WO2022091432A1 - Electrically conductive composition, electrically conductive film, and non-contact medium - Google Patents

Electrically conductive composition, electrically conductive film, and non-contact medium Download PDF

Info

Publication number
WO2022091432A1
WO2022091432A1 PCT/JP2020/048831 JP2020048831W WO2022091432A1 WO 2022091432 A1 WO2022091432 A1 WO 2022091432A1 JP 2020048831 W JP2020048831 W JP 2020048831W WO 2022091432 A1 WO2022091432 A1 WO 2022091432A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
conductive
conductive composition
acid
mass
Prior art date
Application number
PCT/JP2020/048831
Other languages
French (fr)
Japanese (ja)
Inventor
晃太郎 水野
章史 桑原
稔彦 田中
順幸 諸石
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2022091432A1 publication Critical patent/WO2022091432A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a conductive composition, and a conductive film and a non-contact medium using the conductive composition.
  • An object of the present invention is to provide a conductive composition having specifically excellent in conductivity, adhesion and durability, and a conductive film using the same. Further, an object of the present invention is to provide a non-contact type medium having a conductive circuit using the conductive composition and having excellent communication performance at low cost.
  • the present invention is a conductive composition containing a binder resin (A), a carbon material (B), and a curing agent (C).
  • the carbon material (B) contains graphite (B-1) and a carbon material other than graphite (B-2).
  • the content of the carbon material (B) is 65 to 85% by mass in 100% by mass of the solid content of the conductive composition.
  • the content of graphite (B-1) is 70.0 to 99.0% by mass in 100% by mass of the carbon material (B).
  • the curing agent (C) preferably contains a metal chelate.
  • the blending ratio of graphite, which is a carbon material as a conductive substance, and carbon other than graphite is within a specific range. Therefore, the durability of the binder resin and the contact and binding properties of the carbon materials in the conductive film formed by the conductive composition are improved, and an excellent conductive network can be formed, and the conductivity and durability can be improved. Further, it is possible to provide a conductive film having excellent adhesion.
  • the binder resin (A) includes polyurethane-based, polyamide-based, acrylonitrile-based, acrylic-based, butadiene-based, polyvinyl butyral-based, polyolefin-based, polyester-based, polystyrene-based, EVA-based, epoxy-based, polyvinylidene fluoride-based, and silicon-based resins. It can contain one or more species selected from the group consisting of. However, it is not limited to these resins.
  • the binder resin (A) may be used alone or in combination of two or more.
  • the binder resin (A) one that moderately softens and flows during (heat) pressing is preferable.
  • the resin component is softened and the conductive film during printing and coating is flat. It flows in the thickness direction while almost maintaining the pattern shape.
  • the voids in the conductive film can be reduced, and the contact between the carbon materials (B) which are the conductive substances can be increased, so that the volume resistivity of the obtained conductive film can be expected to decrease.
  • binder resin (A) it is preferable to use at least one of polyurethane resin, polyamide resin and polyester resin as the binder resin (A) from the viewpoint of volumetric resistance, adhesion to the substrate and durability.
  • Polyurethane resin As the polyurentane resin, conventionally known ones can be used, and the synthesis method thereof is not particularly limited.
  • the polyurethane resin those obtained by the following synthetic methods can be used. 1) A method of reacting a polyol compound (a) with a diisocyanate (b). 2) A method of reacting a polyol compound (a) with a diisocyanate (b) with a diol compound (c) having a carboxyl group to obtain a urethane prepolymer (d) having an isocyanate group. 3) A method of further reacting the urethane prepolymer (d) with the polyamino compound (e).
  • a polyurethane resin obtained by reacting with a reaction terminator in the above three methods may be used, if necessary.
  • polyether polyols (a-1) examples include polymers or copolymers of ethylene oxide, propylene oxide, tetrahydrofuran and the like.
  • polyester polyols (a-2) examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and pentanediol, 3.
  • -Saturated and unsaturated low molecular weight diols such as methyl-1,5-pentanediol, hexanediol, octanediol, 1,4-butylenediol, diethylene glycol, triethylene glycol, dipropylene glycol, dimerdiol, and n- Alkyl glycidyl ethers such as butyl glycidyl ether and 2-ethylhexyl glycidyl ether, monocarboxylic acid glycidyl esters such as versatic acid glycidyl ester, and adipic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, and succinic acid.
  • diols such as methyl-1,5-pentanediol, hexanediol, octanediol, 1,4-
  • Dicarboxylic acids such as acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid, or polyester polyols and cyclic ester compounds obtained by dehydration condensation of these anhydrides.
  • polyester polyols and cyclic ester compounds obtained by dehydration condensation of these anhydrides. Examples thereof include polyester polyols obtained by ring-opening polymerization.
  • polycarbonate polyols (a-3) 1) a reaction product of diol or bisphenol and carbonic acid ester, and 2) a reaction product of diol or bisphenol with phosgene in the presence of alkali can be used.
  • Examples of the carbonic acid ester include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, propylene carbonate and the like.
  • the diols include ethylene glycol, propylene glycol, dipropylene glycol, diethylene glycol, triethylene glycol, butylene glycol, 3-methyl-1,5-pentanediol, 2-methyl-1,8-octanediol, 3,3.
  • '-Dimethylol heptane polyoxyethylene glycol, polyoxypropylene glycol, propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9 -Nonandiol, neopentyl glycol, octanediol, butylethylpentanediol, 2-ethyl-1,3-hexanediol, cyclohexanediol, 3,9-bis (1,1-dimethyl-2-hydroxyethyl, 2,2) , 8,10-Tetraoxospiro [5.5] Undecane and the like.
  • bisphenol include bisphenol A, bisphenol F, and bisphenols obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to bisphenols.
  • the number average molecular weight (Mn) of the polyol compound (a) is appropriately determined in consideration of the solubility of the polyurethane resin in producing the conductive composition, the durability of the conductive film formed, the adhesive strength to the substrate, and the like. Can be decided.
  • the Mn of the polyol compound (a) is preferably in the range of 580 to 8000, more preferably in the range of 1000 to 5000.
  • polyol compound (a) may be used alone or in combination of two or more. Further, as long as the performance of the polyurethane resin is not lost, a part of the polyol compound (a) can be replaced with small molecule diols, for example, various small molecule diols used for producing the polyol compound.
  • diisocyanate compound (b) As the diisocyanate compound (b), conventionally known compounds can be appropriately used, for example, aromatic diisocyanate (b-1), aliphatic diisocyanate (b-2), alicyclic isocyanate (b-3), or these. Mixtures can be used.
  • aromatic diisocyanate (b-1) examples include 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-benzyl isocyanate, dialkyldiphenylmethane diisocyanate, and tetra. Examples thereof include alkyldiphenylmethane diisocyanate, 1,3-phenylenediocyanate, 1,4-phenylenediocyanate, tolylene diisocyanate, and xylylene diisocyanate.
  • Examples of the alicyclic diisocyanate (b-3) include cyclohexane-1,4-diisocyanate, isophorone diisocyanate, norbornane diisocyanatomethyl, bis (4-isocyanatecyclohexyl) methane, 1,3-bis (isocyanatemethyl) cyclohexane, and methyl. Cyclohexanediisocyanate and the like can be mentioned.
  • isophorone diisocyanate as the diisocyanate compound (b).
  • diol compound (c) having a carboxyl group examples include dimethylol alkanoic acid such as dimethylol acetic acid, dimethylol propionic acid, dimethylol butanoic acid and dimethylol pentanoic acid, dihydroxysuccinic acid and dihydroxybenzoic acid.
  • dimethylol alkanoic acid such as dimethylol acetic acid, dimethylol propionic acid, dimethylol butanoic acid and dimethylol pentanoic acid, dihydroxysuccinic acid and dihydroxybenzoic acid.
  • dimethylol alkanoic acid such as dimethylol acetic acid, dimethylol propionic acid, dimethylol butanoic acid and dimethylol pentanoic acid, dihydroxysuccinic acid and dihydroxybenzoic acid.
  • the polyamino compound (e) acts as a chain extender, and for example, the following can be used. That is, in addition to amines such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, norbornandiamine, 2- (2-aminoethylamino) ethanol.
  • amines such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, norbornandiamine, 2- (2-aminoethylamino) ethanol.
  • 2-Hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxypropylethylenediamine and other amines having hydroxyl groups can also be used.
  • isophorone diamine is preferably used as the polyamino compound (e).
  • the condition for reacting the polyol compound (a) with the diisocyanate (b) and the diol compound (c) having a carboxyl group to obtain the urethane prepolymer (d) having an isocyanate group is that the isocyanate group is excessive in the reaction system.
  • the equivalent ratio of isocyanate groups / hydroxyl groups in the reaction system is preferably in the range of 1.05 / 1 to 3/1, more preferably in the range of 1.2 / 1 to 2/1. ..
  • the reaction is usually carried out at a temperature in the range of room temperature (eg, 25 ° C.) to 150 ° C. From the viewpoint of manufacturing time and control of side reactions, the reaction is preferably carried out at a temperature in the range of 60 to 120 ° C.
  • a reaction terminator When synthesizing a polyurethane resin by reacting a urethane prepolymer (d) having an isocyanate group with a polyamino compound (e), a reaction terminator can be used to adjust the molecular weight of the obtained polyurethane resin.
  • the reaction terminator for example, dialkylamines such as di-n-butylamine, dialkanolamines such as diethanolamine, and alcohols such as ethanol and isopropyl alcohol can be used.
  • the total equivalent of the polyamino compound (e) and the amino groups in the reaction terminator is in the range of 0.5 to 1.3. Is preferable.
  • the total equivalent of the amino groups is more preferably in the range of 0.8 to 0.995.
  • one type of solvent can be used alone, or two or more types can be used in combination.
  • the solvent include an ester solvent, a ketone solvent, a glycol ether solvent, an aliphatic solvent, an aromatic solvent, an alcohol solvent, a carbonate solvent, water and the like.
  • ester solvent examples include ethyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, ethyl lactate and the like.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone benzene, diisobutyl ketone, diacetone alcohol, isophorone, cyclohexanenone and the like.
  • aliphatic solvent examples include n-heptane, n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane and the like.
  • Examples of the carbonate solvent include dimethyl carbonate, ethylmethyl carbonate, di-n-butyl carbonate and the like.
  • the polyamide resin in the present specification is a general term for polymers having an amide bond obtained by various reactions such as polycondensation of dibasic acid and diamine, polycondensation of aminocarboxylic acid, and ring-opening polymerization of lactam. .. Therefore, the polyamide resin is a product manufactured from a reaction product partially hydrogenated, including various modified polyamides, a product obtained by partially copolymerizing other monomers, or other substances such as various additives. It is a broad concept including a mixture of.
  • the polyamide resin is not particularly limited as long as the above conditions are satisfied, but is preferably a dimer acid-modified polyamide resin obtained by polycondensing a dibasic acid containing dimer acid as a main component and polyamines. ..
  • the main component means the component having the highest blending ratio (for example, mol% content) among all the components contained in the target (here, dibasic acid).
  • the dimer acid may be a dimer acid obtained by polymerizing a natural monobasic unsaturated fatty acid contained in a tall oil fatty acid, a soybean oil fatty acid, or the like, or may be a saturated fatty acid group, an unsaturated fatty acid group, or an alicyclic type. Alternatively, it may be various dicarboxylic acids such as aromatic acids.
  • Hari Dimer 200, 300 (trade name, manufactured by Harima Chemicals, Inc.), Versa Dime 228, 216, Empole 1018, 1019, 1061, 1062 (all trade names, manufactured by Cognis Co., Ltd.) and the like. Can be mentioned.
  • hydrogenated dimer acid can also be used, and examples of commercially available hydrogenated dimer acid include Prepole 1009 (trade name, manufactured by Croda Japan Co., Ltd.) and Empole 1008 (trade name, manufactured by Cognis Co., Ltd.).
  • dicarboxylic acids can be used as the dibasic acid in order to obtain a polyamide resin having appropriate flexibility.
  • specific examples of the dicarboxylic acid include oxalic acid, malonic acid, (anhydrous) succinic acid, (anhydrous) maleic acid, glutaric acid, adipic acid, bimeric acid, suberic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid.
  • Acids phthalic acids, naphthalenedicarboxylic acids, 1,3- or 1,4-cyclohexanedicarboxylic acids, 1,18-octadecanedicarboxylic acids, 1,16-hexadecanedicarboxylic acids and the like are used.
  • a dibasic acid having a phenolic hydroxyl group can also be used.
  • the phenolic hydroxyl group can be introduced into the side chain of the polyamide resin and can be used for the reaction with the curing agent.
  • dibasic acid having a phenolic hydroxyl group examples include hydroxyisophthalic acid such as 2-hydroxyisophthalic acid, 4-hydroxyisophthalic acid and 5-hydroxyisophthalic acid, 2,5-dihydroxyisophthalic acid and 2,4-dihydroxyisophthalic acid.
  • Dihydroxyisophthalic acid such as 4,6-dihydroxyisophthalic acid, 2-hydroxyterephthalic acid, 2,3-dihydroxyterephthalic acid, dihydroxyterephthalic acid such as 2,6-dihydroxyterephthalic acid, 4-hydroxyphthalic acid, 3-hydroxyphthalic acid
  • hydroxyphthalic acid such as acid, dihydroxyphthalic acid such as 3,4-dihydroxyphthalic acid, 3,5-dihydroxyphthalic acid, 4,5-dihydroxyphthalic acid and 3,6-dihydroxyphthalic acid.
  • these acid anhydrides and ester derivatives such as polybasic acid methyl ester can also be mentioned.
  • 5-hydroxyisophthalic acid is preferable as the dibasic acid from the viewpoint of copolymerizability and easy availability.
  • monocarboxylic acids may be used if necessary.
  • the monocarboxylic acid propionic acid, acetic acid, caprylic acid (octanoic acid), stearic acid, oleic acid and the like are used.
  • Examples of polyamines as reactants for producing the dimer acid-modified polyamide resin include various diamines such as aliphatic, alicyclic and aromatic, triamine and polyamine.
  • diamines include ethylenediamine, propanediamine, butanediamine, triethylenediamine, tetraethylenediamine, hexamethylenediamine, p- or m-xylene diamine, 4,4'-methylenebis (cyclohexylamine), and 2,2-bis.
  • -(4-Cyclohexylamine), polyglycoldiamine, isophoronediamine, 1,2-, 1,3- or 1,4-cyclohexanediamine, 1,4-bis- (2'-aminoethyl) benzene, N-ethyl Amino piperazine, piperazine and the like can be mentioned.
  • a dimer diamine obtained by converting a dimerized aliphatic nitrile group and reducing it with hydrogen can also be used.
  • Alkanolamine may be used in combination with the diamine.
  • alkanolamine examples include ethanolamine, propanolamine, diethanolamine, butanolamine, 2-amino-2-methyl-1-propanol, 2- (2-aminoethoxy) ethanol and the like.
  • diamine a polyether diamine having oxygen in the skeleton can be used. This polyether diamine has a general formula: H 2 N-R 1- (RO) n -R 2 -NH 2 (in the formula, n is an integer of 2 to 100, and R 1 and R 2 have carbon atoms.
  • R is an alkylene group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group. May be linear or branched.
  • the polyether diamine include polyoxypropylene diamine, and commercially available products include Jeffamines (manufactured by San Techno Chemical Co., Ltd.). Further, examples of the polyether diamine include bis- (3-aminopropyl) -polytetrahydrofuran.
  • triamine examples include diethylenetriamine and the like.
  • polyamines include triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and the like.
  • polyamine a compound obtained by converting a carbosyl group of a polybasic acid compound having a cyclic or acyclic hydrocarbon group having 20 to 48 carbon atoms into an amino group can be used.
  • commercially available polyamines include, for example, the product names of Croda Japan Co., Ltd .: "Priamine 1071", “Priamine 1073”, “Priamine 1074", “Priamine 1075", and the product names of Cognis Japan Co., Ltd .: "Versamine 551". Can be mentioned.
  • the above polyamines and dimer acid or various dicarboxylic acids are heat-condensed by a conventional method, and various polyamide resins including dimer acid-modified polyamide resin are produced by an amidation step accompanied by dehydration.
  • the reaction temperature is about 100 to 300 ° C.
  • the reaction time is about 1 to 8 hours.
  • the polyester resin is a polymer composed of a polyvalent carboxylic acid as a monomer and a polyhydric alcohol.
  • the polyester resin known ones can be used and are not particularly limited.
  • the weight average molecular weight (Mw) of the polyester resin is preferably 1000 to 100,000.
  • the glass transition temperature (Tg) of the polyester resin is preferably ⁇ 10 ° C. to 200 ° C.
  • Examples of the polyvalent carboxylic acid component constituting the polyester resin include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, unsaturated dicarboxylic acids, and trivalent or higher carboxylic acids.
  • examples of the polyhydric alcohol component constituting the polyester resin include aliphatic glycols, ether glycols, and trihydric or higher polyalcohols.
  • the polyvalent carboxylic acid and the polyhydric alcohol one type may be used alone, or two or more types may be used in combination.
  • polyester resins include Byron (manufactured by Toyobo Co., Ltd., "Byron” is a registered trademark), Polyester (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., “Polyester” is a registered trademark), and Tesslac (Hitachi Kasei Polymer Co., Ltd.). , “Teslac” is a registered trademark).
  • the carbon material (B) acting as a conductive substance contains graphite (B-1) and a carbon material (B-2) other than graphite.
  • the content of the carbon material (B) is 65 to 85% by mass, preferably 70 to 80% by mass, based on 100% by mass of the solid content of the conductive composition.
  • the content of the carbon material (B) is 70 to 80% by mass, high conductivity and adhesion can be easily exhibited in a state where the conductive network formation in the conductive film formed by the conductive composition is good. ..
  • graphite (B-1) As the graphite (B-1), for example, artificial graphite, natural graphite, or the like can be used. Artificial graphite is obtained by artificially orienting irregularly arranged micrographite crystals by heat treatment of amorphous carbon, and is usually produced using petroleum coke or coal-based pitch coke as a main raw material. As the natural graphite, scaly graphite, lump graphite, earth graphite and the like can be used. It is also possible to use expanded graphite (also referred to as expandable graphite) obtained by chemically treating scaly graphite, or expanded graphite obtained by heat treatment and expansion of expanded graphite and then miniaturization or pressing. You can. Among these graphites, when used for a conductive film of a wiring sheet, flaky graphite such as scaly graphite, expanded graphite, and flaky graphite is preferable from the viewpoint of conductivity.
  • flaky graphite such as scaly graphit
  • the surface of these graphites is treated with surface treatments such as epoxy treatment, urethane treatment, silane coupling treatment, and so on, in order to increase the affinity with the binder resin (A) as long as the characteristics of the conductive composition are not impaired. It may be subjected to an oxidation treatment or the like.
  • the average particle size of the graphite (B-1) used is preferably 2 to 100 ⁇ m, more preferably 20 to 50 ⁇ m.
  • the aspect ratio of the graphite particles can be set in an appropriate range, the contact between the graphite particles is prevented from becoming point contact, and a sufficient conductive network. Can be easily formed. Further, if the average particle size of graphite (B-1) is 100 ⁇ m or less, the voids between the graphite particles can be made into an appropriate size, and the conductive path formed between carbon materials other than graphite in the conductive network. , The ratio with the conductive path via graphite can be set in an appropriate range, and excellent conductivity can be imparted.
  • the average particle size in the present specification means a particle size (D50) that becomes 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution.
  • the average particle size can be measured with a general particle size distribution meter, for example, a dynamic light scattering type particle size distribution meter (manufactured by Nikkiso Co., Ltd., trade name: "Microtrack UPA”) or the like.
  • Examples of commercially available graphite (B-1) include the following.
  • flaky graphite for example, trade names manufactured by Nippon Graphite Industry Co., Ltd .: CMX, CPB, UP-5, UP-10, UP-20, UP-35N, CSSP, CSPE, CSP, CP, CB-150, CB- 100, ACP, ACP-100, ACB-50, ACB-100, ACB-150, SP-10, SP-20, J-SP, SP-270, HOP, GR-15, LEP, F # 1, F # 2, F # 3;
  • Examples of the spherical natural graphite include trade names: CGC-20, CGC-50, CGB-20, and CGB-50 manufactured by Nippon Graphite Industry Co., Ltd.
  • Examples of the earth-like graphite include trade names manufactured by Nippon Graphite Industry Co., Ltd .: Blue P, AP, AOP, P # 1; trade names manufactured by Chuetsu Graphite Co., Ltd .: APR, S-3, AP-6, 300F. ..
  • artificial graphite for example, trade names manufactured by Nippon Graphite Industry Co., Ltd .: PAG-60, PAG-80, PAG-120, PAG-5, HAG-10W, HAG-150; trade names manufactured by Chuetsu Graphite Co., Ltd .: RA- 3000, RA-15, RA-44, GX-600, G-6S, G-3, G-150, G-100, G-48, G-30, G-50; Product name manufactured by SEC Carbon Co., Ltd .: SGP-100, SGP-50, SGP-25, SGP-15, SGP-5, SGP-1, SGO-100, SGO-50, SGO-25, SGO-15, SGO-5, SGO-1, SGX- Examples thereof include 100, SGX-50, SGX-25, SGX-15, SGX-5, and SGX-1.
  • the graphite (B-1) is not limited to these. Further, graphite (B-1) may be used alone or in combination of two or more
  • the content of graphite (B-1) in 100% by mass of the carbon material (B) in the present conductive composition is 70.0 to 99.0% by mass, and 75.0 to 99.0% by mass. It is preferably 80.0 to 99.0% by mass, more preferably 90.0 to 97.5% by mass, and most preferably 90.0 to 97.5% by mass.
  • the content of graphite (B-1) in the carbon material (B) is 80.0% by mass or more, the number of pinholes in the conductive film can be reduced and a good coating film can be easily formed.
  • the carbon material (B-2) other than graphite has an appropriate blending amount and depends on the graphite particles.
  • the vertical conductive network can be strengthened without impairing the high conductivity in the planar direction. As a result, very high conductivity can be exhibited.
  • the content of graphite (B-1) in the carbon material (B) is less than 90.0% by mass, a coating film having less unevenness of the conductive film can be easily obtained.
  • the carbon material (B-2) other than graphite is not particularly limited, and conventionally known materials can be used.
  • Examples of the carbon material (B-2) include carbon black, conductive carbon fibers (carbon nanotubes, carbon nanofibers, carbon fibers), fullerene and the like. Among these, it is preferable to use carbon black as the carbon material (B-2) from the viewpoint of particle size and specific surface area.
  • As the carbon material (B-2) other than graphite one type may be used alone, or two or more types may be used in combination.
  • Examples of carbon black include furnace black, which is produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially acetylene black, which is made from ethylene heavy oil, and the raw material gas is burned to channel the flame. Examples thereof include channel black which is rapidly cooled and deposited on the bottom surface of steel, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and acetylene black using acetylene gas as a raw material. Further, as the carbon black, carbon (black) that has been subjected to a normal oxidation treatment, hollow carbon, or the like can also be used.
  • the specific surface area (BET) obtained from the amount of nitrogen adsorbed is preferably 20 m 2 / g or more and 1500 m 2 / g or less, more preferably 50 m 2 / g or more and 1500 m 2 / g or less, particularly preferably. It is desirable to use a material of 100 m 2 / g or more and 1500 m 2 / g or less.
  • the specific surface area of carbon black is 20 m 2 / g or more, sufficient conductivity can be easily obtained, and when it is 1500 m 2 / g or less, it is easily available as a commercially available material.
  • the particle size of carbon black is preferably 0.005 to 1 ⁇ m, more preferably 0.01 to 0.2 ⁇ m in terms of primary particle size.
  • the primary particle diameter referred to here is an average of the particle diameters measured by an electron microscope or the like.
  • Examples of commercially available carbon black include Tokai Carbon's product names: Toka Black # 4300, # 4400, # 4500, # 5500, Degussa's product names: Printex L, and Colombian's Raven7000, 5750. 5250, 5000ULTRAIII, 5000ULTRA, ConductexSCULTRA, Conductex975ULTRA, PUERBLACK100, 115,205, Product names manufactured by Mitsubishi Chemical Co., Ltd .: # 2350, # 2400B, # 2600B, # 3050B, # 3030B, # 3230B, # 3350B, # 3350B, # 3350B , Cabot's product names: MONARCH1400, 1300, 900, VulcanXC-72R, BlackPearls2000, TIMCAL's product names: Ensaco250G, Ensaco260G, Ensaco350G, SuperP-Li and other furnace blacks; Product name made by Lion: EC-300J, EC-600JD, etc
  • Ketchen Black Product names manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black, Denka Black HS-100, FX-35 and other acetylene blacks can be mentioned. However, it is not limited to these carbon blacks. One type of carbon black may be used alone, or two or more types may be used in combination.
  • the carbon nanotubes include a single-walled carbon nanotube in which a graphene sheet forms a tube having a diameter in a nanometer region, and a multi-walled carbon nanotube in which the graphene sheet is a multi-walled layer. Therefore, the diameter of the multi-walled carbon nanotubes is as large as 30 nm with respect to 0.7 to 2.0 nm of a typical single-walled carbon nanotube.
  • conductive carbon fibers and carbon nanotubes As commercially available conductive carbon fibers and carbon nanotubes, trade names manufactured by Showa Denko Co., Ltd .: vapor phase carbon fibers such as VGCF, and trade names manufactured by Meijo Nano Carbon Co., Ltd .: EC1.0, EC1.5, EC2.0, Examples thereof include single-walled carbon nanotubes such as EC1.5-P, trade names manufactured by CNano: FloTube9000, FloTube9100, FloTube9110, FloTube9200, trade names manufactured by Nanocyl: NC7000, and trade names manufactured by Knano: 100T.
  • the curing agent (C) is not particularly limited as long as it reacts with the reactive functional group contained in the binder resin (A).
  • the curing agent (C) is not particularly limited as long as it reacts with the reactive functional group contained in the binder resin (A).
  • Examples of the reactive functional group include, but are not limited to, a hydroxyl group, a phenolic hydroxyl group, a carboxyl group, an amino group, an acid anhydride group such as maleic anhydride, a thiol group and the like.
  • Examples of the curing agent (C) include an epoxy group-containing compound (C1), an isocyanate group-containing compound (C2), a blocked isocyanate group-containing compound (C3), an aziridine compound (C4), and a carbodiimide group-containing compound (C5).
  • Examples thereof include a benzoxazine compound (C6), a phenol resin (C7), a maleimide compound (C8), a ⁇ -hydroxyalkylamide group-containing compound (C9), and a metal chelate (C10).
  • the curing agent (C) may be used alone or in combination of two or more.
  • the aziridine compound (C4) has very good reactivity with a binder resin containing a carboxyl group, a phenolic hydroxyl group, an acid anhydride and the like. Therefore, since the curing starts immediately after the conductive film dries, the curing shrinkage occurs remarkably, so that the fillers come into close contact with each other, and the conductivity is extremely improved as compared with the case where other curing agents are used.
  • Metal chelate (C10) is a general term for compounds in which a compound having a polydentate ligand in the molecule forms a complex so as to sandwich a metal ion.
  • the metal chelate (C10) reacts with particles having functional groups on the surface such as carbon black and also functions as a dispersant, and suppresses irregular aggregation of the conductive fillers in the film forming process, thereby making the metal chelate uniform. Since a conductive path can be formed, excellent conductivity can be imparted.
  • the epoxy group-containing compound (C1) is not particularly limited as long as it is a compound having an epoxy group in the molecule. However, as the epoxy group-containing compound (C1), a compound having an average of two or more epoxy groups in one molecule can be preferably used. As the epoxy-based compound (C1), for example, an epoxy resin such as a glycisyl ether type epoxy resin, a glycisylamine type epoxy resin, a glycidyl ester type epoxy resin, or a cyclic aliphatic (aliphatic) epoxy resin can be used. ..
  • Examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, and ⁇ -naphthol novolac.
  • Type epoxy resin, bisphenol A type novolak type epoxy resin, dicyclopentadiene type epoxy resin, tetrabrom bisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, tris (glycidyloxyphenyl) methane, or tetrakis (glycidyloxyphenyl) Etan and the like can be mentioned.
  • Examples of the glycidyl ester type epoxy resin include diglycidyl phthalate, diglycidyl hexahydrophthalate, and diglycidyl tetrahydrophthalate.
  • cyclic aliphatic (alicyclic) epoxy resin examples include epoxycyclohexylmethyl-epoxycyclohexanecarboxylate and bis (epoxycyclohexyl) adipate.
  • the epoxy group-containing compound (C1) includes bisphenol A type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, tris (glycidyloxyphenyl) methane, or tetrakis (glycidyloxyphenyl) ethane from the viewpoint of durability. It is preferable to use.
  • the isocyanate group-containing compound (C2) is not particularly limited as long as it is a compound having an isocyanate group in the molecule.
  • examples of the isocyanate group-containing compound (C2) having one isocyanate group in one molecule include n-butyl isocyanate, isopropyl isocyanate, phenyl isocyanate, benzyl isocyanate, (meth) acryloyloxyethyl isocyanate, and 1,1-bis [ (Meta) acryloyloxymethyl] ethyl isocyanate, vinyl isocyanate, allyl isocyanate, (meth) acryloyl isocyanate, isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate and the like can be mentioned.
  • Examples of the isocyanate group-containing compound (C2) having two isocyanate groups in one molecule include 1,3-phenylenediisocyanate, 4,4'-diphenyldiisocyanate, 1,4-phenylenediocyanate, and 4,4'-diphenylmethane.
  • Examples of the isocyanate group-containing compound having three isocyanate groups in one molecule include aliphatic polyisocyanates such as aromatic polyisocyanate and lysine triisocyanate, aromatic aliphatic polyisocyanates, and alicyclic polyisocyanates. Will be.
  • aliphatic polyisocyanates such as aromatic polyisocyanate and lysine triisocyanate, aromatic aliphatic polyisocyanates, and alicyclic polyisocyanates.
  • the trimethylolpropane adduct body of diisocyanate described above, the biuret body reacted with water, and the trimer having an isocyanurate ring can be mentioned as examples.
  • the aziridine compound (C4) is not particularly limited as long as it is a compound containing an aziridine group in the molecule.
  • aziridin compound (C4) examples include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarbokisite) and N, N'-toluene-2,4-bis (1-aziridinecarbokisite).
  • 2,2'-bishydroxymethylbutanoltris [3- (1-aziridinyl) propionate] is particularly preferably used in the present conductive composition because it provides good durability and conductivity. ..
  • Carbodiimide group-containing compound (C5) for example, the carbodilite series of Nisshinbo Holdings Co., Ltd. can be used. Among them, trade names: Carbodilite V-01, 03, 05, 07, 09 are preferable because they have excellent compatibility with organic solvents.
  • -Benzoxazine compound (C6) examples include “P-a”, “P-alp”, “P-ala”, “B-ala” and Macromolecules, 34,7257 described in Macromolecules, 36,6010 (2003). (2001) "P-appe”, “Bappe”, “BA type benzoxazine”, “FA type benzoxazine”, “Bm type benzoxazine” manufactured by Shikoku Kasei Co., Ltd. are used. be able to.
  • Phenol resin (C7) for example, an addition compound of formaldehyde and a compound such as phenol, cresols, and bisphenols, or a partial condensate thereof can be used. More specifically, the phenol resin (C-7) includes a phenol resin, a cresol resin, a t-butylphenol resin, a dicyclopentadiencresol resin, a dicyclopentadienephenol resin, a xylylene-modified phenol resin, a tetrakisphenol resin, and a bisphenol A. Examples thereof include resin, resole-type resin of poly-p-vinylphenol resin, and novolak-type resin.
  • a naphthol compound, a trisphenol compound, a phenol aralkyl resin and the like can also be used as the phenol resin (C7).
  • the phenol resin resol type resin is extremely excellent in heat resistance and curability, and can be suitably used in the present conductive composition.
  • the maleimide compound (C8) is not particularly limited as long as it has at least one maleimide group in the molecule.
  • Examples of the maleimide compound (C8) include phenylmaleimide, 1-methyl-2,4-bismaleimidebenzene, N, N'-m-phenylene bismaleimide, N, N'-p-phenylene bismaleimide, N, N.
  • ⁇ -hydroxyalkylamide group-containing compound (C9) include, for example, N, N, N', N'-tetrakis (hydroxyethyl) adipamide (manufactured by Ems-Chemie, trade name: Primid XL-552). Compounds can be used.
  • -Metal chelate examples include a chelate compound in which a metal alkoxide is reacted with a chelating agent such as ⁇ -diketone or ketoester (ethyl acetoacetate or the like). More specifically, examples of the metal chelate (C10) include aluminum chelate, zirconium chelate, titanium chelate and the like.
  • aluminum chelate examples include aluminum monoacetylacetonate bis (ethylacetate acetate), aluminum ethylacetate acetate diisopropyrate, aluminum tris (acetylacetone), aluminum tris (ethylacetacetate), aluminum isopropyrate and the like. ..
  • zirconium chelate examples include zirconium tetraacetylacetonate and zirconium tributoxymonoacetylacetonate.
  • titanium chelate examples include titanium diisopropoxybis (acetylacetoneate), titaniumtetraacetylacetonate, and titaniumdiisopropoxybis (ethylacetoacetate).
  • an aluminum chelate as the metal chelate (C10).
  • Aluminum chelates have very good reactivity with binder resins containing carboxyl groups, phenolic hydroxyl groups, acid anhydrides, etc., and have a good effect on the dispersibility of carbon materials, so they are better than when other metal chelates are used. Also, the conductivity is extremely improved. Among them, aluminum monoacetylacetonate bis (ethylacetoacetate) is particularly preferable.
  • the mass ratio may be 1/99 to 60/40. It is preferable to blend in 10/90 to 30/70, and more preferably.
  • solvent (D) arbitrarily added to the present conductive composition.
  • the solvent (D) can be appropriately used.
  • examples of such a solvent (D) include an organic solvent and water.
  • organic solvent examples include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol methyl ether and diethylene glycol methyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, tetrahydrofuran, dioxane and ethylene glycol dimethyl ether.
  • a conductive composition from ethers such as diethylene glycol dimethyl ether, hydrocarbons such as hexane, heptane and octane, aromatics such as benzene, toluene, xylene and cumene, and esters such as ethyl acetate and butyl acetate. It can be appropriately selected and used according to the composition. Further, the solvent (D) may be used alone or in combination of two or more.
  • the viscosity of the organic solvent at 25 ° C. is preferably in the range of 30 mPa ⁇ s to 75,000 mPa ⁇ s.
  • the viscosity of the organic solvent is 30 mPa ⁇ s or more, the resin content is suitable for exhibiting high conductivity, and good dispersibility of the viscous and conductive carbon material suitable for coating can be easily obtained. , Excellent coatability can be obtained.
  • the viscosity of the organic solvent is 75,000 mPa ⁇ s or less, the dispersibility of the carbon material becomes better.
  • organic solvent examples include tarpineol, dihydroterpineol, 2,4-diethyl-1,5-pentanediol, 1,3-butylene glycol, and isobornylcyclohexanol.
  • These high-viscosity solvents may be used alone or in combination of two or more.
  • these high-viscosity solvents and low-viscosity solvents such as methyl ethyl ketone, toluene, and isopropyl alcohol having a viscosity at 25 ° C. of less than 30 mPa ⁇ s can also be used in combination.
  • the present conductive composition may contain, if necessary, an ultraviolet absorber, an ultraviolet stabilizer, a radical catching agent, a filler, a thixotropic agent, an antioxidant, an antioxidant, as long as the effect of the present invention is not impaired.
  • Various additives such as a coupling agent may be added.
  • ⁇ Distributor / Mixer> As an apparatus used for obtaining the present conductive composition from each of the above components, a disperser, a mixer or the like usually used for pigment dispersion or the like can be used.
  • Examples of the above-mentioned device include mixers such as a dispenser, a homomixer, or a planetary mixer; homogenizers such as "Clairemix” manufactured by M-Technique or “Fillmix” manufactured by PRIMIX; and a paint conditioner (manufactured by Red Devil). ), Ball mill, sand mill ("Dyno mill” manufactured by Symmar Enterprises, etc.), attritor, pearl mill (“DCP mill” manufactured by Eirich, etc.), or media type disperser such as Coball mill; wet jet mill (“Dyno mill” manufactured by Genus).
  • Medialess disperser such as “Genus PY”, “Starburst” manufactured by Sugino Machine Limited, “Nanomizer” manufactured by Nanomizer, “Claire SS-5" manufactured by M-Technique, or “MICROS” manufactured by Nara Machinery; or , Other roll mills, etc., but are not limited to these.
  • a method using a disperser in which the agitator and vessel are made of ceramic or resin, or a disperser in which the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating It is preferable to use.
  • the medium it is preferable to use glass beads, zirconia beads, or ceramic beads such as alumina beads.
  • the dispersive device only one type may be used, or a plurality of types of devices may be used in combination.
  • the conductive film of the present invention (hereinafter, may be referred to as the present conductive film) is a conductive film formed from the present conductive composition on a (sheet-like) substrate, in other words, the present conductive composition is formed into a film. It has a conductive film made of.
  • the shape of the sheet-like base material used for forming the conductive film is not particularly limited, but an insulating resin film is preferable, and one suitable for various uses can be appropriately selected.
  • the material of the sheet-like base material examples include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polyvinyl chloride, polyamide, nylon, OPP (stretched polypropylene), CPP (unstretched polypropylene) and the like. .. However, it is not limited to these.
  • a film on a flat plate is usually used, but a roughened surface, a primer-treated one, a perforated one, and a mesh-like one can also be used. ..
  • the method of applying the conductive composition on the sheet-like substrate is not particularly limited, and a known method can be appropriately used.
  • the coating method include a die coating method, a dip coating method, a roll coating method, a doctor coating method, a knife coating method, a spray coating method, a gravure coating method, a screen printing method, an electrostatic coating method, and the like.
  • a drying method after coating for example, a neglected drying, a blower dryer, a warm air dryer, an infrared heater, a far infrared heater, and the like can be used, but the drying method is not particularly limited thereto.
  • rolling processing may be performed by a lithographic press, a calendar roll, or the like, or in order to soften the conductive film and make it easier to press, rolling processing may be performed while heating.
  • the thickness of the conductive film is usually 0.1 ⁇ m or more and 1 mm or less, preferably 1 ⁇ m or more and 200 ⁇ m or less.
  • the volume resistivity of this conductive film is preferably less than 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm. Since the volume resistivity is less than 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, it can be suitably used as a battery electrode, a current collector, a battery, wiring of an electronic device, and the like.
  • the non-contact type media (non-contact type information recording medium) (hereinafter, may be referred to as the present non-contact type media) of the present invention is a non-contact type medium loaded with a conductive circuit and an IC chip, and the conductive circuit is a non-contact type medium. , Formed using the present conductive composition described above.
  • the conductive circuit used in the non-contact media can be obtained by printing the conductive composition on one side or both sides of a base material such as paper or plastic by a normal printing method depending on the intended use. It is a thing (printed matter).
  • Examples of the printing method include screen printing, rotary screen printing, flexo printing, gravure printing, gravure offset printing, offset printing, letterpress printing, inkjet, and the like.
  • various processed papers such as coated paper, uncoated paper, synthetic paper, polyethylene coated paper, impregnated paper, water resistant processed paper, insulating processed paper, and stretch processed paper can be used.
  • coated paper or processed paper it is preferable to use coated paper or processed paper as the paper base material from the viewpoint of obtaining a stable resistance value as a non-contact medium.
  • coated paper the one with higher smoothness is preferable.
  • plastic base material from plastics used as ordinary tags and cards such as polyester, polyethylene, polypropylene, cellophane, vinyl chloride, vinylidene chloride, polystyrene, vinyl alcohol, ethylene-vinyl alcohol, nylon, polyimide, polycarbonate, etc. Substrate can be used.
  • a conductive circuit can be formed by a normal printing method, so it is possible to design using existing equipment. That is, it is possible to print and form the conductive circuit as it is after performing normal printing for enhancing the design of the non-contact medium such as a pattern. Therefore, the circuit formation using the present conductive composition is far superior in productivity, initial investment cost, and running cost as compared with the circuit formation method conventionally performed by the etching method or the transfer method. There is.
  • an anchor coating agent or various varnishes may be applied to the base material for the purpose of improving the adhesion to the base material.
  • an overprint varnish, various coating agents, or the like may be applied for the purpose of protecting the circuit.
  • these various varnishes and coating agents either a normal heat-drying type or an active energy ray-curing type can be used.
  • a non-contact medium can be obtained by applying an adhesive on a conductive circuit and adhering a paper base material or a plastic film on which a pattern or the like is printed as it is, or laminating by melt extrusion of plastic or the like.
  • a base material to which an adhesive or an adhesive has been applied in advance can also be used.
  • the conductive circuit manufactured by the above method is loaded on the base material together with the IC module, and a non-contact type medium can be obtained.
  • the base material holds the conductive circuit and the IC chip, and paper, film, or the like similar to the base material of the conductive circuit can be used.
  • the IC chip stores, stores, and calculates data.
  • Non-contact media is an individual using radio waves as an RFID (Radio Frequency Identification), contactless IC card, contactless IC tag, data carrier (recording medium), wireless card, and a reader or writer. It is used to identify and send and receive data. Its uses include ID management and history management of toll collection systems, and location management of road usage status management systems, cargo, and baggage tracking / management systems.
  • the volume resistivity of the conductive circuit in this non-contact media is preferably less than 5.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm.
  • the volume resistivity is less than 5.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, it can be suitably used as a non-contact type medium.
  • the lower the volume resistivity the higher the conductivity is exhibited even in a thin film. Therefore, considering the material cost, productivity, and performance as a non-contact medium, the lower the volume resistivity is, the more preferable.
  • the obtained binder resin A-1 has a Mw of 61,000, an acid value of 10 mgKOH / g, and a polyamino compound and a reaction terminator for free isocyanate groups at both ends of the urethane prepolymer.
  • the total equivalent of the amino groups in it was 0.98.
  • the obtained binder resin A-2 has a weight average molecular weight of 24,000, an acid value of 13.2 mgKOH / g, a hydroxyl value of 5.5 mgKOH / g, and a glass transition temperature of ⁇ 32 ° C. there were.
  • the resin was evaluated as follows.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • ⁇ Adjustment of curing agent> The curing agent used in Examples and Comparative Examples described later was adjusted to a solution having a solid content of 50% using the solvent shown below.
  • the composition ratio of the mixed solvent is described as a mass ratio.
  • the curing agent C-3 described later a commercially available product having a solid content concentration of 50% by mass was used as it was.
  • -Solution of curing agent C-1-1 The curing agent C-1 (aziridin compound Chemitite PZ-33 (trade name, manufactured by Nippon Shokubai Co., Ltd.)) was diluted with toluene to obtain a solution of the curing agent C-1-1.
  • -Solution of curing agent C-2-1 The curing agent C-2 (epoxy compound TETRAD-X (trade name, manufactured by Mitsubishi Gas Chemical Company, Inc.)) was diluted with toluene to obtain a solution of the curing agent C-2-1.
  • -Solution of curing agent C-4-1 A solution of curing agent C-4-1 was obtained by diluting the curing agent C-4 (isocyanate compound Takenate D-110N: manufactured by Mitsui Chemicals, Inc.) with ethyl acetate. ..
  • Hardener C-5 ⁇ Aluminum chelate Aluminum monoacetylacetonate bis (ethylacetate acetate) Aluminum chelate D (trade name), manufactured by Kawaken Fine Chemical Co., Ltd. ⁇ is diluted with toluene to form a solution of hardener C-5-1.
  • Got -Solution of curing agent C-6-1: The curing agent C-6 (titanium chelate titanium tetraacetylacetonate Organix TC-401 (trade name), manufactured by Matsumoto Fine Chemical Co., Ltd.) was diluted with toluene to obtain a solution of the curing agent C-6-1.
  • Hardener C-7 ⁇ Titanium chelate Titanium diisopropoxybis (acetylacetone) Olgatics TC-100 (trade name), manufactured by Matsumoto Fine Chemical Co., Ltd. ⁇ is diluted with toluene to form a solution of hardener C-7-1.
  • Got -Solution of curing agent C-8-1: A solution of the curing agent C-8-1 was obtained by diluting the curing agent C-8 (zirconium chelate zirconium tetraacetylacetonate Olgatics ZC-150 (trade name), manufactured by Matsumoto Fine Chemical Co., Ltd.) with toluene.
  • ⁇ Conductive composition, conductive film and conductive circuit> [Example 1] (Preparation of conductive composition) The following materials were placed in a mixer and mixed, and then placed in a sand mill for dispersion. ⁇ Binder resin: 120 parts of A-1-1 solution (24 parts of resin solid content), -Conductive carbon material: B-1-1: Scale graphite CPB (manufactured by Nippon Graphite Co., Ltd.) 70 copies, ⁇ Carbon materials other than graphite: B-2-1: Ketjen Black EC-300J (trade name, manufactured by Lion Specialty Chemicals) 6 copies, ⁇ solvent: Toluene / Methylethylketone / 2-propanol (1/1/1) 204 parts. Then, 0.4 part (curing agent solid content 0.2 part) of the solution of C-1-1 was added as a curing agent to obtain a conductive composition (1).
  • the conductive composition (1) was applied onto a PEN (polyethylene naphthalate) film having a thickness of 125 ⁇ m using a doctor blade, and then dried by heating. The dry film thickness was adjusted to 5 ⁇ m. Finally, the coating film was cured under a temperature condition of 150 ° C. to obtain a conductive circuit (10 cm ⁇ 10 cm coating film).
  • PEN polyethylene naphthalate
  • the coatability of the conductive composition (1) was evaluated as follows using the conductive film and the conductive circuit produced above. That is, the produced conductive film and conductive circuit are visually observed, respectively, and coating unevenness (unevenness: evaluated by the shade of the coated surface) and pinhole (evaluated by the presence or absence of defects to which the conductive film / conductive circuit is not applied). was determined based on the following criteria. The evaluation results are shown in Table 6.
  • (village) 3 The shade of the conductive film / conductive circuit is not confirmed. 2: There are 1 to 3 shades of the conductive film / conductive circuit, but it is an extremely minute region. 1: The shading of the conductive film / conductive circuit is confirmed at four or more places, or one or more of the shading stripes having a length of 5 mm or more are confirmed.
  • (Pinhole) ⁇ No pinhole is confirmed. ⁇ : There are 1 to 3 pinholes, but they are extremely small. X: Four or more pinholes are confirmed, or one or more pinholes having a diameter of 1 mm or more are confirmed.
  • the superiority or inferiority of the durability of the conductive film and the conductive circuit produced by using the conductive composition (1) was evaluated based on the following criteria based on the rate of increase in volume resistivity after the moisture resistance heat test.
  • the evaluation results are shown in Table 6.
  • the method is shown below. First, the prepared coating film (conductive film / conductive circuit) was put into a small environmental tester (Espec Co., Ltd .: model number SH-661), left at a temperature of 60 ° C. and a relative humidity of 90% for 5000 hours, and then placed in a room temperature environment. After returning, the volume resistivity was measured using the method described above.
  • -Evaluation standard 3 The rate of increase in volume resistivity is less than 10%
  • 2 The rate of increase in volume resistivity is 10% or more and less than 20%
  • Non-contact media characteristics of conductive circuit A flexo plate (DSF version: manufactured by DuPont) having a conductor pattern was attached to the second unit of the CI type 6-color flexo printing machine SOLOFLEX (manufactured by Windmoeller & Holescher KG). Then, the conductive composition (1) was sequentially printed on the PEN film (125 ⁇ m) at a speed of 70 m / min. The film thickness of the printed matter is measured with a digital micro film thickness meter (manufactured by Nikon Corporation, trade name: MH15M), the printing conditions are appropriately adjusted so that the average film thickness is 5 to 10 ⁇ m, and after heating and drying, non-contact is performed. A conductive circuit for evaluating media characteristics was obtained.
  • Example 15 since the type of the binder resin is different from that in Example 1, the diluting solvent for producing the conductive composition was toluene / methyl ethyl ketone (1/1).
  • Example 36, 37, 38, 40, 76, 77, 78 and 80 two kinds of curing agents were used in combination and added at the same timing.
  • B-2-1 Ketjen Black EC-300J (trade name, manufactured by Lion Specialty Chemicals Co., Ltd.)
  • B-2-2 Ketjen Black EC-600JD (trade name, manufactured by Lion Specialty Chemicals Co., Ltd.)
  • B-2-3 Furness Black # 3050B (trade name, manufactured by Mitsubishi Chemical Corporation)
  • B-2-4 Denka Black HS-100 (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • B-2-5 Carbon nanotube VGCF-H (trade name, manufactured by Showa Denko KK)
  • C-1 Aziridine compound Chemitite PZ-33 (trade name, solid content 100% by mass, manufactured by Nippon Shokubai Co., Ltd.)
  • C-2 Epoxy compound TETRAD-X (trade name, solid content 100% by mass, manufactured by Mitsubishi Chemical Gas Chemical Co., Ltd.)
  • C-3 Carbodiimide compound Carbodilite V-03 (trade name, solid content 50% by mass, manufactured by Nisshinbo Chemical Co., Ltd.)
  • C-4 Isocyanate compound Takenate D-110N (trade name, solid content 75% by mass, manufactured by Mitsui Chemicals, Inc.)
  • -C-5 Aluminum chelate Aluminum chelate D (trade name, solid content 100% by mass, manufactured by Kawaken Fine Chemical Co., Ltd.)
  • -C-6 Titanium chelate Organix TC-401 (trade name, solid content 65% by mass, manufactured by Matsumoto Fine Chemical Co., Ltd.)
  • -C-7 Titanium chelate Organix TC
  • the blending ratio of the carbon material in the conductive composition and the mixing ratio of graphite and the carbon material other than graphite are selectively selected. It was found that by controlling the graphite material, it is possible to form an excellent conductive network between carbon materials, and to exhibit excellent conductivity, adhesion and durability.
  • the conductive composition of the present invention has extremely excellent conductivity as a carbon material, it can be applied to a wide range of application fields including RFID antennas, wiring materials, flat heating elements, and electrode materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention provides: an electrically conductive composition having particularly exceptional electrical conductivity, adhesion, and durability; an electrically conductive film in which said electrically conductive composition is used; and a non-contact medium that offers exceptional communication performance inexpensively. The problem noted above is solved by an electrically conductive composition that contains a binder resin (A), a carbon material (B), and a curing agent (C), the carbon material (B) containing graphite (B-1) and a carbon material (B-2) other than graphite, the carbon material (B) content being 65-85 mass% in 100 mass% of solid content of the electrically conductive composition, and the graphite (B-1) content being 70.0-99.0 mass% in 100 mass% of the carbon material (B).

Description

導電性組成物、導電膜および非接触型メディアConductive compositions, conductive and non-contact media
 本発明は、導電性組成物、ならびにそれを用いた導電膜および非接触型メディアに関する。 The present invention relates to a conductive composition, and a conductive film and a non-contact medium using the conductive composition.
 近年、エレクトロニクスの発達は目覚ましいものがあり、各種電子部品や電子機器で使用される導電性材料についても、製品の低コスト化、様々な使用環境下での高寿命化が求められるようになってきている。例えば、非接触型メディアをはじめとする電子部品の導電回路や電子機器の基盤配線、電子機器を接続する配線などを製造する場合、導電性が良好な導電性組成物が必要となる。ここで、一般的に、導電性を付与する導電性物質として銀や銅等の金属フィラーを用いる導電性組成物が用いられるが、これらの金属フィラーは、コストの面で大きな課題を有していた。 In recent years, the development of electronics has been remarkable, and there is a demand for low cost products and long life in various usage environments for conductive materials used in various electronic parts and devices. ing. For example, when manufacturing a conductive circuit of an electronic component such as a non-contact type medium, a board wiring of an electronic device, a wiring for connecting an electronic device, or the like, a conductive composition having good conductivity is required. Here, a conductive composition using a metal filler such as silver or copper is generally used as a conductive substance that imparts conductivity, but these metal fillers have a great problem in terms of cost. rice field.
 一方、導電性物質として金属を用いない導電性カーボンを用いた導電性組成物も種々検討されているが、導電性が不十分な場合があり、帯電防止用途等の半導電性用途での使用に限られていた。 On the other hand, various conductive compositions using conductive carbon that does not use a metal as a conductive substance have been studied, but the conductivity may be insufficient, and they are used in semi-conductive applications such as antistatic applications. Was limited to.
 そこで、特許文献1~3では、導電性物質として、グラファイトやカーボンナノチューブ等の体積抵抗率が10-2Ω・cm未満と低い炭素材料を用いた導電性組成物を提案している。しかしながら、これらの炭素材料は高い導電性を示すが、比表面積が大きいものが多く、樹脂や溶剤に均一混合・分散することが困難なことがあった。このため、当該炭素材料、樹脂および溶剤等を含む導電性組成物を用いて塗膜や成形物を作製した場合、塗膜や成形物における炭素材料間の接触不良により、導電性を十分に発現できない場合があった。 Therefore, Patent Documents 1 to 3 propose conductive compositions using carbon materials having a low volume resistivity of less than 10-2 Ω · cm, such as graphite and carbon nanotubes, as conductive substances. However, although these carbon materials show high conductivity, many of them have a large specific surface area, and it may be difficult to uniformly mix and disperse them in a resin or a solvent. Therefore, when a coating film or a molded product is produced using a conductive composition containing the carbon material, resin, solvent, etc., the conductivity is sufficiently exhibited due to poor contact between the carbon materials in the coating film or the molded product. Sometimes I couldn't.
 また、分散性の改良方法としては、分散剤を利用する方法が考えられるが、分散剤を利用することで、導電性が低下する場合があった。 Further, as a method for improving the dispersibility, a method using a dispersant can be considered, but the use of the dispersant may reduce the conductivity.
 さらに、通常、導電性組成物には、フィラーの分散、フィラー同士の接着、導電性組成物の基材への密着のために、有機材料である樹脂成分が添加される。しかしながら、そのような有機材料は、屋外環境での温湿度環境下で劣化しやすく、導電性組成物としての特性が、経時的に低下してしまうことがあり、耐久性に課題があった。このように、導電性組成物は、導電性の他に、密着性と耐久性との両立も求められていた。 Further, usually, a resin component which is an organic material is added to the conductive composition for the purpose of dispersing the filler, adhering the fillers to each other, and adhering the conductive composition to the base material. However, such an organic material is liable to deteriorate in a temperature and humidity environment in an outdoor environment, and its characteristics as a conductive composition may deteriorate with time, which has a problem in durability. As described above, the conductive composition is required to have both adhesiveness and durability in addition to the conductivity.
特開平3-7740号公報Japanese Unexamined Patent Publication No. 3-7740 特開2001-60413号公報Japanese Unexamined Patent Publication No. 2001-60413 特開2002-20515号公報Japanese Patent Application Laid-Open No. 2002-20515
 本発明の目的は、導電性、密着性および耐久性のいずれもが特異的に優れる導電性組成物、およびそれを用いた導電膜を提供することである。また、本発明の目的は、前記導電性組成物を用いた導電回路を有する、低コストで通信性能に優れた非接触型メディアを提供することである。 An object of the present invention is to provide a conductive composition having specifically excellent in conductivity, adhesion and durability, and a conductive film using the same. Further, an object of the present invention is to provide a non-contact type medium having a conductive circuit using the conductive composition and having excellent communication performance at low cost.
 本発明は、バインダー樹脂(A)と、炭素材料(B)と、硬化剤(C)とを含有する導電性組成物であって、
 炭素材料(B)は、黒鉛(B-1)および黒鉛以外の炭素材料(B-2)を含み、
 炭素材料(B)の含有率は、導電性組成物の固形分100質量%中、65~85質量%であり、
 黒鉛(B-1)の含有率は、炭素材料(B)100質量%中、70.0~99.0質量%であることを特徴とする。
The present invention is a conductive composition containing a binder resin (A), a carbon material (B), and a curing agent (C).
The carbon material (B) contains graphite (B-1) and a carbon material other than graphite (B-2).
The content of the carbon material (B) is 65 to 85% by mass in 100% by mass of the solid content of the conductive composition.
The content of graphite (B-1) is 70.0 to 99.0% by mass in 100% by mass of the carbon material (B).
 本発明の導電性組成物において、硬化剤(C)の含有率は、バインダー樹脂(A)100質量%に対して、0.5~20質量%であることが好ましい。 In the conductive composition of the present invention, the content of the curing agent (C) is preferably 0.5 to 20% by mass with respect to 100% by mass of the binder resin (A).
 本発明の導電性組成物において、黒鉛(B-1)の含有率は、炭素材料(B)100質量%中、80.0~99.0質量%であることが好ましい。 In the conductive composition of the present invention, the content of graphite (B-1) is preferably 80.0 to 99.0% by mass in 100% by mass of the carbon material (B).
 本発明の導電性組成物において、黒鉛(B-1)の含有率は、炭素材料(B)100質量%中、90.0~97.5質量%であることがより好ましい。 In the conductive composition of the present invention, the content of graphite (B-1) is more preferably 90.0 to 97.5% by mass in 100% by mass of the carbon material (B).
 本発明の導電性組成物において、炭素材料(B)の含有率は、導電性組成物の固形分100質量%中、70~80質量%であることが好ましい。 In the conductive composition of the present invention, the content of the carbon material (B) is preferably 70 to 80% by mass based on 100% by mass of the solid content of the conductive composition.
 本発明の導電性組成物において、硬化剤(C)は、アジリジン化合物、またはエポキシ基含有化合物を含むことが好ましい。 In the conductive composition of the present invention, the curing agent (C) preferably contains an aziridine compound or an epoxy group-containing compound.
 本発明の導電性組成物において、硬化剤(C)は、金属キレートを含むことが好ましい。 In the conductive composition of the present invention, the curing agent (C) preferably contains a metal chelate.
 本発明の導電性組成物において、前記金属キレートは、アルミニウムキレートを含むことが好ましい。 In the conductive composition of the present invention, the metal chelate preferably contains an aluminum chelate.
 また、本発明は、前記の導電性組成物を成膜してなる導電膜である。 Further, the present invention is a conductive film formed by forming the above-mentioned conductive composition into a film.
 また、本発明は、前記の導電性組成物を用いてなる導電回路、およびICチップを積載した非接触型メディアである。 Further, the present invention is a non-contact type medium loaded with a conductive circuit made of the above-mentioned conductive composition and an IC chip.
 本発明により、導電性、密着性および耐久性のいずれもが特異的に優れる導電性組成物、およびそれを用いた導電膜を提供できる。また、本発明により、前記導電性組成物を用いた導電回路を有する、低コストで通信性能に優れた非接触型メディアを提供出来る。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a conductive composition having specifically excellent in conductivity, adhesion and durability, and a conductive film using the same. Further, according to the present invention, it is possible to provide a non-contact type medium having a conductive circuit using the conductive composition and having excellent communication performance at low cost.
 <<導電性組成物>>
 本発明の導電性組成物(以下、本導電性組成物と称することがある)は、バインダー樹脂(A)と、炭素材料(B)と、硬化剤(C)と、必要に応じて溶剤(D)とを含有する。
<< Conductive composition >>
The conductive composition of the present invention (hereinafter, may be referred to as the present conductive composition) includes a binder resin (A), a carbon material (B), a curing agent (C), and a solvent (if necessary). D) and.
 本導電性組成物では、導電性物質である炭素材料の黒鉛と黒鉛以外の炭素の配合比率を特定の範囲としている。このため、バインダー樹脂の耐久性や導電性組成物により形成される導電膜中の炭素材料同士の接触や結着性が良好となり、優れた導電ネットワークを形成することができ、導電性と耐久性、さらに密着性に優れた導電膜を提供することができる。 In this conductive composition, the blending ratio of graphite, which is a carbon material as a conductive substance, and carbon other than graphite is within a specific range. Therefore, the durability of the binder resin and the contact and binding properties of the carbon materials in the conductive film formed by the conductive composition are improved, and an excellent conductive network can be formed, and the conductivity and durability can be improved. Further, it is possible to provide a conductive film having excellent adhesion.
 本導電性組成物の適正粘度は、導電性組成物の塗工方法によるが、10mPa・s以上、30,000mPa・s以下とするのが好ましい。 The appropriate viscosity of the present conductive composition depends on the coating method of the conductive composition, but is preferably 10 mPa · s or more and 30,000 mPa · s or less.
 <バインダー樹脂(A)>
 まず、バインダー樹脂(A)について説明する。
<Binder resin (A)>
First, the binder resin (A) will be described.
 バインダー樹脂(A)は、ポリウレタン系、ポリアミド系、アクリロニトリル系、アクリル系、ブタジエン系、ポリビニルブチラール系、ポリオレフィン系、ポリエステル系、ポリスチレン系、EVA系、エポキシ系、ポリフッ化ビニリデン系およびシリコン系樹脂等からなる群から選ばれる1種以上を含むことができる。ただし、これらの樹脂に限定されるわけではない。バインダー樹脂(A)は1種単独で用いても良いし、2種以上併用しても良い。 The binder resin (A) includes polyurethane-based, polyamide-based, acrylonitrile-based, acrylic-based, butadiene-based, polyvinyl butyral-based, polyolefin-based, polyester-based, polystyrene-based, EVA-based, epoxy-based, polyvinylidene fluoride-based, and silicon-based resins. It can contain one or more species selected from the group consisting of. However, it is not limited to these resins. The binder resin (A) may be used alone or in combination of two or more.
 なお、バインダー樹脂(A)は、バインダー樹脂が基材に適用された後に、硬化(架橋)反応を受ける、硬化性樹脂とすることもできる。
 つまり、バインダー樹脂(A)は、自己硬化性のものを選択したり、後述する硬化剤と組み合わせたりして、導電性組成物を基材上に印刷したり塗工したりした後、反応、すなわち、硬化(架橋)させることもできる。
The binder resin (A) can also be a curable resin that undergoes a curing (crosslinking) reaction after the binder resin is applied to the substrate.
That is, the binder resin (A) is selected to be self-curing, or combined with a curing agent described later, and the conductive composition is printed or coated on the substrate, and then the reaction is performed. That is, it can be cured (crosslinked).
 また、バインダー樹脂(A)としては、(熱)プレスの際、適度に軟化・流動するものが好ましい。このようなバインダー樹脂(A)を含む導電性組成物を基材上に印刷または塗工した後に、(熱)プレスすると、樹脂分が軟化し、印刷・塗工時の導電膜の平面的なパターン形状をほぼ維持しつつ、厚み方向に流動する。その結果、導電膜中の空隙を減らすことができ、導電性物質である炭素材料(B)同士の接触を増やせるので、得られる導電膜の体積抵抗率の低下が期待できる。 Further, as the binder resin (A), one that moderately softens and flows during (heat) pressing is preferable. When the conductive composition containing the binder resin (A) is printed or coated on the substrate and then (heat) pressed, the resin component is softened and the conductive film during printing and coating is flat. It flows in the thickness direction while almost maintaining the pattern shape. As a result, the voids in the conductive film can be reduced, and the contact between the carbon materials (B) which are the conductive substances can be increased, so that the volume resistivity of the obtained conductive film can be expected to decrease.
 以上より、バインダー樹脂(A)としては、体積抵抗率と基材への密着性および耐久性の観点から、ポリウレタン樹脂、ポリアミド樹脂およびポリエステル樹脂のうちの少なくとも1種を用いることが好ましい。 From the above, it is preferable to use at least one of polyurethane resin, polyamide resin and polyester resin as the binder resin (A) from the viewpoint of volumetric resistance, adhesion to the substrate and durability.
 (ポリウレタン樹脂)
 ポリウレンタン樹脂としては、従来公知のものを使用でき、その合成方法も特に限定されない。例えば、ポリウレタン樹脂としては、以下の合成方法により得られたものを用いることができる。
 1)ポリオール化合物(a)と、ジイソシアネート(b)とを反応させる方法。
 2)ポリオール化合物(a)と、ジイソシアネート(b)と、カルボキシル基を有するジオール化合物(c)とを反応させてイソシアネート基を有するウレタンプレポリマー(d)を得る方法。
 3)前記ウレタンプレポリマー(d)に、さらにポリアミノ化合物(e)を反応させる方法。
 なお、ポリウレタン樹脂として、前記3つの方法において、必要に応じて、反応停止剤を反応させて得られたものを用いてもよい。
(Polyurethane resin)
As the polyurentane resin, conventionally known ones can be used, and the synthesis method thereof is not particularly limited. For example, as the polyurethane resin, those obtained by the following synthetic methods can be used.
1) A method of reacting a polyol compound (a) with a diisocyanate (b).
2) A method of reacting a polyol compound (a) with a diisocyanate (b) with a diol compound (c) having a carboxyl group to obtain a urethane prepolymer (d) having an isocyanate group.
3) A method of further reacting the urethane prepolymer (d) with the polyamino compound (e).
As the polyurethane resin, a polyurethane resin obtained by reacting with a reaction terminator in the above three methods may be used, if necessary.
 ・ポリオール化合物(a)
 ポリオール化合物(a)としては、ポリウレタン樹脂を構成するポリオール成分として従来公知のものを適宜使用できる。ポリオール化合物(a)としては、例えば、ポリエーテルポリオール類(a-1)、ポリエステルポリオール類(a-2)、ポリカーボネートポリオール類(a-3)、ポリブタジエングリコール類(a-4)、またはこれらの混合物等が使用できる。
-Polyform compound (a)
As the polyol compound (a), conventionally known polyol components can be appropriately used as the polyol component constituting the polyurethane resin. Examples of the polyol compound (a) include polyether polyols (a-1), polyester polyols (a-2), polycarbonate polyols (a-3), polybutadiene glycols (a-4), or these. Mixtures and the like can be used.
 ポリエーテルポリオール類(a-1)としては、酸化エチレン、酸化プロピレン、テトラヒドロフランなどの重合体または共重合体などが挙げられる。 Examples of the polyether polyols (a-1) include polymers or copolymers of ethylene oxide, propylene oxide, tetrahydrofuran and the like.
 ポリエステルポリオール類(a-2)としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル-1,5-ペンタンジオール、ヘキサンジオール、オクタンジオール、1,4-ブチレンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ダイマージオール等の飽和および不飽和の低分子ジオール類、ならびにn-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル等のアルキルグリシジルエーテル類、バーサティック酸グリシジルエステル等のモノカルボン酸グリシジルエステル類と、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、フマル酸、コハク酸、シュウ酸、マロン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等のジカルボン酸類、またはこれらの無水物類を、脱水縮合して得られるポリエステルポリオール類や、環状エステル化合物を開環重合して得られるポリエステルポリオール類が挙げられる。 Examples of the polyester polyols (a-2) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and pentanediol, 3. -Saturated and unsaturated low molecular weight diols such as methyl-1,5-pentanediol, hexanediol, octanediol, 1,4-butylenediol, diethylene glycol, triethylene glycol, dipropylene glycol, dimerdiol, and n- Alkyl glycidyl ethers such as butyl glycidyl ether and 2-ethylhexyl glycidyl ether, monocarboxylic acid glycidyl esters such as versatic acid glycidyl ester, and adipic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, and succinic acid. Dicarboxylic acids such as acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid, or polyester polyols and cyclic ester compounds obtained by dehydration condensation of these anhydrides. Examples thereof include polyester polyols obtained by ring-opening polymerization.
 ポリカーボネートポリオール類(a-3)としては、1)ジオールまたはビスフェノールと炭酸エステルとの反応物、および、2)ジオールまたはビスフェノールにアルカリの存在下でホスゲンとの反応物が使用できる。 As the polycarbonate polyols (a-3), 1) a reaction product of diol or bisphenol and carbonic acid ester, and 2) a reaction product of diol or bisphenol with phosgene in the presence of alkali can be used.
 炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 また、ジオールとしては、エチレングリコール、プロピレングリコール、ジプロピレングリコール、ジエチレングリコール、トリエチレングリコール、ブチレングリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール、3,3’-ジメチロールヘプタン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール、オクタンジオール、ブチルエチルペンタンジオール、2-エチル-1,3-ヘキサンジオール、シクロヘキサンジオール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル、2,2,8,10-テトラオキソスピロ〔5.5〕ウンデカン等が挙げられる。
 また、ビスフェノールとしては、ビスフェノールAやビスフェノールF、ビスフェノール類にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加させたビスフェノール類等が挙げられる。
Examples of the carbonic acid ester include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, propylene carbonate and the like.
The diols include ethylene glycol, propylene glycol, dipropylene glycol, diethylene glycol, triethylene glycol, butylene glycol, 3-methyl-1,5-pentanediol, 2-methyl-1,8-octanediol, 3,3. '-Dimethylol heptane, polyoxyethylene glycol, polyoxypropylene glycol, propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9 -Nonandiol, neopentyl glycol, octanediol, butylethylpentanediol, 2-ethyl-1,3-hexanediol, cyclohexanediol, 3,9-bis (1,1-dimethyl-2-hydroxyethyl, 2,2) , 8,10-Tetraoxospiro [5.5] Undecane and the like.
Examples of bisphenol include bisphenol A, bisphenol F, and bisphenols obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to bisphenols.
 上記ポリオール化合物(a)の数平均分子量(Mn)は、導電性組成物を製造する際のポリウレタン樹脂の溶解性、形成される導電膜の耐久性や基材に対する接着強度等を考慮して適宜決定できる。ポリオール化合物(a)のMnは、580~8000の範囲が好ましく、1000~5000の範囲がより好ましい。 The number average molecular weight (Mn) of the polyol compound (a) is appropriately determined in consideration of the solubility of the polyurethane resin in producing the conductive composition, the durability of the conductive film formed, the adhesive strength to the substrate, and the like. Can be decided. The Mn of the polyol compound (a) is preferably in the range of 580 to 8000, more preferably in the range of 1000 to 5000.
 上記ポリオール化合物(a)は、単独で用いても、2種類以上併用してもよい。更に、ポリウレタン樹脂の性能が失われない範囲内で、上記ポリオール化合物(a)の一部を低分子ジオール類、例えば前記ポリオール化合物の製造に用いられる各種低分子ジオールに替えることもできる。 The above-mentioned polyol compound (a) may be used alone or in combination of two or more. Further, as long as the performance of the polyurethane resin is not lost, a part of the polyol compound (a) can be replaced with small molecule diols, for example, various small molecule diols used for producing the polyol compound.
 ・ジイソシアネート化合物(b)
 ジイソシアネート化合物(b)としては、従来公知のものを適宜使用でき、例えば、芳香族ジイソシアネート(b-1)、脂肪族ジイソシアネート(b-2)、脂環族イソシアネート(b-3)、またはこれらの混合物を使用できる。
-Diisocyanate compound (b)
As the diisocyanate compound (b), conventionally known compounds can be appropriately used, for example, aromatic diisocyanate (b-1), aliphatic diisocyanate (b-2), alicyclic isocyanate (b-3), or these. Mixtures can be used.
 芳香族ジイソシアネート(b-1)としては、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等が挙げられる。 Examples of the aromatic diisocyanate (b-1) include 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-benzyl isocyanate, dialkyldiphenylmethane diisocyanate, and tetra. Examples thereof include alkyldiphenylmethane diisocyanate, 1,3-phenylenediocyanate, 1,4-phenylenediocyanate, tolylene diisocyanate, and xylylene diisocyanate.
 脂肪族ジイソシアネート(b-2)としては、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等が挙げられる。 Examples of the aliphatic diisocyanate (b-2) include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and lysine diisocyanate.
 脂環族ジイソシアネート(b-3)としては、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアナートメチル、ビス(4-イソシアネートシクロヘキシル)メタン、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート等が挙げられる。 Examples of the alicyclic diisocyanate (b-3) include cyclohexane-1,4-diisocyanate, isophorone diisocyanate, norbornane diisocyanatomethyl, bis (4-isocyanatecyclohexyl) methane, 1,3-bis (isocyanatemethyl) cyclohexane, and methyl. Cyclohexanediisocyanate and the like can be mentioned.
 これらの中でも、ジイソシアネート化合物(b)として、イソホロンジイソシアネートを用いることが好ましい。 Among these, it is preferable to use isophorone diisocyanate as the diisocyanate compound (b).
 ・カルボキシル基を有するジオール化合物(c)
 カルボキシル基を有するジオール化合物(c)としては、例えば、ジメチロール酢酸、ジメチロールプロピオン酸、ジメチロールブタン酸、ジメチロールペンタン酸等のジメチロールアルカン酸、ジヒドロキシコハク酸、ジヒドロキシ安息香酸が挙げられる。これらの中でも、反応性および溶解性の観点から、上記ジオール化合物(c)として、ジメチロールプロピオン酸およびジメチロールブタン酸の少なくとも一方を用いることが好ましい。
-A diol compound having a carboxyl group (c)
Examples of the diol compound (c) having a carboxyl group include dimethylol alkanoic acid such as dimethylol acetic acid, dimethylol propionic acid, dimethylol butanoic acid and dimethylol pentanoic acid, dihydroxysuccinic acid and dihydroxybenzoic acid. Among these, from the viewpoint of reactivity and solubility, it is preferable to use at least one of dimethylol propionic acid and dimethylol butanoic acid as the diol compound (c).
 ・ポリアミノ化合物(e)
 ポリアミノ化合物(e)は、鎖延長剤として働くものであり、例えば、以下のものを使用できる。すなわち、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、ノルボルナンジアミン等のアミン類の他に、2-(2-アミノエチルアミノ)エタノール、2-ヒドロキシエチルエチレンジアミン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン等の水酸基を有するアミン類も使用することができる。これらの中でも、ポリアミノ化合物(e)としては、イソホロンジアミンが好適に使用される。
-Polyamino compound (e)
The polyamino compound (e) acts as a chain extender, and for example, the following can be used. That is, in addition to amines such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, norbornandiamine, 2- (2-aminoethylamino) ethanol. , 2-Hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxypropylethylenediamine and other amines having hydroxyl groups can also be used. Among these, isophorone diamine is preferably used as the polyamino compound (e).
 ポリオール化合物(a)とジイソシアネート(b)とカルボキシル基を有するジオール化合物(c)とを反応させ、イソシアネート基を有するウレタンプレポリマー(d)を得る際の条件は、反応系においてイソシアネート基を過剰に存在させる以外に特に限定はない。しかし、反応系における、イソシアネート基/水酸基の当量比は、1.05/1~3/1の範囲内であることが好ましく、1.2/1~2/1の範囲内であるがより好ましい。当該反応は、通常、室温(例えば、25℃)~150℃の範囲の温度で行なわれる。なお、製造時間、副反応の制御の面から、当該反応は、60~120℃の範囲の温度で行なわれることが好ましい。 The condition for reacting the polyol compound (a) with the diisocyanate (b) and the diol compound (c) having a carboxyl group to obtain the urethane prepolymer (d) having an isocyanate group is that the isocyanate group is excessive in the reaction system. There is no particular limitation other than making it exist. However, the equivalent ratio of isocyanate groups / hydroxyl groups in the reaction system is preferably in the range of 1.05 / 1 to 3/1, more preferably in the range of 1.2 / 1 to 2/1. .. The reaction is usually carried out at a temperature in the range of room temperature (eg, 25 ° C.) to 150 ° C. From the viewpoint of manufacturing time and control of side reactions, the reaction is preferably carried out at a temperature in the range of 60 to 120 ° C.
 イソシアネート基を有するウレタンプレポリマー(d)とポリアミノ化合物(e)とを反応させてポリウレタン樹脂を合成する際に、得られるポリウレタン樹脂の分子量を調整する為に反応停止剤を用いることができる。反応停止剤としては、例えば、ジ-n-ブチルアミン等のジアルキルアミン類、ジエタノールアミン等のジアルカノールアミン類や、エタノール、イソプロピルアルコール等のアルコール類が使用できる。 When synthesizing a polyurethane resin by reacting a urethane prepolymer (d) having an isocyanate group with a polyamino compound (e), a reaction terminator can be used to adjust the molecular weight of the obtained polyurethane resin. As the reaction terminator, for example, dialkylamines such as di-n-butylamine, dialkanolamines such as diethanolamine, and alcohols such as ethanol and isopropyl alcohol can be used.
 イソシアネート基を有するウレタンプレポリマー(d)、ポリアミノ化合物(e)、および必要に応じて反応停止剤を反応させる際の条件に関して、特に限定はない。しかし、ウレタンプレポリマーの両末端に有する遊離のイソシアネート基を1当量とした場合、ポリアミノ化合物(e)および反応停止剤中のアミノ基の合計当量が0.5~1.3の範囲内であることが好ましい。上記アミノ基の合計当量は、更に好ましくは0.8~0.995の範囲内である。 There are no particular restrictions on the conditions under which the urethane prepolymer (d) having an isocyanate group, the polyamino compound (e), and the reaction terminator, if necessary, are reacted. However, when the number of free isocyanate groups at both ends of the urethane prepolymer is one equivalent, the total equivalent of the polyamino compound (e) and the amino groups in the reaction terminator is in the range of 0.5 to 1.3. Is preferable. The total equivalent of the amino groups is more preferably in the range of 0.8 to 0.995.
 ポリウレタン樹脂の重量平均分子量(Mw)は、塗工性や取扱い性の観点から、5000~200000の範囲が好ましい。 The weight average molecular weight (Mw) of the polyurethane resin is preferably in the range of 5000 to 200,000 from the viewpoint of coatability and handleability.
 ポリウレタン樹脂の合成時には、溶剤を1種単独で、または2種以上を組み合わせて使用することができる。溶剤としては、例えば、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、芳香族系溶剤、アルコール系溶剤、カーボネート系溶剤、水等を挙げることができる。 When synthesizing polyurethane resin, one type of solvent can be used alone, or two or more types can be used in combination. Examples of the solvent include an ester solvent, a ketone solvent, a glycol ether solvent, an aliphatic solvent, an aromatic solvent, an alcohol solvent, a carbonate solvent, water and the like.
 エステル系溶剤としては、酢酸エチル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸アミル、乳酸エチル等が挙げられる。 Examples of the ester solvent include ethyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, ethyl lactate and the like.
 ケトン系溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトンベンゼン、ジイソブチルケトン、ジアセトンアルコール、イソホロン、シクロヘキサンノン等が挙げられる。 Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone benzene, diisobutyl ketone, diacetone alcohol, isophorone, cyclohexanenone and the like.
 グリコールエーテル系溶剤としては、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、およびこれらモノエーテル類の酢酸エステル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、およびこれらモノエーテル類の酢酸エステル等が挙げられる。 Examples of the glycol ether-based solvent include ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, and acetates of these monoethers, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and propylene. Examples thereof include glycol monomethyl ethers, propylene glycol monoethyl ethers, and acetates of these monoethers.
 脂肪族系溶剤としては、n-ヘプタン、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等が挙げられる。 Examples of the aliphatic solvent include n-heptane, n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane and the like.
 芳香族系溶剤としては、トルエン、キシレン等が挙げられる。 Examples of the aromatic solvent include toluene, xylene and the like.
 アルコール系溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、シクロヘキサノール等が挙げられる。 Examples of the alcohol solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, cyclohexanol and the like.
 カーボネート系溶剤としては、ジメチルカーボネート、エチルメチルカーボネート、ジ-n-ブチルカーボネート等が挙げられる。 Examples of the carbonate solvent include dimethyl carbonate, ethylmethyl carbonate, di-n-butyl carbonate and the like.
 (ポリアミド樹脂)
 本明細書におけるポリアミド樹脂とは、例えば、二塩基酸とジアミンの重縮合、アミノカルボン酸の重縮合、あるいはラクタムの開環重合などの各種反応で得られるアミド結合を有する高分子の総称である。したがって、ポリアミド樹脂とは、各種の変性ポリアミドをはじめ、一部水素添加された反応物で製造されたもの、他のモノマーが一部共重合された製造物、あるいは各種添加剤などの他の物質が混合されたものなどを含む広い概念である。
(Polyamide resin)
The polyamide resin in the present specification is a general term for polymers having an amide bond obtained by various reactions such as polycondensation of dibasic acid and diamine, polycondensation of aminocarboxylic acid, and ring-opening polymerization of lactam. .. Therefore, the polyamide resin is a product manufactured from a reaction product partially hydrogenated, including various modified polyamides, a product obtained by partially copolymerizing other monomers, or other substances such as various additives. It is a broad concept including a mixture of.
 ポリアミド樹脂は、上記条件が満たされるものであれば、特に限定されないが、ダイマー酸を主成分とする二塩基酸とポリアミン類とを縮重合させて得られるダイマー酸変性ポリアミド樹脂であることが好ましい。なお、主成分とは、対象(ここでは、二塩基酸)に含まれる全ての成分のうち、最も配合割合(例えば、モル%含有率)が高い成分を意味する。 The polyamide resin is not particularly limited as long as the above conditions are satisfied, but is preferably a dimer acid-modified polyamide resin obtained by polycondensing a dibasic acid containing dimer acid as a main component and polyamines. .. The main component means the component having the highest blending ratio (for example, mol% content) among all the components contained in the target (here, dibasic acid).
 上記ダイマー酸としては、トール油脂肪酸、大豆油脂肪酸などに含まれる天然の一塩基性不飽和脂肪酸を重合したダイマー酸であってもよいし、飽和脂肪族、不飽和脂肪族、脂環式、あるいは芳香族などの各種ジカルボン酸などであってもよい。 The dimer acid may be a dimer acid obtained by polymerizing a natural monobasic unsaturated fatty acid contained in a tall oil fatty acid, a soybean oil fatty acid, or the like, or may be a saturated fatty acid group, an unsaturated fatty acid group, or an alicyclic type. Alternatively, it may be various dicarboxylic acids such as aromatic acids.
 当該ダイマー酸の市販品としては、ハリダイマー200、300(いずれも商品名、ハリマ化成社製)、バーサダイム228、216、エンポール1018、1019、1061、1062(いずれも商品名、コグニス社製)などが挙げられる。 Commercially available products of the dimer acid include Hari Dimer 200, 300 (trade name, manufactured by Harima Chemicals, Inc.), Versa Dime 228, 216, Empole 1018, 1019, 1061, 1062 (all trade names, manufactured by Cognis Co., Ltd.) and the like. Can be mentioned.
 さらに、水素添加されたダイマー酸も使用でき、水添ダイマー酸の市販品としては、プリポール1009(商品名、クローダジャパン株式会社製)、エンポール1008(商品名、コグニス社製)などが挙げられる。 Further, hydrogenated dimer acid can also be used, and examples of commercially available hydrogenated dimer acid include Prepole 1009 (trade name, manufactured by Croda Japan Co., Ltd.) and Empole 1008 (trade name, manufactured by Cognis Co., Ltd.).
 上記ダイマー酸以外に、適切な柔軟性を有するポリアミド樹脂とするため、二塩基酸として、各種のジカルボン酸を用いることができる。ジカルボン酸としては、具体的には、シュウ酸、マロン酸、(無水)コハク酸、(無水)マレイン酸、グルタル酸、アジピン酸、ビメリン酸、スベリン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、1,3-又は1,4-シクロヘキサンジカルボン酸、1,18-オクタデカンジカルボン酸、1,16-ヘキサデカンジカルボン酸などが用いられる。 In addition to the above dimer acid, various dicarboxylic acids can be used as the dibasic acid in order to obtain a polyamide resin having appropriate flexibility. Specific examples of the dicarboxylic acid include oxalic acid, malonic acid, (anhydrous) succinic acid, (anhydrous) maleic acid, glutaric acid, adipic acid, bimeric acid, suberic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid. Acids, phthalic acids, naphthalenedicarboxylic acids, 1,3- or 1,4-cyclohexanedicarboxylic acids, 1,18-octadecanedicarboxylic acids, 1,16-hexadecanedicarboxylic acids and the like are used.
 さらに、二塩基酸としてフェノール性水酸基を有するものも使用できる。フェノール性水酸基を有する二塩基酸を使用することによって、ポリアミド樹脂の側鎖にフェノール性水酸基を導入することができ、硬化剤との反応に利用することができる。 Further, a dibasic acid having a phenolic hydroxyl group can also be used. By using a dibasic acid having a phenolic hydroxyl group, the phenolic hydroxyl group can be introduced into the side chain of the polyamide resin and can be used for the reaction with the curing agent.
 フェノール性水酸基を有する二塩基酸としては、2-ヒドロキシイソフタル酸、4-ヒドロキシイソフタル酸、5-ヒドロキシイソフタル酸等のヒドロキシイソフタル酸、2,5-ジヒドロキシイソフタル酸、2,4-ジヒドロキシイソフタル酸、4,6-ジヒドロキシイソフタル酸等のジヒドロキシイソフタル酸、2-ヒドロキシテレフタル酸、2,3-ジヒドロキシテレフタル酸、2,6-ジヒドロキシテレフタル酸等のジヒドロキシテレフタル酸、4-ヒドロキシフタル酸、3-ヒドロキシフタル酸等のヒドロキシフタル酸、3,4-ジヒドロキシフタル酸、3,5-ジヒドロキシフタル酸、4,5-ジヒドロキシフタル酸、3,6-ジヒドロキシフタル酸等のジヒドロキシフタル酸などが挙げられる。
更にこれらの酸無水物や例えば多塩基酸メチルエステルのようなエステル誘導体なども挙げられる。
 これらのなかでも、共重合性、入手の容易さなどの点から、二塩基酸としては、5-ヒドロキシイソフタル酸が好ましい。
Examples of the dibasic acid having a phenolic hydroxyl group include hydroxyisophthalic acid such as 2-hydroxyisophthalic acid, 4-hydroxyisophthalic acid and 5-hydroxyisophthalic acid, 2,5-dihydroxyisophthalic acid and 2,4-dihydroxyisophthalic acid. Dihydroxyisophthalic acid such as 4,6-dihydroxyisophthalic acid, 2-hydroxyterephthalic acid, 2,3-dihydroxyterephthalic acid, dihydroxyterephthalic acid such as 2,6-dihydroxyterephthalic acid, 4-hydroxyphthalic acid, 3-hydroxyphthalic acid Examples thereof include hydroxyphthalic acid such as acid, dihydroxyphthalic acid such as 3,4-dihydroxyphthalic acid, 3,5-dihydroxyphthalic acid, 4,5-dihydroxyphthalic acid and 3,6-dihydroxyphthalic acid.
Further, these acid anhydrides and ester derivatives such as polybasic acid methyl ester can also be mentioned.
Among these, 5-hydroxyisophthalic acid is preferable as the dibasic acid from the viewpoint of copolymerizability and easy availability.
 さらに、加熱時に適切な流動性を有するポリアミド樹脂とするため、必要に応じて、各種のモノカルボン酸を用いてもよい。モノカルボン酸としては、具体的には、プロピオン酸、酢酸、カプリル酸(オクタン酸)、ステアリン酸、オレイン酸などが用いられる。 Further, in order to obtain a polyamide resin having appropriate fluidity when heated, various monocarboxylic acids may be used if necessary. Specifically, as the monocarboxylic acid, propionic acid, acetic acid, caprylic acid (octanoic acid), stearic acid, oleic acid and the like are used.
 上記ダイマー酸変性ポリアミド樹脂を製造する際の反応物としてのポリアミン類は、例えば、脂肪族、脂環式、芳香族などの各種ジアミン、トリアミン、ポリアミンなどが挙げられる。 Examples of polyamines as reactants for producing the dimer acid-modified polyamide resin include various diamines such as aliphatic, alicyclic and aromatic, triamine and polyamine.
 上記ジアミンの具体例としては、エチレンジアミン、プロパンジアミン、ブタンジアミン、トリエチレンジアミン、テトラエチレンジアミン、ヘキサメチレンジアミン、p-またはm-キシレンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、2,2-ビス-(4-シクロヘキシルアミン)、ポリグリコールジアミン、イソホロンジアミン、1,2-、1,3-または1,4-シクロヘキサンジアミン、1,4-ビス-(2’-アミノエチル)ベンゼン、N-エチルアミノピペラジン、ピペラジンなどが挙げられる。また、二量体化された脂肪族のニトリル基を変換して水素還元して得られたダイマージアミンも使用することができる。 Specific examples of the above diamines include ethylenediamine, propanediamine, butanediamine, triethylenediamine, tetraethylenediamine, hexamethylenediamine, p- or m-xylene diamine, 4,4'-methylenebis (cyclohexylamine), and 2,2-bis. -(4-Cyclohexylamine), polyglycoldiamine, isophoronediamine, 1,2-, 1,3- or 1,4-cyclohexanediamine, 1,4-bis- (2'-aminoethyl) benzene, N-ethyl Amino piperazine, piperazine and the like can be mentioned. Further, a dimer diamine obtained by converting a dimerized aliphatic nitrile group and reducing it with hydrogen can also be used.
 ジアミンには、アルカノールアミンを併用してもよい。アルカノールアミンとしては、例えば、エタノールアミン、プロパノールアミン、ジエタノールアミン、ブタノールアミン、2-アミノ-2-メチル-1-プロパノール、2-(2-アミノエトキシ)エタノール等が挙げられる。
 また、ジアミンとして、酸素を骨格に有するポリエーテルジアミンを用いることができる。このポリエーテルジアミンは、一般式:HN-R-(RO)-R-NH(式中、nは2~100の整数であり、R、Rは炭素原子数が1~14個であるアルレン基または2価の脂環式炭化水素基であり、Rは炭素原子数が1~10個であるアルキレン基または2価の脂環式炭化水素基である。アルキレン基は直鎖状であっても分岐鎖状であってもよい。)で表すことができる。このポリエーテルジアミンとしては、ポリオキシプロピレンジアミン等が挙げられ、市販品としては、ジェファーミン類(サンテクノケミカル社製)がある。また、ポリエーテルジアミンとしては、ビス-(3-アミノプロピル)-ポリテトラヒドロフランも挙げることができる。
Alkanolamine may be used in combination with the diamine. Examples of the alkanolamine include ethanolamine, propanolamine, diethanolamine, butanolamine, 2-amino-2-methyl-1-propanol, 2- (2-aminoethoxy) ethanol and the like.
Further, as the diamine, a polyether diamine having oxygen in the skeleton can be used. This polyether diamine has a general formula: H 2 N-R 1- (RO) n -R 2 -NH 2 (in the formula, n is an integer of 2 to 100, and R 1 and R 2 have carbon atoms. It is an allene group or a divalent alicyclic hydrocarbon group having 1 to 14 elements, and R is an alkylene group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group. May be linear or branched.). Examples of the polyether diamine include polyoxypropylene diamine, and commercially available products include Jeffamines (manufactured by San Techno Chemical Co., Ltd.). Further, examples of the polyether diamine include bis- (3-aminopropyl) -polytetrahydrofuran.
 また、トリアミンの具体例としては、ジエチレントリアミンなどが挙げられる。
 ポリアミンの具体例としては、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどが挙げられる。
 また、ポリアミンとしては、炭素数20~48の環状または非環状の炭化水素基を有する多塩基酸化合物のカルボシキル基をアミノ基に転化した化合物を用いることができる。
ポリアミンの市販品としては、例えば、クローダジャパン株式会社製の商品名:「プリアミン1071」「プリアミン1073」「プリアミン1074」「プリアミン1075」や、コグニスジャパン株式会社製の商品名:「バーサミン551」などが挙げられる。
Further, specific examples of triamine include diethylenetriamine and the like.
Specific examples of polyamines include triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and the like.
Further, as the polyamine, a compound obtained by converting a carbosyl group of a polybasic acid compound having a cyclic or acyclic hydrocarbon group having 20 to 48 carbon atoms into an amino group can be used.
Examples of commercially available polyamines include, for example, the product names of Croda Japan Co., Ltd .: "Priamine 1071", "Priamine 1073", "Priamine 1074", "Priamine 1075", and the product names of Cognis Japan Co., Ltd .: "Versamine 551". Can be mentioned.
 上記ポリアミン類とダイマー酸または各種ジカルボン酸とは、常法により加熱縮合され、脱水を伴ったアミド化工程によりダイマー酸変性ポリアミド樹脂をはじめとする各種ポリアミド樹脂が製造される。通常、反応温度は100~300℃程度であり、反応時間は1~8時間程度である。 The above polyamines and dimer acid or various dicarboxylic acids are heat-condensed by a conventional method, and various polyamide resins including dimer acid-modified polyamide resin are produced by an amidation step accompanied by dehydration. Usually, the reaction temperature is about 100 to 300 ° C., and the reaction time is about 1 to 8 hours.
 (ポリエステル樹脂)
 ポリエステル樹脂は、単量体としての多価カルボン酸と多価アルコールより構成される重合体である。ポリエステル樹脂は、公知のものが使用でき特に限定されない。しかしながら、樹脂の凝集力の確保の観点から、ポリエステル樹脂の重量平均分子量(Mw)は、1000~100000であることが好ましい。また、密着性の観点から、ポリエステル樹脂のガラス転移温度(Tg)は、-10℃~200℃であることが好ましい。
(Polyester resin)
The polyester resin is a polymer composed of a polyvalent carboxylic acid as a monomer and a polyhydric alcohol. As the polyester resin, known ones can be used and are not particularly limited. However, from the viewpoint of ensuring the cohesive force of the resin, the weight average molecular weight (Mw) of the polyester resin is preferably 1000 to 100,000. Further, from the viewpoint of adhesion, the glass transition temperature (Tg) of the polyester resin is preferably −10 ° C. to 200 ° C.
 ポリエステル樹脂を構成する多価カルボン酸成分としては、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、不飽和ジカルボン酸、3価以上のカルボン酸等が挙げられる。
 一方、ポリエステル樹脂を構成する多価アルコール成分としては、脂肪族グリコール、エーテルグリコール類、3価以上のポリアルコール等が挙げることができる。
多価カルボン酸および多価アルコールは、いずれも、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the polyvalent carboxylic acid component constituting the polyester resin include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, unsaturated dicarboxylic acids, and trivalent or higher carboxylic acids.
On the other hand, examples of the polyhydric alcohol component constituting the polyester resin include aliphatic glycols, ether glycols, and trihydric or higher polyalcohols.
As for the polyvalent carboxylic acid and the polyhydric alcohol, one type may be used alone, or two or more types may be used in combination.
 ポリエステル樹脂の市販品としては、バイロン(東洋紡株式会社製、「バイロン」は登録商標)、ポリエスター(日本合成化学工業株式会社製、「ポリエスター」は登録商標)、テスラック(日立化成ポリマー株式会社製、「テスラック」は登録商標)などが挙げられる。 Commercially available polyester resins include Byron (manufactured by Toyobo Co., Ltd., "Byron" is a registered trademark), Polyester (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., "Polyester" is a registered trademark), and Tesslac (Hitachi Kasei Polymer Co., Ltd.). , "Teslac" is a registered trademark).
 <炭素材料(B)>
 次に、炭素材料(B)について説明する。
<Carbon material (B)>
Next, the carbon material (B) will be described.
 本導電性組成物において、導電性物質として働く炭素材料(B)は、黒鉛(B-1)および黒鉛以外の炭素材料(B-2)を含有する。
また、炭素材料(B)の含有率は、導電性組成物の固形分100質量%中、65~85質量%であり、70~80質量%であることが好ましい。
In the present conductive composition, the carbon material (B) acting as a conductive substance contains graphite (B-1) and a carbon material (B-2) other than graphite.
The content of the carbon material (B) is 65 to 85% by mass, preferably 70 to 80% by mass, based on 100% by mass of the solid content of the conductive composition.
 炭素材料(B)の含有率が85質量%を越える場合では、樹脂分が不足して、導電膜の密着性が低下し、密着不良となる。一方で、炭素材料(B)の含有率が65質量%未満の場合には、導電膜中の炭素材料間の接触が減り、導電性が不良となる。 When the content of the carbon material (B) exceeds 85% by mass, the resin content is insufficient, the adhesiveness of the conductive film is lowered, and the adhesion is poor. On the other hand, when the content of the carbon material (B) is less than 65% by mass, the contact between the carbon materials in the conductive film is reduced, and the conductivity becomes poor.
 炭素材料(B)の含有率が70~80質量%の場合では、導電性組成物により形成される導電膜中の導電ネットワーク形成が良好な状態で、高い導電性および密着性を容易に発現できる。 When the content of the carbon material (B) is 70 to 80% by mass, high conductivity and adhesion can be easily exhibited in a state where the conductive network formation in the conductive film formed by the conductive composition is good. ..
 (黒鉛(B-1))
 黒鉛(B-1)としては、例えば、人造黒鉛や天然黒鉛等を使用することが出来る。人造黒鉛は、無定形炭素の熱処理により、不規則な配列の微小黒鉛結晶の配向を人工的に行わせたものであり、通常、石油コークスや石炭系ピッチコークスを主原料として製造される。天然黒鉛としては、鱗片状黒鉛、塊状黒鉛、土状黒鉛等を使用することが出来る。また、鱗片状黒鉛を化学処理等した膨張黒鉛(膨張性黒鉛ともいう)や、膨張黒鉛を熱処理して膨張化させた後、微細化やプレスにより得られた膨張化黒鉛等を使用することも出来る。これらの黒鉛の中でも、配線シートの導電膜に用いる場合は、導電性の観点から、鱗片状黒鉛、膨張化黒鉛、および薄片化黒鉛等の薄片状黒鉛が好ましい。
(Graphite (B-1))
As the graphite (B-1), for example, artificial graphite, natural graphite, or the like can be used. Artificial graphite is obtained by artificially orienting irregularly arranged micrographite crystals by heat treatment of amorphous carbon, and is usually produced using petroleum coke or coal-based pitch coke as a main raw material. As the natural graphite, scaly graphite, lump graphite, earth graphite and the like can be used. It is also possible to use expanded graphite (also referred to as expandable graphite) obtained by chemically treating scaly graphite, or expanded graphite obtained by heat treatment and expansion of expanded graphite and then miniaturization or pressing. You can. Among these graphites, when used for a conductive film of a wiring sheet, flaky graphite such as scaly graphite, expanded graphite, and flaky graphite is preferable from the viewpoint of conductivity.
 これらの黒鉛の表面は、本導電性組成物の特性を損なわない限りにおいて、バインダー樹脂(A)との親和性を増すために、表面処理、例えばエポキシ処理、ウレタン処理、シランカップリング処理、および酸化処理等が施されていてもよい。 The surface of these graphites is treated with surface treatments such as epoxy treatment, urethane treatment, silane coupling treatment, and so on, in order to increase the affinity with the binder resin (A) as long as the characteristics of the conductive composition are not impaired. It may be subjected to an oxidation treatment or the like.
 また、用いる黒鉛(B-1)の平均粒径は、2~100μmが好ましく、20~50μmがより好ましい。 The average particle size of the graphite (B-1) used is preferably 2 to 100 μm, more preferably 20 to 50 μm.
 黒鉛(B-1)の平均粒径が2μm以上であれば、黒鉛粒子のアスペクト比を適切な範囲にすることができ、黒鉛粒子間の接触が点接触になることを防ぎ、十分な導電ネットワークを容易に形成できる。また、黒鉛(B-1)の平均粒径が100μm以下であれば、黒鉛粒子間の空隙を適度なサイズにすることができ、導電ネットワーク中の黒鉛以外の炭素材料間で形成する導電パスと、黒鉛を介した導電パスとの割合を適切な範囲にすることができ、優れた導電性を付与できる。 When the average particle size of graphite (B-1) is 2 μm or more, the aspect ratio of the graphite particles can be set in an appropriate range, the contact between the graphite particles is prevented from becoming point contact, and a sufficient conductive network. Can be easily formed. Further, if the average particle size of graphite (B-1) is 100 μm or less, the voids between the graphite particles can be made into an appropriate size, and the conductive path formed between carbon materials other than graphite in the conductive network. , The ratio with the conductive path via graphite can be set in an appropriate range, and excellent conductivity can be imparted.
 本明細書における平均粒径は、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算した際に、50%となる粒子径(D50)を意味する。当該平均粒径は、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製、商品名:「マイクロトラックUPA」)等で測定できる。 The average particle size in the present specification means a particle size (D50) that becomes 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution. The average particle size can be measured with a general particle size distribution meter, for example, a dynamic light scattering type particle size distribution meter (manufactured by Nikkiso Co., Ltd., trade name: "Microtrack UPA") or the like.
 市販の黒鉛(B-1)としては、例えば、以下のものを挙げることができる。
 薄片状黒鉛として、例えば、日本黒鉛工業社製の商品名:CMX、CPB、UP-5、UP-10、UP-20、UP-35N、CSSP、CSPE、CSP、CP、CB-150、CB-100、ACP、ACP-1000、ACB-50、ACB-100、ACB-150、SP-10、SP-20、J-SP、SP-270、HOP、GR-15、LEP、F#1、F#2、F#3;中越黒鉛社製の商品名:CX-3000、FBF、BF、CBR、SSC-3000、SSC-600、SSC-3、SSC、CX-600、CPF-8、CPF-3、CPB-6S、CPB、96E、96L、96L-3、90L-3、CPC、S-87、K-3、CF-80、CF-48、CF-32、CP-150、CP-100、CP、HF-80、HF-48、HF-32、SC-120、SC-80、SC-60、SC-32;伊藤黒鉛工業社製の商品名:EC1500、EC1000、EC500、EC300、EC100、EC50;西村黒鉛社製の商品名:10099M、PB-99等が挙げられる。
 球状天然黒鉛としては、例えば、日本黒鉛工業社製の商品名:CGC-20、CGC-50、CGB-20、CGB-50が挙げられる。
 土状黒鉛としては、例えば、日本黒鉛工業社製の商品名:青P、AP、AOP、P#1;中越黒鉛社製の商品名:APR、S-3、AP-6、300Fが挙げられる。
 人造黒鉛としては、例えば、日本黒鉛工業社製の商品名:PAG-60、PAG-80、PAG-120、PAG-5、HAG-10W、HAG-150;中越黒鉛社製の商品名:RA-3000、RA-15、RA-44、GX-600、G-6S、G-3、G-150、G-100、G-48、G-30、G-50;SECカーボン社製の商品名:SGP-100、SGP-50、SGP-25、SGP-15、SGP-5、SGP-1、SGO-100、SGO-50、SGO-25、SGO-15、SGO-5、SGO-1、SGX-100、SGX-50、SGX-25、SGX-15、SGX-5、SGX-1が挙げられる。
なお、黒鉛(B-1)は、これらに限定されるものではない。また、黒鉛(B-1)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of commercially available graphite (B-1) include the following.
As flaky graphite, for example, trade names manufactured by Nippon Graphite Industry Co., Ltd .: CMX, CPB, UP-5, UP-10, UP-20, UP-35N, CSSP, CSPE, CSP, CP, CB-150, CB- 100, ACP, ACP-100, ACB-50, ACB-100, ACB-150, SP-10, SP-20, J-SP, SP-270, HOP, GR-15, LEP, F # 1, F # 2, F # 3; Product names manufactured by Chuetsu Graphite Co., Ltd .: CX-3000, FBF, BF, CBR, SSC-3000, SSC-600, SSC-3, SSC, CX-600, CPF-8, CPF-3, CPB-6S, CPB, 96E, 96L, 96L-3, 90L-3, CPC, S-87, K-3, CF-80, CF-48, CF-32, CP-150, CP-100, CP, HF-80, HF-48, HF-32, SC-120, SC-80, SC-60, SC-32; Product names manufactured by Ito Graphite Industry Co., Ltd .: EC1500, EC1000, EC500, EC300, EC100, EC50; Nishimura Trade names manufactured by Graphite Co., Ltd .: 10099M, PB-99 and the like can be mentioned.
Examples of the spherical natural graphite include trade names: CGC-20, CGC-50, CGB-20, and CGB-50 manufactured by Nippon Graphite Industry Co., Ltd.
Examples of the earth-like graphite include trade names manufactured by Nippon Graphite Industry Co., Ltd .: Blue P, AP, AOP, P # 1; trade names manufactured by Chuetsu Graphite Co., Ltd .: APR, S-3, AP-6, 300F. ..
As artificial graphite, for example, trade names manufactured by Nippon Graphite Industry Co., Ltd .: PAG-60, PAG-80, PAG-120, PAG-5, HAG-10W, HAG-150; trade names manufactured by Chuetsu Graphite Co., Ltd .: RA- 3000, RA-15, RA-44, GX-600, G-6S, G-3, G-150, G-100, G-48, G-30, G-50; Product name manufactured by SEC Carbon Co., Ltd .: SGP-100, SGP-50, SGP-25, SGP-15, SGP-5, SGP-1, SGO-100, SGO-50, SGO-25, SGO-15, SGO-5, SGO-1, SGX- Examples thereof include 100, SGX-50, SGX-25, SGX-15, SGX-5, and SGX-1.
The graphite (B-1) is not limited to these. Further, graphite (B-1) may be used alone or in combination of two or more.
 本導電性組成物における、炭素材料(B)100質量%中の黒鉛(B-1)の含有率は、70.0~99.0質量%であり、75.0~99.0質量%であることが好ましく、80.0~99.0質量%であることがより好ましく、90.0~97.5質量%であることが最も好ましい。 The content of graphite (B-1) in 100% by mass of the carbon material (B) in the present conductive composition is 70.0 to 99.0% by mass, and 75.0 to 99.0% by mass. It is preferably 80.0 to 99.0% by mass, more preferably 90.0 to 97.5% by mass, and most preferably 90.0 to 97.5% by mass.
 炭素材料(B)中の黒鉛(B-1)の含有率が70.0質量%未満の場合、過剰量の黒鉛以外の炭素材料(B-2)により、黒鉛粒子の配向性の低下が生じ、さらに導電ネットワークの大部分を黒鉛以外の炭素材料が占めることで、特異的な高い導電性が発現しなくなる。一方で、炭素材料(B)中の黒鉛(B-1)の含有率が99.0質量%を超える場合には、黒鉛粒子による平面方向の導電性が支配的となり、導電膜の導電性が頭打ちとなる。 When the content of graphite (B-1) in the carbon material (B) is less than 70.0% by mass, the orientation of the graphite particles is lowered due to the excess amount of the carbon material (B-2) other than graphite. Furthermore, since most of the conductive network is occupied by carbon materials other than graphite, specific high conductivity is not exhibited. On the other hand, when the content of graphite (B-1) in the carbon material (B) exceeds 99.0% by mass, the conductivity in the plane direction by the graphite particles becomes dominant, and the conductivity of the conductive film becomes dominant. It will reach a plateau.
 炭素材料(B)中の黒鉛(B-1)の含有率が75.0質量%以上である場合は、黒鉛粒子の配向性を低下させることなく、高い導電性を容易に発現させることができる。 When the content of graphite (B-1) in the carbon material (B) is 75.0% by mass or more, high conductivity can be easily exhibited without deteriorating the orientation of the graphite particles. ..
 炭素材料(B)中の黒鉛(B-1)の含有率が80.0質量%以上である場合は、導電膜のピンホールをより少なくでき、良好な塗膜を容易に形成できる。 When the content of graphite (B-1) in the carbon material (B) is 80.0% by mass or more, the number of pinholes in the conductive film can be reduced and a good coating film can be easily formed.
 炭素材料(B)中の黒鉛(B-1)の含有率が90.0~97.5質量%である場合、黒鉛以外の炭素材料(B-2)が適切な配合量となり、黒鉛粒子による平面方向の高い導電性を阻害することなく、垂直方向の導電ネットワークを強化できる。その結果、非常に高い導電性を発現できる。また、炭素材料(B)中の黒鉛(B-1)の含有率が90.0質量%未満である場合には、導電膜のムラが少ない塗膜を容易に得ることができる。 When the content of graphite (B-1) in the carbon material (B) is 90.0 to 97.5% by mass, the carbon material (B-2) other than graphite has an appropriate blending amount and depends on the graphite particles. The vertical conductive network can be strengthened without impairing the high conductivity in the planar direction. As a result, very high conductivity can be exhibited. Further, when the content of graphite (B-1) in the carbon material (B) is less than 90.0% by mass, a coating film having less unevenness of the conductive film can be easily obtained.
 (黒鉛以外の炭素材料(B-2))
 黒鉛以外の炭素材料(B-2)としては、特に限定されず、従来公知のものを使用することができる。当該炭素材料(B-2)としては、例えば、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等が挙げられる。これらの中でも、粒径および比表面積の観点から、炭素材料(B-2)として、カーボンブラックを用いることが好ましい。黒鉛以外の炭素材料(B-2)は、1種を単独で、または2種類以上併せて使用してもよい。
(Carbon material other than graphite (B-2))
The carbon material (B-2) other than graphite is not particularly limited, and conventionally known materials can be used. Examples of the carbon material (B-2) include carbon black, conductive carbon fibers (carbon nanotubes, carbon nanofibers, carbon fibers), fullerene and the like. Among these, it is preferable to use carbon black as the carbon material (B-2) from the viewpoint of particle size and specific surface area. As the carbon material (B-2) other than graphite, one type may be used alone, or two or more types may be used in combination.
 カーボンブラックとしては、例えば、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどが挙げられる。また、カーボンブラックとしては、通常の酸化処理が施されたカーボン(ブラック)や、中空カーボン等も使用できる。 Examples of carbon black include furnace black, which is produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially acetylene black, which is made from ethylene heavy oil, and the raw material gas is burned to channel the flame. Examples thereof include channel black which is rapidly cooled and deposited on the bottom surface of steel, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and acetylene black using acetylene gas as a raw material. Further, as the carbon black, carbon (black) that has been subjected to a normal oxidation treatment, hollow carbon, or the like can also be used.
 カーボンの酸化処理は、カーボンの分散性を向上させるために一般的に行われている。具体的には、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基等の酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理である。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下する傾向があるため、酸化処理をしていないカーボンの使用が好ましい。 Carbon oxidation treatment is generally performed to improve the dispersibility of carbon. Specifically, by treating carbon at a high temperature in the air or secondarily treating it with nitric acid, nitrogen dioxide, ozone, etc., it contains oxygen such as a phenol group, a quinone group, a carboxyl group, and a carbonyl group. This is a process for directly introducing (covalently bonding) a polar functional group onto the carbon surface. However, since the conductivity of carbon tends to decrease as the amount of the functional group introduced increases, it is preferable to use carbon that has not been oxidized.
 カーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子同士の接触点が増えるため、体積抵抗率を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、好ましくは20m2/g以上、1500m2/g以下、より好ましくは50m2/g以上、1500m2/g以下、特に好ましくは100m2/g以上、1500m2/g以下のものを使用することが望ましい。カーボンブラックの比表面積が20m2/g以上であれば、十分な導電性を容易に得ることができ、1500m2/g以下であれば、市販材料での入手が容易である。 As the specific surface area of carbon black increases, the contact points between the carbon black particles increase, which is advantageous for lowering the volume resistivity. Specifically, the specific surface area (BET) obtained from the amount of nitrogen adsorbed is preferably 20 m 2 / g or more and 1500 m 2 / g or less, more preferably 50 m 2 / g or more and 1500 m 2 / g or less, particularly preferably. It is desirable to use a material of 100 m 2 / g or more and 1500 m 2 / g or less. When the specific surface area of carbon black is 20 m 2 / g or more, sufficient conductivity can be easily obtained, and when it is 1500 m 2 / g or less, it is easily available as a commercially available material.
 また、カーボンブラックの粒径は、一次粒子径で0.005~1μmが好ましく、0.01~0.2μmがより好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。 The particle size of carbon black is preferably 0.005 to 1 μm, more preferably 0.01 to 0.2 μm in terms of primary particle size. However, the primary particle diameter referred to here is an average of the particle diameters measured by an electron microscope or the like.
 市販のカーボンブラックとしては、例えば、東海カーボン社製の商品名:トーカブラック#4300、#4400、#4500、#5500、デグサ社製の商品名:プリンテックスL、コロンビヤン社製のRaven7000、5750、5250、5000ULTRAIII、5000ULTRA、ConductexSCULTRA、Conductex975ULTRA、PUERBLACK100、115、205、三菱化学社製の商品名:#2350、#2400B、#2600B、#3050B、#3030B、#3230B、#3350B、#3400B、#5400B、キャボット社製の商品名:MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000、TIMCAL社製の商品名:Ensaco250G、Ensaco260G、Ensaco350G、SuperP-Li等のファーネスブラック;
ライオン社製の商品名:EC-300J、EC-600JD等のケッチェンブラック;
電気化学工業社製の商品名:デンカブラック、デンカブラックHS-100、FX-35等のアセチレンブラックが挙げられる。しかしながら、これらのカーボンブラックに限定されるものではない。カーボンブラックは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of commercially available carbon black include Tokai Carbon's product names: Toka Black # 4300, # 4400, # 4500, # 5500, Degussa's product names: Printex L, and Colombian's Raven7000, 5750. 5250, 5000ULTRAIII, 5000ULTRA, ConductexSCULTRA, Conductex975ULTRA, PUERBLACK100, 115,205, Product names manufactured by Mitsubishi Chemical Co., Ltd .: # 2350, # 2400B, # 2600B, # 3050B, # 3030B, # 3230B, # 3350B, # 3350B, # 3350B , Cabot's product names: MONARCH1400, 1300, 900, VulcanXC-72R, BlackPearls2000, TIMCAL's product names: Ensaco250G, Ensaco260G, Ensaco350G, SuperP-Li and other furnace blacks;
Product name made by Lion: EC-300J, EC-600JD, etc. Ketchen Black;
Product names manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black, Denka Black HS-100, FX-35 and other acetylene blacks can be mentioned. However, it is not limited to these carbon blacks. One type of carbon black may be used alone, or two or more types may be used in combination.
 導電性炭素繊維としては石油由来の原料から焼成して得られるものがよいが、植物由来の原料からも焼成して得られるものも用いることができる。また、カーボンナノチューブには、グラフェンシートが一層でナノメートル領域の直径を有するチューブを形成する単層カーボンナノチューブと、グラフェンシートが多層である多層カーボンナノチューブがある。そのため、多層カーボンナノチューブの直径は、典型的な単層カーボンナノチューブの0.7~2.0nmに対して、30nmと大きい値を示す。 As the conductive carbon fiber, one obtained by firing from a raw material derived from petroleum is preferable, but one obtained by firing from a raw material derived from a plant can also be used. Further, the carbon nanotubes include a single-walled carbon nanotube in which a graphene sheet forms a tube having a diameter in a nanometer region, and a multi-walled carbon nanotube in which the graphene sheet is a multi-walled layer. Therefore, the diameter of the multi-walled carbon nanotubes is as large as 30 nm with respect to 0.7 to 2.0 nm of a typical single-walled carbon nanotube.
 市販の導電性炭素繊維やカーボンナノチューブとしては、昭和電工社製の商品名:VGCF等の気相法炭素繊維、名城ナノカーボン社製の商品名:EC1.0,EC1.5,EC2.0,EC1.5-P等の単層カーボンナノチューブ、CNano社製の商品名:FloTube9000、FloTube9100、FloTube9110、FloTube9200、Nanocyl社製の商品名:NC7000、Knano社製の商品名:100T等が挙げられる。 As commercially available conductive carbon fibers and carbon nanotubes, trade names manufactured by Showa Denko Co., Ltd .: vapor phase carbon fibers such as VGCF, and trade names manufactured by Meijo Nano Carbon Co., Ltd .: EC1.0, EC1.5, EC2.0, Examples thereof include single-walled carbon nanotubes such as EC1.5-P, trade names manufactured by CNano: FloTube9000, FloTube9100, FloTube9110, FloTube9200, trade names manufactured by Nanocyl: NC7000, and trade names manufactured by Knano: 100T.
 (硬化剤(C))
 次に、硬化剤(C)について説明する。
(Curing agent (C))
Next, the curing agent (C) will be described.
 硬化剤(C)は、バインダー樹脂(A)が含有する反応性の官能基と反応するものであれば特に限定されない。バインダー樹脂(A)を硬化させることで、樹脂の物理的強度や化学的耐性が向上し、導電膜の耐久性が良化する。さらに、硬化時の導電膜の体積収縮の効果により、導電性が良化する。 The curing agent (C) is not particularly limited as long as it reacts with the reactive functional group contained in the binder resin (A). By curing the binder resin (A), the physical strength and chemical resistance of the resin are improved, and the durability of the conductive film is improved. Further, the conductivity is improved by the effect of the volume shrinkage of the conductive film at the time of curing.
 反応性の官能基としては、例えば水酸基、フェノール性水酸基、カルボキシル基、アミノ基、無水マレイン酸等の酸無水物基、チオール基等が挙げられるが、特にこれらに限定されるものではない。 Examples of the reactive functional group include, but are not limited to, a hydroxyl group, a phenolic hydroxyl group, a carboxyl group, an amino group, an acid anhydride group such as maleic anhydride, a thiol group and the like.
 硬化剤(C)としては、例えば、エポキシ基含有化合物(C1)、イソシアネート基含有化合物(C2)、ブロック化イソシアネート基含有化合物(C3)、アジリジン化合物(C4)、カルボジイミド基含有化合物(C5)、ベンゾオキサジン化合物(C6)、フェノール樹脂(C7)、マレイミド化合物(C8)、β-ヒドロキシアルキルアミド基含有化合物(C9)、および金属キレート(C10)等が挙げられる。硬化剤(C)は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the curing agent (C) include an epoxy group-containing compound (C1), an isocyanate group-containing compound (C2), a blocked isocyanate group-containing compound (C3), an aziridine compound (C4), and a carbodiimide group-containing compound (C5). Examples thereof include a benzoxazine compound (C6), a phenol resin (C7), a maleimide compound (C8), a β-hydroxyalkylamide group-containing compound (C9), and a metal chelate (C10). The curing agent (C) may be used alone or in combination of two or more.
 導電膜の耐久性の観点からは、硬化剤(C)として、エポキシ基含有化合物(C1)、アジリジン化合物(C4)および金属キレート(C10)が好ましく、導電性の観点からは、アジリジン化合物(C4)および金属キレート(C10)がより好ましく、アジリジン化合物(C4)が特に好ましい。 From the viewpoint of the durability of the conductive film, the epoxy group-containing compound (C1), the aziridine compound (C4) and the metal chelate (C10) are preferable as the curing agent (C), and the aziridine compound (C4) is preferable from the viewpoint of conductivity. ) And the metal chelate (C10) are more preferred, and the aziridine compound (C4) is particularly preferred.
 アジリジン化合物(C4)は、カルボキシル基、フェノール性水酸基、酸無水物等を含有するバインダー樹脂との反応性が非常に良い。したがって、導電膜の乾燥直後から硬化が開始することで、硬化収縮が顕著に起きるため、フィラー同士の接触が密になり、他の硬化剤を使用する場合よりも極端に導電性が向上する。 The aziridine compound (C4) has very good reactivity with a binder resin containing a carboxyl group, a phenolic hydroxyl group, an acid anhydride and the like. Therefore, since the curing starts immediately after the conductive film dries, the curing shrinkage occurs remarkably, so that the fillers come into close contact with each other, and the conductivity is extremely improved as compared with the case where other curing agents are used.
 金属キレート(C10)は、多座配位子を分子中に有する化合物が金属イオンを挟むようにして錯体を形成している化合物の総称である。金属キレート(C10)は、カーボンブラックなどの、表面に官能基を有する粒子と反応して分散剤としても機能し、成膜過程の導電フィラー同士の不規則な凝集を抑制することで、均一な導電パスを形成できるため、優れた導電性を付与できる。 Metal chelate (C10) is a general term for compounds in which a compound having a polydentate ligand in the molecule forms a complex so as to sandwich a metal ion. The metal chelate (C10) reacts with particles having functional groups on the surface such as carbon black and also functions as a dispersant, and suppresses irregular aggregation of the conductive fillers in the film forming process, thereby making the metal chelate uniform. Since a conductive path can be formed, excellent conductivity can be imparted.
 ・エポキシ基含有化合物(C1)
 エポキシ基含有化合物(C1)は、エポキシ基を分子内に有する化合物であればよく、特に限定されない。しかしながら、エポキシ基含有化合物(C1)としては、1分子中に平均2個以上のエポキシ基を有するものを好ましく用いることができる。エポキシ基有化合物(C1)としては、例えば、グリジシルエーテル型エポキシ樹脂、グリジシルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、または環状脂肪族(脂環型)エポキシ樹脂などのエポキシ樹脂を用いることができる。
-Epoxy group-containing compound (C1)
The epoxy group-containing compound (C1) is not particularly limited as long as it is a compound having an epoxy group in the molecule. However, as the epoxy group-containing compound (C1), a compound having an average of two or more epoxy groups in one molecule can be preferably used. As the epoxy-based compound (C1), for example, an epoxy resin such as a glycisyl ether type epoxy resin, a glycisylamine type epoxy resin, a glycidyl ester type epoxy resin, or a cyclic aliphatic (aliphatic) epoxy resin can be used. ..
 グリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、ビスフェノールA型ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、トリス(グリシジルオキシフェニル)メタン、またはテトラキス(グリシジルオキシフェニル)エタン等が挙げられる。 Examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, and α-naphthol novolac. Type epoxy resin, bisphenol A type novolak type epoxy resin, dicyclopentadiene type epoxy resin, tetrabrom bisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, tris (glycidyloxyphenyl) methane, or tetrakis (glycidyloxyphenyl) Etan and the like can be mentioned.
 グリシジルアミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、またはテトラグリシジルメタキシリレンジアミン等が挙げられる。 Examples of the glycidylamine type epoxy resin include tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, triglycidylmethaminophenol, tetraglycidylmethoxylylenediamine and the like.
 グリシジルエステル型エポキシ樹脂としては、例えば、ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、またはジグリシジルテトラヒドロフタレート等が挙げられる。 Examples of the glycidyl ester type epoxy resin include diglycidyl phthalate, diglycidyl hexahydrophthalate, and diglycidyl tetrahydrophthalate.
 環状脂肪族(脂環型)エポキシ樹脂としては、例えば、エポキシシクロヘキシルメチル-エポキシシクロヘキサンカルボキシレート、またはビス(エポキシシクロヘキシル)アジペートなどが挙げられる。 Examples of the cyclic aliphatic (alicyclic) epoxy resin include epoxycyclohexylmethyl-epoxycyclohexanecarboxylate and bis (epoxycyclohexyl) adipate.
 エポキシ基含有化合物(C1)としては、これらの化合物の1種を単独で、または2種以上を組み合わせて用いることができる。エポキシ基含有化合物(C1)としては、耐久性の観点から、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリス(グリシジルオキシフェニル)メタン、またはテトラキス(グリシジルオキシフェニル)エタンを用いることが好ましい。 As the epoxy group-containing compound (C1), one of these compounds can be used alone or in combination of two or more. The epoxy group-containing compound (C1) includes bisphenol A type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, tris (glycidyloxyphenyl) methane, or tetrakis (glycidyloxyphenyl) ethane from the viewpoint of durability. It is preferable to use.
 ・イソシアネート基含有化合物(C2)
 イソシアネート基含有化合物(C2)としては、イソシアネート基を分子内に有する化合物であればよく、特に限定されない。
-Isocyanate group-containing compound (C2)
The isocyanate group-containing compound (C2) is not particularly limited as long as it is a compound having an isocyanate group in the molecule.
 例えば、1分子中にイソシアネート基を1個有するイソシアネート基含有化合物(C2)としては、n-ブチルイソシアネート、イソプロピルイソシアネート、フェニルイソシアネート、ベンジルイソシアネート、(メタ)アクリロイルオキシエチルイソシアネート、1,1-ビス[(メタ)アクリロイルオキシメチル]エチルイソシアネート、ビニルイソシアネート、アリルイソシアネート、(メタ)アクリロイルイソシアネート、イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。 For example, examples of the isocyanate group-containing compound (C2) having one isocyanate group in one molecule include n-butyl isocyanate, isopropyl isocyanate, phenyl isocyanate, benzyl isocyanate, (meth) acryloyloxyethyl isocyanate, and 1,1-bis [ (Meta) acryloyloxymethyl] ethyl isocyanate, vinyl isocyanate, allyl isocyanate, (meth) acryloyl isocyanate, isopropenyl-α, α-dimethylbenzyl isocyanate and the like can be mentioned.
 また、1,6-ジイソシアナトヘキサン、ジイソシアン酸イソホロン、ジイソシアン酸4,4’-ジフェニルメタン、ポリメリックジフェニルメタンジイソシアネート、キシリレンジイソシアネート、2,4-ジイソシアン酸トリレン、ジイソシアン酸トルエン、2,4-ジイソシアン酸トルエン、ジイソシアン酸ヘキサメチレン、ジイソシアン酸4-メチル-m-フェニレン、ナフチレンジイソシアネート、パラフェニレンジイソシアネート、テトラメチルキシリレンジイソシアネート、シクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート、シクロヘキシルジイソシアネート、トリジンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、p-テトラメチルキシリレンジイソシアネート、ダイマー酸ジイソシアネート等のジイソシアン酸エステル化合物と、水酸基、カルボキシル基、アミド基含有ビニルモノマーとを等モルで反応せしめた化合物もイソシアネート基含有化合物(C2)として使用することができる。 In addition, 1,6-diisocyanatohexane, isophorone diisosocyanate, 4,4'-diphenylmethane diisocyanate, polypeptide diphenylmethane diisocyanate, xylylene diisocyanate, trilene 2,4-diisocyanate, toluene diisosocyanate, 2,4-diisocyanate Toluene, hexamethylene diisosocyanate, 4-methyl-m-phenylene diisosocyanate, naphthylene diisocyanate, paraphenylene diisocyanate, tetramethylxylylene diisocyanate, cyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, cyclohexyl diisocyanate, trizine diisocyanate, 2,2 , 4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, m-tetramethylxylylene diisocyanate, p-tetramethylxylylene diisocyanate, diisocyanate such as dimerate diisocyanate, hydroxyl group, carboxyl group , A compound obtained by reacting with an amide group-containing vinyl monomer in an equimolar amount can also be used as the isocyanate group-containing compound (C2).
 1分子中にイソシアネート基を2個有するイソシアネート基含有化合物(C2)としては、例えば、1,3-フェニレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-トルイジンジイソシアネート、2,4,6-トリイソシアネートトルエン、1,3,5-トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート等の芳香族ジイソシアネート;トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;ω,ω’-ジイソシアネート-1,3-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼン、1,4-テトラメチルキシリレンジイソシアネート、1,3-テトラメチルキシリレンジイソシアネート等の芳香脂肪族ジイソシアネート;3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート[別名:イソホロンジイソシアネート]、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネートが挙げられる。 Examples of the isocyanate group-containing compound (C2) having two isocyanate groups in one molecule include 1,3-phenylenediisocyanate, 4,4'-diphenyldiisocyanate, 1,4-phenylenediocyanate, and 4,4'-diphenylmethane. Diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-toluidin diisocyanate, 2,4,6-triisocyanate toluene, 1,3,5-triisocyanatebenzene, dianisidine diisocyanate, Aromatic diisocyanates such as 4,4'-diphenyl ether diisocyanate, 4,4', 4 "-triphenylmethane triisocyanate; trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, Aliphatic diisocyanates such as 2,3-butylenediocyanate, 1,3-butylenediocyanate, dodecamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate; ω, ω'-diisocyanate-1,3-dimethylbenzene, ω, Aromatic aliphatic diisocyanates such as ω'-diisocyanate-1,4-dimethylbenzene, ω, ω'-diisocyanate-1,4-diethylbenzene, 1,4-tetramethylxylylene diisocyanate, 1,3-tetramethylxylylene diisocyanate, etc. 3-Isocyanate Methyl-3,5,5-trimethylcyclohexylisocyanate [also known as isophoronediisocyanate], 1,3-cyclopentanediisocyanate, 1,3-cyclohexanediisocyanate, 1,4-cyclohexanediisocyanate, methyl-2,4- Alicyclic diisocyanates such as cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, 4,4'-methylenebis (cyclohexylisocyanate), 1,3-bis (isocyanatemethyl) cyclohexane, 1,4-bis (isocyanatemethyl) cyclohexane, etc. Can be mentioned.
 また、1分子中にイソシアネート基を3個有するイソシアネート基含有化合物としては、例えば、芳香族ポリイソシアネート、リジントリイソシアネートなどの脂肪族ポリイソシアネート、芳香脂肪族ポリイソシアネート、脂環族ポリイソシアネート等が挙げられる。この他にも、前記で説明したジイソシアネートのトリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する3量体が例として挙げられる。 Examples of the isocyanate group-containing compound having three isocyanate groups in one molecule include aliphatic polyisocyanates such as aromatic polyisocyanate and lysine triisocyanate, aromatic aliphatic polyisocyanates, and alicyclic polyisocyanates. Will be. In addition to this, the trimethylolpropane adduct body of diisocyanate described above, the biuret body reacted with water, and the trimer having an isocyanurate ring can be mentioned as examples.
 ・ブロック化イソシアネート基含有化合物(C3)
 ブロック化イソシアネート基含有化合物(C3)は、前記イソシアネート基含有化合物(C2)中のイソシアネート基をブロック剤で保護(ブロック)したものであればよく、特に限定されない。ブロック剤としては、例えば、ε-カプロラクタム、MEKオキシム、シクロヘキサノンオキシム、ピラゾール、フェノール等などが挙げられる。特に、イソシアヌレート環を有し、MEKオキシムやピラゾールでブロックされたヘキサメチレンジイソシアネート三量体は、本導電性組成物に使用した場合、保存安定性は勿論のこと、ポリイミドや銅に対する接着強度や半田耐熱性に優れるため、非常に好ましい。
-Blocked isocyanate group-containing compound (C3)
The blocked isocyanate group-containing compound (C3) is not particularly limited as long as it is a compound in which the isocyanate group in the isocyanate group-containing compound (C2) is protected (blocked) with a blocking agent. Examples of the blocking agent include ε-caprolactam, MEK oxime, cyclohexanone oxime, pyrazole, phenol and the like. In particular, the hexamethylene diisocyanate trimer having an isocyanurate ring and blocked with MEK oxime or pyrazole has not only storage stability but also adhesive strength to polyimide and copper when used in this conductive composition. It is very preferable because it has excellent solder heat resistance.
 ・アジリジン化合物(C4)
 アジリジン化合物(C4)は、分子内にアジリジン基を含有する化合物であればよく、特に限定されない。
-Aziridine compound (C4)
The aziridine compound (C4) is not particularly limited as long as it is a compound containing an aziridine group in the molecule.
 アジリジン化合物(C4)としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキサイト)、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキサイト)、ビスイソフタロイル-1-(2-メチルアジリジン)、トリ-1-アジリジニルホスフィンオキサイド、N,N’-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキサイト)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、トリス-2,4,6-(1-アジリジニル)-1,3,5-トリアジン、トリメチロールプロパントリス[3-(1-アジリジニル)プロピオネート]、トリメチロールプロパントリス[3-(1-アジリジニル)ブチレート]、トリメチロールプロパントリス[3-(1-(2-メチル)アジリジニル)プロピオネート]、トリメチロールプロパントリス[3-(1-アジリジニル)-2-メチルプロピオネート]、2,2’-ビスヒドロキシメチルブタノールトリス[3-(1-アジリジニル)プロピオネート]、ペンタエリスリトールテトラ[3-(1-アジリジニル)プロピオネート]、ジフェニルメタン-4,4-ビス-N,N’-エチレンウレア、1,6-ヘキサメチレンビス-N,N’-エチレンウレア、2,4,6-(トリエチレンイミノ)-Syn-トリアジン、ビス[1-(2-エチル)アジリジニル]ベンゼン-1,3-カルボン酸アミド等が挙げられる。 Examples of the aziridin compound (C4) include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarbokisite) and N, N'-toluene-2,4-bis (1-aziridinecarbokisite). , Bisisophthaloyl-1- (2-methylaziridine), Tri-1-aziridinylphosphine oxide, N, N'-hexamethylene-1,6-bis (1-aziridinecarbokisite), trimethylolpropane- Tri-β-aziridinyl propionate, tetramethylolmethane-tri-β-aziridinyl propionate, tris-2,4,6- (1-aziridinyl) -1,3,5-triazine, trimethylol Propanthris [3- (1-aziridinyl) propionate], trimethylolpropane tris [3- (1-aziridinyl) butyrate], trimethylolpropane tris [3- (1- (2-methyl) aziridinyl) propionate], trimethylol Propantris [3- (1-aziridinyl) -2-methylpropionate], 2,2'-bishydroxymethylbutanoltris [3- (1-aziridinyl) propionate], pentaerythritol tetra [3- (1-aziridinyl) ) Propionate], diphenylmethane-4,4-bis-N, N'-ethyleneurea, 1,6-hexamethylenebis-N, N'-ethyleneurea, 2,4,6- (triethyleneimino) -Syn- Examples thereof include triazine, bis [1- (2-ethyl) aziridinyl] benzene-1,3-carboxylic acid amide.
 これらの中でも、特に、2,2’-ビスヒドロキシメチルブタノールトリス[3-(1-アジリジニル)プロピオネート]は、良好な耐久性と導電性が得られるため、本導電性組成物において好ましく使用される。 Among these, 2,2'-bishydroxymethylbutanoltris [3- (1-aziridinyl) propionate] is particularly preferably used in the present conductive composition because it provides good durability and conductivity. ..
 ・カルボジイミド基含有化合物(C5)
 カルボジイミド基含有化合物(C5)としては、例えば、日清紡績株式会社のカルボジライトシリーズを用いることができる。その中でも、商品名:カルボジライトV-01、03、05、07、09は、有機溶剤との相溶性に優れており、好ましい。
-Carbodiimide group-containing compound (C5)
As the carbodiimide group-containing compound (C5), for example, the carbodilite series of Nisshinbo Holdings Co., Ltd. can be used. Among them, trade names: Carbodilite V-01, 03, 05, 07, 09 are preferable because they have excellent compatibility with organic solvents.
 ・ベンゾオキサジン化合物(C6)
 ベンゾオキサジン化合物(C6)としては、例えば、Macromolecules,36,6010(2003)記載の「P-a」、「P-alp」、「P-ala」、「B-ala」、Macromolecules,34,7257(2001)記載の「P-appe」、「Bappe」、四国化成株式会社製の「B-a型ベンゾオキサジン」、「F-a型ベンゾオキサジン」、「B-m型ベンゾオキサジン」などを用いることができる。
-Benzoxazine compound (C6)
Examples of the benzoxazine compound (C6) include "P-a", "P-alp", "P-ala", "B-ala" and Macromolecules, 34,7257 described in Macromolecules, 36,6010 (2003). (2001) "P-appe", "Bappe", "BA type benzoxazine", "FA type benzoxazine", "Bm type benzoxazine" manufactured by Shikoku Kasei Co., Ltd. are used. be able to.
 ・フェノール樹脂(C7)
 フェノール樹脂(C7)としては、例えば、フェノール、クレゾール類、およびビスフェノール類等の化合物とホルムアルデヒドとの付加化合物、またはその部分縮合物を用いることができる。より具体的には、フェノール樹脂(C-7)としては、フェノール樹脂、クレゾール樹脂、t-ブチルフェノール樹脂、ジシクロペンタジエンクレゾール樹脂、ジシクロペンタジエンフェノール樹脂、キシリレン変性フェノール樹脂、テトラキスフェノール樹脂、ビスフェノールA樹脂、ポリ-p-ビニルフェノール樹脂のレゾール型樹脂やノボラック型樹脂が挙げられる。その他に、ナフトール系化合物、トリスフェノール系化合物、フェノールアラルキル樹脂等もフェノール樹脂(C7)として用いることができる。これらの中でも、フェノール樹脂のレゾール型樹脂は、耐熱性および硬化性の面で非常に優れており、本導電性組成物において好適に用いることができる。
・ Phenol resin (C7)
As the phenol resin (C7), for example, an addition compound of formaldehyde and a compound such as phenol, cresols, and bisphenols, or a partial condensate thereof can be used. More specifically, the phenol resin (C-7) includes a phenol resin, a cresol resin, a t-butylphenol resin, a dicyclopentadiencresol resin, a dicyclopentadienephenol resin, a xylylene-modified phenol resin, a tetrakisphenol resin, and a bisphenol A. Examples thereof include resin, resole-type resin of poly-p-vinylphenol resin, and novolak-type resin. In addition, a naphthol compound, a trisphenol compound, a phenol aralkyl resin and the like can also be used as the phenol resin (C7). Among these, the phenol resin resol type resin is extremely excellent in heat resistance and curability, and can be suitably used in the present conductive composition.
 ・マレイミド化合物(C8)
 マレイミド化合物(C8)は、分子中にマレイミド基を少なくとも1個有しているものであればよく、特に限定されない。マレイミド化合物(C8)としては、例えば、フェニルマレイミド、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3-ジメチルビフェニレン)ビスマレイミド、N,N’-4,4-(3,3-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、N,N’-4,4-ジフェニルスルフォンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[3-s-ブチル-3,4-(4-マレイミドフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]デカン、4,4’-シクロヘキシリデン-ビス[1-(4-マレイミドフェノキシ)フェノキシ]-2-シクロヘキシルベンゼン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ヘキサフルオロプロパンなどが挙げられる。
-Maleimide compound (C8)
The maleimide compound (C8) is not particularly limited as long as it has at least one maleimide group in the molecule. Examples of the maleimide compound (C8) include phenylmaleimide, 1-methyl-2,4-bismaleimidebenzene, N, N'-m-phenylene bismaleimide, N, N'-p-phenylene bismaleimide, N, N. '-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3-dimethylbiphenylene) bismaleimide, N, N'-4,4- (3,3-dimethyldiphenylmethane) bismaleimide, N, N'-4,4- (3,3-diethyldiphenylmethane) bismaleimide, N, N'-4,4-diphenylmethane bismaleimide, N, N'-4,4-diphenylpropane bismaleimide, N, N '-4,4-diphenylether bismaleimide, N, N'-4,4-diphenylsulphon bismaleimide, 2,2-bis [4- (4-maleimidephenoxy) phenyl] propane, 2,2-bis [3- s-butyl-3,4- (4-maleimidephenoxy) phenyl] propane, 1,1-bis [4- (4-maleimidephenoxy) phenyl] decane, 4,4'-cyclohexylidene-bis [1-( 4-maleimide phenoxy) phenoxy] -2-cyclohexylbenzene, 2,2-bis [4- (4-maleimide phenoxy) phenyl] hexafluoropropane and the like can be mentioned.
 ・β-ヒドロキシアルキルアミド基含有化合物(C9)
 β-ヒドロキシアルキルアミド基含有化合物(C9)としては、例えば、N,N,N’,N’-テトラキス(ヒドロキシエチル)アジパミド(エムスケミー社製、商品名:Primid XL-552)をはじめとする種々の化合物を用いることができる。
-Β-Hydroxyalkylamide group-containing compound (C9)
Various β-hydroxyalkylamide group-containing compounds (C9) include, for example, N, N, N', N'-tetrakis (hydroxyethyl) adipamide (manufactured by Ems-Chemie, trade name: Primid XL-552). Compounds can be used.
 ・金属キレート(C10)
 金属キレート(C10)としては、金属アルコキシドとβ-ジケトンやケトエステル(アセト酢酸エチル等)等のキレート化剤と反応したキレート化合物を挙げることができる。より具体的には、金属キレート(C10)としては、アルミニウムキレート、ジルコニウムキレート、チタンキレート等を挙げることができる。
-Metal chelate (C10)
Examples of the metal chelate (C10) include a chelate compound in which a metal alkoxide is reacted with a chelating agent such as β-diketone or ketoester (ethyl acetoacetate or the like). More specifically, examples of the metal chelate (C10) include aluminum chelate, zirconium chelate, titanium chelate and the like.
 アルミニウムキレートとしては、例えば、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムエチルアセトアセテートジイソプロピレート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムイソプロピレート等が挙げられる。 Examples of the aluminum chelate include aluminum monoacetylacetonate bis (ethylacetate acetate), aluminum ethylacetate acetate diisopropyrate, aluminum tris (acetylacetone), aluminum tris (ethylacetacetate), aluminum isopropyrate and the like. ..
 ジルコニウムキレートとしては、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート等が挙げられる。 Examples of the zirconium chelate include zirconium tetraacetylacetonate and zirconium tributoxymonoacetylacetonate.
 チタンキレートとしては、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジイソプロポキシビス(エチルアセトアセテート)等が挙げられる。 Examples of the titanium chelate include titanium diisopropoxybis (acetylacetoneate), titaniumtetraacetylacetonate, and titaniumdiisopropoxybis (ethylacetoacetate).
 導電膜の導電性の観点から、金属キレート(C10)として、アルミニウムキレートを用いることが好ましい。アルミニウムキレートは、カルボキシル基、フェノール性水酸基、酸無水物等を含有するバインダー樹脂との反応性が非常に良く、炭素材料の分散性に良好に作用するため、他の金属キレートを使用する場合よりも極端に導電性が向上する。その中でも特に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)が好ましい。 From the viewpoint of the conductivity of the conductive film, it is preferable to use an aluminum chelate as the metal chelate (C10). Aluminum chelates have very good reactivity with binder resins containing carboxyl groups, phenolic hydroxyl groups, acid anhydrides, etc., and have a good effect on the dispersibility of carbon materials, so they are better than when other metal chelates are used. Also, the conductivity is extremely improved. Among them, aluminum monoacetylacetonate bis (ethylacetoacetate) is particularly preferable.
 硬化剤(C)の使用量は、本導電性組成物の用途等を考慮して決定すればよく、特に限定されるものではない。しかしながら、硬化剤(C)の含有率は、バインダー樹脂(A)100質量%に対して、0.5~20質量%であることが好ましい。硬化剤(C)の含有率が0.5%以上であると、架橋性が良好となり、導電性、耐久性ともに良化傾向になり、20%以下であると、インキのポットライフがより良好となる。 The amount of the curing agent (C) used may be determined in consideration of the use of the present conductive composition and the like, and is not particularly limited. However, the content of the curing agent (C) is preferably 0.5 to 20% by mass with respect to 100% by mass of the binder resin (A). When the content of the curing agent (C) is 0.5% or more, the crosslinkability becomes good, both the conductivity and the durability tend to improve, and when it is 20% or less, the pot life of the ink is better. Will be.
 硬化剤(C)として、金属キレート(C10)と、その他の硬化剤とを併用する場合は、質量比(金属キレート/その他の硬化剤)で、1/99~60/40で配合することが好ましく、10/90~30/70で配合することがより好ましい。 When a metal chelate (C10) and another curing agent are used in combination as the curing agent (C), the mass ratio (metal chelate / other curing agent) may be 1/99 to 60/40. It is preferable to blend in 10/90 to 30/70, and more preferably.
 <溶剤(D)>
 次に、本導電性組成物に任意に添加する溶剤(D)について説明する。導電性組成物中のバインダー樹脂(A)と、炭素材料(B)と、硬化剤(C)とを均一に混合する際に、溶剤(D)を適宜用いることができる。そのような溶剤(D)としては、有機溶剤や水を挙げることができる。
<Solvent (D)>
Next, the solvent (D) arbitrarily added to the present conductive composition will be described. When the binder resin (A), the carbon material (B), and the curing agent (C) in the conductive composition are uniformly mixed, the solvent (D) can be appropriately used. Examples of such a solvent (D) include an organic solvent and water.
 有機溶剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールメチルエーテル、ジエチレングリコールメチルエーテル等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、ヘキサン、ヘプタン、オクタン等の炭化水素類、ベンゼン、トルエン、キシレン、クメン等の芳香族類、酢酸エチル、酢酸ブチル等のエステル類などの中から、導電性組成物の組成に応じ適宜選択して使用できる。また、溶剤(D)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the organic solvent include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol methyl ether and diethylene glycol methyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, tetrahydrofuran, dioxane and ethylene glycol dimethyl ether. A conductive composition from ethers such as diethylene glycol dimethyl ether, hydrocarbons such as hexane, heptane and octane, aromatics such as benzene, toluene, xylene and cumene, and esters such as ethyl acetate and butyl acetate. It can be appropriately selected and used according to the composition. Further, the solvent (D) may be used alone or in combination of two or more.
 なお、導電性組成物に一定以上の粘性が要求されるスクリーン印刷などの印刷塗工方式を採用する場合、有機溶剤の25℃での粘度は、30mPa・s~75000mPa・sの範囲が好ましい。有機溶剤の粘度が30mPa・s以上であれば、高い導電性を発現するのに適した樹脂含有量となり、塗工に適した粘性および導電性の炭素材料の良好な分散性が容易に得られ、優れた塗工性が得られる。有機溶剤の粘度が75000mPa・s以下であれば、炭素材料の分散性がより良好となる。当該有機溶剤としては、例えば、ターピネオール、ジヒドロターピネオール、2,4-ジエチル-1,5-ペンタンジオール、1、3-ブチレングリコール、イソボルニルシクロヘキサノールが挙げられる。これらの高粘度溶剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いて良い。また、これらの高粘度溶剤と、メチルエチルケトン、トルエン、イソプロピルアルコールなどの25℃での粘度が30mPa・s未満の低粘度溶剤とを併用することもできる。 When a printing coating method such as screen printing, which requires the conductive composition to have a viscosity of a certain level or higher, is adopted, the viscosity of the organic solvent at 25 ° C. is preferably in the range of 30 mPa · s to 75,000 mPa · s. When the viscosity of the organic solvent is 30 mPa · s or more, the resin content is suitable for exhibiting high conductivity, and good dispersibility of the viscous and conductive carbon material suitable for coating can be easily obtained. , Excellent coatability can be obtained. When the viscosity of the organic solvent is 75,000 mPa · s or less, the dispersibility of the carbon material becomes better. Examples of the organic solvent include tarpineol, dihydroterpineol, 2,4-diethyl-1,5-pentanediol, 1,3-butylene glycol, and isobornylcyclohexanol. These high-viscosity solvents may be used alone or in combination of two or more. Further, these high-viscosity solvents and low-viscosity solvents such as methyl ethyl ketone, toluene, and isopropyl alcohol having a viscosity at 25 ° C. of less than 30 mPa · s can also be used in combination.
 <その他の成分>
 次に、その他の成分について説明する。本導電性組成物には、必要に応じて、本発明による効果を妨げない範囲で、紫外線吸収剤、紫外線安定剤、ラジカル補足剤、充填剤、チクソトロピー付与剤、老化防止剤、酸化防止剤、帯電防止剤、難燃剤、熱伝導性改良剤、可塑剤、ダレ防止剤、防汚剤、防腐剤、殺菌剤、消泡剤、レベリング剤、ブロッキング防止剤、増粘剤、顔料分散剤、シランカップリング剤等の各種の添加剤を添加してもよい。
<Other ingredients>
Next, other components will be described. The present conductive composition may contain, if necessary, an ultraviolet absorber, an ultraviolet stabilizer, a radical catching agent, a filler, a thixotropic agent, an antioxidant, an antioxidant, as long as the effect of the present invention is not impaired. Antistatic agents, flame retardants, thermal conductivity improvers, plasticizers, anti-sag agents, antifouling agents, preservatives, bactericides, defoamers, leveling agents, anti-blocking agents, thickeners, pigment dispersants, silanes. Various additives such as a coupling agent may be added.
 <分散機・混合機>
 上記各成分から本導電性組成物を得る際に用いられる装置としては、顔料分散等に通常用いられている分散機および混合機等が使用できる。
<Distributor / Mixer>
As an apparatus used for obtaining the present conductive composition from each of the above components, a disperser, a mixer or the like usually used for pigment dispersion or the like can be used.
 上記装置としては、例えば、ディスパー、ホモミキサー、もしくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、もしくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、もしくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、もしくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されない。 Examples of the above-mentioned device include mixers such as a dispenser, a homomixer, or a planetary mixer; homogenizers such as "Clairemix" manufactured by M-Technique or "Fillmix" manufactured by PRIMIX; and a paint conditioner (manufactured by Red Devil). ), Ball mill, sand mill ("Dyno mill" manufactured by Symmar Enterprises, etc.), attritor, pearl mill ("DCP mill" manufactured by Eirich, etc.), or media type disperser such as Coball mill; wet jet mill ("Dyno mill" manufactured by Genus). Medialess disperser such as "Genus PY", "Starburst" manufactured by Sugino Machine Limited, "Nanomizer" manufactured by Nanomizer, "Claire SS-5" manufactured by M-Technique, or "MICROS" manufactured by Nara Machinery; or , Other roll mills, etc., but are not limited to these.
 例えば、メディア型分散機を使用する場合は、アジテーターおよびベッセルがセラミック製または樹脂製の分散機を使用する方法や、金属製アジテーターおよびベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、または、ジルコニアビーズ、もしくはアルミナビーズ等のセラミックビーズを用いることが好ましい。分散装置は、1種のみを使用してもよいし、複数種の装置を組み合わせて使用してもよい。 For example, when using a media type disperser, a method using a disperser in which the agitator and vessel are made of ceramic or resin, or a disperser in which the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating. It is preferable to use. As the medium, it is preferable to use glass beads, zirconia beads, or ceramic beads such as alumina beads. As the dispersive device, only one type may be used, or a plurality of types of devices may be used in combination.
 <導電膜>
 本発明の導電膜(以下、本導電膜と称することがある)は、(シート状)基材上に本導電性組成物から形成された導電膜、言い換えると、本導電性組成物を成膜してなる導電膜を有するものである。
<Conductor>
The conductive film of the present invention (hereinafter, may be referred to as the present conductive film) is a conductive film formed from the present conductive composition on a (sheet-like) substrate, in other words, the present conductive composition is formed into a film. It has a conductive film made of.
 (シート状基材)
 導電膜成形に使用するシート状基材の形状は特に限定されないが、絶縁性の樹脂フィルムが好ましく、各種用途にあったものを適宜選択することができる。
(Sheet-like base material)
The shape of the sheet-like base material used for forming the conductive film is not particularly limited, but an insulating resin film is preferable, and one suitable for various uses can be appropriately selected.
 シート状基材の材質としては、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリ塩ビニル、ポリアミド、ナイロン、OPP(延伸ポリプロピレン)、CPP(未延伸ポリプロピレン)などが挙げられる。しかしながら、これらに限定されることはない。 Examples of the material of the sheet-like base material include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polyvinyl chloride, polyamide, nylon, OPP (stretched polypropylene), CPP (unstretched polypropylene) and the like. .. However, it is not limited to these.
 また、シート状基材の形状としては、通常、平板上のフィルムが用いられるが、表面を粗面化したものや、プライマー処理したもの、穴あき状のもの、およびメッシュ状のものも使用できる。 As the shape of the sheet-like base material, a film on a flat plate is usually used, but a roughened surface, a primer-treated one, a perforated one, and a mesh-like one can also be used. ..
 シート状基材上に導電性組成物を塗工する方法としては、特に制限はなく公知の方法を適宜用いることができる。 The method of applying the conductive composition on the sheet-like substrate is not particularly limited, and a known method can be appropriately used.
 塗工方法としては、具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法または静電塗装法等が挙げる事ができる。塗工後の乾燥方法としては、例えば、放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特にこれらに限定されない。 Specific examples of the coating method include a die coating method, a dip coating method, a roll coating method, a doctor coating method, a knife coating method, a spray coating method, a gravure coating method, a screen printing method, an electrostatic coating method, and the like. Can be mentioned. As the drying method after coating, for example, a neglected drying, a blower dryer, a warm air dryer, an infrared heater, a far infrared heater, and the like can be used, but the drying method is not particularly limited thereto.
 また、塗工後に平版プレスやカレンダーロール等による圧延処理を行ってもよく、導電膜を軟化させてプレスしやすくするため、加熱しながら圧延処理を行ってもよい。導電膜の厚みは、通常、0.1μm以上、1mm以下であり、好ましくは1μm以上、200μm以下である。 Further, after coating, rolling processing may be performed by a lithographic press, a calendar roll, or the like, or in order to soften the conductive film and make it easier to press, rolling processing may be performed while heating. The thickness of the conductive film is usually 0.1 μm or more and 1 mm or less, preferably 1 μm or more and 200 μm or less.
 (導電膜の体積抵抗率)
 本導電膜の体積抵抗率は、1.0×10-2Ω・cm未満であることが好ましい。体積抵抗率は、1.0×10-2Ω・cm未満であることで、電池の電極、集電体や、電池、電子機器の配線等として好適に利用することができる。
(Volume resistivity of conductive film)
The volume resistivity of this conductive film is preferably less than 1.0 × 10 −2 Ω · cm. Since the volume resistivity is less than 1.0 × 10 −2 Ω · cm, it can be suitably used as a battery electrode, a current collector, a battery, wiring of an electronic device, and the like.
 <非接触型メディア>
 本発明の非接触型メディア(非接触型情報記録媒体)(以下、本非接触型メディアと称することがある)は、導電回路およびICチップを積載した非接触型メディアであって、導電回路は、上述した本導電性組成物を用いて形成される。
<Non-contact media>
The non-contact type media (non-contact type information recording medium) (hereinafter, may be referred to as the present non-contact type media) of the present invention is a non-contact type medium loaded with a conductive circuit and an IC chip, and the conductive circuit is a non-contact type medium. , Formed using the present conductive composition described above.
 (導電回路)
 本非接触型メディアに用いられる導電回路は、本導電性組成物を、使用用途に応じて、紙、プラスチック等の基材の片面または両面上に、通常の印刷方式により印刷することで得られるもの(印刷物)である。
(Conductive circuit)
The conductive circuit used in the non-contact media can be obtained by printing the conductive composition on one side or both sides of a base material such as paper or plastic by a normal printing method depending on the intended use. It is a thing (printed matter).
 印刷方式としては、例えば、スクリーン印刷、ロータリースクリーン印刷、フレキソ印刷、グラビア印刷、グラビアオフセット印刷、オフセット印刷、凸版印刷、インクジェット等が挙げられる。 Examples of the printing method include screen printing, rotary screen printing, flexo printing, gravure printing, gravure offset printing, offset printing, letterpress printing, inkjet, and the like.
 紙基材としては、コート紙、非コート紙、その他、合成紙、ポリエチレンコート紙、含浸紙、耐水加工紙、絶縁加工紙、伸縮加工紙等の各種加工紙が使用できる。これらの中でも、非接触メディアとして安定した抵抗値を得る観点から、紙基材として、コート紙、加工紙を用いることが好ましい。コート紙の場合は、平滑度の高いものほど好ましい。 As the paper base material, various processed papers such as coated paper, uncoated paper, synthetic paper, polyethylene coated paper, impregnated paper, water resistant processed paper, insulating processed paper, and stretch processed paper can be used. Among these, it is preferable to use coated paper or processed paper as the paper base material from the viewpoint of obtaining a stable resistance value as a non-contact medium. In the case of coated paper, the one with higher smoothness is preferable.
 また、プラスチック基材としては、ポリエステル、ポリエチレン、ポリプロピレン、セロハン、塩化ビニル、塩化ビニリデン、ポリスチレン、ビニルアルコール、エチレン-ビニルアルコール、ナイロン、ポリイミド、ポリカーボネート等の通常のタグ、カードとして使用されるプラスチックからなる基材を使用することができる。 In addition, as the plastic base material, from plastics used as ordinary tags and cards such as polyester, polyethylene, polypropylene, cellophane, vinyl chloride, vinylidene chloride, polystyrene, vinyl alcohol, ethylene-vinyl alcohol, nylon, polyimide, polycarbonate, etc. Substrate can be used.
 本導電性組成物(導電性インキ)を用いることにより、通常の印刷方法によって導電回路が形成できるため、既存の設備を生かした設計が可能である。すなわち、絵柄等の非接触メディアの意匠性を高めるための通常の印刷を施した後に、そのまま導電回路を印刷、形成することが可能である。このため、本導電性組成物を用いた回路形成は、従来、エッチング法や転写法で行っていた回路形成法と比較して、生産性、初期投資コスト、ランニングコストの点ではるかに優れている。 By using this conductive composition (conductive ink), a conductive circuit can be formed by a normal printing method, so it is possible to design using existing equipment. That is, it is possible to print and form the conductive circuit as it is after performing normal printing for enhancing the design of the non-contact medium such as a pattern. Therefore, the circuit formation using the present conductive composition is far superior in productivity, initial investment cost, and running cost as compared with the circuit formation method conventionally performed by the etching method or the transfer method. There is.
 導電回路を印刷、形成する前の行程において、基材との密着性を高める目的で、基材にアンカーコート剤や各種ワニスを塗工してもよい。また、導電回路印刷後に回路の保護を目的としてオーバープリントワニス、各種コーティング剤等を塗工してもよい。これらの各種ワニス、コーティング剤としては、通常の熱乾燥型、活性エネルギー線硬化型のいずれも使用できる。 In the process before printing and forming the conductive circuit, an anchor coating agent or various varnishes may be applied to the base material for the purpose of improving the adhesion to the base material. Further, after printing the conductive circuit, an overprint varnish, various coating agents, or the like may be applied for the purpose of protecting the circuit. As these various varnishes and coating agents, either a normal heat-drying type or an active energy ray-curing type can be used.
 また、導電回路上に接着剤を塗布し、そのまま絵柄等を印刷した紙基材やプラスチックフィルムを接着、または、プラスチックの溶融押出し等によりラミネートして非接触メディアを得ることもできる。勿論、あらかじめ粘着剤、接着剤が塗布された基材を使用することもできる。 Alternatively, a non-contact medium can be obtained by applying an adhesive on a conductive circuit and adhering a paper base material or a plastic film on which a pattern or the like is printed as it is, or laminating by melt extrusion of plastic or the like. Of course, a base material to which an adhesive or an adhesive has been applied in advance can also be used.
 上記の方法で製造された導電回路は、基材上にICモジュールと共に積載され、非接触型メディアが得られる。基材は、導電回路およびICチップを保持するものであり、導電回路の基材と同様な紙、フィルムなどを用いることができる。また、ICチップは、データの記憶、蓄積、演算をおこなうものである。非接触型メディアは、RFID(Radio Frequnecy Identification)、非接触ICカード、非接触ICタグ、データキャリア(記録媒体)、ワイヤレスカードとして、リーダー、あるいはリーダライタとの間で、電波を使用して個体の識別やデータの送受信を行うものである。その使用用途としては、料金徴収システム等のID管理と履歴管理、道路利用状況管理システムや貨物、荷物追跡・管理システム等の位置管理がある。 The conductive circuit manufactured by the above method is loaded on the base material together with the IC module, and a non-contact type medium can be obtained. The base material holds the conductive circuit and the IC chip, and paper, film, or the like similar to the base material of the conductive circuit can be used. Further, the IC chip stores, stores, and calculates data. Non-contact media is an individual using radio waves as an RFID (Radio Frequency Identification), contactless IC card, contactless IC tag, data carrier (recording medium), wireless card, and a reader or writer. It is used to identify and send and receive data. Its uses include ID management and history management of toll collection systems, and location management of road usage status management systems, cargo, and baggage tracking / management systems.
 (導電回路の体積抵抗率)
 本非接触型メディアにおける導電回路の体積抵抗率は、5.0×10-2Ω・cm未満であることが好ましい。体積抵抗率が、5.0×10-2Ω・cm未満であることで、非接触型メディアとして好適に利用することができる。なお、体積抵抗率が低いほど、薄膜でも高い導電性を発現するため、材料コスト、生産性、非接触型メディアとしての性能を考慮すると、体積抵抗率は低いほど、好ましい。
(Volume resistivity of conductive circuit)
The volume resistivity of the conductive circuit in this non-contact media is preferably less than 5.0 × 10 −2 Ω · cm. When the volume resistivity is less than 5.0 × 10 −2 Ω · cm, it can be suitably used as a non-contact type medium. The lower the volume resistivity, the higher the conductivity is exhibited even in a thin film. Therefore, considering the material cost, productivity, and performance as a non-contact medium, the lower the volume resistivity is, the more preferable.
 以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例および比較例において、特に断りのない限り、「部」は「質量部」を表し、「Mw」は「重量平均分子量」、「Tg」は「ガラス転移温度」を意味する。 Hereinafter, the present invention will be described in more detail by way of examples, but the following examples do not limit the scope of rights of the present invention at all. In Examples and Comparative Examples, "parts" means "parts by mass", "Mw" means "weight average molecular weight", and "Tg" means "glass transition temperature" unless otherwise specified.
 <バインダー樹脂A-1の合成>
 攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、以下の材料を仕込み、窒素雰囲気下で、90℃で3時間反応させた。
 ・テレフタル酸とアジピン酸と3-メチル-1,5-ペンタンジオールとから得られるポリエステルポリオール((株)クラレ製、商品名:「クラレポリオールP-2011」、Mn=2011) 455.5部、
 ・ジメチロールブタン酸 16.5部、
 ・イソホロンジイソシアネート 105.2部、
 ・トルエン 140部。
 続いて、この反応液中に、トルエン360部を加えて、イソシアネート基を有するウレタンプレポリマー溶液を得た。
<Synthesis of binder resin A-1>
The following materials were placed in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen introduction tube, and reacted at 90 ° C. for 3 hours in a nitrogen atmosphere.
-Polyester polyol obtained from terephthalic acid, adipic acid and 3-methyl-1,5-pentanediol (manufactured by Kuraray Co., Ltd., trade name: "Kuraray polyol P-2011", Mn = 2011) 455.5 parts,
16.5 parts of dimethylolbutanoic acid,
・ Isophorone diisocyanate 105.2 parts,
-140 parts of toluene.
Subsequently, 360 parts of toluene was added to this reaction solution to obtain a urethane prepolymer solution having an isocyanate group.
 次に、イソホロンジアミン19.9部、ジ-n-ブチルアミン0.63部、2-プロパノール294.5部、およびトルエン335.5部を、別途混合した。得られた混合物に対して、上記で作製したウレタンプレポリマー溶液969.5部を添加し、50℃で3時間反応させた後、さらに、70℃で2時間反応させた。続いて、得られた反応液を、トルエン126部、および2-プロパノール54部で希釈し、バインダー樹脂A-1(ポリウレタン樹脂)の溶液を得た。なお、得られたバインダー樹脂A-1は、Mwが61,000であり、酸価が10mgKOH/gであり、ウレタンプレポリマーの両末端に有する遊離のイソシアネート基に対してポリアミノ化合物および反応停止剤中のアミノ基の合計当量が0.98であった。 Next, 19.9 parts of isophorone diamine, 0.63 parts of di-n-butylamine, 294.5 parts of 2-propanol, and 335.5 parts of toluene were separately mixed. To the obtained mixture, 969.5 parts of the urethane prepolymer solution prepared above was added and reacted at 50 ° C. for 3 hours, and then further reacted at 70 ° C. for 2 hours. Subsequently, the obtained reaction solution was diluted with 126 parts of toluene and 54 parts of 2-propanol to obtain a solution of the binder resin A-1 (polyurethane resin). The obtained binder resin A-1 has a Mw of 61,000, an acid value of 10 mgKOH / g, and a polyamino compound and a reaction terminator for free isocyanate groups at both ends of the urethane prepolymer. The total equivalent of the amino groups in it was 0.98.
 <バインダー樹脂A-2の合成>
 撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、以下の材料を仕込み、発熱の温度が一定になるまで撹拌した。
 ・多塩基酸化合物としてプリポール1009 156.2g、
 ・5-ヒドロキシイソフタル酸 5.5g、
 ・ポリアミン化合物としてプリアミン1074 146.4g、
 ・イオン交換水 100g。
 次いで、反応液の温度が安定したら110℃まで昇温し、水の流出を確認してから、30分後に温度を120℃に昇温し、その後、30分ごとに10℃ずつ昇温しながら脱水反応を続けた。そして、反応液の温度が230℃になったら、そのままの温度で3時間反応を続け、約2kPaの真空下で、1時間保持し、温度を低下させた。最後に、酸化防止剤を添加し、バインダー樹脂A-2(ポリアミド樹脂)を得た。なお、得られたバインダー樹脂A-2は、重量平均分子量が24000であり、酸価が13.2mgKOH/gであり、水酸基価が5.5mgKOH/gであり、ガラス転移温度が-32℃であった。
<Synthesis of binder resin A-2>
The following materials were placed in a four-necked flask equipped with a stirrer, a reflux condenser, a nitrogen introduction tube, an introduction tube, and a thermometer, and the mixture was stirred until the heat generation temperature became constant.
-As a polybasic acid compound, Pripol 1009 156.2 g,
-5.5 g of 5-hydroxyisophthalic acid,
-As a polyamine compound, preamine 1074 146.4 g,
-Ion-exchanged water 100 g.
Then, when the temperature of the reaction solution stabilizes, the temperature is raised to 110 ° C., and after confirming the outflow of water, the temperature is raised to 120 ° C. after 30 minutes, and then the temperature is raised by 10 ° C. every 30 minutes. The dehydration reaction continued. Then, when the temperature of the reaction solution reached 230 ° C., the reaction was continued at the same temperature for 3 hours and kept under a vacuum of about 2 kPa for 1 hour to lower the temperature. Finally, an antioxidant was added to obtain a binder resin A-2 (polyamide resin). The obtained binder resin A-2 has a weight average molecular weight of 24,000, an acid value of 13.2 mgKOH / g, a hydroxyl value of 5.5 mgKOH / g, and a glass transition temperature of −32 ° C. there were.
 なお、樹脂の評価は下記の通りに行った。 The resin was evaluated as follows.
 <重量平均分子量(Mw)の測定方法>
 Mwの測定は東ソー株式会社製GPC(ゲルパーミエーションクロマトグラフィー)商品名:「HPC-8020」を用いた。GPCは溶剤(THF:テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィーである。測定は、カラムに商品名:「LF-604」(昭和電工株式会社製:迅速分析用GPCカラム:6mmID×150mmサイズ)を直列に2本接続して用い、流量0.6ml/min、カラム温度40℃の条件で行い、重量平均分子量(Mw)の決定はポリスチレン換算で行った。
<Measurement method of weight average molecular weight (Mw)>
For the measurement of Mw, GPC (gel permeation chromatography) trade name: "HPC-8020" manufactured by Tosoh Corporation was used. GPC is a liquid chromatography in which a substance dissolved in a solvent (THF: tetrahydrofuran) is separated and quantified according to the difference in molecular size. For the measurement, two columns were connected in series with the product name: "LF-604" (manufactured by Showa Denko KK: GPC column for rapid analysis: 6 mm ID x 150 mm size), and the flow rate was 0.6 ml / min and the column temperature. The measurement was performed under the condition of 40 ° C., and the weight average molecular weight (Mw) was determined in terms of polystyrene.
 <酸価の測定方法>
 (酸価の測定)
 共栓三角フラスコ中に試料(樹脂)約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解した。これに、フェノールフタレイン試液を指示薬として加え、30秒間保持した。その後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定した。
<Measurement method of acid value>
(Measurement of acid value)
Approximately 1 g of the sample (resin) was precisely weighed into a stoppered Erlenmeyer flask, and 100 ml of a toluene / ethanol (volume ratio: toluene / ethanol = 2/1) mixed solution was added and dissolved. Phenolphthalein test solution was added to this as an indicator and held for 30 seconds. Then, it was titrated with 0.1N alcoholic potassium hydroxide solution until the solution became light red.
 (酸価の算出)
 酸価は、次式(1)により求めた(単位:mgKOH/g)。
 式(1)
 酸価(mgKOH/g)=(5.611×a×F)/S
 ただし、
S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
とした。
(Calculation of acid value)
The acid value was determined by the following formula (1) (unit: mgKOH / g).
Equation (1)
Acid value (mgKOH / g) = (5.611 × a × F) / S
however,
S: Sample collection amount (g)
a: Consumption of 0.1N alcoholic potassium hydroxide solution (ml)
F: The titer of a 0.1N alcoholic potassium hydroxide solution was used.
 <水酸基価の測定方法>
 水酸基価は、水酸基含有樹脂1g中に含まれる水酸基の量を、水酸基をアセチル化させた際に水酸基と結合した酢酸を中和するために必要な水酸化カリウムの量(mg)で表したものである。水酸基価は、JISK0070に準じて測定した。水酸基価を算出する場合には、下記式(2)に示す通り、酸価を考慮して計算した。
<Measurement method of hydroxyl value>
The hydroxyl value is the amount of hydroxyl group contained in 1 g of the hydroxyl group-containing resin expressed by the amount of potassium hydroxide (mg) required to neutralize acetic acid bonded to the hydroxyl group when the hydroxyl group is acetylated. Is. The hydroxyl value was measured according to JIS K0070. When calculating the hydroxyl value, the acid value was taken into consideration as shown in the following formula (2).
 (水酸基価の測定)
 共栓三角フラスコ中に試料(樹脂)約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解した。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mlとした溶液)を正確に5ml加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、30秒間持続した。その後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定した。
(Measurement of hydroxyl value)
Approximately 1 g of the sample (resin) was precisely weighed into a stoppered Erlenmeyer flask, and 100 ml of a toluene / ethanol (volume ratio: toluene / ethanol = 2/1) mixed solution was added and dissolved. Further, exactly 5 ml of an acetylating agent (a solution in which 25 g of acetic anhydride was dissolved in pyridine to make a volume of 100 ml) was added, and the mixture was stirred for about 1 hour. Phenolphthalein test solution was added to this as an indicator and lasted for 30 seconds. Then, it was titrated with 0.1N alcoholic potassium hydroxide solution until the solution became light red.
 (水酸基価の算出)
 水酸基価は次式(2)により求めた(単位:mgKOH/g)。
 式(2)
 水酸基価(mgKOH/g)=[{(b-a)×F×28.05}/S]+D
 ただし、
S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
b:空実験の0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
D:酸価(mgKOH/g)
とした。
(Calculation of hydroxyl value)
The hydroxyl value was determined by the following formula (2) (unit: mgKOH / g).
Equation (2)
Hydroxy group value (mgKOH / g) = [{(ba) × F × 28.05} / S] + D
however,
S: Sample collection amount (g)
a: Consumption of 0.1N alcoholic potassium hydroxide solution (ml)
b: Consumption (ml) of 0.1N alcoholic potassium hydroxide solution in the blank experiment
F: Titer of 0.1N alcoholic potassium hydroxide solution D: Acid value (mgKOH / g)
And said.
 <ガラス転移温度の測定方法>
 溶剤を乾燥除去したバインダー樹脂で、メトラー・トレド(株)製「DSC-1」を使用し、-80~150℃まで2℃/分で昇温して測定した。
<Measurement method of glass transition temperature>
The binder resin from which the solvent was dried and removed was measured by using "DSC-1" manufactured by METTLER TOLEDO Co., Ltd. and raising the temperature from -80 to 150 ° C. at 2 ° C./min.
 <バインダー樹脂の調整>
 後述する実施例および比較例で使用するバインダー樹脂を、以下に示す溶剤を使用して固形分率20%の溶液に調整した。なお、混合溶剤の組成比は質量比で記載している。
 ・バインダー樹脂A-1-1の溶液:
 バインダー樹脂A-1の溶液をトルエン/メチルエチルケトン/2-プロパノール(1/1/1)で希釈してバインダー樹脂A-1-1の溶液を得た。
 ・バインダー樹脂A-2-1の溶液:
 バインダー樹脂A-2をトルエン/2-プロパノール(2/1)で希釈してバインダー樹脂A-2-1の溶液を得た。
 ・バインダー樹脂A-3-1の溶液:
 バインダー樹脂A-3:バイロンUR3500(商品名、東洋紡株式会社製、ポリウレタン樹脂)をトルエン/メチルエチルケトン(1/1)で希釈してバインダー樹脂A-3-1の溶液を得た。
 ・バインダー樹脂A-4-1の溶液:
 バインダー樹脂A-4:バイロンGK130(商品名、東洋紡株式会社製、ポリエステル樹脂)をトルエン/メチルエチルケトン(1/1)で希釈してバインダー樹脂A-4-1の溶液を得た。
<Adjustment of binder resin>
The binder resin used in Examples and Comparative Examples described later was adjusted to a solution having a solid content of 20% using the solvent shown below. The composition ratio of the mixed solvent is described as a mass ratio.
-Solution of binder resin A-1-1:
The solution of the binder resin A-1 was diluted with toluene / methyl ethyl ketone / 2-propanol (1/1/1) to obtain a solution of the binder resin A-1-1.
-Solution of binder resin A-2-1:
Binder resin A-2 was diluted with toluene / 2-propanol (2/1) to obtain a solution of binder resin A-2-1.
-Solution of binder resin A-3-1:
Binder resin A-3: Byron UR3500 (trade name, manufactured by Toyobo Co., Ltd., polyurethane resin) was diluted with toluene / methyl ethyl ketone (1/1) to obtain a solution of the binder resin A-3-1.
-Solution of binder resin A-4-1:
Binder resin A-4: Byron GK130 (trade name, manufactured by Toyobo Co., Ltd., polyester resin) was diluted with toluene / methyl ethyl ketone (1/1) to obtain a solution of the binder resin A-4-1.
 <硬化剤の調整>
 後述する実施例および比較例で使用する硬化剤を、以下に示す溶剤を使用して固形分率50%の溶液に調整した。なお、混合溶剤の組成比は質量比で記載している。後述する硬化剤C-3に関しては、固形分濃度50質量%の市販品をそのまま使用した。
 ・硬化剤C-1-1の溶液:
 硬化剤C-1(アジリジン化合物 ケミタイトPZ-33(商品名、株式会社日本触媒製))をトルエンで希釈して硬化剤C-1-1の溶液を得た。
 ・硬化剤C-2-1の溶液:
 硬化剤C-2(エポキシ化合物 TETRAD-X(商品名、三菱ガス化学株式会社製))をトルエンで希釈して硬化剤C-2-1の溶液を得た。
  ・硬化剤C-4-1の溶液:硬化剤C-4(イソシアネート化合物 タケネートD-110N:三井化学株式会社社製)を酢酸エチルで希釈して硬化剤C-4-1の溶液を得た。
 ・硬化剤C-5-1の溶液:
 硬化剤C-5{アルミニウムキレート アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)=アルミキレートD(商品名)、川研ファインケミカル株式会社製}をトルエンで希釈して硬化剤C-5-1の溶液を得た。
 ・硬化剤C-6-1の溶液:
 硬化剤C-6(チタンキレート チタンテトラアセチルアセトネート=オルガチックスTC-401(商品名)、マツモトファインケミカル株式会社製)をトルエンで希釈して硬化剤C-6-1の溶液を得た。
 ・硬化剤C-7-1の溶液:
 硬化剤C-7{チタンキレート チタンジイソプロポキシビス(アセチルアセトネート)=オルガチックスTC-100(商品名)、マツモトファインケミカル株式会社製}をトルエンで希釈して硬化剤C-7-1の溶液を得た。
 ・硬化剤C-8-1の溶液:
 硬化剤C-8(ジルコニウムキレート ジルコニウムテトラアセチルアセトネート=オルガチックスZC-150(商品名)、マツモトファインケミカル株式会社製)をトルエンで希釈して硬化剤C-8-1の溶液を得た。
<Adjustment of curing agent>
The curing agent used in Examples and Comparative Examples described later was adjusted to a solution having a solid content of 50% using the solvent shown below. The composition ratio of the mixed solvent is described as a mass ratio. As for the curing agent C-3 described later, a commercially available product having a solid content concentration of 50% by mass was used as it was.
-Solution of curing agent C-1-1:
The curing agent C-1 (aziridin compound Chemitite PZ-33 (trade name, manufactured by Nippon Shokubai Co., Ltd.)) was diluted with toluene to obtain a solution of the curing agent C-1-1.
-Solution of curing agent C-2-1:
The curing agent C-2 (epoxy compound TETRAD-X (trade name, manufactured by Mitsubishi Gas Chemical Company, Inc.)) was diluted with toluene to obtain a solution of the curing agent C-2-1.
-Solution of curing agent C-4-1: A solution of curing agent C-4-1 was obtained by diluting the curing agent C-4 (isocyanate compound Takenate D-110N: manufactured by Mitsui Chemicals, Inc.) with ethyl acetate. ..
-Solution of curing agent C-5-1:
Hardener C-5 {Aluminum chelate Aluminum monoacetylacetonate bis (ethylacetate acetate) = Aluminum chelate D (trade name), manufactured by Kawaken Fine Chemical Co., Ltd.} is diluted with toluene to form a solution of hardener C-5-1. Got
-Solution of curing agent C-6-1:
The curing agent C-6 (titanium chelate titanium tetraacetylacetonate = Organix TC-401 (trade name), manufactured by Matsumoto Fine Chemical Co., Ltd.) was diluted with toluene to obtain a solution of the curing agent C-6-1.
-Solution of curing agent C-7-1:
Hardener C-7 {Titanium chelate Titanium diisopropoxybis (acetylacetone) = Olgatics TC-100 (trade name), manufactured by Matsumoto Fine Chemical Co., Ltd.} is diluted with toluene to form a solution of hardener C-7-1. Got
-Solution of curing agent C-8-1:
A solution of the curing agent C-8-1 was obtained by diluting the curing agent C-8 (zirconium chelate zirconium tetraacetylacetonate = Olgatics ZC-150 (trade name), manufactured by Matsumoto Fine Chemical Co., Ltd.) with toluene.
 <導電性組成物、導電膜および導電回路>
 [実施例1]
 (導電性組成物の調製)
 以下の材料をミキサーに入れて混合し、更にサンドミルに入れて分散を行った。
 ・バインダー樹脂:
 A-1-1の溶液 120部(樹脂固形分24部)、
 ・導電性の炭素材料:
 B-1-1:鱗片状黒鉛CPB(日本黒鉛社製) 70部、
 ・黒鉛以外の炭素材料:
 B-2-1:ケッチェンブラックEC-300J(商品名、ライオンスペシャリティケミカルズ社製) 6部、
 ・溶剤:
 トルエン/メチルエチルケトン/2-プロパノール(1/1/1) 204部。
 その後、硬化剤として、C-1-1の溶液を0.4部(硬化剤固形分0.2部)添加して、導電性組成物(1)を得た。
<Conductive composition, conductive film and conductive circuit>
[Example 1]
(Preparation of conductive composition)
The following materials were placed in a mixer and mixed, and then placed in a sand mill for dispersion.
・ Binder resin:
120 parts of A-1-1 solution (24 parts of resin solid content),
-Conductive carbon material:
B-1-1: Scale graphite CPB (manufactured by Nippon Graphite Co., Ltd.) 70 copies,
・ Carbon materials other than graphite:
B-2-1: Ketjen Black EC-300J (trade name, manufactured by Lion Specialty Chemicals) 6 copies,
·solvent:
Toluene / Methylethylketone / 2-propanol (1/1/1) 204 parts.
Then, 0.4 part (curing agent solid content 0.2 part) of the solution of C-1-1 was added as a curing agent to obtain a conductive composition (1).
 (導電膜の作製)
 得られた導電性組成物(1)を、シート状基材となる厚さ125μmのPENフィルム上にドクターブレードを用いて塗布した後、加熱乾燥し、導電膜の厚みが60μmとなるよう調整した。最後に、塗膜を150℃の環境下で硬化させた。なお、前記導電膜中に含まれる導電性の炭素材料は76質量%であった。
 得られた導電膜を、以下の方法にて評価した。評価結果を表6に示す。
(Preparation of conductive film)
The obtained conductive composition (1) was applied to a PEN film having a thickness of 125 μm as a sheet-like substrate by using a doctor blade, and then dried by heating to adjust the thickness of the conductive film to 60 μm. .. Finally, the coating film was cured in an environment of 150 ° C. The conductive carbon material contained in the conductive film was 76% by mass.
The obtained conductive film was evaluated by the following method. The evaluation results are shown in Table 6.
 (導電膜の体積抵抗率)
 導電膜の体積抵抗率は、ロレスタGP(三菱化学アナリテック社製)を用いて4端子法で測定(JIS-K7194)し、以下の評価基準に基づき判定した。なお、導電膜の体積抵抗率は低ければ低いほど、導電膜の導電性は高くなり、良好な結果となる。評価結果を表6に示す。
 ・評価基準
8:「体積抵抗率が3.0×10-3Ω・cm未満」
7:「体積抵抗率が3.0×10-3Ω・cm以上、3.5×10-3Ω・cm未満」
6:「体積抵抗率が3.5×10-3Ω・cm以上、4.0×10-3Ω・cm未満」
5:「体積抵抗率が4.0×10-3Ωcm以上、5.0×10-3Ω・cm未満」
4:「体積抵抗率が5.0×10-3Ω・cm以上、1.0×10-2Ω・cm未満」
3:「体積抵抗率が1.0×10-2Ω・cm以上、5.0×10-2Ω・cm未満」
2:「体積抵抗率が5.0×10-2Ω・cm以上、1.0×10-1Ω・cm未満」
1:「体積抵抗率が1.0×10-1Ω・cm以上」
(Volume resistivity of conductive film)
The volume resistivity of the conductive film was measured by the 4-terminal method (JIS-K7194) using Loresta GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and was determined based on the following evaluation criteria. The lower the volume resistivity of the conductive film, the higher the conductivity of the conductive film, and the better the result. The evaluation results are shown in Table 6.
-Evaluation standard 8: "Volume resistivity is less than 3.0 x 10 -3 Ω · cm"
7: "Volume resistivity is 3.0 x 10 -3 Ω · cm or more, 3.5 x 10 -3 Ω · cm or less"
6: "Volume resistivity is 3.5 x 10 -3 Ω · cm or more and 4.0 x 10 -3 Ω · cm or less"
5: "Volume resistivity is 4.0 x 10 -3 Ω cm or more, 5.0 x 10 -3 Ω cm or less"
4: "Volume resistivity is 5.0 x 10 -3 Ω · cm or more, 1.0 x 10 -2 Ω · cm or less"
3: "Volume resistivity is 1.0 x 10 -2 Ω · cm or more, 5.0 x 10 -2 Ω · cm or less"
2: "Volume resistivity is 5.0 x 10 -2 Ω · cm or more, 1.0 x 10 -1 Ω · cm or less"
1: "Volume resistivity is 1.0 x 10 -1 Ω · cm or more"
 (導電膜の密着性)
 上記で作製した導電膜に、ナイフを用いて導電膜表面から基材に達する深さまでの切込みを2mm間隔で縦横それぞれ6本の碁盤目の切込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、導電膜の脱落の程度を目視判定で以下の評価基準に基づき判定した。評価結果を表6に示す。
 ・評価基準
4:「剥離なし」
3:「わずかに剥離」
2:「半分程度剥離」
1:「ほとんどの部分で剥離」
(Adhesion of conductive film)
The conductive film produced above was cut into 6 grids in each of the vertical and horizontal directions at intervals of 2 mm from the surface of the conductive film to the depth reaching the substrate by using a knife. An adhesive tape was attached to this notch and immediately peeled off, and the degree of the conductive film falling off was visually judged based on the following evaluation criteria. The evaluation results are shown in Table 6.
・ Evaluation standard 4: "No peeling"
3: "Slight peeling"
2: "About half peeling"
1: "Peeling in most parts"
 (導電回路の作製)
 導電性組成物(1)を、厚さ125μmのPEN(ポリエチレンナフタレート)フィルム上にドクターブレードを用いて塗布した後、加熱乾燥した。乾燥膜厚が5μmとなるように調整した。最後に、塗膜を150℃の温度条件で硬化させ、導電回路(10cm×10cmの塗膜)を得た。
(Manufacturing of conductive circuit)
The conductive composition (1) was applied onto a PEN (polyethylene naphthalate) film having a thickness of 125 μm using a doctor blade, and then dried by heating. The dry film thickness was adjusted to 5 μm. Finally, the coating film was cured under a temperature condition of 150 ° C. to obtain a conductive circuit (10 cm × 10 cm coating film).
 (導電回路の体積抵抗率)
 導電回路の体積抵抗率は、ロレスタGP(三菱化学アナリテック社製)を用いて4端子法で測定(JIS-K7194)し、以下の評価基準に基づき判定した。なお、導電回路の体積抵抗率は低ければ低いほど、導電回路の導電性は高くなり、良好な結果となる。評価結果を表6に示す。
 ・評価基準
8:「体積抵抗率が3.0×10-3Ω・cm未満」
7:「体積抵抗率が3.0×10-3Ω・cm以上、3.5×10-3Ω・cm未満」
6:「体積抵抗率が3.5×10-3Ω・cm以上、4.0×10-3Ω・cm未満」
5:「体積抵抗率が4.0×10-3Ωcm以上、5.0×10-3Ω・cm未満」
4:「体積抵抗率が5.0×10-3Ω・cm以上、1.0×10-2Ω・cm未満」
3:「体積抵抗率が1.0×10-2Ω・cm以上、5.0×10-2Ω・cm未満」
2:「体積抵抗率が5.0×10-2Ω・cm以上、1.0×10-1Ω・cm未満」
1:「体積抵抗率が1.0×10-1Ω・cm以上」
(Volume resistivity of conductive circuit)
The volume resistivity of the conductive circuit was measured by the 4-terminal method (JIS-K7194) using Loresta GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and was determined based on the following evaluation criteria. The lower the volume resistivity of the conductive circuit, the higher the conductivity of the conductive circuit, and the better the result. The evaluation results are shown in Table 6.
-Evaluation standard 8: "Volume resistivity is less than 3.0 x 10 -3 Ω · cm"
7: "Volume resistivity is 3.0 x 10 -3 Ω · cm or more, 3.5 x 10 -3 Ω · cm or less"
6: "Volume resistivity is 3.5 x 10 -3 Ω · cm or more and 4.0 x 10 -3 Ω · cm or less"
5: "Volume resistivity is 4.0 x 10 -3 Ω cm or more, 5.0 x 10 -3 Ω cm or less"
4: "Volume resistivity is 5.0 x 10 -3 Ω · cm or more, 1.0 x 10 -2 Ω · cm or less"
3: "Volume resistivity is 1.0 x 10 -2 Ω · cm or more, 5.0 x 10 -2 Ω · cm or less"
2: "Volume resistivity is 5.0 x 10 -2 Ω · cm or more, 1.0 x 10 -1 Ω · cm or less"
1: "Volume resistivity is 1.0 x 10 -1 Ω · cm or more"
 (導電回路の密着性)
 上記で作製した導電回路に、ナイフを用いて導電回路表面から基材に達する深さまでの切込みを2mm間隔で縦横それぞれ6本の碁盤目の切込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、導電回路の脱落の程度を目視判定で、以下の評価基準に基づき判定した。評価結果を表6に示す。
 ・評価基準
4:「剥離なし」
3:「わずかに剥離」
2:「半分程度剥離」
1:「ほとんどの部分で剥離」
(Adhesion of conductive circuit)
In the conductive circuit produced above, a knife was used to make cuts from the surface of the conductive circuit to the depth reaching the base material in 6 grids in each of the vertical and horizontal directions at intervals of 2 mm. An adhesive tape was attached to this notch and immediately peeled off, and the degree of dropout of the conductive circuit was visually judged based on the following evaluation criteria. The evaluation results are shown in Table 6.
・ Evaluation standard 4: "No peeling"
3: "Slight peeling"
2: "About half peeling"
1: "Peeling in most parts"
 <塗工性評価>
 導電性組成物(1)の塗工性を、上記で作製した導電膜および導電回路を用いて、以下のように評価した。すなわち、作製した導電膜および導電回路を、それぞれ目視で観察し、塗工ムラ(ムラ:塗面の濃淡により評価)およびピンホール(導電膜/導電回路が塗布されていない欠陥の有無により評価)について、下記の基準に基づき判定した。評価結果を表6に示す。
<Evaluation of coatability>
The coatability of the conductive composition (1) was evaluated as follows using the conductive film and the conductive circuit produced above. That is, the produced conductive film and conductive circuit are visually observed, respectively, and coating unevenness (unevenness: evaluated by the shade of the coated surface) and pinhole (evaluated by the presence or absence of defects to which the conductive film / conductive circuit is not applied). Was determined based on the following criteria. The evaluation results are shown in Table 6.
 (ムラ)
3:導電膜/導電回路の濃淡が確認されない。
2:導電膜/導電回路の濃淡が1~3箇所あるが極めて微小領域である。
1:導電膜/導電回路の濃淡が4箇所以上確認される、または濃淡の縞の長さが5mm以上のもの1個以上確認される。
(village)
3: The shade of the conductive film / conductive circuit is not confirmed.
2: There are 1 to 3 shades of the conductive film / conductive circuit, but it is an extremely minute region.
1: The shading of the conductive film / conductive circuit is confirmed at four or more places, or one or more of the shading stripes having a length of 5 mm or more are confirmed.
 (ピンホ-ル)
○:ピンホールが1つも確認されない。
△:ピンホールが1~3個あるが極めて微小である。
×:ピンホールが4箇所以上確認される、または直径1mm以上のピンホールが1個以上確認される。
(Pinhole)
◯: No pinhole is confirmed.
Δ: There are 1 to 3 pinholes, but they are extremely small.
X: Four or more pinholes are confirmed, or one or more pinholes having a diameter of 1 mm or more are confirmed.
 <耐久性評価>
 導電性組成物(1)を用いて作製した導電膜および導電回路の耐久性の優劣を、耐湿熱試験後の体積抵抗率の上昇率により以下の基準に基づき評価した。評価結果を表6に示す。
その方法を以下に示す。
まず、作製した塗膜(導電膜/導電回路)を小型環境試験器(エスペック株式会社:型番SH-661)に投入し、温度60℃、相対湿度90%で5000時間放置した後、室温環境に戻してから、体積抵抗率の測定を上述した方法を用いて行った。
 ・評価基準
3:体積抵抗率の上昇率が10%未満、
2:体積抵抗率の上昇率が10%以上20%未満、
1:体積抵抗率の上昇率が20%以上。
<Durability evaluation>
The superiority or inferiority of the durability of the conductive film and the conductive circuit produced by using the conductive composition (1) was evaluated based on the following criteria based on the rate of increase in volume resistivity after the moisture resistance heat test. The evaluation results are shown in Table 6.
The method is shown below.
First, the prepared coating film (conductive film / conductive circuit) was put into a small environmental tester (Espec Co., Ltd .: model number SH-661), left at a temperature of 60 ° C. and a relative humidity of 90% for 5000 hours, and then placed in a room temperature environment. After returning, the volume resistivity was measured using the method described above.
-Evaluation standard 3: The rate of increase in volume resistivity is less than 10%,
2: The rate of increase in volume resistivity is 10% or more and less than 20%,
1: The rate of increase in volume resistivity is 20% or more.
 (導電回路の非接触メディア特性)
CI型6色フレキソ印刷機SOLOFLEX(Windmoeller & Hoelscher KG社製)の第2ユニットに導体パターンを有するフレキソ版(DSF版:デュポン製)を装着した。そして、PENフィルム(125μm)上に、70m/minの速度で導電性組成物(1)を順次印刷した。なお、印刷物の膜厚をデジタルマイクロ膜厚計(ニコン社製、商品名:MH15M)で測定し、平均膜厚が5~10μmになるように適宜印刷条件を調整し、加熱乾燥後、非接触メディア特性評価用の導電回路を得た。得られた導電回路にインピンジ社製ICチップを搭載し、非接触型メディアを作製した。
 次に、インピンジ社の「固定型UHF帯RFIDリーダライタSpeedway Revolution R420(商品名)」を用い、通信の可否を確認した。評価結果を表6に示す。
Y:読み取り可能
N:読み取り不可
(Non-contact media characteristics of conductive circuit)
A flexo plate (DSF version: manufactured by DuPont) having a conductor pattern was attached to the second unit of the CI type 6-color flexo printing machine SOLOFLEX (manufactured by Windmoeller & Holescher KG). Then, the conductive composition (1) was sequentially printed on the PEN film (125 μm) at a speed of 70 m / min. The film thickness of the printed matter is measured with a digital micro film thickness meter (manufactured by Nikon Corporation, trade name: MH15M), the printing conditions are appropriately adjusted so that the average film thickness is 5 to 10 μm, and after heating and drying, non-contact is performed. A conductive circuit for evaluating media characteristics was obtained. An IC chip manufactured by Impinge Co., Ltd. was mounted on the obtained conductive circuit to produce a non-contact type media.
Next, the possibility of communication was confirmed using "Fixed UHF band RFID reader / writer Speedway Revolution R420 (trade name)" manufactured by Impingi. The evaluation results are shown in Table 6.
Y: Readable N: Unreadable
 [実施例2~実施例81、比較例1~比較例20]
 表1~表5に示す組成比で、導電性組成物(1)と同様の方法により、導電性組成物(2)~(81)、(a)~(t)を得た。得られた導電性組成物(2)~(81)、(a)~(t)を用いて、実施例1と同様にして、評価を行った。評価結果を表6~表10に示す。
実施例14は、バインダー樹脂の種類が実施例1と異なるため、導電性組成物作製時の希釈溶剤をトルエン/2-プロパノール(2/1)とした。
実施例15~17は、バインダー樹脂の種類が実施例1と異なるため、導電性組成物作製時の希釈溶剤をトルエン/メチルエチルケトン(1/1)とした。
実施例36、37、38、40、76、77、78、80は硬化剤2種類を併用しており、同じタイミングで添加した。なお、実施例36における、C-1/C-2(=0.85/16.15)は、樹脂固形分100質量部に対してC-1を固形分で0.85%、C-2を16.15%添加したという意味であり、実施例37、38、40、76、77、78、80についても同様である。
[Examples 2 to 81, Comparative Examples 1 to 20]
The conductive compositions (2) to (81) and (a) to (t) were obtained in the same manner as in the conductive composition (1) at the composition ratios shown in Tables 1 to 5. The obtained conductive compositions (2) to (81) and (a) to (t) were used for evaluation in the same manner as in Example 1. The evaluation results are shown in Tables 6 to 10.
In Example 14, since the type of the binder resin is different from that of Example 1, the diluting solvent at the time of producing the conductive composition was toluene / 2-propanol (2/1).
In Examples 15 to 17, since the type of the binder resin is different from that in Example 1, the diluting solvent for producing the conductive composition was toluene / methyl ethyl ketone (1/1).
In Examples 36, 37, 38, 40, 76, 77, 78 and 80, two kinds of curing agents were used in combination and added at the same timing. In Example 36, C-1 / C-2 (= 0.85 / 16.15) contained 0.85% of C-1 in solid content with respect to 100 parts by mass of resin solid content, and C-2. It means that 16.15% was added, and the same applies to Examples 37, 38, 40, 76, 77, 78 and 80.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

 実施例で使用した材料を下記に示す。 The materials used in the examples are shown below.
 <バインダー樹脂(A)>
 ・A-1:ポリウレタン樹脂(酸価:10mgKOH/g)
 ・A-2:ポリアミド樹脂(酸価13.2mgKOH/g、水酸基価5.5mgKOH/g)
 ・A-3:ポリウレタン樹脂 バイロンUR3500(商品名、酸価:35mgKOH/g、水酸基価:10mgKOH/g、東洋紡株式会社製)
 ・A-4:ポリエステル樹脂 バイロンGK130(商品名、水酸基価:19mgKOH/g、東洋紡株式会社製)
<Binder resin (A)>
-A-1: Polyurethane resin (acid value: 10 mgKOH / g)
A-2: Polyamide resin (acid value 13.2 mgKOH / g, hydroxyl value 5.5 mgKOH / g)
-A-3: Polyurethane resin Byron UR3500 (trade name, acid value: 35 mgKOH / g, hydroxyl value: 10 mgKOH / g, manufactured by Toyobo Co., Ltd.)
-A-4: Polyester resin Byron GK130 (trade name, hydroxyl value: 19 mgKOH / g, manufactured by Toyobo Co., Ltd.)
 <炭素材料(B)>
 (黒鉛(B-1)〉
 ・B-1-1:鱗片状黒鉛CPB(商品名、日本黒鉛社製)平均粒径20μm(カタログ)
 ・B-1-2:薄片化黒鉛UP-20(商品名、日本黒鉛社製)平均粒径20μm(カタログ)
 ・B-1-3:膨張化黒鉛GR15(商品名、日本黒鉛社製)平均粒径15μm(カタログ)
 ・B-1-4:球状黒鉛CGB-50(商品名、日本黒鉛社製)平均粒径50μm(カタログ)
 ・B-1-5:人造黒鉛PAG-5(商品名、日本黒鉛社製)平均粒径30μm(カタログ)
<Carbon material (B)>
(Graphite (B-1)>
B-1-1: Scale graphite CPB (trade name, manufactured by Nippon Graphite Co., Ltd.) Average particle size 20 μm (catalog)
B-1-2: Thinned graphite UP-20 (trade name, manufactured by Nippon Graphite Co., Ltd.) Average particle size 20 μm (catalog)
B-1-3: Expanded graphite GR15 (trade name, manufactured by Nippon Graphite Co., Ltd.) Average particle size 15 μm (catalog)
B-1-4: Spheroidal graphite CGB-50 (trade name, manufactured by Nippon Graphite Co., Ltd.) Average particle size 50 μm (catalog)
B-1-5: Artificial graphite PAG-5 (trade name, manufactured by Nippon Graphite Co., Ltd.) Average particle size 30 μm (catalog)
 (黒鉛以外の炭素材料(B-2)〉
 ・B-2-1:ケッチェンブラックEC-300J(商品名、ライオンスペシャリティケミカルズ社製)
 ・B-2-2:ケッチェンブラックEC-600JD(商品名、ライオンスペシャリティケミカルズ社製)
 ・B-2-3:ファーネスブラック#3050B(商品名、三菱化学社製)
 ・B-2-4:デンカブラックHS-100(商品名、電気化学工業社製)
 ・B-2-5:カーボンナノチューブVGCF-H(商品名、昭和電工社製)
(Carbon material other than graphite (B-2)>
・ B-2-1: Ketjen Black EC-300J (trade name, manufactured by Lion Specialty Chemicals Co., Ltd.)
・ B-2-2: Ketjen Black EC-600JD (trade name, manufactured by Lion Specialty Chemicals Co., Ltd.)
・ B-2-3: Furness Black # 3050B (trade name, manufactured by Mitsubishi Chemical Corporation)
・ B-2-4: Denka Black HS-100 (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.)
-B-2-5: Carbon nanotube VGCF-H (trade name, manufactured by Showa Denko KK)
 <硬化剤(C)>
 ・C-1:アジリジン化合物 ケミタイトPZ-33(商品名、固形分100質量%、株式会社日本触媒製)
 ・C-2:エポキシ化合物 TETRAD-X(商品名、固形分100質量%、三菱化ガス化学株
式会社製) 
 ・C-3:カルボジイミド化合物 カルボジライトV-03(商品名、固形分50質量%、日清紡ケミカル株式会社製)
 ・C-4:イソシアネート化合物 タケネートD-110N(商品名、固形分75質量%、三井化学株式会社社製)
 ・C-5:アルミニウムキレート アルミキレートD(商品名、固形分100質量%、川研ファインケミカル株式会社製)
 ・C-6:チタンキレート オルガチックスTC-401(商品名、固形分65質量%、マツモトファインケミカル株式会社製)
 ・C-7:チタンキレート オルガチックスTC-100(商品名、固形分75質量%、マツモトファインケミカル株式会社製)
 ・C-8:ジルコニウムキレート オルガチックスZC-150(商品名、固形分100質量%、マツモトファインケミカル株式会社製)
<Curing agent (C)>
C-1: Aziridine compound Chemitite PZ-33 (trade name, solid content 100% by mass, manufactured by Nippon Shokubai Co., Ltd.)
-C-2: Epoxy compound TETRAD-X (trade name, solid content 100% by mass, manufactured by Mitsubishi Chemical Gas Chemical Co., Ltd.)
C-3: Carbodiimide compound Carbodilite V-03 (trade name, solid content 50% by mass, manufactured by Nisshinbo Chemical Co., Ltd.)
C-4: Isocyanate compound Takenate D-110N (trade name, solid content 75% by mass, manufactured by Mitsui Chemicals, Inc.)
-C-5: Aluminum chelate Aluminum chelate D (trade name, solid content 100% by mass, manufactured by Kawaken Fine Chemical Co., Ltd.)
-C-6: Titanium chelate Organix TC-401 (trade name, solid content 65% by mass, manufactured by Matsumoto Fine Chemical Co., Ltd.)
-C-7: Titanium chelate Organix TC-100 (trade name, solid content 75% by mass, manufactured by Matsumoto Fine Chemical Co., Ltd.)
C-8: Zirconium chelate Organix ZC-150 (trade name, solid content 100% by mass, manufactured by Matsumoto Fine Chemical Co., Ltd.)
 表6~9に示すように、本導電性組成物を用いた導電膜および導電回路では、硬化剤(C)を使用することで、従来以上に密着性と導電性、耐久性を改善し、両立することができた。
なお、比較例6、8、13は、バインダー樹脂量や黒鉛や黒鉛以外の炭素材料の比率が適切な範囲内にあるが、硬化剤を添加しておらずバインダー樹脂を硬化していないため、耐久性が不十分な結果となっている。実施例36、37、38、76、77、78は2種類の硬化剤を併用しており、単体で使用するよりも幅広い温度で反応するため、1種類の硬化剤のみを含む実施例39、79よりも安定して非常に高い導電性を発現できている。
また、非接触型メディア特性としては、実施例1~81は導電回路の抵抗値が低いため、通信を確認できた。一方で、比較例3~6、8、9、11、12、14~18、20は抵抗値が高いため、通信を確認できなかった。また、比較例1、2、7、10、19は、導電粒子の充填量が多く、抵抗値が低いため、送受信はできたが、一方で樹脂分が少なく基材への密着性が極端に悪いため、非接触型メディアとしての実用性は悪かった。さらに、比較例13も送受信はできたが、導電回路の耐久性が低く、非接触型メディアとしての実用性は悪かった。
As shown in Tables 6 to 9, in the conductive film and the conductive circuit using the present conductive composition, by using the curing agent (C), the adhesion, the conductivity and the durability are improved more than before. I was able to achieve both.
In Comparative Examples 6, 8 and 13, the amount of the binder resin and the ratio of the carbon material other than graphite and graphite are within an appropriate range, but the binder resin is not cured because the curing agent is not added. The result is insufficient durability. In Examples 36, 37, 38, 76, 77, and 78, two types of curing agents are used in combination, and the reaction occurs at a wider temperature range than when used alone. Therefore, Examples 39, which contain only one type of curing agent. It is more stable than 79 and can exhibit very high conductivity.
Further, as for the non-contact type media characteristics, since the resistance value of the conductive circuit was low in Examples 1 to 81, communication could be confirmed. On the other hand, in Comparative Examples 3 to 6, 8, 9, 11, 12, 14 to 18, and 20, communication could not be confirmed because the resistance values were high. Further, in Comparative Examples 1, 2, 7, 10 and 19, since the filling amount of the conductive particles was large and the resistance value was low, transmission and reception were possible, but on the other hand, the resin content was small and the adhesion to the substrate was extremely low. Because of its badness, its practicality as a non-contact medium was poor. Further, although Comparative Example 13 was able to transmit and receive, the durability of the conductive circuit was low, and its practicality as a non-contact medium was poor.
 以上の通り、バインダー樹脂と炭素材料と硬化剤とを含む導電性組成物において、導電性組成物中の炭素材料の配合比率、ならびに、黒鉛と、黒鉛以外の炭素材料との混合比率を選択的に制御することで、炭素材料間で優れた導電ネットワーク形成を可能にし、優れた導電性と密着性と耐久性を発現できることが分かった。 As described above, in the conductive composition containing the binder resin, the carbon material, and the curing agent, the blending ratio of the carbon material in the conductive composition and the mixing ratio of graphite and the carbon material other than graphite are selectively selected. It was found that by controlling the graphite material, it is possible to form an excellent conductive network between carbon materials, and to exhibit excellent conductivity, adhesion and durability.
 本発明の導電性組成物は、炭素材料としては、非常に優れた導電性を有するため、RFIDアンテナ、配線材料、平面発熱体、電極材料を含む幅広い応用分野に適用可能である。 Since the conductive composition of the present invention has extremely excellent conductivity as a carbon material, it can be applied to a wide range of application fields including RFID antennas, wiring materials, flat heating elements, and electrode materials.
 この出願は、2020年10月30日に出願された日本出願特願2020-182741号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2020-182741 filed on October 30, 2020, and incorporates all of its disclosures here.

Claims (10)

  1.  バインダー樹脂(A)と、炭素材料(B)と、硬化剤(C)とを含有する導電性組成物であって、
     炭素材料(B)は、黒鉛(B-1)および黒鉛以外の炭素材料(B-2)を含み、
     炭素材料(B)の含有率は、導電性組成物の固形分100質量%中、65~85質量%であり、
     黒鉛(B-1)の含有率は、炭素材料(B)100質量%中、70.0~99.0質量%であることを特徴とする導電性組成物。
    A conductive composition containing a binder resin (A), a carbon material (B), and a curing agent (C).
    The carbon material (B) contains graphite (B-1) and a carbon material other than graphite (B-2).
    The content of the carbon material (B) is 65 to 85% by mass in 100% by mass of the solid content of the conductive composition.
    A conductive composition having a graphite (B-1) content of 70.0 to 99.0% by mass in 100% by mass of the carbon material (B).
  2.  硬化剤(C)の含有率が、バインダー樹脂(A)100質量%に対して、0.5~20質量%であることを特徴とする請求項1に記載の導電性組成物。 The conductive composition according to claim 1, wherein the content of the curing agent (C) is 0.5 to 20% by mass with respect to 100% by mass of the binder resin (A).
  3.  黒鉛(B-1)の含有率が、炭素材料(B)100質量%中、80.0~99.0質量%であることを特徴とする請求項1または2に記載の導電性組成物。 The conductive composition according to claim 1 or 2, wherein the content of graphite (B-1) is 80.0 to 99.0% by mass in 100% by mass of the carbon material (B).
  4.  黒鉛(B-1)の含有率が、炭素材料(B)100質量%中、90.0~97.5質量%であることを特徴とする請求項1~3のいずれか一項に記載の導電性組成物。 The invention according to any one of claims 1 to 3, wherein the content of graphite (B-1) is 90.0 to 97.5% by mass in 100% by mass of the carbon material (B). Conductive composition.
  5.  炭素材料(B)の含有率が、導電性組成物の固形分100質量%中、70~80質量%であることを特徴とする請求項1~4のいずれか一項に記載の導電性組成物。 The conductive composition according to any one of claims 1 to 4, wherein the content of the carbon material (B) is 70 to 80% by mass based on 100% by mass of the solid content of the conductive composition. thing.
  6.  硬化剤(C)が、アジリジン化合物、またはエポキシ基含有化合物を含むことを特徴とする請求項1~5のいずれか一項に記載の導電性組成物。 The conductive composition according to any one of claims 1 to 5, wherein the curing agent (C) contains an aziridine compound or an epoxy group-containing compound.
  7.  硬化剤(C)が、金属キレートを含むことを特徴とする請求項1~5のいずれか一項に記載の導電性組成物。 The conductive composition according to any one of claims 1 to 5, wherein the curing agent (C) contains a metal chelate.
  8.  前記金属キレートが、アルミニウムキレートを含むことを特徴とする請求項7に記載の導電性組成物。 The conductive composition according to claim 7, wherein the metal chelate contains an aluminum chelate.
  9.  請求項1~8のいずれか一項に記載の導電性組成物を成膜してなる導電膜。 A conductive film formed by forming the conductive composition according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載の導電性組成物を用いてなる導電回路、およびICチップを積載した非接触型メディア。 A non-contact medium loaded with a conductive circuit using the conductive composition according to any one of claims 1 to 8 and an IC chip.
PCT/JP2020/048831 2020-10-30 2020-12-25 Electrically conductive composition, electrically conductive film, and non-contact medium WO2022091432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-182741 2020-10-30
JP2020182741A JP2022073002A (en) 2020-10-30 2020-10-30 Conductive composition, and conductive film

Publications (1)

Publication Number Publication Date
WO2022091432A1 true WO2022091432A1 (en) 2022-05-05

Family

ID=81382130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048831 WO2022091432A1 (en) 2020-10-30 2020-12-25 Electrically conductive composition, electrically conductive film, and non-contact medium

Country Status (3)

Country Link
JP (1) JP2022073002A (en)
TW (1) TW202216920A (en)
WO (1) WO2022091432A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246498A (en) * 2009-10-09 2011-12-08 Toyo Ink Sc Holdings Co Ltd Electroconductive ink
JP2019005993A (en) * 2017-06-23 2019-01-17 東洋インキScホールディングス株式会社 Conductive wiring sheet
JP2019110108A (en) * 2017-12-19 2019-07-04 東洋インキScホールディングス株式会社 Conductive composition, and conductive film
JP2021008588A (en) * 2019-07-03 2021-01-28 東洋インキScホールディングス株式会社 Non-contact type medium
JP2021008589A (en) * 2019-07-03 2021-01-28 東洋インキScホールディングス株式会社 Conductive composition, and conductive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246498A (en) * 2009-10-09 2011-12-08 Toyo Ink Sc Holdings Co Ltd Electroconductive ink
JP2019005993A (en) * 2017-06-23 2019-01-17 東洋インキScホールディングス株式会社 Conductive wiring sheet
JP2019110108A (en) * 2017-12-19 2019-07-04 東洋インキScホールディングス株式会社 Conductive composition, and conductive film
JP2021008588A (en) * 2019-07-03 2021-01-28 東洋インキScホールディングス株式会社 Non-contact type medium
JP2021008589A (en) * 2019-07-03 2021-01-28 東洋インキScホールディングス株式会社 Conductive composition, and conductive film

Also Published As

Publication number Publication date
TW202216920A (en) 2022-05-01
JP2022073002A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP7137740B2 (en) Conductive composition and conductive film
TWI486413B (en) Conductive paste, conductive film, touch panel and method for producing conductive thin film
TW201030766A (en) Conductive paste, electro-magnetic wave shielding film using the same and electro-magnetic wave shielding flexible printed wiring board
JP2014225709A (en) Method of manufacturing circuit wiring line
TW201125884A (en) Solvent free aqueous polyurethane dispersions and methods of making and using the same
KR101828515B1 (en) Heat-discharging Film and Thermal-Conductive Composite Sheets comprising the same
JP2021008589A (en) Conductive composition, and conductive film
JP2021008588A (en) Non-contact type medium
JP4547623B2 (en) Conductive paste
JP6881080B2 (en) Conductive wiring sheet
WO2022091432A1 (en) Electrically conductive composition, electrically conductive film, and non-contact medium
JP6303367B2 (en) Conductive paste, conductive film and touch panel
JP4158080B2 (en) Conductive paste
JP7439401B2 (en) contactless media
TW201340126A (en) Electroconductive composition, method for manufacturing wiring board, wiring board, electrode, method for manufacturing electrode, and electronic device
JP7013693B2 (en) Conductive wiring sheet and manufacturing method of wiring sheet
JP2021163678A (en) Conductive composition for thermo-electrochemical battery electrode
CN115485236A (en) Boron-doped carbon material, conductive composition, conductive film, and electricity storage element
JP6897368B2 (en) Method for manufacturing conductive composition and conductor film
JP2022103133A (en) Conductive composition and conductive film
JP2022150510A (en) Conductive film and conductive device
JP2022099330A (en) Conductive composition and conductive film
JP2021183557A (en) Boron-containing carbon material, conductive composition, and conductive film
JP2022001426A (en) Method for manufacturing gravure printed matter
JPH11279471A (en) Water-based printing ink composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959946

Country of ref document: EP

Kind code of ref document: A1