WO2022089625A1 - 一种增强现实功能控制方法和电子设备 - Google Patents

一种增强现实功能控制方法和电子设备 Download PDF

Info

Publication number
WO2022089625A1
WO2022089625A1 PCT/CN2021/127781 CN2021127781W WO2022089625A1 WO 2022089625 A1 WO2022089625 A1 WO 2022089625A1 CN 2021127781 W CN2021127781 W CN 2021127781W WO 2022089625 A1 WO2022089625 A1 WO 2022089625A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
positioning
augmented reality
sensor
tag
Prior art date
Application number
PCT/CN2021/127781
Other languages
English (en)
French (fr)
Inventor
李世明
王帅
魏江波
唐建中
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022089625A1 publication Critical patent/WO2022089625A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • H04N23/651Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an augmented reality function control method and electronic device.
  • AR augmented reality
  • the working principle of AR devices is to project or display virtual objects on the AR devices through processor analysis. In this way, A virtual image can be displayed to the user while the user is viewing the real world scene. Users can also interact with virtual images to achieve augmented reality effects.
  • the AR device needs to use a high-precision camera and other spatial sensors to work, and the high-performance processor processes a large amount of image data in real time, which results in a high power consumption of the AR device.
  • the power supply of AR devices mainly includes wired power supply and battery power supply.
  • Wired power supply will result in AR devices that can only be used in a small space, which greatly limits the usage scenarios of AR devices.
  • the battery life is generally very short. In order to maximize the battery life, It will reduce the accuracy of the spatial perception chip, reduce the sampling rate, etc., which will lead to the poor fit between the virtual image seen by the user and the real scene, the field of view, etc., the immersion is not strong, and the user experience is not good; in order to increase the battery life of the AR device, It is necessary to increase the battery capacity. Increasing the battery capacity will cause the device to become heavier and the wearing comfort will decrease. Therefore, how to reduce the power consumption of the AR device and prolong the battery life of the AR device without reducing the user experience is the solution for those skilled in the art. technical issues.
  • the embodiments of the present application disclose an augmented reality function control method and electronic device, which can reduce power consumption.
  • a first aspect of the embodiments of the present application discloses an augmented reality function control method.
  • the electronic device detects a positioning tag within a preset detection range; the preset detection range is in front of the camera in the electronic device; the positioning tag is used to identify the location of the augmented reality scene; when the electronic device is in the preset detection range It is assumed that when no positioning tag is detected within the detection range, the electronic device does not start or close the augmented reality function; wherein, the augmented reality function is used to process the data of the augmented reality scene and display the augmented reality picture;
  • the electronic device detects a first positioning tag within the preset detection range, the electronic device activates the augmented reality function, and the first positioning tag is a positioning tag.
  • whether or not to enable the augmented reality function is determined by whether the electronic device detects the positioning tag within the preset detection range. Turning on the augmented reality function can effectively reduce the function of the electronic device and prolong the battery life of the electronic device.
  • the electronic device does not enable or disable the augmented reality function, including: the electronic device does not enable or disable the camera, the image signal processor ISP and the graphics processor GPU.
  • the electronic device activating the augmented reality function includes: the electronic device activating the camera, the image signal processor ISP and the graphics processor GPU.
  • the electronic device detects the positioning tag within a preset detection range, including: a positioning sensor in the electronic device detects the positioning tag within the preset detection range.
  • the positioning sensor is an ultra-wideband UWB sensor
  • the positioning tag is a UWB tag
  • the electronic device when the electronic device detects the first positioning tag within the preset detection range, the electronic device starts the augmented reality function, which specifically includes: when the electronic device detects the first positioning tag within the preset detection range, the electronic device starts the augmented reality function.
  • the positioning sensor in the electronic device detects the first positioning tag within the preset detection range
  • the positioning sensor sends a first indication signal to the coprocessor, where the first indication signal is used to indicate that the positioning sensor is The first positioning tag is detected within the preset detection range
  • the coprocessor receives the first indication signal from the positioning sensor, and determines the value of the flag bit in the coprocessor
  • the control in the electronic device The processor starts the camera, the image signal processor ISP and the graphics processor GPU according to the value of the flag bit in the coprocessor.
  • the electronic device when the electronic device does not detect a positioning tag within the preset detection range, the electronic device does not activate or deactivate the augmented reality function, which specifically includes: when the electronic device does not detect a positioning tag within the preset detection range
  • the positioning sensor sends a second indication signal to the coprocessor, and the second indication signal is used to indicate that the positioning sensor is in the location.
  • the coprocessor receives the second indication signal from the positioning sensor, and determines the value of the flag bit in the coprocessor; the controller in the electronic device determines the value of the flag bit in the coprocessor according to the The value of the flag bit in the coprocessor, turning off the camera, the image signal processor ISP and the graphics processor GPU.
  • the method when the electronic device detects the first positioning tag within the preset detection range, after the electronic device starts the augmented reality function, the method further includes : The electronic device processes and displays the augmented reality scene where the first positioning tag is located.
  • the electronic device when the electronic device detects the first positioning tag within the preset detection range, after the electronic device starts the augmented reality function, the electronic device processes Before displaying the augmented reality scene where the first positioning tag is located, the method further includes: when the positioning sensor in the electronic device detects the second positioning tag within the preset detection range, determining the first positioning tag. The size of the distance and the second distance, the first distance is the distance between the first positioning label and the positioning sensor, and the second distance is the distance between the second positioning label and the positioning sensor. distance; the electronic device determines that the second distance is greater than the first distance.
  • the electronic device when the electronic device detects the first positioning tag within the preset detection range, after the electronic device starts the augmented reality function, the electronic device processes Before displaying the augmented reality scene where the first positioning tag is located, the method further includes: when the positioning sensor in the electronic device detects the second positioning tag within the preset detection range, the electronic The device processes and displays the augmented reality scene where the second positioning tag is located.
  • a second aspect of the embodiments of the present application discloses an electronic device, which includes a positioning sensor and a controller.
  • the positioning sensor is used to detect the positioning label within a preset detection range; the preset detection range is in front of the camera; the positioning label is used to identify the position of the augmented reality scene;
  • the controller is configured to control not to activate or deactivate the augmented reality function when the location sensor does not detect the location tag within the preset detection range; wherein the augmented reality function is used to The data of the augmented reality scene is processed and the augmented reality picture is displayed;
  • the controller is further configured to control to activate the augmented reality function when the positioning sensor detects a first positioning tag within the preset detection range, where the first positioning tag is a positioning tag.
  • the controller is further configured to control not to start or shut down the camera, the image signal processor ISP and the graphics processor GPU.
  • the controller is further configured to control to start the camera, the image signal processor ISP and the graphics processor GPU.
  • the positioning sensor is an ultra-wideband UWB sensor
  • the positioning tag is a UWB tag
  • the positioning sensor is further configured to send a first indication signal to the electronic device when the positioning sensor in the electronic device detects the first positioning tag within the preset detection range a coprocessor, the first indication signal is used to instruct the positioning sensor to detect a first positioning tag within the preset detection range; the coprocessor is used to receive a first indication from the positioning sensor The signal is used to determine the value of the flag bit in the coprocessor; the controller is configured to start the camera, the image signal processor ISP and the graphics processor GPU according to the value of the flag bit in the coprocessor.
  • the positioning sensor is further configured to send a second indication signal to the coordinator when the positioning sensor in the electronic device does not detect a positioning tag within the preset detection range a processor, wherein the second indication signal is used to indicate that the positioning sensor does not detect a positioning tag within the preset detection range;
  • the coprocessor is further configured to receive a second indication signal from the positioning sensor , determine the value of the flag bit in the coprocessor;
  • the controller is further configured to close the camera, the image signal processor ISP and the graphics processor GPU according to the value of the flag bit in the coprocessor.
  • the electronic device further includes: a processor, configured to process and display an augmented reality scene where the first positioning tag is located.
  • the electronic device further includes: a distance sensor, configured to determine the difference between the first distance and the The size of the second distance, the first distance is the distance between the first positioning label and the positioning sensor, and the second distance is the distance between the second positioning label and the positioning sensor; The electronic device determines that the second distance is greater than the first distance.
  • the processor is further configured to process the location of the second positioning label when the positioning sensor detects the second positioning label within the preset detection range augmented reality scene and display.
  • a third aspect of the embodiments of the present application discloses an electronic device, comprising: one or more processors and a memory; the memory is coupled to the one or more processors, and the memory is used for storing computer program codes,
  • the computer program code comprises computer instructions invoked by the one or more processors to implement the method described in the first aspect or possible implementations of the first aspect.
  • a fourth aspect of the embodiments of the present application discloses a computer storage medium, where the computer storage medium stores a computer program, the computer program includes program instructions, and when the program instructions are executed by a processor, are used to implement the first aspect or The method described in possible implementations of the first aspect.
  • a fifth aspect of the embodiments of the present application discloses a computer program product, which, when the computer program product runs on an electronic device, enables the electronic device to implement the first aspect or the possible implementation manners of the first aspect. method.
  • FIG. 1 is a schematic diagram of an installation position of a positioning sensor provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another installation position of a positioning sensor provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an electronic device provided by an embodiment of the present application from a position where an augmented reality scene is detected to a position where the augmented reality scene is not detected;
  • FIG. 5 is a schematic diagram of a position where an electronic device detects an augmented reality scene provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of a position where an augmented reality scene is not detected by an electronic device according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an electronic device provided by an embodiment of the present application from detecting a positioning tag to not detecting a positioning tag;
  • FIG. 9 is a schematic diagram of an electronic device detecting a positioning tag provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electronic device not detecting a positioning tag provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an indoor museum provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an exhibit in which a UWB tag is detected within a detection range provided by an embodiment of the present application;
  • FIG. 14 is a schematic diagram of an image displayed on a display screen provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of an exhibit whose UWB tag is not detected within a detection range provided by an embodiment of the present application;
  • 16 is a schematic diagram of an image displayed on a display screen provided by an embodiment of the present application.
  • 17 is a schematic diagram of an exhibit with a UWB tag detected within a detection range to an exhibit without a UWB tag detected within a detection range provided by an embodiment of the present application;
  • FIG. 18 is a schematic diagram of an exhibit with a UWB tag detected within a detection range to an exhibit with a UWB tag detected within a detection range provided by an embodiment of the present application;
  • FIG. 19 is a schematic diagram of an image displayed on a display screen provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of an exhibit whose UWB label is not detected within a detection range to an exhibit whose UWB label is detected according to an embodiment of the present application;
  • FIG. 21 is a schematic diagram of an exhibit whose UWB label is not detected to an exhibit whose UWB label is not detected within a detection range provided by an embodiment of the present application;
  • 22 is a schematic diagram of two exhibits with UWB tags detected within a detection range provided by an embodiment of the present application;
  • FIG. 23 is a schematic diagram of an image displayed on a display screen provided by an embodiment of the present application.
  • 24 is a schematic diagram of an image displayed on a display screen provided by an embodiment of the present application.
  • FIG. 25 is a schematic flowchart of a method for controlling an augmented reality function provided by an embodiment of the present application.
  • the electronic device is an AR device with an AR function.
  • the electronic device can process the data in the AR scene and display the AR screen by activating the AR function.
  • the power consumption of the electronic device is relatively large when the AR function is activated, and the power consumption is relatively small when the AR function is not activated or the AR function is turned off.
  • the coprocessor and the positioning sensor in the electronic device work.
  • Coprocessor an auxiliary processor used to reduce the processing burden of an application processor (AP) and help the AP to perform part of the work.
  • the power consumption of the coprocessor is generally less than that of the AP.
  • a coprocessor can appropriately reduce the frequency and specifications of a central processing unit (CPU), and integrate related modules such as counters, memory, and display drivers on a single chip to form a chip-level control unit.
  • CPU central processing unit
  • one of the coprocessors can be a general-purpose smart sensor hub (sensorhub).
  • the main function of the sensorhub is to connect and process data from various sensors.
  • the power consumption of the coprocessor chip of the sensorhub is only the application processor chip. 1%-5% of the power consumption.
  • the controller in the electronic device controls the camera, image signal processor (ISP) or graphics processing unit (GPU) to work.
  • ISP image signal processor
  • GPU graphics processing unit
  • how the positioning sensor interacts with the coprocessor, and the coprocessor and the controller, so as to determine whether the camera, ISP or GPU works can be implemented in the following two ways:
  • the positioning sensor When the positioning sensor detects the positioning tag, the positioning sensor sends a first indication signal to the coprocessor, where the first indication signal is used to indicate that the positioning sensor detects the positioning tag.
  • the coprocessor receives the first indication signal , set the value of the AR function start/stop flag to 1; when the positioning sensor does not detect the positioning label, the positioning sensor sends a second indication signal to the coprocessor, and the second indication signal is used to indicate that the positioning sensor does not detect positioning
  • the coprocessor sets the value of the AR function start-stop flag to 0.
  • the controller controls the camera, ISP or GPU to work by detecting the value of the AR function start/stop flag in the coprocessor; the controller controls the camera, ISP or GPU to not work by detecting the AR function start/stop flag value of 0 .
  • the positioning sensor When the positioning sensor does not detect the positioning tag to detects the positioning tag, or from detecting the positioning tag to not detecting the positioning tag, the positioning sensor sends a third indication signal to the coprocessor, where the third indication signal is used to instruct the AR
  • the value of the function start-stop flag changes. For example, when the positioning sensor does not detect the positioning tag at the 5th second, the AR function start-stop flag in the coprocessor is 0.
  • the positioning sensor When the positioning sensor is at the 10th second When the positioning tag is detected, it is determined that the value of the start-stop flag of the AR function has changed, and at the 10th second, the positioning sensor sends a third indication signal to the coprocessor, and the third indication signal is used to indicate the start-stop flag of the AR function
  • the coprocessor modifies the value of the AR function start/stop flag from 0 to 1.
  • the controller controls the camera, ISP or GPU to work by detecting the value of the AR function start/stop flag in the coprocessor; or the controller modifies the AR function start/stop flag from 0 to 1 by detecting the value of the AR function start/stop flag in the coprocessor.
  • Control camera, ISP or GPU work.
  • the value of the AR function start-stop flag is 0, 1, that is, when the positioning sensor detects the positioning label, the AR function start-stop flag is 1; when the positioning sensor does not When the positioning tag is detected, the value of the AR function start/stop flag is 0; of course, the value of the AR function start/stop flag may also be different values to indicate that the AR function is enabled or disabled, which is not limited in the embodiment of the present application.
  • the positioning sensor is used to detect the positioning tag, and can determine the position of the positioning tag; the positioning tag is used to identify the position of the augmented reality scene.
  • the detection range of the positioning sensor is the detection range of the positioning sensor.
  • the user's visual range is determined. Under a certain user's visual range, the position of the positioning sensor is different. In order to cover the user's visual range, its detection range will become larger.
  • the visual range of the user's eyes is determined to be 188 degrees and 2 meters according to the human eye vision model. If the range is greater than or equal to the visual range, the detection range is 190 degrees and 2.2 meters.
  • the visual range of the user’s eyes is determined to be 188 degrees and 2 meters according to the human eye visual model.
  • the detection range is 200 degrees and 2.5 meters.
  • the visual range of the user's eyes is 188 degrees and 2 meters.
  • the detection direction of the positioning sensor is in front of the camera in the electronic device.
  • the positioning label when the positioning sensor is an ultra wide band (UWB) sensor, the positioning label is a UWB label; when the positioning sensor is a sensor with a Bluetooth positioning function, the positioning label is Bluetooth tag; when the positioning sensor is a sensor with a near field communication (NFC) function, the positioning tag is an NFC tag; when the positioning sensor is a sensor with a radio frequency identification (radio frequency identification, RFID) function, the positioning tag for RFID tags.
  • UWB ultra wide band
  • the positioning label when the positioning sensor is a sensor with a Bluetooth positioning function, the positioning label is Bluetooth tag; when the positioning sensor is a sensor with a near field communication (NFC) function, the positioning tag is an NFC tag; when the positioning sensor is a sensor with a radio frequency identification (radio frequency identification, RFID) function, the positioning tag for RFID tags.
  • RFID radio frequency identification
  • Figure 3 shows a schematic structural diagram of an electronic device, the electronic device includes a processor, a camera, a display screen, and an image signal processor ( image signal processor, ISP) or graphics processing unit (graphics processing unit, GPU), wherein the processor, ISP and GPU are not shown in Figure 1.
  • the display can be a lens through which the user can see real-world images.
  • the museum includes exhibit 1 and exhibit 2, wherein exhibit 1 includes location information of an augmented reality scene, and exhibit 2 does not include location information of the augmented reality scene.
  • exhibit 1 includes location information of an augmented reality scene
  • exhibit 2 does not include location information of the augmented reality scene.
  • the AR function in the electronic device is always in the working state .
  • the AR function is always in the active state, and the processor, camera, display screen, and ISP or GPU need to work continuously.
  • the power consumption is relatively high, and the power consumption is relatively large.
  • the electronic device may include a processor, a camera, a positioning sensor, a display screen, and an ISP or a GPU, wherein the processor, the ISP and the GPU are not shown in FIG. 4 .
  • the museum includes exhibit 1 and exhibit 2, wherein exhibit 1 includes a positioning label, and exhibit 2 does not include a positioning label.
  • exhibit 1 includes a positioning label
  • exhibit 2 does not include a positioning label.
  • Figure 8 when the user moves from exhibit 1 to exhibit 2, that is, when the electronic device detects the positioning tag to not detecting the positioning tag, whether the AR function in the electronic device starts to work is shown in Figure 9 and Figure 10 .
  • Figure 9 when the user keeps watching exhibit 1, that is, when the electronic device detects the positioning tag, the AR function in the electronic device is in a working state; as shown in Figure 10, when the user keeps watching exhibit 2, that is, the electronic device When the positioning tag is not detected, the AR function in the electronic device is turned off.
  • the power consumption can be reduced by using the augmented reality function control method according to the embodiment of the present application.
  • the electronic device in the embodiment of the present application may be a handheld electronic device with an AR function, a head-mounted electronic device, etc., which is not limited here.
  • a user may wear a head-mounted electronic device to achieve different effects such as virtual reality (VR), AR, mixed reality (MR).
  • the head-mounted electronic device may be glasses, goggles, or the like.
  • the user's eyes can see the image presented by the display screen of the head-mounted electronic device.
  • FIG. 11 is a schematic structural diagram of an electronic device 1100 .
  • the electronic device 1100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charge management module 140, a power management module 141, a battery 142, an audio module 170, a speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, camera 193, display screen 194, etc.
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, an acceleration sensor 180E, a distance sensor 180F, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, a positioning sensor 180N, and the like.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 1100 .
  • the electronic device 1100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an AP, a co-processor, a modem processor, a GPU, an ISP, a controller, a video codec, a digital signal processor (digital signal processor) processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • the processor 110 may include an AP, a co-processor, a modem processor, a GPU, an ISP, a controller, a video codec, a digital signal processor (digital signal processor) processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 1100 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • Memories for storing instructions and data may be provided as in a coprocessor.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may contain multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flash, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate with each other through the I2C bus interface, so as to realize the touch function of the electronic device 1100 .
  • the I2S interface can be used for audio communication.
  • the processor 110 may contain multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 110 with the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 communicates with the camera 193 through a CSI interface to implement the photographing function of the electronic device 1100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to implement the display function of the electronic device 1100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 1100, and can also be used to transmit data between the electronic device 1100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 1100 .
  • the electronic device 1100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the electronic device 1100 . While the charging management module 140 charges the battery 142 , it can also supply power to the electronic device through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the electronic device 1100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the electronic device 1100 may include 1 or N display screens 194 , where N is a positive integer greater than 1.
  • the number of display screens 1100 in the electronic device 1100 may be two, corresponding to the two eyeballs of the user 200 respectively.
  • the electronic device 1100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device 1100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • the camera 193 may be installed on the side of the electronic device 1100 , or may be installed at a position between two display screens on the electronic device 1100 .
  • the camera 193 is used to capture images and videos within the user's 200 perspective in real time.
  • the electronic device 1100 generates a virtual image according to the captured real-time images and videos, and displays the virtual image through the display screen 194 .
  • the processor 110 can determine the virtual image displayed on the display screen 194 according to the static image or video image captured by the camera 193 in combination with the data (such as brightness, sound, etc.) acquired by the sensor module 130, so as to realize the superimposition on the real world object. on the virtual image.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the electronic device 1100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy, and the like.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 1100 may support one or more video codecs. In this way, the electronic device 1100 can play or record videos in various encoding formats, such as: Moving Picture Experts Group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG Moving Picture Experts Group
  • MPEG2 Moving picture experts group
  • MPEG3 Moving Picture Experts Group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 1100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 1100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 1100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the electronic device 1100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the electronic device 1100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the electronic device 1100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as "earpiece" is used to convert audio electrical signals into sound signals.
  • the electronic device 1100 answers a call or a voice message, the voice can be answered by placing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through a human mouth, and input the sound signal into the microphone 170C.
  • the electronic device 1100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 1100 may be provided with two microphones 170C, which can implement a noise reduction function in addition to collecting sound signals. In other embodiments, the electronic device 1100 may further be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the earphone jack 170D is used to connect wired earphones.
  • the earphone interface 170D can be the USB interface 130, or can be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the electronic device 1100 may include one or more keys 190 that may control the electronic device and provide a user with access to functions on the electronic device 1100 .
  • the keys 190 may be in the form of buttons, switches, dials, and touch or near-touch sensing devices (eg, touch sensors). Specifically, for example, the user 200 can turn on the display screen 194 of the electronic device 1100 by pressing a button.
  • the keys 190 include a power-on key, a volume key, and the like. Keys 190 may be mechanical keys. It can also be a touch key.
  • the electronic device 1100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 1100 .
  • the pressure sensor 180A is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the pressure sensor 180A may be provided on the display screen 194 .
  • the capacitive pressure sensor may be comprised of at least two parallel plates of conductive material. When a force is applied to the pressure sensor 180A, the capacitance between the electrodes changes.
  • the electronic device 1100 determines the intensity of the pressure according to the change in capacitance. When a touch operation acts on the display screen 194, the electronic device 1100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 1100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example, when a touch operation whose intensity is less than the first pressure threshold acts on the short message application icon, the instruction for viewing the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, the instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the motion attitude of the electronic device 1100 .
  • the angular velocity of electronic device 1100 about three axes may be determined by gyro sensor 180B.
  • the gyro sensor 180B can be used for image stabilization. Exemplarily, when the shutter is pressed, the gyro sensor 180B detects the shaking angle of the electronic device 1100, calculates the distance that the lens module needs to compensate for according to the angle, and allows the lens to offset the shaking of the electronic device 1100 through reverse motion to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenarios.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 1100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist in positioning and navigation.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 1100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the electronic device 1100 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the electronic device 1100 can measure the distance through infrared or laser. In some embodiments, when shooting a scene, the electronic device 1100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the electronic device 1100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 1100 can use the collected fingerprint characteristics to realize fingerprint unlocking, accessing application locks, taking photos with fingerprints, answering incoming calls with fingerprints, and the like.
  • the temperature sensor 180J is used to detect the temperature.
  • the electronic device 1100 utilizes the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the electronic device 1100 performs performance reduction of the processor located near the temperature sensor 180J in order to reduce power consumption and implement thermal protection.
  • the electronic device 1100 when the temperature is lower than another threshold, the electronic device 1100 heats the battery 142 to avoid abnormal shutdown of the electronic device 1100 caused by the low temperature.
  • the electronic device 1100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch device”.
  • the touch sensor 180K may be disposed on the display screen 194 , and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 1100 , which is different from the location where the display screen 194 is located.
  • the location sensor 180N is used, in some embodiments, to detect and read location tags with precise location capabilities and pointing capabilities.
  • the electronic device 1100 is AR glasses
  • the positioning sensor is a UWB sensor
  • the positioning tag is a UWB tag
  • the position of the UWB sensor is in the middle of the two display screens as an example.
  • the user wears AR glasses to view exhibits in an indoor museum. When users visit a museum, most of the exhibits they see are static. The rich cultural and historical information behind these exhibits is difficult for users to understand and can only imagine by relying on the content of the explanation. With AR glasses, users can interact with exhibits and learn more information, making browsing the museum more interesting and attractive. For example, as shown in FIG.
  • the indoor museum includes 4 exhibits: exhibit 1, exhibit 2, exhibit 3 and exhibit 4, wherein exhibit 1 and exhibit 3 are both deployed with UWB tag, UWB tag can be considered as a chip with positioning and pointing function, no UWB tag is deployed on exhibit 2 and exhibit 4.
  • users 200 turn on the AR glasses by pressing the power button or other methods, and the AR glasses are turned on.
  • the UWB sensor and coprocessor in the AR glasses by default start to work, and the camera, display screen, ISP and GPU are not Start work.
  • the default value of the AR function start/stop flag in the coprocessor is 0, and the controller in the AR glasses regularly checks the value of the AR function start/stop flag in the coprocessor or the AR function start/stop flag. whether the value has changed.
  • the user 200 wears AR glasses to move in the indoor museum, and the AR glasses also follow the user 200 to move.
  • Case 1 After the AR glasses are turned on, the camera, display screen, ISP and GPU do not start to work. At this time, the value of the AR function start/stop flag in the coprocessor is 0.
  • User 200 wears the AR glasses, and the UWB sensor detects that the AR function starts and stops.
  • UWB tags as shown in Fig. 13, Fig. 13 shows a schematic diagram of an exhibit with a UWB tag detected within the detection range. For example, a user 200 wears AR glasses and watches exhibit 1 for a short time, and the UWB sensor in the AR glasses detects the exhibit After the UWB tag in 1, read the UWB tag information, and then report the UWB sensor to the co-processor.
  • the value of the AR function start-stop flag is changed from 0 to 1.
  • the controller determines that the value of the AR function start/stop flag in the coprocessor is changed from 0 to 1 through detection, and controls the camera, display screen, ISP and GPU to start work. Then the camera scans Exhibit 1, analyzes it by the processor, and generates a virtual image, such as a drum, and then the ISP or GPU determines the angle, and the inclination angle fits the virtual image, such as the drum, with the real image seen through the display screen, such as Exhibit 1 After that, it is displayed on the display screen, as shown in Figure 14. Accordingly, the user can see the dynamic avatar of the Terracotta Warriors playing drums through the display screen.
  • the second case After the AR glasses are turned on, the camera, display screen, ISP, and GPU do not start to work. At this time, the value of the AR function start/stop flag in the coprocessor is 0.
  • User 200 wears the AR glasses, and the UWB sensor does not detect it.
  • Figure 15 shows a schematic diagram of an exhibit with no UWB tag detected within the detection range. For example, when the user 200 wears AR glasses and watches the exhibit 2 for a short time, that is, the UWB sensor does not When a UWB tag is detected, the value of the AR function start/stop flag in the coprocessor is still 0, and the camera, display, ISP, and GPU are in standby or sleep state.
  • the UWB sensor and coprocessor in the AR glasses are in the default state Continuous work, the AR glasses run in a low-power mode.
  • the display screen is off, and the user can see the real world image through the display screen, as shown in Figure 16.
  • the UWB sensor detects the UWB tag from detecting the UWB tag, and the camera, display screen, ISP and GPU are in the standby or hibernation state from the starting working state.
  • the value of the AR function start/stop flag is 1.
  • FIG. 17 shows that during the movement of the user 200, there will be a process from the exhibits with UWB tags detected within the detection range to the exhibits with no UWB tags detected.
  • the user 200 wears AR glasses to watch the exhibit 1, Then user 200 wears AR glasses to watch exhibit 2, wherein, UWB tags are deployed in exhibit 1, but no UWB tags are deployed in exhibit 2.
  • the UWB sensor in the AR glasses detects the presence of UWB tags in exhibit 1. After reading the UWB tag, the UWB tag information is read, and then the UWB sensor reports to the coprocessor.
  • the coprocessor sets the value of the AR function start/stop flag to 1, and the controller determines the AR function start/stop in the coprocessor through detection.
  • the value of the stop mark bit is 1, which controls the camera, display, ISP and GPU to start the work, then the camera scans the exhibit 1, which is analyzed by the processor to generate a virtual image, such as a drum, and then the ISP or GPU determines the angle, the inclination will be virtual.
  • the image such as a drum
  • the image is displayed on the display screen after being attached to the real image seen through the display screen, such as exhibit 1, as shown in Figure 14. Accordingly, the user can see the terracotta warriors playing drums through the display screen. Dynamic avatar.
  • the user 200 wears the AR glasses to watch the exhibit 2, that is, the UWB sensor does not detect the UWB tag, the value of the AR function start/stop flag in the coprocessor is changed from 1 to 0, and the controller detects the AR function start/stop flag by detecting the value of the start/stop flag.
  • the value is changed from 1 to 0, and the control camera and display screen, ISP and GPU are changed from the starting working state to the standby or hibernating state.
  • the UWB sensor and coprocessor in the default AR glasses are working continuously. low power mode operation.
  • the fourth situation the UWB sensor detects the UWB tag from the detection of the UWB tag to the detection of the UWB tag, and the camera, the display screen, the ISP and the GPU maintain the starting working state from the starting working state.
  • the value of the AR function start/stop flag is 1.
  • the user 200 wears AR glasses to watch the exhibit 1, and then User 200 wears AR glasses to view exhibit 2, wherein UWB tags are deployed in exhibit 1, and UWB tags are deployed in exhibit 3.
  • the UWB sensor in the AR glasses detects UWB in exhibit 1 After the tag, the UWB tag information is read, and then the UWB sensor reports to the coprocessor.
  • the coprocessor sets the value of the AR function start/stop flag to 1, and the controller determines the AR function start/stop flag in the coprocessor through detection.
  • the value of the bit is 1, which controls the camera, the display, the ISP and the GPU to start the work, then the camera scans the exhibit 1, which is analyzed by the processor to generate a virtual image, such as a drum, and then the ISP or GPU determines the angle, the inclination will convert the virtual image, For example, a drum, after being attached to the real image seen through the display screen, such as exhibit 1, is displayed on the display screen, as shown in Figure 14. Correspondingly, the user can see the dynamic avatar of the Terracotta Warriors playing drums through the display screen. .
  • the UWB sensor in the AR glasses detects the UWB label in exhibit 3, reads the UWB label information in exhibit 3, and reports the UWB sensor to the co-processor, and the AR function starts and stops the sign
  • the controller controls the camera and the display screen, the ISP and the GPU to maintain the starting working state, and then the camera scans the exhibit 3 and analyzes it by the processor to generate a virtual image, such as a piece of text, and then the ISP or GPU determines the angle.
  • the inclination angle will display the virtual image, such as a piece of text, on the display screen after fitting the real image seen through the display screen, such as exhibit 3, as shown in Figure 19.
  • the UWB sensor never detects the UWB tag to the detection of the UWB tag, and the camera, display screen, ISP and GPU transition from the standby or hibernation state to the active working state.
  • the value of the AR function start/stop flag is 0.
  • FIG. 20 shows that during the movement of the user 200, there will be a process from the exhibits with no UWB tags detected within the detection range to the exhibits with UWB tags detected.
  • the user 200 wears AR glasses to watch the exhibit 4, Then the user 200 wears the AR glasses to watch the exhibit 3.
  • the UWB tag is not deployed in the exhibit 4, and the UWB label is deployed in the exhibit 3.
  • the UWB sensor does not detect the UWB tag in the exhibit 4.
  • the value of the AR function start/stop flag is 0, and the camera and display, ISP and GPU are in standby or hibernation state.
  • the UWB sensor in the AR glasses detects the UWB label in exhibit 3, reads the UWB label information in exhibit 3, and then reports the UWB sensor to the co-processor, and accordingly, the co-processing
  • the controller sets the value of the start-stop flag of the AR function to 1, and the controller determines the value of the start-stop flag of the AR function in the coprocessor through detection to 1, controls the camera and the display screen, the ISP and the GPU to start the work, and then the camera scans the exhibits. 3.
  • a virtual image such as a piece of text
  • the ISP or GPU determines the angle and the inclination angle to fit the virtual image, such as a piece of text, with the real image seen through the display screen, such as exhibit 3, displayed on the display, as shown in Figure 19.
  • UWB sensor never detects UWB tag to no UWB tag is detected, camera, display screen, ISP and GPU remain in standby or hibernation state from standby or hibernation.
  • the UWB sensor does not detect the UWB tag, the value of the AR function start/stop flag is 0.
  • FIG. 21 shows that during the movement of the user 200, there will be a process from the exhibits with no UWB tags detected within the detection range to the exhibits with no UWB tags detected.
  • the user 200 wears AR glasses to watch the exhibit 2 , and then user 200 wears AR glasses to watch exhibit 4, wherein, UWB tags are not deployed in exhibit 2, and UWB tags are not deployed in exhibit 4, and user 200 wears AR glasses to watch exhibit 2, that is, the UWB sensor does not detect UWB tags,
  • the value of the AR function start/stop flag in the coprocessor is 0, the camera, display screen, ISP and GPU are in standby or sleep state. At this time, the UWB sensor and coprocessor in the default AR glasses are working continuously.
  • the AR The glasses are running in low power consumption mode, and the display screen is off at this time, and the user can see the real world image through the display screen, as shown in Figure 16.
  • the UWB sensor does not detect Going to the UWB label in Exhibit 4, the value of the AR function start/stop flag is still 0, and the camera and display screen, ISP and GPU are still in standby or hibernation state.
  • the UWB sensor detects 2 UWB tags, as shown in Figure 22.
  • Figure 22 shows a schematic diagram of an exhibit with 2 UWB tags detected within the detection range.
  • the user 200 is standing on the exhibit. 1 and in front of exhibit 3, user 200 wears AR glasses, and the UWB sensor scans two UWB tags when the UWB sensor scans two UWB tags, for example, the UWB tag in exhibit 1 and the UWB tag in exhibit 3, it can be regarded as an exhibit
  • the UWB tag in Exhibit 3 is the first positioning tag
  • the UWB tag in Exhibit 3 is the second positioning tag
  • the UWB sensor will report to the co-processor
  • the co-processor calls the distance sensor
  • the distance sensor measures the UWB tag and UWB sensor in Exhibit 1
  • the coprocessor receives the report information from the UWB sensor, it sets the value of the AR function start/stop flag to 1, and the controller determines the value of the AR function start/stop flag in the coprocessor through detection.
  • the camera scans the exhibit 1, analyzes it by the processor, generates a virtual image, such as a drum, and then the ISP or GPU determines the angle, the inclination will convert the virtual image, such as a drum, After fitting with the real image seen through the display screen, such as exhibit 1, it is displayed on the display screen, as shown in Figure 23.
  • the eighth situation the UWB sensor detects 2 UWB tags, as shown in Figure 22,
  • Figure 22 shows a schematic diagram of an exhibit with 2 UWB tags detected within the detection range. 1 and in front of exhibit 3, user 200 wears AR glasses, and the UWB sensor scans two UWB tags when the UWB sensor scans two UWB tags, for example, the UWB tag in exhibit 1 and the UWB tag in exhibit 3, it can be regarded as an exhibit
  • the UWB tag in Exhibit 3 is the first positioning tag
  • the UWB tag in Exhibit 3 is the second positioning tag.
  • the UWB sensor will report to the co-processor, and then the UWB sensor will scan the UWB tag in Exhibit 1 and the UWB tag in Exhibit 3 at the same time, read Take the UWB label information in exhibit 1 and the UWB label information in exhibit 3, and then report the UWB sensor to the co-processor.
  • the value of the AR function start/stop flag is set to If the value is 1, the controller determines the value of the AR function start/stop flag in the coprocessor is 1 through detection, and controls the camera, display screen, ISP and GPU to start work, and then the camera scans exhibits 1 and 3, and analyzes them by the processor to generate A virtual image, such as a drum and a piece of text, and then the ISP or GPU determines the angle, and the inclination aligns the virtual image, such as a drum, with the real image seen through the display screen, such as Exhibit 1, and the virtual image, such as a piece of text through The actual image seen on the display screen is displayed on the display screen after the exhibit 3 is attached, as shown in Figure 24.
  • FIG. 25 is a method for controlling an augmented reality function provided by an embodiment of the present application. The method includes but is not limited to the following steps:
  • Step S2501 The user wears the electronic device and turns on the electronic device.
  • Step S2502 The electronic device detects the positioning tag within the preset detection range.
  • the preset detection range is greater than or equal to the user visual range, and the user visual range is calculated and determined according to the human eye visual model.
  • the detection range of the above-mentioned positioning sensor which will not be repeated here.
  • the electronic device can detect the positioning tag within a preset detection range through the positioning sensor.
  • the positioning sensor is an ultra-wideband UWB sensor
  • the positioning label is a UWB label; of course, the positioning sensor and positioning label can also be other positioning sensors and positioning labels.
  • the positioning sensor and positioning label can also be other positioning sensors and positioning labels.
  • Step S2503 When the electronic device does not detect the positioning tag within the preset detection range, the augmented reality function is not activated or deactivated.
  • not enabling or disabling the augmented reality function means that the camera, display screen, ISP, and GPU are in a standby or hibernation state. That is to say, when the electronic device does not detect the positioning tag within the preset detection range, the camera, display screen, ISP and GPU are in standby or sleep state.
  • not enabling or disabling the augmented reality function can be achieved through the interaction between the positioning sensor and the coprocessor, and between the coprocessor and the controller: the first way: when the positioning sensor does not detect the positioning tag, the positioning sensor sends the coprocessor to the The coprocessor sends a second indication signal, the second indication signal is used to indicate that the positioning sensor does not detect the positioning tag.
  • the coprocessor sets the value of the AR function start/stop flag to 0.
  • the controller controls the camera, ISP or GPU to not work by detecting the value of the start-stop flag of the AR function to 0.
  • the controller can regularly detect whether the value of the flag bit in the coprocessor changes; the camera, the image signal processor ISP and the graphics processor GPU are turned off according to the value of the flag bit. For details, reference may be made to the above description, which will not be repeated here.
  • the specific electronic device does not detect the positioning tag and does not activate or deactivate the augmented reality function, which can be seen in the second, third, fifth, and sixth cases described in the foregoing embodiment, which will not be repeated here.
  • Step S2504 The electronic device detects the first positioning tag within the preset detection range, and activates the augmented reality function.
  • enabling the augmented reality function means that the camera, display screen, ISP, and GPU are enabled.
  • the electronic device detects the first positioning tag within the preset detection range, the camera, the display screen, the ISP and the GPU are in a startup state, and the coprocessor and the positioning sensor are in a working state.
  • starting the augmented reality function can be achieved through the interaction between the positioning sensor and the coprocessor, and between the coprocessor and the controller: the first way: when the positioning sensor detects the positioning tag, the positioning sensor sends the first Indication signal, the first indication signal is used to instruct the positioning sensor to detect the positioning label.
  • the coprocessor sets the value of the AR function start-stop flag to 1.
  • the controller controls the camera, ISP or GPU to work by detecting the value of the start-stop flag of the AR function to 1.
  • the second way: whether the value of the flag bit in the coprocessor is changed can be detected regularly by the controller; the camera, the ISP and the GPU are activated according to the value of the flag bit. For details, reference may be made to the above description, which will not be repeated here.
  • the augmented reality function is activated, see the first and fourth situations described in the foregoing embodiment, which will not be repeated here.
  • Step S2505 The electronic device detects the second positioning tag within the preset detection range.
  • the electronic device when the electronic device detects the second positioning tag within the preset detection range, it determines the size of the first distance and the second distance, and determines that the second distance is greater than the first distance.
  • the first distance is the distance between the first positioning label and the positioning sensor
  • the second distance is the distance between the second positioning label and the positioning sensor.
  • the electronic device when the electronic device detects the second positioning tag within a preset detection range, the electronic device processes and displays the augmented reality scene where the second positioning tag is located.
  • the electronic device processes and displays the augmented reality scene where the second positioning tag is located.
  • Step S2506 The electronic device processes and displays the augmented reality scene where the first positioning tag is located.
  • whether or not to enable the augmented reality function is determined by whether the electronic device detects the positioning tag within the preset detection range. Turning on the augmented reality function can effectively reduce the function of the electronic device and prolong the battery life of the electronic device.
  • An embodiment of the present application further provides a chip system, the chip system includes at least one processor, a memory, and an interface circuit, the memory, the transceiver, and the at least one processor are interconnected by lines, and the at least one memory
  • a computer program is stored in the computer; when the computer program is executed by the processor, the method flow shown in FIG. 25 is realized.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed on an electronic device, the method flow shown in FIG. 25 is implemented.
  • the embodiment of the present application further provides a computer program product, when the computer program product runs on a processor, the method flow shown in FIG. 25 is implemented.
  • the aforementioned storage medium includes: ROM or random storage memory RAM, magnetic disk or optical disk and other mediums that can store computer program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请实施例提供一种增强现实功能控制方法和电子设备,该方法包括:电子设备在预设探测范围内探测定位标签;预设探测范围在电子设备中摄像头的前方;定位标签用于标识增强现实场景的位置;当电子设备在预设探测范围内未探测到定位标签时,电子设备不启动或关闭增强现实功能;其中,增强现实功能用于对增强现实场景的数据进行处理并显示增强现实画面;当电子设备在预设探测范围内探测到第一定位标签时,电子设备启动增强现实功能,第一定位标签为一个定位标签,采用本申请实施例,能够降低功耗,延长电子设备的续航能力。

Description

一种增强现实功能控制方法和电子设备
本申请要求于2020年11月02日提交中国专利局、申请号为202011206535.6、申请名称为“一种增强现实功能控制方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种增强现实功能控制方法和电子设备。
背景技术
随着社会的不断发展,增强现实(augmented reality,AR)装置也应用到生活的方方面面,AR装置的工作原理是通过处理器分析,将虚拟物体投射或显示在AR装置上,通过这样的方式,可以在用户观看现实世界场景的同时,为用户显示虚拟图像。用户还可以与虚拟图像进行交互来实现增强现实的效果。
但是,AR装置工作时需要使用高精度的摄像头等空间传感器,高性能处理器对大量图像数据进行实时处理,这导致AR装置功耗很大。而目前AR装置供电主要包括有线供电和电池供电。
通过有线供电的方式会导致AR装置只能在很小的空间范围内使用,大大限制了AR装置的使用场景,通过电池供电的方式,一般情况下续航很短,为了尽可能增大续航时间,会降低空间感知芯片精度,降低采样率等,这就导致用户看到的虚拟图像与真实场景贴合性、视野等不够好,沉浸感不强,用户体验不好;为了增加AR装置的续航,就需要增加电池容量,增加电池容量会导致设备变重,佩戴舒适性下降,因此如何在不降低用户体验的前提下,降低AR装置的功耗,延长AR装置的续航能力是本领域人员正在解决的技术问题。
发明内容
本申请实施例公开了一种增强现实功能控制方法和电子设备,能够降低功耗。
本申请实施例第一方面公开了一种增强现实功能控制方法。电子设备在预设探测范围内探测定位标签;所述预设探测范围在所述电子设备中摄像头的前方;所述定位标签用于标识增强现实场景的位置;当所述电子设备在所述预设探测范围内未探测到定位标签时,所述电子设备不启动或关闭增强现实功能;其中,所述增强现实功能用于对所述增强现实场景的数据进行处理并显示增强现实画面;当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能,所述第一定位标签为一个定位标签。
在上述方法中,通过电子设备在预设探测范围内是否探测到定位标签,从而决定是否开启增强现实功能,相比现有技术中,电子设备不论是否检测到增强现实场景的位置,都持续的开启增强现实功能,能够有效的降低电子设备的功能,延长电子设备的续航能力。
在一种可能的实现方式中,所述电子设备不启动或关闭增强现实功能,包括:所述电子设备不启动或关闭所述摄像头、图像信号处理器ISP和图形处理器GPU。
在又一种可能的实现方式中,所述电子设备启动所述增强现实功能,包括:所述电子设备启动所述摄像头、图像信号处理器ISP和图形处理器GPU。
在又一种可能的实现方式中,所述电子设备在预设探测范围内探测定位标签,包括:所 述电子设备中的定位传感器在所述预设探测范围内探测定位标签。
在又一种可能的实现方式中,所述定位传感器为超宽带UWB传感器,所述定位标签为UWB标签。
在又一种可能的实现方式中,所述当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能,具体包括:当所述电子设备中的定位传感器在所述预设探测范围内探测到第一定位标签时,所述定位传感器发送第一指示信号到协处理器,所述第一指示信号用于指示所述定位传感器在所述预设探测范围内探测到第一定位标签;所述协处理器接收来自所述定位传感器的第一指示信号,确定所述协处理器中标志位的值;所述电子设备中的控制器根据所述协处理器中标志位的值、启动所述摄像头、图像信号处理器ISP和图形处理器GPU。
在又一种可能的实现方式中,所述当所述电子设备在所述预设探测范围内未探测到定位标签时,所述电子设备不启动或关闭增强现实功能,具体包括:当所述电子设备中的定位传感器在所述预设探测范围内未探测到定位标签时,所述定位传感器发送第二指示信号到协处理器,所述第二指示信号用于指示所述定位传感器在所述预设探测范围内未探测到定位标签;所述协处理器接收来自所述定位传感器的第二指示信号,确定协处理器中标志位的值;所述电子设备中的控制器根据所述协处理器中标志位的值、关闭所述摄像头、图像信号处理器ISP和图形处理器GPU。
在又一种可能的实现方式中,所述当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能之后,所述方法还包括:所述电子设备处理所述第一定位标签所在位置的增强现实场景并显示。
在又一种可能的实现方式中,所述当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能之后,所述电子设备处理所述第一定位标签所在位置的增强现实场景并显示之前,所述方法还包括:当所述电子设备中的定位传感器在所述预设探测范围内探测到第二定位标签时,确定第一距离与第二距离的大小,所述第一距离为所述第一定位标签与所述定位传感器之间的距离,所述第二距离为所述第二定位标签与所述定位传感器之间的距离;所述电子设备确定所述第二距离大于所述第一距离。
在又一种可能的实现方式中,所述当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能之后,所述电子设备处理所述第一定位标签所在位置的增强现实场景并显示之前,所述方法还包括:当所述电子设备中的定位传感器在所述预设探测范围内探测到第二定位标签时,所述电子设备处理所述第二定位标签所在位置的增强现实场景并显示。
本申请实施例第二方面公开了一种电子设备,该电子设备包括定位传感器和控制器。
所述定位传感器,用于在预设探测范围内探测定位标签;所述预设探测范围在摄像头的前方;所述定位标签用于标识增强现实场景的位置;
所述控制器,用于在所述定位传感器在所述预设探测范围内未探测到定位标签的情况下,控制不启动或关闭增强现实功能;其中,所述增强现实功能用于对所述增强现实场景的数据进行处理并显示增强现实画面;
所述控制器,还用于在所述定位传感器在所述预设探测范围内探测到第一定位标签的情况下,控制启动所述增强现实功能,所述第一定位标签为一个定位标签。
在一种可能的实现方式中,所述控制器,还用于控制不启动或关闭所述摄像头、图像信 号处理器ISP和图形处理器GPU。
在又一种可能的实现方式中,所述控制器,还用于控制启动所述摄像头、图像信号处理器ISP和图形处理器GPU。
在又一种可能的实现方式中,所述定位传感器为超宽带UWB传感器,所述定位标签为UWB标签。
在又一种可能的实现方式中,所述定位传感器,还用于在所述电子设备中的定位传感器在所述预设探测范围内探测到第一定位标签的情况下发送第一指示信号到协处理器,所述第一指示信号用于指示所述定位传感器在所述预设探测范围内探测到第一定位标签;所述协处理器,用于接收来自所述定位传感器的第一指示信号,确定所述协处理器中标志位的值;所述控制器,用于根据所述协处理器中标志位的值、启动所述摄像头、图像信号处理器ISP和图形处理器GPU。
在又一种可能的实现方式中,所述定位传感器,还用于在所述电子设备中的定位传感器在所述预设探测范围内未探测到定位标签的情况下发送第二指示信号到协处理器,所述第二指示信号用于指示所述定位传感器在所述预设探测范围内未探测到定位标签;所述协处理器,还用于接收来自所述定位传感器的第二指示信号,确定协处理器中标志位的值;所述控制器,还用于根据所述协处理器中标志位的值、关闭所述摄像头、图像信号处理器ISP和图形处理器GPU。
在又一种可能的实现方式中,所述电子设备还包括:处理器,用于处理所述第一定位标签所在位置的增强现实场景并显示。
在又一种可能的实现方式中,所述电子设备还包括:距离传感器,用于在所述定位传感器在所述预设探测范围内探测到第二定位标签的情况下,确定第一距离与第二距离的大小,所述第一距离为所述第一定位标签与所述定位传感器之间的距离,所述第二距离为所述第二定位标签与所述定位传感器之间的距离;所述电子设备确定所述第二距离大于所述第一距离。
在又一种可能的实现方式中,所述处理器,还用于在所述定位传感器在所述预设探测范围内探测到第二定位标签的情况下,处理所述第二定位标签所在位置的增强现实场景并显示。
关于第二方面或可能的实现方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
本申请实施例第三方面公开了一种电子设备,包括:一个或多个处理器、以及存储器;所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器调用所述计算机指令以实现第一方面或第一方面的可能的实现方式中所描述的方法。
本申请实施例第四方面公开了一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时,用于实现第一方面或第一方面的可能的实现方式中所描述的方法。
本申请实施例第五方面公开了一种计算机程序产品,当所述计算机程序产品在电子设备上运行时,使得所述电子设备实现第一方面或第一方面的可能的实现方式中所描述的方法。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种定位传感器安装位置示意图;
图2是本申请实施例提供的又一种定位传感器安装位置示意图;
图3是本申请实施例提供的一种电子设备的结构示意图;
图4是本申请实施例提供的一种电子设备从检测到增强现实场景的位置到未检测到增强现实场景的位置的示意图;
图5是本申请实施例提供的一种电子设备检测到增强现实场景的位置的示意图;
图6是本申请实施例提供的一种电子设备未检测到增强现实场景的位置的示意图;
图7是本申请实施例提供的一种电子设备的结构示意图;
图8是本申请实施例提供的一种电子设备从检测到定位标签到未检测到定位标签的示意图;
图9是本申请实施例提供的一种电子设备检测到定位标签的示意图;
图10是本申请实施例提供的一种电子设备未检测到定位标签的示意图;
图11是本申请实施例提供的一种电子设备的结构示意图;
图12是本申请实施例提供的一种室内博物馆的示意图;
图13是本申请实施例提供的一种探测范围内探测到UWB标签的展品的示意图;
图14是本申请实施例提供的一种显示屏显示的图像示意图;
图15是本申请实施例提供的一种探测范围内未探测到UWB标签的展品的示意图;
图16是本申请实施例提供的一种显示屏显示的图像示意图;
图17是本申请实施例提供的一种探测范围内探测到UWB标签的展品到未探测到UWB标签的展品的示意图;
图18是本申请实施例提供的一种探测范围内探测到UWB标签的展品到探测到UWB标签的展品的示意图;
图19是本申请实施例提供的一种显示屏显示的图像示意图;
图20是本申请实施例提供的一种探测范围内未探测到UWB标签的展品到探测到UWB标签的展品的示意图;
图21是本申请实施例提供的一种探测范围内未探测到UWB标签的展品到未探测到UWB标签的展品的示意图;
图22是本申请实施例提供的一种探测范围内探测到2个有UWB标签的展品的示意图;
图23是本申请实施例提供的一种显示屏显示的图像示意图;
图24是本申请实施例提供的一种显示屏显示的图像示意图;
图25是本申请实施例提供的一种增强现实功能控制方法的流程示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请实施例的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
下面介绍本申请实施例中涉及的几个概念:
(1)虚拟现实功能的启动和关闭:
本申请实施例中,电子设备为一种具有AR功能的AR装置。电子设备可以通过启动AR 功能实现对AR场景中数据的处理并显示AR画面。
可以理解的是,电子设备在启动AR功能时的功耗较大,在AR功能未启动或AR关闭功能时功耗较小。
示例性的,当电子设备中AR功能关闭时,电子设备中的协处理器、定位传感器工作。
协处理器:用于减轻应用处理器(application processor,AP)的处理负担,帮助AP执行部分工作的辅助处理器,协处理器的功耗一般小于AP的功耗。协处理器可以是把中央处理器(central processing unit,CPU)的频率与规格做适当的缩减,并将计数器、内存和显示驱动等相关模块都整合在单一芯片上,形成芯片级的控制单元。例如,协处理器中的一种可以为通用智能传感集线器(sensorhub),sensorhub的主要功能是连接并处理来自各种传感器的数据,sensorhub的协处理器芯片的功耗仅为应用处理器芯片的功耗的1%-5%。
当电子设备中的AR功能启动时,电子设备中的控制器控制摄像头、图像信号处理器(image signal processor,ISP)或者图形处理器(graphics processing unit,GPU)工作。
具体的,在本申请的一些实施例中,定位传感器与协处理器、协处理器与控制器如何进行交互,从而确定摄像头、ISP或者GPU是否工作可通过如下两种方式实现:
第一种方式:
当定位传感器检测到定位标签,定位传感器向协处理器发送第一指示信号,该第一指示信号用于指示该定位传感器检测到定位标签,相应的,协处理器在接收到第一指示信号之后,将AR功能启停标志位的值置为1;当定位传感器未检测到定位标签,定位传感器向协处理器发送第二指示信号,该第二指示信号用于指示该定位传感器未检测到定位标签,相应的,协处理器在接收到第二指示信号之后,将AR功能启停标志位的值置为0。
控制器通过检测协处理器中AR功能启停标志位的值为1,控制摄像头、ISP或者GPU工作;控制器通过检测AR功能启停标志位的值为0,控制摄像头、ISP或者GPU不工作。
第二种方式:
当定位传感器从未检测到定位标签到检测到定位标签、或者从检测到定位标签到未检测到定位标签时,定位传感器向协处理器发送第三指示信号,该第三指示信号用于指示AR功能启停标志位的值发生改变,例如,定位传感器在第5秒时未检测到定位标签时,协处理器中的AR功能启停标志位的值为0,当定位传感器在第10秒时检测到定位标签时,确定AR功能启停标志位的值发生改变,则在第10秒时定位传感器向协处理器发送第三指示信号,该第三指示信号用于指示AR功能启停标志位的值发生改变,相应的,协处理器在接收到第三指示信号之后,将AR功能启停标志位的值为由0修改为1。
控制器通过检测协处理器中AR功能启停标志位的值为1,控制摄像头、ISP或者GPU工作;或者控制器通过检测协处理器中AR功能启停标志位的值由0修改为1,控制摄像头、ISP或者GPU工作。
在上述描述中,示例性的,AR功能启停标志位的值为0,1,也就是说,当定位传感器检测到定位标签时,AR功能启停标志位的值为1;当定位传感器未检测到定位标签时,AR功能启停标志位的值为0;当然AR功能启停标志位的值也可以为用其他不同值分别表示启动或关闭AR功能,本申请实施例不做限定。
(2)定位传感器和定位标签:
本申请实施例中,定位传感器用于探测定位标签,并且可以确定定位标签的位置;定位标签用于标识增强现实场景的位置。
定位传感器的探测范围:
由于用户视觉范围是由人眼视觉模型计算确定,因此用户视觉范围是确定的。在一个确定的用户视觉范围下,定位传感器位置不同,为了覆盖用户视觉范围,其探测范围会变大。在一种示例中,如图1所示,根据人眼视觉模型确定用户双眼的视觉范围为188度、2米,当定位传感器安装在电子设备500上两个显示屏中间的位置时,由于探测范围大于等于用于视觉范围,则探测范围为190度、2.2米。在又一种示例中,如图2所示,根据人眼视觉模型确定用户双眼的视觉范围为188度、2米,当定位传感器安装在电子设备500上右侧显示屏中间的位置时,由于探测范围大于等于用于视觉范围,则探测范围为200度、2.5米。在又一种示例中,根据人眼视觉模型确定用户双眼的视觉范围为188度、2米,当定位传感器安装在电子设备500上左侧显示屏中间的位置时,由于探测范围大于等于用于视觉范围,则探测范围为200度、2.5米。
在本申请实施例中,定位传感器的探测方向在所述电子设备中摄像头的前方。
可选的,在本申请的一些实施例中,当定位传感器为超宽带(ultra wide band,UWB)传感器时,定位标签为UWB标签;当定位传感器为具有蓝牙定位功能的传感器时,定位标签为蓝牙标签;当定位传感器为具有近场通信(near field communication,NFC)功能的传感器时,定位标签为NFC标签;当定位传感器为具有射频识别(radio frequency identification,RFID)功能的传感器时,定位标签为RFID标签。
目前,现有技术当中电子设备的结构和工作原理如下:如图3所示,图3表示一种电子设备的结构示意图,该电子设备包括处理器、摄像头、显示屏、以及图像信号处理器(image signal processor,ISP)或者图形处理器(graphics processing unit,GPU),其中,处理器、ISP和GPU未在图1中画出。该显示屏可以为一个透镜,用户可以通过显示屏看到现实世界中的图像。
以博物馆场景为例,博物馆中包括展品1和展品2,其中,展品1中包括一个增强现实场景的位置信息,展品2中不包括增强现实场景的位置信息。如图4所示,当用户从展品1移动到展品2,也就是说电子设备从检测到增强现实场景的位置到未检测到增强现实场景的位置时,电子设备中AR功能一直处于启动工作状态。如图5所示,当用户一直观看展品1时,电子设备中AR功能处于启动工作状态,能对展品1的增强现实场景进行处理;如图6所示,当用户一直观看展品2,展品2上没有增强现实场景,不需要对增强现实场景进行处理,电子设备中AR功能也处于启动工作状态。
通过对现有技术电子设备开机到显示虚拟现实图像的过程分析,目前,电子设备开机之后,AR功能一直处于启动状态,处理器、摄像头、显示屏、以及ISP或者GPU等需要一直持续工作,功耗比较高,耗电量比较大。
为了解决以上问题,本申请实施例提出了一种增强现实功能控制方法和电子设备。示例性的,如图7所示,该电子设备可以包括处理器、摄像头、定位传感器、显示屏、以及ISP或者GPU,其中,处理器、ISP和GPU未在图4中画出。
以博物馆场景为例,博物馆中包括展品1和展品2,其中,展品1中包括定位标签,展品2中不包括定位标签。如图8所示,当用户从展品1移动到展品2,也就是说电子设备从检测到定位标签到未检测到定位标签时,电子设备中AR功能是否启动工作如图9和图10所示。如图9所示,当用户一直观看展品1,也就是电子设备检测到定位标签时,电子设备中AR功能处于启动工作状态;如图10所示,当用户一直观看展品2,也就是电子设备未检测到定位标签时,电子设备中AR功能处于关闭状态。
由于在未检测到定位标签时,高功耗器件不工作,因此,采用本申请实施例增强现实功 能控制方式能够降低功耗。
本申请实施例中电子设备可以为具有AR功能的手持式电子设备、头戴电子设备等,此处不作限定。
示例性的,用户可以佩戴头戴电子设备实现虚拟现实(virtual reality,VR)、AR、混合现实(mixed reality,MR)等不同效果。例如,头戴电子设备可以是眼镜、护目镜等。当头戴电子设备安装在用户头上时,用户眼睛可以看到头戴电子设备显示屏呈现的图像。
请参见图11,图11示出了电子设备1100的结构示意图。
电子设备1100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,摄像头193,显示屏194等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,加速度传感器180E,距离传感器180F,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,定位传感器180N等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备1100的具体限定。在本申请另一些实施例中,电子设备1100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括AP,协处理器,调制解调处理器,GPU,ISP,控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备1100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。如协处理器中可以设置用于存储指令和数据的存储器。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备1100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理 器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备1100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备1100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备1100充电,也可以用于电子设备1100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备1100的结构限定。在本申请另一些实施例中,电子设备1100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备1100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备1100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备1100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备1100中显示屏1100的数量可以是两个,分别对应用户200的两个眼球。
电子设备1100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备1100可以包括1个或N个摄像头193,N为大于1的正整数。
摄像头193可以安装在电子设备1100的侧面,还可以安装在电子设备1100上两个显示屏之间的位置。摄像头193用于实时捕捉用户200视角内的图像和视频。电子设备1100根据捕获的实时的图像和视频生成虚拟图像,并将虚拟图像通过显示屏194进行显示。
处理器110可以根据摄像头193捕获的静态图像或视频图像,结合传感器模块130获取的数据(例如亮度、声音等数据),来确定显示屏194上显示的虚拟图像,来实现在现实世界物体上叠加上虚拟图像。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备1100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备1100可以支持一种或多种视频编解码器。这样,电子设备1100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备1100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备1100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备1100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121 可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备1100的各种功能应用以及数据处理。
电子设备1100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备1100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备1100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备1100可以设置至少一个麦克风170C。在另一些实施例中,电子设备1100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备1100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
在一些实施例中,电子设备1100可以包括一个或多个按键190,这些按键可以控制电子设备,为用户提供访问电子设备1100上的功能。按键190的形式可以是按钮、开关、刻度盘和触摸或近触摸传感设备(如触摸传感器)。具体的,例如,用户200可以通过按下按钮来打开电子设备1100的显示屏194。按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备1100可以接收按键输入,产生与电子设备1100的用户设置以及功能控制有关的键信号输入。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备1100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备1100根据压力传感器180A检测所述触摸操作强度。电子设备1100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备1100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备1100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传 感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备1100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备1100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备1100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
加速度传感器180E可检测电子设备1100在各个方向上(一般为三轴)加速度的大小。当电子设备1100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备1100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备1100可以利用距离传感器180F测距以实现快速对焦。
环境光传感器180L用于感知环境光亮度。电子设备1100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。
指纹传感器180H用于采集指纹。电子设备1100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备1100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备1100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备1100对电池142加热,以避免低温导致电子设备1100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备1100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备1100的表面,与显示屏194所处的位置不同。
定位传感器180N借助精确的定位能力与指向功能,在一些实施例中,用于检测和读取定位标签。
下面结合上述电子设备1100的硬件结构,结合具体场景对本申请实施例中增强现实功能控制方法进行描述:
以电子设备1100是AR眼镜,定位传感器为UWB传感器,定位标签为UWB标签,且UWB传感器的位置在两个显示屏中间的位置为例进行描述,用户佩戴AR眼镜在室内博物馆查看展品。用户在参观博物馆时,看到的大多数展品都是静态的。这些展品背后蕴含的丰富人文历史信息,用户很难了解到,只能依赖讲解内容进行想象。借助AR眼镜,用户可以与展品实现互动,了解到更多的信息,使得浏览博物馆更加具有趣味性和吸引力。例如,如图12所示,图12表示一种室内博物馆的示意图,假设室内博物馆中包括4件展品:展品1、展品2、展品3和展品4,其中,展品1和展品3上都部署有UWB标签,UWB标签可以认为是具有定位指向功能的芯片,展品2和展品4上未部署UWB标签。
在博物馆内,用户200通过按开机键或者其他的方式打开AR眼镜,AR眼镜开机,AR眼镜开机后,默认AR眼镜中的UWB传感器和协处理器启动工作,摄像头、显示屏、ISP和GPU不启动工作。在开机之后,默认的协处理器中的AR功能启停标志位的值为0,AR眼镜中的控制器定时检查协处理器中AR功能启停标志位的值或者AR功能启停标志位的值是否 发生改变。
用户200佩戴AR眼镜在室内博物馆内移动,AR眼镜也跟随用户200进行移动。
第一种情况:AR眼镜开机之后,摄像头、显示屏、ISP和GPU未启动工作,此时协处理器中的AR功能启停标志位的值为0,用户200佩戴AR眼镜,UWB传感器检测到UWB标签,如图13所示,图13表示一种探测范围内探测到UWB标签的展品的示意图,例如,用户200佩戴AR眼镜短时间内一直观看展品1,AR眼镜中的UWB传感器检测到展品1中的UWB标签之后,读取UWB标签信息,然后UWB传感器上报协处理器,相应的,协处理器接收到UWB传感器的上报信息之后,将AR功能启停标志位的值为由0修改为1,控制器通过检测确定协处理器中AR功能启停标志位的值为由0修改为1,控制摄像头、显示屏、ISP和GPU启动工作。然后摄像头扫描展品1,通过处理器分析,生成虚拟图像,例如鼓,然后ISP或GPU以确定的角度,倾角将虚拟图像,例如鼓,与透过显示屏看到的现实图像如展品1贴合之后,显示在显示屏上,如图14所示,相应的,用户就可以通过显示屏,看到兵马俑在打鼓的动态头像。
第二种情况:AR眼镜开机之后,摄像头、显示屏、ISP和GPU未启动工作,此时协处理器中的AR功能启停标志位的值为0,用户200佩戴AR眼镜,UWB传感器未检测到UWB标签,如图15所示,图15表示一种探测范围内未探测到UWB标签的展品的示意图,例如,当用户200佩戴AR眼镜短时间内一直观看展品2时,也就是UWB传感器未探测到UWB标签,协处理器中的AR功能启停标志位的值依然为0,摄像头和显示屏、ISP和GPU处于待机或休眠状态,此时默认AR眼镜中的UWB传感器和协处理器在持续的工作,该AR眼镜以低功耗模式运行,此时显示屏为熄屏状态,用户可以通过显示屏看到现实世界的图像,如图16所示。
第三种情况:UWB传感器从检测到UWB标签到未检测到UWB标签,摄像头、显示屏、ISP和GPU从启动工作状态到处于待机或休眠状态。当UWB传感器检测到UWB标签时,AR功能启停标志位的值为1。如图17所示,在用户200移动过程中,会出现探测范围内探测到UWB标签的展品到未探测到UWB标签的展品的过程,在一种示例中,用户200佩戴AR眼镜观看展品1,然后用户200佩戴AR眼镜观看展品2,其中,展品1中部署有UWB标签,展品2中未部署有UWB标签,用户200佩戴AR眼镜观看展品1时,AR眼镜中的UWB传感器检测到展品1中的UWB标签之后,读取UWB标签信息,然后UWB传感器上报协处理器,相应的,协处理器将AR功能启停标志位的值置为1,控制器通过检测确定协处理器中AR功能启停标志位的值为1,控制摄像头、显示屏、ISP和GPU启动工作,然后摄像头扫描展品1,通过处理器分析,生成虚拟图像,例如鼓,然后ISP或GPU以确定的角度,倾角将虚拟图像,例如鼓,与透过显示屏看到的现实图像如展品1贴合之后,显示在显示屏上,如图14所示,相应的,用户就可以通过显示屏,看到兵马俑在打鼓的动态头像。然后用户200佩戴AR眼镜观看展品2,也就是UWB传感器未探测到UWB标签,协处理器中的AR功能启停标志位的值由1修改为0,控制器通过检测AR功能启停标志位的值由1修改为0,控制摄像头和显示屏、ISP和GPU由启动工作状态转变为处于待机或休眠状态,此时默认AR眼镜中的UWB传感器和协处理器在持续的工作,该AR眼镜以低功耗模式运行。
第四种情况:UWB传感器从检测到UWB标签到检测到UWB标签,摄像头、显示屏、ISP和GPU从启动工作状态维持启动工作状态。当UWB传感器检测到UWB标签时,AR功能启停标志位的值为1。如图18所示,在用户200移动过程中,会出现探测范围内探测到UWB标签的展品到探测到UWB标签的展品的过程,在一种示例中,用户200佩戴AR眼镜 观看展品1,然后用户200佩戴AR眼镜观看展品2,其中,展品1中部署有UWB标签,展品3中部署有UWB标签,用户200佩戴AR眼镜观看展品1时,AR眼镜中的UWB传感器检测到展品1中的UWB标签之后,读取UWB标签信息,然后UWB传感器上报协处理器,相应的,协处理器将AR功能启停标志位的值置为1,控制器通过检测确定协处理器中AR功能启停标志位的值为1,控制摄像头、显示屏、ISP和GPU启动工作,然后摄像头扫描展品1,通过处理器分析,生成虚拟图像,例如鼓,然后ISP或GPU以确定的角度,倾角将虚拟图像,例如鼓,与透过显示屏看到的现实图像如展品1贴合之后,显示在显示屏上,如图14所示,相应的,用户就可以通过显示屏,看到兵马俑在打鼓的动态头像。然后用户200佩戴AR眼镜观看展品3时,AR眼镜中的UWB传感器检测到展品3中的UWB标签之后,读取展品3中的UWB标签信息,然后UWB传感器上报协处理器,AR功能启停标志位的值依然为1,控制器控制摄像头和显示屏、ISP和GPU维持启动工作状态,然后摄像头扫描展品3,通过处理器分析,生成虚拟图像,例如一段文字,然后ISP或GPU以确定的角度,倾角将虚拟图像,例如一段文字,与透过显示屏看到的现实图像如展品3贴合之后,显示在显示屏上,如图19所示。
第五种情况:UWB传感器从未检测到UWB标签到检测到UWB标签,摄像头、显示屏、ISP和GPU从待机或休眠状态转变为启动工作状态。当UWB传感器未检测到UWB标签时,AR功能启停标志位的值为0。如图20所示,在用户200移动过程中,会出现探测范围内未探测到UWB标签的展品到探测到UWB标签的展品的过程,在一种示例中,用户200佩戴AR眼镜观看展品4,然后用户200佩戴AR眼镜观看展品3,其中,展品4中未部署有UWB标签,展品3中部署有UWB标签,用户200佩戴AR眼镜观看展品4时,UWB传感器未探测到展品4中的UWB标签,AR功能启停标志位的值为0,摄像头和显示屏、ISP和GPU处于待机或休眠状态。然后用户200佩戴AR眼镜观看展品3时,AR眼镜中的UWB传感器检测到展品3中的UWB标签之后,读取展品3中的UWB标签信息,然后UWB传感器上报协处理器,相应的,协处理器将AR功能启停标志位的值置为1,控制器通过检测确定协处理器中AR功能启停标志位的值为1,控制摄像头和显示屏、ISP和GPU启动工作,然后摄像头扫描展品3,通过处理器分析,生成虚拟图像,例如一段文字,然后ISP或GPU以确定的角度,倾角将虚拟图像,例如一段文字,与透过显示屏看到的现实图像如展品3贴合之后,显示在显示屏上,如图19所示。
第六种情况:UWB传感器从未检测到UWB标签到未检测到UWB标签,摄像头、显示屏、ISP和GPU从处于待机或休眠状态维持处于待机或休眠状态。当UWB传感器未检测到UWB标签时,AR功能启停标志位的值为0。如图21所示,在用户200移动过程中,会出现探测范围内未探测到UWB标签的展品到未探测到UWB标签的展品的过程,在一种示例中,用户200佩戴AR眼镜观看展品2,然后用户200佩戴AR眼镜观看展品4,其中,展品2中未部署有UWB标签,展品4中未部署有UWB标签,用户200佩戴AR眼镜观看展品2,也就是UWB传感器未探测到UWB标签,协处理器中的AR功能启停标志位的值为0,摄像头和显示屏、ISP和GPU处于待机或休眠状态,此时默认AR眼镜中的UWB传感器和协处理器在持续的工作,该AR眼镜以低功耗模式运行,此时显示屏为熄屏状态,用户可以通过显示屏看到现实世界的图像,如图16所示,然后用户200佩戴AR眼镜观看展品4时,UWB传感器未探测到展品4中的UWB标签,AR功能启停标志位的值依然为0,摄像头和显示屏、ISP和GPU依然处于待机或休眠状态。
第七种情况:UWB传感器检测到2个UWB标签,如图22所示,图22表示一种探测范 围内探测到2个UWB标签的展品的示意图,在一种示例中,用户200站在展品1和展品3的前方,用户200佩戴AR眼镜,UWB传感器在扫描的过程中,当UWB传感器扫描到2个UWB标签,例如,展品1中的UWB标签和展品3中的UWB标签,可以认为展品中的UWB标签为第一定位标签,展品3中的UWB标签为第二定位标签,UWB传感器会上报协处理器,协处理器调用距离传感器,然后距离传感器测量展品1中的UWB标签和UWB传感器之间的距离,也就是第一距离、以及展品3中的UWB标签和UWB传感器之间的距离,也就是第二距离,由于第二距离大于第一距离,确定离用户比较近的展品,如展品1并通知协处理器,协处理器将离用户比较近的展品,如展品1通知UWB传感器,然后UWB传感器扫描展品1中的UWB标签,读取展品1中的UWB标签信息,然后UWB传感器上报协处理器,相应的,协处理器接收到UWB传感器的上报信息之后,将AR功能启停标志位的值置为1,控制器通过检测确定协处理器中AR功能启停标志位的值为1,控制摄像头、显示屏、ISP和GPU启动工作,然后摄像头扫描展品1,通过处理器分析,生成虚拟图像,例如鼓,然后ISP或GPU以确定的角度,倾角将虚拟图像,例如鼓,与透过显示屏看到的现实图像如展品1贴合之后,显示在显示屏上,如图23所示。
第八种情况:UWB传感器检测到2个UWB标签,如图22所示,图22表示一种探测范围内探测到2个UWB标签的展品的示意图,在一种示例中,用户200站在展品1和展品3的前方,用户200佩戴AR眼镜,UWB传感器在扫描的过程中,当UWB传感器扫描到2个UWB标签,例如,展品1中的UWB标签和展品3中的UWB标签,可以认为展品中的UWB标签为第一定位标签,展品3中的UWB标签为第二定位标签,UWB传感器会上报协处理器,然后UWB传感器同时扫描展品1中的UWB标签和展品3中的UWB标签,读取展品1中的UWB标签信息和展品3中的UWB标签信息,然后UWB传感器上报协处理器,相应的,协处理器接收到UWB传感器的上报信息之后,将AR功能启停标志位的值置为1,控制器通过检测确定协处理器中AR功能启停标志位的值为1,控制摄像头、显示屏、ISP和GPU启动工作,然后摄像头扫描展品1和展品3,通过处理器分析,生成虚拟图像,例如鼓和一段文字,然后ISP或GPU以确定的角度,倾角将虚拟图像,例如鼓与透过显示屏看到的现实图像如展品1贴合,以及虚拟图像,例如一段文字透过显示屏看到的现实图像如展品3贴合与之后,显示在显示屏上,如图24所示。
结合上述电子设备1100的硬件结构,下面对本申请实施例中的一种增强现实功能控制方法进行具体描述:
请参见图25,图25是本申请实施例提供的一种增强现实功能控制方法,该方法包括但不限于如下步骤:
步骤S2501:用户佩戴电子设备,打开电子设备。
步骤S2502:电子设备在预设探测范围内探测定位标签。
具体地,预设探测范围大于等于用户视觉范围,用户视觉范围是根据人眼视觉模型计算确定的。具体可以参照上述定位传感器的探测范围,此处不再赘述。
具体地,电子设备可以通过定位传感器在预设探测范围内探测定位标签。当定位传感器为超宽带UWB传感器时,定位标签为UWB标签;当然定位传感器和定位标签也可以为其他的定位传感器和定位标签,具体可以参考上述定位传感器和定位标签的描述,此处不再赘述。
步骤S2503:电子设备在预设探测范围内未探测定位标签时,不启动或关闭增强现实功 能。
具体地,不启动或关闭增强现实功能是指摄像头、显示屏、ISP和GPU处于待机或休眠状态。也就是说,当电子设备在预设探测范围内未探测到定位标签时,摄像头、显示屏、ISP和GPU从处于待机或休眠状态。
具体地,不启动或关闭增强现实功能可以通过定位传感器与协处理器、协处理器与控制器之间的交互实现:第一种方式:当定位传感器未检测到定位标签,定位传感器向协处理器发送第二指示信号,该第二指示信号用于指示该定位传感器未检测到定位标签,相应的,协处理器在接收到第二指示信号之后,将AR功能启停标志位的值置为0。控制器通过检测AR功能启停标志位的值为0,控制摄像头、ISP或者GPU不工作。第二种方式:可以通过控制器定时检测协处理器中标志位的值是否发生改变;根据所述标志位的值关闭所述摄像头、图像信号处理器ISP和图形处理器GPU。具体可以参考上述描述此处不再赘述。
具体电子设备未探测到定位标签,不启动或关闭增强现实功能可以见上述实施例中描述的第二、三、五、六种情况,此处不再赘述。
步骤S2504:电子设备在预设探测范围内探测到第一定位标签,启动增强现实功能。
具体地,启动增强现实功能是指摄像头、显示屏、ISP和GPU处于启动状态。当电子设备在预设探测范围内探测到第一定位标签时,摄像头、显示屏、ISP和GPU处于启动状态,协处理器和定位传感器处于工作状态。
具体地,启动增强现实功能可以通过定位传感器与协处理器、协处理器与控制器之间的交互实现:第一种方式:当定位传感器检测到定位标签,定位传感器向协处理器发送第一指示信号,该第一指示信号用于指示该定位传感器检测到定位标签,相应的,协处理器在接收到第一指示信号之后,将AR功能启停标志位的值置为1。控制器通过检测AR功能启停标志位的值为1,控制摄像头、ISP或者GPU工作。第二种方式:可以通过控制器定时检测协处理器中标志位的值是否发生改变;根据所述标志位的值启动摄像头、ISP和GPU。具体可以参考上述描述此处不再赘述。
具体在预设探测范围内探测到第一定位标签,启动增强现实功能可以见上述实施例中描述的第一、四种情况,此处不再赘述。
步骤S2505:电子设备在预设探测范围内探测到第二定位标签。
在一种可能的实现方式中,电子设备在预设探测范围内探测到第二定位标签时,确定第一距离与第二距离的大小,确定第二距离大于第一距离。具体地,第一距离为第一定位标签与定位传感器之间的距离,第二距离为第二定位标签与定位传感器之间的距离。具体可以参考上述第七种情况,此处不再赘述。
在一种可能的实现方式中,电子设备在预设探测范围内探测到第二定位标签时,电子设备处理所述第二定位标签所在位置的增强现实场景并显示。具体可以参考上述第八种情况,此处不再赘述。
步骤S2506:电子设备处理第一定位标签所在位置的增强现实场景并显示。
具体可以见上述实施例中描述的第一、三、四、五、七种情况,此处不再赘述。
在上述方法中,通过电子设备在预设探测范围内是否探测到定位标签,从而决定是否开启增强现实功能,相比现有技术中,电子设备不论是否检测到增强现实场景的位置,都持续的开启增强现实功能,能够有效的降低电子设备的功能,延长电子设备的续航能力。
本申请实施例还提供一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器 中存储有计算机程序;所述计算机程序被所述处理器执行时,图25所示的方法流程得以实现。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当其在电子设备上运行时,图25所示的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,图25所示的方法流程得以实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来计算机程序相关的硬件完成,该计算机程序可存储于计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储计算机程序代码的介质。

Claims (22)

  1. 一种增强现实功能控制方法,其特征在于,包括:
    电子设备在预设探测范围内探测定位标签;所述预设探测范围在所述电子设备中摄像头的前方;所述定位标签用于标识增强现实场景的位置;
    当所述电子设备在所述预设探测范围内未探测到定位标签时,所述电子设备不启动或关闭增强现实功能;其中,所述增强现实功能用于对所述增强现实场景的数据进行处理并显示增强现实画面;
    当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能,所述第一定位标签为一个定位标签。
  2. 根据权利要求1所述的方法,其特征在于,所述电子设备不启动或关闭增强现实功能,包括:
    所述电子设备不启动或关闭所述摄像头、图像信号处理器ISP和图形处理器GPU。
  3. 根据权利要求1所述的方法,其特征在于,所述电子设备启动所述增强现实功能,包括:
    所述电子设备启动所述摄像头、图像信号处理器ISP和图形处理器GPU。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述电子设备在预设探测范围内探测定位标签,包括:
    所述电子设备中的定位传感器在所述预设探测范围内探测定位标签。
  5. 根据权利要求4所述的方法,其特征在于,
    所述定位传感器为超宽带UWB传感器,所述定位标签为UWB标签。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能,具体包括:
    当所述电子设备中的定位传感器在所述预设探测范围内探测到第一定位标签时,所述定位传感器发送第一指示信号到协处理器,所述第一指示信号用于指示所述定位传感器在所述预设探测范围内探测到第一定位标签;
    所述协处理器接收来自所述定位传感器的第一指示信号,确定所述协处理器中标志位的值;
    所述电子设备中的控制器根据所述协处理器中标志位的值、启动所述摄像头、图像信号处理器ISP和图形处理器GPU。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述当所述电子设备在所述预设探测范围内未探测到定位标签时,所述电子设备不启动或关闭增强现实功能,具体包括:
    当所述电子设备中的定位传感器在所述预设探测范围内未探测到定位标签时,所述定位传感器发送第二指示信号到协处理器,所述第二指示信号用于指示所述定位传感器在所述预设探测范围内未探测到定位标签;
    所述协处理器接收来自所述定位传感器的第二指示信号,确定协处理器中标志位的值;
    所述电子设备中的控制器根据所述协处理器中标志位的值、关闭所述摄像头、图像信号处理器ISP和图形处理器GPU。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能之后,所述方法还包括:
    所述电子设备处理所述第一定位标签所在位置的增强现实场景并显示。
  9. 根据权利要求8所述的方法,其特征在于,所述当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能之后,所述电子设备处理所述第一定位标签所在位置的增强现实场景并显示之前,所述方法还包括:
    当所述电子设备中的定位传感器在所述预设探测范围内探测到第二定位标签时,确定第一距离与第二距离的大小,所述第一距离为所述第一定位标签与所述定位传感器之间的距离,所述第二距离为所述第二定位标签与所述定位传感器之间的距离;
    所述电子设备确定所述第二距离大于所述第一距离。
  10. 根据权利要求8所述的方法,其特征在于,所述当所述电子设备在所述预设探测范围内探测到第一定位标签时,所述电子设备启动所述增强现实功能之后,所述电子设备处理所述第一定位标签所在位置的增强现实场景并显示之前,所述方法还包括:
    当所述电子设备中的定位传感器在所述预设探测范围内探测到第二定位标签时,所述电子设备处理所述第二定位标签所在位置的增强现实场景并显示。
  11. 一种电子设备,其特征在于,所述电子设备包括定位传感器和控制器,
    所述定位传感器,用于在预设探测范围内探测定位标签;所述预设探测范围在摄像头的前方;所述定位标签用于标识增强现实场景的位置;
    所述控制器,用于在所述定位传感器在所述预设探测范围内未探测到定位标签的情况下,控制不启动或关闭增强现实功能;其中,所述增强现实功能用于对所述增强现实场景的数据进行处理并显示增强现实画面;
    所述控制器,还用于在所述定位传感器在所述预设探测范围内探测到第一定位标签的情况下,控制启动所述增强现实功能,所述第一定位标签为一个定位标签。
  12. 根据权利要求11所述的设备,其特征在于,所述控制器,还用于控制不启动或关闭所述摄像头、图像信号处理器ISP和图形处理器GPU。
  13. 根据权利要求11所述的设备,其特征在于,所述控制器,还用于控制启动所述摄像头、图像信号处理器ISP和图形处理器GPU。
  14. 根据权利要求11-13任一项所述的设备,其特征在于,所述定位传感器为超宽带UWB传感器,所述定位标签为UWB标签。
  15. 根据权利要求11-14任一项所述的设备,其特征在于,
    所述定位传感器,还用于在所述电子设备中的定位传感器在所述预设探测范围内探测到第一定位标签的情况下发送第一指示信号到协处理器,所述第一指示信号用于指示所述定位传感器在所述预设探测范围内探测到第一定位标签;
    所述协处理器,用于接收来自所述定位传感器的第一指示信号,确定所述协处理器中标志位的值;
    所述控制器,用于根据所述协处理器中标志位的值、启动所述摄像头、图像信号处理器ISP和图形处理器GPU。
  16. 根据权利要求11-14任一项所述的设备,其特征在于,
    所述定位传感器,还用于在所述电子设备中的定位传感器在所述预设探测范围内未探测到定位标签的情况下发送第二指示信号到协处理器,所述第二指示信号用于指示所述定位传感器在所述预设探测范围内未探测到定位标签;
    所述协处理器,还用于接收来自所述定位传感器的第二指示信号,确定协处理器中标志位的值;
    所述控制器,还用于根据所述协处理器中标志位的值、关闭所述摄像头、图像信号处理器ISP和图形处理器GPU。
  17. 根据权利要求11-16任一项所述的设备,其特征在于,所述设备还包括:
    处理器,用于处理所述第一定位标签所在位置的增强现实场景并显示。
  18. 根据权利要求17所述的设备,其特征在于,所述设备还包括:
    距离传感器,用于在所述定位传感器在所述预设探测范围内探测到第二定位标签的情况下,确定第一距离与第二距离的大小,所述第一距离为所述第一定位标签与所述定位传感器之间的距离,所述第二距离为所述第二定位标签与所述定位传感器之间的距离;所述电子设备确定所述第二距离大于所述第一距离。
  19. 根据权利要求17所述的设备,其特征在于,
    所述处理器,还用于在所述定位传感器在所述预设探测范围内探测到第二定位标签的情况下,处理所述第二定位标签所在位置的增强现实场景并显示。
  20. 一种电子设备,其特征在于,包括:一个或多个处理器以及存储器;所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器调用所述计算机指令以使所述电子设备执行权利要求1-10任一项所述的方法。
  21. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时,用于实现权利要求1-10任一项所述的方法。
  22. 一种计算机程序产品,当所述计算机程序产品在电子设备上运行时,使得所述电子设备执行权利要求1-10任一项所述的方法。
PCT/CN2021/127781 2020-11-02 2021-10-30 一种增强现实功能控制方法和电子设备 WO2022089625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011206535.6 2020-11-02
CN202011206535.6A CN114531582B (zh) 2020-11-02 2020-11-02 一种增强现实功能控制方法和电子设备

Publications (1)

Publication Number Publication Date
WO2022089625A1 true WO2022089625A1 (zh) 2022-05-05

Family

ID=81381893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127781 WO2022089625A1 (zh) 2020-11-02 2021-10-30 一种增强现实功能控制方法和电子设备

Country Status (2)

Country Link
CN (1) CN114531582B (zh)
WO (1) WO2022089625A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11935093B1 (en) 2023-02-19 2024-03-19 Toyota Motor Engineering & Manufacturing North America, Inc. Dynamic vehicle tags

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106126066A (zh) * 2016-06-28 2016-11-16 广东欧珀移动通信有限公司 一种增强现实功能的控制方法、装置及移动终端
CN106204743A (zh) * 2016-06-28 2016-12-07 广东欧珀移动通信有限公司 一种增强现实功能的控制方法、装置及移动终端
CN106406520A (zh) * 2016-08-30 2017-02-15 徐丽芳 一种虚拟现实系统的位置识别方法
US20170270698A1 (en) * 2016-03-18 2017-09-21 Disney Enterprises, Inc. Systems and methods for generating augmented reality environments
CN108962098A (zh) * 2018-08-02 2018-12-07 合肥市徽马信息科技有限公司 一种基于ar增强现实的导览系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120212484A1 (en) * 2010-02-28 2012-08-23 Osterhout Group, Inc. System and method for display content placement using distance and location information
CN104102678B (zh) * 2013-04-15 2018-06-05 腾讯科技(深圳)有限公司 增强现实的实现方法以及实现装置
CN107767460B (zh) * 2016-08-18 2021-02-19 深圳劲嘉盒知科技有限公司 增强现实的展示方法和装置
US11347054B2 (en) * 2017-02-16 2022-05-31 Magic Leap, Inc. Systems and methods for augmented reality
CN107967054B (zh) * 2017-11-16 2020-11-27 中国人民解放军陆军装甲兵学院 一种虚拟现实与增强现实耦合的沉浸式三维电子沙盘
CN109129507B (zh) * 2018-09-10 2022-04-19 北京联合大学 一种智能讲解机器人及讲解方法和系统
CN109614785B (zh) * 2018-11-01 2021-05-25 Oppo广东移动通信有限公司 应用运行的管控方法、装置、存储介质及电子设备
CN111722710B (zh) * 2020-06-02 2024-06-25 广东小天才科技有限公司 开启增强现实ar互动学习模式的方法及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170270698A1 (en) * 2016-03-18 2017-09-21 Disney Enterprises, Inc. Systems and methods for generating augmented reality environments
CN106126066A (zh) * 2016-06-28 2016-11-16 广东欧珀移动通信有限公司 一种增强现实功能的控制方法、装置及移动终端
CN106204743A (zh) * 2016-06-28 2016-12-07 广东欧珀移动通信有限公司 一种增强现实功能的控制方法、装置及移动终端
CN106406520A (zh) * 2016-08-30 2017-02-15 徐丽芳 一种虚拟现实系统的位置识别方法
CN108962098A (zh) * 2018-08-02 2018-12-07 合肥市徽马信息科技有限公司 一种基于ar增强现实的导览系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11935093B1 (en) 2023-02-19 2024-03-19 Toyota Motor Engineering & Manufacturing North America, Inc. Dynamic vehicle tags

Also Published As

Publication number Publication date
CN114531582A (zh) 2022-05-24
CN114531582B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2020187157A1 (zh) 一种控制方法和电子设备
WO2020156269A1 (zh) 一种具有柔性屏幕的电子设备的显示方法及电子设备
CN109582141B (zh) 根据眼球焦点控制显示屏的方法和头戴电子设备
US11930130B2 (en) Screenshot generating method, control method, and electronic device
WO2021073185A1 (zh) 一种触摸屏、电子设备、显示控制方法
WO2020207380A1 (zh) 头戴电子设备及其控制方法
CN110798568B (zh) 具有折叠屏的电子设备的显示控制方法及电子设备
WO2022179376A1 (zh) 手势控制方法与装置、电子设备及存储介质
CN110401768B (zh) 调节电子设备的工作状态的方法和装置
WO2022100685A1 (zh) 一种绘制命令处理方法及其相关设备
WO2022027972A1 (zh) 一种设备搜寻方法以及电子设备
CN113448482A (zh) 触控屏的滑动响应控制方法及装置、电子设备
WO2020237617A1 (zh) 控屏方法、装置、设备及存储介质
WO2021031745A1 (zh) 一种应用打开方法和电子设备
CN115589051A (zh) 充电方法和终端设备
CN110058729B (zh) 调节触摸检测的灵敏度的方法和电子设备
CN111651254A (zh) 一种执行应用的方法及装置
WO2022089625A1 (zh) 一种增强现实功能控制方法和电子设备
CN114422686B (zh) 参数调整方法及相关装置
WO2021052015A1 (zh) 一种触控屏控制方法和电子设备
WO2021013106A1 (zh) 一种折叠屏照明方法和装置
CN114089902A (zh) 手势交互方法、装置及终端设备
US20240045557A1 (en) Method for Sharing Input Device, Electronic Device, and System
WO2022111593A1 (zh) 一种用户图形界面显示方法及其装置
WO2021129453A1 (zh) 一种截屏方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885351

Country of ref document: EP

Kind code of ref document: A1