WO2022091276A1 - 圧縮空気供給システム - Google Patents

圧縮空気供給システム Download PDF

Info

Publication number
WO2022091276A1
WO2022091276A1 PCT/JP2020/040543 JP2020040543W WO2022091276A1 WO 2022091276 A1 WO2022091276 A1 WO 2022091276A1 JP 2020040543 W JP2020040543 W JP 2020040543W WO 2022091276 A1 WO2022091276 A1 WO 2022091276A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
compressed air
pressure bleed
supply system
main pipe
Prior art date
Application number
PCT/JP2020/040543
Other languages
English (en)
French (fr)
Inventor
祐朗 高見
直也 世古口
克彦 石田
健太 梅▲崎▼
洋 坂本
龍彦 五井
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US18/250,920 priority Critical patent/US20240003293A1/en
Priority to JP2022558695A priority patent/JP7429337B2/ja
Priority to EP20959794.7A priority patent/EP4239172A1/en
Priority to PCT/JP2020/040543 priority patent/WO2022091276A1/ja
Publication of WO2022091276A1 publication Critical patent/WO2022091276A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/02Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0618Environmental Control Systems with arrangements for reducing or managing bleed air, using another air source, e.g. ram air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible

Definitions

  • This application relates to a compressed air supply system that extracts compressed air from a gas turbine engine and supplies it to the aircraft.
  • the air conditioner pack installed on the fuselage of the aircraft adjusts the compressed air supplied from the gas turbine via the compressed air supply system to an appropriate temperature and pressure and supplies it to the cabin.
  • Compressed air supply systems often extract compressed air from high-pressure compressors of gas turbine engines because they can extract compressed air with relatively high pressure.
  • the above auxiliary compressor is required to have a high boosting capacity so as to be able to cope with various situations, and the size tends to increase.
  • the present application has been made in view of the above circumstances, and an object of the present application is to provide a compressed air supply system capable of reducing the size of an auxiliary compressor.
  • the compressed air supply system is a compressed air supply system that extracts compressed air from a gas turbine engine and supplies it to the air conditioning pack of the machine body, and is a low pressure system that extracts compressed air from upstream of a high pressure compressor.
  • the outlet pressure of the main pipe is the air-conditioning pack. It is provided with a control device for opening the high-pressure bleed valve when it is determined that the pressure is insufficient to maintain the required pressure range at the inlet.
  • the auxiliary compressor when it is determined that the pressure is insufficient, the high pressure bleed valve is opened and the high pressure compressed air is introduced from the high pressure bleed port, so that the pressure of the compressed air supplied by the compressed air supply system is increased. Can be maintained in an appropriate range. Therefore, in the above configuration, the auxiliary compressor does not need a boosting capacity that can handle all situations, and the size of the auxiliary compressor can be suppressed.
  • FIG. 1 is a schematic diagram of a compressed air supply system according to the first embodiment.
  • FIG. 2 is a flowchart of control by the control device of the first embodiment.
  • FIG. 3 is a schematic diagram of the compressed air supply system according to the second embodiment.
  • FIG. 4 is a schematic diagram of the compressed air supply system according to the third embodiment.
  • FIG. 5 is a flowchart of control by the control device of the third embodiment.
  • FIG. 1 is a schematic view of the compressed air supply system 100 according to the first embodiment.
  • the compressed air supply system 100 is a system that extracts compressed air from the gas turbine engine 101 for an aircraft and supplies it to the airframe 102.
  • the compressed air supplied to the machine body 102 is adjusted to an appropriate temperature and pressure by the air conditioning pack 109 and supplied to the cabin.
  • an air conditioner Air Cycle Machine
  • a vapor compression refrigeration system Vapor Cycle System
  • the gas turbine engine 101 of the present embodiment includes a fan 103, a low pressure compressor 104, a high pressure compressor 105, a combustor 106, a high pressure turbine 107, and a low pressure turbine 108, like a general turbofan engine. They are arranged in this order from upstream to downstream.
  • the compressed air supply system 100 includes a low-pressure bleed port 11, a high-pressure bleed port 12, a main pipe 13, an auxiliary compressor 14, a precooler 15, a high-pressure bleed pipe 16, and a high-pressure bleed valve. 17 and a control device 18.
  • the low pressure bleed air port 11 is a port that extracts compressed air from upstream of the high pressure compressor 105 of the gas turbine engine 101.
  • compressed air is extracted from the corresponding positions between the low pressure compressor 104 and the high pressure compressor 105.
  • the position for extracting compressed air is not limited as long as it is upstream of the high-pressure compressor 105.
  • compressed air may be extracted from the periphery of the fan 103.
  • the high-pressure bleed air port 12 is a port that extracts compressed air from the downstream side of the front stage portion of the high-pressure compressor 105 of the gas turbine engine 101.
  • the high-pressure bleed port 12 of the present embodiment extracts the compressor from a portion downstream of the high-pressure compressor 105.
  • the "pre-stage portion of the high-pressure compressor 105" means the portion corresponding to the frontmost when the high-pressure compressor 105 is divided into three in the axial direction. Since the front stage portion of the high pressure compressor 105 is provided with a mechanism for adjusting the vane angle (not shown), it is structurally difficult to extract compressed air from the front stage portion of the high pressure compressor 105.
  • the compressed air extracted by the high-pressure bleed air port 12 has a higher pressure than the compressed air extracted by the low-pressure bleed air port 11.
  • the main pipe 13 is a pipe extending from the low pressure bleed port 11 toward the air conditioning pack 109 of the machine body 102. That is, the compressed air extracted by the low-pressure bleed port 11 flows in the main pipe 13 toward the air conditioning pack 109.
  • a check valve 21 is provided in a portion of the main pipe 13 between the auxiliary compressor 14 and the precooler 15. The check valve 21 allows the flow in the direction from the low pressure bleed port 11 to the precooler 15, while prohibiting the flow in the direction from the precooler 15 to the low pressure bleed port 11.
  • a low-pressure bleed barometer 22 is provided in a portion between the low-pressure bleed port 11 of the main pipe 13 and the auxiliary compressor 14.
  • the low pressure barometer 22 measures the pressure of the compressed air extracted by the low pressure bleed air port 11.
  • An auxiliary compressor outlet pressure gauge 23 is provided in a portion of the main pipe 13 between the auxiliary compressor 14 and the precooler 15.
  • the auxiliary compressor outlet pressure gauge 23 measures the outlet pressure of the auxiliary compressor 14.
  • a main pipe outlet pressure gauge 24 is provided at the downstream end portion of the main pipe 13. The main pipe outlet pressure gauge 24 measures the outlet pressure of the main pipe 13.
  • the auxiliary compressor 14 is a device provided in the main pipe 13 to boost the compressed air.
  • the format of the auxiliary compressor 14 is not particularly limited.
  • the auxiliary compressor 14 may be driven by being powered by the low-pressure compressor 104 of the gas turbine engine 101, or may be driven by being powered by the high-pressure compressor 105.
  • the gas turbine engine 101 may be driven via a drive device (as an example, a continuously variable transmission) that shifts and outputs the driving force of the rotating shaft of the gas turbine engine 101.
  • the auxiliary compressor 14 may be driven by obtaining power from an electric motor (not shown), or may be driven by using high pressure air.
  • the auxiliary compressor 14 can be rotationally driven at an arbitrary rotation speed, whereby the degree of boosting can be arbitrarily set.
  • the precooler 15 is a device that cools compressed air.
  • the precooler 15 is provided in a portion downstream of the auxiliary compressor 14 of the main pipe 13.
  • the precooler 15 of the present embodiment is cooled by exchanging heat with the outside air of the compressor.
  • the flow rate of the outside air flowing into the precooler 15 can be arbitrarily set, whereby the degree of cooling can be arbitrarily set.
  • the high-pressure bleed air pipe 16 is a pipe that connects the main pipe 13 and the high-pressure bleed air port 12.
  • the high-pressure bleeding pipe 16 of the present embodiment connects a portion upstream of the precooler 15 of the main pipe 13 and downstream of the auxiliary compressor 14 and the check valve 21 with the high-pressure bleeding port 12. That is, the compressed air extracted by the high-pressure bleed port 12 flows in the high-pressure bleed pipe 16 toward the main pipe 13.
  • a high-pressure bleed valve outlet pressure gauge 25 is provided in a portion of the high-pressure bleed pipe 16 between the high-pressure bleed valve 17 and the main pipe 13. The high-pressure bleed valve outlet pressure gauge 25 can measure the outlet pressure of the high-pressure bleed valve 17.
  • the high-pressure bleed valve 17 is a valve provided in the high-pressure bleed pipe 16. By adjusting the opening degree of the high-pressure bleed valve 17, the flow rate and pressure of the compressed air extracted from the high-pressure bleed port 12 and supplied to the main pipe 13 can be adjusted.
  • the control device 18 is a device that performs various controls.
  • the control device 18 has a processor, a volatile memory, a non-volatile memory, an I / O interface, and the like.
  • Various programs and data are stored in the non-volatile memory of the control device 18.
  • the processor of the control device 18 performs arithmetic processing using the volatile memory based on the program stored in the non-volatile memory.
  • the control device 18 is electrically connected to the low pressure bleed air pressure gauge 22, the auxiliary compressor outlet pressure gauge 23, the main pipe outlet pressure gauge 24, and the high pressure bleed air valve outlet pressure gauge 25, and the compressed air extracted by the low pressure bleed air port 11.
  • the pressure, the outlet pressure of the auxiliary compressor 14, the outlet pressure of the main pipe 13, and the outlet pressure of the high-pressure bleed valve 17 can be obtained.
  • the control device 18 is electrically connected to the high-pressure bleed valve 17, transmits a control signal to the high-pressure bleed valve 17, extracts from the high-pressure bleed port 12, and supplies compressed air to the main pipe 13. The flow rate and pressure can be adjusted.
  • control device 18 receives various signals from the machine body 102.
  • the signal transmitted from the machine body 102 includes an abnormal signal. For example, when one of the gas turbine engines 101 mounted on the machine 102 is stopped, an abnormality signal is transmitted from the machine 102 to the control device 18.
  • FIG. 2 is a flowchart of control by the control device 18 of the present embodiment. This control is started with the high pressure bleed valve 17 closed. When the control is started, the control device 18 determines whether or not the pressure is insufficient (step S1).
  • the above-mentioned "insufficient pressure state” means a state in which the outlet pressure of the main pipe 13 cannot maintain the required pressure range of the air conditioning pack 109 with the high pressure bleed valve 17 closed.
  • the required pressure range is the pressure required for maintaining the pressure inside the machine and for driving the air conditioning pack 109, and may be, for example, 1 to 3 atm.
  • the air conditioning pack 109 can adjust the compressed air to an appropriate pressure and supply it to the guest room.
  • the outlet pressure of the precooler 15 cannot maintain the required pressure range of the air conditioning pack 109 means that the outlet pressure of the main pipe 13 deviates from the required pressure range of the air conditioning pack 109 when an assumed disturbance is input. Is also included. That is, there is a case where the auxiliary compressor 14 cannot be operated with a certain margin with respect to the required pressure range of the air conditioning pack 109.
  • the control device 18 when one of the gas turbine engines 101 mounted on the body 102 is stopped, the required pressure range of the compressed air supply system 100 provided in the other gas turbine engine 101 shifts in the increasing direction. .. In this case, the pressure for the compressed air supply system 100 becomes insufficient. Therefore, in the present embodiment, when the control device 18 receives an abnormal signal transmitted from the airframe 102 when one of the gas turbine engines 101 is stopped, it determines that the pressure is insufficient.
  • the control device 18 determines that the pressure is insufficient when the pressure of the compressed air extracted by the low pressure bleed air port 11 falls below a predetermined lower limit input pressure.
  • the pressure of the compressed air extracted from the low-pressure bleed air port 11 can be obtained from the low-pressure bleed barometer 22.
  • step S1 When the control device 18 determines in step S1 that the pressure is not insufficient (NO in step S1), the control device 18 repeats step S1. On the other hand, when it is determined that the pressure is insufficient (YES in step S1), the high pressure bleed valve 17 is opened (step S2). By opening the high-pressure bleed valve 17, the compressed air with a relatively high pressure extracted from the high-pressure bleed port 12 is supplied to the main pipe 13. As a result, the insufficient pressure state is eliminated, and compressed air having an appropriate pressure can be supplied to the machine body 102.
  • the control device 18 determines whether or not the outlet pressure of the main pipe 13 is within the required pressure range of the air conditioning pack 109 (step S3).
  • the outlet pressure of the main pipe 13 can be obtained from the main pipe outlet pressure gauge 24.
  • step S3 When the control device 18 determines that the outlet pressure of the main pipe 13 is within the required pressure range of the air conditioning pack 109 (YES in step S3), the control device 18 ends the control. On the other hand, when it is determined that the outlet pressure of the main pipe 13 is not within the required pressure range of the air conditioning pack 109 (NO in step S3), the opening degree of the high pressure bleed valve 17 is adjusted (step S4). For example, when the outlet pressure of the main pipe 13 is lower than the required pressure range of the air conditioning pack 109, the opening degree of the high pressure bleed valve 17 is increased to increase the outlet pressure of the main pipe 13.
  • steps S3 and S4 are repeated to adjust the opening degree of the high pressure bleed valve 17 until the outlet pressure of the main pipe 13 falls within the required pressure range of the air conditioning pack 109.
  • the control ends when the outlet pressure of the main pipe 13 falls within the required pressure range of the air conditioning pack 109.
  • FIG. 3 is a schematic view of the compressed air supply system 200 according to the second embodiment.
  • the arrangement of the high-pressure bleed pipe 16 and the check valve 21 is different from the compressed air supply system 100 according to the first embodiment.
  • Other configurations are common to the compressed air supply system 100 according to the first embodiment.
  • the high-pressure bleeding pipe 16 of the present embodiment connects a portion downstream of the low-pressure bleeding port 11 of the main pipe 13 and upstream of the auxiliary compressor 14 with the high-pressure bleeding port 12.
  • the check valve 21 of the present embodiment is provided in a portion downstream of the low pressure bleed port 11 of the main pipe 13 and upstream of the portion to which the high pressure bleed pipe 16 is connected. Therefore, it is possible to prevent the compressed air extracted by the high-pressure bleed air port 12 from flowing to the low-pressure bleed air port 11.
  • the high-pressure bleed valve 17 when the high-pressure bleed valve 17 is opened, only the compressed air extracted by the high-pressure bleed port 12 is supplied to the inlet of the auxiliary compressor 14.
  • a control valve is provided in place of the check valve 21 in the main pipe 13, and the compressed air extracted by the high-pressure bleed port 11 and the compressed air extracted by the low-pressure bleed port 13 are mixed and used in the auxiliary compressor 14. It may be a configuration to be introduced.
  • FIG. 4 is a schematic view of the compressed air supply system 300 according to the third embodiment.
  • the compressed air supply system 300 according to the present embodiment is different from the compressed air supply system 200 according to the second embodiment in that it includes a detour pipe 31 and a detour valve 32.
  • Other configurations are common to the compressed air supply system 200 according to the second embodiment.
  • the detour pipe 31 is a pipe for bypassing the auxiliary compressor 14 and supplying the compressed air extracted by the high-pressure bleed port 12 to the main pipe 13.
  • the detour pipe 31 connects a portion upstream of the precooler 15 of the main pipe 13 and downstream of the auxiliary compressor 14 and a portion upstream of the high pressure bleed valve 17 of the high pressure bleed pipe 16.
  • the detour valve 32 is provided in the detour pipe 31.
  • the detour valve 32 is electrically connected to the control device 18 and receives a control signal from the control device 18.
  • the detour valve 32 opens and closes by receiving a control signal from the control device 18.
  • FIG. 5 is a flowchart of control by the control device 18 of the third embodiment. This control is started with the high pressure bleed valve 17 and the detour valve 32 closed.
  • the control device 18 determines whether or not the pressure is insufficient (step S11), and if it is determined that the pressure is insufficient, the high pressure bleed valve 17 is opened (step S11). Step S12). Up to this point, it is the same as steps S1 and S2 described in the first embodiment.
  • step S13 the control device 18 determines whether or not the outlet pressure of the auxiliary compressor 14 is lower than the predetermined failure determination pressure. If the outlet pressure of the auxiliary compressor 14 is lower than the failure determination pressure, it is highly possible that the auxiliary compressor 14 or its peripheral equipment has failed.
  • step S13 when the control device 18 determines that the outlet pressure of the auxiliary compressor 14 is lower than the failure determination pressure (YES in step S13), the control device 18 closes the high-pressure bleed valve 17 and opens the detour valve 32. As a result, the compressed air extracted by the high-pressure bleed port 12 bypasses the auxiliary compressor 14 and is supplied to the main pipe 13. As a result, even if the auxiliary compressor 14 or the equipment around it fails, the compressed air supply system 100 can supply the compressed air with a relatively high pressure to the machine body 102. If it is determined that the outlet pressure of the auxiliary compressor 14 is not lower than the failure determination pressure (NO in step S13), step S13 is repeated.
  • the compressed air supply system is a compressed air supply system that extracts compressed air from a gas turbine engine and supplies it to the air conditioning pack of the machine body, and is compressed air from upstream of the high-pressure compressor.
  • a low-pressure bleed port for extracting air a high-pressure bleed port for extracting compressed air from downstream of the front portion of the high-pressure compressor, a main pipe extending from the low-pressure bleed port toward the air-conditioning pack, and the main pipe.
  • the auxiliary compressor that boosts the compressed air, the high-pressure bleed air pipe that connects the main pipe and the high-pressure bleed air port, the high-pressure bleed air valve provided in the high-pressure bleed air pipe, and the high-pressure bleed air valve remain closed.
  • the present invention includes a control device for opening the high-pressure bleed valve when it is determined that the outlet pressure of the main pipe becomes a pressure insufficient state in which the required pressure range of the air conditioning pack cannot be maintained.
  • the auxiliary compressor when it is determined that the pressure is insufficient, the high pressure bleed valve is opened and high pressure compressed air is introduced to bring the pressure of the compressed air supplied by the compressed air supply system into an appropriate range. Can be maintained. Therefore, in the above configuration, the auxiliary compressor does not need a boosting capacity that can handle all situations, and the size of the auxiliary compressor can be suppressed.
  • control device determines that the pressure is insufficient when the pressure of the compressed air extracted by the low pressure bleed air port falls below a predetermined lower limit input pressure. Open the high pressure bleed valve.
  • the high-pressure bleed valve can be opened at an appropriate timing.
  • control device when the control device receives a predetermined abnormal signal from the airframe, it determines that the pressure is insufficient and opens the high pressure bleed valve.
  • the high-pressure bleed valve can be opened at an appropriate timing.
  • the high-pressure bleed pipe connects a portion of the main pipe downstream of the auxiliary compressor to the high-pressure bleed port.
  • the opening degree of the high pressure bleed valve is adjusted so that the outlet pressure of the main pipe falls within the required pressure range of the air conditioning pack.
  • the compressed air supply system can supply compressed air of an appropriate pressure to the air conditioning pack.
  • the high pressure bleed air pipe is the above-mentioned. A portion of the main pipe downstream of the low pressure bleed port and upstream of the auxiliary compressor is connected to the high pressure bleed port.
  • a portion upstream of the precooler of the main pipe and downstream of the auxiliary compressor and a portion of the high pressure bleed air pipe upstream of the high pressure bleed valve includes a detour pipe connecting the above and a detour valve provided in the detour pipe, and when the high-pressure bleed valve is opened, the outlet pressure of the auxiliary compressor is a predetermined failure determination pressure. If it is less than the above, the high pressure bleed valve is closed and the detour valve is opened.
  • the compressed air supply system can supply compressed air with a relatively high pressure to the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

本願の一態様に係る圧縮空気供給システムは、ガスタービンエンジンから圧縮空気を抽出して機体の空調パックに供給する圧縮空気供給システムであって、高圧圧縮機よりも上流から圧縮空気を抽出する低圧抽気ポートと、高圧圧縮機の前段部分よりも下流から圧縮空気を抽出する高圧抽気ポートと、低圧抽気ポートから空調パックに向かって延びるメイン配管と、メイン配管に設けられ、圧縮空気を昇圧する補助圧縮機と、メイン配管と高圧抽気ポートとを連結する高圧抽気配管と、高圧抽気配管に設けられた高圧抽気弁と、高圧抽気弁を閉じたままではメイン配管の出口圧力が空調パックの要求圧力範囲を維持できない圧力不足状態になると判定したとき、高圧抽気弁を開放する制御装置と、を備えている。

Description

圧縮空気供給システム
 本願は、ガスタービンエンジンから圧縮空気を抽出して機体に供給する圧縮空気供給システムに関する。
 航空機の機体に設けられた空調パックは、ガスタービンから圧縮空気供給システムを介して供給された圧縮空気を適切な温度及び圧力に調整して客室へ供給している。圧縮空気供給システムは、比較的圧力の高い圧縮空気が抽出できることから、ガスタービンエンジンの高圧圧縮機からの圧縮空気を抽出することが多かった。
 ところが、高圧圧縮機から抽出した圧縮空気をそのまま使用すると、状況によっては機体に供給する圧縮空気が機体の要求圧力よりも高くなることがある。この場合、圧縮空気を減圧しなければならず、エネルギーロスにつながるおそれがある。そこで、高圧圧縮機よりも上流から、より低圧な圧縮空気を抽出し、抽出した圧縮空気を補助圧縮機によって必要な圧力にまで昇圧してから機体に供給する圧縮空気供給システムが提案されている(例えば、特許文献1参照)。
欧州特許第2584172号明細書
 上記の補助圧縮機は、様々な状況に対応できるように高い昇圧能力が求められ、大きさが大きくなる傾向にある。本願は、以上のような事情に鑑みてなされたものであり、補助圧縮機の大きさを抑えることができる圧縮空気供給システムを提供することを目的とする。
 本願の一態様に係る圧縮空気供給システムは、ガスタービンエンジンから圧縮空気を抽出して機体の空調パックに供給する圧縮空気供給システムであって、高圧圧縮機よりも上流から圧縮空気を抽出する低圧抽気ポートと、前記高圧圧縮機の前段部分よりも下流から圧縮空気を抽出する高圧抽気ポートと、前記低圧抽気ポートから前記空調パックに向かって延びるメイン配管と、前記メイン配管に設けられ、圧縮空気を昇圧する補助圧縮機と、
 前記メイン配管と前記高圧抽気ポートとを連結する高圧抽気配管と、前記高圧抽気配管に設けられた高圧抽気弁と、前記高圧抽気弁を閉じたままでは前記メイン配管の出口圧力が前記空調パックの入口の要求圧力範囲を維持できない圧力不足状態になると判定したとき、前記高圧抽気弁を開放する制御装置と、を備えている。
 この構成によれば、圧力不足状態になると判定されたとき、高圧抽気弁が開放され、高圧抽気ポートからも高圧の圧縮空気が導入されることで、圧縮空気供給システムが供給する圧縮空気の圧力を適切な範囲に維持することができる。したがって、上記の構成では、補助圧縮機にはあらゆる状況に対応できる昇圧能力は必要なく、補助圧縮機の大きさを抑えることができる。
 上記の構成によれば、補助圧縮機の大きさを抑えることができる圧縮空気供給システムを提供することができる。
図1は、第1実施形態に係る圧縮空気供給システムの概略図である。 図2は、第1実施形態の制御装置による制御のフローチャートである。 図3は、第2実施形態に係る圧縮空気供給システムの概略図である。 図4は、第3実施形態に係る圧縮空気供給システムの概略図である。 図5は、第3実施形態の制御装置による制御のフローチャートである。
 (第1実施形態)
 はじめに、本願の第1実施形態に係る圧縮空気供給システム100につて説明する。図1は第1実施形態に係る圧縮空気供給システム100の概略図である。圧縮空気供給システム100は、航空機用のガスタービンエンジン101から圧縮空気を抽出して、機体102に供給するシステムである。機体102に供給された圧縮空気は、空調パック109によって適切な温度及び圧力に調整されて客室へ供給される。例えば、空調機(Air Cycle Machine)や蒸気圧縮冷凍装置(Vapor Cycle System)などが空調パック109に該当する。
 本実施形態では、1つの機体102に複数のガスタービンエンジン101が搭載されており、ガスタービンエンジン101のそれぞれに圧縮空気供給システム100が設けられているものとする。本実施形態のガスタービンエンジン101は、一般的なターボファンエンジンと同じように、ファン103、低圧圧縮機104、高圧圧縮機105、燃焼器106、高圧タービン107、低圧タービン108を備えており、上流から下流に向かってこの順で配置されている。
 また、本実施形態に係る圧縮空気供給システム100は、低圧抽気ポート11と、高圧抽気ポート12と、メイン配管13と、補助圧縮機14と、プレクーラ15と、高圧抽気配管16と、高圧抽気弁17と、制御装置18と、を備えている。以下、これらの構成要素について順に説明する。
 低圧抽気ポート11は、ガスタービンエンジン101の高圧圧縮機105よりも上流から圧縮空気を抽出するポートである。本実施形態では、低圧圧縮機104と高圧圧縮機105の間に対応する位置から圧縮空気を抽出する。ただし、高圧圧縮機105よりも上流であれば圧縮空気を抽出する位置は限定されない。例えば、ファン103の周辺から圧縮空気を抽出してもよい。
 高圧抽気ポート12は、ガスタービンエンジン101の高圧圧縮機105の前段部分よりも下流から圧縮空気を抽出するポートである。本実施形態の高圧抽気ポート12は、高圧圧縮機105よりも下流の部分から圧縮機を抽出する。ここで、「高圧圧縮機105の前段部分」とは、高圧圧縮機105を軸方向に3分割したときに最も前方にあたる部分をいう。この高圧圧縮機105の前段部分には、図外のベーンの角度を調整する機構が設けられているため、構造上、高圧圧縮機105の前段部分から圧縮空気を抽出するのは困難である。高圧抽気ポート12で抽出した圧縮空気は、低圧抽気ポート11で抽出した圧縮空気よりも圧力が高い。
 メイン配管13は、低圧抽気ポート11から機体102の空調パック109に向かって延びる配管である。つまり、低圧抽気ポート11で抽出した圧縮空気は、このメイン配管13内を空調パック109に向かって流れる。メイン配管13の補助圧縮機14とプレクーラ15の間の部分には、逆止弁21が設けられている。この逆止弁21は、低圧抽気ポート11からプレクーラ15に向かう方向の流れは許容する一方、プレクーラ15から低圧抽気ポート11に向かう方向の流れは禁止する。また、メイン配管13の低圧抽気ポート11と補助圧縮機14の間の部分には低圧抽気圧計22が設けられている。低圧抽気圧計22は、低圧抽気ポート11で抽出した圧縮空気の圧力を測定する。メイン配管13の補助圧縮機14とプレクーラ15の間の部分には、補助圧縮機出口圧計23が設けられている。補助圧縮機出口圧計23は、補助圧縮機14の出口圧力を測定する。メイン配管13の下流端部分には、メイン配管出口圧計24が設けられている。メイン配管出口圧計24は、メイン配管13の出口圧力を測定する。
 補助圧縮機14は、メイン配管13に設けられ、圧縮空気を昇圧する装置である。なお、補助圧縮機14の形式は特に限定されない。補助圧縮機14は、ガスタービンエンジン101の低圧圧縮機104から動力を得て駆動してもよく、高圧圧縮機105から動力を得て駆動してもよい。例えば、ガスタービンエンジン101の回転軸の駆動力を変速して出力する駆動装置(一例として無段変速機)を介して駆動してもよい。さらに、補助圧縮機14は、図外の電動モータから動力を得て駆動してもよく、高圧空気を利用して駆動してもよい。補助圧縮機14は任意の回転速度で回転駆動させることができ、これにより昇圧の程度を任意に設定することができる。
 プレクーラ15は、圧縮空気を冷却する機器である。プレクーラ15は、メイン配管13の補助圧縮機14よりも下流の部分に設けられている。本実施形態のプレクーラ15は、圧縮機を外気と熱交換させることにより冷却する。プレクーラ15に流入する外気の流量は任意に設定でき、これにより冷却の程度を任意に設定することができる。
 高圧抽気配管16は、メイン配管13と高圧抽気ポート12とを連結する配管である。本実施形態の高圧抽気配管16は、メイン配管13のプレクーラ15よりも上流であって補助圧縮機14及び逆止弁21よりも下流の部分と高圧抽気ポート12とを連結している。つまり、高圧抽気ポート12で抽出した圧縮空気は、この高圧抽気配管16内をメイン配管13に向かって流れる。また、高圧抽気配管16の高圧抽気弁17とメイン配管13の間の部分には高圧抽気弁出口圧計25が設けられている。高圧抽気弁出口圧計25は、高圧抽気弁17の出口圧力を測定することができる。
 高圧抽気弁17は、高圧抽気配管16に設けられた弁である。高圧抽気弁17は開度を調整することで、高圧抽気ポート12から抽出してメイン配管13に供給される圧縮空気の流量及び圧力を調整することができる。
 制御装置18は、種々の制御を行う装置である。制御装置18は、プロセッサ、揮発性メモリ、不揮発性メモリ、及び、I/Oインターフェース等を有している。制御装置18の不揮発性メモリには、種々のプログラム及びデータが保存されている。制御装置18のプロセッサは、不揮発性メモリに保存されたプログラムに基づいて、揮発性メモリを用いて演算処理を行う。
 制御装置18は、低圧抽気圧計22、補助圧縮機出口圧計23、メイン配管出口圧計24、及び、高圧抽気弁出口圧計25と電気的に接続されており、低圧抽気ポート11で抽出した圧縮空気の圧力、補助圧縮機14の出口圧力、メイン配管13の出口圧力、及び、高圧抽気弁17の出口圧力を取得することができる。さらに、制御装置18は、高圧抽気弁17と電気的に接続されており、高圧抽気弁17に制御信号を送信して、高圧抽気ポート12から抽出してメイン配管13に供給される圧縮空気の流量及び圧力を調整することができる。
 また、制御装置18は、機体102から種々の信号を受信する。機体102から送信される信号には、異常信号が含まれる。例えば、機体102に搭載された複数のガスタービンエンジン101のうち、1つのガスタービンエンジン101が停止した場合には、機体102から制御装置18に異常信号が送信される。
 図2は、本実施形態の制御装置18による制御のフローチャートである。なお、この制御は、高圧抽気弁17が閉じられた状態で開始される。制御が開始されると、制御装置18は、圧力不足状態になるか否かを判定する(ステップS1)。
 上記の「圧力不足状態」とは、高圧抽気弁17を閉じたままではメイン配管13の出口圧力が空調パック109の要求圧力範囲を維持できない状態をいう。要求圧力範囲は、機内圧力維持のため、及び、空調パック109の駆動のために要求される圧力であり、例えば、1~3気圧であってもよい。空調パック109は、圧縮空気供給システム100から要求圧力範囲の圧縮空気が供給されると、その圧縮空気を適切な圧力に調整して客室へ供給することができる。さらに、「プレクーラ15の出口圧力が空調パック109の要求圧力範囲を維持できない」とは、想定される外乱が入力されたときにメイン配管13の出口圧力が空調パック109の要求圧力範囲から外れるような場合も含まれる。つまり、補助圧縮機14が空調パック109の要求圧力範囲に対してある程度余裕をもって運転できない場合が含まれる。
 ここで、例えば、機体102に搭載されたガスタービンエンジン101の1つが停止した場合には、それ以外のガスタービンエンジン101に設けられた圧縮空気供給システム100の要求圧力範囲が増加方向にシフトする。この場合、圧縮空気供給システム100に対する圧力不足状態になる。そこで、本実施形態では、制御装置18は、機体102から、ガスタービンエンジン101の1つが停止した場合に送信される異常信号を受信したときは、圧力不足状態になると判定する。
 さらに、エンジンの回転速度が低下するアイドル時、及び、降下時などでは、補助圧縮機14に流入する圧縮空気の圧力が小さくなり、この場合も圧力不足状態になる。そのため、本実施形態では、制御装置18は、低圧抽気ポート11で抽出した圧縮空気の圧力が所定の下限入力圧力を下回ったとき、圧力不足状態になると判定する。なお、低圧抽気ポート11で抽出した圧縮空気の圧力は、低圧抽気圧計22から取得することができる。
 制御装置18は、ステップS1において、圧力不足状態にならないと判定した場合(ステップS1でNO)、ステップS1を繰り返す。一方、圧力不足状態になると判定した場合(ステップS1でYES)、高圧抽気弁17を開放する(ステップS2)。高圧抽気弁17を開放することにより、高圧抽気ポート12で抽出した比較的圧力の高い圧縮空気がメイン配管13へ供給されることになる。その結果、圧力不足状態は解消され、機体102へ適切な圧力の圧縮空気を供給することができる。
 制御装置18は、上記のステップS2を経た後、メイン配管13の出口圧力が空調パック109の要求圧力範囲内か否かを判定する(ステップS3)。メイン配管13の出口圧力はメイン配管出口圧計24から取得することができる。
 制御装置18は、メイン配管13の出口圧力が空調パック109の要求圧力範囲内であると判定した場合(ステップS3でYES)、制御を終了する。一方、メイン配管13の出口圧力が空調パック109の要求圧力範囲内でないと判定した場合(ステップS3でNO)、高圧抽気弁17の開度を調整する(ステップS4)。例えば、メイン配管13の出口圧力が空調パック109の要求圧力範囲を下回るときには、高圧抽気弁17の開度を大きくしてメイン配管13の出口圧力を大きくする。
 ステップS4を経た後は、ステップS3及びS4を繰り返してメイン配管13の出口圧力が空調パック109の要求圧力範囲に収まるまで高圧抽気弁17の開度を調整する。メイン配管13の出口圧力が空調パック109の要求圧力範囲に収まったところで、制御は終了する。
 (第2実施形態)
 次に、本願の第2実施形態に係る圧縮空気供給システム200について説明する。図3は第2実施形態に係る圧縮空気供給システム200の概略図である。図3に示すように、本実施形態に係る圧縮空気供給システム200は、高圧抽気配管16及び逆止弁21の配置が第1実施形態に係る圧縮空気供給システム100と相違する。他の構成については、第1実施形態に係る圧縮空気供給システム100と共通する。
 具体的には、本実施形態の高圧抽気配管16は、メイン配管13の低圧抽気ポート11よりも下流であって補助圧縮機14よりも上流の部分と高圧抽気ポート12とを連結している。また、本実施形態の逆止弁21は、メイン配管13の低圧抽気ポート11よりも下流であって高圧抽気配管16が接続されている部分よりも上流の部分に設けられている。そのため、高圧抽気ポート12で抽出した圧縮空気が、低圧抽気ポート11へ流れることを防止できる。ただし、本実施形態では、高圧抽気弁17を開放すると、高圧抽気ポート12で抽出した圧縮空気のみを補助圧縮機14の入口に供給することになる。この場合であっても、圧力不足状態は解消され、機体102へ適切な圧力の圧縮空気を供給することができる。なお、メイン配管13における逆止弁21の代わりに制御弁を設けて、高圧抽気ポート11で抽出した圧縮空気と、低圧抽気ポート13で抽出した圧縮空気とを混合して、補助圧縮機14に導入する構成としてもよい。
 (第3実施形態)
 次に、本願の第3実施形態に係る圧縮空気供給システム300について説明する。図4は第3実施形態に係る圧縮空気供給システム300の概略図である。図4に示すように、本実施形態に係る圧縮空気供給システム300は、迂回配管31及び迂回弁32を備えている点で、第2実施形態に係る圧縮空気供給システム200と相違する。他の構成については、第2実施形態に係る圧縮空気供給システム200と共通する。
 迂回配管31は、補助圧縮機14を迂回させて高圧抽気ポート12で抽出した圧縮空気をメイン配管13に供給するための配管である。迂回配管31は、メイン配管13のプレクーラ15よりも上流であって補助圧縮機14よりも下流の部分と高圧抽気配管16の高圧抽気弁17よりも上流の部分とを連結している。
 迂回弁32は、迂回配管31に設けられている。迂回弁32は、制御装置18と電気的に接続されており、制御装置18から制御信号を受信する。迂回弁32は制御装置18から制御信号を受信することで迂回弁32は開閉する。
 図5は、第3実施形態の制御装置18による制御のフローチャートである。この制御は、高圧抽気弁17及び迂回弁32が閉じられた状態で開始される。本実施形態では、制御が開始されると、制御装置18は、圧力不足状態になるか否かを判定し(ステップS11)、圧力不足状態になると判定した場合は高圧抽気弁17を開放する(ステップS12)。ここまでは、第1実施形態で説明したステップS1及びS2と同じである。
 続いて、制御装置18は、ステップS13において、補助圧縮機14の出口圧力が所定の故障判定圧力を下回っているか否かを判定する。補助圧縮機14の出口圧力が故障判定圧力を下回っている場合は、補助圧縮機14又はその周辺の機器が故障している可能性が高い。
 そこで、制御装置18は、補助圧縮機14の出口圧力が故障判定圧力を下回っていると判定した場合(ステップS13でYES)、高圧抽気弁17を閉じるとともに迂回弁32を開放する。これにより、高圧抽気ポート12で抽出した圧縮空気は、補助圧縮機14を迂回してメイン配管13に供給される。その結果、補助圧縮機14又はその周辺の機器が故障していたとしても、圧縮空気供給システム100は比較的高い圧力の圧縮空気を機体102に供給することができる。なお、補助圧縮機14の出口圧力が故障判定圧力を下回っていないと判定した場合(ステップS13でNO)、ステップS13を繰り返す。
 (作用効果等)
 以上説明したとおり、各実施形態に係る圧縮空気供給システムは、ガスタービンエンジンから圧縮空気を抽出して機体の空調パックに供給する圧縮空気供給システムであって、高圧圧縮機よりも上流から圧縮空気を抽出する低圧抽気ポートと、前記高圧圧縮機の前段部分よりも下流から圧縮空気を抽出する高圧抽気ポートと、前記低圧抽気ポートから前記空調パックに向かって延びるメイン配管と、前記メイン配管に設けられ、圧縮空気を昇圧する補助圧縮機と、前記メイン配管と前記高圧抽気ポートとを連結する高圧抽気配管と、前記高圧抽気配管に設けられた高圧抽気弁と、前記高圧抽気弁を閉じたままでは前記メイン配管の出口圧力が前記空調パックの要求圧力範囲を維持できない圧力不足状態になると判定したとき、前記高圧抽気弁を開放する制御装置と、を備えている。
 この構成によれば、圧力不足状態になると判定されたとき、高圧抽気弁が開放され、高圧の圧縮空気が導入されることで、圧縮空気供給システムが供給する圧縮空気の圧力を適切な範囲に維持することができる。したがって、上記の構成では、補助圧縮機にはあらゆる状況に対応できる昇圧能力は必要なく、補助圧縮機の大きさを抑えることができる。
 また、各実施形態に係る圧縮空気供給システムでは、前記制御装置は、前記低圧抽気ポートで抽出した圧縮空気の圧力が所定の下限入力圧力を下回ったとき、前記圧力不足状態になると判定し、前記高圧抽気弁を開放する。
 この構成によれば、圧力不足状態になるか否かの判定を容易に行うことができる結果、適切なタイミングで高圧抽気弁を開放することができる。
 また、各実施形態に係る圧縮空気供給システムでは、前記制御装置は、前記機体から所定の異常信号を受信したとき、前記圧力不足状態になると判定し、前記高圧抽気弁を開放する。
 この構成においても、圧力不足状態になるか否かの判定を容易に行うことができる結果、適切なタイミングで高圧抽気弁を開放することができる。
 また、第1実施形態に係る圧縮空気供給システムでは、前記高圧抽気配管は、前記メイン配管の前記補助圧縮機よりも下流の部分と前記高圧抽気ポートとを連結している。
 この構成によれば、圧力不足状態になったときに、圧縮空気供給システム内に高圧の圧縮空気が導入されることで、圧縮空気供給システムが供給する圧縮空気の圧力を適切な範囲に維持することができる。
 また、第1実施形態に係る圧縮空気供給システムでは、前記メイン配管の出口圧力が前記空調パックの要求圧力範囲に収まるように前記高圧抽気弁の開度を調整する。
 この構成によれば、圧縮空気供給システムは適切な圧力の圧縮空気を空調パックに供給することができる
 また、第2及び第3実施形態に係る圧縮空気供給システムでは、前記高圧抽気配管は、前記メイン配管の前記低圧抽気ポートよりも下流であって前記補助圧縮機よりも上流の部分と前記高圧抽気ポートとを連結している。
 この構成であっても、圧力不足状態になったときに、圧縮空気供給システム内に高圧の圧縮空気が導入されることで、圧縮空気供給システムが供給する圧縮空気の圧力を適切な範囲に維持することができる。
 また、第3実施形態に係る圧縮空気供給システムでは、前記メイン配管の前記プレクーラよりも上流であって前記補助圧縮機よりも下流の部分と前記高圧抽気配管の前記高圧抽気弁よりも上流の部分とを連結する迂回配管と、前記迂回配管に設けられた迂回弁と、を備え、前記制御装置は、前記高圧抽気弁を開放したときに、前記補助圧縮機の出口圧力が所定の故障判定圧力を下回った場合には、前記高圧抽気弁を閉じるとともに前記迂回弁を開放する。
 この構成によれば、補助圧縮機又はその周辺の機器が故障したとしても、圧縮空気供給システムは比較的高い圧力の圧縮空気を機体に供給することができる。
11 低圧抽気ポート
12 高圧抽気ポート
13 メイン配管
14 補助圧縮機
15 プレクーラ
16 高圧抽気配管
17 高圧抽気弁
18 制御装置
21 逆止弁
31 迂回配管
32 迂回弁
100 圧縮空気供給システム
101 ガスタービンエンジン
102 機体
103 ファン
104 低圧圧縮機
105 高圧圧縮機
106 燃焼器
107 高圧タービン
108 低圧タービン
109 空調パック
 

Claims (7)

  1.  ガスタービンエンジンから圧縮空気を抽出して機体の空調パックに供給する圧縮空気供給システムであって、
     高圧圧縮機よりも上流から圧縮空気を抽出する低圧抽気ポートと、
     前記高圧圧縮機の前段部分よりも下流から圧縮空気を抽出する高圧抽気ポートと、
     前記低圧抽気ポートから前記空調パックに向かって延びるメイン配管と、
     前記メイン配管に設けられ、圧縮空気を昇圧する補助圧縮機と、
     前記メイン配管と前記高圧抽気ポートとを連結する高圧抽気配管と、
     前記高圧抽気配管に設けられた高圧抽気弁と、
     前記高圧抽気弁を閉じたままでは前記メイン配管の出口圧力が前記空調パックの要求圧力範囲を維持できない圧力不足状態になると判定したとき、前記高圧抽気弁を開放する制御装置と、を備えている、圧縮空気供給システム。
  2.  前記制御装置は、前記低圧抽気ポートで抽出した圧縮空気の圧力が所定の下限入力圧力を下回ったとき、前記圧力不足状態になると判定し、前記高圧抽気弁を開放する、請求項1に記載の圧縮空気供給システム。
  3.  前記制御装置は、前記機体から所定の異常信号を受信したとき、前記圧力不足状態になると判定し、前記高圧抽気弁を開放する、請求項1に記載の圧縮空気供給システム。
  4.  前記高圧抽気配管は、前記メイン配管の前記補助圧縮機よりも下流の部分と前記高圧抽気ポートとを連結している、請求項1乃至3のうちいずれか一の項に記載の圧縮空気供給システム。
  5.  前記制御装置は、前記高圧抽気弁を開放した後、前記メイン配管の出口圧力が前記空調パックの要求圧力範囲に収まるように前記高圧抽気弁の開度を調整する、請求項4に記載の圧縮空気供給システム。
  6.  前記高圧抽気配管は、前記メイン配管の前記低圧抽気ポートよりも下流であって前記補助圧縮機よりも上流の部分と前記高圧抽気ポートとを連結している、請求項1乃至3のうちいずれか一の項に記載の圧縮空気供給システム。
  7.  前記メイン配管の前記プレクーラよりも上流であって前記補助圧縮機よりも下流の部分と前記高圧抽気配管の前記高圧抽気弁よりも上流の部分とを連結する迂回配管と、
     前記迂回配管に設けられた迂回弁と、を備え、
     前記制御装置は、前記高圧抽気弁を開放したときに、前記補助圧縮機の出口圧力が所定の故障判定圧力を下回った場合には、前記高圧抽気弁を閉じるとともに前記迂回弁を開放する、請求項6に記載の圧縮空気供給システム。
     
PCT/JP2020/040543 2020-10-28 2020-10-28 圧縮空気供給システム WO2022091276A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/250,920 US20240003293A1 (en) 2020-10-28 2020-10-28 Compressed air supply system
JP2022558695A JP7429337B2 (ja) 2020-10-28 2020-10-28 圧縮空気供給システム
EP20959794.7A EP4239172A1 (en) 2020-10-28 2020-10-28 Compressed air supply system
PCT/JP2020/040543 WO2022091276A1 (ja) 2020-10-28 2020-10-28 圧縮空気供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040543 WO2022091276A1 (ja) 2020-10-28 2020-10-28 圧縮空気供給システム

Publications (1)

Publication Number Publication Date
WO2022091276A1 true WO2022091276A1 (ja) 2022-05-05

Family

ID=81383834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040543 WO2022091276A1 (ja) 2020-10-28 2020-10-28 圧縮空気供給システム

Country Status (4)

Country Link
US (1) US20240003293A1 (ja)
EP (1) EP4239172A1 (ja)
JP (1) JP7429337B2 (ja)
WO (1) WO2022091276A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273183A (ja) * 2005-03-30 2006-10-12 Shimadzu Corp 抽気システム
EP2584172A2 (en) 2011-10-21 2013-04-24 United Technologies Corporation Constant speed transmission for gas turbine engine
US20150233291A1 (en) * 2014-02-17 2015-08-20 Airbus Operations (Sas) Turbojet comprising a bleeding system for bleeding air in said turbojet
US20150233292A1 (en) * 2014-02-17 2015-08-20 Airbus Operations (Sas) Turbojet comprising a bleeding system for bleeding air in said turbojet
JP2019528213A (ja) * 2016-08-23 2019-10-10 ジーイー・アビエイション・システムズ・エルエルシー 二重圧縮機4ホイールターボマシンを用いた環境制御システムの改善された予冷方法および航空機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273183A (ja) * 2005-03-30 2006-10-12 Shimadzu Corp 抽気システム
EP2584172A2 (en) 2011-10-21 2013-04-24 United Technologies Corporation Constant speed transmission for gas turbine engine
US20150233291A1 (en) * 2014-02-17 2015-08-20 Airbus Operations (Sas) Turbojet comprising a bleeding system for bleeding air in said turbojet
US20150233292A1 (en) * 2014-02-17 2015-08-20 Airbus Operations (Sas) Turbojet comprising a bleeding system for bleeding air in said turbojet
JP2019528213A (ja) * 2016-08-23 2019-10-10 ジーイー・アビエイション・システムズ・エルエルシー 二重圧縮機4ホイールターボマシンを用いた環境制御システムの改善された予冷方法および航空機

Also Published As

Publication number Publication date
JP7429337B2 (ja) 2024-02-08
JPWO2022091276A1 (ja) 2022-05-05
EP4239172A1 (en) 2023-09-06
US20240003293A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
CN106064672B (zh) 利用机舱排放空气启动循环的环境控制系统
EP2871349B1 (en) Method of operating a pneumatic system for an aircraft
US9878794B2 (en) Environmental control system utilizing shoestring cycle to maximize efficiency
US10035602B2 (en) No primary heat exchanger and bleed air (cabin discharge air) assist
US20120114463A1 (en) Motor driven cabin air compressor with variable diffuser
EP3056432B1 (en) Environmental control system utilizing parallel ram heat exchangers with air cycle machine speed compensation
EP2602191A1 (en) Motor driven cabin air compressor with variable diffuser
US11174031B2 (en) Environmental control system of an aircraft
EP3085621B1 (en) Environmental control system mixing cabin discharge air with bleed air during a cycle
CN105857618B (zh) 利用并联冲压式热交换器的环境控制系统
US10934881B2 (en) Environmental control system mixing cabin discharge air with bleed air during a cycle
US20170306786A1 (en) Environmental control system utilizing a motor assist and an enhanced compressor
EP3750808B1 (en) Using bleed air to supply outside air to a cabin
EP3750809A1 (en) Using bleed air to supply outside air to a cabin
WO2022091276A1 (ja) 圧縮空気供給システム
CN107303954B (zh) 环境控制系统
JP2009096324A (ja) 抽気システム
EP4331991A1 (en) Environmental control system with low inlet pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18250920

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020959794

Country of ref document: EP

Effective date: 20230530