; N-alkyldialkanolamines such as N-methyldiethanolamine and N-ethyldiethanolamine, and N-methyl.
  • Compounds having a tertiary amino group such as N-alkyldiaminoalkylamine such as diaminoethylamine and N-ethyldiaminoethylamine can be used. These compounds may be used alone or in combination of two or more.
  • Examples of the method for obtaining the urethane resin having a nonionic group include a method using one or more compounds having an oxyethylene structure as a raw material.
  • a polyether polyol having an oxyethylene structure such as polyoxyethylene glycol, polyoxyethylene polyoxypropylene glycol, and polyoxyethylene polyoxytetramethylene glycol can be used. These compounds may be used alone or in combination of two or more.
  • the urethane resin (A) is, for example, a polyol (a1), a polyisocyanate (a2), a chain extender (a3), and, if necessary, a raw material used for producing the urethane resin having the above-mentioned hydrophilic group. Reactants can be used.
  • polystyrene resin for example, a polycarbonate polyol, a polyether polyol, a polyester polyol, a polyacrylic polyol, or the like can be used. These polyols may be used alone or in combination of two or more. Among these, a polycarbonate polyol and / or a polyether polyol is preferable, and a polycarbonate polyol and / or a polytetramethylene glycol is more preferable because further improved chemical resistance and flexibility can be obtained.
  • the number average molecular weight of the polyol (a1) is preferably in the range of 500 to 10,000, more preferably in the range of 1,000 to 5,000, from the viewpoint of obtaining even more excellent flexibility and chemical resistance. ..
  • the number average molecular weight of the polyol (a1) indicates a value measured by a gel permeation chromatography (GPC) method.
  • polyisocyanate (a2) examples include aromatic polyisocyanates such as phenylenediocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, polymethylene polyphenyl polyisocyanate, and carbodiimidated diphenylmethane polyisocyanate; hexamethylene diisocyanate, lysine diisocyanate, and the like.
  • An aliphatic or alicyclic polyisocyanate such as cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, dimerate diisocyanate, norbornene diisocyanate can be used.
  • These polyisocyanates may be used alone or in combination of two or more.
  • aromatic polyisocyanates are preferable, and diphenylmethane diisocyanates are more preferable, because even more excellent chemical resistance can be obtained.
  • chain extender (a3) examples include ethylenediamine, 1,2-propanedidiol, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 1,2-cyclohexanediamine, and 1, Chain extender having an amino group such as 3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl-4,4'-dicyclohexylmethanediamine, hydrazine, diethylenetriamine, etc.
  • chain extenders may be used alone or in combination of two or more.
  • a chain extender having no branched structure is preferably used, a chain extender having a hydroxyl group is more preferable, and ethylene glycol is particularly preferable, from the viewpoint of obtaining even more excellent chemical resistance.
  • the polyol (a1), the polyisocyanate (a2), the chain extender (a3), and the hydrophilic group are used in the absence of a solvent or in the presence of an organic solvent.
  • the polyisocyanate (a2) and the raw material for producing the urethane resin having a hydrophilic group are mixed and reacted at 50 to 100 ° C.
  • urethane prepolymer having an isocyanate group a method of producing by reacting the urethane prepolymer with the chain extender (a3) and the like can be mentioned.
  • an organic solvent is used in the reaction, it is preferably distilled off in the end.
  • Examples of the organic solvent that can be used in producing the urethane resin (A) include a ketone solvent such as acetone and methyl ethyl ketone; an ether solvent such as tetrahydrofuran and dioxane; an acetate solvent such as ethyl acetate and butyl acetate; A nitrile solvent such as acetonitrile; an amide solvent such as dimethylformamide and N-methylpyrrolidone can be used.
  • the organic solvent may be used alone or in combination of two or more.
  • the average particle size of the urethane resin (A) is preferably in the range of 0.05 to 1 ⁇ m, preferably 0.10, from the viewpoint of obtaining even better dispersion stability and a relatively high concentration urethane resin. A range of ⁇ 0.7 ⁇ m is more preferable.
  • the method for measuring the average particle size of the urethane resin (A) is a laser diffraction / scattering type particle size distribution measuring device (Microtrack UPA-EX150 manufactured by Nikkiso Co., Ltd.) using a urethane resin composition containing the urethane resin (A). ”), Water is used as the dispersion liquid, the solvent refractive index is 1.33, the particle refractive index is 1.51, and the average particle diameter indicates the measured value of the volume average diameter.
  • the content of the urethane resin (A) is preferably 10 to 95% by mass, more preferably 20 to 80% by mass in the urethane resin composition from the viewpoint of improving storage stability and workability.
  • the visible light responsive photocatalyst (B) is an essential component for obtaining excellent antiviral properties, and examples thereof include compositions containing titanium oxide (a), and even more excellent antiviral properties can be obtained. From this point of view, a titanium oxide (a) in which a metal compound is supported is preferably used.
  • titanium oxide (a) for example, rutile-type titanium oxide (a1), anatase-type titanium oxide, brookite-type titanium oxide, or the like can be used. These titanium oxides may be used alone or in combination of two or more. Among these, rutile-type titanium oxide (a1) is preferably contained because it has excellent photocatalytic activity in the visible light region.
  • the content rate (rutileization rate) of the rutile-type titanium oxide (a1) is preferably 15 mol% or more, more preferably 50 mol% or more, still more preferably 90 mol% or more.
  • the liquid phase method is a method for obtaining titanium oxide by hydrolyzing or neutralizing titanyl sulfate obtained from a liquid in which a raw material ore such as ilmenite ore is dissolved.
  • the vapor phase method is a method for obtaining titanium oxide by a vapor phase reaction between titanium tetrachloride obtained by chlorinating a raw material ore such as rutile ore and oxygen.
  • analysis of the impurities can be mentioned. Titanium oxide produced by the liquid phase method contains zirconium, niobium, etc. derived from impurities in ilmenite ore as its product.
  • the vapor phase method has a step of purifying titanium tetrachloride to remove impurities, titanium oxide hardly contains these impurities.
  • Titanium oxide produced by the vapor phase method has the advantage of being able to generate a uniform particle size, but it is difficult to form secondary aggregates, so the apparent specific surface area is high, and the mixed solution during the reaction step. It is considered that the viscosity of is high.
  • the titanium oxide (a) produced by the liquid phase method is considered to generate loose secondary aggregates in the firing step, and has a specific surface area (BET value) due to the primary particles. The cohesive force is small and the viscosity of the mixed solution can be suppressed.
  • the productivity of the visible light responsive photocatalyst (B) the wear resistance of gloves, the bending resistance, the flexibility, the durability, and the chemical resistance are further improved. Titanium oxide produced by the liquid phase method is preferable because it can be produced.
  • the BET specific surface area of the titanium oxide (a) is preferably in the range of 1 to 200 m 2 / g, preferably from 3 to 100 m 2 / g, from the viewpoint of obtaining even more excellent antiviral properties and visible light responsiveness.
  • the range of 4 to 70 m 2 / g is more preferable, the range of 8 to 50 m 2 / g is more preferable, and the productivity of the visible light responsive photocatalyst (B) can be further increased. , 7.5 to 9.5 m 2 / g, preferably in the range.
  • the method for measuring the BET specific surface area of the rutile-type titanium oxide (a1) will be described in Examples described later.
  • the primary particle size of the titanium oxide (a) is preferably in the range of 0.01 to 0.5 ⁇ m, preferably 0.06 to 0.5 ⁇ m, from the viewpoint of obtaining even more excellent antiviral properties and visible light responsiveness. A range of 0.35 ⁇ m is more preferred.
  • the method for measuring the primary particle size of the titanium oxide (a) is a value measured by a method of directly measuring the size of the primary particle from an electron micrograph using a transmission electron microscope (TEM). .. Specifically, the minor axis diameter and the major axis diameter of each titanium oxide primary particle are measured, the average is taken as the particle diameter of the primary particle, and then each particle is obtained for 100 or more titanium oxide particles. The volume (weight) of was obtained by approximating it to a cube having the obtained particle size, and the volume average particle size was taken as the average primary particle size.
  • the method for measuring the primary particle size of the titanium oxide (a) is a value measured by a method of directly measuring the size of the primary particle from an electron micrograph using
  • the visible light responsive photocatalyst further improves the photocatalytic activity in the visible light region, and easily develops an appropriate activity capable of decomposing dirt components under practical indoor light, and thus titanium oxide (a). ), It is preferable to use one in which a metal compound is supported.
  • Examples of the method for supporting the divalent copper compound on the titanium oxide (a) include titanium oxide (a) containing rutyl-type titanium oxide (a1), a raw material for the divalent copper compound (b), water (c), and water (c). , A method having a mixing step (i) of the alkaline substance (d) can be mentioned.
  • the concentration of the titanium oxide (a) in the mixing step (i) is preferably in the range of 3 to 40% by mass.
  • a mixing step with good handling can be performed even if the concentration of the titanium oxide (a) is increased.
  • the mixing step can be performed satisfactorily even when the concentration of the titanium oxide (a) is in the range of more than 25% by mass and 40% by mass or less.
  • divalent copper compound raw material (b) for example, a divalent copper inorganic compound, a divalent copper organic compound, or the like can be used.
  • divalent copper inorganic compound examples include copper sulfate, copper nitrate, copper iodide, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amide sulfate, copper ammonium chloride, and copper pyrophosphate.
  • Inorganic acid salts of divalent copper such as copper carbonate; halides of divalent copper such as copper chloride, copper fluoride and copper bromide; copper oxide, copper sulfide, azurite, malakite, copper azide and the like can be used. .. These compounds may be used alone or in combination of two or more.
  • divalent copper organic compound examples include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper capricate, and mistinic acid.
  • the divalent copper compound raw material (b) it is preferable to use the one represented by the following general formula (1) among the above-mentioned ones.
  • CuX 2 (1) In formula (1), X represents a halogen atom, CH 3 COO, NO 3 or (SO 4 ) 1/2 .
  • the X in the formula (1) is more preferably a halogen atom, and even more preferably a chlorine atom.
  • the amount of the divalent copper compound raw material (b) used in the mixing step (i) is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide (a).
  • the range of 0.1 to 15 parts by mass is more preferable, and the range of 0.3 to 10 parts by mass is further preferable.
  • the water (c) is the solvent in the mixing step (i), and water alone is preferable, but other solvents may be contained if necessary.
  • the other solvent for example, alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; dimethylformamide and tetrahydrofuran can be used. These solvents may be used alone or in combination of two or more.
  • alkaline substance (d) for example, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, triethylamine, trimethylamine, ammonia, a basic surfactant and the like can be used, and water can be used. It is preferable to use sodium oxide.
  • the alkaline substance (d) is preferably added as a solution from the viewpoint of easy control of the reaction, and the concentration of the alkaline solution to be added is preferably in the range of 0.1 to 5 mol / L.
  • the range of 3 to 4 mol / L is more preferable, and the range of 0.5 to 3 mol / L is even more preferable.
  • the titanium oxide (a), the divalent copper compound raw material (b), the water (c), and the alkaline substance (d) may be mixed.
  • the water (c) may be mixed.
  • examples thereof include a method in which titanium oxide (a) is mixed and stirred as necessary, then a divalent copper compound raw material (b) is mixed and stirred, and then an alkaline substance (d) is added and stirred. ..
  • the divalent copper compound derived from the divalent copper compound raw material (b) is supported on the titanium oxide (a).
  • the total stirring time in the mixing step (i) is, for example, 5 to 120 minutes, preferably 10 to 60 minutes.
  • Examples of the temperature in the mixing step (i) include a range of room temperature to 70 ° C.
  • the titanium oxide (a), the divalent copper compound raw material (b) and the water (c) are mixed and stirred, and then alkaline.
  • the pH of the mixture after mixing and stirring the substance (d) is preferably in the range of 8 to 11, and more preferably in the range of 9.0 to 10.5.
  • the mixed liquid can be separated as a solid content.
  • the method for performing the separation include filtration, sedimentation separation, centrifugation, evaporation and drying, and the like, but filtration is preferable.
  • the separated solid content may be subsequently washed with water, crushed, classified, or the like, if necessary.
  • the solid content can be more firmly bonded to the divalent copper compound derived from the divalent copper compound raw material (b) supported on the titanium oxide (a).
  • the heat treatment temperature is preferably in the range of 150 to 600 ° C, more preferably in the range of 250 to 450 ° C.
  • the heat treatment time is preferably 1 to 10 hours, more preferably 2 to 5 hours.
  • a titanium oxide composition containing titanium oxide in which a divalent copper compound is supported on titanium oxide (a) can be obtained.
  • the amount of the divalent copper compound supported on the titanium oxide (a) is in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide (a), which provides antiviral properties. It is preferable from the viewpoint of the photocatalytic activity including.
  • the amount of the divalent copper compound supported can be adjusted by the amount of the divalent copper compound raw material (b) used in the mixing step (i).
  • water (C) for example, distilled water, ion-exchanged water, or the like can be used. These waters may be used alone or in combination of two or more.
  • the content of the water (C) is preferably 20 to 85% by mass, more preferably 30 to 75% by mass in the aqueous urethane resin composition from the viewpoint of improving storage stability and workability.
  • the urethane resin composition used in the present invention contains the urethane resin (A), the visible light responsive photocatalyst (B), and the water (C) as essential components, but other additives as necessary. May be contained.
  • Examples of the other additives include a thickener, a defoaming agent, a urethanization catalyst, a silane coupling agent, a filler, a texo property-imparting agent, an antistatic agent, a wax, a heat stabilizer, a light-resistant stabilizer, and fluorescence.
  • Whitening agents, foaming agents, foam stabilizers, pigments, dyes, conductivity-imparting agents, antistatic agents, moisture-permeable agents, water-repellent agents, oil-repellent agents, blocking inhibitors, hydrolysis inhibitors and the like can be used. .. These additives may be used alone or in combination of two or more.
  • the urethane resin composition used in the present invention requires different durability and flexibility depending on the intended use, for example, a styrene-butadiene copolymer (SBR), a butadiene copolymer (BR), and an isoprene co-weight.
  • SBR styrene-butadiene copolymer
  • BR butadiene copolymer
  • IIR acrylonitrile-butadiene polymer
  • NR natural rubber
  • the urethane resin composition used in the present invention can be used not only for gloves but also for medical tubes such as catheter tubes and contraceptives.
  • the hand mold, the tube mold, etc. are first immersed in a coagulant described later and then dried as necessary to obtain the hand mold, etc.
  • a coagulant described later
  • the metal salt or the like in the coagulant By adhering the metal salt or the like in the coagulant to the surface of the body, then immersing the hand mold or the like in the urethane resin composition, and then washing the surface with water and drying the hand mold or the like.
  • a method of manufacturing a glove having a solidified film on the surface of the glove can be mentioned.
  • the urethane resin composition may be further diluted with distilled water, ion-exchanged water, or the like.
  • a metal salt solution of calcium nitrate, calcium chloride, zinc nitrate, zinc chloride, magnesium acetate, aluminum sulfate, sodium chloride or the like; an acid solution of formic acid, acetic acid or the like can be used.
  • the solvent capable of dissolving the metal salt or acid for example, water, methanol, ethanol, isopropanol or the like can be used.
  • the metal salt contained in the coagulant is preferably contained in the range of 1 to 50% by mass with respect to the total amount of the coagulant.
  • the time for immersing the coating material in the coagulant may be 1 to 10 minutes. Further, the coagulant can be used at a temperature of 5 to 60 ° C.
  • the hand mold or tube mold may be at room temperature or may be heated to 30 to 70 ° C. when immersed in the coagulant.
  • the hand mold or the tube mold may be preliminarily attached with a glove-like object or a tubular object made of knitted material such as nylon fiber.
  • a hand mold or the like to which a glove-like material made of the knitted material is attached is immersed in the coagulant and then dried as necessary to coagulate the glove-like material or the like. Impregnate the agent.
  • the surface thereof is washed with water and dried to form gloves or the like made of a solidified film on the surface of the glove-like material or the like.
  • a glove or the like made of a solidified film having a shape corresponding to the hand mold or the like can be obtained.
  • the tube it can be produced by the same method as described above except that the tube type and the tubular material made of knitted fabric such as nylon fiber are used.
  • the knitting is not limited to the nylon fiber, and for example, a knit made of polyester fiber, aramid fiber, polyethylene fiber, cotton or the like can be used. Further, instead of the knitting, a woven fabric made of the fibers can be used. Further, instead of the knitting, a glove-like material or a tubular material made of a resin material such as vinyl chloride, natural rubber or synthetic rubber can be used.
  • the glove of the present invention has excellent antiviral properties. Further, since the urethane resin composition containing water is used, the environmental load at the time of manufacturing gloves is small. Therefore, the glove of the present invention can be suitably used as an industrial glove used in various fields such as the chemical industry field, the food field, and the medical field, and can be particularly preferably used as a medical glove. ..
  • Preparation Example 2 After mixing and stirring 25 parts of the titanium oxide composition obtained in Adjustment Example 1, 75 parts of water, and 1 part of a dispersant (“SN Dispersant 5023” manufactured by San Nopco Ltd.), 100 parts of 1.0 mm ⁇ ceramic beads were added. , Grinded with a sand grinder for 4 hours. After completion of grinding, the beads and the dispersion were separated to obtain a titanium oxide composition dispersion.
  • a dispersant (“SN Dispersant 5023” manufactured by San Nopco Ltd.
  • Preparation Example 3 Polypolypolyols (based on 1,5-pentanediol and 1,6-hexanediol, number average molecular weight; 2,000 in nitrogen-substituted containers equipped with thermometers, nitrogen gas inlet tubes and stirrers. ) By 600 parts by mass, polytetramethylene glycol (number average molecular weight; 2,000) by 33 parts by mass, polypropylene triol (additive of glycerin and propylene oxide, number average molecular weight; 6,000) by 181 parts by mass, ethylene.
  • Example 1 ⁇ Preparation of urethane resin composition> A urethane resin composition was obtained by blending 100 parts by mass of the urethane resin (A1) composition obtained in Preparation Example 3 with 1 part by mass of the titanium oxide composition dispersion liquid obtained in Preparation Example 2.
  • Gloves were produced by the following procedure. (1) Immerse the pottery bill in a 10% by mass calcium nitrate aqueous solution and pull it up. (2) Dry the hand mold of (1) at 70 ° C. for 2 minutes. (3) The hand mold of (2) is immersed in the urethane resin composition for 5 seconds and pulled up. (4) Wash the hand mold of (3) with water. (5) The hand mold of (4) is dried at 70 ° C. for 20 minutes and then at 120 ° C. for 30 minutes. (6) The baby powder is attached to the hand mold of (5), and the urethane resin film is peeled off from the hand mold.
  • Example 2 A urethane resin composition and gloves were obtained in the same manner as in Example 1 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 20 parts by mass.
  • Example 3 A urethane resin composition and gloves were obtained in the same manner as in Example 1 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 80 parts by mass.
  • Example 4 ⁇ Preparation of urethane resin composition> A urethane resin composition was obtained by blending 100 parts by mass of the urethane resin (A2) composition obtained in Preparation Example 4 with 1 part by mass of the titanium oxide composition dispersion liquid obtained in Preparation Example 2.
  • Gloves were produced by the following procedure. (1) Attach a knitted glove made of nylon fiber to an aluminum hand mold, immerse it in a 5 mass% calcium nitrate aqueous solution for 10 seconds, and pull it up. (2) The hand mold of (1) is immersed in the urethane resin composition for 2 seconds to form a solidified film of anionic urethane resin on the surface of knitted gloves, and then pulled up. (3) Immerse the hand mold of (2) in water for 30 minutes and then pull it up. (4) The hand mold of (3) is dried at 70 ° C. for 20 minutes and then at 120 ° C. for 30 minutes. (5) Remove the gloves coated with the coagulation film from the hand mold of (4).
  • Example 5 A urethane resin composition and gloves were obtained in the same manner as in Example 4 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 20 parts by mass.
  • Example 6 A urethane resin composition and gloves were obtained in the same manner as in Example 4 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 80 parts by mass.
  • Example 1 A urethane resin composition and gloves were obtained in the same manner as in Example 1 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 0 parts by mass.
  • the number average molecular weight of the polyol or the like used in the synthesis example shows the value measured under the following conditions by the gel permeation chromatography (GPC) method.
  • Measuring device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series and used. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 This "TSKgel G2000" (7.8 mm ID x 30 cm) x 1 Detector: RI (Differential Refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4% by mass) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • the light of the white fluorescent lamp was cut off from ultraviolet rays by the N113 filter, and the illuminance was set to 500 lux.
  • Examples 1 to 6 which are the gloves of the present invention, have excellent antiviral properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Gloves (AREA)

Abstract

The present invention addresses the problem of providing a glove in which an urethane resin containing water is used and which has antiviral properties. The present invention provides a glove characterized by having a coating formed from an urethane resin composition containing a urethane resin (A), a visible-light-responsive photocatalyst (B), and water (C). The visible-light-responsive photocatalyst preferably has a metallic compound supported on titanium oxide (a). The titanium oxide (a) preferably contains a rutile-type titanium oxide (a1). The metallic compound is preferably a divalent copper compound. The glove according to the present invention can be suitably used as an industrial glove used in various fields, such as in the chemical industry field, the food product field, and the medical service field, and can be particularly suitably used as a medical glove.

Description

手袋gloves
 本発明は、可視光応答型光触媒を含有するウレタン樹脂組成物による皮膜を有する手袋に関するものである。 The present invention relates to a glove having a film made of a urethane resin composition containing a visible light responsive photocatalyst.
 一般にゴム弾性を有する材料として使用されるゴムとしては、天然ゴム、イソプレンゴム、クロロプレンゴム、ニトリルゴム等が利用されている。これらを手袋に使用した場合、天然ゴムに含まれるたんぱく質によるアレルギーや、これらゴム全般に使用される加硫剤、加硫促進剤によるアレルギーが問題になる場合がある。 As rubber generally used as a material having rubber elasticity, natural rubber, isoprene rubber, chloroprene rubber, nitrile rubber and the like are used. When these are used for gloves, allergies due to proteins contained in natural rubber and allergies due to vulcanizing agents and vulcanization accelerators used for these rubbers in general may become a problem.
 そこで、これらのゴムの代替材料として、上記の物質を含まないゴム弾性を有するウレタン樹脂の利用が有望である。これまで手袋加工ではゴムラテックスが広く利用されており、同じ製造設備で使用できるウレタンディスパージョン(水中にウレタン樹脂が分散等したもの。)への代替が、その中でも特に有望である。 Therefore, as a substitute material for these rubbers, the use of urethane resin having rubber elasticity that does not contain the above substances is promising. Until now, rubber latex has been widely used in glove processing, and an alternative to urethane dispersion (a urethane resin dispersed in water, etc.) that can be used in the same manufacturing equipment is particularly promising.
 一方、最近はコロナウイルスのパンデミックにより、手袋に対しても抗ウイルス性への関心が高まっており、アレルギーの抑制とともに、手袋装着による抗ウイルス性を一層高めることが求められている。 On the other hand, recently, due to the coronavirus pandemic, there is increasing interest in antiviral properties for gloves, and it is required to suppress allergies and further enhance antiviral properties by wearing gloves.
特表2005-526889号公報Special Table 2005-526889
 本発明が解決しようとする課題は、水を含有するウレタン樹脂を使用して、抗ウイルス性を備える手袋を提供することである。 The problem to be solved by the present invention is to provide gloves having antiviral properties by using a urethane resin containing water.
 本発明は、ウレタン樹脂(A)、可視光応答型光触媒(B)、及び、水(C)を含有するウレタン樹脂組成物により形成された皮膜を有することを特徴とする手袋を提供するものである。 The present invention provides gloves characterized by having a film formed of a urethane resin composition containing a urethane resin (A), a visible light responsive photocatalyst (B), and water (C). be.
 本発明の手袋は、抗ウイルス性に優れるものである。また、水を含有するウレタン樹脂組成物を使用することから、手袋製造時の環境負荷も小さいものである。従って、本発明の手袋は、化学工業分野、食品分野、医療分野等の様々な分野で使用される産業用手袋として好適に利用することができ、特に医療用手袋として好適に利用することができる。 The glove of the present invention has excellent antiviral properties. Further, since the urethane resin composition containing water is used, the environmental load at the time of manufacturing gloves is small. Therefore, the glove of the present invention can be suitably used as an industrial glove used in various fields such as the chemical industry field, the food field, and the medical field, and can be particularly preferably used as a medical glove. ..
 本発明の手袋は、ウレタン樹脂(A)、可視光応答型光触媒(B)、及び、水(C)を含有するウレタン樹脂組成物により形成された皮膜を有するものである。 The gloves of the present invention have a film formed of a urethane resin composition containing a urethane resin (A), a visible light responsive photocatalyst (B), and water (C).
 前記ウレタン樹脂(A)は、後述する水(B)中に分散等し得るものであり、例えば、アニオン性基、カチオン性基、ノニオン性基等の親水性基を有するもの;乳化剤で強制的に水(B)中に分散するものなどを用いることができる。これらのウレタン樹脂(A)は単独で用いても2種以上を併用してもよい。これらの中でも、乳化の容易性の点から、親水性基を有するウレタン樹脂を用いることが好ましく、手袋加工の容易性からアニオン性基を有するウレタン樹脂を用いることがより好ましい。 The urethane resin (A) can be dispersed in water (B) described later, and has, for example, a hydrophilic group such as an anionic group, a cationic group, or a nonionic group; forced with an emulsifier. A substance dispersed in water (B) can be used. These urethane resins (A) may be used alone or in combination of two or more. Among these, it is preferable to use a urethane resin having a hydrophilic group from the viewpoint of ease of emulsification, and more preferably to use a urethane resin having an anionic group from the viewpoint of ease of glove processing.
 前記アニオン性基を有するウレタン樹脂を得る方法としては、例えば、カルボキシル基を有する化合物、及びスルホニル基を有する化合物からなる群より選ばれる1種以上の化合物を原料として用いる方法が挙げられる。 Examples of the method for obtaining the urethane resin having an anionic group include a method using one or more compounds selected from the group consisting of a compound having a carboxyl group and a compound having a sulfonyl group as a raw material.
 前記カルボキシル基を有する化合物としては、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール酪酸、2,2-吉草酸等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 As the compound having a carboxyl group, for example, 2,2-dimethylol propionic acid, 2,2-dimethylol butyric acid, 2,2-dimethylol butyric acid, 2,2-valeric acid and the like can be used. These compounds may be used alone or in combination of two or more.
 前記スルホニル基を有する化合物としては、例えば、3,4-ジアミノブタンスルホン酸、3,6-ジアミノ-2-トルエンスルホン酸、2,6-ジアミノベンゼンスルホン酸、N-(2-アミノエチル)-2-アミノスルホン酸、N-(2-アミノエチル)-2-アミノエチルスルホン酸、N-2-アミノエタン-2-アミノスルホン酸、N-(2-アミノエチル)-β-アラニン;これらの塩を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the compound having a sulfonyl group include 3,4-diaminobutane sulfonic acid, 3,6-diamino-2-toluene sulfonic acid, 2,6-diaminobenzene sulfonic acid, and N- (2-aminoethyl)-. 2-aminosulfonic acid, N- (2-aminoethyl) -2-aminoethylsulfonic acid, N-2-aminoethane-2-aminosulfonic acid, N- (2-aminoethyl) -β-alanine; salts thereof Can be used. These compounds may be used alone or in combination of two or more.
 前記カルボキシル基及びスルホニル基は、ウレタン樹脂組成物中で、一部又は全部が塩基性化合物に中和されていてもよい。前記塩基性化合物としては、例えば、アンモニア、トリエチルアミン、ピリジン、モルホリン等の有機アミン;モノエタノールアミン、ジメチルエタノールアミン等のアルカノールアミン;ナトリウム、カリウム、リチウム、カルシウム等を含む金属塩基化合物などを用いることができる。 The carboxyl group and the sulfonyl group may be partially or completely neutralized with a basic compound in the urethane resin composition. As the basic compound, for example, organic amines such as ammonia, triethylamine, pyridine, and morpholine; alkanolamines such as monoethanolamine and dimethylethanolamine; and metal base compounds containing sodium, potassium, lithium, calcium and the like are used. Can be done.
 前記カチオン性基を有するウレタン樹脂を得る方法としては、例えば、アミノ基を有する化合物の1種又は2種以上を原料として用いる方法が挙げられる。 Examples of the method for obtaining the urethane resin having a cationic group include a method using one or more compounds having an amino group as a raw material.
 前記アミノ基を有する化合物としては、例えば、トリエチレンテトラミン、ジエチレントリアミン等の1級及び2級アミノ基を有する化合物;N-メチルジエタノールアミン、N-エチルジエタノールアミン等のN-アルキルジアルカノールアミン、N-メチルジアミノエチルアミン、N-エチルジアミノエチルアミン等のN-アルキルジアミノアルキルアミンなどの3級アミノ基を有する化合物などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the compound having an amino group include compounds having primary and secondary amino groups such as triethylenetetramine and diethylenetriamine; N-alkyldialkanolamines such as N-methyldiethanolamine and N-ethyldiethanolamine, and N-methyl. Compounds having a tertiary amino group such as N-alkyldiaminoalkylamine such as diaminoethylamine and N-ethyldiaminoethylamine can be used. These compounds may be used alone or in combination of two or more.
 前記ノニオン性基を有するウレタン樹脂を得る方法としては、例えば、オキシエチレン構造を有する化合物の1種又は2種以上を原料として用いる方法が挙げられる。 Examples of the method for obtaining the urethane resin having a nonionic group include a method using one or more compounds having an oxyethylene structure as a raw material.
 前記オキシエチレン構造を有する化合物としては、例えば、ポリオキシエチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシテトラメチレングリコール等のオキシエチレン構造を有するポリエーテルポリオールを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 As the compound having an oxyethylene structure, for example, a polyether polyol having an oxyethylene structure such as polyoxyethylene glycol, polyoxyethylene polyoxypropylene glycol, and polyoxyethylene polyoxytetramethylene glycol can be used. These compounds may be used alone or in combination of two or more.
 前記強制的に水(B)中に分散する水性ウレタン樹脂を得る際に用いることができる乳化剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリオキシエチレン・ポリオキシプロピレン共重合体等のノニオン系乳化剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、アルキルスルホコハク酸塩、ナフタレンスルフォン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルフォネートナトリウム塩、アルキルジフェニルエーテルスルフォン酸ナトリウム塩等のアニオン系乳化剤;アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン系乳化剤などを用いることができる。これらの乳化剤は単独で用いても2種以上を併用してもよい。 Examples of the emulsifier that can be used to obtain the aqueous urethane resin that is forcibly dispersed in water (B) include polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, and poly. Nonionic emulsifiers such as oxyethylene sorbitol tetraoleate and polyoxyethylene / polyoxypropylene copolymer; fatty acid salts such as sodium oleate, alkyl sulfate ester salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalensulfonates. , Polyoxyethylene alkyl sulfate, alkan sulphonate sodium salt, alkyl diphenyl ether sulphonic acid sodium salt and other anionic emulsifiers; alkylamine salt, alkyltrimethylammonium salt, alkyldimethylbenzylammonium salt and other cationic emulsifiers Can be done. These emulsifiers may be used alone or in combination of two or more.
 前記ウレタン樹脂(A)としては、例えば、ポリオール(a1)、ポリイソシアネート(a2)、鎖伸長剤(a3)及び必要に応じて前記した親水性基を有するウレタン樹脂を製造するために用いる原料の反応物を用いることができる。 The urethane resin (A) is, for example, a polyol (a1), a polyisocyanate (a2), a chain extender (a3), and, if necessary, a raw material used for producing the urethane resin having the above-mentioned hydrophilic group. Reactants can be used.
 前記ポリオール(a1)としては、例えば、ポリカーボネートポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリアクリルポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。これらの中でも、より一層向上した耐薬品性及び柔軟性が得られ流転から、ポリカーボネートポリオール、及び/又は、ポリエーテルポリオールが好ましく、ポリカーボネートポリオール、及び/又は、ポリテトラメチレングリコールがより好ましい。 As the polyol (a1), for example, a polycarbonate polyol, a polyether polyol, a polyester polyol, a polyacrylic polyol, or the like can be used. These polyols may be used alone or in combination of two or more. Among these, a polycarbonate polyol and / or a polyether polyol is preferable, and a polycarbonate polyol and / or a polytetramethylene glycol is more preferable because further improved chemical resistance and flexibility can be obtained.
 前記ポリオール(a1)の数平均分子量としては、より一層優れた柔軟性及び耐薬品性が得られる点から、500~10,000の範囲が好ましく、1,000~5,000の範囲がより好ましい。なお、前記ポリオール(a1)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The number average molecular weight of the polyol (a1) is preferably in the range of 500 to 10,000, more preferably in the range of 1,000 to 5,000, from the viewpoint of obtaining even more excellent flexibility and chemical resistance. .. The number average molecular weight of the polyol (a1) indicates a value measured by a gel permeation chromatography (GPC) method.
 前記ポリイソシアネート(a2)としては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、カルボジイミド化ジフェニルメタンポリイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート等の脂肪族または脂環式ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。これらの中でも、より一層優れた耐薬品性が得られる点から、芳香族ポリイソシアネートが好ましく、ジフェニルメタンジイソシアネートがより好ましい。 Examples of the polyisocyanate (a2) include aromatic polyisocyanates such as phenylenediocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, polymethylene polyphenyl polyisocyanate, and carbodiimidated diphenylmethane polyisocyanate; hexamethylene diisocyanate, lysine diisocyanate, and the like. An aliphatic or alicyclic polyisocyanate such as cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, dimerate diisocyanate, norbornene diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more. Among these, aromatic polyisocyanates are preferable, and diphenylmethane diisocyanates are more preferable, because even more excellent chemical resistance can be obtained.
 前記鎖伸長剤(a3)としては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、ヒドラジン、ジエチレントリアミン、等のアミノ基を有する鎖伸長剤;エチレングリコール、ジエチレンリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサメチレングリコール、サッカロース、メチレングリコール、グリセリン、ソルビトール、ビスフェノールA、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシジフェニルエーテル、トリメチロールプロパン等の水酸基を有する鎖伸長剤;2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、2-イソプロピル-1,4-ブタンジオール、2,4-ジメチル-1,5-ペンタンジオール2,4-ジエチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-エチル-1,6-ヘキサンジオール、3,5-ヘプタンジオール、2-メチル-1,8-オクタンジオール、トリメチロールプロパン等の分岐構造を有する鎖伸長剤などを用いることができる。これらの鎖伸長剤は単独で用いても2種以上を併用してもよい。これらの中でも、より一層優れた耐薬品性が得られる点から、分岐構造を有しない鎖伸長剤を用いることが好ましく、水酸基を有する鎖伸長剤がより好ましく、エチレングリコールが特に好ましい。 Examples of the chain extender (a3) include ethylenediamine, 1,2-propanedidiol, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 1,2-cyclohexanediamine, and 1, Chain extender having an amino group such as 3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl-4,4'-dicyclohexylmethanediamine, hydrazine, diethylenetriamine, etc. Ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, saccharose, methylene glycol, glycerin, Chain extenders with hydroxyl groups such as sorbitol, bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, trimethylolpropane; 2-methyl-1,5-pentanediol, 3-methyl-1, 5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,2-butanediol, 1,3-butanediol, 2-butyl-2-ethyl-1,3-propanediol, 1 , 2-Propanediol, 2-methyl-1,3-propanediol, neopentylglycol, 2-isopropyl-1,4-butanediol, 2,4-dimethyl-1,5-pentanediol 2,4-diethyl- 1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-ethyl-1,6-hexanediol, 3,5-heptanediol, 2-methyl-1,8-octanediol, trimethylpropane A chain extender having a branched structure such as the above can be used. These chain extenders may be used alone or in combination of two or more. Among these, a chain extender having no branched structure is preferably used, a chain extender having a hydroxyl group is more preferable, and ethylene glycol is particularly preferable, from the viewpoint of obtaining even more excellent chemical resistance.
 前記ウレタン樹脂(A)の製造方法としては、例えば、無溶剤下または有機溶剤の存在下、前記ポリオール(a1)と前記ポリイソシアネート(a2)と前記鎖伸長剤(a3)と前記親水性基を有するウレタン樹脂を製造するための原料を混合し、50~100℃の範囲で、3~20時間反応させることによって製造する方法;無溶剤下または有機溶剤の存在下で、前記ポリオール(a1)と前記ポリイソシアネート(a2)と前記親水性基を有するウレタン樹脂を製造するための原料を混合し、50~100℃の範囲で3~15時間反応させることによって、イソシアネート基を有するウレタンプレポリマーを得、次いで、該ウレタンプレポリマーと前記鎖伸長剤(a3)とを反応させることによって製造する方法等が挙げられる。なお、前記反応で有機溶剤を使用した場合には、最終的に留去されることが好ましい。 As a method for producing the urethane resin (A), for example, the polyol (a1), the polyisocyanate (a2), the chain extender (a3), and the hydrophilic group are used in the absence of a solvent or in the presence of an organic solvent. A method of mixing raw materials for producing a urethane resin having a urethane resin and reacting them in a range of 50 to 100 ° C. for 3 to 20 hours; with the polyol (a1) in the absence of a solvent or in the presence of an organic solvent. The polyisocyanate (a2) and the raw material for producing the urethane resin having a hydrophilic group are mixed and reacted at 50 to 100 ° C. for 3 to 15 hours to obtain a urethane prepolymer having an isocyanate group. Then, a method of producing by reacting the urethane prepolymer with the chain extender (a3) and the like can be mentioned. When an organic solvent is used in the reaction, it is preferably distilled off in the end.
 前記ウレタン樹脂(A)を製造する際に用いることができる前記有機溶剤としては、例えば、アセトン、メチルエチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキサン等のエーテル溶剤;酢酸エチル、酢酸ブチル等の酢酸エステル溶剤;アセトニトリル等のニトリル溶剤;ジメチルホルムアミド、N-メチルピロリドン等のアミド溶剤などを用いることができる。前記有機溶剤は、単独で用いても2種以上を併用してもよい。 Examples of the organic solvent that can be used in producing the urethane resin (A) include a ketone solvent such as acetone and methyl ethyl ketone; an ether solvent such as tetrahydrofuran and dioxane; an acetate solvent such as ethyl acetate and butyl acetate; A nitrile solvent such as acetonitrile; an amide solvent such as dimethylformamide and N-methylpyrrolidone can be used. The organic solvent may be used alone or in combination of two or more.
 前記ウレタン樹脂(A)の平均粒子径としては、より一層優れた分散安定性と比較的高濃度のウレタン樹脂が得られる点から、0.05~1μmの範囲であることが好ましく、0.10~0.7μmの範囲がより好ましい。なお、前記ウレタン樹脂(A)の平均粒子径の測定方法は、ウレタン樹脂(A)を含有するウレタン樹脂組成物をレーザー回折/散乱式粒度分布測定装置(日機装株式会社製「マイクロトラック UPA-EX150」)を使用して、分散液として水を使用し、溶媒屈折率=1.33、粒子屈折率=1.51として、平均粒子径は体積平均径を測定した値を示す。 The average particle size of the urethane resin (A) is preferably in the range of 0.05 to 1 μm, preferably 0.10, from the viewpoint of obtaining even better dispersion stability and a relatively high concentration urethane resin. A range of ~ 0.7 μm is more preferable. The method for measuring the average particle size of the urethane resin (A) is a laser diffraction / scattering type particle size distribution measuring device (Microtrack UPA-EX150 manufactured by Nikkiso Co., Ltd.) using a urethane resin composition containing the urethane resin (A). ”), Water is used as the dispersion liquid, the solvent refractive index is 1.33, the particle refractive index is 1.51, and the average particle diameter indicates the measured value of the volume average diameter.
 前記ウレタン樹脂(A)の含有量としては、保存性及び作業性を向上できる点から、前記ウレタン樹脂組成物中10~95質量%が好ましく、20~80質量%がより好ましい。 The content of the urethane resin (A) is preferably 10 to 95% by mass, more preferably 20 to 80% by mass in the urethane resin composition from the viewpoint of improving storage stability and workability.
 前記可視光応答型光触媒(B)は優れた抗ウイルス性を得る上で必須の成分であり、例えば、酸化チタン(a)を含む組成物が挙げられ、より一層優れた抗ウイルス性が得られる点から、酸化チタン(a)に金属化合物が担持されたものが好ましく挙げられる。 The visible light responsive photocatalyst (B) is an essential component for obtaining excellent antiviral properties, and examples thereof include compositions containing titanium oxide (a), and even more excellent antiviral properties can be obtained. From this point of view, a titanium oxide (a) in which a metal compound is supported is preferably used.
 前記酸化チタン(a)としては、例えば、ルチル型酸化チタン(a1)、アナターゼ型酸化チタン、ブルッカイト型酸化チタン等を用いることができる。これらの酸化チタンは単独で用いても2種以上を併用してもよい。これらの中でも、優れた可視光領域での光触媒活性を有する点から、ルチル型酸化チタン(a1)を含むことが好ましい。 As the titanium oxide (a), for example, rutile-type titanium oxide (a1), anatase-type titanium oxide, brookite-type titanium oxide, or the like can be used. These titanium oxides may be used alone or in combination of two or more. Among these, rutile-type titanium oxide (a1) is preferably contained because it has excellent photocatalytic activity in the visible light region.
 前記前記ルチル型酸化チタン(a1)の含有率(ルチル化率)としては、より一層優れた明所及び暗所における抗ウイルス性、明所における有機化合物分解性、及び、可視光応答性が得られる点から、15モル%以上であることが好ましく、50モル%以上あることがより好ましく、90モル%以上が更に好ましい。 As the content rate (rutileization rate) of the rutile-type titanium oxide (a1), further excellent antiviral property in bright and dark places, organic compound decomposability in bright place, and visible light responsiveness can be obtained. From this point of view, it is preferably 15 mol% or more, more preferably 50 mol% or more, still more preferably 90 mol% or more.
 前記酸化チタン(a)の製造方法としては、一般的に、液相法と気相法とが知られている。前記液相法とは、イルメナイト鉱などの原料鉱石を溶解した液から得られる硫酸チタニルを、加水分解又は中和して酸化チタンを得る方法である。また、気相法とは、ルチル鉱などの原料鉱石を塩素化して得られる四塩化チタンと、酸素との気相反応により酸化チタンを得る方法である。なお、両方法により製造された酸化チタンを区別する方法としては、その不純物を分析することが挙げられる。前記液相法により製造された酸化チタンは、その生成物にイルメナイト鉱石中の不純物に由来するジルコニウム、ニオブなどが含まれている。これに対し、気相法では四塩化チタンを精製して、不純物を取り除く工程を有するため、酸化チタン中には、これらの不純物はほとんど含まれない。 As a method for producing the titanium oxide (a), a liquid phase method and a gas phase method are generally known. The liquid phase method is a method for obtaining titanium oxide by hydrolyzing or neutralizing titanyl sulfate obtained from a liquid in which a raw material ore such as ilmenite ore is dissolved. The vapor phase method is a method for obtaining titanium oxide by a vapor phase reaction between titanium tetrachloride obtained by chlorinating a raw material ore such as rutile ore and oxygen. As a method for distinguishing titanium oxide produced by both methods, analysis of the impurities can be mentioned. Titanium oxide produced by the liquid phase method contains zirconium, niobium, etc. derived from impurities in ilmenite ore as its product. On the other hand, since the vapor phase method has a step of purifying titanium tetrachloride to remove impurities, titanium oxide hardly contains these impurities.
 前記気相法により製造された酸化チタンは、均一な粒子径を生成可能な利点があるものの、2次凝集体は生成しにくいため、見かけの比表面積が高くなることにより反応工程時における混合液の粘度が高くなると考えられる。これに対し、液相法により製造された酸化チタン(a)は、焼成工程において緩やかな2次凝集体を生成することが考えられ、1次粒子に起因する比表面積(BET値)に対して、凝集力は少なく混合液の粘度を抑制することが可能である。以上の理由より、前記酸化チタン(a)としては可視光応答型光触媒(B)の生産性、手袋の耐摩耗性、耐屈曲性、柔軟性、耐久性、及び、耐薬品性がより一層向上できる点から、液相法により製造された酸化チタンが好ましい。 Titanium oxide produced by the vapor phase method has the advantage of being able to generate a uniform particle size, but it is difficult to form secondary aggregates, so the apparent specific surface area is high, and the mixed solution during the reaction step. It is considered that the viscosity of is high. On the other hand, the titanium oxide (a) produced by the liquid phase method is considered to generate loose secondary aggregates in the firing step, and has a specific surface area (BET value) due to the primary particles. The cohesive force is small and the viscosity of the mixed solution can be suppressed. For the above reasons, as the titanium oxide (a), the productivity of the visible light responsive photocatalyst (B), the wear resistance of gloves, the bending resistance, the flexibility, the durability, and the chemical resistance are further improved. Titanium oxide produced by the liquid phase method is preferable because it can be produced.
 前記酸化チタン(a)のBET比表面積としては、より一層優れた抗ウイルス性、及び、可視光応答性が得られる点から、1~200m/gの範囲が好ましく、3~100m/gの範囲がより好ましく、4~70m/gの範囲がより好ましく、8~50m/gの範囲が更に好ましく、可視光応答型光触媒(B)の生産性をより一層高めることができる点から、7.5~9.5m/gの範囲であることが好ましい。なお、前記ルチル型酸化チタン(a1)のBET比表面積の測定方法は、後述する実施例にて記載する。 The BET specific surface area of the titanium oxide (a) is preferably in the range of 1 to 200 m 2 / g, preferably from 3 to 100 m 2 / g, from the viewpoint of obtaining even more excellent antiviral properties and visible light responsiveness. The range of 4 to 70 m 2 / g is more preferable, the range of 8 to 50 m 2 / g is more preferable, and the productivity of the visible light responsive photocatalyst (B) can be further increased. , 7.5 to 9.5 m 2 / g, preferably in the range. The method for measuring the BET specific surface area of the rutile-type titanium oxide (a1) will be described in Examples described later.
 前記酸化チタン(a)の1次粒子径としては、より一層優れた抗ウイルス性、及び、可視光応答性が得られる点から、0.01~0.5μmの範囲が好ましく、0.06~0.35μmの範囲がより好ましい。なお、前記酸化チタン(a)の1次粒子径の測定方法は、透過型電子顕微鏡(TEM)を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定した値を示す。具体的には、個々の酸化チタンの1次粒子の短軸径と長軸径を計測し、平均をその1次粒子の粒子径とし、次に100個以上の酸化チタン粒子について、それぞれの粒子の体積(重量)を、求めた粒子径の立方体と近似して求め、体積平均粒径を平均1次粒子径とした。  The primary particle size of the titanium oxide (a) is preferably in the range of 0.01 to 0.5 μm, preferably 0.06 to 0.5 μm, from the viewpoint of obtaining even more excellent antiviral properties and visible light responsiveness. A range of 0.35 μm is more preferred. The method for measuring the primary particle size of the titanium oxide (a) is a value measured by a method of directly measuring the size of the primary particle from an electron micrograph using a transmission electron microscope (TEM). .. Specifically, the minor axis diameter and the major axis diameter of each titanium oxide primary particle are measured, the average is taken as the particle diameter of the primary particle, and then each particle is obtained for 100 or more titanium oxide particles. The volume (weight) of was obtained by approximating it to a cube having the obtained particle size, and the volume average particle size was taken as the average primary particle size. The
 また、前記可視光応答型光触媒としては、可視光領域における光触媒活性を一層向上し、実用的な室内光の下で、汚れ成分を分解できる適度な活性を発現しやすい点から、酸化チタン(a)に金属化合物が担持されたものを用いることが好ましい。 Further, the visible light responsive photocatalyst further improves the photocatalytic activity in the visible light region, and easily develops an appropriate activity capable of decomposing dirt components under practical indoor light, and thus titanium oxide (a). ), It is preferable to use one in which a metal compound is supported.
 前記金属化合物としては、例えば、銅化合物、鉄化合物、タングステン化合物等を用いることができる。これらの中でも、より一層優れた抗菌性、及び、抗ウイルス性が得られる点から、銅化合物が好ましく、2価銅化合物がより好ましい。前記酸化チタン(a)への金属化合物の担持方法としては、公知の手法を用いることができる。 As the metal compound, for example, a copper compound, an iron compound, a tungsten compound, or the like can be used. Among these, a copper compound is preferable, and a divalent copper compound is more preferable, from the viewpoint of obtaining even more excellent antibacterial and antiviral properties. As a method for supporting the metal compound on the titanium oxide (a), a known method can be used.
 次に、最も好ましい態様である、酸化チタン(a)に2価銅化合物を担持する方法について説明する。 Next, a method of supporting the divalent copper compound on titanium oxide (a), which is the most preferable embodiment, will be described.
 前記酸化チタン(a)に2価銅化合物を担持する方法としては、例えば、ルチル型酸化チタン(a1)を含む酸化チタン(a)、2価銅化合物原料(b)、水(c)、及び、アルカリ性物質(d)の混合工程(i)を有する方法が挙げられる。 Examples of the method for supporting the divalent copper compound on the titanium oxide (a) include titanium oxide (a) containing rutyl-type titanium oxide (a1), a raw material for the divalent copper compound (b), water (c), and water (c). , A method having a mixing step (i) of the alkaline substance (d) can be mentioned.
 前記混合工程(i)における前記酸化チタン(a)の濃度としては、3~40質量%の範囲が好ましい。なお、本発明においては、液相法により製造された酸化チタン(a)を用いた場合には、酸化チタン(a)の濃度を高めても取扱いの良好な混合工程を行うことができ、具体的には、前記酸化チタン(a)の濃度が、25質量%を超えて40質量%以下の範囲でも良好に混合工程を行うことができる。 The concentration of the titanium oxide (a) in the mixing step (i) is preferably in the range of 3 to 40% by mass. In the present invention, when the titanium oxide (a) produced by the liquid phase method is used, a mixing step with good handling can be performed even if the concentration of the titanium oxide (a) is increased. In particular, the mixing step can be performed satisfactorily even when the concentration of the titanium oxide (a) is in the range of more than 25% by mass and 40% by mass or less.
 前記2価銅化合物原料(b)としては、例えば、2価銅無機化合物、2価銅有機化合物等を用いることができる。 As the divalent copper compound raw material (b), for example, a divalent copper inorganic compound, a divalent copper organic compound, or the like can be used.
 前記2価銅無機化合物としては、例えば、硫酸銅、硝酸銅、沃素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅、塩化アンモニウム銅、ピロリン酸銅、炭酸銅等の2価銅の無機酸塩;塩化銅、フッ化銅、臭化銅等の2価銅のハロゲン化物;酸化銅、硫化銅、アズライト、マラカイト、アジ化銅などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the divalent copper inorganic compound include copper sulfate, copper nitrate, copper iodide, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amide sulfate, copper ammonium chloride, and copper pyrophosphate. Inorganic acid salts of divalent copper such as copper carbonate; halides of divalent copper such as copper chloride, copper fluoride and copper bromide; copper oxide, copper sulfide, azurite, malakite, copper azide and the like can be used. .. These compounds may be used alone or in combination of two or more.
 前記2価銅有機化合物としては、例えば、蟻酸銅、酢酸銅、プロピオン酸銅、酪酸銅、吉草酸銅、カプロン酸銅、エナント酸銅、カプリル酸銅、ペラルゴン酸銅、カプリン酸銅、ミスチン酸銅、パルミチン酸銅、マルガリン酸銅、ステアリン酸銅、オレイン酸銅、乳酸銅、リンゴ酸銅、クエン酸銅、安息香酸銅、フタル酸銅、イソフタル酸銅、テレフタル酸銅、サリチル酸銅、メリト酸銅、シュウ酸銅、マロン酸銅、コハク酸銅、グルタル酸銅、アジピン酸銅、フマル酸銅、グリコール酸銅、グリセリン酸銅、グルコン酸銅、酒石酸銅、アセチルアセトン銅、エチルアセト酢酸銅、イソ吉草酸銅、β-レゾルシル酸銅、ジアセト酢酸銅、ホルミルコハク酸銅、サリチルアミン酸銅、ビス(2-エチルヘキサン酸)銅、セバシン酸銅、ナフテン酸銅、オキシン銅、アセチルアセトン銅、エチルアセト酢酸銅、トリフルオロメタンスルホン酸銅、フタロシアニン銅、銅エトキシド、銅イソプロポキシド、銅メトキシド、ジメチルジチオカルバミン酸銅等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the divalent copper organic compound include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper capricate, and mistinic acid. Copper, copper palmitate, copper margarate, copper stearate, copper oleate, copper lactate, copper malate, copper citrate, copper benzoate, copper phthalate, copper isophthalate, copper terephthalate, copper salicylate, melitonic acid Copper, copper oxalate, copper malonate, copper succinate, copper glutarate, copper adipate, copper fumarate, copper glycolate, copper glycerate, copper gluconate, copper tartrate, acetylacetone copper, ethylacetate acetate, isokichi Copper herbate, β-resorcylate copper, diacetoacetate copper, formyl succinate copper, salicylamine acid copper, bis (2-ethylhexanoic acid) copper, sebacate copper, naphthenate copper, oxine copper, acetylacetone copper, ethylacetate acetate , Trifluoromethanesulfonate copper, phthalocyanine copper, copper ethoxydo, copper isopropoxide, copper methoxyd, copper dimethyldithiocarbamate and the like can be used. These compounds may be used alone or in combination of two or more.
 前記2価銅化合物原料(b)としては、前記したものの中でも、下記一般式(1)で示されるものを用いることが好ましい。
 CuX  (1)
(式(1)において、Xは、ハロゲン原子、CHCOO、NO、又は、(SO1/2を示す。)
As the divalent copper compound raw material (b), it is preferable to use the one represented by the following general formula (1) among the above-mentioned ones.
CuX 2 (1)
(In formula (1), X represents a halogen atom, CH 3 COO, NO 3 or (SO 4 ) 1/2 .)
 前記式(1)におけるXとしては、ハロゲン原子であることがより好ましく、塩素原子が更に好ましい。 The X in the formula (1) is more preferably a halogen atom, and even more preferably a chlorine atom.
 前記混合工程(i)における前記2価銅化合物原料(b)の使用量としては、前記酸化チタン(a)100質量部に対して、0.01~20質量部の範囲であることが好ましく、0.1~15質量部の範囲がより好ましく、0.3~10質量部の範囲が更に好ましい。 The amount of the divalent copper compound raw material (b) used in the mixing step (i) is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide (a). The range of 0.1 to 15 parts by mass is more preferable, and the range of 0.3 to 10 parts by mass is further preferable.
 前記水(c)は、混合工程(i)における溶媒であり、水単独が好ましいが、必要に応じてその他の溶媒を含んでいてもよい。前記その他の溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;ジメチルホルムアミド、テトラヒドロフラン等を用いることができる。これらの溶媒は単独で用いても2種以上を併用してもよい。 The water (c) is the solvent in the mixing step (i), and water alone is preferable, but other solvents may be contained if necessary. As the other solvent, for example, alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; dimethylformamide and tetrahydrofuran can be used. These solvents may be used alone or in combination of two or more.
 前記アルカリ性物質(d)としては、例えば、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムヒドロキシド、トリエチルアミン、トリメチルアミン、アンモニア、塩基性界面活性剤等を用いることができ、水酸化ナトリウムを用いることが好ましい。 As the alkaline substance (d), for example, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, triethylamine, trimethylamine, ammonia, a basic surfactant and the like can be used, and water can be used. It is preferable to use sodium oxide.
 前記アルカリ性物質(d)は、反応を制御しやすい点から、溶液として添加するのが好ましく、添加するアルカリ溶液の濃度としては、0.1~5mol/Lの範囲であることが好ましく、0.3~4mol/Lの範囲がより好ましく、0.5~3mol/Lの範囲が更に好ましい。 The alkaline substance (d) is preferably added as a solution from the viewpoint of easy control of the reaction, and the concentration of the alkaline solution to be added is preferably in the range of 0.1 to 5 mol / L. The range of 3 to 4 mol / L is more preferable, and the range of 0.5 to 3 mol / L is even more preferable.
 前記混合工程(i)は、前記酸化チタン(a)、2価銅化合物原料(b)、水(c)、及び、アルカリ性物質(d)を混合すればよく、例えば、まず水(c)に酸化チタン(a)を混合するとともに必要に応じて撹拌し、次いで、2価銅化合物原料(b)を混合し、撹拌し、その後、アルカリ性物質(d)を添加して撹拌する方法が挙げられる。この混合工程(i)により、前記2価銅化合物原料(b)由来の2価銅化合物が前記酸化チタン(a)に担持することとなる。 In the mixing step (i), the titanium oxide (a), the divalent copper compound raw material (b), the water (c), and the alkaline substance (d) may be mixed. For example, first, the water (c) may be mixed. Examples thereof include a method in which titanium oxide (a) is mixed and stirred as necessary, then a divalent copper compound raw material (b) is mixed and stirred, and then an alkaline substance (d) is added and stirred. .. By this mixing step (i), the divalent copper compound derived from the divalent copper compound raw material (b) is supported on the titanium oxide (a).
 前記混合工程(i)における全体の撹拌時間としては、例えば、5~120分間が挙げられ、好ましくは10~60分間である。混合工程(i)時における温度としては、例えば、室温~70℃の範囲が挙げられる。 The total stirring time in the mixing step (i) is, for example, 5 to 120 minutes, preferably 10 to 60 minutes. Examples of the temperature in the mixing step (i) include a range of room temperature to 70 ° C.
 酸化チタン(a)への2価銅化合物の担持が良好である点から、前記酸化チタン(a)、2価銅化合物原料(b)、及び、水(c)を混合・撹拌し、その後アルカリ性物質(d)を混合・撹拌した後の混合物のpHとしては、好ましくは8~11の範囲であり、より好ましくは9.0~10.5の範囲である。 Since the support of the divalent copper compound on the titanium oxide (a) is good, the titanium oxide (a), the divalent copper compound raw material (b) and the water (c) are mixed and stirred, and then alkaline. The pH of the mixture after mixing and stirring the substance (d) is preferably in the range of 8 to 11, and more preferably in the range of 9.0 to 10.5.
 前記混合工程(i)が終了した後には、混合液を固形分として分離することができる。前記分離を行う方法としては、例えば、濾過、沈降分離、遠心分離、蒸発乾燥等が挙げられるが、濾過が好ましい。分離した固形分は、その後必要に応じて、水洗、解砕、分級等を行ってもよい。 After the mixing step (i) is completed, the mixed liquid can be separated as a solid content. Examples of the method for performing the separation include filtration, sedimentation separation, centrifugation, evaporation and drying, and the like, but filtration is preferable. The separated solid content may be subsequently washed with water, crushed, classified, or the like, if necessary.
 前記固形分を得た後には、前記酸化チタン(a)上に担持された前記2価銅化合物原料(b)由来の2価銅化合物を、より強固に結合することができる点から、固形分を熱処理することが好ましい。熱処理温度としては、好ましくは150~600℃の範囲であり、より好ましくは250~450℃の範囲である。また、熱処理時間は、好ましくは1~10時間であり、より好ましくは、2~5時間である。 After obtaining the solid content, the solid content can be more firmly bonded to the divalent copper compound derived from the divalent copper compound raw material (b) supported on the titanium oxide (a). Is preferably heat-treated. The heat treatment temperature is preferably in the range of 150 to 600 ° C, more preferably in the range of 250 to 450 ° C. The heat treatment time is preferably 1 to 10 hours, more preferably 2 to 5 hours.
 以上の方法によって、酸化チタン(a)に2価銅化合物が担持した酸化チタンを含有する酸化チタン組成物が得られる。前記酸化チタン(a)に担持された2価銅化合物の担持量としては、酸化チタン(a)100質量部に対して、0.01~20質量部の範囲であることが、抗ウイルス性を含む光触媒活性の点から好ましい。前記2価銅化合物の担持量は、前記混合工程(i)における前記2価銅化合物原料(b)の使用量によって調整することができる。 By the above method, a titanium oxide composition containing titanium oxide in which a divalent copper compound is supported on titanium oxide (a) can be obtained. The amount of the divalent copper compound supported on the titanium oxide (a) is in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide (a), which provides antiviral properties. It is preferable from the viewpoint of the photocatalytic activity including. The amount of the divalent copper compound supported can be adjusted by the amount of the divalent copper compound raw material (b) used in the mixing step (i).
 前記可視光応答型光触媒(B)の含有量としては、抗ウイルス性及び手袋の諸物性を向上できる点から、前記水性ウレタン樹脂組成物中0.1~60質量%が好ましく、0.3~60質量%がより好ましく、1~40質量%が更に好ましく、1~20質量%が特に好ましい。 The content of the visible light responsive photocatalyst (B) is preferably 0.1 to 60% by mass, preferably 0.3 to 60% by mass, based on the aqueous urethane resin composition, from the viewpoint of improving antiviral properties and various physical properties of gloves. 60% by mass is more preferable, 1 to 40% by mass is further preferable, and 1 to 20% by mass is particularly preferable.
 前記水(C)としては、例えば、蒸留水、イオン交換水等を用いることができる。これらの水は単独で用いても2種以上を併用してもよい。 As the water (C), for example, distilled water, ion-exchanged water, or the like can be used. These waters may be used alone or in combination of two or more.
 前記水(C)の含有量としては、保存性及び作業性を向上できる点から、前記水性ウレタン樹脂組成物中20~85質量%が好ましく、30~75質量%がより好ましい。 The content of the water (C) is preferably 20 to 85% by mass, more preferably 30 to 75% by mass in the aqueous urethane resin composition from the viewpoint of improving storage stability and workability.
 本発明で用いるウレタン樹脂組成物は、前記ウレタン樹脂(A)、前記可視光応答型光触媒(B)、及び、前記水(C)を必須成分として含有するが、必要に応じてその他の添加剤を含有してもよい。 The urethane resin composition used in the present invention contains the urethane resin (A), the visible light responsive photocatalyst (B), and the water (C) as essential components, but other additives as necessary. May be contained.
 前記その他の添加剤としては、例えば、増粘剤、消泡剤、ウレタン化触媒、シランカップリング剤、充填剤、チキソ性付与剤、粘着付与剤、ワックス、熱安定剤、耐光安定剤、蛍光増白剤、発泡剤、泡安定剤、顔料、染料、導電性付与剤、帯電防止剤、透湿性付与剤、撥水剤、撥油剤、ブロッキング防止剤、加水分解防止剤等を用いることができる。これらの添加剤は単独で用いても2種以上を併用してもよい。 Examples of the other additives include a thickener, a defoaming agent, a urethanization catalyst, a silane coupling agent, a filler, a texo property-imparting agent, an antistatic agent, a wax, a heat stabilizer, a light-resistant stabilizer, and fluorescence. Whitening agents, foaming agents, foam stabilizers, pigments, dyes, conductivity-imparting agents, antistatic agents, moisture-permeable agents, water-repellent agents, oil-repellent agents, blocking inhibitors, hydrolysis inhibitors and the like can be used. .. These additives may be used alone or in combination of two or more.
 本発明で用いるウレタン樹脂組成物は、使用用途によって異なる耐久性や柔軟性が必要とされることから、例えば、スチレン-ブタジエン共重合体(SBR)、ブタジエン共重合体(BR)、イソプレン共重合体(IR)、エチレン-プロピレン-ジエン共重合体(EPDM)、クロロプレン重合体(CR)、アクリロニトリル-ブタジエン共重合体(NBR)、ブチル重合体(IIR)、天然ゴム(NR)等を含有してもよい。 Since the urethane resin composition used in the present invention requires different durability and flexibility depending on the intended use, for example, a styrene-butadiene copolymer (SBR), a butadiene copolymer (BR), and an isoprene co-weight. Contains coalesced (IR), ethylene-propylene-diene copolymer (EPDM), chloroprene polymer (CR), acrylonitrile-butadiene polymer (NBR), butyl polymer (IIR), natural rubber (NR), etc. You may.
 本発明で用いる前記ウレタン樹脂組成物は、手袋以外にも、カテーテルの管等の医療用チューブ、避妊具などにも用いることができる。 The urethane resin composition used in the present invention can be used not only for gloves but also for medical tubes such as catheter tubes and contraceptives.
 前記ウレタン樹脂組成物による皮膜を有する手袋を製造する方法としては、例えば、はじめに手型、管型等を後述する凝固剤中に浸漬した後、必要に応じて乾燥することで、前記手型等の表面に前記凝固剤中の金属塩等を付着させ、次いで、前記手型等を前記ウレタン樹脂組成物中に浸漬させ、次いでその表面を水で洗浄し、乾燥することにより、前記手型等の表面に凝固した皮膜を有する手袋を製造する方法が挙げられる。この際、前記ウレタン樹脂組成物は、蒸留水やイオン交換水等で更に希釈してもよい。 As a method for producing a glove having a film made of the urethane resin composition, for example, the hand mold, the tube mold, etc. are first immersed in a coagulant described later and then dried as necessary to obtain the hand mold, etc. By adhering the metal salt or the like in the coagulant to the surface of the body, then immersing the hand mold or the like in the urethane resin composition, and then washing the surface with water and drying the hand mold or the like. A method of manufacturing a glove having a solidified film on the surface of the glove can be mentioned. At this time, the urethane resin composition may be further diluted with distilled water, ion-exchanged water, or the like.
 前記凝固剤としては、例えば、硝酸カルシウム、塩化カルシウム、硝酸亜鉛、塩化亜鉛、酢酸マグネシウム、硫酸アルミニウム、塩化ナトリウム等の金属塩溶液;蟻酸、酢酸等の酸溶液などを用いることができる。前記金属塩や酸を溶解しうる溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール等を用いることができる。前記凝固剤中に含まれる金属塩は、前記凝固剤の全量に対して1~50質量%の範囲で含まれることが好ましい。また、前記凝固剤中に前記塗布物を浸漬する時間は、1~10分が挙げられる。また、前記凝固剤は、5~60℃の温度で使用することができる。 As the coagulant, for example, a metal salt solution of calcium nitrate, calcium chloride, zinc nitrate, zinc chloride, magnesium acetate, aluminum sulfate, sodium chloride or the like; an acid solution of formic acid, acetic acid or the like can be used. As the solvent capable of dissolving the metal salt or acid, for example, water, methanol, ethanol, isopropanol or the like can be used. The metal salt contained in the coagulant is preferably contained in the range of 1 to 50% by mass with respect to the total amount of the coagulant. The time for immersing the coating material in the coagulant may be 1 to 10 minutes. Further, the coagulant can be used at a temperature of 5 to 60 ° C.
 前記手型や管型は、凝固剤中に浸漬する際に、常温であってもよく、30~70℃に加温されていてもよい。 The hand mold or tube mold may be at room temperature or may be heated to 30 to 70 ° C. when immersed in the coagulant.
 また、前記手型や管型には、予めナイロン繊維等の編み物からなる手袋状物や管状物が装着されていてもよい。具体的には、はじめに、前記編み物からなる手袋状物等が装着された手型等を、前記凝固剤中に浸漬した後、必要に応じて乾燥することで、前記手袋状物等に前記凝固剤を含浸する。次いで、前記手型等を前記ウレタン樹脂組成物中に浸漬した後、その表面を水で洗浄し、乾燥することで、前記手袋状物等の表面に凝固した皮膜からなる手袋等が形成し、前記手型及び手袋状物等から前記手袋等を剥離することで、前記手型等に応じた形状をした凝固皮膜からなる手袋等を得ることができる。前記管を製造する場合も、前記管型、及び、ナイロン繊維等の編み物からなる管状物を用いること以外は、前記と同様の方法で製造することができる。 Further, the hand mold or the tube mold may be preliminarily attached with a glove-like object or a tubular object made of knitted material such as nylon fiber. Specifically, first, a hand mold or the like to which a glove-like material made of the knitted material is attached is immersed in the coagulant and then dried as necessary to coagulate the glove-like material or the like. Impregnate the agent. Next, after immersing the hand mold or the like in the urethane resin composition, the surface thereof is washed with water and dried to form gloves or the like made of a solidified film on the surface of the glove-like material or the like. By peeling the glove or the like from the hand mold or the glove-like object, a glove or the like made of a solidified film having a shape corresponding to the hand mold or the like can be obtained. Also in the case of producing the tube, it can be produced by the same method as described above except that the tube type and the tubular material made of knitted fabric such as nylon fiber are used.
 前記編み物としては、前記ナイロン繊維に限らず、例えば、ポリエステル繊維やアラミド繊維、ポリエチレン繊維、綿等によって構成されたものを用いることができる。また、前記編み物の代わりに、前記繊維からなる織物を用いることもできる。また、前記編み物の代わりに、塩化ビニル、天然ゴム、合成ゴム等の樹脂材料からなる手袋状物や管状物を用いることもできる。 The knitting is not limited to the nylon fiber, and for example, a knit made of polyester fiber, aramid fiber, polyethylene fiber, cotton or the like can be used. Further, instead of the knitting, a woven fabric made of the fibers can be used. Further, instead of the knitting, a glove-like material or a tubular material made of a resin material such as vinyl chloride, natural rubber or synthetic rubber can be used.
 以上、本発明の手袋は、優れた抗ウイルス性を有するするものである。また、水を含有するウレタン樹脂組成物を使用することから、手袋製造時の環境負荷も小さいものである。従って、本発明の手袋は、化学工業分野、食品分野、医療分野等の様々な分野で使用される産業用手袋として好適に利用することができ、特に医療用手袋として好適に利用することができる。 As described above, the glove of the present invention has excellent antiviral properties. Further, since the urethane resin composition containing water is used, the environmental load at the time of manufacturing gloves is small. Therefore, the glove of the present invention can be suitably used as an industrial glove used in various fields such as the chemical industry field, the food field, and the medical field, and can be particularly preferably used as a medical glove. ..
 以下、実施例を用いて、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
[調製例1]
(1)酸化チタン
 a)結晶性ルチル型酸化チタン
b)製法:液相法(硫酸法)
c)物性値
・BET比表面積:9.0m/g
・ルチル化率:95.4%
・1次粒子径:0.18μm
[Preparation Example 1]
(1) Titanium oxide a) Crystalline rutile type titanium oxide b) Production method: Liquid phase method (sulfuric acid method)
c) Physical properties / BET specific surface area: 9.0 m 2 / g
-Rutilation rate: 95.4%
-Primary particle diameter: 0.18 μm
(2)製造工程
 a)混合工程(反応工程)
 前記酸化チタン600質量部、塩化銅(ii)二水和物8質量部、水900質量部をステンレス容器中に混合した。次いで、混合物を撹拌機(特殊機化工業株式会社製「ロボミクス」)で撹拌し、1mol/Lの水酸化ナトリウム水溶液を混合液のpHが10になるまで滴下した。
 b)脱水工程
 定性濾紙(5C)により減圧濾過をおこない、混合液から固形分を分離し、更にイオン交換水で洗浄を実施した。次いで、洗浄後の固形物を120℃で12時間乾燥し、水分を除去した。乾燥後、ミル(イワタニ産業株式会社製「ミルサー」)で粉状の酸化チタン組成物を得た。
 c)熱処理工程
 精密恒温器(ヤマト科学株式会社製「DH650」)を用いて酸素存在下で450℃、3時間熱処理し、2価銅化合物が担持された酸化チタンを含有する酸化チタン組成物を得た。
なお、前記2価銅化合物が担持された酸化チタンにおける、2価銅化合物の担持量は酸化チタンに対して0.5質量%であった。
(2) Manufacturing process a) Mixing process (reaction process)
600 parts by mass of titanium oxide, 8 parts by mass of copper (ii) chloride dihydrate, and 900 parts by mass of water were mixed in a stainless steel container. Then, the mixture was stirred with a stirrer (“Robomics” manufactured by Tokushu Kagaku Kogyo Co., Ltd.), and a 1 mol / L sodium hydroxide aqueous solution was added dropwise until the pH of the mixture reached 10.
b) Dehydration step Vacuum filtration was performed under reduced pressure using a qualitative filter paper (5C), solid content was separated from the mixed solution, and further washing was carried out with ion-exchanged water. Then, the washed solid was dried at 120 ° C. for 12 hours to remove water. After drying, a powdery titanium oxide composition was obtained by a mill (“Miller” manufactured by Iwatani Corporation).
c) Heat treatment step A titanium oxide composition containing titanium oxide carrying a divalent copper compound is heat-treated at 450 ° C. for 3 hours in the presence of oxygen using a precision thermostat (“DH650” manufactured by Yamato Kagaku Co., Ltd.). Obtained.
The amount of the divalent copper compound supported on the titanium oxide on which the divalent copper compound was supported was 0.5% by mass with respect to the titanium oxide.
[調製例2]
 調整例1で得られた酸化チタン組成物25部と水75部と分散剤(サンノプコ株式会社製「SNディスパーサント5023」)1部を混合撹拌し、1.0mmφセラミックビーズ100部を加えたのち、サンドグラインダーで4時間磨砕した。磨砕終了後、上記ビーズと分散液を分離して、酸化チタン組成物分散液を得た。
[Preparation Example 2]
After mixing and stirring 25 parts of the titanium oxide composition obtained in Adjustment Example 1, 75 parts of water, and 1 part of a dispersant (“SN Dispersant 5023” manufactured by San Nopco Ltd.), 100 parts of 1.0 mmφ ceramic beads were added. , Grinded with a sand grinder for 4 hours. After completion of grinding, the beads and the dispersion were separated to obtain a titanium oxide composition dispersion.
[調製例3]
 温度計、窒素ガス導入管及び撹拌機を備えた窒素置換された容器中で、ポリカーボネートポリオール(1,5-ペンタンジオール及び1,6-ヘキサンジオールを原料とするもの、数平均分子量;2,000)を600質量部、ポリテトラメチレングリコール(数平均分子量;2,000)を33質量部、ポリプロピレントリオール(グリセリンとプロピレンオキサイドとの付加物、数平均分子量;6,000)を181質量部、エチレングリコール)を8.4質量部、2,2-ジメチロールプロピオン酸を15.8質量部、4,4’-ジフェニルメタンジイソシアネートを154質量部、及び、メチルエチルケトンを991質量部の存在下、70℃で反応させた。
 反応物が規定粘度に達した時点でメタノール1.0質量部を加えて1時間撹拌して反応を終了し、更に希釈溶剤としてメチルエチルケトンを498質量部追加することでウレタン樹脂の有機溶剤溶液を得た。
 次いで、前記ウレタン樹脂の有機溶剤溶液に、中和剤として48質量%水酸化カリウム水溶液を9.6質量部加えて前記ウレタン樹脂が有するカルボキシル基を中和し、更に水を2,480質量部加え撹拌することにより、ウレタン樹脂の水分散体を得た。次いで、前記ウレタン樹脂の水分散体を脱溶剤することにより、不揮発分;45質量%、平均粒子径;0.73μmのウレタン樹脂(A1)組成物を得た。
[Preparation Example 3]
Polypolypolyols (based on 1,5-pentanediol and 1,6-hexanediol, number average molecular weight; 2,000 in nitrogen-substituted containers equipped with thermometers, nitrogen gas inlet tubes and stirrers. ) By 600 parts by mass, polytetramethylene glycol (number average molecular weight; 2,000) by 33 parts by mass, polypropylene triol (additive of glycerin and propylene oxide, number average molecular weight; 6,000) by 181 parts by mass, ethylene. Glycol) at 8.4 parts by mass, 2,2-dimethylolpropionic acid by 15.8 parts by mass, 4,4'-diphenylmethanediisocyanate by 154 parts by mass, and methyl ethyl ketone in the presence of 991 parts by mass at 70 ° C. It was reacted.
When the reaction product reaches the specified viscosity, 1.0 part by mass of methanol is added and stirred for 1 hour to complete the reaction, and 498 parts by mass of methyl ethyl ketone is added as a diluting solvent to obtain an organic solvent solution of urethane resin. rice field.
Next, 9.6 parts by mass of a 48 mass% potassium hydroxide aqueous solution as a neutralizing agent was added to the organic solvent solution of the urethane resin to neutralize the carboxyl group of the urethane resin, and 2,480 parts by mass of water was further added. By further stirring, an aqueous dispersion of urethane resin was obtained. Then, by removing the solvent from the aqueous dispersion of the urethane resin, a urethane resin (A1) composition having a non-volatile content of 45% by mass and an average particle size of 0.73 μm was obtained.
[調製例4]
 温度計、窒素ガス、導入管、及び撹拌機を備えた窒素置換された容器中で、ポリオキシテトラメチレングリコール(数平均分子量;2,000)を895.3質量部、エチレングリコールを18質量部、2,2’-ジメチロールプロピオン酸を25.5質量部、ジフェニルメタンジイソシアネートを224質量部、及びメチルエチルケトンを487質量部の存在下、70℃で反応させた。
 反応物が規定粘度に達した時点でメタノール2.9質量部を加えて1時間撹拌して反応を終了し、更に希釈溶剤としてメチルエチルケトンを1257質量部追加することでウレタンの有機溶剤溶液を得た。
 次いで、前記アニオン性ポリウレタンの有機溶剤溶液に、中和剤としてトリエチルアミンを19.2質量部加えて攪拌し、更に水を3638質量部加え撹拌することにより、アニオン性ポリウレタンの水分散体を得た。次いで、この水分散体を脱溶剤することにより、不揮発分;40質量%、平均粒子径;0.25μmのウレタン樹脂(A2)組成物を得た。
[Preparation Example 4]
In a nitrogen-substituted container equipped with a thermometer, nitrogen gas, introduction tube, and stirrer, polyoxytetramethylene glycol (number average molecular weight; 2,000) was 895.3 parts by mass and ethylene glycol was 18 parts by mass. , 2,2'-Dimethylolpropionic acid was reacted at 70 ° C. in the presence of 25.5 parts by mass, diphenylmethane diisocyanate in an amount of 224 parts by mass, and methyl ethyl ketone in the presence of 487 parts by mass.
When the reaction product reached the specified viscosity, 2.9 parts by mass of methanol was added and stirred for 1 hour to complete the reaction, and 1257 parts by mass of methyl ethyl ketone was further added as a diluting solvent to obtain an organic solvent solution of urethane. ..
Next, 19.2 parts by mass of triethylamine as a neutralizing agent was added to the organic solvent solution of the anionic polyurethane and stirred, and then 3638 parts by mass of water was added and stirred to obtain an aqueous dispersion of anionic polyurethane. .. Then, by removing the solvent from this aqueous dispersion, a urethane resin (A2) composition having a non-volatile content of 40% by mass and an average particle size of 0.25 μm was obtained.
[実施例1]
<ウレタン樹脂組成物の調製>
 調製例3で得られたウレタン樹脂(A1)組成物100質量部に、調製例2で得られた酸化チタン組成物分散液1質量部を配合することで、ウレタン樹脂組成物を得た。
[Example 1]
<Preparation of urethane resin composition>
A urethane resin composition was obtained by blending 100 parts by mass of the urethane resin (A1) composition obtained in Preparation Example 3 with 1 part by mass of the titanium oxide composition dispersion liquid obtained in Preparation Example 2.
<手袋(薄手)の作製>
 以下の手順により、手袋を作製した。
(1)陶器製手形を10質量%硝酸カルシウム水溶液に浸漬させ、引き上げる。
(2)(1)の手型を70℃で2分間乾燥させる。
(3)(2)の手型を前記ウレタン樹脂組成物に5秒間浸漬させ、引き上げる。
(4)(3)の手型を水で洗浄する。
(5)(4)の手型を70℃で20分間、次いで120℃で30分間乾燥させる。
(6)(5)の手型にベビーパウダーを付着させて、手型からウレタン樹脂皮膜を剥がす。
<Making gloves (thin)>
Gloves were produced by the following procedure.
(1) Immerse the pottery bill in a 10% by mass calcium nitrate aqueous solution and pull it up.
(2) Dry the hand mold of (1) at 70 ° C. for 2 minutes.
(3) The hand mold of (2) is immersed in the urethane resin composition for 5 seconds and pulled up.
(4) Wash the hand mold of (3) with water.
(5) The hand mold of (4) is dried at 70 ° C. for 20 minutes and then at 120 ° C. for 30 minutes.
(6) The baby powder is attached to the hand mold of (5), and the urethane resin film is peeled off from the hand mold.
[実施例2]
 調製例2で得られた酸化チタン組成物分散液の配合量を20質量部に変更した以外は、実施例1と同様にしてウレタン樹脂組成物、及び、手袋を得た。
[Example 2]
A urethane resin composition and gloves were obtained in the same manner as in Example 1 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 20 parts by mass.
[実施例3]
 調製例2で得られた酸化チタン組成物分散液の配合量を80質量部に変更した以外は、実施例1と同様にしてウレタン樹脂組成物、及び、手袋を得た。
[Example 3]
A urethane resin composition and gloves were obtained in the same manner as in Example 1 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 80 parts by mass.
[実施例4]
<ウレタン樹脂組成物の調製>
 調製例4で得られたウレタン樹脂(A2)組成物100質量部に、調製例2で得られた酸化チタン組成物分散液1質量部を配合することで、ウレタン樹脂組成物を得た。
[Example 4]
<Preparation of urethane resin composition>
A urethane resin composition was obtained by blending 100 parts by mass of the urethane resin (A2) composition obtained in Preparation Example 4 with 1 part by mass of the titanium oxide composition dispersion liquid obtained in Preparation Example 2.
<手袋(厚手)の作製>
 以下の手順により、手袋を作製した。
(1)アルミ製手型にナイロン繊維による編み手袋を装着し、5質量%硝酸カルシウム水溶液に10秒間浸漬させ引き上げる。
(2)(1)の手型を前記ウレタン樹脂組成物に2秒間浸漬し、編み手袋表面にアニオン性ウレタン樹脂の凝固皮膜を形成後、引き上げる。
(3)(2)の手型を水に30分間浸漬後引き上げる。
(4)(3)の手型を70℃で20分間、次いで120℃で30分間乾燥させる。
(5)(4)の手型から凝固皮膜がコーティングされた手袋を剥がす。
<Making gloves (thick)>
Gloves were produced by the following procedure.
(1) Attach a knitted glove made of nylon fiber to an aluminum hand mold, immerse it in a 5 mass% calcium nitrate aqueous solution for 10 seconds, and pull it up.
(2) The hand mold of (1) is immersed in the urethane resin composition for 2 seconds to form a solidified film of anionic urethane resin on the surface of knitted gloves, and then pulled up.
(3) Immerse the hand mold of (2) in water for 30 minutes and then pull it up.
(4) The hand mold of (3) is dried at 70 ° C. for 20 minutes and then at 120 ° C. for 30 minutes.
(5) Remove the gloves coated with the coagulation film from the hand mold of (4).
[実施例5]
 調製例2で得られた酸化チタン組成物分散液の配合量を20質量部に変更した以外は、実施例4と同様にしてウレタン樹脂組成物、及び、手袋を得た。
[Example 5]
A urethane resin composition and gloves were obtained in the same manner as in Example 4 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 20 parts by mass.
[実施例6]
 調製例2で得られた酸化チタン組成物分散液の配合量を80質量部に変更した以外は、実施例4と同様にしてウレタン樹脂組成物、及び、手袋を得た。
[Example 6]
A urethane resin composition and gloves were obtained in the same manner as in Example 4 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 80 parts by mass.
[比較例1]
 調製例2で得られた酸化チタン組成物分散液の配合量を0質量部に変更した以外は、実施例1と同様にしてウレタン樹脂組成物、及び、手袋を得た。
[Comparative Example 1]
A urethane resin composition and gloves were obtained in the same manner as in Example 1 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 0 parts by mass.
[比較例2]
 調製例2で得られた酸化チタン組成物分散液の配合量を0質量部に変更した以外は、実施例4と同様にしてウレタン樹脂組成物、及び、手袋を得た。
[Comparative Example 2]
A urethane resin composition and gloves were obtained in the same manner as in Example 4 except that the blending amount of the titanium oxide composition dispersion obtained in Preparation Example 2 was changed to 0 parts by mass.
[数平均分子量の測定方法]
 合成例で用いたポリオール等の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定した値を示す。
[Measurement method of number average molecular weight]
The number average molecular weight of the polyol or the like used in the synthesis example shows the value measured under the following conditions by the gel permeation chromatography (GPC) method.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series and used.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 This "TSKgel G2000" (7.8 mm ID x 30 cm) x 1 Detector: RI (Differential Refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4% by mass)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation
[酸化チタンへの2価銅化合物の担持量の測定方法]
 調製例1で得られた酸化チタン組成物を、フッ酸溶液で全溶解し、抽出液をICP発光分光分析装置により分析して、酸化チタン(a)に対する2価銅化合物の担持量(2価銅化合物の担持量(質量部)/酸化チタン(a)(質量部))を定量した。
[Method for measuring the amount of divalent copper compound supported on titanium oxide]
The titanium oxide composition obtained in Preparation Example 1 was completely dissolved in a hydrofluoric acid solution, and the extract was analyzed by an ICP emission spectrophotometer to carry an amount of the divalent copper compound on titanium oxide (a) (divalent). The amount of copper compound carried (parts by mass) / titanium oxide (a) (parts by mass)) was quantified.
[抗ウイルス性の評価]
 実施例及び比較例で得られた手袋に対し、抗ファージウイルス試験(JIS R1756:2020を参照)を実施した。
[Evaluation of antiviral property]
Anti-phage virus tests (see JIS R1756: 2020) were performed on the gloves obtained in Examples and Comparative Examples.
1)光照射条件は、白色蛍光灯の光をN113フィルターによって紫外線をカットし、照度500ルクスとした。
2)実施例及び比較例で得られた手袋(薄手)の掌を5cm×5cmに切り取り、5cm×5cmのガラス板に乗せ、濃度既知の100μLのQβファージ溶液を垂らした後、5cm×
5cmのガラス板で挟んで評価用のサンプルとした。
3)実施例及び比較例で得られた手袋(厚手)の掌を5cm×5cmに切り取り、ウレタン樹脂面上に濃度既知の100μLのQβファージ溶液を垂らした後、4cm×4cmの密着フィルムをかぶせ、評価用のサンプルとした。
4)8時間光照射したサンプルを、SCDLP液で回収し、適度に希釈したものを大腸菌と感染させ、寒天培地に塗布し、培養後のコロニー数をカウントすることで評価した。抗ウイルス性はQβファージの不活化度で評価し、不活化度-2~-5を抗ウイルス性有「〇」と評価した。
1) As for the light irradiation condition, the light of the white fluorescent lamp was cut off from ultraviolet rays by the N113 filter, and the illuminance was set to 500 lux.
2) Cut the palms of the gloves (thin) obtained in Examples and Comparative Examples into 5 cm × 5 cm pieces, place them on a 5 cm × 5 cm glass plate, drop a 100 μL Qβ phage solution of known concentration, and then drop 5 cm ×.
It was sandwiched between 5 cm glass plates to prepare a sample for evaluation.
3) Cut the palms of the gloves (thick) obtained in Examples and Comparative Examples into 5 cm × 5 cm, hang a 100 μL Qβ phage solution of known concentration on the urethane resin surface, and then cover with a 4 cm × 4 cm adhesive film. , As a sample for evaluation.
4) Samples irradiated with light for 8 hours were collected with SCDLP solution, appropriately diluted, infected with Escherichia coli, applied to an agar medium, and evaluated by counting the number of colonies after culturing. The antiviral property was evaluated by the degree of inactivation of Qβ phage, and the inactivation degree -2 to -5 was evaluated as having antiviral property "○".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 本発明の手袋である実施例1~6は、優れた抗ウイルス性を備えることが分かった。 It was found that Examples 1 to 6, which are the gloves of the present invention, have excellent antiviral properties.
一方、比較例1及び2は、可視光応答型光触媒(B)を用いない態様であるが、抗ウイルス性が不良であった。 On the other hand, in Comparative Examples 1 and 2, although the visible light responsive photocatalyst (B) was not used, the antiviral property was poor.

Claims (4)

  1. ウレタン樹脂(A)、可視光応答型光触媒(B)、及び、水(C)を含有するウレタン樹脂組成物により形成された皮膜を有することを特徴とする手袋。 A glove having a film formed of a urethane resin composition containing a urethane resin (A), a visible light responsive photocatalyst (B), and water (C).
  2. 前記可視光応答型光触媒(B)が、酸化チタン(a)に金属化合物が担持されたものである請求項1記載の手袋。 The glove according to claim 1, wherein the visible light responsive photocatalyst (B) is a titanium oxide (a) on which a metal compound is supported.
  3. 前記酸化チタン(a)が、ルチル型酸化チタン(a1)を含むものである請求項2記載の手袋。 The glove according to claim 2, wherein the titanium oxide (a) contains rutile-type titanium oxide (a1).
  4. 前記金属化合物が、2価銅化合物である請求項2又は3記載の手袋。 The glove according to claim 2 or 3, wherein the metal compound is a divalent copper compound.
PCT/JP2021/031296 2020-10-29 2021-08-26 Glove WO2022091547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022543109A JPWO2022091547A1 (en) 2020-10-29 2021-08-26
CN202180063611.9A CN116194007A (en) 2020-10-29 2021-08-26 Glove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020181318 2020-10-29
JP2020-181318 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022091547A1 true WO2022091547A1 (en) 2022-05-05

Family

ID=81382304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031296 WO2022091547A1 (en) 2020-10-29 2021-08-26 Glove

Country Status (3)

Country Link
JP (1) JPWO2022091547A1 (en)
CN (1) CN116194007A (en)
WO (1) WO2022091547A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303222A (en) * 1999-04-13 2000-10-31 Ryobi Ltd Fishing clothing and fishing shoes
WO2013002151A1 (en) * 2011-06-27 2013-01-03 昭和電工株式会社 Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
JP2015097989A (en) * 2013-11-19 2015-05-28 昭和電工株式会社 Virus removing agent and virus removing method
JP2016056475A (en) * 2014-09-09 2016-04-21 住友ゴム工業株式会社 Method for manufacturing glove
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4351936B2 (en) * 2004-03-12 2009-10-28 東邦チタニウム株式会社 Method for producing titanium oxide photocatalyst
JP4583488B2 (en) * 2009-03-18 2010-11-17 ビイ アンド ビイ株式会社 Printing medium having air purification function and construction method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303222A (en) * 1999-04-13 2000-10-31 Ryobi Ltd Fishing clothing and fishing shoes
WO2013002151A1 (en) * 2011-06-27 2013-01-03 昭和電工株式会社 Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
JP2015097989A (en) * 2013-11-19 2015-05-28 昭和電工株式会社 Virus removing agent and virus removing method
JP2016056475A (en) * 2014-09-09 2016-04-21 住友ゴム工業株式会社 Method for manufacturing glove
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same

Also Published As

Publication number Publication date
JPWO2022091547A1 (en) 2022-05-05
CN116194007A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
EP2622976B1 (en) Vulcanization accelerator- and sulfur-free elastomer rubber glove for clean rooms
TW201503842A (en) Glove
JP6267943B2 (en) Polyurethane aqueous dispersion, and film molded product and glove obtained therefrom
JP6187844B1 (en) Aqueous resin composition and gloves
WO2018117109A1 (en) Glove dipping composition, method for manufacturing gloves, and gloves
JP6860698B2 (en) Dip molding composition, glove manufacturing method and gloves
KR20160067135A (en) Porous body and polishing pad
KR20100133986A (en) Medical device having hydrophilic coatings
KR20100134607A (en) Hydrophilic polyurethane solutions
US20220025161A1 (en) Biodegradable elastomeric film composition and method for producing the same
WO2020129605A1 (en) Urethane resin composition, film and synthetic leather
Wang et al. The antibacterial activity and mechanism of polyurethane coating with quaternary ammonium salt
WO2019074354A1 (en) A biodegradable elastomeric film composition and method for producing the same
WO2022091547A1 (en) Glove
JPWO2015146334A1 (en) gloves
CN109134820B (en) Anionic waterborne polyurethane nano zinc oxide composite material and preparation method thereof
JP7270738B2 (en) DIP-MOLDING COMPOSITION, GLOVE MANUFACTURING METHOD, AND GLOVE
EP3789537A1 (en) Synthetic leather
JP6984757B2 (en) gloves
JP6137660B1 (en) gloves
JP6897883B2 (en) Method for manufacturing urethane resin aqueous dispersion, film, laminate, and urethane resin aqueous dispersion
JP2022056305A (en) Urethane resin composition, laminate, and molding
JP2022072082A (en) Glove
JP2022076645A (en) Coating resin composition and coating layer
JP2022076990A (en) Polyurethane resin composition, polyurethane resin molded body and shoe sole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885666

Country of ref document: EP

Kind code of ref document: A1