WO2022091222A1 - Optical module and method for manufacturing optical module - Google Patents

Optical module and method for manufacturing optical module Download PDF

Info

Publication number
WO2022091222A1
WO2022091222A1 PCT/JP2020/040273 JP2020040273W WO2022091222A1 WO 2022091222 A1 WO2022091222 A1 WO 2022091222A1 JP 2020040273 W JP2020040273 W JP 2020040273W WO 2022091222 A1 WO2022091222 A1 WO 2022091222A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
lens
receptacle
element mounting
light
Prior art date
Application number
PCT/JP2020/040273
Other languages
French (fr)
Japanese (ja)
Inventor
進一 金子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/040273 priority Critical patent/WO2022091222A1/en
Priority to JP2021520237A priority patent/JPWO2022091222A1/ja
Publication of WO2022091222A1 publication Critical patent/WO2022091222A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • This disclosure relates to an optical module and a method for manufacturing an optical module.
  • Patent Document 1 discloses an optical transceiver including a housing made of a metal material and a receptacle portion fixed to the housing.
  • the housing accommodates a TOSA (Transmitter Optical SubAssembly), a ROSA (Receiver Optical SubAssembly), a transmitter circuit, a receiver circuit, an LD (Laser Diode) driver, and a post amplifier.
  • TOSA and ROSA is positioned in a plane orthogonal to the optical axis direction and the optical axis direction by sandwiching the receptacle in the receptacle mounting portion of the optical transceiver.
  • the position of the receptacle may be adjusted with reference to the position of the optical element mounting portion in order to obtain the optimum optical coupling.
  • the distance between the optical element mounting portion and the receptacle may change.
  • the position of the flange of the receptacle may shift.
  • it may be difficult to arrange the optical module in the optical transceiver.
  • a mirror may be used for inputting light from a light source to an optical transmitting unit or an optical receiving unit. At this time, the coupling efficiency may be significantly reduced due to the deviation of the mirror angle.
  • the light output may change due to a slight change in the angle of the mirror due to a change in the ambient temperature of the optical module. Further, when a plurality of mirrors are mounted on different substrates, the light output may change due to a slight change in the angle of the mirrors due to a change in the temperature of the substrate. Therefore, it may be difficult to adjust the angle of the mirror.
  • An object of the present disclosure is to obtain an optical module and a method for manufacturing an optical module, which facilitates the arrangement of an optical module in an optical transceiver or the arrangement of parts in an optical module.
  • the optical module according to the first disclosure connects a receptacle having an optical fiber, an optical element mounting portion having at least one of an optical transmitting unit or an optical receiving unit, the receptacle and the optical element mounting unit, and from the receptacle.
  • the lens is provided with a lens holder having a through hole formed up to the optical element mounting portion, a lens barrel housed in the through hole, and a lens housed in the through hole and held in the lens barrel.
  • the holder is directly bonded to the receptacle and the optical element mounting portion, and the inner surface of the lens holder forming the through hole can be bonded to the lens barrel at an arbitrary position in the direction along the optical axis of the lens. be.
  • the optical module according to the second disclosure is provided between a receptacle having an optical fiber, an optical element mounting portion having at least one of an optical transmitting unit or an optical receiving unit, and the receptacle and the optical element mounting unit.
  • the receptacle comprises a lens that collects the light from the optical transmitting unit onto the optical fiber or causes the light from the optical fiber to enter the optical receiving unit, and the receptacle is tubular and the optical fiber is formed. It has a main body portion to be stored and a flange attached to a side surface forming an outer edge of the main body portion and projecting outward from the side surface.
  • the optical module according to the third disclosure includes a first receptacle having a first optical fiber, a second receptacle having a second optical fiber, an optical transmitting unit, an optical receiving unit, and a light source.
  • a first lens provided between the optical element mounting portion, the first receptacle, and the optical element mounting portion, and condensing light from the light transmitting unit onto the first optical fiber, and the same.
  • a second lens provided between the second receptacle and the optical element mounting portion and allowing light from the second optical fiber to be incident on the optical receiving portion is provided, and the optical element mounting portion is provided.
  • It has a first substrate provided with the light transmitting unit, a second substrate provided with the light receiving unit, and a third substrate provided with the light source, and has a plurality of reflecting surfaces orthogonal to each other.
  • a first prism that reflects light from the light source on the plurality of reflecting surfaces and causes the light to be incident on the light transmitting unit, and a plurality of reflecting surfaces orthogonal to each other, and the plurality of reflecting surfaces from the light source.
  • a second prism that reflects light and causes it to enter the light receiving unit is provided, and the first prism is mounted on one of the first substrate and the third substrate, and the first prism is mounted on one of the first substrate and the third substrate.
  • the prism 2 is mounted on one of the second substrate and the third substrate.
  • a lens holder containing a lens is arranged between an optical element mounting portion having at least one of an optical transmitting unit or an optical receiving unit and a receptacle having an optical fiber. Then, the end face of the lens holder perpendicular to the optical axis of the lens and the end face of the receptacle perpendicular to the optical axis are parallel to each other, and the end face of the lens holder and the end face of the receptacle are parallel to each other. After adjusting the position of the lens in the lens holder in the direction along the optical axis, fixing the lens to the lens holder, fixing the lens to the lens holder, and then fixing the lens to the optical element mounting portion.
  • the lens barrel and the lens are housed in the lens holder. Therefore, the position of the lens can be adjusted in the lens holder. Therefore, by adjusting the position of the lens, the distance between the optical element mounting portion and the receptacle does not change, and it is possible to easily arrange the optical module in the optical transceiver.
  • a flange is attached to the side surface of the main body of the receptacle as a separate part. Therefore, the position of the flange can be set independently of the main body. Therefore, it is possible to easily arrange the optical module in the optical transceiver.
  • the process of highly accurate angle adjustment of the mirror can be reduced by the first prism having a plurality of reflecting surfaces and the second prism. Further, each of the first prism and the second prism is mounted on one substrate. Therefore, for each of the first prism and the second prism, it is possible to suppress the deviation of the angle due to the temperature change of the plurality of substrates. Therefore, it is possible to easily arrange the parts in the optical module.
  • the position in the lens holder in the direction along the optical axis of the lens is adjusted. Therefore, by adjusting the position of the lens, the distance between the optical element mounting portion and the receptacle does not change, and it is possible to easily arrange the optical module in the optical transceiver.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 2 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 11 is a cross-sectional view taken along the line CC of FIG. It is a figure which shows the relationship between the inclination of a prism and a mirror, and the coupling efficiency.
  • FIG. 1 is a side view of the lens holder which concerns on the modification of Embodiment 1.
  • FIG. 1 is sectional drawing of the lens holder which concerns on the modification of Embodiment 1.
  • FIG. It is a plan view and a front view of the prism which concerns on the 1st modification of Embodiment 1.
  • FIG. It is a figure explaining the structure of the prism which concerns on the 2nd modification of Embodiment 1.
  • FIG. It is a top view of the optical module which concerns on Embodiment 2.
  • FIG. It is a figure explaining the structure of the prism and the mirror which concerns on Embodiment 2.
  • FIG. It is a figure explaining the adjustment method of the incident light ray to a light receiving part.
  • optical module and the manufacturing method of the optical module according to each embodiment will be described with reference to the drawings.
  • the same or corresponding components may be designated by the same reference numerals and the description may be omitted.
  • FIG. 1 is a plan view of the optical module 100 according to the first embodiment.
  • a flexible substrate 11 is provided on one side of the optical element mounting portion 10, and lens holders 50, 60 and receptacles 55, 65 are provided on the other side.
  • the transmitting side may be described as an example for convenience, but the configuration of the optical system on the receiving side is the same as that on the transmitting side except that the traveling direction of the light is opposite.
  • the optical element mounting unit 10 includes an optical transmitting unit 30, an optical receiving unit 40, and a light source unit 20.
  • the optical transmission unit 30 is provided on the substrate 31.
  • the optical receiving unit 40 is provided on the substrate 41.
  • the light source unit 20 is provided on the substrate 21.
  • Lenses 32 and 33 are mounted on the substrate 31.
  • the lens 32 is a condensing lens that collects the light emitted from the light source unit 20 deflected by the prism 24 on the light transmitting unit 30.
  • the lens 33 is a collimating lens that converts an optical signal emitted from the optical transmission unit 30 into parallel light.
  • Lenses 42 and 43 are mounted on the substrate 41.
  • the lens 42 is a condensing lens that collects the light emitted from the light source unit 20 deflected by the prism 25 to the light receiving unit 40.
  • the lens 43 is a condensing lens for condensing an optical signal incident on the optical element mounting unit 10 on the light receiving unit 40.
  • the lenses 22 and 23 and the prisms 24 and 25 are mounted on the substrate 21.
  • the lenses 22 and 23 are collimated lenses that convert the light from the light source unit 20 into parallel light.
  • a wavelength monitor for monitoring the oscillation light wavelength may be attached to the light source unit 20.
  • the substrate 21 of the light source unit 20 may be composed of a plurality of substrates.
  • the prism 24 has a plurality of reflecting surfaces 24a and 24b orthogonal to each other.
  • the prism 24 reflects the light from the light source unit 20 on the plurality of reflecting surfaces 24a and 24b and causes the light to be incident on the light transmitting unit 30.
  • the prism 25 has a plurality of reflecting surfaces 25a and 25b orthogonal to each other. The prism 25 reflects the light from the light source unit 20 on the plurality of reflecting surfaces 25a and 25b and causes the light to be incident on the light receiving unit 40.
  • the receptacle 55 has an optical fiber 57.
  • the receptacle 55 has a main body portion 58 which is tubular and accommodates the optical fiber 57, and a flange 56 which protrudes outward from the side surface of the main body portion 58.
  • the receptacle 65 has an optical fiber 67.
  • the receptacle 65 has a main body portion 68 which is tubular and houses an optical fiber 67, and a flange 66 which protrudes outward from the side surface of the main body portion 68.
  • the lens holder 50 connects the receptacle 55 and the optical element mounting portion 10.
  • the lens holder 50 is formed with a through hole penetrating from the receptacle 55 to the optical element mounting portion 10.
  • the lens portion 51 is housed in the through hole of the lens holder 50.
  • the lens portion 51 has a lens barrel 51b and a lens 51a held by the lens barrel 51b.
  • the lens holder 60 connects the receptacle 65 and the optical element mounting portion 10.
  • the lens holder 60 is formed with a through hole penetrating from the receptacle 65 to the optical element mounting portion 10.
  • the lens portion 61 is housed in the through hole of the lens holder 60.
  • the lens unit 61 has a lens barrel 61b and a lens 61a held by the lens barrel 61b.
  • the lens holders 50 and 60 are, for example, cylindrical.
  • the end face 50a perpendicular to the optical axis of the lens 51a of the lens holder 50 and the end face 55a of the receptacle 55 perpendicular to the optical axis of the lens 51a are joined.
  • the end surface 60a of the lens holder 60 perpendicular to the optical axis of the lens 61a and the end surface 65a of the receptacle 65 perpendicular to the optical axis of the lens 61a are joined.
  • the optical axis of the lens 51a is parallel to the traveling direction of the light from the light transmitting unit 30 toward the receptacle 55 in FIG.
  • the optical axis of the lens 61a is parallel to the traveling direction of the light from the receptacle 65 toward the light receiving unit 40 in FIG.
  • the lens barrels 51b and 61b are, for example, tubular.
  • the lens barrel 51b is joined to the inner surface of the lens holder 50 that forms a through hole.
  • the lens barrel 61b is joined to the inner surface forming the through hole of the lens holder 60.
  • the digital coherent method has a high affinity with the quadrature amplitude modulation method (QAM: Quadrature Amplitude Modulation) that can add multi-valued information to the phase and amplitude of the optical signal, or the polarization multiplex transmission method using quadrature bipolarization. .. Therefore, the digital coherent method is promising as a method for realizing a large-capacity optical transmission system.
  • QAM Quadrature Amplitude Modulation
  • the emitted light from the same light source is used for transmission and reception. Therefore, two receptacles 55 and 65 are attached to the package of the optical module 100, one for transmission and the other for reception. Further, in FIG. 1, the electric signal is shown by a broken line and the optical signal is shown by a solid line.
  • the light source unit 20 is, for example, a tunable wavelength light source capable of adjusting the oscillation wavelength to a predetermined wavelength.
  • the optical transmission unit 30 has, for example, an optical modulator that modulates the incident light from the light source unit 20 according to an electric signal input to the optical module 100 via the flexible substrate 11.
  • the light modulator is, for example, a Machzenda modulator.
  • the transmitted light signal emitted from the optical transmission unit 30 is converted into parallel light by the lens 33, and is emitted from the optical element mounting unit 10 so as to be coupled to the optical fiber 57 of the receptacle 55.
  • the light emitted from the optical element mounting unit 10 is output to the outside from the receptacle 55.
  • the optical receiving unit 40 combines the incident light from the light source unit 20 and the received light signal from the receptacle 65, and coherently detects them with a photodiode.
  • the combined signal is converted into an electric signal and transmitted to the outside via the flexible substrate 11.
  • the characteristics of the light source unit 20 and the characteristics of the light modulator of the light transmission unit 30 depend on the temperature.
  • the temperature of the light source unit 20 needs to be changed according to the wavelength of the emitted light. Therefore, the light source unit 20 and the light transmission unit 30 are controlled so that their temperatures are constant.
  • the light source unit 20 and the light transmission unit 30 are mounted on independent substrates 21 and 31, and are controlled at different temperatures.
  • the receptacle 55 meshes with the optical connector of the transmission line and outputs the optical signal generated by the optical transmission unit 30 to the transmission line.
  • the receptacle 65 meshes with the optical connector of the transmission line, and inputs the optical signal propagating in the transmission line to the optical receiving unit 40.
  • the optical fibers 57 and 67 are short optical fibers that come into contact with the optical fiber of the optical connector of the transmission line.
  • Flange 56, 66 is provided to position and secure the receptacles 55, 65 to the optical transceiver.
  • the lens 51a is provided between the receptacle 55 and the optical element mounting unit 10, and collects the signal light from the optical transmission unit 30 on the optical fiber 57.
  • the lens 61a is provided between the receptacle 65 and the optical element mounting unit 10, converts the signal light from the optical fiber 67 into parallel light, and causes the light to be incident on the optical receiving unit 40.
  • the position of the lens unit 51 is adjusted in the optical axis direction in the lens holder 50 according to the convergence and divergence of the light emitted from the optical element mounting unit 10. Further, the position of the lens portion 51 is adjusted in the optical axis direction in the lens holder 50 according to the variation in the position of the incident surface of the optical fiber 57 due to the variation in the dimensions of the optical fiber 57. As a result, the optical signal can be collected on the optical fiber 57.
  • the position of the lens portion 61 is also adjusted in the optical axis direction in the lens holder 60 according to the variation in the fixed position of the lens 43 or the variation in the position of the exit surface of the optical fiber 67 due to the variation in the dimensions of the optical fiber 67.
  • the lens is also adjusted in the optical axis direction in the lens holder 60 according to the variation in the fixed position of the lens 43 or the variation in the position of the exit surface of the optical fiber 67 due to the variation in the dimensions of the optical fiber 67.
  • FIG. 2 is a cross-sectional view of the optical module 100 according to the first embodiment.
  • FIG. 3 is a sectional view taken along the line AA of FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • the optical transceiver on which the optical module 100 is mounted includes a housing 12.
  • the optical module 100 holds the flanges 56 and 66 in the holding portion 14 of the housing 12, and is incorporated in the housing 12.
  • the optical module 100 is provided on the upper surface of the housing 12 via the heat dissipation sheet 13.
  • the heat radiating sheet 13 is provided in order to efficiently release the heat generated by the optical element mounting portion 10 to the housing 12.
  • the heat radiating sheet 13 is, for example, in the form of a gel.
  • the arrow 80 indicates the direction of the force applied to the optical element mounting portion 10 with a finger or the like in order to improve the thermal contact with the heat radiating sheet 13.
  • a laser welded portion 70 with the receptacle 55 is formed on the end surface 50a of the lens holder 50. Further, the lens holder 50 and the lens barrel 51b are joined by a laser welded portion 71. Further, a laser welded portion 72 by laser hammering, which will be described later, is formed between the lens holder 50 and the lens barrel 51b.
  • the transmitting side has been described, but the configuration of the joint portion on the receiving side is also the same.
  • FIG. 5 is a flowchart showing a manufacturing method of the optical module 100 according to the first embodiment. Next, the receptacle mounting process of the optical module 100 will be described. The mounting process on the transmitting side will be described below, but the same applies to the receiving side.
  • the receptacle mounting process includes the following first to fifth steps.
  • the lens holder 50 accommodating the lens portion 51 and the receptacle 55 are arranged with respect to the optical element mounting portion 10.
  • the joint surfaces of the lens holder 50 and the receptacle 55 are made parallel to each other and brought into close contact with each other.
  • the position of the lens portion 51 is adjusted so as to form an image on the optical fiber 57, and the lens portion 51 is fixed to the lens holder 50.
  • the positions of the optical element mounting portion 10 and the lens holder 50 are adjusted and fixed.
  • the receptacle 55 is centered and fixed to the lens holder 50.
  • the lens holder 50 in which the lens 51a is housed is arranged between the optical element mounting portion 10 and the receptacle 55.
  • the optical element mounting portion 10, the lens holder 50, and the receptacle 55 may be arranged apart from each other.
  • the end face 50a of the lens holder 50 and the end face 55a of the receptacle 55 are made parallel to each other. If the joint surfaces are slanted with each other, the positional relationship between the lens holder 50 and the receptacle 55 in the optical axis direction may deviate between when the position is adjusted and when the lens is assembled. Therefore, even if the centering is adjusted so that the coupling efficiency is maximized, the maximum coupling efficiency may not be obtained after assembly.
  • the receptacle 55 is first centered. Next, it is determined whether or not the coupling efficiency is equal to or higher than the specified value at the joint surface between the lens holder 50 and the receptacle 55. At this time, it may be determined whether or not the bonding efficiency is maximum on the bonding surface. If the coupling efficiency is not equal to or higher than the specified value or is not the maximum, the lens portion 51 is moved in the optical axis direction and the receptacle 55 is centered again. When the coupling efficiency is equal to or higher than the specified value or maximum, the lens portion 51 is fixed to the lens holder 50.
  • the position of the lens portion 51 in the lens holder 50 in the direction along the optical axis is adjusted to adjust the lens.
  • the portion 51 is fixed to the lens holder 50.
  • the lens portion 51 is fixed to the lens holder 50 by laser welding or the like.
  • FIG. 6 is a diagram illustrating a method of adjusting the position of the lens 51a.
  • the position of the lens 51a is adjusted by using, for example, a jig 90.
  • the jig 90 has a tubular magnet 90a for holding the lens barrel 51b by magnetic force, and a holding portion 90b for holding the magnet 90a.
  • the lens barrel 51b is attached to the magnet 90a, and the lens 51a is moved via the holding portion 90b.
  • the receptacle 55 may be centered by leaving a predetermined minute gap such as 5 to 10 um between the lens holder 50 and the receptacle 55.
  • a predetermined minute gap such as 5 to 10 um between the lens holder 50 and the receptacle 55.
  • the position of the lens 51a in the optical axis direction is fixed away from the receptacle 55 by a minute gap.
  • the joint surface between the optical element mounting portion 10 and the lens holder 50 is brought into close contact with each other to align the receptacle 55.
  • the coupling efficiency does not greatly depend on the distance between the lens holder 50 and the optical element mounting portion 10. For this reason, it is not always necessary to bring the lens holder 50 and the optical element mounting portion 10 into close contact with each other in parallel, but it is preferable that the joint surfaces be in parallel and in close contact with each other.
  • it is determined whether or not the coupling efficiency is equal to or higher than the specified value. At this time, it may be determined whether or not the coupling efficiency is maximum.
  • the lens holder 50 When the coupling efficiency is not equal to or higher than the specified value or is not the maximum, the lens holder 50 is moved and centered in the bonding surface with the optical element mounting portion 10. Next, the receptacle 55 is centered again. When the coupling efficiency is equal to or higher than the specified value or is maximum, the lens holder 50 is fixed to the optical element mounting portion 10 by laser welding or the like.
  • the position of the lens holder 50 in the direction perpendicular to the optical axis with respect to the optical element mounting portion 10 is adjusted, and the lens holder 50 is mounted on the optical element mounting portion. Fix it to 10.
  • the joint surface between the lens holder 50 and the receptacle 55 is made parallel.
  • the receptacle 55 is moved in the joint surface and centered so that the coupling efficiency becomes equal to or higher than the specified value or is maximized on the joint surface.
  • the receptacle 55 is fixed to the lens holder 50 by laser welding or the like.
  • the position of the receptacle 55 with respect to the lens holder 50 in the direction perpendicular to the optical axis is adjusted, and the receptacle 55 is fixed to the lens holder 50. ..
  • the end surface 50a perpendicular to the optical axis of the lens holder 50 and the end surface 55a perpendicular to the optical axis of the receptacle 55 are laser welded.
  • the lens holder 50 and the laser welded portion 70 of the receptacle 55 are provided at three points so as to be separated from each other by 120 °. That is, laser welding is performed so that the joint portion is symmetrical with respect to the optical axis. As a result, the contraction force is applied symmetrically with respect to the optical axis, and the mounting accuracy can be improved.
  • the optical fiber 57 may be displaced from the optimum position and the optical output may decrease.
  • the lens holder 50 after fixing the lens holder 50 between the optical element mounting portion 10 and the receptacle 55, the lens holder 50 and the lens portion 51 are further laser welded from the outside of the lens holder 50. As a result, the position of the lens portion 51 is corrected. In laser hammering, laser welding is performed from the opposite side in the direction of misalignment.
  • laser welding is performed on the starting point side of the arrow 81a indicating the axis deviation to form the laser welded portion 72.
  • the lens portion 51 is pulled and displaced in the direction of the arrow 81b.
  • the axis deviation is corrected and the optical output can be improved.
  • Laser hammering is performed under the same conditions as laser welding for fixing the lens portion 51 and the lens holder 50. Further, when the correction amount of the axis deviation is small, laser hammering may be performed under conditions weaker than the laser welding conditions for fixing the lens portion 51 and the lens holder 50.
  • the condition of laser welding is, for example, the output of a laser.
  • FIG. 7 is a plan view of the prism 24 according to the first embodiment.
  • FIG. 8 is a front view of the prism 24 according to the first embodiment.
  • the displacement of the emitted light beam by the prism 24 will be described, but the same applies to the prism 25.
  • the incident light ray 82a on the prism 24 is reflected by the reflecting surfaces 24a and 24b orthogonal to each other, and is emitted as an emitted light ray 82b.
  • the prism 24 is displaced in the direction of the arrow 82c as shown in FIG.
  • the position of the prism 24 after displacement is indicated by the broken line 82d.
  • the emitted light ray 82b moves in the direction of the arrow 82f, and the emitted light ray 82e is obtained.
  • the prism 24 is displaced in the direction of the arrow 82g as shown in FIG.
  • the position of the prism 24 after the displacement is indicated by the broken line 82h.
  • the emitted light ray 82b moves in the direction of the arrow 82j, and the emitted light ray 82i is obtained.
  • FIG. 9 is a plan view of the optical module 101 according to the first comparative example.
  • the lens portions 51 and 61 are directly attached to the optical element mounting portion 110.
  • Receptacle holders 153 and 163 are provided at the ends of the lens portions 51 and 61 on the opposite side of the optical element mounting portion 110.
  • Receptacles 55 and 65 slide inside the receptacle holders 153 and 163. This makes it possible to adjust the positions of the receptacles 55 and 65 in the optical axis direction.
  • the optical element mounting portion 110 includes mirrors 126a to 126d instead of the prisms 24 and 25.
  • the light emitted from the light source unit 20 is deflected to the light transmission unit 30 by the mirrors 126c and 126d. Further, the emitted light of the light source unit 20 is deflected to the light receiving unit 40 by the mirrors 126b and 126a.
  • FIG. 10 is a plan view of the optical transceiver 180 according to the second comparative example.
  • the optical transceiver 180 includes a transmission light module 101a, a reception light module 101b, a transmission light module 101a, a substrate 115 for controlling the reception light module 101b, and a housing 12 containing these.
  • the transmission optical module 101a includes a flexible substrate 111a for connecting an optical element mounting portion 110a, an optical element mounting portion 110a, and a substrate 115, a receptacle 55, and a lens portion 51 provided between the receptacle 55 and the optical element mounting portion 110a. Be prepared.
  • the received optical module 101b includes an optical element mounting portion 110b, a flexible substrate 111b for connecting the optical element mounting portion 110b and the substrate 115, a receptacle 65, and a lens portion 61 provided between the receptacle 65 and the optical element mounting portion 110b.
  • a duplex type optical connector in which a transmission optical connector and a reception optical connector are integrated is used for input / output of an optical signal to the optical transceiver 180.
  • the relative positions of the optical connector for transmission and the optical connector for reception are generally fixed. Therefore, the portion of the housing 12 for fixing the receptacles 55 and 56 is formed according to the dimensions of the duplex type optical connector.
  • the optical module 101 and the optical transceiver 180 when the receptacles 55 and 65 are slid as shown in FIG. 9, the distance between the optical element mounting portion and the receptacle changes. At this time, depending on the configuration of the optical module 101 and the optical transceiver 180, it may be difficult to arrange the components.
  • the optical transmission unit 30 and the optical reception unit 40 are housed in the same package. In this configuration, if the flanges 56 and 66 are misaligned, they may not be mounted on the optical transceiver.
  • the lens portions 51 and 61 are housed in the lens holders 50 and 60.
  • the diameter of the through hole of the lens holders 50 and 60 is larger than the diameter of the lens portions 51 and 61. Therefore, the lens holders 50 and 60 are provided so as to be joinable to the lens barrels 51b and 61b at arbitrary positions in the direction along the optical axis of the lenses 51a and 61a on the inner side surface forming the through hole. Therefore, the positions of the lens portions 51 and 61 can be adjusted within the lens holders 50 and 60.
  • the optical element mounting portion 10 and the lens holders 50 and 60 are directly joined.
  • the lens holders 50 and 60 and the receptacles 55 and 65 are directly joined.
  • the receptacles 55 and 65 of the present embodiment do not slide. Therefore, by adjusting the positions of the lens portions 51 and 61, the distance between the optical element mounting portion 10 and the receptacles 55 and 65 does not change, and the positions of the parts can be easily adjusted.
  • the optical module 100 can be easily arranged on the optical transceiver.
  • the positions of the lens portions 51 and 61 in the lens holders 50 and 60 in the direction along the optical axis are adjusted. Therefore, by adjusting the positions of the lens portions 51 and 61, the distance between the optical element mounting portion 10 and the receptacles 55 and 65 does not change, and the positions of the parts can be easily adjusted.
  • the optical module 100 can be easily arranged on the optical transceiver.
  • the positions of the flanges 56 and 66, which are the reference for positioning the optical module 100, are aligned in the optical axis direction. Can be done. As a result, the duplex type optical connector can be connected to the optical module 100.
  • the joint surface between the lens holder 50 and the receptacle 55 is made parallel, and the lens is housed in the lens holder 50. Adjust the position of 51a in the optical axis direction. That is, the lens 51a can be adjusted to the optimum coupling position by simulating the state of being assembled as the optical module 100.
  • the receptacle 55 is arranged with respect to the optical element mounting portion 110 via the lens portion 51 and the receptacle holder 153, and optical coupling is established.
  • the lens portion 51 is adjusted and fixed in the direction perpendicular to the optical axis with respect to the optical element mounting portion 110 so that the coupling efficiency to the optical fiber 57 is maximized.
  • the angle of the receptacle holder 153 is adjusted so that the joint surface between the lens portion 51 and the receptacle holder 153 is parallel, and the lens portion 51 and the receptacle holder 153 are brought into close contact with each other.
  • the receptacle 55 is three-dimensionally aligned.
  • the receptacle holder 153 and the receptacle 55 are laser welded at the position where the coupling efficiency is maximized, and the position in the optical axis direction is fixed.
  • the angle is adjusted again so that the joint surface between the lens portion 51 and the receptacle holder 153 is parallel, and the receptacle 55 is centered in the joint surface.
  • the coupling efficiency decreases and the light output decreases.
  • FIG. 11 is a cross-sectional view of the optical module 101 according to the first comparative example.
  • FIG. 12 is a sectional view taken along the line CC of FIG.
  • a laser welded portion 171 is formed between the receptacle 55 and the receptacle holder 153.
  • the misalignment indicated by the arrow 181a is corrected in the direction indicated by the arrow 181b by the laser welded portion 172 by laser hammering.
  • the optical element mounting portion 110 is pushed so as to be in close contact with the heat dissipation sheet 13 in the direction indicated by the arrow 80.
  • a force is applied to the receptacle holder 153 and the laser welded portion 171 of the receptacle 55, and the structure of the optical module 101 may be distorted to cause axial misalignment.
  • a portion 171a that contributes to joining is formed so as to connect the side surface of the receptacle holder 153 and the side surface of the receptacle 55.
  • the end face 50a of the lens holder 50 and the end face 55a of the receptacle 55 are joined. Therefore, the area of the portion contributing to the joining of the receptacle 55 and the lens holder 50 of the present embodiment is much larger than the area of the portion 171a contributing to the joining in the comparative example.
  • a shear stress is generated at the joint portion between the receptacle holder 153 and the receptacle 55 with respect to the stress shown by the arrow 80.
  • a tensile stress is generated at the joint portion between the lens holder 50 and the receptacle 55 with respect to the stress indicated by the arrow 80.
  • the resistance to tensile stress is about twice the resistance to shear stress. From the above, in the present embodiment, the resistance to the stress applied to the lens holder 50 and the receptacle 55 can be improved.
  • the place where the stress is applied and the place where the laser hammering is performed are both between the receptacle holder 153 and the receptacle 55. Therefore, if the joint strength of the laser welded portion 171 is increased in order to increase the resistance to stress, the amount of displacement due to laser hammering becomes smaller. That is, it may be difficult to correct the position of the receptacle 55 by laser hammering.
  • the laser welded portion 72 by laser hammering is formed at a position different from the laser welded portion 70 to which stress is applied. Therefore, the receptacle 55 and the lens holder 50 can be firmly fixed, and the position of the lens 51a can be corrected by laser hammering. Therefore, the position of the component can be easily adjusted.
  • FIG. 13 is a diagram showing the relationship between the inclination of the prisms 24 and 25 and the mirrors 126a to 126d and the coupling efficiency.
  • FIG. 13 shows the calculation result of the coupling efficiency when the deviation from the optimum angle of the mirrors 126a to 126d occurs.
  • the optical module 101 according to the comparative example when the angles of the mirrors 126a to 126d deviate from the optimum angle, the coupling efficiency is significantly reduced. Therefore, it may be difficult to adjust the mirrors 126a to 126d to the optimum angle. Further, in the optical module 101 according to the comparative example, the mirrors 126a to 126d are mounted on separate substrates 21, 31, and 41.
  • a slight change in angle may occur due to a change in the ambient temperature of the optical module 101 or the temperature of the substrates 21, 31, and 41, and the light output may change. Further, there is a possibility that an angular deviation after fixing the mirrors 126a to 126d may occur due to peeling of the adhesive for fixing the mirrors 126a to 126d. In this case, a significant decrease in light output may occur.
  • the reflecting surfaces 24a and 24b of the prism 24 are orthogonal to each other. Therefore, the incident light rays 82a and the emitted light rays 82b on the prism 24 are parallel to each other regardless of the mounting angle of the prism 24 in a plan view. Therefore, unlike the optical module 101, it is not necessary to adjust the angle of the mirror with high accuracy.
  • the light source unit 20 is also mounted according to the incident position of the light transmission unit 30.
  • the position of the light source unit 20 and the incident position of the light transmission unit 30 are displaced. May occur. Even in such a case, the incident light ray 82a can be adjusted to the incident position of the light transmitting unit 30 by changing the position of the prism 24 as shown in FIGS.
  • the optical axis can be easily adjusted by adjusting the positions of the prisms 24 and 25, and a good coupling state can be obtained.
  • each of the prisms 24 and 25 is mounted on one substrate.
  • the transmitting side mirrors 126c and 126d are mounted on the plurality of boards 21 and 31, or the receiving side mirrors 126a and 126b are mounted on the plurality of boards 21 and 41.
  • the prisms 24 and 25 are mounted on one of the plurality of substrates 21, 31 and 41. Therefore, even when the substrates 21, 31, and 41 are distorted due to a change in ambient temperature or the like, a decrease in coupling efficiency can be further suppressed.
  • FIG. 14 is a side view of the lens holder 250 according to the modified example of the first embodiment.
  • FIG. 15 is a cross-sectional view of the lens holder 250 according to the modified example of the first embodiment.
  • the lens holder 250 is formed with a slit 250b that exposes the lens barrel 51b. As a result, the lens portion 51 can be moved through the slit 250b. Therefore, the position of the lens unit 51 in the optical axis direction can be easily adjusted.
  • FIG. 16 is a plan view and a front view of the prism 324 according to the first modification of the first embodiment.
  • the prism 324 has a plurality of reflecting surfaces 324a and 324b orthogonal to each other.
  • the light reflected by the reflecting surface 24a passes through the inside of the prism.
  • the prism 324 the light reflected by the reflecting surface 324a propagates in space. Since the light propagates in space, the transmission loss due to the material of the prism 324 can be suppressed. Further, as the prism 324, a metal or plastic molded product can be used.
  • FIG. 17 is a diagram illustrating a configuration of a prism 424 according to a second modification of the first embodiment.
  • the prism 424 has three reflecting surfaces 424a, 424b, and 424c that are orthogonal to each other.
  • the number of reflecting surfaces of the prism is not limited and may be three. In a structure having three reflecting surfaces, the incident light and the emitted light are completely parallel regardless of the three-dimensional angle of the integrated prism 424. Therefore, it is not necessary to adjust the angle of the prism 424, and the assembly can be facilitated.
  • the optical element mounting unit 10 includes a light source unit 20, an optical transmission unit 30, and an optical reception unit 40 has been described.
  • the optical element mounting unit 10 may include at least one of the optical transmitting unit 30 and the optical receiving unit 40.
  • the prisms 24 and 25 are mounted on the substrate 21.
  • the prisms 24 and 25 may be mounted on the substrate 31 or the substrate 41.
  • the prisms 24 and 25 may be mounted on different substrates.
  • the parts are joined by laser welding. Not limited to this, the parts may be bonded with an adhesive.
  • FIG. 18 is a plan view of the optical module 500 according to the second embodiment.
  • the configuration of the optical element mounting portion 510 is different from the configuration of the first embodiment.
  • the substrates 21 and 31 are provided on the main surface of the optical element mounting portion 510.
  • the substrate 41 is provided above the substrate 21.
  • a prism 24, 527, 528 and a mirror 529 are mounted on the substrate 21.
  • FIG. 19 is a diagram illustrating the configuration of the prism 527, 528 and the mirror 529 according to the second embodiment.
  • the prism 527 has two reflecting surfaces 527a and 527b that are orthogonal to each other.
  • the prism 527 reflects the light from the light source unit 20 upward and causes it to enter the light receiving unit 40.
  • the prism 528 has two reflecting surfaces 528a and 528b that are orthogonal to each other.
  • the prism 528 reflects the light from the lens 61a upward and causes it to enter the light receiving unit 40.
  • the light ray 83a from the light source unit 20 is converted into parallel light by the lens 23, reflected and deflected by the prism 527, and becomes the light ray 83b.
  • the light beam 83b is focused on the light receiving unit 40 by the lens 42.
  • the light ray 84a of the optical signal incident from the receptacle 65 is reflected and deflected at a right angle by the prism 528 to become the light ray 84b.
  • the light ray 84b is further reflected and deflected at a right angle by the mirror 529 to become the light ray 84c.
  • the light beam 84c is focused on the light receiving unit 40 by the lens 43.
  • the reflecting surfaces 527a and 527b are orthogonal to each other, the light rays 83a and the light rays 83b are parallel regardless of the mounting angle of the prism 527. Further, since the reflecting surfaces 528a and 528b are orthogonal to each other, the light rays 84a and the light rays 84b are at right angles regardless of the mounting angle of the prism 528. Therefore, unlike the optical module 101 according to the comparative example, it is not necessary to adjust the angle of the mirror with high accuracy.
  • the shape of the prism 527 is the same as that of the prism 24 of the first embodiment. Therefore, by changing the position of the prism 527 as shown in FIGS. 7 and 8, the light from the light source unit 20 can be adjusted to the incident position of the light receiving unit 40.
  • FIG. 20 is a diagram illustrating a method of adjusting an incident light ray to the light receiving unit 40.
  • the prism 528 is displaced back and forth with respect to the light beam 84a.
  • the ray 84c is displaced in the horizontal direction as shown by the arrow 84f, and the ray 84e is obtained. Therefore, the incident position can be adjusted in the horizontal direction.
  • FIG. 21 is a diagram illustrating another method of adjusting the incident light beam on the light receiving unit 40.
  • the prism 528 is displaced left and right with respect to the light beam 84a, as shown by arrow 84g.
  • the ray 84c is displaced in the height direction as shown by the arrow 84i, and the ray 84h is obtained. Therefore, the incident position can be adjusted in the height direction.
  • the optical axis of the optical system can be easily adjusted by adjusting the positions of the prisms 527 and 528. Therefore, the position of the component can be easily adjusted, and a good bonded state can be obtained.
  • the light source unit 20 and the light receiving unit 40 are arranged so as to overlap each other.
  • the optical module 500 can be miniaturized.
  • the light source unit 20 and the light transmission unit 30 need to be temperature controlled. In order to control the temperature efficiently, it is preferable that the light source unit 20 and the light transmission unit 30 are in close thermal contact with the housing 12. Therefore, it is preferable that the light source unit 20 and the light transmission unit 30 are arranged in the lower stage of the two-stage structure.
  • the optical receiving unit 40 generally has a small temperature dependence, and there is no need to control the temperature. Therefore, it may be arranged in the upper stage of the two-stage structure.
  • FIG. 22 is a diagram illustrating the configuration of the prism 628 according to the modified example of the second embodiment.
  • the prism 628 has a plurality of reflecting surfaces 628a and 628b that are orthogonal to each other.
  • the light reflected by the reflecting surface 628a propagates in space. Since the light propagates in space, the transmission loss due to the material of the prism 628 can be suppressed.
  • the prisms 527 and 528 are mounted on the substrate 21. Not limited to this, the prisms 527 and 528 may be mounted on the substrate 31.
  • FIG. 23 is a plan view of the optical module 700 according to the third embodiment.
  • lens portions 51 and 61 are provided between the optical element mounting portion 10 and the receptacles 755 and 765.
  • Receptacle holders 153 and 163 are provided at the ends of the lens portions 51 and 61 on the opposite side of the optical element mounting portion 10.
  • the receptacles 755 and 765 slide inside the receptacle holders 153 and 163. This makes it possible to adjust the positions of the receptacles 755 and 765 in the optical axis direction.
  • the receptacle 755 has a main body portion 758 and a flange 756.
  • the main body 758 has a tubular shape and houses the optical fiber 57.
  • the flange 756 is attached to a side surface forming the outer edge of the main body 758 and projects outward from the side surface.
  • the receptacle 765 has a main body portion 768 and a flange 766.
  • the main body 768 has a tubular shape and houses the optical fiber 67.
  • the flange 766 is attached to a side surface forming the outer edge of the main body 768 and projects outward from the side surface.
  • the flanges 756 and 766 are configured as separate parts from the main body 758 and 768.
  • the flange 756 and the main body 758 are joined, for example, by laser welding or an adhesive.
  • the receptacle 755 is slid in the receptacle holder 153 according to the variation in the light collection position in the optical axis direction by the lens unit 51 or the variation in the position of the incident surface of the optical fiber 57.
  • the position of the receptacle 755 can be adjusted, and the light collection position and the position of the optical fiber incident surface can be aligned. Therefore, good optical coupling can be realized.
  • the receptacle 765 is slid in the receptacle holder 163 according to the variation in the fixed position of the lens 43 or the variation in the position of the exit surface of the optical fiber 67. As a result, the position of the receptacle 765 can be adjusted and good optical coupling can be realized.
  • the flanges 756 and 766 of the receptacles 755 and 765 are configured as separate parts from the main body portions 758 and 768. Therefore, the positions of the flanges 756 and 766 can be set independently of the main body portions 758 and 768. Therefore, even if there is a difference 85 in the positions of the receptacles 755 and 765 in the optical axis direction, the flanges 756 and 766 can be aligned and attached to the main body portions 758 and 768. Therefore, the position of the component can be easily adjusted.
  • the optical module 700 can be easily arranged on the optical transceiver. In the example shown in FIG. 23, the distance from the optical element mounting portion 10 to the flange 756 is equal to the distance from the optical element mounting portion 10 to the flange 766.
  • the positions of the flanges 756 and 766, which are the reference for positioning the optical module 700, are aligned in the optical axis direction. Can be done. Therefore, the optical module 700 can be applied to an optical transceiver corresponding to a duplex type optical connector.
  • the position of the lens may be adjusted in the lens holder as in the first embodiment.
  • Optical element mounting part 11 Flexible board, 12 housing, 13 heat dissipation sheet, 14 holding part, 20 light source part, 21 board, 22 lens, 23 lens, 24 prism, 24a, 24b reflective surface, 25 prism, 25a, 25b Reflective surface, 30 light transmitter, 31 substrate, 32 lens, 33 lens, 40 light receiver, 41 substrate, 42 lens, 43 lens, 50 lens holder, 50a end face, 51 lens unit, 51a lens, 51b lens barrel, 55 Receptacle, 55a end face, 56 flange, 57 optical fiber, 58 body part, 60 lens holder, 60a end face, 61 lens part, 61a lens, 61b lens barrel, 65 receptacle, 65a end face, 66 flange, 67 optical fiber, 68 body part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical module (100) according to this disclosure comprises: receptacles (55, 65) having optical fibers (57, 67); an optical element mounting section (10) having at least one of a light transmission unit (30) or a light reception unit (40); lens holders (50, 60) that connect the receptacles (55, 65) to the optical element mounting section (10), and that respectively have through-holes formed therein penetrating from the receptacle (55, 65) to the optical element mounting section (10); lens tubes (51b, 61b) accommodated in the through-holes; and lenses (51a, 61a) that are accommodated in the through-holes and held by the lens tubes (51b, 61b). The lens holders (50, 60) are directly joined to the receptacles (55, 65) and the optical element mounting section (10). The inner surfaces of the lens holders (50, 60) forming the through-holes can be joined to the lens tubes (51b, 61b) at any position in the direction along the optical axes of the lenses (51a, 61a).

Description

光モジュールおよび光モジュールの製造方法Optical module and manufacturing method of optical module
 本開示は、光モジュールおよび光モジュールの製造方法に関する。 This disclosure relates to an optical module and a method for manufacturing an optical module.
 特許文献1には、金属材料からなる筐体と、筐体に固定されたレセプタクル部とを備えた光トランシーバが開示されている。筐体は、TOSA(Transmitter Optical SubAssembly)、ROSA(Receiver Optical SubAssembly)、送信回路、受信回路、LD(Laser Diode)ドライバ、ポストアンプを収容する。TOSA及びROSAの各々は、光トランシーバのレセプタクル搭載部において、レセプタクルが筐体により挟み込まれることによって、光軸方向および光軸方向に直交する面内において位置決めされる。 Patent Document 1 discloses an optical transceiver including a housing made of a metal material and a receptacle portion fixed to the housing. The housing accommodates a TOSA (Transmitter Optical SubAssembly), a ROSA (Receiver Optical SubAssembly), a transmitter circuit, a receiver circuit, an LD (Laser Diode) driver, and a post amplifier. Each of TOSA and ROSA is positioned in a plane orthogonal to the optical axis direction and the optical axis direction by sandwiching the receptacle in the receptacle mounting portion of the optical transceiver.
日本特開2007-318042号公報Japanese Patent Application Laid-Open No. 2007-318842
 特許文献1に示されるような光モジュールにおいて、最適な光結合を得るために光素子搭載部の位置を基準として、レセプタクルの位置を調整することがある。この光素子搭載部に対するレセプタクルの位置の調整により、光素子搭載部とレセプタクルとの距離が変わることがある。このとき、光モジュールが搭載される光トランシーバの構成によっては、光モジュールの光トランシーバへの配置が困難となるおそれがある。 In an optical module as shown in Patent Document 1, the position of the receptacle may be adjusted with reference to the position of the optical element mounting portion in order to obtain the optimum optical coupling. By adjusting the position of the receptacle with respect to the optical element mounting portion, the distance between the optical element mounting portion and the receptacle may change. At this time, depending on the configuration of the optical transceiver on which the optical module is mounted, it may be difficult to arrange the optical module in the optical transceiver.
 また、光素子搭載部に対するレセプタクルの位置を調整することで、レセプタクルのフランジの位置がずれる可能性がある。このとき、光モジュールが搭載される光トランシーバの構成によっては、光モジュールの光トランシーバへの配置が困難となるおそれがある。 Also, by adjusting the position of the receptacle with respect to the optical element mounting part, the position of the flange of the receptacle may shift. At this time, depending on the configuration of the optical transceiver on which the optical module is mounted, it may be difficult to arrange the optical module in the optical transceiver.
 また、光素子搭載部において、光源から光送信部または光受信部への光の入力にミラーが用いられることがある。このとき、ミラーの角度のずれにより、結合効率が著しく低下することがある。また、光モジュールの周囲温度の変化によるミラーの僅かな角度変化で、光出力が変化する可能性がある。さらに、複数のミラーが別の基板に搭載される場合、基板の温度変化によるミラーの僅かな角度変化で、光出力が変化する可能性がある。このため、ミラーの角度の調整が困難となるおそれがある。 Further, in the optical element mounting unit, a mirror may be used for inputting light from a light source to an optical transmitting unit or an optical receiving unit. At this time, the coupling efficiency may be significantly reduced due to the deviation of the mirror angle. In addition, the light output may change due to a slight change in the angle of the mirror due to a change in the ambient temperature of the optical module. Further, when a plurality of mirrors are mounted on different substrates, the light output may change due to a slight change in the angle of the mirrors due to a change in the temperature of the substrate. Therefore, it may be difficult to adjust the angle of the mirror.
 本開示は、光トランシーバへの光モジュールの配置または光モジュールへの部品の配置がし易い光モジュールおよび光モジュールの製造方法を得ることを目的とする。 An object of the present disclosure is to obtain an optical module and a method for manufacturing an optical module, which facilitates the arrangement of an optical module in an optical transceiver or the arrangement of parts in an optical module.
 第1の開示に係る光モジュールは、光ファイバを有するレセプタクルと、光送信部または光受信部の少なくとも一方を有する光素子搭載部と、該レセプタクルと該光素子搭載部とを繋ぎ、該レセプタクルから該光素子搭載部まで貫通した貫通孔が形成されたレンズホルダと、該貫通孔に収納された鏡筒と、該貫通孔に収納され該鏡筒に保持されたレンズと、を備え、該レンズホルダは該レセプタクルおよび該光素子搭載部と直接接合され、該貫通孔を形成する該レンズホルダの内側面は、該レンズの光軸に沿った方向の任意の位置で該鏡筒と接合可能である。 The optical module according to the first disclosure connects a receptacle having an optical fiber, an optical element mounting portion having at least one of an optical transmitting unit or an optical receiving unit, the receptacle and the optical element mounting unit, and from the receptacle. The lens is provided with a lens holder having a through hole formed up to the optical element mounting portion, a lens barrel housed in the through hole, and a lens housed in the through hole and held in the lens barrel. The holder is directly bonded to the receptacle and the optical element mounting portion, and the inner surface of the lens holder forming the through hole can be bonded to the lens barrel at an arbitrary position in the direction along the optical axis of the lens. be.
 第2の開示に係る光モジュールは、光ファイバを有するレセプタクルと、光送信部または光受信部の少なくとも一方を有する光素子搭載部と、該レセプタクルと該光素子搭載部との間に設けられ、該光送信部からの光を該光ファイバに集光し、または、該光ファイバからの光を該光受信部に入射させるレンズと、を備え、該レセプタクルは、筒状であり該光ファイバを収納する本体部と、該本体部の外縁を形成する側面に取り付けられ、該側面から外側に突出するフランジと、を有する。 The optical module according to the second disclosure is provided between a receptacle having an optical fiber, an optical element mounting portion having at least one of an optical transmitting unit or an optical receiving unit, and the receptacle and the optical element mounting unit. The receptacle comprises a lens that collects the light from the optical transmitting unit onto the optical fiber or causes the light from the optical fiber to enter the optical receiving unit, and the receptacle is tubular and the optical fiber is formed. It has a main body portion to be stored and a flange attached to a side surface forming an outer edge of the main body portion and projecting outward from the side surface.
 第3の開示に係る光モジュールは、第1の光ファイバを有する第1のレセプタクルと、第2の光ファイバを有する第2のレセプタクルと、光送信部と、光受信部と、光源と、を有する光素子搭載部と、該第1のレセプタクルと該光素子搭載部との間に設けられ、該光送信部からの光を該第1の光ファイバに集光させる第1のレンズと、該第2のレセプタクルと該光素子搭載部との間に設けられ、該第2の光ファイバからの光を該光受信部に入射させる第2のレンズと、を備え、該光素子搭載部は、該光送信部が設けられた第1の基板と、該光受信部が設けられた第2の基板と、該光源が設けられた第3の基板と、互いに直交する複数の反射面を有し、該複数の反射面で該光源からの光を反射させて該光送信部に入射させる第1のプリズムと、互いに直交する複数の反射面を有し、該複数の反射面で該光源からの光を反射させて該光受信部に入射させる第2のプリズムと、を備え、該第1のプリズムは、該第1の基板と該第3の基板のうち一方の基板に搭載され、該第2のプリズムは、該第2の基板と該第3の基板のうち一方の基板に搭載される。 The optical module according to the third disclosure includes a first receptacle having a first optical fiber, a second receptacle having a second optical fiber, an optical transmitting unit, an optical receiving unit, and a light source. A first lens provided between the optical element mounting portion, the first receptacle, and the optical element mounting portion, and condensing light from the light transmitting unit onto the first optical fiber, and the same. A second lens provided between the second receptacle and the optical element mounting portion and allowing light from the second optical fiber to be incident on the optical receiving portion is provided, and the optical element mounting portion is provided. It has a first substrate provided with the light transmitting unit, a second substrate provided with the light receiving unit, and a third substrate provided with the light source, and has a plurality of reflecting surfaces orthogonal to each other. A first prism that reflects light from the light source on the plurality of reflecting surfaces and causes the light to be incident on the light transmitting unit, and a plurality of reflecting surfaces orthogonal to each other, and the plurality of reflecting surfaces from the light source. A second prism that reflects light and causes it to enter the light receiving unit is provided, and the first prism is mounted on one of the first substrate and the third substrate, and the first prism is mounted on one of the first substrate and the third substrate. The prism 2 is mounted on one of the second substrate and the third substrate.
 第4の開示に係る光モジュールの製造方法は、レンズが収納されたレンズホルダを、光送信部または光受信部の少なくとも一方を有する光素子搭載部と、光ファイバを有するレセプタクルとの間に配置し、該レンズホルダの該レンズの光軸に垂直な端面と、該レセプタクルの該光軸に垂直な端面とを平行にし、該レンズホルダの端面と該レセプタクルの端面を平行にした状態で、該レンズホルダ内での該レンズの該光軸に沿った方向の位置を調整し、該レンズを該レンズホルダに固定し、該レンズを該レンズホルダに固定した後に、該光素子搭載部に対する該レンズホルダの該光軸と垂直な方向の位置を調整し、該レンズホルダを該光素子搭載部に固定し、該レンズホルダを該光素子搭載部に固定した後に、該レンズホルダに対する該レセプタクルの該光軸と垂直な方向の位置を調整し、該レセプタクルを該レンズホルダに固定する。 In the method for manufacturing an optical module according to the fourth disclosure, a lens holder containing a lens is arranged between an optical element mounting portion having at least one of an optical transmitting unit or an optical receiving unit and a receptacle having an optical fiber. Then, the end face of the lens holder perpendicular to the optical axis of the lens and the end face of the receptacle perpendicular to the optical axis are parallel to each other, and the end face of the lens holder and the end face of the receptacle are parallel to each other. After adjusting the position of the lens in the lens holder in the direction along the optical axis, fixing the lens to the lens holder, fixing the lens to the lens holder, and then fixing the lens to the optical element mounting portion. After adjusting the position of the holder in the direction perpendicular to the optical axis, fixing the lens holder to the optical element mounting portion, fixing the lens holder to the optical element mounting portion, and then fixing the receptacle to the lens holder. The position in the direction perpendicular to the optical axis is adjusted, and the receptacle is fixed to the lens holder.
 第1の開示に係る光モジュールでは、レンズホルダに鏡筒とレンズが収納される。このため、レンズホルダ内でレンズの位置を調整できる。従って、レンズの位置の調整により光素子搭載部とレセプタクルとの距離が変わらず、光トランシーバへの光モジュールの配置をし易くできる。 In the optical module according to the first disclosure, the lens barrel and the lens are housed in the lens holder. Therefore, the position of the lens can be adjusted in the lens holder. Therefore, by adjusting the position of the lens, the distance between the optical element mounting portion and the receptacle does not change, and it is possible to easily arrange the optical module in the optical transceiver.
 第2の開示に係る光モジュールでは、レセプタクルにおいて本体部の側面にフランジが別部品として取り付けられる。このため、フランジの位置を本体部とは独立して設定できる。従って、光トランシーバへの光モジュールの配置をし易くできる。 In the optical module according to the second disclosure, a flange is attached to the side surface of the main body of the receptacle as a separate part. Therefore, the position of the flange can be set independently of the main body. Therefore, it is possible to easily arrange the optical module in the optical transceiver.
 第3の開示に係る光モジュールでは、複数の反射面を有する第1のプリズムと、第2のプリズムにより、ミラーの高精度な角度調整の工程を削減できる。また、第1のプリズムと第2のプリズムの各々は、1つの基板に搭載される。このため、第1のプリズムと第2のプリズムの各々について、複数の基板の温度変化による角度のずれを抑制できる。従って、光モジュールへの部品の配置をし易くできる。 In the optical module according to the third disclosure, the process of highly accurate angle adjustment of the mirror can be reduced by the first prism having a plurality of reflecting surfaces and the second prism. Further, each of the first prism and the second prism is mounted on one substrate. Therefore, for each of the first prism and the second prism, it is possible to suppress the deviation of the angle due to the temperature change of the plurality of substrates. Therefore, it is possible to easily arrange the parts in the optical module.
 第4の開示に係る光モジュールの製造方法では、レンズホルダ内で、レンズの光軸に沿った方向の位置を調整する。従って、レンズの位置の調整により光素子搭載部とレセプタクルとの距離が変わらず、光トランシーバへの光モジュールの配置をし易くできる。 In the method for manufacturing an optical module according to the fourth disclosure, the position in the lens holder in the direction along the optical axis of the lens is adjusted. Therefore, by adjusting the position of the lens, the distance between the optical element mounting portion and the receptacle does not change, and it is possible to easily arrange the optical module in the optical transceiver.
実施の形態1に係る光モジュールの平面図である。It is a top view of the optical module which concerns on Embodiment 1. FIG. 実施の形態1に係る光モジュールの断面図である。It is sectional drawing of the optical module which concerns on Embodiment 1. FIG. 図2のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 図2のB-B断面図である。FIG. 2 is a cross-sectional view taken along the line BB of FIG. 実施の形態1に係る光モジュールの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical module which concerns on Embodiment 1. レンズの位置の調整方法を説明する図である。It is a figure explaining the method of adjusting the position of a lens. 実施の形態1に係るプリズムの平面図である。It is a top view of the prism which concerns on Embodiment 1. FIG. 実施の形態1に係るプリズムの正面図である。It is a front view of the prism which concerns on Embodiment 1. FIG. 第1の比較例に係る光モジュールの平面図である。It is a top view of the optical module which concerns on 1st comparative example. 第2の比較例に係る光トランシーバの平面図である。It is a top view of the optical transceiver which concerns on the 2nd comparative example. 第1の比較例に係る光モジュールの断面図である。It is sectional drawing of the optical module which concerns on 1st comparative example. 図11のC-C断面図である。11 is a cross-sectional view taken along the line CC of FIG. プリズム、ミラーの傾きと結合効率の関係を示す図である。It is a figure which shows the relationship between the inclination of a prism and a mirror, and the coupling efficiency. 実施の形態1の変形例に係るレンズホルダの側面図である。It is a side view of the lens holder which concerns on the modification of Embodiment 1. FIG. 実施の形態1の変形例に係るレンズホルダの断面図である。It is sectional drawing of the lens holder which concerns on the modification of Embodiment 1. FIG. 実施の形態1の第1の変形例に係るプリズムの平面図および正面図である。It is a plan view and a front view of the prism which concerns on the 1st modification of Embodiment 1. FIG. 実施の形態1の第2の変形例に係るプリズムの構成を説明する図である。It is a figure explaining the structure of the prism which concerns on the 2nd modification of Embodiment 1. FIG. 実施の形態2に係る光モジュールの平面図である。It is a top view of the optical module which concerns on Embodiment 2. FIG. 実施の形態2に係るプリズムおよびミラーの構成を説明する図である。It is a figure explaining the structure of the prism and the mirror which concerns on Embodiment 2. FIG. 光受信部への入射光線の調整方法を説明する図である。It is a figure explaining the adjustment method of the incident light ray to a light receiving part. 光受信部への入射光線の別の調整方法を説明する図である。It is a figure explaining another adjustment method of the incident light ray to an optical receiving part. 実施の形態2の変形例に係るプリズムの構成を説明する図である。It is a figure explaining the structure of the prism which concerns on the modification of Embodiment 2. 実施の形態3に係る光モジュールの平面図である。It is a top view of the optical module which concerns on Embodiment 3. FIG.
 各実施の形態に係る光モジュールおよび光モジュールの製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 The optical module and the manufacturing method of the optical module according to each embodiment will be described with reference to the drawings. The same or corresponding components may be designated by the same reference numerals and the description may be omitted.
実施の形態1.
 図1は、実施の形態1に係る光モジュール100の平面図である。光モジュール100において、光素子搭載部10の一方の側にはフレキシブル基板11が設けられ、他方の側にはレンズホルダ50、60、レセプタクル55、65が設けられる。以下では便宜上送信側を例に説明する場合があるが、受信側においても光の進行方向が逆なだけで光学系の構成は送信側と同様である。
Embodiment 1.
FIG. 1 is a plan view of the optical module 100 according to the first embodiment. In the optical module 100, a flexible substrate 11 is provided on one side of the optical element mounting portion 10, and lens holders 50, 60 and receptacles 55, 65 are provided on the other side. Hereinafter, the transmitting side may be described as an example for convenience, but the configuration of the optical system on the receiving side is the same as that on the transmitting side except that the traveling direction of the light is opposite.
 光素子搭載部10は、光送信部30と、光受信部40と、光源部20とを有する。光送信部30は基板31に設けられる。光受信部40は基板41に設けられる。光源部20は基板21に設けられる。基板31にはレンズ32、33が搭載される。レンズ32はプリズム24によって偏向された光源部20からの出射光を光送信部30に集光する集光レンズである。レンズ33は、光送信部30から出射した光信号を平行光に変換するコリメートレンズである。基板41にはレンズ42、43が搭載される。レンズ42は、プリズム25によって偏向された光源部20からの出射光を光受信部40に集光する集光レンズである。レンズ43は、光素子搭載部10に入射した光信号を光受信部40に集光するための集光レンズである。また、基板21には、レンズ22、23およびプリズム24、25が搭載される。レンズ22、23は、光源部20からの光を平行光に変換するコリメートレンズである。なお、光源部20に発振光波長をモニタするための波長モニタが付随することがある。この場合、光源部20の基板21は複数の基板から構成されることもある。 The optical element mounting unit 10 includes an optical transmitting unit 30, an optical receiving unit 40, and a light source unit 20. The optical transmission unit 30 is provided on the substrate 31. The optical receiving unit 40 is provided on the substrate 41. The light source unit 20 is provided on the substrate 21. Lenses 32 and 33 are mounted on the substrate 31. The lens 32 is a condensing lens that collects the light emitted from the light source unit 20 deflected by the prism 24 on the light transmitting unit 30. The lens 33 is a collimating lens that converts an optical signal emitted from the optical transmission unit 30 into parallel light. Lenses 42 and 43 are mounted on the substrate 41. The lens 42 is a condensing lens that collects the light emitted from the light source unit 20 deflected by the prism 25 to the light receiving unit 40. The lens 43 is a condensing lens for condensing an optical signal incident on the optical element mounting unit 10 on the light receiving unit 40. Further, the lenses 22 and 23 and the prisms 24 and 25 are mounted on the substrate 21. The lenses 22 and 23 are collimated lenses that convert the light from the light source unit 20 into parallel light. A wavelength monitor for monitoring the oscillation light wavelength may be attached to the light source unit 20. In this case, the substrate 21 of the light source unit 20 may be composed of a plurality of substrates.
 プリズム24は、互いに直交する複数の反射面24a、24bを有する。プリズム24は、複数の反射面24a、24bで光源部20からの光を反射させて光送信部30に入射させる。プリズム25は、互いに直交する複数の反射面25a、25bを有する。プリズム25は、複数の反射面25a、25bで光源部20からの光を反射させて光受信部40に入射させる。 The prism 24 has a plurality of reflecting surfaces 24a and 24b orthogonal to each other. The prism 24 reflects the light from the light source unit 20 on the plurality of reflecting surfaces 24a and 24b and causes the light to be incident on the light transmitting unit 30. The prism 25 has a plurality of reflecting surfaces 25a and 25b orthogonal to each other. The prism 25 reflects the light from the light source unit 20 on the plurality of reflecting surfaces 25a and 25b and causes the light to be incident on the light receiving unit 40.
 レセプタクル55は、光ファイバ57を有する。レセプタクル55は、筒状であり光ファイバ57を収納する本体部58と、本体部58の側面から外側に突出するフランジ56とを有する。レセプタクル65は光ファイバ67を有する。レセプタクル65は、筒状であり光ファイバ67を収納する本体部68と、本体部68の側面から外側に突出するフランジ66とを有する。 The receptacle 55 has an optical fiber 57. The receptacle 55 has a main body portion 58 which is tubular and accommodates the optical fiber 57, and a flange 56 which protrudes outward from the side surface of the main body portion 58. The receptacle 65 has an optical fiber 67. The receptacle 65 has a main body portion 68 which is tubular and houses an optical fiber 67, and a flange 66 which protrudes outward from the side surface of the main body portion 68.
 レンズホルダ50は、レセプタクル55と光素子搭載部10とを繋ぐ。レンズホルダ50には、レセプタクル55から光素子搭載部10まで貫通した貫通孔が形成される。レンズホルダ50の貫通孔には、レンズ部51が収納される。レンズ部51は、鏡筒51bと、鏡筒51bに保持されたレンズ51aを有する。レンズホルダ60は、レセプタクル65と光素子搭載部10とを繋ぐ。レンズホルダ60には、レセプタクル65から光素子搭載部10まで貫通した貫通孔が形成される。レンズホルダ60の貫通孔には、レンズ部61が収納される。レンズ部61は、鏡筒61bと、鏡筒61bに保持されたレンズ61aを有する。 The lens holder 50 connects the receptacle 55 and the optical element mounting portion 10. The lens holder 50 is formed with a through hole penetrating from the receptacle 55 to the optical element mounting portion 10. The lens portion 51 is housed in the through hole of the lens holder 50. The lens portion 51 has a lens barrel 51b and a lens 51a held by the lens barrel 51b. The lens holder 60 connects the receptacle 65 and the optical element mounting portion 10. The lens holder 60 is formed with a through hole penetrating from the receptacle 65 to the optical element mounting portion 10. The lens portion 61 is housed in the through hole of the lens holder 60. The lens unit 61 has a lens barrel 61b and a lens 61a held by the lens barrel 61b.
 レンズホルダ50、60は例えば円筒状である。レンズホルダ50のレンズ51aの光軸に垂直な端面50aと、レセプタクル55のうちレンズ51aの光軸に垂直な端面55aは接合される。同様に、レンズホルダ60のレンズ61aの光軸に垂直な端面60aと、レセプタクル65のうちレンズ61aの光軸に垂直な端面65aは接合される。ここで、レンズ51aの光軸は、図1において光送信部30からレセプタクル55に向かう光の進行方向と平行である。また、レンズ61aの光軸は、図1においてレセプタクル65から光受信部40に向かう光の進行方向と平行である。 The lens holders 50 and 60 are, for example, cylindrical. The end face 50a perpendicular to the optical axis of the lens 51a of the lens holder 50 and the end face 55a of the receptacle 55 perpendicular to the optical axis of the lens 51a are joined. Similarly, the end surface 60a of the lens holder 60 perpendicular to the optical axis of the lens 61a and the end surface 65a of the receptacle 65 perpendicular to the optical axis of the lens 61a are joined. Here, the optical axis of the lens 51a is parallel to the traveling direction of the light from the light transmitting unit 30 toward the receptacle 55 in FIG. Further, the optical axis of the lens 61a is parallel to the traveling direction of the light from the receptacle 65 toward the light receiving unit 40 in FIG.
 鏡筒51b、61bは例えば筒状である。鏡筒51bは、レンズホルダ50の貫通孔を形成する内側面に接合される。鏡筒61bは、レンズホルダ60の貫通孔を形成する内側面に接合される。 The lens barrels 51b and 61b are, for example, tubular. The lens barrel 51b is joined to the inner surface of the lens holder 50 that forms a through hole. The lens barrel 61b is joined to the inner surface forming the through hole of the lens holder 60.
 光伝送システムにおいては、通信容量の増大に対応するために様々な光通信システムの検討がなされている。中でもデジタルコヒーレント方式は、光信号の位相および振幅に多値の情報を付与できる直交振幅変調方式(QAM: Quadrature Amplitude Modulation)、または直交2偏波を用いた偏波多重伝送方式と親和性が高い。このため、デジタルコヒーレント方式は大容量光伝送システムを実現する方式として有望である。 In optical transmission systems, various optical communication systems are being studied in order to cope with the increase in communication capacity. Among them, the digital coherent method has a high affinity with the quadrature amplitude modulation method (QAM: Quadrature Amplitude Modulation) that can add multi-valued information to the phase and amplitude of the optical signal, or the polarization multiplex transmission method using quadrature bipolarization. .. Therefore, the digital coherent method is promising as a method for realizing a large-capacity optical transmission system.
 デジタルコヒーレント方式の光トランシーバに組込んで使用される光モジュール100では、同一光源からの出射光が送信および受信に使用される。このため、光モジュール100のパッケージには送信用および受信用に2つのレセプタクル55、65が取り付けられている。また、図1において電気信号は破線で、光信号は実線で示されている。 In the optical module 100 used by incorporating it into a digital coherent optical transceiver, the emitted light from the same light source is used for transmission and reception. Therefore, two receptacles 55 and 65 are attached to the package of the optical module 100, one for transmission and the other for reception. Further, in FIG. 1, the electric signal is shown by a broken line and the optical signal is shown by a solid line.
 光源部20は、例えば予め定められた波長に発振波長を調整可能な波長可変光源である。光送信部30は、例えばフレキシブル基板11を介して光モジュール100に入力される電気信号に応じて、光源部20からの入射光に変調を施す光変調器を有する。光変調器は例えばマッハツェンダ変調器である。光送信部30から出射された送信光信号はレンズ33によって平行光に変換され、レセプタクル55の光ファイバ57に結合するように光素子搭載部10から出射される。光素子搭載部10から出射された光は、レセプタクル55から外部に出力される。光受信部40は、例えば光源部20からの入射光とレセプタクル65からの受信光信号を合波し、フォトダイオードでコヒーレント検波する。合波された信号は電気信号に変換され、フレキシブル基板11を介して外部に送信される。 The light source unit 20 is, for example, a tunable wavelength light source capable of adjusting the oscillation wavelength to a predetermined wavelength. The optical transmission unit 30 has, for example, an optical modulator that modulates the incident light from the light source unit 20 according to an electric signal input to the optical module 100 via the flexible substrate 11. The light modulator is, for example, a Machzenda modulator. The transmitted light signal emitted from the optical transmission unit 30 is converted into parallel light by the lens 33, and is emitted from the optical element mounting unit 10 so as to be coupled to the optical fiber 57 of the receptacle 55. The light emitted from the optical element mounting unit 10 is output to the outside from the receptacle 55. For example, the optical receiving unit 40 combines the incident light from the light source unit 20 and the received light signal from the receptacle 65, and coherently detects them with a photodiode. The combined signal is converted into an electric signal and transmitted to the outside via the flexible substrate 11.
 光源部20の特性と光送信部30の光変調器の特性は、温度に依存する。光源部20は出射光の波長に応じて温度が変更される必要がある。このため、光源部20と光送信部30は、それぞれ温度が一定となるように制御されている。光源部20と光送信部30は、独立な基板21、31に搭載され、別々の温度で制御されている。 The characteristics of the light source unit 20 and the characteristics of the light modulator of the light transmission unit 30 depend on the temperature. The temperature of the light source unit 20 needs to be changed according to the wavelength of the emitted light. Therefore, the light source unit 20 and the light transmission unit 30 are controlled so that their temperatures are constant. The light source unit 20 and the light transmission unit 30 are mounted on independent substrates 21 and 31, and are controlled at different temperatures.
 レセプタクル55は、伝送路の光コネクタと勘合し、光送信部30が生成した光信号を伝送路に出力する。レセプタクル65は、伝送路の光コネクタと勘合し、伝送路を伝播してきた光信号を光受信部40に入力する。光ファイバ57、67は、伝送路の光コネクタが有する光ファイバとコンタクトする短尺光ファイバである。フランジ56、66は、レセプタクル55、65を光トランシーバに位置決めし、固定するために設けられる。 The receptacle 55 meshes with the optical connector of the transmission line and outputs the optical signal generated by the optical transmission unit 30 to the transmission line. The receptacle 65 meshes with the optical connector of the transmission line, and inputs the optical signal propagating in the transmission line to the optical receiving unit 40. The optical fibers 57 and 67 are short optical fibers that come into contact with the optical fiber of the optical connector of the transmission line. Flange 56, 66 is provided to position and secure the receptacles 55, 65 to the optical transceiver.
 レンズ51aは、レセプタクル55と光素子搭載部10との間に設けられ、光送信部30からの信号光を光ファイバ57に集光させる。レンズ61aは、レセプタクル65と光素子搭載部10との間に設けられ、光ファイバ67からの信号光を平行光に変換し、光受信部40に入射させる。 The lens 51a is provided between the receptacle 55 and the optical element mounting unit 10, and collects the signal light from the optical transmission unit 30 on the optical fiber 57. The lens 61a is provided between the receptacle 65 and the optical element mounting unit 10, converts the signal light from the optical fiber 67 into parallel light, and causes the light to be incident on the optical receiving unit 40.
 レンズ部51の位置は、光素子搭載部10からの出射光の収束、発散状態に応じて、レンズホルダ50内で光軸方向に調整される。また、レンズ部51の位置は、光ファイバ57の寸法ばらつきによる光ファイバ57の入射面の位置のばらつきに応じて、レンズホルダ50内で光軸方向に調整される。これにより、光ファイバ57に光信号を集光することができる。レンズ部61の位置についても、レンズ43の固定位置のばらつき、または、光ファイバ67の寸法ばらつきによる光ファイバ67の出射面の位置のばらつきに応じて、レンズホルダ60内で光軸方向に調整される。 The position of the lens unit 51 is adjusted in the optical axis direction in the lens holder 50 according to the convergence and divergence of the light emitted from the optical element mounting unit 10. Further, the position of the lens portion 51 is adjusted in the optical axis direction in the lens holder 50 according to the variation in the position of the incident surface of the optical fiber 57 due to the variation in the dimensions of the optical fiber 57. As a result, the optical signal can be collected on the optical fiber 57. The position of the lens portion 61 is also adjusted in the optical axis direction in the lens holder 60 according to the variation in the fixed position of the lens 43 or the variation in the position of the exit surface of the optical fiber 67 due to the variation in the dimensions of the optical fiber 67. The lens.
 図2は、実施の形態1に係る光モジュール100の断面図である。図3は、図2のA-A断面図である。図4は、図2のB-B断面図である。光モジュール100が搭載される光トランシーバは筐体12を備える。光モジュール100は、フランジ56、66を筐体12の保持部14に保持され、筐体12に組込まれる。光モジュール100は、放熱シート13を介して筐体12の上面に設けられる。放熱シート13は、光素子搭載部10で発生した熱を筐体12に効率よく逃がすために設けられる。放熱シート13は例えばゲル状である。矢印80は、放熱シート13との熱的な接触を向上させるために、指などで光素子搭載部10に印加される力の方向を示す。 FIG. 2 is a cross-sectional view of the optical module 100 according to the first embodiment. FIG. 3 is a sectional view taken along the line AA of FIG. FIG. 4 is a cross-sectional view taken along the line BB of FIG. The optical transceiver on which the optical module 100 is mounted includes a housing 12. The optical module 100 holds the flanges 56 and 66 in the holding portion 14 of the housing 12, and is incorporated in the housing 12. The optical module 100 is provided on the upper surface of the housing 12 via the heat dissipation sheet 13. The heat radiating sheet 13 is provided in order to efficiently release the heat generated by the optical element mounting portion 10 to the housing 12. The heat radiating sheet 13 is, for example, in the form of a gel. The arrow 80 indicates the direction of the force applied to the optical element mounting portion 10 with a finger or the like in order to improve the thermal contact with the heat radiating sheet 13.
 レンズホルダ50の端面50aには、レセプタクル55とのレーザ溶接部70が形成される。また、レンズホルダ50と鏡筒51bは、レーザ溶接部71で接合される。さらにレンズホルダ50と鏡筒51bの間には、後述するレーザハンマリングによるレーザ溶接部72が形成される。ここでは、送信側について説明したが、受信側の接合部の構成も同様である。 A laser welded portion 70 with the receptacle 55 is formed on the end surface 50a of the lens holder 50. Further, the lens holder 50 and the lens barrel 51b are joined by a laser welded portion 71. Further, a laser welded portion 72 by laser hammering, which will be described later, is formed between the lens holder 50 and the lens barrel 51b. Here, the transmitting side has been described, but the configuration of the joint portion on the receiving side is also the same.
 図5は、実施の形態1に係る光モジュール100の製造方法を示すフローチャートである。次に、光モジュール100のレセプタクル取付工程について説明する。以下では送信側の取付工程について説明するが、受信側についても同様である。 FIG. 5 is a flowchart showing a manufacturing method of the optical module 100 according to the first embodiment. Next, the receptacle mounting process of the optical module 100 will be described. The mounting process on the transmitting side will be described below, but the same applies to the receiving side.
 レセプタクル取付工程は、次の第1~第5工程を備える。第1工程では、光素子搭載部10に対して、レンズ部51を収容したレンズホルダ50とレセプタクル55を配置する。第2工程では、レンズホルダ50とレセプタクル55の接合面を平行にし、密接させる。第3工程では、光ファイバ57に結像するよう、レンズ部51の位置を調整し、レンズホルダ50に固定する。第4工程では、光素子搭載部10とレンズホルダ50の位置を調整し固定する。第5工程では、レセプタクル55を調芯し、レンズホルダ50に固定する。 The receptacle mounting process includes the following first to fifth steps. In the first step, the lens holder 50 accommodating the lens portion 51 and the receptacle 55 are arranged with respect to the optical element mounting portion 10. In the second step, the joint surfaces of the lens holder 50 and the receptacle 55 are made parallel to each other and brought into close contact with each other. In the third step, the position of the lens portion 51 is adjusted so as to form an image on the optical fiber 57, and the lens portion 51 is fixed to the lens holder 50. In the fourth step, the positions of the optical element mounting portion 10 and the lens holder 50 are adjusted and fixed. In the fifth step, the receptacle 55 is centered and fixed to the lens holder 50.
 各工程について詳細に説明する。第1工程では、光素子搭載部10からの出射光を光ファイバ57に結合させるために、レンズ51aが収納されたレンズホルダ50を、光素子搭載部10とレセプタクル55との間に配置する。この際、光素子搭載部10と、レンズホルダ50と、レセプタクル55は離して配置しても良い。 Each process will be explained in detail. In the first step, in order to couple the light emitted from the optical element mounting portion 10 to the optical fiber 57, the lens holder 50 in which the lens 51a is housed is arranged between the optical element mounting portion 10 and the receptacle 55. At this time, the optical element mounting portion 10, the lens holder 50, and the receptacle 55 may be arranged apart from each other.
 第2工程では、レンズホルダ50の端面50aと、レセプタクル55の端面55aとを平行にする。接合面が互いに斜めになっていると、位置調整を行ったときと組立てたときとでレンズホルダ50とレセプタクル55の光軸方向の位置関係がずれる可能性がある。このため、結合効率が最大となるように調芯しても、組立て後に最大の結合効率が得られないおそれがある。 In the second step, the end face 50a of the lens holder 50 and the end face 55a of the receptacle 55 are made parallel to each other. If the joint surfaces are slanted with each other, the positional relationship between the lens holder 50 and the receptacle 55 in the optical axis direction may deviate between when the position is adjusted and when the lens is assembled. Therefore, even if the centering is adjusted so that the coupling efficiency is maximized, the maximum coupling efficiency may not be obtained after assembly.
 第3工程では、まずレセプタクル55を調芯する。次に、レンズホルダ50とレセプタクル55の接合面で結合効率が規定値以上であるか否かを判別する。このとき、接合面で結合効率が最大か否かを判別しても良い。結合効率が規定値以上または最大ではない場合、レンズ部51を光軸方向に移動させ、再びレセプタクル55を調芯する。結合効率が規定値以上または最大の場合、レンズ部51をレンズホルダ50に固定する。 In the third step, the receptacle 55 is first centered. Next, it is determined whether or not the coupling efficiency is equal to or higher than the specified value at the joint surface between the lens holder 50 and the receptacle 55. At this time, it may be determined whether or not the bonding efficiency is maximum on the bonding surface. If the coupling efficiency is not equal to or higher than the specified value or is not the maximum, the lens portion 51 is moved in the optical axis direction and the receptacle 55 is centered again. When the coupling efficiency is equal to or higher than the specified value or maximum, the lens portion 51 is fixed to the lens holder 50.
 このように第3工程では、レンズホルダ50の端面50aとレセプタクル55の端面55aを平行にした状態で、レンズホルダ50内でのレンズ部51の光軸に沿った方向の位置を調整し、レンズ部51をレンズホルダ50に固定する。レンズ部51は、レンズホルダ50にレーザ溶接などにより固定される。 As described above, in the third step, with the end surface 50a of the lens holder 50 and the end surface 55a of the receptacle 55 parallel to each other, the position of the lens portion 51 in the lens holder 50 in the direction along the optical axis is adjusted to adjust the lens. The portion 51 is fixed to the lens holder 50. The lens portion 51 is fixed to the lens holder 50 by laser welding or the like.
 図6は、レンズ51aの位置の調整方法を説明する図である。レンズ51aの位置は、例えば治具90を用いて調整される。治具90は、鏡筒51bを磁力により保持するための筒状の磁石90aと、磁石90aを保持する保持部90bを有する。鏡筒51bを磁石90aに付着させ、保持部90bを介してレンズ51aを動かす。 FIG. 6 is a diagram illustrating a method of adjusting the position of the lens 51a. The position of the lens 51a is adjusted by using, for example, a jig 90. The jig 90 has a tubular magnet 90a for holding the lens barrel 51b by magnetic force, and a holding portion 90b for holding the magnet 90a. The lens barrel 51b is attached to the magnet 90a, and the lens 51a is moved via the holding portion 90b.
 なお、レンズホルダ50とレセプタクル55を密接させた状態では、レセプタクル55を調芯し難い場合がある。このため、レンズホルダ50とレセプタクル55の間に、5~10umなどの予め定めた微小な隙間を空けて、レセプタクル55を調芯しても良い。この場合、レンズ51aの光軸方向の位置は、微小な隙間の分だけレセプタクル55から離して固定する。これによって、レンズホルダ50とレセプタクル55を固定した際に、レンズ51aを最適位置に配置できる。 It may be difficult to align the receptacle 55 when the lens holder 50 and the receptacle 55 are in close contact with each other. Therefore, the receptacle 55 may be centered by leaving a predetermined minute gap such as 5 to 10 um between the lens holder 50 and the receptacle 55. In this case, the position of the lens 51a in the optical axis direction is fixed away from the receptacle 55 by a minute gap. As a result, when the lens holder 50 and the receptacle 55 are fixed, the lens 51a can be arranged at the optimum position.
 第4工程では、光素子搭載部10とレンズホルダ50の接合面を密接させ、レセプタクル55を調芯する。結合効率は、レンズホルダ50と光素子搭載部10の距離には大きく依存しない。このため、必ずしもレンズホルダ50と光素子搭載部10の接合面を平行にして密着させる必要はないが、接合面を平行にして密接させる方が望ましい。次に、結合効率が規定値以上であるか否かを判別する。このとき、結合効率が最大か否かを判別しても良い。結合効率が規定値以上または最大ではない場合、光素子搭載部10との接合面内でレンズホルダ50を移動させ、調芯する。次に、再びレセプタクル55を調芯する。結合効率が規定値以上または最大である場合、光素子搭載部10にレンズホルダ50をレーザ溶接などにより固定する。 In the fourth step, the joint surface between the optical element mounting portion 10 and the lens holder 50 is brought into close contact with each other to align the receptacle 55. The coupling efficiency does not greatly depend on the distance between the lens holder 50 and the optical element mounting portion 10. For this reason, it is not always necessary to bring the lens holder 50 and the optical element mounting portion 10 into close contact with each other in parallel, but it is preferable that the joint surfaces be in parallel and in close contact with each other. Next, it is determined whether or not the coupling efficiency is equal to or higher than the specified value. At this time, it may be determined whether or not the coupling efficiency is maximum. When the coupling efficiency is not equal to or higher than the specified value or is not the maximum, the lens holder 50 is moved and centered in the bonding surface with the optical element mounting portion 10. Next, the receptacle 55 is centered again. When the coupling efficiency is equal to or higher than the specified value or is maximum, the lens holder 50 is fixed to the optical element mounting portion 10 by laser welding or the like.
 このように第4工程では、レンズ部51をレンズホルダ50に固定した後に、光素子搭載部10に対するレンズホルダ50の光軸と垂直な方向の位置を調整し、レンズホルダ50を光素子搭載部10に固定する。 As described above, in the fourth step, after the lens portion 51 is fixed to the lens holder 50, the position of the lens holder 50 in the direction perpendicular to the optical axis with respect to the optical element mounting portion 10 is adjusted, and the lens holder 50 is mounted on the optical element mounting portion. Fix it to 10.
 次に、第5工程では、レンズホルダ50とレセプタクル55の接合面を平行にする。次に、接合面で結合効率が規定値以上または最大となるようにレセプタクル55を接合面内で移動させ調芯する。次に、レセプタクル55をレンズホルダ50にレーザ溶接などにより固定する。このように第5工程では、レンズホルダ50を光素子搭載部10に固定した後に、レンズホルダ50に対するレセプタクル55の光軸と垂直な方向の位置を調整し、レセプタクル55をレンズホルダ50に固定する。このとき、レンズホルダ50の光軸に垂直な端面50aと、レセプタクル55の光軸に垂直な端面55aとがレーザ溶接される。 Next, in the fifth step, the joint surface between the lens holder 50 and the receptacle 55 is made parallel. Next, the receptacle 55 is moved in the joint surface and centered so that the coupling efficiency becomes equal to or higher than the specified value or is maximized on the joint surface. Next, the receptacle 55 is fixed to the lens holder 50 by laser welding or the like. As described above, in the fifth step, after the lens holder 50 is fixed to the optical element mounting portion 10, the position of the receptacle 55 with respect to the lens holder 50 in the direction perpendicular to the optical axis is adjusted, and the receptacle 55 is fixed to the lens holder 50. .. At this time, the end surface 50a perpendicular to the optical axis of the lens holder 50 and the end surface 55a perpendicular to the optical axis of the receptacle 55 are laser welded.
 レーザ溶接では、溶融した金属が冷えて固まる際に強い収縮の力が溶接点にかかる。図3に示されるように、レンズホルダ50とレセプタクル55のレーザ溶接部70は互いに120°離れるように3点設けられる。つまり、接合箇所が光軸に対して対称となるようにレーザ溶接が行われる。これにより、光軸に対して収縮の力が対称に加わり、取り付け精度を向上できる。図4に示されるレンズ部51とレンズホルダ50のレーザ溶接部71についても同様である。 In laser welding, a strong shrinking force is applied to the welding point when the molten metal cools and hardens. As shown in FIG. 3, the lens holder 50 and the laser welded portion 70 of the receptacle 55 are provided at three points so as to be separated from each other by 120 °. That is, laser welding is performed so that the joint portion is symmetrical with respect to the optical axis. As a result, the contraction force is applied symmetrically with respect to the optical axis, and the mounting accuracy can be improved. The same applies to the laser welded portion 71 of the lens portion 51 and the lens holder 50 shown in FIG.
 しかしながら、光軸調整位置の偏りなどによって対称性が崩れると、収縮の力のバランスが崩れ、例えば矢印81aに示される軸ずれが発生する。このような軸ずれが発生すると最適位置から光ファイバ57がずれて、光出力が低下するおそれがある。 However, if the symmetry is lost due to the bias of the optical axis adjustment position or the like, the balance of the contraction force is lost, and for example, the axis deviation shown by the arrow 81a occurs. When such an axial deviation occurs, the optical fiber 57 may be displaced from the optimum position and the optical output may decrease.
 これに対し本実施の形態では、レセプタクル55をレンズホルダ50に固定した後に、レンズホルダ50を介してレンズ部51にレーザハンマリングを行う。これにより、レンズ部51による集光点を変位させて軸ずれを補正する。レーザハンマリングでは、光素子搭載部10とレセプタクル55との間にレンズホルダ50を固定した後に、レンズホルダ50の外側からレンズホルダ50とレンズ部51をさらにレーザ溶接する。これにより、レンズ部51の位置が補正される。レーザハンマリングでは、軸ずれの方向の反対側からレーザ溶接を行う。つまり、軸ずれを示す矢印81aの起点側にレーザ溶接を行い、レーザ溶接部72を形成する。レーザ溶接部72が冷えて硬化収縮する際に、矢印81bの方向にレンズ部51が引っ張られ、変位する。これによって、軸ずれが補正され、光出力を向上できる。 On the other hand, in the present embodiment, after the receptacle 55 is fixed to the lens holder 50, laser hammering is performed on the lens portion 51 via the lens holder 50. As a result, the focusing point by the lens unit 51 is displaced to correct the axis deviation. In laser hammering, after fixing the lens holder 50 between the optical element mounting portion 10 and the receptacle 55, the lens holder 50 and the lens portion 51 are further laser welded from the outside of the lens holder 50. As a result, the position of the lens portion 51 is corrected. In laser hammering, laser welding is performed from the opposite side in the direction of misalignment. That is, laser welding is performed on the starting point side of the arrow 81a indicating the axis deviation to form the laser welded portion 72. When the laser welded portion 72 cools and shrinks, the lens portion 51 is pulled and displaced in the direction of the arrow 81b. As a result, the axis deviation is corrected and the optical output can be improved.
 レーザハンマリングは、レンズ部51とレンズホルダ50を固定するためのレーザ溶接と同じ条件で実施される。また、軸ずれの補正量が小さい場合には、レンズ部51とレンズホルダ50を固定するためのレーザ溶接の条件よりも弱い条件でレーザハンマリングを行っても良い。レーザ溶接の条件は例えばレーザの出力である。 Laser hammering is performed under the same conditions as laser welding for fixing the lens portion 51 and the lens holder 50. Further, when the correction amount of the axis deviation is small, laser hammering may be performed under conditions weaker than the laser welding conditions for fixing the lens portion 51 and the lens holder 50. The condition of laser welding is, for example, the output of a laser.
 図7は、実施の形態1に係るプリズム24の平面図である。図8は、実施の形態1に係るプリズム24の正面図である。ここでは、プリズム24による出射光線の変位を説明するが、プリズム25についても同様である。 FIG. 7 is a plan view of the prism 24 according to the first embodiment. FIG. 8 is a front view of the prism 24 according to the first embodiment. Here, the displacement of the emitted light beam by the prism 24 will be described, but the same applies to the prism 25.
 プリズム24への入射光線82aは、互いに直交する反射面24a、24bによって反射され、出射光線82bとして出射される。出射光線82bを基板21の上面と平行方向に動かしたい場合には、図7に示されるように、矢印82cの方向にプリズム24を変位させる。変位後のプリズム24の位置は破線82dで示される。これにより、出射光線82bは矢印82fの方向に移動し、出射光線82eが得られる。 The incident light ray 82a on the prism 24 is reflected by the reflecting surfaces 24a and 24b orthogonal to each other, and is emitted as an emitted light ray 82b. When it is desired to move the emitted light ray 82b in the direction parallel to the upper surface of the substrate 21, the prism 24 is displaced in the direction of the arrow 82c as shown in FIG. The position of the prism 24 after displacement is indicated by the broken line 82d. As a result, the emitted light ray 82b moves in the direction of the arrow 82f, and the emitted light ray 82e is obtained.
 また、出射光線82bを基板21の上面と垂直な方向に動かしたい場合には、図8に示されるように、矢印82gの方向にプリズム24を変位させる。変位後のプリズム24の位置は破線82hで示される。これにより、出射光線82bは矢印82jの方向に移動し、出射光線82iが得られる。 Further, when it is desired to move the emitted light beam 82b in the direction perpendicular to the upper surface of the substrate 21, the prism 24 is displaced in the direction of the arrow 82g as shown in FIG. The position of the prism 24 after the displacement is indicated by the broken line 82h. As a result, the emitted light ray 82b moves in the direction of the arrow 82j, and the emitted light ray 82i is obtained.
 図9は、第1の比較例に係る光モジュール101の平面図である。光モジュール101では、レンズ部51、61が光素子搭載部110に直接取り付けられる。レンズ部51、61の光素子搭載部110と反対側の端部には、レセプタクルホルダ153、163が設けられる。レセプタクルホルダ153、163の内部でレセプタクル55、65がスライドする。これにより、レセプタクル55、65の光軸方向の位置調整が可能となる。 FIG. 9 is a plan view of the optical module 101 according to the first comparative example. In the optical module 101, the lens portions 51 and 61 are directly attached to the optical element mounting portion 110. Receptacle holders 153 and 163 are provided at the ends of the lens portions 51 and 61 on the opposite side of the optical element mounting portion 110. Receptacles 55 and 65 slide inside the receptacle holders 153 and 163. This makes it possible to adjust the positions of the receptacles 55 and 65 in the optical axis direction.
 また、光素子搭載部110は、プリズム24、25に代えてミラー126a~126dを備える。光源部20からの出射光は、ミラー126c、126dによって光送信部30に偏向される。また、光源部20の出射光はミラー126b、126aによって光受信部40に偏向される。 Further, the optical element mounting portion 110 includes mirrors 126a to 126d instead of the prisms 24 and 25. The light emitted from the light source unit 20 is deflected to the light transmission unit 30 by the mirrors 126c and 126d. Further, the emitted light of the light source unit 20 is deflected to the light receiving unit 40 by the mirrors 126b and 126a.
 図10は、第2の比較例に係る光トランシーバ180の平面図である。光トランシーバ180は、送信光モジュール101a、受信光モジュール101b、送信光モジュール101a、受信光モジュール101bを制御するための基板115およびこれらを収容する筐体12を備える。送信光モジュール101aは、光素子搭載部110aと光素子搭載部110aと基板115を接続するフレキシブル基板111aと、レセプタクル55と、レセプタクル55と光素子搭載部110aの間に設けられたレンズ部51を備える。受信光モジュール101bは、光素子搭載部110bと、光素子搭載部110bと基板115を接続するフレキシブル基板111bと、レセプタクル65と、レセプタクル65と光素子搭載部110bの間に設けられたレンズ部61を備える。 FIG. 10 is a plan view of the optical transceiver 180 according to the second comparative example. The optical transceiver 180 includes a transmission light module 101a, a reception light module 101b, a transmission light module 101a, a substrate 115 for controlling the reception light module 101b, and a housing 12 containing these. The transmission optical module 101a includes a flexible substrate 111a for connecting an optical element mounting portion 110a, an optical element mounting portion 110a, and a substrate 115, a receptacle 55, and a lens portion 51 provided between the receptacle 55 and the optical element mounting portion 110a. Be prepared. The received optical module 101b includes an optical element mounting portion 110b, a flexible substrate 111b for connecting the optical element mounting portion 110b and the substrate 115, a receptacle 65, and a lens portion 61 provided between the receptacle 65 and the optical element mounting portion 110b. To prepare for.
 レセプタクル55、65のフランジ56、66は、筐体12で挟み込まれ固定される。光トランシーバ180への光信号の入出力には、送信用光コネクタと受信用光コネクタが一体化されたデュプレクス型光コネクタが使用される。デュプレクス型光コネクタでは、一般に送信用光コネクタと受信用光コネクタの相対位置が決まっている。このため、筐体12のレセプタクル55、56を固定する部分は、デュプレクス型光コネクタの寸法に合わせて形成されている。 The flanges 56 and 66 of the receptacles 55 and 65 are sandwiched and fixed by the housing 12. A duplex type optical connector in which a transmission optical connector and a reception optical connector are integrated is used for input / output of an optical signal to the optical transceiver 180. In the duplex type optical connector, the relative positions of the optical connector for transmission and the optical connector for reception are generally fixed. Therefore, the portion of the housing 12 for fixing the receptacles 55 and 56 is formed according to the dimensions of the duplex type optical connector.
 比較例に係る光モジュール101、光トランシーバ180において、図9に示されるようにレセプタクル55、65をスライドさせると、光素子搭載部とレセプタクルとの距離が変わる。このとき、光モジュール101、光トランシーバ180の構成によっては、部品の配置が困難となるおそれがある。特に、光モジュール101では、光送信部30と光受信部40が同一のパッケージに収容されている。この構成では、フランジ56、66の位置がずれると、光トランシーバに搭載できないおそれがある。 In the optical module 101 and the optical transceiver 180 according to the comparative example, when the receptacles 55 and 65 are slid as shown in FIG. 9, the distance between the optical element mounting portion and the receptacle changes. At this time, depending on the configuration of the optical module 101 and the optical transceiver 180, it may be difficult to arrange the components. In particular, in the optical module 101, the optical transmission unit 30 and the optical reception unit 40 are housed in the same package. In this configuration, if the flanges 56 and 66 are misaligned, they may not be mounted on the optical transceiver.
 これに対し本実施の形態では、レンズホルダ50、60にレンズ部51、61が収納される。レンズホルダ50、60の貫通孔の径は、レンズ部51、61の径よりも大きい。このため、レンズホルダ50、60は、貫通孔を形成する内側面においてレンズ51a、61aの光軸に沿った方向の任意の位置で鏡筒51b、61bと接合可能に設けられる。従って、レンズホルダ50、60内でレンズ部51、61の位置を調整できる。また、光素子搭載部10とレンズホルダ50、60とが直接接合される。また、レンズホルダ50、60とレセプタクル55、65とが直接接合される。このように、本実施の形態のレセプタクル55、65はスライドしない。従って、レンズ部51、61の位置の調整により光素子搭載部10とレセプタクル55、65との距離が変わらず、部品の位置を調整し易くできる。また、光トランシーバへの光モジュール100の配置をし易くできる。 On the other hand, in the present embodiment, the lens portions 51 and 61 are housed in the lens holders 50 and 60. The diameter of the through hole of the lens holders 50 and 60 is larger than the diameter of the lens portions 51 and 61. Therefore, the lens holders 50 and 60 are provided so as to be joinable to the lens barrels 51b and 61b at arbitrary positions in the direction along the optical axis of the lenses 51a and 61a on the inner side surface forming the through hole. Therefore, the positions of the lens portions 51 and 61 can be adjusted within the lens holders 50 and 60. Further, the optical element mounting portion 10 and the lens holders 50 and 60 are directly joined. Further, the lens holders 50 and 60 and the receptacles 55 and 65 are directly joined. As described above, the receptacles 55 and 65 of the present embodiment do not slide. Therefore, by adjusting the positions of the lens portions 51 and 61, the distance between the optical element mounting portion 10 and the receptacles 55 and 65 does not change, and the positions of the parts can be easily adjusted. In addition, the optical module 100 can be easily arranged on the optical transceiver.
 また、本実施の形態の光モジュール100の製造方法では、レンズホルダ50、60内でのレンズ部51、61の光軸に沿った方向の位置を調整する。従って、レンズ部51、61の位置の調整により光素子搭載部10とレセプタクル55、65との距離が変わらず、部品の位置を調整し易くできる。また、光トランシーバへの光モジュール100の配置をし易くできる。 Further, in the manufacturing method of the optical module 100 of the present embodiment, the positions of the lens portions 51 and 61 in the lens holders 50 and 60 in the direction along the optical axis are adjusted. Therefore, by adjusting the positions of the lens portions 51 and 61, the distance between the optical element mounting portion 10 and the receptacles 55 and 65 does not change, and the positions of the parts can be easily adjusted. In addition, the optical module 100 can be easily arranged on the optical transceiver.
 特に、光送信部30と光受信部40が光素子搭載部10として同一のパッケージに収容された構成では、光モジュール100の位置決めの基準となるフランジ56、66の位置を光軸方向で揃えることができる。これにより、光モジュール100にデュプレクス型光コネクタを接続することができる。 In particular, in a configuration in which the optical transmitting unit 30 and the optical receiving unit 40 are housed in the same package as the optical element mounting unit 10, the positions of the flanges 56 and 66, which are the reference for positioning the optical module 100, are aligned in the optical axis direction. Can be done. As a result, the duplex type optical connector can be connected to the optical module 100.
 また、本実施の形態の光モジュール100の製造方法では、レンズホルダ50を光素子搭載部10に取り付ける前に、レンズホルダ50とレセプタクル55の接合面を平行にして、レンズホルダ50に収容したレンズ51aの光軸方向の位置を調整する。つまり、光モジュール100として組立てられた状態を模擬して、最適な結合位置にレンズ51aを調整することができる。 Further, in the method of manufacturing the optical module 100 of the present embodiment, before the lens holder 50 is attached to the optical element mounting portion 10, the joint surface between the lens holder 50 and the receptacle 55 is made parallel, and the lens is housed in the lens holder 50. Adjust the position of 51a in the optical axis direction. That is, the lens 51a can be adjusted to the optimum coupling position by simulating the state of being assembled as the optical module 100.
 次に、比較例に係る光モジュール101の製造方法を説明する。まず、光素子搭載部110に対して、レンズ部51、レセプタクルホルダ153を介してレセプタクル55を配置し、光結合をとる。次に、光ファイバ57への結合効率が最大となるよう、光素子搭載部110に対してレンズ部51を光軸に垂直な方向で調整し、固定する。次に、レンズ部51とレセプタクルホルダ153の接合面が平行となるように、レセプタクルホルダ153の角度を調整し、レンズ部51とレセプタクルホルダ153を密着させる。この状態でレセプタクル55を3次元的に調芯する。結合効率が最大となる位置でレセプタクルホルダ153とレセプタクル55をレーザ溶接し、光軸方向の位置を固定する。次に、再度、レンズ部51とレセプタクルホルダ153の接合面が平行となるように角度調整を行い、レセプタクル55を接合面内で調芯する。結合効率が最大となる位置でレンズ部51とレセプタクルホルダ153をレーザ溶接する。このレーザ溶接の際、レンズ部51とレセプタクル55の相対位置がずれると、結合効率が低下し、光出力が低下する。 Next, a method of manufacturing the optical module 101 according to the comparative example will be described. First, the receptacle 55 is arranged with respect to the optical element mounting portion 110 via the lens portion 51 and the receptacle holder 153, and optical coupling is established. Next, the lens portion 51 is adjusted and fixed in the direction perpendicular to the optical axis with respect to the optical element mounting portion 110 so that the coupling efficiency to the optical fiber 57 is maximized. Next, the angle of the receptacle holder 153 is adjusted so that the joint surface between the lens portion 51 and the receptacle holder 153 is parallel, and the lens portion 51 and the receptacle holder 153 are brought into close contact with each other. In this state, the receptacle 55 is three-dimensionally aligned. The receptacle holder 153 and the receptacle 55 are laser welded at the position where the coupling efficiency is maximized, and the position in the optical axis direction is fixed. Next, the angle is adjusted again so that the joint surface between the lens portion 51 and the receptacle holder 153 is parallel, and the receptacle 55 is centered in the joint surface. Laser weld the lens portion 51 and the receptacle holder 153 at the position where the coupling efficiency is maximized. During this laser welding, if the relative positions of the lens portion 51 and the receptacle 55 deviate from each other, the coupling efficiency decreases and the light output decreases.
 図11は、第1の比較例に係る光モジュール101の断面図である。図12は、図11のC-C断面図である。レセプタクル55とレセプタクルホルダ153の間には、レーザ溶接部171が形成される。矢印181aで示される軸ずれは、レーザハンマリングによるレーザ溶接部172により、矢印181bに示される方向に補正される。 FIG. 11 is a cross-sectional view of the optical module 101 according to the first comparative example. FIG. 12 is a sectional view taken along the line CC of FIG. A laser welded portion 171 is formed between the receptacle 55 and the receptacle holder 153. The misalignment indicated by the arrow 181a is corrected in the direction indicated by the arrow 181b by the laser welded portion 172 by laser hammering.
 一般に光モジュールの光トランシーバへの取り付けの際には、光モジュールから光トランシーバの筐体12への放熱が重要となる。放熱性の向上のため、光素子搭載部110は、矢印80に示される方向に放熱シート13と密着するように押される。このとき、レセプタクル55を支点として、レセプタクルホルダ153とレセプタクル55のレーザ溶接部171に力が掛かり、光モジュール101の構造が歪んで軸ずれが発生する可能性がある。 Generally, when attaching an optical module to an optical transceiver, it is important to dissipate heat from the optical module to the housing 12 of the optical transceiver. In order to improve heat dissipation, the optical element mounting portion 110 is pushed so as to be in close contact with the heat dissipation sheet 13 in the direction indicated by the arrow 80. At this time, with the receptacle 55 as a fulcrum, a force is applied to the receptacle holder 153 and the laser welded portion 171 of the receptacle 55, and the structure of the optical module 101 may be distorted to cause axial misalignment.
 比較例に係る光モジュール101では、レセプタクルホルダ153の側面とレセプタクル55の側面を繋ぐように接合に寄与する部分171aが形成される。これに対し、本実施の形態では、レンズホルダ50の端面50aと、レセプタクル55の端面55aとが接合する。このため、本実施の形態のレセプタクル55とレンズホルダ50の接合に寄与する部分の面積は、比較例における接合に寄与する部分171aの面積よりも遥かに大きい。 In the optical module 101 according to the comparative example, a portion 171a that contributes to joining is formed so as to connect the side surface of the receptacle holder 153 and the side surface of the receptacle 55. On the other hand, in the present embodiment, the end face 50a of the lens holder 50 and the end face 55a of the receptacle 55 are joined. Therefore, the area of the portion contributing to the joining of the receptacle 55 and the lens holder 50 of the present embodiment is much larger than the area of the portion 171a contributing to the joining in the comparative example.
 また、図11に示される例では、矢印80に示される応力に対して、レセプタクルホルダ153とレセプタクル55との接合部にせん断応力が発生する。これに対し、本実施の形態では、矢印80に示される応力に対して、レンズホルダ50とレセプタクル55との接合部には引っ張り応力が発生する。引っ張り応力に対する耐性は、せん断応力に対する耐性の2倍程度である。以上から、本実施の形態では、レンズホルダ50とレセプタクル55に加わる応力に対する耐性を向上できる。 Further, in the example shown in FIG. 11, a shear stress is generated at the joint portion between the receptacle holder 153 and the receptacle 55 with respect to the stress shown by the arrow 80. On the other hand, in the present embodiment, a tensile stress is generated at the joint portion between the lens holder 50 and the receptacle 55 with respect to the stress indicated by the arrow 80. The resistance to tensile stress is about twice the resistance to shear stress. From the above, in the present embodiment, the resistance to the stress applied to the lens holder 50 and the receptacle 55 can be improved.
 また、比較例に係る光モジュール101では、応力が掛かる箇所と、レーザハンマリングを行う箇所が、共にレセプタクルホルダ153とレセプタクル55との間である。このため、応力に対する耐性を高めるためにレーザ溶接部171の接合強度を高くすると、レーザハンマリングによる変位量が小さくなる。つまり、レーザハンマリングによるレセプタクル55の位置補正がし難くなるおそれがある。 Further, in the optical module 101 according to the comparative example, the place where the stress is applied and the place where the laser hammering is performed are both between the receptacle holder 153 and the receptacle 55. Therefore, if the joint strength of the laser welded portion 171 is increased in order to increase the resistance to stress, the amount of displacement due to laser hammering becomes smaller. That is, it may be difficult to correct the position of the receptacle 55 by laser hammering.
 これに対し本実施の形態では、レーザハンマリングによるレーザ溶接部72は、応力が加わるレーザ溶接部70とは異なる位置に形成される。このため、レセプタクル55とレンズホルダ50を強固に固定し、かつ、レンズ51aの位置をレーザハンマリングにより補正できる。従って、部品の位置を調整し易くできる。 On the other hand, in the present embodiment, the laser welded portion 72 by laser hammering is formed at a position different from the laser welded portion 70 to which stress is applied. Therefore, the receptacle 55 and the lens holder 50 can be firmly fixed, and the position of the lens 51a can be corrected by laser hammering. Therefore, the position of the component can be easily adjusted.
 図13は、プリズム24、25、ミラー126a~126dの傾きと結合効率の関係を示す図である。図13には、最適なミラー126a~126dの角度からずれが発生した場合の結合効率の計算結果が示される。比較例に係る光モジュール101では、ミラー126a~126dの角度が最適な角度からずれた場合の結合効率の低下が著しい。このため、ミラー126a~126dを最適角度に合わせるのが困難となる可能性がある。また、比較例に係る光モジュール101ではミラー126a~126dが別々の基板21、31、41に搭載されている。このため、光モジュール101の周囲温度あるいは基板21、31、41の温度の変化により僅かな角度変化が生じ、光出力が変化する可能性がある。さらに、ミラー126a~126dを固定する接着剤の剥離などによって、ミラー126a~126dの固定後の角度ずれが発生する可能性がある。この場合、著しい光出力の低下が発生するおそれがある。 FIG. 13 is a diagram showing the relationship between the inclination of the prisms 24 and 25 and the mirrors 126a to 126d and the coupling efficiency. FIG. 13 shows the calculation result of the coupling efficiency when the deviation from the optimum angle of the mirrors 126a to 126d occurs. In the optical module 101 according to the comparative example, when the angles of the mirrors 126a to 126d deviate from the optimum angle, the coupling efficiency is significantly reduced. Therefore, it may be difficult to adjust the mirrors 126a to 126d to the optimum angle. Further, in the optical module 101 according to the comparative example, the mirrors 126a to 126d are mounted on separate substrates 21, 31, and 41. Therefore, a slight change in angle may occur due to a change in the ambient temperature of the optical module 101 or the temperature of the substrates 21, 31, and 41, and the light output may change. Further, there is a possibility that an angular deviation after fixing the mirrors 126a to 126d may occur due to peeling of the adhesive for fixing the mirrors 126a to 126d. In this case, a significant decrease in light output may occur.
 これに対し本実施の形態では、プリズム24の反射面24a、24bは互いに直交している。このため、プリズム24への入射光線82aと出射光線82bは平面視でプリズム24の実装角度によらず平行となる。このため、光モジュール101のようにミラーの高精度な角度調整が不要となる。 On the other hand, in the present embodiment, the reflecting surfaces 24a and 24b of the prism 24 are orthogonal to each other. Therefore, the incident light rays 82a and the emitted light rays 82b on the prism 24 are parallel to each other regardless of the mounting angle of the prism 24 in a plan view. Therefore, unlike the optical module 101, it is not necessary to adjust the angle of the mirror with high accuracy.
 ここで、レセプタクル55の位置が予め決まっている構成では、光送信部30の出射位置はレセプタクル55の位置に合わせる必要がある。必然的に光源部20も、光送信部30の入射位置に合わせて実装される。しかしながら、光源部20の実装位置のずれ、光源部20からの出射光の方向のずれ、光送信部30の実装位置のずれなどによって、光源部20の位置と光送信部30の入射位置のずれが発生することがある。このような場合にも、図7、8に示されるようにプリズム24の位置を変えることによって、入射光線82aを光送信部30の入射位置に調整できる。同様に、プリズム25の位置を変えることによって、光源部20の出射光線を光受信部40の入射位置に調整できる。このように、本実施の形態では、プリズム24、25の位置の調整によって、光軸の調整を容易に実施でき、良好な結合状態を得ることができる。 Here, in a configuration in which the position of the receptacle 55 is predetermined, it is necessary to align the emission position of the optical transmission unit 30 with the position of the receptacle 55. Inevitably, the light source unit 20 is also mounted according to the incident position of the light transmission unit 30. However, due to the deviation of the mounting position of the light source unit 20, the deviation of the direction of the emitted light from the light source unit 20, the deviation of the mounting position of the light transmission unit 30, and the like, the position of the light source unit 20 and the incident position of the light transmission unit 30 are displaced. May occur. Even in such a case, the incident light ray 82a can be adjusted to the incident position of the light transmitting unit 30 by changing the position of the prism 24 as shown in FIGS. 7 and 8. Similarly, by changing the position of the prism 25, the emitted light beam of the light source unit 20 can be adjusted to the incident position of the light receiving unit 40. As described above, in the present embodiment, the optical axis can be easily adjusted by adjusting the positions of the prisms 24 and 25, and a good coupling state can be obtained.
 また、プリズム24、25の各々は、1つの基板に搭載される。このとき、図9に示されるように送信側のミラー126c、126dが複数の基板21、31に搭載される構成または、受信側のミラー126a、126bが複数の基板21、41に搭載される構成と比較して、複数の基板の温度変化による角度のずれを抑制できる。特に、本実施の形態では、ミラー間の相対角度のずれを抑制できる。従って、光モジュール100への部品の配置をし易くできる。特に、本実施の形態ではプリズム24、25は複数の基板21、31、41のうちの一つの基板上に実装される。このため、周囲温度の変化などにより基板21、31、41が歪んだ場合においても、結合効率の低下をさらに抑制できる。 Further, each of the prisms 24 and 25 is mounted on one substrate. At this time, as shown in FIG. 9, the transmitting side mirrors 126c and 126d are mounted on the plurality of boards 21 and 31, or the receiving side mirrors 126a and 126b are mounted on the plurality of boards 21 and 41. Compared with, it is possible to suppress the deviation of the angle due to the temperature change of a plurality of substrates. In particular, in the present embodiment, the deviation of the relative angle between the mirrors can be suppressed. Therefore, it is possible to easily arrange the components on the optical module 100. In particular, in the present embodiment, the prisms 24 and 25 are mounted on one of the plurality of substrates 21, 31 and 41. Therefore, even when the substrates 21, 31, and 41 are distorted due to a change in ambient temperature or the like, a decrease in coupling efficiency can be further suppressed.
 図14は、実施の形態1の変形例に係るレンズホルダ250の側面図である。図15は、実施の形態1の変形例に係るレンズホルダ250の断面図である。レンズホルダ250には、鏡筒51bを露出させるスリット250bが形成される。これにより、スリット250bを介してレンズ部51を動かせる。従って、レンズ部51の光軸方向の位置の調整を容易にできる。 FIG. 14 is a side view of the lens holder 250 according to the modified example of the first embodiment. FIG. 15 is a cross-sectional view of the lens holder 250 according to the modified example of the first embodiment. The lens holder 250 is formed with a slit 250b that exposes the lens barrel 51b. As a result, the lens portion 51 can be moved through the slit 250b. Therefore, the position of the lens unit 51 in the optical axis direction can be easily adjusted.
 図16は、実施の形態1の第1の変形例に係るプリズム324の平面図および正面図である。プリズム324は、互いに直交する複数の反射面324a、324bを有する。プリズム24では、反射面24aで反射した光がプリズムの内部を透過する。これに対し、プリズム324では、反射面324aで反射した光が空間を伝播する。光が空間を伝播することで、プリズム324の材料による透過損失を抑制できる。また、プリズム324として、金属またはプラスチックのモールド成形品を使用できる。 FIG. 16 is a plan view and a front view of the prism 324 according to the first modification of the first embodiment. The prism 324 has a plurality of reflecting surfaces 324a and 324b orthogonal to each other. In the prism 24, the light reflected by the reflecting surface 24a passes through the inside of the prism. On the other hand, in the prism 324, the light reflected by the reflecting surface 324a propagates in space. Since the light propagates in space, the transmission loss due to the material of the prism 324 can be suppressed. Further, as the prism 324, a metal or plastic molded product can be used.
 図17は、実施の形態1の第2の変形例に係るプリズム424の構成を説明する図である。プリズム424は、互いに直交する3つの反射面424a、424b、424cを有する。このように、プリズムが有する反射面の数は限定されず3つであっても良い。反射面を3つ有する構造では、一体化されたプリズム424の3次元的な角度によらず、入射光と出射光は完全に平行となる。このため、プリズム424の角度調整が不要となり、組立を容易にできる。 FIG. 17 is a diagram illustrating a configuration of a prism 424 according to a second modification of the first embodiment. The prism 424 has three reflecting surfaces 424a, 424b, and 424c that are orthogonal to each other. As described above, the number of reflecting surfaces of the prism is not limited and may be three. In a structure having three reflecting surfaces, the incident light and the emitted light are completely parallel regardless of the three-dimensional angle of the integrated prism 424. Therefore, it is not necessary to adjust the angle of the prism 424, and the assembly can be facilitated.
 本実施の形態では、光素子搭載部10が光源部20、光送信部30、光受信部40を備える例について説明した。これに限らず、光素子搭載部10は、光送信部30または光受信部40の少なくとも一方を有すれば良い。また、本実施の形態では、プリズム24、25が基板21に搭載された。これに限らず、プリズム24、25は基板31または基板41に搭載されても良い。また、プリズム24、25は、互いに別の基板に搭載されていても良い。また、本実施の形態では部品をレーザ溶接で接合した。これに限らず、部品は接着材で接着されても良い。 In the present embodiment, an example in which the optical element mounting unit 10 includes a light source unit 20, an optical transmission unit 30, and an optical reception unit 40 has been described. Not limited to this, the optical element mounting unit 10 may include at least one of the optical transmitting unit 30 and the optical receiving unit 40. Further, in the present embodiment, the prisms 24 and 25 are mounted on the substrate 21. Not limited to this, the prisms 24 and 25 may be mounted on the substrate 31 or the substrate 41. Further, the prisms 24 and 25 may be mounted on different substrates. Further, in the present embodiment, the parts are joined by laser welding. Not limited to this, the parts may be bonded with an adhesive.
 これらの変形は、以下の実施の形態に係る光モジュールおよび光モジュールの製造方法について適宜応用することができる。なお、以下の実施の形態に係る光モジュールおよび光モジュールの製造方法については実施の形態1との共通点が多いので、実施の形態1との相違点を中心に説明する。 These modifications can be appropriately applied to the optical module and the method for manufacturing the optical module according to the following embodiments. Since the optical module and the method for manufacturing the optical module according to the following embodiments have much in common with the first embodiment, the differences from the first embodiment will be mainly described.
実施の形態2.
 図18は、実施の形態2に係る光モジュール500の平面図である。光モジュール500では、光素子搭載部510の構成が実施の形態1の構成と異なる。光素子搭載部510において、基板21、31は、光素子搭載部510の主面上に設けられる。基板41は、基板21の上方に設けられる。基板21には、プリズム24、527、528、ミラー529が搭載される。
Embodiment 2.
FIG. 18 is a plan view of the optical module 500 according to the second embodiment. In the optical module 500, the configuration of the optical element mounting portion 510 is different from the configuration of the first embodiment. In the optical element mounting portion 510, the substrates 21 and 31 are provided on the main surface of the optical element mounting portion 510. The substrate 41 is provided above the substrate 21. A prism 24, 527, 528 and a mirror 529 are mounted on the substrate 21.
 図19は、実施の形態2に係るプリズム527、528およびミラー529の構成を説明する図である。プリズム527は、互いに直交する2つの反射面527a、527bを有する。プリズム527は、光源部20からの光を上方に反射させて光受信部40に入射させる。プリズム528は、互いに直交する2つの反射面528a、528bを有する。プリズム528は、レンズ61aからの光を上方に反射させて光受信部40に入射させる。 FIG. 19 is a diagram illustrating the configuration of the prism 527, 528 and the mirror 529 according to the second embodiment. The prism 527 has two reflecting surfaces 527a and 527b that are orthogonal to each other. The prism 527 reflects the light from the light source unit 20 upward and causes it to enter the light receiving unit 40. The prism 528 has two reflecting surfaces 528a and 528b that are orthogonal to each other. The prism 528 reflects the light from the lens 61a upward and causes it to enter the light receiving unit 40.
 光源部20からの光線83aは、レンズ23によって平行光に変換され、プリズム527によって反射、偏向され、光線83bとなる。光線83bは、レンズ42によって光受信部40に集光される。レセプタクル65から入射された光信号の光線84aは、プリズム528によって直角に反射、偏向されて光線84bとなる。光線84bは、ミラー529で更に直角に反射、偏向されて光線84cとなる。光線84cは、レンズ43によって光受信部40に集光される。 The light ray 83a from the light source unit 20 is converted into parallel light by the lens 23, reflected and deflected by the prism 527, and becomes the light ray 83b. The light beam 83b is focused on the light receiving unit 40 by the lens 42. The light ray 84a of the optical signal incident from the receptacle 65 is reflected and deflected at a right angle by the prism 528 to become the light ray 84b. The light ray 84b is further reflected and deflected at a right angle by the mirror 529 to become the light ray 84c. The light beam 84c is focused on the light receiving unit 40 by the lens 43.
 反射面527a、527bは互いに直行しているため、光線83aと光線83bはプリズム527の実装角度によらず平行となる。また、反射面528a、528bは互いに直行しているため、光線84aと光線84bはプリズム528の実装角度によらず直角となる。このため、比較例に係る光モジュール101のようにミラーの高精度な角度調整が不要となる。 Since the reflecting surfaces 527a and 527b are orthogonal to each other, the light rays 83a and the light rays 83b are parallel regardless of the mounting angle of the prism 527. Further, since the reflecting surfaces 528a and 528b are orthogonal to each other, the light rays 84a and the light rays 84b are at right angles regardless of the mounting angle of the prism 528. Therefore, unlike the optical module 101 according to the comparative example, it is not necessary to adjust the angle of the mirror with high accuracy.
 プリズム527の形状は、実施の形態1のプリズム24と同じである。このため、図7、8に示されるようにプリズム527の位置を変えることによって、光源部20からの光を光受信部40の入射位置に調整できる。 The shape of the prism 527 is the same as that of the prism 24 of the first embodiment. Therefore, by changing the position of the prism 527 as shown in FIGS. 7 and 8, the light from the light source unit 20 can be adjusted to the incident position of the light receiving unit 40.
 プリズム528では、互いに直交する2つの反射面528a、528bがねじれた位置に配置される。図20は、光受信部40への入射光線の調整方法を説明する図である。例えば矢印84dに示されるように、プリズム528を光線84aに対して前後に変位させる。これにより、光線84cは矢印84fに示されるように水平方向に変位し、光線84eが得られる。従って、水平方向に入射位置を調整できる。 In the prism 528, two reflecting surfaces 528a and 528b orthogonal to each other are arranged at twisted positions. FIG. 20 is a diagram illustrating a method of adjusting an incident light ray to the light receiving unit 40. For example, as shown by arrow 84d, the prism 528 is displaced back and forth with respect to the light beam 84a. As a result, the ray 84c is displaced in the horizontal direction as shown by the arrow 84f, and the ray 84e is obtained. Therefore, the incident position can be adjusted in the horizontal direction.
 図21は、光受信部40への入射光線の別の調整方法を説明する図である。図21に示される例では、矢印84gに示されるように、プリズム528を光線84aに対して左右に変位させる。これにより、光線84cは矢印84iに示されるように高さ方向に変位し、光線84hが得られる。従って、高さ方向に入射位置を調整できる。 FIG. 21 is a diagram illustrating another method of adjusting the incident light beam on the light receiving unit 40. In the example shown in FIG. 21, the prism 528 is displaced left and right with respect to the light beam 84a, as shown by arrow 84g. As a result, the ray 84c is displaced in the height direction as shown by the arrow 84i, and the ray 84h is obtained. Therefore, the incident position can be adjusted in the height direction.
 このように、本実施の形態ではプリズム527、528の位置調整によって、光学系の光軸調整を容易に実施できる。このため、容易に部品の位置を調整でき、良好な結合状態を得ることができる。 As described above, in the present embodiment, the optical axis of the optical system can be easily adjusted by adjusting the positions of the prisms 527 and 528. Therefore, the position of the component can be easily adjusted, and a good bonded state can be obtained.
 また、本実施の形態では、光源部20と光受信部40が重ねて配置される。これにより、光モジュール500を小型化できる。一般に光源部20と光送信部30は温度制御が必要である。効率良く温度制御するために、光源部20と光送信部30は筐体12と熱的に強固に接触することが好ましい。このため、光源部20と光送信部30は2段構造の下段に配置されることが好ましい。一方で、光受信部40については一般に温度依存性が小さく、温度制御する必要がない。このため、2段構造の上段に配置されても良い。 Further, in the present embodiment, the light source unit 20 and the light receiving unit 40 are arranged so as to overlap each other. As a result, the optical module 500 can be miniaturized. Generally, the light source unit 20 and the light transmission unit 30 need to be temperature controlled. In order to control the temperature efficiently, it is preferable that the light source unit 20 and the light transmission unit 30 are in close thermal contact with the housing 12. Therefore, it is preferable that the light source unit 20 and the light transmission unit 30 are arranged in the lower stage of the two-stage structure. On the other hand, the optical receiving unit 40 generally has a small temperature dependence, and there is no need to control the temperature. Therefore, it may be arranged in the upper stage of the two-stage structure.
 図22は、実施の形態2の変形例に係るプリズム628の構成を説明する図である。プリズム628は、互いに直交する複数の反射面628a、628bを有する。プリズム628では、反射面628aで反射した光が空間を伝播する。光が空間を伝播することで、プリズム628の材料による透過損失の抑制できる。 FIG. 22 is a diagram illustrating the configuration of the prism 628 according to the modified example of the second embodiment. The prism 628 has a plurality of reflecting surfaces 628a and 628b that are orthogonal to each other. In the prism 628, the light reflected by the reflecting surface 628a propagates in space. Since the light propagates in space, the transmission loss due to the material of the prism 628 can be suppressed.
 また、本実施の形態ではプリズム527、528は基板21に搭載された。これに限らず、プリズム527、528は基板31に搭載されても良い。 Further, in the present embodiment, the prisms 527 and 528 are mounted on the substrate 21. Not limited to this, the prisms 527 and 528 may be mounted on the substrate 31.
実施の形態3.
 図23は、実施の形態3に係る光モジュール700の平面図である。光モジュール700では、レンズ部51、61が光素子搭載部10とレセプタクル755、765の間に設けられる。レンズ部51、61の光素子搭載部10と反対側の端部には、レセプタクルホルダ153、163が設けられる。レセプタクルホルダ153、163の内部でレセプタクル755、765がスライドする。これにより、レセプタクル755、765の光軸方向の位置調整が可能となる。
Embodiment 3.
FIG. 23 is a plan view of the optical module 700 according to the third embodiment. In the optical module 700, lens portions 51 and 61 are provided between the optical element mounting portion 10 and the receptacles 755 and 765. Receptacle holders 153 and 163 are provided at the ends of the lens portions 51 and 61 on the opposite side of the optical element mounting portion 10. The receptacles 755 and 765 slide inside the receptacle holders 153 and 163. This makes it possible to adjust the positions of the receptacles 755 and 765 in the optical axis direction.
 レセプタクル755は、本体部758とフランジ756を有する。本体部758は筒状であり光ファイバ57を収納する。フランジ756は、本体部758の外縁を形成する側面に取り付けられ、当該側面から外側に突出する。レセプタクル765は、本体部768とフランジ766を有する。本体部768は筒状であり光ファイバ67を収納する。フランジ766は、本体部768の外縁を形成する側面に取り付けられ、当該側面から外側に突出する。 The receptacle 755 has a main body portion 758 and a flange 756. The main body 758 has a tubular shape and houses the optical fiber 57. The flange 756 is attached to a side surface forming the outer edge of the main body 758 and projects outward from the side surface. The receptacle 765 has a main body portion 768 and a flange 766. The main body 768 has a tubular shape and houses the optical fiber 67. The flange 766 is attached to a side surface forming the outer edge of the main body 768 and projects outward from the side surface.
 フランジ756、766は、本体部758、768とは別部品として構成される。フランジ756と本体部758は、例えばレーザ溶接または接着剤により接合される。 The flanges 756 and 766 are configured as separate parts from the main body 758 and 768. The flange 756 and the main body 758 are joined, for example, by laser welding or an adhesive.
 本実施の形態では、レンズ部51による光軸方向の集光位置のばらつき、または、光ファイバ57の入射面の位置のばらつきに応じて、レセプタクルホルダ153内でレセプタクル755をスライドさせる。これにより、レセプタクル755の位置調整を行い、集光位置と光ファイバ入射面の位置とを合わせることができる。従って、良好な光結合を実現できる。 In the present embodiment, the receptacle 755 is slid in the receptacle holder 153 according to the variation in the light collection position in the optical axis direction by the lens unit 51 or the variation in the position of the incident surface of the optical fiber 57. As a result, the position of the receptacle 755 can be adjusted, and the light collection position and the position of the optical fiber incident surface can be aligned. Therefore, good optical coupling can be realized.
 受信側においても、レンズ43の固定位置のばらつき、または、光ファイバ67の出射面の位置のばらつきに応じて、レセプタクルホルダ163内でレセプタクル765をスライドさせる。これにより、レセプタクル765の位置調整を行い、良好な光結合を実現できる。 Also on the receiving side, the receptacle 765 is slid in the receptacle holder 163 according to the variation in the fixed position of the lens 43 or the variation in the position of the exit surface of the optical fiber 67. As a result, the position of the receptacle 765 can be adjusted and good optical coupling can be realized.
 このように、レセプタクル755、765を調芯すると、レセプタクル755、765の長手方向の位置に差異85が生じる可能性がある。つまり図23に示されるように、光素子搭載部10からレセプタクル755までの距離と、光素子搭載部10からレセプタクル765までの距離が異なることとなる。 When the receptacles 755 and 765 are centered in this way, there is a possibility that a difference of 85 will occur in the positions of the receptacles 755 and 765 in the longitudinal direction. That is, as shown in FIG. 23, the distance from the optical element mounting portion 10 to the receptacle 755 and the distance from the optical element mounting portion 10 to the receptacle 765 are different.
 本実施の形態では、レセプタクル755、765のフランジ756、766は、本体部758、768とは別部品として構成される。このため、フランジ756、766の位置を本体部758、768とは独立して設定できる。よって、光軸方向においてレセプタクル755、765の位置に差異85があっても、フランジ756、766の位置を揃えて本体部758、768に取り付けることができる。従って、部品の位置を調整し易くできる。また、光トランシーバへの光モジュール700の配置をし易くできる。図23に示される例では、光素子搭載部10からフランジ756までの距離と、光素子搭載部10からフランジ766までの距離は等しい。 In the present embodiment, the flanges 756 and 766 of the receptacles 755 and 765 are configured as separate parts from the main body portions 758 and 768. Therefore, the positions of the flanges 756 and 766 can be set independently of the main body portions 758 and 768. Therefore, even if there is a difference 85 in the positions of the receptacles 755 and 765 in the optical axis direction, the flanges 756 and 766 can be aligned and attached to the main body portions 758 and 768. Therefore, the position of the component can be easily adjusted. In addition, the optical module 700 can be easily arranged on the optical transceiver. In the example shown in FIG. 23, the distance from the optical element mounting portion 10 to the flange 756 is equal to the distance from the optical element mounting portion 10 to the flange 766.
 特に、光送信部30と光受信部40が光素子搭載部10として同一のパッケージに収容された構成では、光モジュール700の位置決めの基準となるフランジ756、766の位置を光軸方向で揃えることができる。従って、光モジュール700をデュプレクス型光コネクタに対応した光トランシーバに適用することができる。 In particular, in a configuration in which the optical transmitting unit 30 and the optical receiving unit 40 are housed in the same package as the optical element mounting unit 10, the positions of the flanges 756 and 766, which are the reference for positioning the optical module 700, are aligned in the optical axis direction. Can be done. Therefore, the optical module 700 can be applied to an optical transceiver corresponding to a duplex type optical connector.
 本実施の形態では、レセプタクル755、765をスライドさせて位置調整する例を説明した。これに限らず、実施の形態1のようにレンズホルダ内でレンズの位置を調整しても良い。 In the present embodiment, an example of sliding the receptacles 755 and 765 to adjust the position has been described. Not limited to this, the position of the lens may be adjusted in the lens holder as in the first embodiment.
 各実施の形態で説明した技術的特徴は適宜に組み合わせて用いても良い。 The technical features described in each embodiment may be used in combination as appropriate.
 10 光素子搭載部、11 フレキシブル基板、12 筐体、13 放熱シート、14 保持部、20 光源部、21 基板、22 レンズ、23 レンズ、24 プリズム、24a、24b 反射面、25 プリズム、25a、25b 反射面、30 光送信部、31 基板、32 レンズ、33 レンズ、40 光受信部、41 基板、42 レンズ、43 レンズ、50 レンズホルダ、50a 端面、51 レンズ部、51a レンズ、51b 鏡筒、55 レセプタクル、55a 端面、56 フランジ、57 光ファイバ、58 本体部、60 レンズホルダ、60a 端面、61 レンズ部、61a レンズ、61b 鏡筒、65 レセプタクル、65a 端面、66 フランジ、67 光ファイバ、68 本体部、70 レーザ溶接部、71 レーザ溶接部、72 レーザ溶接部、82a 入射光線、82b 出射光線、82e 出射光線、82i 出射光線、83a 光線、83b 光線、84a 光線、84b 光線、84c 光線、84e 光線、84h 光線、90 治具、90a 磁石、90b 保持部、100 光モジュール、101 光モジュール、101a 送信光モジュール、101b 受信光モジュール、110 光素子搭載部、110a 光素子搭載部、110b 光素子搭載部、111a フレキシブル基板、111b フレキシブル基板、115 基板、126a ミラー、126b ミラー、126c ミラー、126d ミラー、153 レセプタクルホルダ、163 レセプタクルホルダ、171 レーザ溶接部、171a 接合に寄与する部分、172 レーザ溶接部、180 光トランシーバ、250 レンズホルダ、250b スリット、324 プリズム、324a、324b 反射面、424 プリズム、424a、424b、424c 反射面、500 光モジュール、510 光素子搭載部、527 プリズム、527a、527b 反射面、528 プリズム、528a、528b 反射面、529 ミラー、628 プリズム、628a、628b 反射面、700 光モジュール、755 レセプタクル、756 フランジ、758 本体部、765 レセプタクル、766 フランジ、768 本体部 10 Optical element mounting part, 11 Flexible board, 12 housing, 13 heat dissipation sheet, 14 holding part, 20 light source part, 21 board, 22 lens, 23 lens, 24 prism, 24a, 24b reflective surface, 25 prism, 25a, 25b Reflective surface, 30 light transmitter, 31 substrate, 32 lens, 33 lens, 40 light receiver, 41 substrate, 42 lens, 43 lens, 50 lens holder, 50a end face, 51 lens unit, 51a lens, 51b lens barrel, 55 Receptacle, 55a end face, 56 flange, 57 optical fiber, 58 body part, 60 lens holder, 60a end face, 61 lens part, 61a lens, 61b lens barrel, 65 receptacle, 65a end face, 66 flange, 67 optical fiber, 68 body part. , 70 laser welded part, 71 laser welded part, 72 laser welded part, 82a incident light, 82b emitted light, 82e emitted light, 82i emitted light, 83a light, 83b light, 84a light, 84b light, 84c light, 84e light, 84h light beam, 90 jig, 90a magnet, 90b holding part, 100 optical module, 101 optical module, 101a transmitted light module, 101b received light module, 110 optical element mounting part, 110a optical element mounting part, 110b optical element mounting part, 111a flexible substrate, 111b flexible substrate, 115 substrate, 126a mirror, 126b mirror, 126c mirror, 126d mirror, 153 receptacle holder, 163 receptacle holder, 171 laser welded part, 171a part contributing to joining, 172 laser welded part, 180 light Transceiver, 250 lens holder, 250b slit, 324 prism, 324a, 324b reflecting surface, 424 prism, 424a, 424b, 424c reflecting surface, 500 optical module, 510 optical element mounting part, 527 prism, 527a, 527b reflecting surface, 528 prism. 528a, 528b Reflective surface, 259 mirror, 628 prism, 628a, 628b Reflective surface, 700 optical module, 755 receptacle, 756 flange, 758 main body, 765 receptacle, 766 flange, 768 main body

Claims (7)

  1.  光ファイバを有するレセプタクルと、
     光送信部または光受信部の少なくとも一方を有する光素子搭載部と、
     前記レセプタクルと前記光素子搭載部とを繋ぎ、前記レセプタクルから前記光素子搭載部まで貫通した貫通孔が形成されたレンズホルダと、
     前記貫通孔に収納された鏡筒と、
     前記貫通孔に収納され前記鏡筒に保持されたレンズと、
     を備え、
     前記レンズホルダは前記レセプタクルおよび前記光素子搭載部と直接接合され、
     前記貫通孔を形成する前記レンズホルダの内側面は、前記レンズの光軸に沿った方向の任意の位置で前記鏡筒と接合可能であることを特徴とする光モジュール。
    Receptacles with optical fibers and
    An optical element mounting unit having at least one of an optical transmitter unit and an optical receiver unit,
    A lens holder that connects the receptacle and the optical element mounting portion and has a through hole formed through the receptacle to the optical element mounting portion.
    The lens barrel housed in the through hole and
    A lens housed in the through hole and held in the lens barrel,
    Equipped with
    The lens holder is directly bonded to the receptacle and the optical element mounting portion.
    An optical module characterized in that an inner surface surface of the lens holder forming the through hole can be joined to the lens barrel at an arbitrary position in a direction along the optical axis of the lens.
  2.  前記レンズホルダには、前記鏡筒を露出させるスリットが形成されることを特徴とする請求項1に記載の光モジュール。 The optical module according to claim 1, wherein the lens holder is formed with a slit for exposing the lens barrel.
  3.  光ファイバを有するレセプタクルと、
     光送信部または光受信部の少なくとも一方を有する光素子搭載部と、
     前記レセプタクルと前記光素子搭載部との間に設けられ、前記光送信部からの光を前記光ファイバに集光し、または、前記光ファイバからの光を前記光受信部に入射させるレンズと、
     を備え、
     前記レセプタクルは、
     筒状であり前記光ファイバを収納する本体部と、
     前記本体部の外縁を形成する側面に取り付けられ、前記側面から外側に突出するフランジと、
     を有することを特徴とする光モジュール。
    Receptacles with optical fibers and
    An optical element mounting unit having at least one of an optical transmitter unit and an optical receiver unit,
    A lens provided between the receptacle and the optical element mounting portion, which concentrates the light from the optical transmitting unit on the optical fiber or causes the light from the optical fiber to enter the optical receiving unit.
    Equipped with
    The receptacle is
    The main body, which is tubular and houses the optical fiber,
    A flange attached to the side surface forming the outer edge of the main body portion and projecting outward from the side surface,
    An optical module characterized by having.
  4.  第1の前記光ファイバを有する第1の前記レセプタクルと、
     第2の前記光ファイバを有する第2の前記レセプタクルと、
     前記光送信部および前記光受信部を有する前記光素子搭載部と、
     前記第1のレセプタクルと前記光素子搭載部との間に設けられ、前記光送信部からの光を前記第1の光ファイバに集光する第1の前記レンズと、
     前記第2のレセプタクルと前記光素子搭載部との間に設けられ、前記第2の光ファイバからの光を前記光受信部に入射させる第2の前記レンズと、
     を備え、
     前記光素子搭載部から前記第1のレセプタクルが有する前記フランジまでの距離と、前記光素子搭載部から前記第2のレセプタクルが有する前記フランジまでの距離は等しいことを特徴とする請求項3に記載の光モジュール。
    With the first receptacle having the first optical fiber,
    With the second receptacle having the second optical fiber,
    The optical element mounting unit having the optical transmitting unit and the optical receiving unit, and
    A first lens provided between the first receptacle and the optical element mounting portion and condensing light from the optical transmission unit onto the first optical fiber.
    A second lens provided between the second receptacle and the optical element mounting portion and allowing light from the second optical fiber to be incident on the optical receiving portion.
    Equipped with
    3. The third aspect of the present invention is characterized in that the distance from the optical element mounting portion to the flange of the first receptacle is equal to the distance from the optical element mounting portion to the flange of the second receptacle. Optical module.
  5.  第1の光ファイバを有する第1のレセプタクルと、
     第2の光ファイバを有する第2のレセプタクルと、
     光送信部と、光受信部と、光源と、を有する光素子搭載部と、
     前記第1のレセプタクルと前記光素子搭載部との間に設けられ、前記光送信部からの光を前記第1の光ファイバに集光させる第1のレンズと、
     前記第2のレセプタクルと前記光素子搭載部との間に設けられ、前記第2の光ファイバからの光を前記光受信部に入射させる第2のレンズと、
     を備え、
     前記光素子搭載部は、
     前記光送信部が設けられた第1の基板と、
     前記光受信部が設けられた第2の基板と、
     前記光源が設けられた第3の基板と、
     互いに直交する複数の反射面を有し、前記複数の反射面で前記光源からの光を反射させて前記光送信部に入射させる第1のプリズムと、
     互いに直交する複数の反射面を有し、前記複数の反射面で前記光源からの光を反射させて前記光受信部に入射させる第2のプリズムと、
     を備え、
     前記第1のプリズムは、前記第1の基板と前記第3の基板のうち一方の基板に搭載され、
     前記第2のプリズムは、前記第2の基板と前記第3の基板のうち一方の基板に搭載されることを特徴とする光モジュール。
    A first receptacle with a first optical fiber and
    A second receptacle with a second optical fiber and
    An optical element mounting unit having an optical transmitting unit, an optical receiving unit, and a light source,
    A first lens provided between the first receptacle and the optical element mounting portion and condensing light from the optical transmission unit onto the first optical fiber.
    A second lens provided between the second receptacle and the optical element mounting portion and allowing light from the second optical fiber to be incident on the optical receiving portion.
    Equipped with
    The optical element mounting portion is
    The first substrate provided with the optical transmitter and
    The second substrate provided with the optical receiver and
    A third substrate provided with the light source and
    A first prism having a plurality of reflecting surfaces orthogonal to each other and reflecting light from the light source on the plurality of reflecting surfaces to be incident on the light transmitting unit.
    A second prism having a plurality of reflecting surfaces orthogonal to each other and reflecting light from the light source on the plurality of reflecting surfaces to be incident on the light receiving unit.
    Equipped with
    The first prism is mounted on one of the first substrate and the third substrate.
    The second prism is an optical module characterized in that it is mounted on one of the second substrate and the third substrate.
  6.  レンズが収納されたレンズホルダを、光送信部または光受信部の少なくとも一方を有する光素子搭載部と、光ファイバを有するレセプタクルとの間に配置し、
     前記レンズホルダの前記レンズの光軸に垂直な端面と、前記レセプタクルの前記光軸に垂直な端面とを平行にし、
     前記レンズホルダの端面と前記レセプタクルの端面を平行にした状態で、前記レンズホルダ内での前記レンズの前記光軸に沿った方向の位置を調整し、前記レンズを前記レンズホルダに固定し、
     前記レンズを前記レンズホルダに固定した後に、前記光素子搭載部に対する前記レンズホルダの前記光軸と垂直な方向の位置を調整し、前記レンズホルダを前記光素子搭載部に固定し、
     前記レンズホルダを前記光素子搭載部に固定した後に、前記レンズホルダに対する前記レセプタクルの前記光軸と垂直な方向の位置を調整し、前記レセプタクルを前記レンズホルダに固定することを特徴とする光モジュールの製造方法。
    A lens holder containing a lens is arranged between an optical element mounting portion having at least one of an optical transmitter or an optical receiver and a receptacle having an optical fiber.
    The end face of the lens holder perpendicular to the optical axis of the lens and the end face of the receptacle perpendicular to the optical axis are made parallel to each other.
    With the end face of the lens holder parallel to the end face of the receptacle, the position of the lens in the lens holder in the direction along the optical axis is adjusted, and the lens is fixed to the lens holder.
    After fixing the lens to the lens holder, the position of the lens holder in the direction perpendicular to the optical axis with respect to the optical element mounting portion is adjusted, and the lens holder is fixed to the optical element mounting portion.
    An optical module characterized by fixing the lens holder to the optical element mounting portion, adjusting the position of the receptacle in the direction perpendicular to the optical axis with respect to the lens holder, and fixing the receptacle to the lens holder. Manufacturing method.
  7.  前記レセプタクルを前記レンズホルダに固定した後に、前記レンズホルダの外側から前記レンズホルダと前記レンズをさらにレーザ溶接して前記レンズの位置を補正することを特徴とする請求項6に記載の光モジュールの製造方法。 The optical module according to claim 6, wherein the receptacle is fixed to the lens holder, and then the lens holder and the lens are further laser welded from the outside of the lens holder to correct the position of the lens. Production method.
PCT/JP2020/040273 2020-10-27 2020-10-27 Optical module and method for manufacturing optical module WO2022091222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/040273 WO2022091222A1 (en) 2020-10-27 2020-10-27 Optical module and method for manufacturing optical module
JP2021520237A JPWO2022091222A1 (en) 2020-10-27 2020-10-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040273 WO2022091222A1 (en) 2020-10-27 2020-10-27 Optical module and method for manufacturing optical module

Publications (1)

Publication Number Publication Date
WO2022091222A1 true WO2022091222A1 (en) 2022-05-05

Family

ID=81382040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040273 WO2022091222A1 (en) 2020-10-27 2020-10-27 Optical module and method for manufacturing optical module

Country Status (2)

Country Link
JP (1) JPWO2022091222A1 (en)
WO (1) WO2022091222A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108349U (en) * 1989-02-17 1990-08-29
JPH08297230A (en) * 1995-04-27 1996-11-12 Oki Electric Ind Co Ltd Optical coupler
JP2007049125A (en) * 2005-07-11 2007-02-22 Fujifilm Corp Laser module
US20130163629A1 (en) * 2011-12-23 2013-06-27 Electronics And Telecommunications Research Institute User-selectable laser and optical transmitter having the same
WO2017006515A1 (en) * 2015-07-09 2017-01-12 日本電気株式会社 Pluggable optical module and optical communication system
JP2018063350A (en) * 2016-10-13 2018-04-19 三菱電機株式会社 Semiconductor light receiving module
US20180284370A1 (en) * 2017-03-29 2018-10-04 Applied Optoelectronics, Inc. Welding assembly for coupling a transmitter optical subassembly (tosa) module to an optical transmitter or transceiver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108349U (en) * 1989-02-17 1990-08-29
JPH08297230A (en) * 1995-04-27 1996-11-12 Oki Electric Ind Co Ltd Optical coupler
JP2007049125A (en) * 2005-07-11 2007-02-22 Fujifilm Corp Laser module
US20130163629A1 (en) * 2011-12-23 2013-06-27 Electronics And Telecommunications Research Institute User-selectable laser and optical transmitter having the same
WO2017006515A1 (en) * 2015-07-09 2017-01-12 日本電気株式会社 Pluggable optical module and optical communication system
JP2018063350A (en) * 2016-10-13 2018-04-19 三菱電機株式会社 Semiconductor light receiving module
US20180284370A1 (en) * 2017-03-29 2018-10-04 Applied Optoelectronics, Inc. Welding assembly for coupling a transmitter optical subassembly (tosa) module to an optical transmitter or transceiver

Also Published As

Publication number Publication date
JPWO2022091222A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US10598873B2 (en) Optical alignment of an optical subassembly to an optoelectronic device
US10054748B2 (en) Micromechanically aligned optical assembly
JP3863369B2 (en) Integrated wavelength selective transmitter
US7309174B2 (en) Integrated optical devices and methods of making same
US9897769B2 (en) Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device
JP5536523B2 (en) Fiber connector module including integrated optical lens rotating block and method for coupling optical signals between transceiver module and optical fiber
EP1560052A1 (en) Method and apparatus for adjusting the path of an optical beam
JP6922501B2 (en) Coherent optical receiver module and its manufacturing method
JP2003107295A (en) Optical transmission module
US7909518B2 (en) Optical assembly connecting a laser with optical fibre
WO2022091222A1 (en) Optical module and method for manufacturing optical module
JP2004191607A (en) Optical module and method for manufacturing the same
US20040202478A1 (en) Electro-optical module for transmitting and/or receiving optical signals of at least two optical data channels
US20020067891A1 (en) Compact in-line multifunction optical component with multiple fiber terminated optical ports
JPH08254639A (en) Optical fiber with lens, semiconductor laser module and its production
US20050168825A1 (en) Method and apparatus for adjusting the path of an optical beam
JPH03192208A (en) Optical module
JPH08254723A (en) Optical composite module and its assembly method
JP2021043469A (en) Optical coupling method
JPH0933769A (en) Optical module and its manufacture
JPH095582A (en) Semiconductor optically coupling device and its assembling method
Fischer et al. 7. Transmitter modules with reusable fiber-chip coupling method for optical communications systems
JPH05100132A (en) Wavelength multiplex transfer module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021520237

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959740

Country of ref document: EP

Kind code of ref document: A1