WO2022091227A1 - Outer-rotor-type rotary machine - Google Patents

Outer-rotor-type rotary machine Download PDF

Info

Publication number
WO2022091227A1
WO2022091227A1 PCT/JP2020/040313 JP2020040313W WO2022091227A1 WO 2022091227 A1 WO2022091227 A1 WO 2022091227A1 JP 2020040313 W JP2020040313 W JP 2020040313W WO 2022091227 A1 WO2022091227 A1 WO 2022091227A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
rotor
cooling
stator
rotary machine
Prior art date
Application number
PCT/JP2020/040313
Other languages
French (fr)
Japanese (ja)
Inventor
香南 宮城
尚史 小谷
航 松山
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2020/040313 priority Critical patent/WO2022091227A1/en
Publication of WO2022091227A1 publication Critical patent/WO2022091227A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the present invention relates to an outer rotor type rotary machine.
  • An outer rotor type rotary machine which includes a stator in which a coil is arranged and a rotor in which a magnet is arranged, and the stator is arranged on the inner circumference of the rotor.
  • a cooling fan having an outer diameter substantially the same as the outer diameter of the rotor is provided on the top surface of the rotor (the surface corresponding to the opposite side of the engine), and the cooling fan blows cooling air to the engine side.
  • a generator that blows air (see, for example, Patent Document 1).
  • an object of the present invention is to provide an outer rotor type rotary machine which is advantageous for improving the cooling performance of members inside and outside the rotor.
  • an outer rotor type rotation having a stator in which a coil is arranged, a rotor in which a magnet is arranged, and a cooling fan that rotates integrally with the rotor is provided, and the stator is arranged on the inner circumference of the rotor.
  • the cooling fan is connected to a rotor cooling first blade arranged on the outer peripheral portion of the rotor and the first blade, and is arranged on one side of the rotary machine in the axial direction with respect to the stator.
  • a second blade for cooling the stator and a partition body for partitioning between the first blade and the second blade are provided.
  • the partition body divides the blade in which the first blade and the second blade are integrated into one side portion and the other side portion in the axial direction, and is a plate along the radial direction of the rotor. It may have a shape extending along the circumferential direction of the rotor.
  • downstream end of the outer peripheral edge of the blade in which the first blade and the second blade are integrated may be formed in a notched shape.
  • the outer peripheral edge of the second blade may be located radially inside the rotor with respect to the outer peripheral edge of the first blade.
  • the first blade may be equipped with a guide body that guides the cooling air sucked by the first blade to the inner peripheral portion of the first blade.
  • the rotor has a cooling air intake port that takes in outside air by the rotation of the first blade on the inner circumference of the guide body, and the rotor 15 takes the outside air into the rotor by the rotation of the second blade. It may have a second cooling air intake to be taken in.
  • At least one of the number of blades, the blade shape, and the arrangement interval may be different between the first blade and the second blade.
  • an outer rotor type rotary machine which is advantageous for improving the cooling performance of members inside and outside the rotor.
  • FIG. 1 is a diagram showing an engine including an alternator according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view of the alternator.
  • FIG. 3 is a plan view of the alternator.
  • FIG. 4 is a side sectional view of the alternator.
  • FIG. 5 is a plan view of the alternator according to the second embodiment as viewed from the upstream side.
  • FIG. 6 is a side sectional view of the alternator.
  • FIG. 7 is a plan view of the alternator according to the third embodiment as viewed from the upstream side.
  • FIG. 8 is a side sectional view of the alternator.
  • FIG. 9 is a diagram showing a cooling fan of the alternator according to the fourth embodiment.
  • FIG. 10 is a diagram showing a cooling fan of the alternator according to the fifth embodiment.
  • FIG. 11 is a diagram showing a cooling fan of the alternator according to the sixth embodiment.
  • FIG. 1 is a diagram showing an engine 1 provided with an alternator 11 according to the first embodiment of the present invention.
  • the engine 1 is an engine having an integrated alternator 11 and is used as an engine generator.
  • the engine 1 is an internal combustion engine.
  • a cooling fan is provided for cooling the alternator and the engine at the same time because compactness is required.
  • the engine 1 shown in FIG. 1 is a V-type 2-cylinder air-cooled engine including a crankcase 1A and two cylinders 1B (hereinafter referred to as a cylinder portion 1B) arranged at a predetermined narrow angle.
  • An alternator 11 including a cooling fan 21 is attached to the output shaft 1J (crank shaft in this configuration) of the engine 1.
  • FIG. 2 is a perspective view of the alternator 11, and FIG. 3 is a plan view of the alternator 11.
  • FIG. 4 is a side sectional view of the alternator 11.
  • the alternator 11 includes a stator 13 that is relatively rotatable and coaxially arranged with the output shaft 1J of the engine 1, and a rotor 15 (also referred to as an outer rotor) that rotates integrally with the output shaft 1J. And a cooling fan 21 that rotates integrally with the rotor 15.
  • the alternator 11 can also be referred to as an outer rotor type rotary machine in which the stator 13 is arranged on the inner circumference of the rotor 15.
  • the stator 13, rotor 15, and cooling fan 21 are made of, for example, metal. However, the cooling fan 21 or the like may be made of resin.
  • the stator 13 includes a stator core in which slots 13C are provided at intervals in the circumferential direction with respect to the axis of the stator 13 (corresponding to the position of the output shaft 1J), and a coil is mounted in each slot 13C.
  • the circumferential direction corresponds to the circumferential direction of the output shaft 1J, and is also the circumferential direction of the stator 13, the circumferential direction of the rotor 15, and the circumferential direction of the alternator 11.
  • the rotor 15 includes a bowl-shaped rotor body 15A in which a magnet 15M (FIG. 4) is arranged along an annular track surrounding the stator 13.
  • the alternator 11 outputs the induced current generated in the stator 13 due to the rotation of the rotor 15 to the outside via a cable (not shown).
  • the cooling fan 21 is formed separately from the rotor main body 15A, and is attached to the rotor main body 15A by using a predetermined connecting member (for example, a fastening bolt).
  • the rotor body 15A is provided with a plurality of openings 15K that function as cooling air intakes for taking in air around the rotor 15 into the stator 13. These openings 15K are provided at equal angles along the circumferential direction of the rotor 15 to expose the slot 13C and the coil to the outside of the rotor 15.
  • the opening 15K of the present configuration is formed in a fan-shaped (also referred to as an isosceles triangle) opening shape in which the opening expands as the distance from the central axis of the rotor 15 increases in a plan view of the rotor 15.
  • FIG. 4 schematically shows the flow of the cooling air W1 and W2 generated by the rotation of the cooling fan 21.
  • the cooling air W1 indicates the cooling air generated on the outer peripheral side of the rotor 15, and the cooling air W2 indicates the cooling air generated on the inner peripheral side of the rotor 15.
  • the upstream side of the cooling air W1 and W2 is indicated by the reference numeral UP
  • the downstream side of the cooling air W1 and W2 is indicated by the reference numeral DW in order to make the explanation easy to understand.
  • the engine 1 is arranged on the downstream DW of the cooling air W1 and W2. In the following description, when it is necessary to separately describe the cooling air W1 and W2, they are described as the first cooling air W1 and the second cooling air W2.
  • the cooling fan 21 has blades 23 (also referred to as fan blades) arranged on the outer peripheral portion of the rotor 15 at intervals in the circumferential direction, and each blade 23 is arranged in the circumferential direction of the rotor 15. It is provided with an annular plate-shaped crossing member 25 that crosses the crossing member 25 and an annular plate-shaped guide body 27 that is arranged at intervals on the upstream side of the cooling air W1 and W2 with respect to the crossing member 25. The guide body 27 is attached to the upstream end of each blade 23.
  • blades 23 also referred to as fan blades
  • Each blade 23 is formed in a blade shape that allows air on the upstream side to flow to the downstream side. More specifically, each blade 23 is formed in a plate shape that gently curves toward the outer peripheral side in the front view shown in FIG. Further, each blade 23 extends along the axial direction of the rotor 15 on the outer peripheral side of the rotor main body 15A in the side sectional view shown in FIG. 4, and projects to the downstream side of the rotor main body 15A.
  • each blade 23 is indicated by reference numeral P1
  • the downstream end position is indicated by reference numeral P2
  • the downstream end position of the rotor main body 15A is indicated by reference numeral P3.
  • the upstream end position P1 and the downstream end position P2 of each blade 23 are aligned at the same position in the side sectional view. Further, the downstream end position P3 of the rotor main body 15A is also a position where the crossing member 25 crosses the blade 23.
  • the crossing member 25 crosses each blade 23 in the circumferential direction of the rotor 15 so that each blade 23 is divided into a first blade 23A which is a portion upstream of the crossing position P3. It is partitioned from the second blade 23B, which is a portion downstream of the crossing position P3. Since the crossing member 25 partitions between the first blade 23A and the second blade 23B, the air on the upstream side and the outer peripheral side of the rotor 15 becomes independent by the first blade 23A with the crossing member 25 as a partition body as a boundary. Is blown. Further, the air on the downstream side is independently blown by the second blade 23B with the crossing member 25 as a boundary.
  • the first blade 23A functions as a rotor cooling blade that sucks the air around the rotor 15 and flows the first cooling air W1 along the outer peripheral surface of the rotor 15.
  • the second blade 23B functions as a blade for cooling the stator by sucking the air around the rotor 15 through the opening 15K and flowing the second cooling air W2 into the rotor 15.
  • the first cooling air W1 cools the outer peripheral portion of the rotor 15 (for example, around the magnet 15M) and then flows toward the engine 1 through the outer peripheral surface of the rotor 15, which also contributes to cooling the engine 1. As shown by reference numeral ⁇ in FIG. 4, the cooling air W1 flows toward the engine 1 after being guided to the outer peripheral side of the alternator 11 by the crossing member 25. Therefore, the cylinder portion 1B, which has a relatively high temperature even in the engine 1, can be effectively cooled.
  • the second cooling air W2 cools the slot 13C and the coil, and also cools the inner peripheral side portion of the magnet 15M. As described above, since the crossing member 25 is located on the upstream side of the second blade 23B, the air on the outer peripheral portion of the rotor 15 is hardly sucked by the second blade 23B. Therefore, the heat in the alternator 11 can be effectively exhausted, and the alternator 11 can be effectively cooled.
  • the guide body 27 As shown in FIGS. 2 and 3, the guide body 27 is connected to the upstream end portion of the first blade 23A and covers the outer peripheral portion of the first blade 23A when viewed from the upstream side of the cooling fan 21. The inner peripheral portion of the blade 23A is exposed.
  • the guide body 27 can guide the first cooling air W1 to the inner peripheral portion of the first blade 23A.
  • the cooling air intake port to the outer periphery of the rotor 15 can be limited to the intake port 27G (appropriately referred to as the first cooling air intake port 27G) for introducing air into the inner peripheral portion of the first blade 23A. .. Therefore, the first cooling air W1 can be easily flowed in the vicinity of the outer peripheral surface of the rotor 15, and the magnet 15M and the like arranged inside the outer peripheral surface of the rotor 15 can be effectively cooled by the first cooling air W1.
  • the guide body 27 bridges between the adjacent first blades 23A, the guide body 27 functions as a reinforcing member of each first blade 23A, and deformation of each first blade 23A can be suppressed. Since the cross-linking member 25 also bridges between the adjacent first blades 23A, it functions as a reinforcing member for each first blade 23A, and it becomes possible to further suppress the deformation of each first blade 23A.
  • another guide body 31 that partitions the boundary between the cooling air W1 and the cooling air W2 may be arranged upstream of the alternator 11.
  • the other guide body 31 is formed, for example, in a cylindrical shape extending along the axial direction of the alternator 11.
  • the cooling air W1 and W2 can be rectified by the other guide body 31, which is advantageous for increasing the air volume of the cooling air W1 and W2.
  • the shape of the other guide body 31 and the like can be changed as appropriate.
  • the cooling fan 21 is connected to the rotor cooling first blade 23A and the first blade 23A arranged on the outer peripheral portion of the rotor 15, and is on one side of the alternator 11 in the axial direction with respect to the stator 13. It includes a second blade 23B for cooling the stator to be arranged, and a crossing member 25 that functions as a partition body that partitions the first blade 23A and the second blade 23B.
  • the members inside and outside the rotor 15, that is, the rotor 15, the magnet 15M, the stator 13, the slot 13C, the coil, and the like can be effectively cooled.
  • the cooling fan 21 can be easily miniaturized as compared with the case where separate blades for independently cooling the rotor 15, the engine 1, and the stator 13 are provided.
  • an alternator 11 that is advantageous in improving cooling performance and miniaturization, and it becomes easy to miniaturize the engine generator. Further, by using the cooling fan 21, it becomes easy to obtain sufficient engine cooling performance even if the heat generation amount of the engine 1 increases due to the increase in the number of cylinders and the increase in the displacement. Further, even if the calorific value of the alternator 11 increases due to an increase in the amount of power generation or the like, it becomes easy to obtain sufficient alternator cooling performance.
  • the crossing member 25 has a blade 23 in which the first blade 23A and the second blade 23B are integrated, and the blade 23 is provided on one side portion (corresponding to the upstream side portion) and the other side portion (downstream side portion) of the alternator 11 in the axial direction. Equivalent) and divided into.
  • the blown air of the first blade 23A and the blown air of the second blade 23B can be partitioned in the axial direction, and it becomes easy to independently cool different parts of each blown air.
  • the crossing member 25 has a plate shape along the radial direction of the rotor 15 and has a shape extending along the circumferential direction of the rotor 15. According to this configuration, the blown air flowing along the axial direction can be guided outward in the radial direction by the crossing member 25, and it becomes easy to effectively cool the cylinder portion 1B of the engine 1 which is a large component outside the rotor 15.
  • the first blade 23A is attached with a guide body 27 that guides the cooling air W1 sucked by the first blade 23A to the inner peripheral portion of the first blade 23A.
  • the cooling air W1 can be flowed in the vicinity of the outer peripheral surface of the rotor 15 to effectively cool the magnet 15M and the like arranged inside the outer peripheral surface of the rotor 15.
  • the rotor 15 has a first cooling air intake port 27G on the inner circumference of the guide body 27 that takes in outside air by the rotation of the first blade 23A, and the rotor 15 has the outside air taken in by the rotation of the second blade 23B. It has an opening 15K that functions as a second cooling air intake to be taken in. This facilitates effective cooling of each portion including the outer circumference of the rotor 15 and the inner circumference of the rotor 15.
  • FIG. 5 is a plan view of the alternator 11 according to the second embodiment as viewed from the upstream side.
  • FIG. 6 is a side sectional view of the alternator 11.
  • the second embodiment is different from the first embodiment in that the arrangement of the stator 13 and the rotor 15 is opposite to that of the first embodiment. That is, the rotor 15 of the second embodiment has a rotor main body 15A formed in a convex bowl shape on the downstream side, and is arranged in the stator 13 from the upstream side with respect to the rotor main body 15A. Except for this point, the arrangement and shape of other members including the blade 23, the crossing member 25, the guide body 27, and the like are the same as those in the first embodiment, and therefore duplicate description will be omitted.
  • the first cooling air W1 and the second cooling air W2 which are substantially the same as in the case of FIG. 4, can be flowed by each of the first blade 23A and the second blade 23B. ..
  • the cooling air is reduced by the amount that the open side (opposite side of the opening 15K) of the rotor body 15A faces the upstream side of the cooling air W2. It can be expected that W2 makes it easier to cool the entire stator 13 more positively.
  • whether to adopt the structure of the first embodiment or the structure of the second embodiment may be appropriately selected in consideration of the arrangement space of the alternator 11.
  • FIG. 7 is a plan view of the alternator 11 according to the third embodiment as viewed from the upstream side.
  • FIG. 8 is a side sectional view of the alternator 11.
  • the cooling fan 21 is formed of a metal component integrated with the yoke of the rotor 15, and the upstream end portion 23J (FIG. 8) of the inner peripheral edge of the first blade 23A is closer to the inner peripheral side. It differs from the first embodiment in that it has a shape that is notched long in the axial direction. Except for these points, the arrangement and shape of the other members including the crossing member 25 and the guide body 27 are the same as those in the first embodiment, and therefore duplicate description will be omitted.
  • the cooling fan 21 is formed of a metal component integrated with the yoke of the rotor 15, the cooling fan 21 also functions as a heat sink for dissipating heat from the yoke. This is advantageous for improving the cooling performance, reducing the number of parts, and reducing the size of the cooling fan 21.
  • the cooling fan 21 may be formed of aluminum metal or the like, which is advantageous for heat dissipation, and the cooling fan 21 may be joined to the yoke of another component by using a known joining method such as brazing. In this case as well, the cooling fan 21 can function as a heat sink for the yoke.
  • the upstream end portion 23J (FIG. 8) of the inner peripheral edge of the first blade 23A into a shape that is notched longer in the axial direction toward the inner peripheral side, the first cooling air W1 flows into the cooling fan 21. This facilitates and is advantageous for increasing the cooling air W1. Further, the guide body 27 connected to the upstream end of the first blade 23A makes it easy to efficiently send the cooling air W1 to the engine 1 side.
  • FIG. 9 is a diagram showing a cooling fan 21 of the alternator 11 according to the fourth embodiment
  • reference numeral A is a perspective view of the cooling fan 21 seen from the upstream side
  • reference numeral B is a perspective view of the cooling fan 21 seen from the downstream side. The perspective view of is shown.
  • the downstream end portion (indicated by reference numeral NT in FIG. 7) of the outer peripheral edge of the blade 23 in which the first blade 23A and the second blade 23B are integrated is notched. Except for this point, the arrangement and shape of the other members are substantially the same as those in the first embodiment.
  • FIG. 10 is a diagram showing a cooling fan 21 of the alternator 11 according to the fifth embodiment
  • reference numeral A is a perspective view of the cooling fan 21 seen from the upstream side
  • reference numeral B is a perspective view of the cooling fan 21 seen from the downstream side. The perspective view of is shown.
  • the outer peripheral edge of the second blade 23B is positioned radially inside the rotor 15 with respect to the outer peripheral edge of the first blade 23A. As a result, the first blade 23A is formed into a fan having a relatively large diameter, and the second blade 23B is formed into a fan having a relatively small diameter.
  • the first blade 23A can be made into a large-diameter fan advantageous for blowing air around the rotor 15, and the second blade 23B can be made into a small-diameter fan advantageous for blowing air around the inner circumference of the stator 13.
  • the inner peripheral side end of the second blade 23B may be extended to the inner peripheral side of the inner peripheral side end of the first blade 23A.
  • the downstream end of the outer peripheral edge of the first blade 23A is formed by cutting out the downstream end of the outer peripheral edge of the blade 23 (indicated by reference numeral NT in FIG. 10).
  • the shape is cut out to the same position as the outer peripheral edge of the second blade 23B.
  • the area of the first blade 23A can be reduced by cutting out a part of the outer peripheral edge of the blade 23 more than in the case shown in FIG. This makes it possible to reduce the blowing resistance of the blade 23 (the blowing resistance of the cooling fan 21) and to sufficiently secure a gap between the blade 23 and surrounding articles.
  • FIG. 11 is a diagram showing a cooling fan 21 of the alternator 11 according to the sixth embodiment
  • reference numeral A is a perspective view of the cooling fan 21 seen from the upstream side
  • reference numeral B is a perspective view of the cooling fan 21 seen from the downstream side.
  • the perspective view of is shown.
  • the number of the first blade 23A and the number of the second blade 23B are different. More specifically, by shortening the arrangement interval (also referred to as pitch) of the first blade 23A and the arrangement interval of the second blade 23B, the number of the first blades 23A is increased as compared with the second blade 23B. There is.
  • each blade 23A and 23B By independently adjusting the number of blades of each blade 23A and 23B and the arrangement interval, the amount of air blown from each of the blades 23A and 23B can be adjusted independently, and it becomes easy to obtain an appropriate amount of air blown. If the number of blades of each blade 23A and 23B is different, each blade 23A will be connected to the blade 23B via the crossing member 25. Further, since all the blades 23A and 23B are connected via the crossing member 25 or between the blades 23A and 23B, the blades 23A and 23B having different numbers of blades can be manufactured, and the supporting strengths of these blades 23A and 23B can be sufficiently provided. It will be easier to secure.
  • the downstream end portion of the outer peripheral edge of the first blade 23A is cut out to the same position as the outer peripheral edge of the second blade 23B. This makes it easier to reduce the blowing resistance of the blade 23 and to sufficiently secure a gap between the blade 23 and surrounding articles. Further, the blade shapes of the blades 23A and 23B can be easily changed independently. As a result, it becomes easy to obtain cooling performance according to each of the calorific value of the alternator 11 and the calorific value of the engine 1.
  • the blade shape may be different between the first blade 23A and the second blade 23B. This also facilitates adjustments such as increasing the amount of air blown by the blades 23A and 23B, suppressing the air flow volume, and the like, and makes it easier to obtain more suitable cooling performance.
  • each of the above embodiments is merely an embodiment of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
  • the present invention is applied to the alternator 11 used for the engine generator is exemplified, it may be applied to the alternator used other than the engine generator.
  • the present invention may be applied to other than the alternator, or may be applied to an outer rotor type rotary machine used in various devices. For example, when various heat generating parts including an engine are arranged adjacent to the outer rotor type rotating machine, it becomes possible to effectively cool both the outer rotor type rotating machine and the surrounding heat generating parts. ..

Abstract

Provided is an outer-rotor-type rotary machine that is advantageous for improving the cooling performance of members inside and outside a rotor. A cooling fan 21 comprises: first blades 23A for cooling a rotor, and which are arranged on the outer peripheral section of a rotor 15; second blades 23B for cooling a stator, and which are connected to the first blades 23A and are arranged on one side of an alternator 11 in the axial direction with respect to the stator 13; and a crossing member 25 that functions as a partition that partitions the first blades 23A from the second blades 23B.

Description

アウターロータ型回転機Outer rotor type rotary machine
 本発明は、アウターロータ型回転機に関する。 The present invention relates to an outer rotor type rotary machine.
 コイルを配置したステータと、磁石を配置したロータとを備え、ロータの内周に前記ステータを配置したアウターロータ型回転機が知られている。この種の回転機には、ロータの天面(エンジンの反対側に相当する面)に、ロータ外径と略同径の外径を有する冷却ファンを設け、冷却ファンによりエンジン側に冷却風を送風する発電機がある(例えば、特許文献1参照)。 An outer rotor type rotary machine is known, which includes a stator in which a coil is arranged and a rotor in which a magnet is arranged, and the stator is arranged on the inner circumference of the rotor. In this type of rotary machine, a cooling fan having an outer diameter substantially the same as the outer diameter of the rotor is provided on the top surface of the rotor (the surface corresponding to the opposite side of the engine), and the cooling fan blows cooling air to the engine side. There is a generator that blows air (see, for example, Patent Document 1).
特開2017-131042号公報Japanese Unexamined Patent Publication No. 2017-131042
 しかし、従来の構成では、発電量の増大などにより回転機の発熱量が増加した場合に、ステータの冷却が不足するおそれがある。また、エンジンの多気筒化や排気量の増大によってエンジンの発熱量が増大した場合には、エンジンの冷却が不足するおそれもある。
 そこで、本発明は、ロータ内外の部材の冷却性能向上に有利なアウターロータ型回転機を提供することを目的とする。
However, in the conventional configuration, when the calorific value of the rotating machine increases due to an increase in the amount of power generation or the like, the cooling of the stator may be insufficient. Further, if the heat generation amount of the engine increases due to the increase in the number of cylinders of the engine or the increase in the displacement, the cooling of the engine may be insufficient.
Therefore, an object of the present invention is to provide an outer rotor type rotary machine which is advantageous for improving the cooling performance of members inside and outside the rotor.
 上記目的を達成するために、コイルを配置したステータと、磁石を配置したロータと、前記ロータと一体に回転する冷却ファンとを備え、前記ロータの内周に前記ステータを配置したアウターロータ型回転機において、前記冷却ファンは、前記ロータの外周部に配置されるロータ冷却用の第1ブレードと、前記第1ブレードにつながり、前記ステータに対して当該回転機の軸方向一方側に配置されるステータ冷却用の第2ブレードと、前記第1ブレードと前記第2ブレードとの間を仕切る仕切り体と、を備えている。 In order to achieve the above object, an outer rotor type rotation having a stator in which a coil is arranged, a rotor in which a magnet is arranged, and a cooling fan that rotates integrally with the rotor is provided, and the stator is arranged on the inner circumference of the rotor. In the machine, the cooling fan is connected to a rotor cooling first blade arranged on the outer peripheral portion of the rotor and the first blade, and is arranged on one side of the rotary machine in the axial direction with respect to the stator. A second blade for cooling the stator and a partition body for partitioning between the first blade and the second blade are provided.
 上記構成において、前記仕切り体は、前記第1ブレードと前記第2ブレードとを一体化したブレードを、前記軸方向の一方側部分と他方側部分とに分割し、前記ロータの径方向に沿う板状で、前記ロータの周方向に沿って延在する形状を有してもよい。 In the above configuration, the partition body divides the blade in which the first blade and the second blade are integrated into one side portion and the other side portion in the axial direction, and is a plate along the radial direction of the rotor. It may have a shape extending along the circumferential direction of the rotor.
 上記構成において、前記第1ブレードと前記第2ブレードとを一体化したブレードの外周縁の下流側端部は、切り欠かれた形状に形成されてもよい。 In the above configuration, the downstream end of the outer peripheral edge of the blade in which the first blade and the second blade are integrated may be formed in a notched shape.
 上記構成において、前記第2ブレードの外周縁は、前記第1ブレードの外周縁よりも前記ロータの径方向内側に位置してもよい。 In the above configuration, the outer peripheral edge of the second blade may be located radially inside the rotor with respect to the outer peripheral edge of the first blade.
 上記構成において、前記第1ブレードには、前記第1ブレードに吸引される冷却風を、前記第1ブレードの内周部に案内するガイド体が取り付けられてもよい。 In the above configuration, the first blade may be equipped with a guide body that guides the cooling air sucked by the first blade to the inner peripheral portion of the first blade.
 上記構成において、前記ロータは、前記ガイド体の内周に、前記第1ブレードの回転によって外気を取り入れる冷却風取入口を有し、前記ロータに、前記第2ブレードの回転によって外気を前記ロータ15内に取り入れる第2冷却風取入口を有してもよい。 In the above configuration, the rotor has a cooling air intake port that takes in outside air by the rotation of the first blade on the inner circumference of the guide body, and the rotor 15 takes the outside air into the rotor by the rotation of the second blade. It may have a second cooling air intake to be taken in.
 上記構成において、前記第1ブレードと前記第2ブレードとで、ブレード枚数、羽根形状、及び配置間隔の少なくともいずれかが異なってもよい。 In the above configuration, at least one of the number of blades, the blade shape, and the arrangement interval may be different between the first blade and the second blade.
 本発明によれば、ロータ内外の部材の冷却性能向上に有利なアウターロータ型回転機を提供できる。 According to the present invention, it is possible to provide an outer rotor type rotary machine which is advantageous for improving the cooling performance of members inside and outside the rotor.
図1は、本発明の第1実施形態に係るオルタネータを備えたエンジンを示す図である。FIG. 1 is a diagram showing an engine including an alternator according to the first embodiment of the present invention. 図2は、オルタネータの斜視図である。FIG. 2 is a perspective view of the alternator. 図3は、オルタネータの平面図である。FIG. 3 is a plan view of the alternator. 図4は、オルタネータの側断面図である。FIG. 4 is a side sectional view of the alternator. 図5は、第2実施形態に係るオルタネータを上流側から見た平面図である。FIG. 5 is a plan view of the alternator according to the second embodiment as viewed from the upstream side. 図6は、オルタネータの側断面図である。FIG. 6 is a side sectional view of the alternator. 図7は、第3実施形態に係るオルタネータを上流側から見た平面図である。FIG. 7 is a plan view of the alternator according to the third embodiment as viewed from the upstream side. 図8は、オルタネータの側断面図である。FIG. 8 is a side sectional view of the alternator. 図9は、第4実施形態に係るオルタネータの冷却ファンを示す図である。FIG. 9 is a diagram showing a cooling fan of the alternator according to the fourth embodiment. 図10は、第5実施形態に係るオルタネータの冷却ファンを示す図である。FIG. 10 is a diagram showing a cooling fan of the alternator according to the fifth embodiment. 図11は、第6実施形態に係るオルタネータの冷却ファンを示す図である。FIG. 11 is a diagram showing a cooling fan of the alternator according to the sixth embodiment.
 以下、図面を参照して本発明の実施の形態について説明する。
(第1実施形態)
 図1は、本発明の第1実施形態に係るオルタネータ11を備えたエンジン1を示す図である。
 エンジン1は、オルタネータ11が一体構造のエンジンであり、エンジン発電機に使用される。なお、エンジン1は内燃機関である。一般的に、オルタネータとエンジンが一体構造の発電機では、コンパクト性が求められることから、オルタネータとエンジンとを同時に冷却するための冷却ファンが設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First Embodiment)
FIG. 1 is a diagram showing an engine 1 provided with an alternator 11 according to the first embodiment of the present invention.
The engine 1 is an engine having an integrated alternator 11 and is used as an engine generator. The engine 1 is an internal combustion engine. Generally, in a generator in which an alternator and an engine are integrated, a cooling fan is provided for cooling the alternator and the engine at the same time because compactness is required.
 図1に示すエンジン1は、クランクケース1Aと、所定の狭角で配置された2つの気筒1B(以下、シリンダ部1Bと言う)とを備えたV型2気筒の空冷エンジンである。このエンジン1の出力軸1J(本構成ではクランク軸)には、冷却ファン21を備えるオルタネータ11が取り付けられている。このような多気筒エンジンを採用した場合、小排気量の単気筒エンジンを採用する場合と比べ、高い出力を得ながら低騒音、及び低振動を実現し易くなる。しかし、高い出力が得られる分、エンジン1及びオルタネータ11の発熱量が多くなり、冷却ファン21に高い冷却性能が望まれる。 The engine 1 shown in FIG. 1 is a V-type 2-cylinder air-cooled engine including a crankcase 1A and two cylinders 1B (hereinafter referred to as a cylinder portion 1B) arranged at a predetermined narrow angle. An alternator 11 including a cooling fan 21 is attached to the output shaft 1J (crank shaft in this configuration) of the engine 1. When such a multi-cylinder engine is adopted, it becomes easier to realize low noise and low vibration while obtaining high output as compared with the case where a single cylinder engine having a small displacement is adopted. However, since a high output can be obtained, the amount of heat generated by the engine 1 and the alternator 11 increases, and high cooling performance is desired for the cooling fan 21.
 図2は、オルタネータ11の斜視図であり、図3は、オルタネータ11の平面図である。図4は、オルタネータ11の側断面図である。
 図1-図3に示すように、オルタネータ11は、エンジン1の出力軸1Jに相対回転自在かつ同軸で配置されるステータ13と、出力軸1Jと一体に回転するロータ15(アウターロータとも称する)と、ロータ15と一体に回転する冷却ファン21とを備えている。このオルタネータ11は、ロータ15の内周にステータ13を配置したアウターロータ型回転機と称することもできる。なお、ステータ13、ロータ15及び冷却ファン21は、例えば金属製である。但し、冷却ファン21などを樹脂製にしてもよい。
FIG. 2 is a perspective view of the alternator 11, and FIG. 3 is a plan view of the alternator 11. FIG. 4 is a side sectional view of the alternator 11.
As shown in FIGS. 1 to 3, the alternator 11 includes a stator 13 that is relatively rotatable and coaxially arranged with the output shaft 1J of the engine 1, and a rotor 15 (also referred to as an outer rotor) that rotates integrally with the output shaft 1J. And a cooling fan 21 that rotates integrally with the rotor 15. The alternator 11 can also be referred to as an outer rotor type rotary machine in which the stator 13 is arranged on the inner circumference of the rotor 15. The stator 13, rotor 15, and cooling fan 21 are made of, for example, metal. However, the cooling fan 21 or the like may be made of resin.
 ステータ13は、ステータ13の軸心(出力軸1Jの位置と一致)を基準とする周方向に間隔を空けてスロット13Cを設けたステータコアを備え、各スロット13Cにコイルが装着されている。なお、本説明において、周方向は、出力軸1Jの周方向に相当し、ステータ13の周方向、ロータ15の周方向、及びオルタネータ11の周方向でもある。 The stator 13 includes a stator core in which slots 13C are provided at intervals in the circumferential direction with respect to the axis of the stator 13 (corresponding to the position of the output shaft 1J), and a coil is mounted in each slot 13C. In this description, the circumferential direction corresponds to the circumferential direction of the output shaft 1J, and is also the circumferential direction of the stator 13, the circumferential direction of the rotor 15, and the circumferential direction of the alternator 11.
 ロータ15は、ステータ13を囲む環状の軌道に沿って磁石15M(図4)が配置されたお碗形状のロータ本体15Aを備えている。オルタネータ11は、ロータ15の回転に伴ってステータ13に生じた誘導電流を不図示のケーブルを介して外部に出力する。上記冷却ファン21は、ロータ本体15Aと別体に形成され、所定の連結部材(例えば締結ボルト)を利用してロータ本体15Aに取り付けられている。 The rotor 15 includes a bowl-shaped rotor body 15A in which a magnet 15M (FIG. 4) is arranged along an annular track surrounding the stator 13. The alternator 11 outputs the induced current generated in the stator 13 due to the rotation of the rotor 15 to the outside via a cable (not shown). The cooling fan 21 is formed separately from the rotor main body 15A, and is attached to the rotor main body 15A by using a predetermined connecting member (for example, a fastening bolt).
 ロータ本体15Aは、ロータ15周囲の空気をステータ13内に取り入れる冷却風取入口として機能する複数の開口部15Kを備えている。これら開口部15Kは、ロータ15の周方向に沿って等角度角度で設けられ、スロット13C及びコイルをロータ15外に露出させる。本構成の開口部15Kは、ロータ15の平面視で、ロータ15の中心軸から離れるに従って開口が拡がる扇型(二等辺三角形型と言うこともできる)の開口形状に形成されている。 The rotor body 15A is provided with a plurality of openings 15K that function as cooling air intakes for taking in air around the rotor 15 into the stator 13. These openings 15K are provided at equal angles along the circumferential direction of the rotor 15 to expose the slot 13C and the coil to the outside of the rotor 15. The opening 15K of the present configuration is formed in a fan-shaped (also referred to as an isosceles triangle) opening shape in which the opening expands as the distance from the central axis of the rotor 15 increases in a plan view of the rotor 15.
 図4には、冷却ファン21の回転によって生じる冷却風W1,W2の流れを模式的に示している。冷却風W1は、ロータ15の外周側に生じる冷却風を示し、冷却風W2は、ロータ15の内周側に生じる冷却風を示している。また、図4には、説明を判り易くするため、冷却風W1,W2の上流側を符号UPで示し、冷却風W1,W2の下流側を符号DWで示している。
 冷却風W1,W2の下流側DWには、エンジン1が配置されている。以下の説明において、冷却風W1,W2を区別して表記する必要がある場合、第1の冷却風W1、第2の冷却風W2と表記する。
FIG. 4 schematically shows the flow of the cooling air W1 and W2 generated by the rotation of the cooling fan 21. The cooling air W1 indicates the cooling air generated on the outer peripheral side of the rotor 15, and the cooling air W2 indicates the cooling air generated on the inner peripheral side of the rotor 15. Further, in FIG. 4, the upstream side of the cooling air W1 and W2 is indicated by the reference numeral UP, and the downstream side of the cooling air W1 and W2 is indicated by the reference numeral DW in order to make the explanation easy to understand.
The engine 1 is arranged on the downstream DW of the cooling air W1 and W2. In the following description, when it is necessary to separately describe the cooling air W1 and W2, they are described as the first cooling air W1 and the second cooling air W2.
 図2-図4に示すように、冷却ファン21は、ロータ15の外周部に周方向に間隔を空けて配置されるブレード23(ファンブレードとも称する)と、各ブレード23をロータ15の周方向に横断する環状板形状の横断部材25と、横断部材25に対し、冷却風W1,W2の上流側に間隔を空けて配置される環状板形状のガイド体27とを備えている。なお、ガイド体27は、各ブレード23の上流側端部に取り付けられている。 As shown in FIGS. 2 to 4, the cooling fan 21 has blades 23 (also referred to as fan blades) arranged on the outer peripheral portion of the rotor 15 at intervals in the circumferential direction, and each blade 23 is arranged in the circumferential direction of the rotor 15. It is provided with an annular plate-shaped crossing member 25 that crosses the crossing member 25 and an annular plate-shaped guide body 27 that is arranged at intervals on the upstream side of the cooling air W1 and W2 with respect to the crossing member 25. The guide body 27 is attached to the upstream end of each blade 23.
 各ブレード23は、上流側の空気を下流側に流すことが可能なブレード形状に形成されている。より具体的には、各ブレード23は、図3に示す正面視で、外周側に向けて緩やかに湾曲する板形状に形成されている。また、各ブレード23は、図4に示す側断面視で、ロータ本体15Aの外周側にて、ロータ15の軸方向に沿って延在し、ロータ本体15Aよりも下流側へ突出している。 Each blade 23 is formed in a blade shape that allows air on the upstream side to flow to the downstream side. More specifically, each blade 23 is formed in a plate shape that gently curves toward the outer peripheral side in the front view shown in FIG. Further, each blade 23 extends along the axial direction of the rotor 15 on the outer peripheral side of the rotor main body 15A in the side sectional view shown in FIG. 4, and projects to the downstream side of the rotor main body 15A.
 図4には、各ブレード23の上流端位置を符号P1で示し、下流端位置を符号P2で示し、ロータ本体15Aの下流端位置を符号P3で示している。なお、各ブレード23の上流端位置P1、及び下流端位置P2は、側断面視で同じ位置に揃っている。また、ロータ本体15Aの下流端位置P3は、横断部材25がブレード23を横断する位置でもある。 In FIG. 4, the upstream end position of each blade 23 is indicated by reference numeral P1, the downstream end position is indicated by reference numeral P2, and the downstream end position of the rotor main body 15A is indicated by reference numeral P3. The upstream end position P1 and the downstream end position P2 of each blade 23 are aligned at the same position in the side sectional view. Further, the downstream end position P3 of the rotor main body 15A is also a position where the crossing member 25 crosses the blade 23.
 図4に示すように、横断部材25は、各ブレード23を、ロータ15の周方向に横断することによって、各ブレード23を、横断位置P3よりも上流側の部分である第1ブレード23Aと、横断位置P3よりも下流側の部分である第2ブレード23Bとに仕切る。
 第1ブレード23Aと第2ブレード23Bとの間を横断部材25が仕切るので、仕切り体である横断部材25を境にして、上流側かつロータ15外周側の空気が、第1ブレード23Aによって独立して送風される。また、横断部材25を境にして、下流側の空気が、第2ブレード23Bによって独立して送風される。
As shown in FIG. 4, the crossing member 25 crosses each blade 23 in the circumferential direction of the rotor 15 so that each blade 23 is divided into a first blade 23A which is a portion upstream of the crossing position P3. It is partitioned from the second blade 23B, which is a portion downstream of the crossing position P3.
Since the crossing member 25 partitions between the first blade 23A and the second blade 23B, the air on the upstream side and the outer peripheral side of the rotor 15 becomes independent by the first blade 23A with the crossing member 25 as a partition body as a boundary. Is blown. Further, the air on the downstream side is independently blown by the second blade 23B with the crossing member 25 as a boundary.
 これにより、図4に示すように、第1ブレード23Aが、ロータ15外周の空気を吸引し、ロータ15の外周面に沿って第1の冷却風W1を流すロータ冷却用のブレードとして機能する。一方、第2ブレード23Bが、ロータ15周囲の空気を開口部15Kを介して吸引し、ロータ15内に第2の冷却風W2を流すステータ冷却用のブレードとして機能する。 As a result, as shown in FIG. 4, the first blade 23A functions as a rotor cooling blade that sucks the air around the rotor 15 and flows the first cooling air W1 along the outer peripheral surface of the rotor 15. On the other hand, the second blade 23B functions as a blade for cooling the stator by sucking the air around the rotor 15 through the opening 15K and flowing the second cooling air W2 into the rotor 15.
 第1の冷却風W1は、ロータ15の外周部(例えば磁石15M周辺)を冷却した後、ロータ15の外周面を通ってエンジン1に向けて流れるので、エンジン1の冷却にも寄与する。図4中に符号αで示すように、冷却風W1は、横断部材25によってオルタネータ11の外周側に案内された後にエンジン1に向けて流れる。したがって、エンジン1の中でも相対的に高温になるシリンダ部1Bを効果的に冷却できる。 The first cooling air W1 cools the outer peripheral portion of the rotor 15 (for example, around the magnet 15M) and then flows toward the engine 1 through the outer peripheral surface of the rotor 15, which also contributes to cooling the engine 1. As shown by reference numeral α in FIG. 4, the cooling air W1 flows toward the engine 1 after being guided to the outer peripheral side of the alternator 11 by the crossing member 25. Therefore, the cylinder portion 1B, which has a relatively high temperature even in the engine 1, can be effectively cooled.
 第2の冷却風W2は、スロット13C及びコイルを冷却し、また、磁石15Mの内周側部分も冷却する。上記したように、第2ブレード23Bの上流側に横断部材25が位置するので、第2ブレード23Bによっては、ロータ15の外周部の空気が殆ど吸引されることがない。したがって、オルタネータ11内の熱を効果的に排熱でき、オルタネータ11を効果的に冷却できる。 The second cooling air W2 cools the slot 13C and the coil, and also cools the inner peripheral side portion of the magnet 15M. As described above, since the crossing member 25 is located on the upstream side of the second blade 23B, the air on the outer peripheral portion of the rotor 15 is hardly sucked by the second blade 23B. Therefore, the heat in the alternator 11 can be effectively exhausted, and the alternator 11 can be effectively cooled.
 次いで、ガイド体27について説明する。
 図2及び図3に示すように、ガイド体27は、第1ブレード23Aの上流側端部に連結され、冷却ファン21の上流側から見て、第1ブレード23Aの外周部を覆って第1ブレード23Aの内周部を露出させる。
 このガイド体27によって、第1の冷却風W1を第1ブレード23Aの内周部に案内することができる。換言すると、ロータ15外周への冷却風取入口を、第1ブレード23Aの内周部に空気を導入させる取入口27G(第1冷却風取入口27Gと適宜に表記する)に制限することができる。したがって、第1の冷却風W1をロータ15の外周面近傍に流し易くなり、第1の冷却風W1によってロータ15の外周面内側に配置される磁石15Mなどを効果的に冷却できる。
Next, the guide body 27 will be described.
As shown in FIGS. 2 and 3, the guide body 27 is connected to the upstream end portion of the first blade 23A and covers the outer peripheral portion of the first blade 23A when viewed from the upstream side of the cooling fan 21. The inner peripheral portion of the blade 23A is exposed.
The guide body 27 can guide the first cooling air W1 to the inner peripheral portion of the first blade 23A. In other words, the cooling air intake port to the outer periphery of the rotor 15 can be limited to the intake port 27G (appropriately referred to as the first cooling air intake port 27G) for introducing air into the inner peripheral portion of the first blade 23A. .. Therefore, the first cooling air W1 can be easily flowed in the vicinity of the outer peripheral surface of the rotor 15, and the magnet 15M and the like arranged inside the outer peripheral surface of the rotor 15 can be effectively cooled by the first cooling air W1.
 しかも、ガイド体27は、隣接する第1ブレード23A間を架橋するので、ガイド体27が各第1ブレード23Aの補強部材として機能し、各第1ブレード23Aの変形を抑制することができる。なお、横断部材25についても、隣接する第1ブレード23A間を架橋するので、各第1ブレード23Aの補強部材として機能し、各第1ブレード23Aの変形をより抑制することが可能になる。 Moreover, since the guide body 27 bridges between the adjacent first blades 23A, the guide body 27 functions as a reinforcing member of each first blade 23A, and deformation of each first blade 23A can be suppressed. Since the cross-linking member 25 also bridges between the adjacent first blades 23A, it functions as a reinforcing member for each first blade 23A, and it becomes possible to further suppress the deformation of each first blade 23A.
 このオルタネータ11をエンジン発電機に採用した場合、図4に示すように、オルタネータ11の上流に、冷却風W1と冷却風W2の境界を区画する他のガイド体31を配置してもよい。他のガイド体31は、例えば、オルタネータ11の軸方向に沿って延在する筒状に形成されている。他のガイド体31によって、冷却風W1,W2を整流でき、冷却風W1,W2の風量増大などに有利となる。なお、他のガイド体31の形状などは適宜に変更可能である。 When this alternator 11 is adopted for an engine generator, as shown in FIG. 4, another guide body 31 that partitions the boundary between the cooling air W1 and the cooling air W2 may be arranged upstream of the alternator 11. The other guide body 31 is formed, for example, in a cylindrical shape extending along the axial direction of the alternator 11. The cooling air W1 and W2 can be rectified by the other guide body 31, which is advantageous for increasing the air volume of the cooling air W1 and W2. The shape of the other guide body 31 and the like can be changed as appropriate.
 以上説明したように、冷却ファン21は、ロータ15の外周部に配置されるロータ冷却用の第1ブレード23Aと、第1ブレード23Aにつながり、ステータ13に対してオルタネータ11の軸方向一方側に配置されるステータ冷却用の第2ブレード23Bと、第1ブレード23Aと第2ブレード23Bとの間を仕切る仕切り体として機能する横断部材25とを備えている。
 この構成によれば、上記したように、ロータ15内外の部材、つまり、ロータ15、磁石15M、ステータ13、スロット13C及びコイルなどを効果的に冷却できる。しかも、ロータ15、エンジン1、及びステータ13をそれぞれ独立して冷却する別体のブレードを設ける場合と比べ、冷却ファン21を小型化し易くなる。
As described above, the cooling fan 21 is connected to the rotor cooling first blade 23A and the first blade 23A arranged on the outer peripheral portion of the rotor 15, and is on one side of the alternator 11 in the axial direction with respect to the stator 13. It includes a second blade 23B for cooling the stator to be arranged, and a crossing member 25 that functions as a partition body that partitions the first blade 23A and the second blade 23B.
According to this configuration, as described above, the members inside and outside the rotor 15, that is, the rotor 15, the magnet 15M, the stator 13, the slot 13C, the coil, and the like can be effectively cooled. Moreover, the cooling fan 21 can be easily miniaturized as compared with the case where separate blades for independently cooling the rotor 15, the engine 1, and the stator 13 are provided.
 したがって、冷却性能の向上、及び小型化に有利なオルタネータ11を提供することが可能となり、エンジン発電機の小型化を図り易くなる。また、この冷却ファン21を使用することによって、多気筒化や排気量の増大によってエンジン1の発熱量が増大しても十分なエンジン冷却性能を得やすくなる。さらに、発電量の増大などによりオルタネータ11の発熱量が増大しても、十分なオルタネータ冷却性能を得やすくなる。 Therefore, it becomes possible to provide an alternator 11 that is advantageous in improving cooling performance and miniaturization, and it becomes easy to miniaturize the engine generator. Further, by using the cooling fan 21, it becomes easy to obtain sufficient engine cooling performance even if the heat generation amount of the engine 1 increases due to the increase in the number of cylinders and the increase in the displacement. Further, even if the calorific value of the alternator 11 increases due to an increase in the amount of power generation or the like, it becomes easy to obtain sufficient alternator cooling performance.
 また、横断部材25は、第1ブレード23Aと第2ブレード23Bとを一体化したブレード23を、オルタネータ11の軸方向の一方側部分(上流側部分に相当)と他方側部分(下流側部分に相当)とに分割している。これにより、第1ブレード23Aの送風空気と、第2ブレード23Bの送風空気を軸方向に区画でき、各送風空気によって互いに異なる箇所を独立して冷却し易くなる。
 さらに、横断部材25は、ロータ15の径方向に沿う板状で、ロータ15の周方向に沿って延在する形状を有している。この構成によれば、横断部材25によって軸方向に沿って流れる送風空気を径方向外側に案内でき、ロータ15外の大型部品であるエンジン1のシリンダ部1Bなどを効果的に冷却し易くなる。
Further, the crossing member 25 has a blade 23 in which the first blade 23A and the second blade 23B are integrated, and the blade 23 is provided on one side portion (corresponding to the upstream side portion) and the other side portion (downstream side portion) of the alternator 11 in the axial direction. Equivalent) and divided into. As a result, the blown air of the first blade 23A and the blown air of the second blade 23B can be partitioned in the axial direction, and it becomes easy to independently cool different parts of each blown air.
Further, the crossing member 25 has a plate shape along the radial direction of the rotor 15 and has a shape extending along the circumferential direction of the rotor 15. According to this configuration, the blown air flowing along the axial direction can be guided outward in the radial direction by the crossing member 25, and it becomes easy to effectively cool the cylinder portion 1B of the engine 1 which is a large component outside the rotor 15.
 また、第1ブレード23Aには、第1ブレード23Aに吸引される冷却風W1を第1ブレード23Aの内周部に案内するガイド体27が取り付けられている。これにより、冷却風W1をロータ15の外周面近傍に流し、ロータ15の外周面内側に配置される磁石15Mなどを効果的に冷却できる。 Further, the first blade 23A is attached with a guide body 27 that guides the cooling air W1 sucked by the first blade 23A to the inner peripheral portion of the first blade 23A. As a result, the cooling air W1 can be flowed in the vicinity of the outer peripheral surface of the rotor 15 to effectively cool the magnet 15M and the like arranged inside the outer peripheral surface of the rotor 15.
 また、ロータ15は、ガイド体27の内周に、第1ブレード23Aの回転によって外気を取り入れる第1冷却風取入口27Gを有し、ロータ15に、第2ブレード23Bの回転によって外気をロータ15内に取り入れる第2冷却風取入口として機能する開口部15Kを有している。これにより、ロータ15外周と、ロータ15内周とを含む各部を効果的に冷却し易くなる。 Further, the rotor 15 has a first cooling air intake port 27G on the inner circumference of the guide body 27 that takes in outside air by the rotation of the first blade 23A, and the rotor 15 has the outside air taken in by the rotation of the second blade 23B. It has an opening 15K that functions as a second cooling air intake to be taken in. This facilitates effective cooling of each portion including the outer circumference of the rotor 15 and the inner circumference of the rotor 15.
(第2実施形態)
 図5は、第2実施形態に係るオルタネータ11を上流側から見た平面図である。図6は、オルタネータ11の側断面図である。
 第2実施形態は、ステータ13とロータ15の配置が、第1実施形態とは逆になる点が第1実施形態と異なっている。つまり、第2実施形態のロータ15は、下流側に凸のお碗形状に形成されたロータ本体15Aを有し、このロータ本体15Aに対して上流側からステータ13内に配置されている。
 この点を除いて、ブレード23、横断部材25、及びガイド体27などからなる他の部材の配置及び形状については、第1実施形態と同様であるため、重複説明は省略する。
(Second Embodiment)
FIG. 5 is a plan view of the alternator 11 according to the second embodiment as viewed from the upstream side. FIG. 6 is a side sectional view of the alternator 11.
The second embodiment is different from the first embodiment in that the arrangement of the stator 13 and the rotor 15 is opposite to that of the first embodiment. That is, the rotor 15 of the second embodiment has a rotor main body 15A formed in a convex bowl shape on the downstream side, and is arranged in the stator 13 from the upstream side with respect to the rotor main body 15A.
Except for this point, the arrangement and shape of other members including the blade 23, the crossing member 25, the guide body 27, and the like are the same as those in the first embodiment, and therefore duplicate description will be omitted.
 したがって、図6に示すように、第1ブレード23A、及び第2ブレード23Bのそれぞれによって、図4の場合と略同様の第1の冷却風W1、及び第2の冷却風W2を流すことができる。
 第2実施形態の構成によれば、第1実施形態の各種の効果に加え、ロータ本体15Aの開放側(開口部15Kの反対側)が、冷却風W2の上流側を向く分だけ、冷却風W2によってステータ13全体をより積極的に冷却し易くなる効果を期待できる。
 但し、第1実施形態の構造を採用するか、第2実施形態の構造を採用するかは、オルタネータ11の配置スペースなどを考慮して適宜に選択すればよい。
Therefore, as shown in FIG. 6, the first cooling air W1 and the second cooling air W2, which are substantially the same as in the case of FIG. 4, can be flowed by each of the first blade 23A and the second blade 23B. ..
According to the configuration of the second embodiment, in addition to the various effects of the first embodiment, the cooling air is reduced by the amount that the open side (opposite side of the opening 15K) of the rotor body 15A faces the upstream side of the cooling air W2. It can be expected that W2 makes it easier to cool the entire stator 13 more positively.
However, whether to adopt the structure of the first embodiment or the structure of the second embodiment may be appropriately selected in consideration of the arrangement space of the alternator 11.
(第3実施形態)
 図7は、第3実施形態に係るオルタネータ11を上流側から見た平面図である。図8は、オルタネータ11の側断面図である。
 第3実施形態では、冷却ファン21をロータ15のヨークと一体の金属部品で形成している点、及び、第1ブレード23Aの内周縁の上流側端部23J(図8)を内周側ほど軸方向に長く切り欠いた形状にしている点が、第1実施形態と異なっている。これらの点を除いて、横断部材25、及びガイド体27などからなる他の部材の配置及び形状については、第1実施形態と同様であるため、重複説明は省略する。
(Third Embodiment)
FIG. 7 is a plan view of the alternator 11 according to the third embodiment as viewed from the upstream side. FIG. 8 is a side sectional view of the alternator 11.
In the third embodiment, the cooling fan 21 is formed of a metal component integrated with the yoke of the rotor 15, and the upstream end portion 23J (FIG. 8) of the inner peripheral edge of the first blade 23A is closer to the inner peripheral side. It differs from the first embodiment in that it has a shape that is notched long in the axial direction. Except for these points, the arrangement and shape of the other members including the crossing member 25 and the guide body 27 are the same as those in the first embodiment, and therefore duplicate description will be omitted.
 冷却ファン21をロータ15のヨークと一体の金属部品で形成しているので、冷却ファン21をヨークの熱を放熱するヒートシンクとしても機能する。これにより、冷却性能の向上に有利となり、かつ、部品点数の低減や冷却ファン21の小型化に有利となる。
 なお、冷却ファン21を放熱性に有利なアルミニウム金属などで形成し、別部品のヨークに冷却ファン21をロウ付けなどの公知の接合方法を利用して接合してもよい。この場合も冷却ファン21をヨークのヒートシンクとして機能させることができる。
Since the cooling fan 21 is formed of a metal component integrated with the yoke of the rotor 15, the cooling fan 21 also functions as a heat sink for dissipating heat from the yoke. This is advantageous for improving the cooling performance, reducing the number of parts, and reducing the size of the cooling fan 21.
The cooling fan 21 may be formed of aluminum metal or the like, which is advantageous for heat dissipation, and the cooling fan 21 may be joined to the yoke of another component by using a known joining method such as brazing. In this case as well, the cooling fan 21 can function as a heat sink for the yoke.
 また、第1ブレード23Aの内周縁の上流側端部23J(図8)を内周側ほど軸方向に長く切り欠いた形状にすることで、冷却ファン21に第1の冷却風W1が流入し易くなり、冷却風W1の増大に有利となる。また、第1ブレード23Aの上流側端部に連結されるガイド体27によって、効率よくエンジン1側に冷却風W1を送り易くなる。 Further, by forming the upstream end portion 23J (FIG. 8) of the inner peripheral edge of the first blade 23A into a shape that is notched longer in the axial direction toward the inner peripheral side, the first cooling air W1 flows into the cooling fan 21. This facilitates and is advantageous for increasing the cooling air W1. Further, the guide body 27 connected to the upstream end of the first blade 23A makes it easy to efficiently send the cooling air W1 to the engine 1 side.
(第4実施形態)
 図9は、第4実施形態に係るオルタネータ11の冷却ファン21を示す図であり、符号Aは上流側から見た冷却ファン21の斜視図を示し、符号Bは下流側から見た冷却ファン21の斜視図を示している。
 第4実施形態では、第1ブレード23Aと第2ブレード23Bとを一体化したブレード23の外周縁の下流側端部(図7中、符号NTで示す)を、切り欠いた形状にしている。この点を除いて他の部材の配置及び形状については、第1実施形態と略同様である。
(Fourth Embodiment)
FIG. 9 is a diagram showing a cooling fan 21 of the alternator 11 according to the fourth embodiment, reference numeral A is a perspective view of the cooling fan 21 seen from the upstream side, and reference numeral B is a perspective view of the cooling fan 21 seen from the downstream side. The perspective view of is shown.
In the fourth embodiment, the downstream end portion (indicated by reference numeral NT in FIG. 7) of the outer peripheral edge of the blade 23 in which the first blade 23A and the second blade 23B are integrated is notched. Except for this point, the arrangement and shape of the other members are substantially the same as those in the first embodiment.
 ブレード23の外周縁の下流側端部を切り欠いた形状にすることで、第2ブレード23Bによって送風される第2の冷却風W1を外周側に抜き易くなり、第2ブレード23Bの外周側縁部に近い領域(例えば、シリンダ部1Bの基端部)を冷却し易くなる。また、上記形状にすることで、ブレード23の送風抵抗(冷却ファン21の送風抵抗)を低減すること、及び、周囲物品との間に十分な隙間を確保すること等がし易くなる。 By forming the downstream end of the outer peripheral edge of the blade 23 into a notched shape, it becomes easier to pull out the second cooling air W1 blown by the second blade 23B to the outer peripheral side, and the outer peripheral side edge of the second blade 23B. It becomes easy to cool the region close to the portion (for example, the base end portion of the cylinder portion 1B). Further, by forming the above shape, it becomes easy to reduce the blowing resistance of the blade 23 (the blowing resistance of the cooling fan 21) and to secure a sufficient gap between the blade 23 and the surrounding articles.
(第5実施形態)
 図10は、第5実施形態に係るオルタネータ11の冷却ファン21を示す図であり、符号Aは上流側から見た冷却ファン21の斜視図を示し、符号Bは下流側から見た冷却ファン21の斜視図を示している。
 第5実施形態では、第1ブレード23Aの外周縁よりも第2ブレード23Bの外周縁を、ロータ15の径方向内側に位置させている。これによって、第1ブレード23Aを相対的に大径のファンに形成し、第2ブレード23Bを相対的に小径のファンに形成している。
(Fifth Embodiment)
FIG. 10 is a diagram showing a cooling fan 21 of the alternator 11 according to the fifth embodiment, reference numeral A is a perspective view of the cooling fan 21 seen from the upstream side, and reference numeral B is a perspective view of the cooling fan 21 seen from the downstream side. The perspective view of is shown.
In the fifth embodiment, the outer peripheral edge of the second blade 23B is positioned radially inside the rotor 15 with respect to the outer peripheral edge of the first blade 23A. As a result, the first blade 23A is formed into a fan having a relatively large diameter, and the second blade 23B is formed into a fan having a relatively small diameter.
 この構成によれば、第1ブレード23Aをロータ15外周の空気の送風に有利な大径ファンにでき、第2ブレード23Bをステータ13内周の空気の送風に有利な小径ファンにできる。これにより、各ブレード23A及び23Bにより得られる送風量を増大したり、送風音量などを抑制したり等の調整がし易くなり、より好適な冷却性能を得やすくなる。
 なお、第2ブレード23Bの内周側端部を、第1ブレード23Aの内周側端部よりも内周側に延長させてもよい。この構成にすることで、第2ブレード23Bがより内周の空気を吸引し易くなり、つまり、ステータ13内周の空気を吸引し易くなる。
According to this configuration, the first blade 23A can be made into a large-diameter fan advantageous for blowing air around the rotor 15, and the second blade 23B can be made into a small-diameter fan advantageous for blowing air around the inner circumference of the stator 13. As a result, it becomes easy to make adjustments such as increasing the amount of air blown by the blades 23A and 23B, suppressing the air flow volume, and the like, and it becomes easy to obtain more suitable cooling performance.
The inner peripheral side end of the second blade 23B may be extended to the inner peripheral side of the inner peripheral side end of the first blade 23A. With this configuration, it becomes easier for the second blade 23B to suck the air on the inner circumference, that is, it becomes easier to suck the air on the inner circumference of the stator 13.
 第5実施形態では、ブレード23の外周縁の下流側端部(図10中、符号NTで示す)を切り欠いた形状にすることによって、第1ブレード23Aの外周縁の下流側端部を、第2ブレード23Bの外周縁と同じ位置まで切り欠いた形状にしている。この場合、図9に示した場合よりも、ブレード23の外周縁の一部をより大きく切り欠いて第1ブレード23Aを小面積化できる。これにより、ブレード23の送風抵抗(冷却ファン21の送風抵抗)を低減したり、周囲物品との間の隙間を十分に確保したりすることが可能になる。 In the fifth embodiment, the downstream end of the outer peripheral edge of the first blade 23A is formed by cutting out the downstream end of the outer peripheral edge of the blade 23 (indicated by reference numeral NT in FIG. 10). The shape is cut out to the same position as the outer peripheral edge of the second blade 23B. In this case, the area of the first blade 23A can be reduced by cutting out a part of the outer peripheral edge of the blade 23 more than in the case shown in FIG. This makes it possible to reduce the blowing resistance of the blade 23 (the blowing resistance of the cooling fan 21) and to sufficiently secure a gap between the blade 23 and surrounding articles.
(第6実施形態)
 図11は、第6実施形態に係るオルタネータ11の冷却ファン21を示す図であり、符号Aは上流側から見た冷却ファン21の斜視図を示し、符号Bは下流側から見た冷却ファン21の斜視図を示している。
 第6実施形態では、第1ブレード23Aと第2ブレード23Bの枚数が異なっている。より具体的には、第1ブレード23Aの配置間隔(ピッチとも称する)を、第2ブレード23Bの配置間隔を短くすることによって、第1ブレード23Aの枚数を、第2ブレード23Bよりも多くしている。
(Sixth Embodiment)
FIG. 11 is a diagram showing a cooling fan 21 of the alternator 11 according to the sixth embodiment, reference numeral A is a perspective view of the cooling fan 21 seen from the upstream side, and reference numeral B is a perspective view of the cooling fan 21 seen from the downstream side. The perspective view of is shown.
In the sixth embodiment, the number of the first blade 23A and the number of the second blade 23B are different. More specifically, by shortening the arrangement interval (also referred to as pitch) of the first blade 23A and the arrangement interval of the second blade 23B, the number of the first blades 23A is increased as compared with the second blade 23B. There is.
 各ブレード23A及び23Bのブレード枚数、及び配置間隔を独立して調整することで、各ブレード23A及び23Bのより得られる送風量をそれぞれ独立して調整でき、適切な送風量を得やすくなる。
 なお、各ブレード23A及び23Bのブレード枚数が異なる場合、各ブレード23Aは横断部材25を介してブレード23Bとつながることになる。また、全てのブレード23A及び23Bが横断部材25を介して、或いはブレード23A及び23B同士でつながるので、ブレード枚数が異なるブレード23A及び23Bの製造、及び、これらブレード23A及び23Bの支持強度を十分に確保し易くなる。
By independently adjusting the number of blades of each blade 23A and 23B and the arrangement interval, the amount of air blown from each of the blades 23A and 23B can be adjusted independently, and it becomes easy to obtain an appropriate amount of air blown.
If the number of blades of each blade 23A and 23B is different, each blade 23A will be connected to the blade 23B via the crossing member 25. Further, since all the blades 23A and 23B are connected via the crossing member 25 or between the blades 23A and 23B, the blades 23A and 23B having different numbers of blades can be manufactured, and the supporting strengths of these blades 23A and 23B can be sufficiently provided. It will be easier to secure.
 また、図11に示すように、本実施形態でも、第1ブレード23Aの外周縁の下流側端部を、第2ブレード23Bの外周縁と同じ位置まで切り欠いた形状にしている。これにより、ブレード23の送風抵抗を低減したり、周囲物品との間の隙間を十分に確保したりし易くなる。また、各ブレード23A及び23Bのブレード形状についても独立して変更し易い。これらにより、オルタネータ11の発熱量、及びエンジン1の発熱量のそれぞれに合わせた冷却性能を得やすくなる。 Further, as shown in FIG. 11, also in this embodiment, the downstream end portion of the outer peripheral edge of the first blade 23A is cut out to the same position as the outer peripheral edge of the second blade 23B. This makes it easier to reduce the blowing resistance of the blade 23 and to sufficiently secure a gap between the blade 23 and surrounding articles. Further, the blade shapes of the blades 23A and 23B can be easily changed independently. As a result, it becomes easy to obtain cooling performance according to each of the calorific value of the alternator 11 and the calorific value of the engine 1.
 さらに、第1ブレード23Aと第2ブレード23Bとで羽根形状を異ならせてもよい。これによっても、各ブレード23A及び23Bにより得られる送風量を増大したり、送風音量などを抑制したり等の調整がし易くなり、より好適な冷却性能を得やすくなる。 Further, the blade shape may be different between the first blade 23A and the second blade 23B. This also facilitates adjustments such as increasing the amount of air blown by the blades 23A and 23B, suppressing the air flow volume, and the like, and makes it easier to obtain more suitable cooling performance.
 上記の各実施形態は、あくまでも本発明の一実施の態様であり、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能であり、例えば、ブレード枚数、羽根形状、及び配置間隔については適宜に変更すればよい。
 また、本発明を、エンジン発電機に使用されるオルタネータ11に適用する場合を例示したが、エンジン発電機以外に使用されるオルタネータに適用してもよい。また、本発明を、オルタネータ以外に適用してもよく、様々な機器に利用されるアウターロータ型回転機に適用してもよい。例えば、アウターロータ型回転機に隣接して、エンジンを含む様々な発熱部品が配置されている場合、アウターロータ型回転機、及び周囲の発熱部品の両方を効果的に冷却することが可能になる。
Each of the above embodiments is merely an embodiment of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention. For example, regarding the number of blades, the blade shape, and the arrangement interval. May be changed as appropriate.
Moreover, although the case where the present invention is applied to the alternator 11 used for the engine generator is exemplified, it may be applied to the alternator used other than the engine generator. Further, the present invention may be applied to other than the alternator, or may be applied to an outer rotor type rotary machine used in various devices. For example, when various heat generating parts including an engine are arranged adjacent to the outer rotor type rotating machine, it becomes possible to effectively cool both the outer rotor type rotating machine and the surrounding heat generating parts. ..
 1 エンジン
 1A クランクケース
 1B シリンダ部
 1J 出力軸
 11 オルタネータ(アウターロータ型回転機)
 13 ステータ
 15 ロータ
 15K 開口部(第2冷却風取入口)
 15M 磁石
 21 冷却ファン
 23 ブレード
 23A 第1ブレード
 23B 第2ブレード
 25 横断部材(仕切り体)
 27 ガイド体
 27G 第1冷却風取入口
 W1 第1の冷却風
 W2 第2の冷却風
1 Engine 1A Crankcase 1B Cylinder 1J Output shaft 11 Alternator (Outer rotor type rotary machine)
13 Stator 15 Rotor 15K Opening (2nd cooling air intake)
15M Magnet 21 Cooling fan 23 Blade 23A 1st blade 23B 2nd blade 25 Transverse member (partition)
27 Guide body 27G 1st cooling air inlet W1 1st cooling air W2 2nd cooling air

Claims (7)

  1.  コイルを配置したステータと、磁石を配置したロータと、前記ロータと一体に回転する冷却ファンとを備え、前記ロータの内周に前記ステータを配置したアウターロータ型回転機において、
     前記冷却ファンは、前記ロータの外周部に配置されるロータ冷却用の第1ブレードと、前記第1ブレードにつながり、前記ステータに対して当該回転機の軸方向一方側に配置されるステータ冷却用の第2ブレードと、前記第1ブレードと前記第2ブレードとの間を仕切る仕切り体と、
     を備えているアウターロータ型回転機。
    In an outer rotor type rotary machine having a stator in which a coil is arranged, a rotor in which a magnet is arranged, and a cooling fan that rotates integrally with the rotor, and the stator is arranged on the inner circumference of the rotor.
    The cooling fan is connected to a rotor cooling first blade arranged on the outer peripheral portion of the rotor and the stator cooling one connected to the first blade and arranged on one side of the rotating machine in the axial direction with respect to the stator. 2nd blade, a partition body partitioning between the 1st blade and the 2nd blade, and
    The outer rotor type rotating machine equipped with.
  2.  前記仕切り体は、前記第1ブレードと前記第2ブレードとを一体化したブレードを、前記軸方向の一方側部分と他方側部分とに分割し、
     前記ロータの径方向に沿う板状で、前記ロータの周方向に沿って延在する形状を有している請求項1に記載のアウターロータ型回転機。
    The partition body divides the blade in which the first blade and the second blade are integrated into one side portion and the other side portion in the axial direction.
    The outer rotor type rotary machine according to claim 1, which has a plate shape along the radial direction of the rotor and a shape extending along the circumferential direction of the rotor.
  3.  前記第1ブレードと前記第2ブレードとを一体化したブレードの外周縁の下流側端部は、切り欠かれた形状に形成されている請求項1又は2に記載のアウターロータ型回転機。 The outer rotor type rotary machine according to claim 1 or 2, wherein the downstream end portion of the outer peripheral edge of the blade in which the first blade and the second blade are integrated is formed in a notched shape.
  4.  前記第2ブレードの外周縁は、前記第1ブレードの外周縁よりも前記ロータの径方向内側に位置している請求項1から3のいずれか一項に記載のアウターロータ型回転機。 The outer rotor type rotary machine according to any one of claims 1 to 3, wherein the outer peripheral edge of the second blade is located inside the outer peripheral edge of the first blade in the radial direction of the rotor.
  5.  前記第1ブレードには、前記第1ブレードに吸引される冷却風を、前記第1ブレードの内周部に案内するガイド体が取り付けられている請求項1から4のいずれか一項に記載のアウターロータ型回転機。 The first item according to any one of claims 1 to 4, wherein a guide body for guiding the cooling air sucked by the first blade to the inner peripheral portion of the first blade is attached to the first blade. Outer rotor type rotary machine.
  6.  前記ロータは、前記ガイド体の内周に、前記第1ブレードの回転によって外気を取り入れる冷却風取入口を有し、前記ロータに、前記第2ブレードの回転によって外気を前記ロータ内に取り入れる第2冷却風取入口を有している請求項5に記載のアウターロータ型回転機。 The rotor has a cooling air intake port on the inner circumference of the guide body that takes in outside air by the rotation of the first blade, and the rotor takes in outside air by the rotation of the second blade. The outer rotor type rotary machine according to claim 5, which has a cooling air intake.
  7.  前記第1ブレードと前記第2ブレードとで、ブレード枚数、羽根形状、及び配置間隔の少なくともいずれかが異なる請求項1から6のいずれか一項に記載のアウターロータ型回転機。 The outer rotor type rotary machine according to any one of claims 1 to 6, wherein at least one of the number of blades, the blade shape, and the arrangement interval is different between the first blade and the second blade.
PCT/JP2020/040313 2020-10-27 2020-10-27 Outer-rotor-type rotary machine WO2022091227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040313 WO2022091227A1 (en) 2020-10-27 2020-10-27 Outer-rotor-type rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040313 WO2022091227A1 (en) 2020-10-27 2020-10-27 Outer-rotor-type rotary machine

Publications (1)

Publication Number Publication Date
WO2022091227A1 true WO2022091227A1 (en) 2022-05-05

Family

ID=81382041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040313 WO2022091227A1 (en) 2020-10-27 2020-10-27 Outer-rotor-type rotary machine

Country Status (1)

Country Link
WO (1) WO2022091227A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828566U (en) * 1981-08-20 1983-02-24 株式会社東芝 rotating electric machine
US4961016A (en) * 1989-08-09 1990-10-02 General Motors Corporation Dual-face cooling fan for a dynamoelectric machine
JPH0795745A (en) * 1993-07-26 1995-04-07 Nippondenso Co Ltd Rotary electric machine
JPH09327156A (en) * 1996-06-04 1997-12-16 Denso Corp Electric rotating machine
JP2001333558A (en) * 2000-03-13 2001-11-30 Hitachi Ltd Manufacturing method of vehicle ac generator and cooling fan
US20060250033A1 (en) * 2003-05-26 2006-11-09 Claudiu Vasilescu Rotating electrical machine comprising a ventilator
JP2009165213A (en) * 2007-12-28 2009-07-23 Mabuchi Motor Co Ltd Cooling fan attached to rotor
WO2014003065A1 (en) * 2012-06-28 2014-01-03 三菱電機株式会社 Rotating electrical machine for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828566U (en) * 1981-08-20 1983-02-24 株式会社東芝 rotating electric machine
US4961016A (en) * 1989-08-09 1990-10-02 General Motors Corporation Dual-face cooling fan for a dynamoelectric machine
JPH0795745A (en) * 1993-07-26 1995-04-07 Nippondenso Co Ltd Rotary electric machine
JPH09327156A (en) * 1996-06-04 1997-12-16 Denso Corp Electric rotating machine
JP2001333558A (en) * 2000-03-13 2001-11-30 Hitachi Ltd Manufacturing method of vehicle ac generator and cooling fan
US20060250033A1 (en) * 2003-05-26 2006-11-09 Claudiu Vasilescu Rotating electrical machine comprising a ventilator
JP2009165213A (en) * 2007-12-28 2009-07-23 Mabuchi Motor Co Ltd Cooling fan attached to rotor
WO2014003065A1 (en) * 2012-06-28 2014-01-03 三菱電機株式会社 Rotating electrical machine for vehicle

Similar Documents

Publication Publication Date Title
US6815849B2 (en) Magneto generator
EP0761982B1 (en) Fan module
US6124567A (en) Die cast housing for welding machine generator
JP6376981B2 (en) Rotating device
JP4293796B2 (en) Cooling structure for V-belt type continuously variable transmission
US20160003261A1 (en) Heat module
US20180258947A1 (en) Axial fan
JP4946534B2 (en) Cooling system
WO2022091227A1 (en) Outer-rotor-type rotary machine
JP7038074B2 (en) Rotating machine and rotor shaft
JPWO2009028066A1 (en) Vehicle alternator
JP3876912B2 (en) AC generator for vehicles
JP6355390B2 (en) Rotating electric machine
JP6032056B2 (en) Rotating device
JPH09154256A (en) Ac generator
JPWO2016117374A1 (en) Blower
JP7068509B2 (en) Rotating electric machine
JP3220488U (en) Inverter-integrated motor cooling structure
KR101680101B1 (en) generator of turbo-compound system with Air path for improving cooling of rotor
JP6001434B2 (en) Axial gap type power generator
JP5308234B2 (en) Cooling fan device for construction machinery
JP2023048506A (en) Power generator
JPH06169554A (en) Totally-feclosed fan-cooled rotary electric machine
US9071088B2 (en) Axial gap type generator
JP5932868B2 (en) Cooling structure of axial gap type power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP