WO2022089386A1 - 激光图案提取方法、装置、激光测量设备和系统 - Google Patents

激光图案提取方法、装置、激光测量设备和系统 Download PDF

Info

Publication number
WO2022089386A1
WO2022089386A1 PCT/CN2021/126225 CN2021126225W WO2022089386A1 WO 2022089386 A1 WO2022089386 A1 WO 2022089386A1 CN 2021126225 W CN2021126225 W CN 2021126225W WO 2022089386 A1 WO2022089386 A1 WO 2022089386A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
image
brightness
laser image
current application
Prior art date
Application number
PCT/CN2021/126225
Other languages
English (en)
French (fr)
Inventor
王维林
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2022089386A1 publication Critical patent/WO2022089386A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Definitions

  • the present application relates to the technical field of image processing, and in particular to a laser pattern extraction method, device, laser measurement device and system.
  • Laser triangulation is a machine vision technique that captures three-dimensional measurement data by pairing a laser light source with a camera.
  • Monocular laser triangulation uses a single camera to calculate the distance from the target to the camera using the principle of similar triangles.
  • Monocular laser triangulation requires analyzing the pixel coordinates of the laser pattern from the camera image.
  • the pixel coordinate extraction of the laser pattern is not accurate. How to accurately extract the pixel coordinates of the laser pattern under different ambient light brightness is an urgent problem to be solved.
  • the embodiments of the present invention provide a laser pattern extraction method, device, laser measurement equipment and system, which are used to solve the problem of inaccurate extraction results of pixel coordinates of laser lines when the outdoor ambient light is strong in the prior art The problem.
  • a method for extracting a laser pattern is provided, which is applied to a laser measuring device, and the method includes:
  • the laser pattern is extracted from the second laser image.
  • the first laser image is an image captured by an ISP fixed exposure method.
  • the laser pattern is a laser line.
  • the identifying the brightness of the current application environment of the laser measuring device according to the first laser image includes:
  • the brightness of the current application environment of the laser measuring device is determined according to the average brightness.
  • the identifying the brightness of the current application environment of the laser measuring device according to the first laser image includes:
  • the grayscale histogram of the first laser image analyze the distribution characteristics of different brightness in the grayscale histogram
  • the brightness information included in the first laser image is identified according to the distribution characteristics of the different brightnesses, and the brightness information included in the first laser image is determined as the brightness of the current application environment of the laser measuring device.
  • identifying the brightness of the current application environment of the laser measurement device according to the first laser image includes:
  • the acquiring a second laser image that matches the brightness of the current application environment of the laser measuring device includes:
  • the original image of the first laser image is acquired, and the original image is determined as the second laser image.
  • the acquiring an original image of the first laser image and determining the original image as the second laser image includes:
  • One component is selected from the three components B, G, and R, and the BGR format image is separated according to the selected component to obtain a separated image, wherein the separated image only includes the selected component ;
  • the separated image is determined as the second laser image.
  • the acquiring a second laser image that matches the brightness of the current application environment of the laser measuring device includes:
  • the brightness of the current application environment of the laser measuring device is the second brightness
  • a laser image captured by automatic exposure is obtained, and the laser image captured by automatic exposure is determined as the second laser image, wherein the laser image captured by automatic exposure is determined as the second laser image.
  • the laser image of includes the laser pattern.
  • the acquiring a laser image captured by automatic exposure, and determining the laser image captured by automatic exposure as the second laser image includes:
  • the enhanced laser image is determined as the second laser image.
  • the enhancing the brightness difference between the laser pattern in the laser image captured by automatic exposure and the background portion in the laser image includes:
  • the gamma transformation method is used to enhance the brightness of the laser pattern in the laser image captured by automatic exposure, and suppress the brightness of the background image other than the laser pattern in the laser image captured by automatic exposure.
  • the enhancement of the laser pattern in the laser image captured by automatic exposure and the brightness of the background part in the laser image differences including:
  • the laser pattern feature enhancement processing is performed on the laser image captured by automatic exposure through formula 1 and formula 2:
  • v represents the brightness of the grayscale image after the change
  • g represents the g component of the laser image
  • max is the empirical value
  • a represents the black and white image obtained by converting the laser image
  • pow is a power function
  • k and ⁇ are calculated factor.
  • the method further includes:
  • the laser pattern is extracted from the first laser image.
  • a laser pattern extraction device which is applied to laser measurement equipment, the device comprising:
  • a first acquisition module configured to acquire a first laser image including the laser pattern
  • an identification module configured to identify the brightness of the current application environment of the laser measuring device according to the first laser image
  • a judgment module for judging whether the brightness of the current application environment of the laser measuring device matches the first laser image
  • a second acquisition module configured to acquire a second laser image that matches the brightness of the current application environment of the laser measuring device if the result of the judgment is no;
  • An extraction module configured to extract the laser pattern from the second laser image.
  • a laser measurement device comprising: a processor, a memory, a communication interface and a communication bus, the processor, the memory and the communication interface are completed by the communication bus communication with each other;
  • the memory is used for storing at least one executable instruction, the executable instruction enables the processor to perform the operations of the laser pattern extraction method as described above.
  • a laser measurement system including: a laser, a camera, and a host system;
  • the laser is used to emit outgoing laser light to the target
  • the camera is used for capturing a laser image, wherein the laser image includes a laser pattern formed by the outgoing laser incident on the target;
  • the host system is used to perform the operations of the laser pattern extraction method as described above, and to perform measurement calculations.
  • a computer-readable storage medium where at least one executable instruction is stored in the storage medium, and when the executable instruction is executed on a laser measurement device, the laser The measurement apparatus performs the operations of the laser pattern extraction method as described above.
  • the embodiment of the present invention determines whether the brightness matches the captured image by identifying the brightness of the current application environment of the laser measuring device, and if not, further acquires a laser image matching the brightness, so as to switch according to the brightness of the current application environment
  • the captured laser image, different brightness captures different laser images suitable for the brightness, and is used for laser pattern extraction, which improves the accuracy of laser pattern extraction under different brightness, and solves the application requirements of various indoor and outdoor scenes.
  • FIG. 1 shows a flowchart of a laser pattern extraction method provided by an embodiment of the present invention
  • Fig. 2 shows the architecture diagram of the image management system in the monocular laser measurement system
  • Figures 3a-3e show the images captured by the monocular laser measurement system in different scenarios and capture modes
  • FIGS. 4a-4b show images before and after Gamma Equation 1 and Equation 2 transformation
  • FIG. 5 shows a schematic structural diagram of a laser pattern extraction device provided by an embodiment of the present invention
  • FIG. 6 shows a schematic structural diagram of a laser measurement device provided by an embodiment of the present invention.
  • FIG. 7 shows a schematic structural diagram of a laser measurement system provided by an embodiment of the present invention.
  • Monocular laser measurement systems generally include cameras, lasers, host systems, display systems, storage systems, and power systems.
  • the laser emitted by the laser is projected vertically to the surface of the measurement target, the camera deviates from the laser at a certain angle to capture the image, and the projection distance between the laser and the target is calculated according to the principle of laser triangulation.
  • the process of laser measurement by the host system includes: laser image capture, image preprocessing, laser line pixel coordinate extraction, coordinate projection transformation and point cloud data analysis and other processes.
  • Laser line pixel coordinate extraction is to analyze the pixel coordinates of the laser line from the laser image, which is an important step in monocular laser measurement.
  • the analysis principle is based on the fact that the brightness characteristics of the laser lines in the laser image are significantly higher than the brightness characteristics of the background part.
  • the ambient light is relatively weak, and the brightness of the laser line entering the camera is higher than the brightness of the ambient light. It is relatively easy to analyze the pixel coordinates of the laser line from the laser image.
  • the outdoor ambient light is relatively strong, when the surface of the measurement target is a metal material, the reflection is more obvious.
  • the difference between the brightness signal of the laser line entering the camera and the brightness signal of the ambient light is not obvious, resulting in inaccurate extraction of the pixel coordinates of the laser line. How to accurately extract the pixel coordinates of the laser line under different ambient light brightness is an urgent problem to be solved at present.
  • FIG. 1 shows a flowchart of a method for extracting a laser pattern provided by an embodiment of the present invention.
  • the method is executed by a laser measurement system, such as a monocular laser measurement system. Further, it may be performed by a host system in a monocular laser measurement system.
  • a laser measurement system such as a monocular laser measurement system. Further, it may be performed by a host system in a monocular laser measurement system.
  • FIG. 2 it is the architecture diagram of the image management system in the monocular laser measurement system.
  • the image management system includes a camera, an ISP (Image Signal Processing), a camera management module and a laser pattern extraction module.
  • the camera shoots laser images and supports color functions.
  • the camera has the highest sensitivity to green laser light in the 520 nm band, supports exposure time control, and supports gain adjustment.
  • the ISP is a component that optimizes the effect of the original camera image, supports manual exposure (manu expo) and automatic exposure (auto expo), and supports image effect optimization, including dead pixel detection, noise reduction, brightness enhancement, and automatic exposure control.
  • the camera management module is a software module, generally located in the host system, including the camera control driver and the image capture function. Both the original image captured by the camera and the image processed by the ISP can be captured by the camera management module.
  • the laser pattern extraction module is a software module, generally located in the host system, which is responsible for the analysis of the image, for example, according to the image brightness and image quality to determine the current application scene, and automatically decide which image to use for the laser pattern coordinate extraction operation.
  • the method includes the following steps:
  • Step 120 Acquire a first laser image including a laser pattern.
  • the first laser image is captured by a camera in the monocular laser measurement system, and the host system obtains the first laser image from the camera through the camera management module.
  • the first laser image includes a laser pattern emitted by the laser to the target surface, and the laser pattern can be in any shape, such as a laser spot, a laser line, a laser block, or a laser pattern of other shapes.
  • the embodiment of the present invention is described by taking the laser pattern as a laser line as an example.
  • the first laser image is an image captured by the ISP fixed exposure mode.
  • Fixed exposure also known as manual exposure, refers to the exposure method in which the camera exposure time is fixedly set.
  • Auto exposure refers to the exposure method in which the camera exposure time is automatically adjusted according to the ISP algorithm.
  • Step 140 Identify the brightness of the current application environment of the laser measuring device according to the first laser image.
  • the brightness of the ambient light is different, and the effect of extracting the pixel coordinates of the laser line in the laser image is also different.
  • the brightness of the background light is weak, and the brightness of the laser light is too strong, and the laser image is easily overexposed, resulting in a large measurement error; in the outdoor scene, the brightness of the background light is strong, and the brightness of the laser light is relatively weak, which is easy to cause background overexposure. , it is difficult to extract the pixel coordinates of the laser line from the laser image, or the deviation of the pixel coordinates of the extracted laser line is relatively large.
  • the embodiment of the present invention identifies the brightness of the current application environment of the laser measurement device through the first laser image, which is equivalent to identifying the current scene, and then selects a laser image captured by a capture method suitable for the brightness according to different brightness to perform laser line extraction.
  • the brightness of the current application environment of the laser measuring device can be identified by the brightness feature of the first laser image, including the following steps:
  • Step a1 analyzing the brightness feature of the first laser image
  • Step a2 Count the average brightness of the first laser image according to the brightness feature
  • Step a3 Determine the brightness of the current application environment of the laser measuring device according to the average brightness.
  • the brightness of the current application environment of the laser measuring device can be obtained according to the brightness of the first laser image.
  • the current application environment of the laser measuring device is divided into three types: strong light scenes, such as scenes with sunlight or other ambient strong light; medium brightness scenes, such as outdoor weak light, cloudy sky, hall, shadow and other scenes; low-light scenes, such as indoors, underground garages, workshops, garages and other low-light scenes.
  • strong light scenes such as scenes with sunlight or other ambient strong light
  • medium brightness scenes such as outdoor weak light, cloudy sky, hall, shadow and other scenes
  • low-light scenes such as indoors, underground garages, workshops, garages and other low-light scenes.
  • the brightness of the application environment of the strong light scene is the first brightness
  • the brightness of the application environment of the medium brightness scene is the second brightness
  • the brightness of the application environment of the low light scene is the third brightness.
  • the average brightness of low-light scenes is very low, the average brightness of gray-scale images is below 10, rarely exceeding 20, the average brightness of gray-scale images in medium-brightness scenes is below 100, and the average brightness of gray-scale images in strong light scenes is basically above 150. Therefore, a brightness range can be preset for different scenes, and the current scene can be discriminated according to the brightness range to which the average brightness belongs, that is, the brightness of the current application environment of the laser measuring device is determined.
  • Step b1 according to the grayscale histogram of the first laser image, analyze the distribution characteristics of different brightness in the grayscale histogram;
  • Step b2 Identify the brightness information included in the first laser image according to the distribution characteristics of different brightness, and determine the brightness information included in the first laser image as the brightness of the current application environment of the laser measuring device.
  • the first laser image is a color image, it needs to be converted into a grayscale image first, and if it is a grayscale image, brightness information identification can be performed directly.
  • Step 160 Determine whether the brightness of the current application environment of the laser measuring device matches the first laser image.
  • matching the brightness of the current application environment with the first laser image means that under the brightness of the current application environment, a high-quality laser pattern can be extracted from the first laser image, or, under the brightness of the current application environment, from the first laser image
  • the extraction of laser patterns from laser images can reach the computational standard.
  • ISP manual exposure capture method The image processed by ISP has relatively uniform brightness, relatively small noise, and the extracted laser line fluctuation and offset are relatively small, which is easier for algorithm analysis.
  • the background suppression of ISP manual exposure is better, the brightness of the laser line can be controlled according to the exposure time, the contrast between the target and the background is high, the image analysis is more convenient, and the accuracy is higher, and it supports black and white cameras and color cameras.
  • ISP manual exposure is suitable for indoor low-light scenes, as shown in Figure 3a, which is an indoor laser image after manual exposure and ISP processing. ISP manual exposure is sensitive to outdoor ambient light and reflective interference, and is prone to overexposure. As shown in Figure 3e, it is a laser image that is manually exposed in sunlight and processed by ISP. Therefore, the ISP manual exposure adapts to low-light scenes such as indoors, underground garages, workshops, and garages.
  • ISP automatic exposure capture method ISP automatic exposure can suppress the background better in outdoor low-light scenes, the image is clearer, and can automatically suppress the impact of ambient light on the image, as shown in Figure 3b, for outdoor low-light automatic exposure Laser image after exposure and ISP processing.
  • the difficulty of laser line extraction in ISP automatic exposure is higher than that in ISP manual exposure, and the algorithm needs to enhance the characteristics of the laser line; it is more sensitive to sunlight and reflection interference, and is susceptible to interference, as shown in Figure 3c, which is an outdoor strong light Auto-exposure and ISP-processed laser image; only color cameras are supported. Therefore, ISP automatic exposure adapts to scenes such as outdoor low light, cloudy sky, hall, shadow and other scenes.
  • the way to capture the original image from the camera The original image captured from the camera is usually more frizzy, with more dark spots and noise, but it can better reflect the real scene, which is close to the visual observation results, and is not sensitive to sunlight and strong ambient light. Strong anti-interference ability and stronger adaptability.
  • the laser image of the green laser is preserved after laser separation under outdoor sunlight.
  • the laser line fluctuations of the original image are relatively large, and only color cameras are supported. Therefore, it adapts to scenes with sunlight or other strong ambient light.
  • the laser images obtained by different capture methods match the brightness of different current application environments.
  • the laser images obtained by the manual exposure capture method match the low-light scene (third brightness)
  • the automatic exposure capture images The laser image acquired in this way matches the medium brightness scene (the second brightness), and the original image matches the strong light scene (the first brightness).
  • the first laser image can be directly used to extract the laser pattern. If the brightness of the current application environment of the laser measuring device does not match the first laser image, further processing is required, and other images are captured to extract the laser pattern.
  • Step 180 If the result of the determination is no, acquire a second laser image that matches the brightness of the current application environment of the laser measuring device.
  • a second laser image is further acquired, wherein the second laser image is an image suitable for extracting a laser pattern under the brightness of the current application environment. Further, the second laser image is related to the brightness of the current application environment. Since the image effects captured by different scenes and capture methods are very different, the algorithm also needs to choose different capture methods according to different scenes.
  • the manual exposure method should be used to obtain the laser image, which is conducive to the extraction of the subsequent laser lines; in the medium-brightness scene (the second brightness), the automatic exposure method should be used to obtain the laser image, which is conducive to the subsequent laser line extraction. Extraction of lines; in strong light scenes (first brightness), the original image should be used, which is conducive to the extraction of subsequent laser lines.
  • the brightness of the current application environment of the laser measuring device is the first brightness
  • an original image of the first laser image is acquired, and the original image is determined as the second laser image. That is, in a scene with sunlight or other strong ambient light, the ISP's optimization of the image is bypassed, and the original image is directly captured from the camera.
  • the original image is an image that matches the brightness of the current application environment of the laser measurement device, so that It can improve the success probability of laser line coordinate extraction.
  • the automatic exposure method is adopted to capture the laser image, and the average brightness of the automatic exposure target is determined in advance.
  • the average brightness method averages the brightness of all pixels in the image, and finally achieves the target brightness by continuously adjusting the exposure parameters. Therefore, in some embodiments, if the brightness of the current application environment of the laser measuring device is the second brightness, a laser image captured by automatic exposure is obtained, and the laser image captured by automatic exposure is determined as the second laser image, wherein the laser image captured by automatic exposure is determined as the second laser image.
  • the image content of the laser image captured by exposure is the same as the first laser image, and also includes a laser pattern. That is, in scenes such as outdoor weak light, cloudy days, halls, shadows, etc., the automatic exposure method can improve the probability of successful extraction of the pixel coordinates of the laser line.
  • the result of the judgment in step 160 is yes, indicating that the brightness of the current application environment of the laser measuring device matches the first laser image, and the first laser image is directly Extract the laser pattern. That is, in low-light scenes such as indoors, underground garages, workshops, garages, etc., the first laser image captured by manual exposure is directly used, and the imaging quality of the laser line is controlled through the pre-determined exposure time.
  • the application scene is automatically determined, and the capture mode is automatically switched, which can realize the accurate extraction of laser lines in each scene, and solve the application requirements of different indoor and outdoor scenes.
  • step 180 further includes:
  • Step 181a if the brightness of the current application environment of the laser measuring device is the first brightness, obtain the original image of the first laser image;
  • Step 182a Convert the original image to a BGR format image
  • Step 183a select a component from the three components of B, G and R, and separate the BGR format image according to the selected component to obtain a separated image, wherein the separated image only includes the selected component;
  • a green laser with a wavelength of 520 nm is used, and the G component is selected to better highlight the characteristics of the laser line in the image, as shown in FIG. 3d, which can improve the success probability of pixel coordinate extraction of the laser line.
  • a green laser in a band other than 520 nm can also be used.
  • a red laser of 650 nm or a green laser of 460 nm can be used.
  • Step 184a Determine the separated image as the second laser image.
  • step 180 further includes:
  • Step 181b If the brightness of the current application environment of the laser measuring device is the second brightness, acquire a laser image captured by automatic exposure;
  • Step 182b enhancing the difference in brightness between the laser pattern and the background portion of the laser image in the laser image captured by automatic exposure, to obtain an enhanced laser image;
  • a gamma transformation method can be used to enhance the brightness of a laser pattern in a laser image captured by automatic exposure, and suppress the brightness of a background image other than the laser pattern in the laser image captured by automatic exposure.
  • the laser pattern feature enhancement processing can be performed on the laser image captured by the automatic exposure through Formula 1 and Formula 2:
  • v represents the brightness of the grayscale image after the change
  • g represents the g component of the laser image
  • max is the empirical value
  • a represents the black and white image obtained by converting the laser image
  • pow is the power function
  • k and ⁇ are calculation factors, which are determined according to the actual situation.
  • k ⁇ 180 and ⁇ 3 can be taken.
  • Figure 4a and Figure 4b show the images before and after the transformation of Gamma formula 1 and formula 2, in which Figure 4a is the grayscale image captured by automatic exposure, and Figure 4b is the image after Gamma transformation, it can be seen that the laser line part and The contrast in the background part is significantly enhanced.
  • Step 183b Determine the enhanced laser image as the second laser image.
  • Step 200 Extract the laser pattern from the second laser image.
  • the embodiment of the present invention determines whether the brightness matches the captured image by identifying the brightness of the current application environment of the laser measuring device, and if not, further acquires a laser image matching the brightness, so as to switch according to the brightness of the current application environment
  • the captured laser image, different brightness captures different laser images suitable for the brightness, and is used for laser pattern extraction, which improves the accuracy of laser pattern extraction under different brightness, and solves the application requirements of various indoor and outdoor scenes.
  • FIG. 5 shows a schematic structural diagram of a laser pattern extraction device provided by an embodiment of the present invention.
  • the apparatus 300 includes: an acquisition module 310 , an identification module 320 , a determination module 330 and an extraction module 340 . in:
  • a first acquisition module 310 configured to acquire a first laser image including the laser pattern
  • An identification module 320 configured to identify the brightness of the current application environment of the laser measuring device according to the first laser image
  • a judgment module 330 configured to judge whether the brightness of the current application environment of the laser measuring device matches the first laser image
  • the second obtaining module 340 is configured to obtain a second laser image that matches the brightness of the current application environment of the laser measuring device if the result of the judgment is no;
  • the extraction module 350 is used for extracting the laser pattern from the second laser image.
  • the first laser image is an image captured by an ISP fixed exposure method.
  • the laser pattern is a laser line.
  • the identification module 320 is further configured to:
  • the brightness of the current application environment of the laser measuring device is determined according to the average brightness.
  • the identification module 320 is further configured to:
  • the grayscale histogram of the first laser image analyze the distribution characteristics of different brightness in the grayscale histogram
  • the brightness information included in the first laser image is identified according to the distribution characteristics of the different brightnesses, and the brightness information included in the first laser image is determined as the brightness of the current application environment of the laser measuring device.
  • the identification module 320 is further configured to:
  • the second obtaining module 340 is further configured to:
  • the original image of the first laser image is acquired, and the original image is determined as the second laser image.
  • the second obtaining module 340 is further configured to:
  • One component is selected from the three components B, G, and R, and the BGR format image is separated according to the selected component to obtain a separated image, wherein the separated image only includes the selected component ;
  • the separated image is determined as the second laser image.
  • the second obtaining module 340 is further configured to:
  • the brightness of the current application environment of the laser measuring device is the second brightness
  • a laser image captured by automatic exposure is obtained, and the laser image captured by automatic exposure is determined as the second laser image, wherein the laser image captured by automatic exposure is determined as the second laser image.
  • the laser image of includes the laser pattern.
  • the second obtaining module 340 is further configured to:
  • the enhanced laser image is determined as the second laser image.
  • the second obtaining module 340 is further configured to:
  • a gamma transformation method is used to enhance the brightness of the laser pattern in the laser image captured by the automatic exposure, and suppress the brightness of the background image other than the laser pattern in the laser image captured by the automatic exposure.
  • the second acquisition module 340 is further configured to:
  • the laser pattern feature enhancement processing is performed on the laser image captured by automatic exposure through formula 1 and formula 2:
  • v represents the brightness of the grayscale image after the change
  • g represents the g component of the laser image
  • max is the empirical value
  • a represents the black and white image obtained by converting the laser image
  • pow is a power function
  • k and ⁇ are calculated factor.
  • the extraction module 350 is further configured to: extract the laser pattern from the first laser image if the judgment result is yes.
  • the embodiment of the present invention determines whether the brightness matches the captured image by identifying the brightness of the current application environment of the laser measuring device, and if not, further acquires a laser image matching the brightness, so as to switch according to the brightness of the current application environment
  • the captured laser image, different brightness captures different laser images suitable for the brightness, and is used for laser pattern extraction, which improves the accuracy of laser pattern extraction under different brightness, and solves the application requirements of various indoor and outdoor scenes.
  • FIG. 6 shows a schematic structural diagram of a laser measurement device provided by an embodiment of the present invention.
  • the specific embodiment of the present invention does not limit the specific implementation of the laser measurement device.
  • the device may be a host system of a monocular laser measurement system.
  • the laser measurement device may include: a processor (processor) 402 , a communication interface (Communications Interface) 404 , a memory (memory) 406 , and a communication bus 408 .
  • processor processor
  • Communication interface Communication Interface
  • memory memory
  • the processor 402 , the communication interface 404 , and the memory 406 communicate with each other through the communication bus 408 .
  • the communication interface 404 is used for communicating with network elements of other devices such as clients or other servers.
  • the processor 402 is configured to execute the program 410, and specifically may execute the relevant steps in the above embodiments of the laser pattern extraction method.
  • program 410 may include program code, which includes computer-executable instructions.
  • the processor 402 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • the one or more processors included in the laser measurement device may be the same type of processors, such as one or more CPUs; or may be different types of processors, such as one or more CPUs and one or more ASICs.
  • the memory 406 is used to store the program 410 .
  • Memory 406 may include high-speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.
  • the embodiment of the present invention determines whether the brightness matches the captured image by identifying the brightness of the current application environment of the laser measuring device, and if not, further acquires a laser image matching the brightness, so as to switch according to the brightness of the current application environment
  • the captured laser image, different brightness captures different laser images suitable for the brightness, and is used for laser pattern extraction, which improves the accuracy of laser pattern extraction under different brightness, and solves the application requirements of various indoor and outdoor scenes.
  • FIG. 7 shows a schematic structural diagram of a laser measurement system provided by an embodiment of the present invention.
  • the system 500 includes: a laser 510 , a camera 520 and a host system 530 .
  • the laser 510 is used to emit outgoing laser light to the target
  • the camera 520 is used for capturing a laser image, wherein the laser image includes a laser pattern formed by the outgoing laser incident on the target;
  • the host system 530 is used to perform the operations of the laser pattern extraction method as described above, and to perform measurement calculations.
  • the host system 530 can also control the laser 510 and the camera 520 to work, for example, control the laser 510 to emit laser light to the target, and control the camera 520 to capture laser images.
  • the laser measurement system 500 may also include other components such as a display system, a storage system, and a power supply system, which will not be described in detail in this embodiment.
  • the embodiment of the present invention determines whether the brightness matches the captured image by identifying the brightness of the current application environment of the laser measuring device, and if not, further acquires a laser image matching the brightness, so as to switch according to the brightness of the current application environment
  • the captured laser image, different brightness captures different laser images suitable for the brightness, and is used for laser pattern extraction, which improves the accuracy of laser pattern extraction under different brightness, and solves the application requirements of various indoor and outdoor scenes.
  • An embodiment of the present invention provides a computer-readable storage medium, where the storage medium stores at least one executable instruction.
  • the executable instruction is run on a laser measurement device/laser pattern extraction apparatus, the laser measurement device/laser pattern extraction device is executed.
  • the laser pattern extraction apparatus performs the laser pattern extraction method in any of the above method embodiments.
  • An embodiment of the present invention provides a laser pattern extraction device, which is used for executing the above-mentioned laser pattern extraction method.
  • An embodiment of the present invention provides a computer program, which can be invoked by a processor to cause a laser measurement device to execute the laser pattern extraction method in any of the above method embodiments.
  • An embodiment of the present invention provides a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium, and the computer program includes program instructions.
  • the program instructions When the program instructions are run on a computer, the computer is made to execute any of the above.
  • the laser pattern extraction method in the method embodiment is not limited to.
  • modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment.
  • the modules or units or components in the embodiments may be combined into one module or unit or component, and they may be divided into multiple sub-modules or sub-units or sub-assemblies. All features disclosed in this specification (including accompanying claims, abstract and drawings) and any method so disclosed may be employed in any combination, unless at least some of such features and/or procedures or elements are mutually exclusive. All processes or units of equipment are combined.
  • Each feature disclosed in this specification may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

本发明实施例涉及图像处理技术领域,公开了一种激光图案提取方法、装置、激光测量设备和系统。该方法包括:获取包含所述激光图案的第一激光图像;根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度;判断所述激光测量设备当前应用环境的亮度与所述第一激光图像是否相匹配;若判断的结果为否,获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像;从所述第二激光图像中提取所述激光图案。通过上述方式,本发明实施例提高了各种场景下激光图案提取的准确度。

Description

激光图案提取方法、装置、激光测量设备和系统
本申请要求于2020年10月29日提交中国专利局、申请号为202011182180.1、申请名称为“激光图案提取方法、装置、激光测量设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像处理技术领域,具体涉及一种激光图案提取方法、装置、激光测量设备和系统。
背景技术
激光三角测量(Laser Triangulation)是一种机器视觉技术,通过将激光光源与相机配对来捕获三维测量数据。单目激光三角测量是采用单个相机,利用相似三角形原理计算目标到相机的距离,被越来越多的应用于工业生产和日常生活应用中,朝着产品小型化、手持式方向发展。
单目激光三角测量需要从相机图像中分析出激光图案的像素坐标。在室外环境光较强时,激光图案的像素坐标提取不准确。如何在不同环境光亮度下都能准确提取激光图案的像素坐标,是目前亟待解决的问题。
发明内容
鉴于上述问题,本发明实施例提供了一种激光图案提取方法、装置、激光测量设备和系统,用于解决现有技术中存在的室外环境光较强时,激光线的像素坐标提取结果不准确的问题。
根据本发明实施例的一个方面,提供了一种激光图案提取方法,应用于激光测量设备,所述方法包括:
获取包含所述激光图案的第一激光图像;
根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度;
判断所述激光测量设备当前应用环境的亮度与所述第一激光图像是否相匹配;
若判断的结果为否,获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像;
从所述第二激光图像中提取所述激光图案。
在一种可选的方式中,所述第一激光图像为ISP固定曝光方式拍摄的图像。
在一种可选的方式中,所述激光图案为激光线。
在一种可选的方式中,所述根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度,包括:
分析所述第一激光图像的亮度特征;
根据所述亮度特征统计所述第一激光图像的平均亮度;
根据所述平均亮度确定所述激光测量设备当前应用环境的亮度。
在一种可选的方式中,所述根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度,包括:
根据所述第一激光图像的灰度直方图,分析所述灰度直方图中不同亮度的分布特征;
根据所述不同亮度的分布特征识别所述第一激光图像包括的亮度信息,将所述第一激光图像包括的亮度信息确定为所述激光测量设备当前应用环境的亮度。
在一种可选的方式中,若所述第一激光图像为彩色图像,所述根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度,包括:
将所述彩色图像转换为灰度图像。
在一种可选的方式中,所述获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像,包括:
若所述激光测量设备当前应用环境的亮度为第一亮度,获取所述第一激光图像的原始图像,将所述原始图像确定为所述第二激光图像。
在一种可选的方式中,所述获取所述第一激光图像的原始图像,将所述原始图像确定为所述第二激光图像,包括:
获取所述第一激光图像的原始图像;
将所述原始图像转换为BGR格式图像;
从B、G、R三个分量中选择一个分量,根据选择的所述分量对所述BGR格式图像进行分离,得到分离后的图像,其中,所述分离后的图像仅包括选择的所述分量;
将所述分离后的图像确定为所述第二激光图像。
在一种可选的方式中,所述获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像,包括:
若所述激光测量设备当前应用环境的亮度为第二亮度,获取通过自动曝光拍摄的激光图像,将通过自动曝光拍摄的所述激光图像确定为所述第二激光图像,其中,通过自动曝光拍摄的所述激光图像包含所述激光图案。
在一种可选的方式中,所述获取通过自动曝光拍摄的激光图像,将所述通过自动曝光拍摄的激光图像确定为所述第二激光图像,包括:
获取通过自动曝光拍摄的激光图像;
增强通过自动曝光拍摄的所述激光图像中所述激光图案与所述激光图像中的背景部分亮度差异,得到增强处理后的所述激光图像;
将增强处理后的所述激光图像确定为所述第二激光图像。
在一种可选的方式中,所述增强通过自动曝光拍摄的所述激光图像中所述激光图案与所述激光图像中的背景部分亮度差异,包括:
采用伽马变换方法增强通过自动曝光拍摄的所述激光图像中所述激光图 案的亮度,抑制通过自动曝光拍摄的所述激光图像中除所述激光图案以外的背景图像的亮度。
在一种可选的方式中,若通过自动曝光拍摄的所述激光图像为彩色图像,所述增强通过自动曝光拍摄的所述激光图像中所述激光图案与所述激光图像中的背景部分亮度差异,包括:
通过公式1和公式2对通过自动曝光拍摄的所述激光图像进行激光图案特征增强处理:
v=pow(g*max/255,5)/div+λ·v 1   公式1
v 1=g-a,div=pow(k,4)   公式2
其中,v表示变化过后的灰度图像亮度,g表示所述激光图像的g分量,max为经验值,a表示将所述激光图像转换获得的黑白图像,pow为幂函数,k和λ为计算因子。
在一种可选的方式中,所述方法还包括:
若判断的结果为是,从所述第一激光图像中提取所述激光图案。
根据本发明实施例的另一方面,提供了一种激光图案提取装置,应用于激光测量设备,所述装置包括:
第一获取模块,用于获取包含所述激光图案的第一激光图像;
识别模块,用于根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度;
判断模块,用于判断所述激光测量设备当前应用环境的亮度与所述第一激光图像是否相匹配;
第二获取模块,用于若判断的结果为否,获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像;
提取模块,用于从所述第二激光图像中提取所述激光图案。
根据本发明实施例的另一方面,提供了一种激光测量设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;
所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如上所述的激光图案提取方法的操作。
根据本发明实施例的另一方面,提供了一种激光测量系统,包括:激光器、相机和主机系统;
所述激光器用于向目标发射出射激光;
所述相机用于拍摄激光图像,其中,所述激光图像包括所述出射激光入射至所述目标形成的激光图案;
所述主机系统用于执行如上所述的激光图案提取方法的操作,以及进行测量计算。
根据本发明实施例的另一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令在激光测量设备上运行时,使得所述激光测量设备执行如上所述的激光图案提取方法的操作。
本发明实施例通过识别激光测量设备当前应用环境的亮度,判断该亮度与抓取的图像是否相匹配,若不匹配则进一步获取与该亮度相匹配的激光图像,从而根据当前应用环境的亮度切换抓取的激光图像,不同的亮度抓取不同的适合于该亮度的激光图像,并用于激光图案提取,提高了不同亮度下激光图案提取的准确性,解决了室内室外各种场景的应用需求。
上述说明仅是本发明实施例技术方案的概述,为了能够更清楚了解本发明实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本发明实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
附图仅用于示出实施方式,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本发明实施例提供的激光图案提取方法的流程图;
图2示出了单目激光测量系统中的图像管理系统的架构图;
图3a-3e示出了单目激光测量系统在不同的场景和抓图方式下抓取的图像;
图4a-4b示出了经过Gamma公式1和公式2变换前后的图像;
图5示出了本发明实施例提供的激光图案提取装置的结构示意图;
图6示出了本发明实施例提供的激光测量设备的结构示意图;
图7示出了本发明实施例提供的激光测量系统的结构示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。
单目激光测量系统一般包括相机、激光器、主机系统、显示系统、存储系统和电源系统等。激光器发射的激光垂直投射到测量目标表面,相机偏离激光器一定角度进行图像抓取,根据激光三角测量原理计算激光到目标之间的投射距离。其中,主机系统对激光测量的流程包括:激光图像抓取、图像预处理、激光线像素坐标提取、坐标投影变换和点云数据分析等过程。
激光线像素坐标提取是从激光图像中分析出激光线的像素坐标,其是单目激光测量的一个重要步骤。其分析原理基于激光图像中激光线的亮度特征明显高于背景部分的亮度特征。
通常在室内、地下车库、车间、车库等弱光场景中,环境光比较弱,进入相机的激光线的亮度高于环境光的亮度,从激光图像中分析激光线的像素坐标相对比较容易。对于手持式的单目激光测量设备,有在室外场景的工作需求。由于室外环境光比较强,测量目标表面为金属材质时,反光比较明显。特别是在阳光下,进入相机的激光线亮度信号与环境光亮度信号差异不明显,造成激光线的像素坐标提取不准确。如何在不同环境光亮度下都能准确提取激光线的像素坐标,是目前亟待解决的问题。
图1示出了本发明实施例提供的激光图案提取方法的流程图,该方法由激光测量系统执行,例如单目激光测量系统。进一步的,可以由单目激光测量系统中的主机系统执行。如图2所示,为单目激光测量系统中的图像管理系统的架构图。该图像管理系统包括相机、ISP(Image Signal Processing,图像信号处理)、相机管理模块和激光图案提取模块。其中,相机拍摄激光图像,支持彩色功能,本发明实施例中相机对520nm波段范围内的绿光激光感光度最高,支持曝光时间控制,支持增益调整。ISP是对相机原始图像进行效果优化的部件,支持手动曝光(manu expo)和自动曝光(auto expo),支持图像的效果优化,包括坏点检测、降噪、亮度增强、自动曝光控制等。相机管理模块是软件模块,一般位于主机系统中,包括对相机控制的驱动程序和图像的抓取功能,相机抓取的原始图像和ISP处理过后的图像都可以通过相机管理模块抓取。激光图案提取模块是软件模块,一般位于主机系统中,负责对图片的分析,例如根据图像亮度、图像质量判别当前所属应用场景,并自动决策采用哪种图像用于激光图案坐标提取运算。
如图1所示,该方法包括以下步骤:
步骤120:获取包含激光图案的第一激光图像。
其中,第一激光图像通过单目激光测量系统中的相机拍摄得到,主机系统通过相机管理模块从相机获取该第一激光图像。第一激光图像中包含激光器发射到目标表面的激光图案,该激光图案可以为任意形状,例如激光点、激光线、激光块或者其他形状的激光图案。本发明实施例以激光图案为激光线为例进行说明。
第一激光图像为ISP固定曝光方式拍摄的图像。固定曝光也称为手动曝光,是指相机曝光时间固定设置的曝光方式。而自动曝光是指相机曝光时间根据ISP算法自动调整的曝光方式。
步骤140:根据第一激光图像识别激光测量设备当前应用环境的亮度。
环境光亮度不同,对于激光图像中激光线的像素坐标提取的效果也不同。在室内场景下,背景光亮度偏弱,激光亮度偏强,激光图像容易过曝,造成测量误差比较大;在室外场景下,背景光亮度较强,激光亮度相对偏弱,容易造成背景过曝,较难从激光图像中提取出激光线的像素坐标,或者提取的激光线像素坐标偏差比较大。因此,本发明实施例通过第一激光图像识别激光测量设备当前应用环境的亮度,相当于识别出当前场景,再根据不同亮度选取适合该 亮度的抓图方式抓取的激光图像进行激光线提取。
在一些实施例中,可以通过第一激光图像的亮度特征识别激光测量设备当前应用环境的亮度,包括如下步骤:
步骤a1:分析第一激光图像的亮度特征;
步骤a2:根据亮度特征统计第一激光图像的平均亮度;
步骤a3:根据平均亮度确定激光测量设备当前应用环境的亮度。
根据第一激光图像的亮度能够得到激光测量设备当前应用环境的亮度。本发明实施例中,将激光测量设备当前应用环境的场景分为三种:强光场景,例如具有阳光或者其他环境强光的场景;中等亮度场景,例如室外弱光、阴天、大厅、阴影等场景;弱光场景,例如室内、地下车库、车间、车库等弱光场景。强光场景的应用环境的亮度为第一亮度,中等亮度场景的应用环境的亮度为第二亮度,弱光场景的应用环境的亮度为第三亮度。
一般弱光场景平均亮度非常低,灰度图像平均亮度在10以下,很少超过20,中等亮度场景灰度图像平均亮度在100以下,强光场景灰度图像平均亮度基本都在150以上。因此,可为不同的场景预设亮度范围,根据平均亮度所属的亮度范围判别当前场景,也即确定激光测量设备当前应用环境的亮度。
在一些实施例中,还可以通过第一激光图像的灰度直方图分析不同亮度的分布特征,识别激光测量设备当前应用环境的亮度,包括如下步骤:
步骤b1:根据第一激光图像的灰度直方图,分析灰度直方图中不同亮度的分布特征;
步骤b2:根据不同亮度的分布特征识别第一激光图像包括的亮度信息,将第一激光图像包括的亮度信息确定为激光测量设备当前应用环境的亮度。
此外,若第一激光图像若为彩色图像,需要先将其转换为灰度图像,若为灰度图像则可以直接进行亮度信息识别。
步骤160:判断激光测量设备当前应用环境的亮度与第一激光图像是否相匹配。
其中,当前应用环境的亮度与第一激光图像相匹配是指在当前应用环境的亮度下,能够从第一激光图像中提取质量高的激光图案,或者在当前应用环境的亮度下,从第一激光图像中提取激光图案能够达到运算标准。
如图3a-3b所示,由于不同场景的亮度差异,单目激光测量系统在不同的场景和抓图方式下抓取的图像效果差异较大,各种抓图方式的特点和应用范围如下:
1.ISP手动曝光的抓图方式:经过ISP处理后的图像,亮度比较均匀,噪声比较小,提取的激光线波动和偏移比较小,更易于算法分析。ISP手动曝光的背景压抑比较好,可根据曝光时间控制激光线亮度,目标和背景对比度高,图像分析更方便,精度更高,支持黑白相机和彩色相机。ISP手动曝光适应于室内弱光场景,如图3a所示,为室内手动曝光并经过ISP处理后的激光图像。ISP手动曝光对室外环境光和反光干扰比较敏感,容易过曝,如图3e所示, 为阳光下手动曝光并经过ISP处理后的激光图像。因此,ISP手动曝光适应场景为室内、地下车库、车间、车库等弱光场景。
2.ISP自动曝光的抓图方式:ISP自动曝光在室外弱光场景下的背景压抑比较好,图像比较清晰,能够自动压抑环境光对图像的影响,如图3b所示,为室外弱光自动曝光并经过ISP处理后的激光图像。但是,ISP自动曝光的激光线提取难度相比ISP手动曝光有所增加,需算法对激光线特征进行增强;对阳光和反光干扰比较敏感,易受干扰,如图3c所示,为室外强光自动曝光并经过ISP处理后的激光图像;仅支持彩色相机。因此,ISP自动曝光适应场景为室外弱光、阴天、大厅、阴影等场景。
3.从相机抓取原始图像的抓图方式:从相机抓取原始图像通常比较毛躁,暗斑噪点较多,但更能体现真实的场景,与目视观察结果接近,对阳光、环境强光抗干扰能力强,适应性更强。如图3d所示,为室外阳光下进行激光分离后保留绿色激光的激光图像。此外,原始图像的激光线波动比较大,仅支持彩色相机。因此,其适应场景为具有阳光或者其他环境强光的场景。
因此,不同抓图方式获取的激光图像各自与不同的当前应用环境的亮度相匹配,例如手动曝光的抓图方式获取的激光图像与弱光场景(第三亮度)相匹配,自动曝光的抓图方式获取的激光图像与中等亮度场景(第二亮度)相匹配,原始图像与强光场景(第一亮度)相匹配。
在一些实施例中,若激光测量设备当前应用环境的亮度与第一激光图像相匹配,则可以直接采用第一激光图像进行激光图案的提取。若激光测量设备当前应用环境的亮度与第一激光图像不匹配,则需要进一步处理,抓取其他图像进行激光图案的提取。
步骤180:若判断的结果为否,获取与激光测量设备当前应用环境的亮度相匹配的第二激光图像。
本步骤根据在步骤160的判断结果为否时,进一步获取第二激光图像,其中,第二激光图像是适于在当前应用环境的亮度下提取激光图案的图像。进一步的,第二激光图像与当前应用环境的亮度相关。由于不同场景和抓图方式抓取的图像效果差异非常大,算法也需要根据不同的场景选择不同的抓图方式。弱光场景下(第三亮度),宜采用手动曝光方式获取激光图像,有利于后续激光线的提取;中等亮度场景下(第二亮度),宜采用自动曝光方式获取激光图像,有利于后续激光线的提取;强光场景下(第一亮度),宜采用原始图像,有利于后续激光线的提取。
在一些实施例中,若激光测量设备当前应用环境的亮度为第一亮度,获取第一激光图像的原始图像,将原始图像确定为第二激光图像。也即,在具有阳光或者其他环境强光的场景下,绕开ISP对图像的优化处理,直接从相机抓取原始图像,原始图像为与激光测量设备当前应用环境的亮度相匹配的图像,这样可提高激光线坐标提取的成功概率。
对于室外弱光场景,使用手动曝光抓取的激光图像经常出现图像过曝,如 图3e所示。因此本发明实施例改为采用自动曝光抓取激光图像,自动曝光的目标平均亮度提前测定。平均亮度法是对图像所有像素亮度求平均值,通过不断调整曝光参数最终达到目标亮度。因此,在一些实施例中,若激光测量设备当前应用环境的亮度为第二亮度,获取通过自动曝光拍摄的激光图像,将通过自动曝光拍摄的激光图像确定为第二激光图像,其中,通过自动曝光拍摄的激光图像的图像内容和第一激光图像是相同的,也包含激光图案。也即,在室外弱光、阴天、大厅、阴影等场景下,采用自动曝光方式,可提高激光线的像素坐标提取成功的概率。
此外,若激光测量设备当前应用环境的亮度为第三亮度,则步骤160判断的结果为是,说明激光测量设备当前应用环境的亮度与第一激光图像相匹配,则直接从第一激光图像中提取激光图案。也即,在室内、地下车库、车间、车库等弱光场景下,直接采用手动曝光方式拍摄的第一激光图像,通过预先测定的曝光时间,控制激光线的成像质量。
通过以上几种方式的复合应用,自动判别应用场景,自动切换抓图方式,可以实现各场景下的激光线准确提取,解决室内室外不同场景的应用需求。
关于强光场景:
在具有阳光或者其他环境强光的场景下,从相机取原始图像进行激光线提取计算。相机中的原图,一般是8/10/12位的数据,为RGGB/GRBG/BGGR等输出格式,不能直接进行算法运算,需要转换到BGR格式的图像。根据激光器选定的波长特征,确定采用B/G/R分量中的某个分量进行计算,可以提高激光线的像素坐标提取的成功概率。因此,当激光测量设备当前应用环境的亮度为第一亮度时,步骤180进一步包括:
步骤181a:若激光测量设备当前应用环境的亮度为第一亮度,获取第一激光图像的原始图像;
步骤182a:将原始图像转换为BGR格式图像;
步骤183a:从B、G、R三个分量中选择一个分量,根据选择的分量对BGR格式图像进行分离,得到分离后的图像,其中,分离后的图像仅包括选择的分量;
本实施例中,采用520nm波段的绿色激光,选用G分量更能突出激光线在图像中的特征,如图3d所示,可以提高激光线的像素坐标提取的成功概率。当然,还可以采用非520nm波段的绿色激光,例如根据相机的感光特性,可以采用650nm的红色激光或者460nm的绿色激光。
步骤184a:将分离后的图像确定为第二激光图像。
关于中等亮度场景:
在室外弱光、阴天、大厅、阴影等场景下,如图3b所示,激光线在图像中亮度特征比背景的亮度特征差异比较小,不经过图像处理直接进行激光线提取可能失败率较高。对于该场景下采集的激光图像,可采用自动曝光方式,同时通过图像增强,提高激光线坐标提取成功的概率。因此,在一些实施例中, 当激光测量设备当前应用环境的亮度为时,步骤180进一步包括:
步骤181b:若激光测量设备当前应用环境的亮度为第二亮度,获取通过自动曝光拍摄的激光图像;
步骤182b:增强通过自动曝光拍摄的激光图像中激光图案与激光图像的背景部分亮度差异,得到增强处理后的激光图像;
例如,可采用伽马(Gamma)变换方法增强通过自动曝光拍摄的激光图像中激光图案的亮度,抑制通过自动曝光拍摄的激光图像中除激光图案以外的背景图像的亮度。
具体的,若通过自动曝光拍摄的激光图像为彩色图像,可通过公式1和公式2对通过自动曝光拍摄的激光图像进行激光图案特征增强处理:
v=pow(g*max/255,5)/div+λ·v 1  公式1
v 1=g-a,div=pow(k,4)   公式2
其中,v表示变化过后的灰度图像亮度,g表示激光图像的g分量,max为经验值,一般可取180≤max≤220,a表示将激光图像转换获得的黑白图像,pow为幂函数,k和λ为计算因子,根据实际情况确定,一般可取k≥180,λ≥3。图4a和图4b给出了经过Gamma公式1和公式2变换前后的图像,其中图4a为自动曝光抓取的灰度图像,图4b为经过Gamma变换后的图像,可以看出激光线部分和背景部分对比度显著增强。
当然,还可以采用其他方法增强通过自动曝光拍摄的激光图像中激光图案与激光图像的背景部分亮度差异,例如直方图均衡化(Histogram Equalization)、拉普拉斯(Laplace)变换、限制对比度自适应直方图均衡(Contrast Limited Adaptive Histogram Equalization,CLAHE)法、Retinex算法等。
步骤183b:将增强处理后的激光图像确定为第二激光图像。
步骤200:从第二激光图像中提取激光图案。
通过上述方式,确定了适用于各场景的第二激光图像后,从第二激光图像中进行激光线的提取。
本发明实施例通过识别激光测量设备当前应用环境的亮度,判断该亮度与抓取的图像是否相匹配,若不匹配则进一步获取与该亮度相匹配的激光图像,从而根据当前应用环境的亮度切换抓取的激光图像,不同的亮度抓取不同的适合于该亮度的激光图像,并用于激光图案提取,提高了不同亮度下激光图案提取的准确性,解决了室内室外各种场景的应用需求。
图5示出了本发明实施例提供的激光图案提取装置的结构示意图。如图5所示,该装置300包括:获取模块310、识别模块320、确定模块330和提取模块340。其中:
第一获取模块310,用于获取包含所述激光图案的第一激光图像;
识别模块320,用于根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度;
判断模块330,用于判断所述激光测量设备当前应用环境的亮度与所述第一激光图像是否相匹配;
第二获取模块340,用于若判断的结果为否,获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像;
提取模块350,用于从所述第二激光图像中提取所述激光图案。
在一种可选的方式中,所述第一激光图像为ISP固定曝光方式拍摄的图像。
在一种可选的方式中,所述激光图案为激光线。
在一种可选的方式中,所述识别模块320还用于:
分析所述第一激光图像的亮度特征;
根据所述亮度特征统计所述第一激光图像的平均亮度;
根据所述平均亮度确定所述激光测量设备当前应用环境的亮度。
在一种可选的方式中,所述识别模块320还用于:
根据所述第一激光图像的灰度直方图,分析所述灰度直方图中不同亮度的分布特征;
根据所述不同亮度的分布特征识别所述第一激光图像包括的亮度信息,将所述第一激光图像包括的亮度信息确定为所述激光测量设备当前应用环境的亮度。
在一种可选的方式中,若所述第一激光图像为彩色图像,所述识别模块320还用于:
将所述彩色图像转换为灰度图像。
在一种可选的方式中,所述第二获取模块340还用于:
若所述激光测量设备当前应用环境的亮度为第一亮度,获取所述第一激光图像的原始图像,将所述原始图像确定为所述第二激光图像。
在一种可选的方式中,所述第二获取模块340还用于:
获取所述第一激光图像的原始图像;
将所述原始图像转换为BGR格式图像;
从B、G、R三个分量中选择一个分量,根据选择的所述分量对所述BGR格式图像进行分离,得到分离后的图像,其中,所述分离后的图像仅包括选择的所述分量;
将所述分离后的图像确定为所述第二激光图像。
在一种可选的方式中,所述第二获取模块340还用于:
若所述激光测量设备当前应用环境的亮度为第二亮度,获取通过自动曝光拍摄的激光图像,将通过自动曝光拍摄的所述激光图像确定为所述第二激光图像,其中,通过自动曝光拍摄的所述激光图像包含所述激光图案。
在一种可选的方式中,所述第二获取模块340还用于:
获取通过自动曝光拍摄的激光图像;
增强通过自动曝光拍摄的所述激光图像中所述激光图案与所述激光图像中的背景部分亮度差异,得到增强处理后的所述激光图像;
将增强处理后的所述激光图像确定为所述第二激光图像。
在一种可选的方式中,所述第二获取模块340还用于:
采用伽马变换方法增强通过自动曝光拍摄的所述激光图像中所述激光图案的亮度,抑制通过自动曝光拍摄的所述激光图像中除所述激光图案以外的背景图像的亮度。
在一种可选的方式中,若通过自动曝光拍摄的所述激光图像为彩色图像,所述第二获取模块340还用于:
通过公式1和公式2对通过自动曝光拍摄的所述激光图像进行激光图案特征增强处理:
v=pow(g*max/255,5)/div+λ·v 1  公式1
v 1=g-a,div=pow(k,4)   公式2
其中,v表示变化过后的灰度图像亮度,g表示所述激光图像的g分量,max为经验值,a表示将所述激光图像转换获得的黑白图像,pow为幂函数,k和λ为计算因子。
在一种可选的方式中,所述提取模块350还用于:若判断的结果为是,从所述第一激光图像中提取所述激光图案。
本发明实施例通过识别激光测量设备当前应用环境的亮度,判断该亮度与抓取的图像是否相匹配,若不匹配则进一步获取与该亮度相匹配的激光图像,从而根据当前应用环境的亮度切换抓取的激光图像,不同的亮度抓取不同的适合于该亮度的激光图像,并用于激光图案提取,提高了不同亮度下激光图案提取的准确性,解决了室内室外各种场景的应用需求。
图6示出了本发明实施例提供的激光测量设备的结构示意图,本发明具体实施例并不对激光测量设备的具体实现做限定,该设备可以是单目激光测量系统的主机系统。
如图6所示,该激光测量设备可以包括:处理器(processor)402、通信接口(Communications Interface)404、存储器(memory)406、以及通信总线408。
其中:处理器402、通信接口404、以及存储器406通过通信总线408完成相互间的通信。通信接口404,用于与其它设备比如客户端或其它服务器等的网元通信。处理器402,用于执行程序410,具体可以执行上述激光图案提取方法实施例中的相关步骤。
具体地,程序410可以包括程序代码,该程序代码包括计算机可执行指令。
处理器402可能是中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。激光测量设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。
存储器406,用于存放程序410。存储器406可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
本发明实施例通过识别激光测量设备当前应用环境的亮度,判断该亮度与抓取的图像是否相匹配,若不匹配则进一步获取与该亮度相匹配的激光图像,从而根据当前应用环境的亮度切换抓取的激光图像,不同的亮度抓取不同的适合于该亮度的激光图像,并用于激光图案提取,提高了不同亮度下激光图案提取的准确性,解决了室内室外各种场景的应用需求。
图7示出了本发明实施例提供的激光测量系统的结构示意图。如图7所示,该系统500包括:激光器510、相机520和主机系统530。
所述激光器510用于向目标发射出射激光;
所述相机520用于拍摄激光图像,其中,所述激光图像包括所述出射激光入射至所述目标形成的激光图案;
所述主机系统530用于执行如上所述的激光图案提取方法的操作,以及进行测量计算。当然,主机系统530还可以控制激光器510和相机520工作,例如控制激光器510向目标发射出射激光,以及控制相机520拍摄激光图像。
当然,激光测量系统500还可以包括显示系统、存储系统和电源系统等其他部件,本实施例不再详述。
本发明实施例通过识别激光测量设备当前应用环境的亮度,判断该亮度与抓取的图像是否相匹配,若不匹配则进一步获取与该亮度相匹配的激光图像,从而根据当前应用环境的亮度切换抓取的激光图像,不同的亮度抓取不同的适合于该亮度的激光图像,并用于激光图案提取,提高了不同亮度下激光图案提取的准确性,解决了室内室外各种场景的应用需求。
本发明实施例提供了一种计算机可读存储介质,所述存储介质存储有至少一可执行指令,该可执行指令在激光测量设备/激光图案提取装置上运行时,使得所述激光测量设备/激光图案提取装置执行上述任意方法实施例中的激光图案提取方法。
本发明实施例提供一种激光图案提取装置,用于执行上述激光图案提取方法。
本发明实施例提供了一种计算机程序,所述计算机程序可被处理器调用使激光测量设备执行上述任意方法实施例中的激光图案提取方法。
本发明实施例提供了一种计算机程序产品,计算机程序产品包括存储在计 算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令在计算机上运行时,使得所述计算机执行上述任意方法实施例中的激光图案提取方法。
在此提供的算法或显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明实施例也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明实施例的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。
本领域技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。上述实施例中的步骤,除有特殊说明外,不应理解为对执行顺序的限定。

Claims (17)

  1. 一种激光图案提取方法,其特征在于,应用于激光测量设备,所述方法包括:
    获取包含所述激光图案的第一激光图像;
    根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度;
    判断所述激光测量设备当前应用环境的亮度与所述第一激光图像是否相匹配;
    若判断的结果为否,获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像;
    从所述第二激光图像中提取所述激光图案。
  2. 根据权利要求1所述的方法,其特征在于,所述第一激光图像为ISP固定曝光方式拍摄的图像。
  3. 根据权利要求1所述的方法,其特征在于,所述激光图案为激光线。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度,包括:
    分析所述第一激光图像的亮度特征;
    根据所述亮度特征统计所述第一激光图像的平均亮度;
    根据所述平均亮度确定所述激光测量设备当前应用环境的亮度。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度,包括:
    根据所述第一激光图像的灰度直方图,分析所述灰度直方图中不同亮度的分布特征;
    根据所述不同亮度的分布特征识别所述第一激光图像包括的亮度信息,将所述第一激光图像包括的亮度信息确定为所述激光测量设备当前应用环境的亮度。
  6. 根据权利要求4或5所述的方法,其特征在于,若所述第一激光图像为彩色图像,所述根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度,包括:
    将所述彩色图像转换为灰度图像。
  7. 根据权利要求1,4-5任一项所述的方法,其特征在于,
    所述获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像,包括:
    若所述激光测量设备当前应用环境的亮度为第一亮度,获取所述第一激光图像的原始图像,将所述原始图像确定为所述第二激光图像。
  8. 根据权利要求7所述的方法,其特征在于,所述获取所述第一激光图像的原始图像,将所述原始图像确定为所述第二激光图像,包括:
    获取所述第一激光图像的原始图像;
    将所述原始图像转换为BGR格式图像;
    从B、G、R三个分量中选择一个分量,根据选择的所述分量对所述BGR格式图像进行分离,得到分离后的图像,其中,所述分离后的图像仅包括选择的所述分量;
    将所述分离后的图像确定为所述第二激光图像。
  9. 根据权利要求1,4-5任一项所述的方法,其特征在于,
    所述获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像,包括:
    若所述激光测量设备当前应用环境的亮度为第二亮度,获取通过自动曝光拍摄的激光图像,将通过自动曝光拍摄的所述激光图像确定为所述第二激光图像,其中,通过自动曝光拍摄的所述激光图像包含所述激光图案。
  10. 根据权利要求9所述的方法,其特征在于,
    所述获取通过自动曝光拍摄的激光图像,将所述通过自动曝光拍摄的激光图像确定为所述第二激光图像,包括:
    获取通过自动曝光拍摄的激光图像;
    增强通过自动曝光拍摄的所述激光图像中所述激光图案与所述激光图像中的背景部分亮度差异,得到增强处理后的所述激光图像;
    将增强处理后的所述激光图像确定为所述第二激光图像。
  11. 根据权利要求10所述的方法,其特征在于,所述增强通过自动曝光拍摄的所述激光图像中所述激光图案与所述激光图像中的背景部分亮度差异,包括:
    采用伽马变换方法增强通过自动曝光拍摄的所述激光图像中所述激光图案的亮度,抑制通过自动曝光拍摄的所述激光图像中除所述激光图案以外的背景图像的亮度。
  12. 根据权利要求10所述的方法,其特征在于,若通过自动曝光拍摄的所述激光图像为彩色图像,所述增强通过自动曝光拍摄的所述激光图像中所述激光图案与所述激光图像中的背景部分亮度差异,包括:
    通过公式1和公式2对通过自动曝光拍摄的所述激光图像进行激光图案特征增强处理:
    v=pow(g*max/255,5)/div+λ·v 1  公式1
    v 1=g-a,div=pow(k,4)  公式2
    其中,v表示变化过后的灰度图像亮度,g表示所述激光图像的g分量,max为经验值,a表示将所述激光图像转换获得的黑白图像,pow为幂函数,k和λ为计算因子。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若判断的结果为是,从所述第一激光图像中提取所述激光图案。
  14. 一种激光图案提取装置,其特征在于,应用于激光测量设备,所述装置包括:
    第一获取模块,用于获取包含所述激光图案的第一激光图像;
    识别模块,用于根据所述第一激光图像识别所述激光测量设备当前应用环境的亮度;
    判断模块,用于判断所述激光测量设备当前应用环境的亮度与所述第一激光图像是否相匹配;
    第二获取模块,用于若判断的结果为否,获取与所述激光测量设备当前应用环境的亮度相匹配的第二激光图像;
    提取模块,用于从所述第二激光图像中提取所述激光图案。
  15. 一种激光测量设备,其特征在于,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;
    所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如权利要求1-13任意一项所述的激光图案提取方法的操作。
  16. 一种激光测量系统,其特征在于,包括:激光器、相机和主机系统;
    所述激光器用于向目标发射出射激光;
    所述相机用于拍摄激光图像,其中,所述激光图像包括所述出射激光入射至所述目标形成的激光图案;
    所述主机系统用于执行如权利要求1-13任意一项所述的激光图案提取方法的操作,以及进行测量计算。
  17. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一可执行指令,所述可执行指令在激光测量设备上运行时,使得所述激光测量设备执行如权利要求1-13任意一项所述的激光图案提取方法的操作。
PCT/CN2021/126225 2020-10-29 2021-10-26 激光图案提取方法、装置、激光测量设备和系统 WO2022089386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011182180.1 2020-10-29
CN202011182180.1A CN112361990B (zh) 2020-10-29 2020-10-29 激光图案提取方法、装置、激光测量设备和系统

Publications (1)

Publication Number Publication Date
WO2022089386A1 true WO2022089386A1 (zh) 2022-05-05

Family

ID=74512956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126225 WO2022089386A1 (zh) 2020-10-29 2021-10-26 激光图案提取方法、装置、激光测量设备和系统

Country Status (2)

Country Link
CN (1) CN112361990B (zh)
WO (1) WO2022089386A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361990B (zh) * 2020-10-29 2022-06-28 深圳市道通科技股份有限公司 激光图案提取方法、装置、激光测量设备和系统
CN113888448B (zh) * 2021-12-08 2022-02-22 深圳市先地图像科技有限公司 一种激光成像用的图像分区域处理方法、系统及相关设备
CN114001671B (zh) * 2021-12-31 2022-04-08 杭州思看科技有限公司 激光数据提取方法、数据处理方法、和三维扫描系统
CN118714272A (zh) * 2022-03-17 2024-09-27 青岛海信激光显示股份有限公司 激光投影设备及其显示方法
CN117956265A (zh) * 2024-03-27 2024-04-30 莱森光学(深圳)有限公司 用于激光光束近场检测的相机智能控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222725A (zh) * 2015-09-24 2016-01-06 大连理工大学 一种基于光谱分析的高清图像动态采集方法
CN108401457A (zh) * 2017-08-25 2018-08-14 深圳市大疆创新科技有限公司 一种曝光的控制方法、装置以及无人机
CN108683861A (zh) * 2018-08-06 2018-10-19 Oppo广东移动通信有限公司 拍摄曝光控制方法、装置、成像设备和电子设备
CN110475078A (zh) * 2019-09-03 2019-11-19 河北科技大学 摄像机曝光时间调整方法及终端设备
CN112361990A (zh) * 2020-10-29 2021-02-12 深圳市道通科技股份有限公司 激光图案提取方法、装置、激光测量设备和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950251B1 (ko) * 2007-10-25 2010-03-31 삼성중공업 주식회사 레이저 비전의 레이저 패턴 추출 방법
JP2012058076A (ja) * 2010-09-09 2012-03-22 3D Media Co Ltd 3次元計測装置及び3次元計測方法
CN103940369A (zh) * 2014-04-09 2014-07-23 大连理工大学 多激光协同扫描形貌快速视觉测量方法
CN108683862B (zh) * 2018-08-13 2020-01-10 Oppo广东移动通信有限公司 成像控制方法、装置、电子设备及计算机可读存储介质
CN109474791A (zh) * 2018-11-20 2019-03-15 深圳市趣创科技有限公司 相机拍摄图像控制曝光方法、装置、终端及存储介质
CN110505402B (zh) * 2019-08-19 2021-03-23 Oppo广东移动通信有限公司 控制方法、深度相机和电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222725A (zh) * 2015-09-24 2016-01-06 大连理工大学 一种基于光谱分析的高清图像动态采集方法
CN108401457A (zh) * 2017-08-25 2018-08-14 深圳市大疆创新科技有限公司 一种曝光的控制方法、装置以及无人机
CN108683861A (zh) * 2018-08-06 2018-10-19 Oppo广东移动通信有限公司 拍摄曝光控制方法、装置、成像设备和电子设备
CN110475078A (zh) * 2019-09-03 2019-11-19 河北科技大学 摄像机曝光时间调整方法及终端设备
CN112361990A (zh) * 2020-10-29 2021-02-12 深圳市道通科技股份有限公司 激光图案提取方法、装置、激光测量设备和系统

Also Published As

Publication number Publication date
CN112361990B (zh) 2022-06-28
CN112361990A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2022089386A1 (zh) 激光图案提取方法、装置、激光测量设备和系统
JP7027537B2 (ja) 画像処理方法および装置、電子機器、ならびにコンピュータ可読記憶媒体
US10997696B2 (en) Image processing method, apparatus and device
US11457138B2 (en) Method and device for image processing, method for training object detection model
WO2019105262A1 (zh) 背景虚化处理方法、装置及设备
US10620005B2 (en) Building height calculation method, device, and storage medium
JP6312714B2 (ja) 陰影検出および減衰のためのマルチスペクトル撮像システム
WO2019011147A1 (zh) 逆光场景的人脸区域处理方法和装置
WO2018049849A1 (zh) 分光融合的图像采集设备
US10999519B2 (en) Target tracking method and device, movable platform, and storage medium
WO2015184978A1 (zh) 摄像机控制方法、装置及摄像机
WO2019105254A1 (zh) 背景虚化处理方法、装置及设备
CN110047059B (zh) 图像处理方法、装置、电子设备及可读存储介质
CN109712177A (zh) 图像处理方法、装置、电子设备和计算机可读存储介质
WO2019011110A1 (zh) 逆光场景的人脸区域处理方法和装置
CN108289170B (zh) 能够检测计量区域的拍照装置、方法及计算机可读介质
WO2022036539A1 (zh) 一种多相机色彩一致性校正方法和装置
EP4297395A1 (en) Photographing exposure method and apparatus for self-walking device
JP2021044710A (ja) 画像処理装置、画像処理方法、およびプログラム
US20240022702A1 (en) Foldable electronic device for multi-view image capture
CN116843690B (zh) 图像质量评估方法、设备及系统
WO2020179276A1 (ja) 画像処理装置、および画像処理方法、並びにプログラム
CN106878604B (zh) 一种基于电子设备的图像生成的方法和电子设备
CN108629329B (zh) 图像处理方法和装置、电子设备、计算机可读存储介质
JP7321772B2 (ja) 画像処理装置、画像処理方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885113

Country of ref document: EP

Kind code of ref document: A1