WO2022089304A1 - 自动发电控制方法和系统 - Google Patents

自动发电控制方法和系统 Download PDF

Info

Publication number
WO2022089304A1
WO2022089304A1 PCT/CN2021/125446 CN2021125446W WO2022089304A1 WO 2022089304 A1 WO2022089304 A1 WO 2022089304A1 CN 2021125446 W CN2021125446 W CN 2021125446W WO 2022089304 A1 WO2022089304 A1 WO 2022089304A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output power
station
target
new energy
Prior art date
Application number
PCT/CN2021/125446
Other languages
English (en)
French (fr)
Inventor
孙少华
杨林慧
李海龙
张广德
李宏波
方晨
杨兴
周尚虎
刘永胜
李智年
唐玉萍
Original Assignee
国家电网有限公司
国网青海省电力公司
国网青海省电力公司信息通信公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网有限公司, 国网青海省电力公司, 国网青海省电力公司信息通信公司 filed Critical 国家电网有限公司
Publication of WO2022089304A1 publication Critical patent/WO2022089304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand

Definitions

  • the present invention relates to the field of power grid control, in particular, to an automatic power generation control method and system.
  • control function of the self-gain control master station meets the control requirements of conventional thermal and hydropower stations, and can realize unified and coordinated control of various types of units for safety.
  • the DC feed into the receiving end grid presents the characteristics of "the proportion of DC power receiving increases and the rotational inertia of the system decreases", resulting in a decrease in the power grid regulation ability.
  • the high power shortage caused by permanent faults such as DC blocking will cause the frequency stability of the receiving end power grid, which directly restricts the steady-state maximum power transmission capacity of AC and DC power transmission projects, and affects the ability of new energy power generation to send out.
  • the embodiments of the present invention provide an automatic power generation control method and system, so as to at least solve the technical problem that the self-gain control method in the related art has poor UHVDC transmission capability.
  • an automatic power generation control method including: constructing a target control area, wherein the target control area includes: a thermal power unit and a new energy station; obtaining a first planned output power of the thermal power unit and The first actual output power, and the second planned output power and the second actual output power of the new energy station; based on the first planned output power, the first actual output power, the second planned output power, and the second actual output power, for The thermal power unit performs automatic power generation control.
  • obtaining the first planned output power of the thermal power unit and the second planned output power of the new energy station includes: obtaining a DC power transmission plan, and short-term power prediction data and ultra-short-term power prediction data of the new energy station; The DC power transmission plan and short-term power forecast data are used to obtain the predicted output power of the thermal power unit; based on the ultra-short-term power forecast data and the predicted output power of the thermal power unit, the first planned output power and the second planned output power are generated.
  • performing automatic power generation control on the thermal power unit includes: based on the first planned output power, the first actual output power , the second planned output power and the second actual output power, determine the regional control deviation; obtain the comparison result between the transmission power of the interconnected transformer and the first preset limit; based on the regional control deviation and the comparison result, perform automatic power generation control on the thermal power unit.
  • determining the regional control deviation includes: acquiring a third planned output power and a third actual output power of the target DC , wherein the target DC corresponds to the target control area; based on the first planned output power, the second planned output power and the third planned output power, the fourth planned output power of the external tie line of the target control area is determined; based on the first actual output power power, the second actual output power and the third actual output power, determine the fourth actual output power of the external tie line of the target control area; obtain the difference between the fourth actual output power and the fourth planned output power to obtain the regional control deviation.
  • performing automatic power generation control on the thermal power unit includes: determining an allocation strategy for the regional control deviation based on the comparison result; allocating the regional control deviation based on the allocation strategy, and determining a first adjustment amount; The first adjustment amount adjusts the actual output power of the thermal power unit.
  • determining the allocation strategy of the regional control deviation includes: in the case that the comparison result is that the transmission power of the interconnected transformer is less than the first preset limit, determining that the allocation strategy is the first allocation strategy; When the difference between the transmission power and the first preset limit is within the preset area, it is determined that the distribution strategy is the second distribution strategy, wherein the first adjustment amount is used to control the increase in the actual output power of the thermal power unit; when the comparison result is In the case that the transmission power of the interconnected transformer is greater than the difference of the first preset limit, it is determined that the allocation strategy is the third allocation strategy.
  • the method before adjusting the actual output power of the thermal power unit based on the first adjustment amount, the method further includes: determining the adjustment range of the thermal power unit based on the first planned output power; judging whether the first adjustment amount is within the adjustment range; if If the first adjustment amount is within the adjustment range, then the actual output power of the thermal power unit is adjusted based on the first adjustment amount; if the first adjustment amount is not within the adjustment range, then the second adjustment amount within the adjustment range is determined based on the first adjustment amount , and adjust the actual output power of the thermal power unit based on the second adjustment amount.
  • the method further includes: performing data filtering and dynamic dead-band filtering on the regional control deviation to obtain the filtered regional control deviation; After the regional control deviation and comparison results, automatic power generation control is performed on the thermal power unit.
  • the method further includes: comparing the first planned output power and the first First-order filtering is performed on the actual output power to obtain the filtered first planned output power and the filtered first actual output power; median filtering is performed on the second planned output power and the second actual output power to obtain the filtered second output power.
  • the planned output power and the filtered second actual output power based on the filtered first planned output power, the filtered first actual output power, the filtered second planned output power and the filtered second actual output power, Determine the regional control deviation.
  • the method further includes: obtaining the target section at a preset value.
  • the first verification result of the target section is obtained; based on the first verification result, the target output power of the new energy station is determined; and the target output power is sent to the new energy station.
  • determining the target output power of the new energy station includes: in the case that the first verification result is that the total transaction power exceeds the second preset limit, determining the transaction power of the new energy station. Perform a downward adjustment to obtain the target output power; in the case where the first verification result is that the total transaction power does not exceed the second preset limit, obtain the difference between the total output power of the target section and the total transaction power, according to the first preset ratio The difference is processed to obtain the target power corresponding to the new energy station, and based on the target power, the target output power is obtained.
  • obtaining the target output power includes: judging whether the new energy station is the target station; if the new energy station is the target station, determining the target output power as the transaction power and the target of the new energy station. Sum of electric power; if the new energy station is not the target station, determine the target output power as the target electric power.
  • the method before sending the target output power to the new energy station, the method further includes: determining the current state to which the target section belongs; and when the current state is normal, sending the target output power or the first output power to the new energy source.
  • the station wherein the first output power is greater than the target output power; in the case of jumping in the current state, the target output power is sent to the new energy station; in the case of the current state being suspended, it is forbidden to send the target output power to the new energy station.
  • the method further includes: acquiring the total spot power of the target section, where the total spot power is all stations under the target section. The total spot power is compared with the third preset limit to obtain the second verification result of the target section; based on the second verification result, the target output power is determined.
  • determining the target output power includes: in the case that the second verification result is that the total spot power exceeds the third preset limit, reducing the spot power of the new energy station to obtain the target power. Output power; when the second verification result is that the total spot power does not exceed the third preset limit, obtain the difference between the total output power of the target section and the total spot power, and process the difference according to the second preset ratio , obtain the apportioned power corresponding to the new energy station, and obtain the target output power based on the apportioned power.
  • obtaining the target output power based on the apportioned power includes: judging whether the new energy station is the target station; if the new energy station is the target station, determining the target output power as the new energy station in a preset time period. If the new energy station is not the target station, the target output power is determined as the shared power.
  • the method further includes: acquiring a corresponding new energy field station. If there is a power limitation in the new energy station, the charging power of the energy storage station is determined based on the limited power of the new energy station.
  • determining the charging power of the energy storage power station based on the limited power of the new energy field station includes: in the case that the new energy field station and the energy storage power station are in a one-to-one relationship, determining that the charging power is limited power; In the case of a many-to-one relationship between the new energy station and the energy storage station, the total restricted power of the energy storage station is obtained, and based on the capacity of the new energy station, the charging power is determined as the target restricted power in the total restricted power , where the total limited power is the sum of the limited power of multiple new energy stations corresponding to the energy storage power station.
  • the charging power of the energy storage power station is adjusted based on the adjustment rate of the new energy power station.
  • the method further includes: judging whether there is an upward adjustment demand in the power grid; if there is an upward adjustment demand in the power grid, determining each energy storage power station in the plurality of energy storage power stations based on the upward adjustment demand. determine whether the maximum discharge power of multiple energy storage power stations meets the upward adjustment requirement; if the maximum discharge power does not meet the upward adjustment requirement, obtain the difference between the upward adjustment requirement and the maximum discharge power to obtain the remaining adjustment requirement; control the thermal power based on the remaining adjustment requirement The actual output power of the unit increases.
  • the method after carrying out automatic power generation control to the thermal power unit based on the first planned output power, the first actual output power, the second planned output power and the second actual output power, the method also includes: judging the thermal power unit and the new energy source. Whether the load rate of the station is within the preset load range; if the load rate is within the preset load range, automatic power generation control is performed on the thermal power unit according to the preset adjustment amount distribution mode.
  • an automatic power generation control system including: a thermal power unit and a new energy field station, located in the constructed target control area; a control master station, connected with the thermal power unit and the new energy field The station is used to perform automatic power generation control on the thermal power unit based on the first planned output power and the first actual output power of the thermal power unit, and the second planned output power and the second actual output power of the new energy station.
  • a computer-readable storage medium is also provided, where the computer-readable storage medium includes a stored program, wherein, when the program runs, the device where the computer-readable storage medium is located is controlled to perform the above automatic power generation Control Method.
  • a processor is also provided, and the processor is used for running a program, wherein the above-mentioned automatic power generation control method is executed when the program is running.
  • the The thermal power unit performs automatic power generation control to achieve the purpose of coordinated control of wind-solar-fire bundling.
  • the level of intelligent dispatching automation improve the new energy consumption capacity, reduce the overall power generation cost of the power grid, reduce power grid fluctuations, and improve the power grid.
  • the technical effect of safety and stability is further solved, and the technical problem that the self-gain control method in the related art has poor UHVDC transmission capability.
  • FIG. 1 is a flowchart of an automatic power generation control method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an optional DC virtual control area according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of an optional automatic power generation control method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optional adjustment range of a planned bandwidth limiting mode unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the filtered effect of an optional different filtering algorithm according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of each link of an optional medium and long-term new energy transaction according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of an optional charging strategy of an energy storage power station according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of an optional discharge strategy of an energy storage power station according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of an optional thermal power deep peak shaving strategy according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an automatic power generation control system according to an embodiment of the present invention.
  • an automatic power generation control method is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and although the flowchart A logical order is shown in the figures, but in some cases steps shown or described may be performed in an order different from that herein.
  • FIG. 1 is a flowchart of an automatic power generation control method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • Step S102 constructing a target control area, wherein the target control area includes: a thermal power unit and a new energy field station.
  • the above-mentioned thermal power generating unit may be a thermal power generating unit, and the new energy station may include a wind power generating unit and a photovoltaic power generating unit, but is not limited thereto.
  • an independent virtual control area may be established for the DC supporting thermal power and supporting new energy sources, that is, the above-mentioned target control area, and a new DC virtual control area may be added according to the actual needs of the DC wind-solar-fired-fired bundled delivery. Control area control functions.
  • Step S104 acquiring the first planned output power and the first actual output power of the thermal power unit, and the second planned output power and the second actual output power of the new energy power station.
  • the intraday rolling power generation plan of the thermal power unit and the new energy power station may be determined based on the power generation plan model.
  • Step S106 based on the first planned output power, the first actual output power, the second planned output power and the second actual output power, perform automatic power generation control on the thermal power unit.
  • the wind-solar-fire bundling coordination control can be implemented based on the power generation plan and the actual output power, so as to ensure the safe and stable operation of the DC.
  • the The thermal power unit performs automatic power generation control to achieve the purpose of coordinated control of wind-solar-fire bundling.
  • the level of intelligent dispatching automation improve the new energy consumption capacity, reduce the overall power generation cost of the power grid, reduce power grid fluctuations, and improve the power grid.
  • the technical effect of safety and stability is further solved, and the technical problem that the self-gain control method in the related art has poor UHVDC transmission capability.
  • obtaining the first planned output power of the thermal power unit and the second planned output power of the new energy station includes: obtaining the DC power transmission plan and the short-term power prediction data of the new energy station. and ultra-short-term power prediction data; based on the DC power transmission plan and short-term power prediction data, the predicted output power of the thermal power unit is obtained; based on the ultra-short-term power prediction data and the predicted output power of the thermal power unit, the first planned output power and the second planned output power are generated Output Power.
  • the matching thermal power unit day-ahead plan (that is, the above-mentioned preset data) is obtained.
  • Set the output power and then according to the ultra-short-term power forecast data and the thermal power unit’s day-to-day plan, form the daily rolling plan of the thermal power unit and the new energy station (that is, the above-mentioned first planned output power and second planned output power).
  • AGC Automatic Generation Control, Automatic Generation Control
  • AGC calls the thermal power unit to eliminate the power deviation of the new energy station based on the daily rolling plan of the thermal power unit and the new energy station, as well as the actual output power of the new energy station.
  • the multi-time scale coordination between the rolling power generation plan and the AGC, the time sequence is progressive, and the coordinated control of wind-solar-fire bundling is realized.
  • performing automatic power generation control on the thermal power unit includes: based on the first planned output power.
  • the output power, the first actual output power, the second planned output power, and the second actual output power are determined, and the regional control deviation is determined; the comparison result between the transmission power of the interconnected transformer and the first preset limit is obtained; based on the regional control deviation and the comparison result, the The thermal power unit performs automatic power generation control.
  • the control objective of the DC virtual control area is to offset the fluctuation of the power output of the supporting wind power base by adjusting the power output of the thermal power unit, so as to ensure the safety and stability of the DC transmission channel. Therefore, the DC virtual control area can use the regional deviation control and safety constraint control to realize the wind-solar-fire bundling and delivery function.
  • the regional control deviation of the zone can be determined by the actual output power and the planned output power; the safety constraint control strategy can be determined by the comparison result between the transmission power of the connected transformer and the stable limit.
  • determining the regional control deviation includes: obtaining a third plan for the target DC The output power and the third actual output power, wherein the target DC corresponds to the target control area; based on the first planned output power, the second planned output power and the third planned output power, determine the fourth plan of the external connection line of the target control area output power; based on the first actual output power, the second actual output power and the third actual output power, determine the fourth actual output power of the external tie line of the target control area; obtain the difference between the fourth actual output power and the fourth planned output power value to get the regional control deviation.
  • I real ⁇ P Gi +P DC + ⁇ P i-wind (1)
  • P Gi is the first actual output power of the thermal power unit
  • P DC is the third actual output power of the target DC
  • P i-wind is the second actual output power of the new energy station
  • the fourth planned output power can be calculated using the following formula (2):
  • I schedule ⁇ I Gi-schedule +I DC-schedule + ⁇ I i-wind-schedule (2)
  • I Gi-schedule is the first planned output power of the thermal power unit
  • I DC-schedule is the third planned output power of the target DC
  • I i-wind-schedude is the second planned output power of the new energy station
  • the area control deviation ACE tz can be calculated using the following formula:
  • performing automatic power generation control on the thermal power unit includes: based on the comparison result, determining an allocation strategy for the regional control deviation; and assigning the regional control deviation based on the allocation strategy. , determine the first adjustment amount; adjust the actual output power of the thermal power unit based on the first adjustment amount.
  • determining the allocation strategy of the regional control deviation includes: in the case that the comparison result is that the transmission power of the interconnected transformer is less than the first preset limit, determining that the allocation strategy is the first allocation strategy; When the difference between the transmission power and the first preset limit is within the preset area, it is determined that the distribution strategy is the second distribution strategy, wherein the first adjustment amount is used to control the increase in the actual output power of the thermal power unit; when the comparison result is In the case that the transmission power of the interconnected transformer is greater than the difference of the first preset limit, it is determined that the allocation strategy is the third allocation strategy.
  • the above-mentioned first preset limit may be a rated limit corresponding to the transmission power of the connected transformer, and may be determined according to actual needs.
  • the first allocation strategy may be a strategy of adjusting the first actual output strategy of the supporting thermal power unit to track the fluctuation of the output power of the new energy power station.
  • the second allocation strategy may be a strategy that prohibits thermal power units from reducing output power but increasing output power.
  • the third allocation strategy may be an actual adjustment rate priority strategy.
  • the fluctuation of the second actual output power of the new energy power station is tracked by adjusting the first actual output power of the supporting thermal power unit;
  • the power is close to the stable limit, it is forbidden to further reduce the first actual output power of the supporting thermal power unit, but the direction of increasing the power is allowed;
  • the transmission power of the interconnected transformation exceeds the stable limit, the regional control deviation of the virtual control area is that the transmission power of the interconnected transformation exceeds the limit.
  • the distribution strategy of the control deviation can adopt the strategy of giving priority to the actual adjustment rate to increase the output power of the thermal power unit as soon as possible, eliminate the stability exceeding the limit, and ensure the safe operation of the connected transformer.
  • the method before adjusting the actual output power of the thermal power unit based on the first adjustment amount, the method further includes: determining the adjustment range of the thermal power unit based on the first planned output power; judging the first adjustment whether the first adjustment amount is within the adjustment range; if the first adjustment amount is within the adjustment range, then the actual output power of the thermal power unit is adjusted based on the first adjustment amount; if the first adjustment amount is not within the adjustment range, it is determined based on the first adjustment amount The second adjustment amount within the adjustment range is adjusted, and the actual output power of the thermal power unit is adjusted based on the second adjustment amount.
  • the unit deviates from the plan when the entire network ACE (Area Control Error, area control deviation) needs to be adjusted, and returns to the planned value when there is no need for adjustment, which will cause the unit to adjust back and forth. , if there are multiple units returning to the planned value at the same time, it may have a new impact on the control area.
  • ACE rea Control Error, area control deviation
  • the control mode of the thermal power unit in the DC virtual control area should adopt the planned bandwidth mode, which is a special automatic control mode.
  • the control target of the unit is still the control deviation of the area.
  • the adjustment range of the unit is dynamic, which is different from the adjustment range of the conventional automatic control mode, which is the rated adjustment range of the unit.
  • the adjustment range of the planned bandwidth mode is based on the power generation plan of the unit, and a certain bandwidth is expanded up and down. The bandwidth can be expanded as needed.
  • the planned value and the bandwidth form the planned value adjustment band, which is the real-time adjustment range of the planned bandwidth mode unit.
  • the adjustment range of the unit in the planned bandwidth mode changes with the change of the plan, as shown in Figure 4.
  • the unit can only adjust up and down within the range of the planned value adjustment band. Through the adjustment within this adjustment band, the unit can adjust the regional control deviation without deviating too far from the planned value. When the planned value of the unit is invalid, restore the inherent adjustment range of the unit.
  • the generation method of the adjustment band is as follows: assuming that the power generation plan is P b , the upper limit of the unit adjustment is P max , the lower limit of the unit adjustment is P min , the bandwidth is w, the upper limit of the adjustment band is B max , and the lower limit of the adjustment band is B min .
  • the adjustment band boundary is:
  • the group can freely adjust within this adjustment range without returning to the planned value after adjusting the ACE.
  • the method before the automatic power generation control is performed on the thermal power unit based on the regional control deviation and the comparison result, the method further includes: performing data filtering and dynamic dead-band filtering on the regional control deviation, to obtain a filter. Based on the filtered regional control deviation and the comparison result, automatic power generation control is performed on the thermal power unit.
  • the AGC in the DC control area periodically obtains the total output power of the thermal power unit, the new energy station, and the actual output power of the DC transmission tie line.
  • Different filtering strategies can be used, among which, data filtering (ACE filtering as shown in Figure 3) and dynamic dead zone filtering are performed on the regional control deviation to obtain the final control adjustment amount, which is obtained through the allocation strategy to obtain each thermal power unit.
  • the control target (the unit target output power shown in Figure 3) is sent to the thermal power plant for control.
  • the method before determining the regional control deviation based on the first planned output power, the first actual output power, the second planned output power, and the second actual output power, the method further includes: Perform first-order filtering on the first planned output power and the first actual output power to obtain the filtered first planned output power and the filtered first actual output power; perform a median value on the second planned output power and the second actual output power filtering to obtain the filtered second planned output power and the filtered second actual output power; based on the filtered first planned output power, the filtered first actual output power, the filtered second planned output power and the filtered After the second actual output power, the regional control deviation is determined.
  • the DC measurement data is generally considered to be stable, and the filtering method may not be used (the measurement data filtering shown in FIG. 3 ); the output power fluctuation of the thermal power unit is small.
  • the first-order filtering method can be used to meet the control requirements; the output power of the new energy station fluctuates greatly, and the median filtering method can be used, the filtering depth is deep, and the high-frequency components are filtered out. Then subtract the corresponding power generation plan from the filtered value to obtain the regional control deviation of the virtual control area.
  • the filtering methods mainly include: The user can select the filtering depth as required, and the filtering effect will also change according to the different filtering depths. The higher the filtering depth, the better the filtering effect. However, the increase of the filtering depth will cause the increase of the filtering delay.
  • Conventional digital filtering methods include: first-order filtering, second-order filtering, and median filtering.
  • the first-order low-pass filtering algorithm is generally expressed by a first-order linear differential equation:
  • the transfer function of a second-order low-pass filter is defined as:
  • Median filtering is a nonlinear smoothing technique.
  • the basic principle is to replace the value of a point in the digital sequence with the median value of each point value in a neighborhood of the point, so that the surrounding values are close to the true value, thereby eliminating isolated values. noise point.
  • the method further Including: obtaining the total transaction power of the target section in the preset time period, wherein the new energy station is located under the target section, and the total transaction power is the sum of the transaction power of all stations under the target section in the preset time period; The electric power is compared with the second preset limit to obtain the first verification result of the target section; based on the first verification result, the target output power of the new energy station is determined; and the target output power is sent to the new energy station.
  • the above-mentioned preset time period may be a medium or long-term time period, and may be determined according to actual needs.
  • the second preset limit may be the section rated limit set in medium and long-term transactions, which may be determined according to actual needs.
  • the new energy AGC automatically receives mid- and long-term trading power, and on the premise of ensuring the safety of nested sections at all levels, prioritizes ensuring the accurate execution of mid- and long-term transactions, and realizes the remaining consumption space in all power plants. equitable distribution. After calculating the target of each station, after a series of verifications such as step length verification and section safety verification, a reasonable command is formed and issued to each new energy station for execution. As shown in Figure 6, medium and long-term new energy transactions include transaction preprocessing, nested section control and safety lock verification.
  • the mid- and long-term market provides transaction plans. After the new energy AGC receives the planned transaction power, it will give priority to ensuring the execution of mid- and long-term transactions under the condition of section safety. zoom.
  • the medium and long-term transaction power of each station can be obtained in real time from the transaction module, and the relevant stations under the target section are calculated to participate in the medium and long-term total transaction power, and determine whether the medium and long-term total transaction power causes the section to exceed the limit, that is, It is judged whether the medium and long-term total transaction power exceeds the second preset limit, and the first verification result is obtained.
  • the medium and long-term traded power of each station ie, the above-mentioned target output power
  • the output power of each station is further controlled based on the medium and long-term traded power.
  • determining the target output power of the new energy power station based on the first verification result includes: when the first verification result is that the total transaction power exceeds the second preset limit, Adjust the transaction power of the new energy station to obtain the target output power; in the case where the first verification result is that the total transaction power does not exceed the second preset limit, obtain the difference between the total output power of the target section and the total transaction power value, process the difference according to the first preset ratio, obtain the target power corresponding to the new energy station, and obtain the target output power based on the target power.
  • AGC in order to avoid excessive transaction power, resulting in cross-section exceeding the limit, AGC will perform security verification on transaction data, and verify the transaction power of new energy stations under each section. Whether it will cause the section to exceed the limit, if there is a risk of exceeding the limit, the transaction power will be proportionally reduced according to the section's capacity to ensure the safety of the section and the fairness of transaction execution.
  • the target power of the cross-section that is, the above-mentioned total output power
  • the sum of the traded power of the stations under the cross-section that is, the above-mentioned total transactional power
  • the remaining indicators are allocated proportionally to all the stations participating in the section adjustment (including the stations with trading power). After the allocation, the target output power can be obtained to ensure that when the section power is allocated, the station is preferentially allocated to the trading power.
  • obtaining the target output power based on the target power includes: judging whether the new energy field station is the target field station; if the new energy field station is the target field station, determining the target output power as the new energy field station. The sum of the transaction power and the target power of the energy station; if the new energy station is not the target station, the target output power is determined as the target power.
  • the above-mentioned target site may refer to a site that participates in the transaction, that is, a site that has traded electricity.
  • the target output power of the stations without transaction power is the target value
  • the target output power of the stations with transaction power is the target value and the transaction power is superimposed.
  • the method before sending the target output power to the new energy station, the method further includes: determining the current state to which the target section belongs; when the current state is normal, sending the target output power Or the first output power is sent to the new energy station, where the first output power is greater than the target output power; when the current state is jumping, the target output power is sent to the new energy station; when the current state is paused , it is forbidden to send the target output power to the new energy station; if the current state is emergency, if the target output power is greater than the product of the second actual output power of the new energy station and the preset value, the second actual output power will be sent. The sum of the product and the product is sent to the new energy station, wherein, if the current state is still emergency in the next control cycle, the minimum output power of the target output power and the second actual output power is sent to the new energy station.
  • the above-mentioned preset value may be a preset fixed step size, for example, may be 1/4 step size, but not limited thereto.
  • the information sent to the new energy station can be The target output power, at this time the output power of each station remains unchanged, or it can be the first output power, at this time the output power of each station increases;
  • the command value takes the smaller of the target output power and the second actual output power. value to make the section recover quickly.
  • the method when the first verification result is that the total transaction power does not exceed the second preset limit, the method further includes: acquiring the total spot power of the target section, wherein the total spot power The power is the sum of the spot power of all stations under the target section; the total spot power is compared with the third preset limit to obtain the second verification result of the target section; based on the second verification result, the target output power is determined.
  • the above-mentioned third preset limit may be the section rated limit set in the spot transaction, and may be determined according to actual needs.
  • the new energy AGC automatically receives the day-to-day and intra-day spot power of each station determined by the spot market, superimposes the two as the total spot, and divides the spot part in advance when distributing the section to ensure the safety of the section. Completion and fair distribution of stations.
  • the new energy AGC module receives the reward and punishment coefficient (the calculation rule of the coefficient is formulated by the Planning Office) file in real time from the spot trading module, and automatically parses it into the warehouse.
  • AGC will guide the distribution of the new energy output power of the whole network based on the reward and punishment coefficient of each station. According to the ratio of reward and punishment coefficient * maximum capacity (the maximum capacity is between 0 and installed capacity), the distribution of new energy output power of the whole network is carried out to ensure the smooth execution of spot transactions.
  • the output power When judging the status of new energy sections, the output power will be allocated to each new energy section.
  • AGC allocates output power to new energy stations, it needs to ensure that it participates in self-provided power plant substitution transactions, inter-provincial transactions, and direct power purchase transactions.
  • the output power target value of the new energy power station will be allocated preferentially.
  • the real-time spot power of each station is obtained from the transaction module in real time, and the relevant stations under the target section are calculated to participate in the real-time total. Spot power, and determine whether the real-time total spot power causes the cross-section to cross the line, that is, determine the size of the total spot power and the third preset limit, and obtain the second verification result.
  • the target output power in each station is further determined based on the second verification result, and the output power of each station is further controlled based on medium and long-term traded power.
  • determining the target output power includes: in the case that the second verification result is that the total spot power exceeds the third preset limit, the new energy power station The spot power is adjusted down to obtain the target output power; when the second verification result is that the total spot power does not exceed the third preset limit, the difference between the total output power of the target section and the total spot power is obtained, according to the second The difference is processed by the preset ratio to obtain the apportioned power corresponding to the new energy station, and based on the apportioned power, the target output power is obtained.
  • the second preset ratio may be a coefficient ratio, but is not limited thereto, and may be determined according to real-time requirements.
  • the total spot power in the case where the total spot power exceeds the third preset limit, it is determined that the total spot power causes the section to exceed the limit, and the real-time spot power of each station can be determined according to the section capacity. The power is reduced proportionally to ensure the safety of the section.
  • the remaining space of the section after the transaction is executed can be calculated, wherein the remaining space of the section includes: total target power - total spot power, and the remaining space is allocated to all fields according to the coefficient ratio station and get split power.
  • the target output power is further obtained based on the apportioned power.
  • obtaining the target output power based on the apportioned power includes: judging whether the new energy station is the target station; if the new energy station is the target station, determining the target output power as the new energy station. The sum of the traded power, spot power and apportioned power of the energy station within a preset time period; if the new energy station is not the target station, the target output power is determined as the shared power.
  • the above-mentioned target site may be a site that participates in electricity trading.
  • the target output power is medium and long-term transaction power + real-time spot power + cross-section allocated power; for the stations not participating in the transaction, the target output power is Power distributes electricity for the section.
  • the method further Including: obtaining the energy storage power station corresponding to the new energy station; detecting whether the new energy station has power curtailment; charging power.
  • an energy storage charging time period can be set (the start and end times of the time period can be modified, and can also be received from other modules).
  • the start of energy storage charging during this time period is controlled by the AGC. It cannot be discharged from the beginning of charging until it is fully charged.
  • the charging process can be interrupted and charging is performed in multiple time periods. Automatically count the incremental power generation of new energy power stations participating in the auxiliary market.
  • the specific control strategy is divided into the following main processes: the auxiliary market sorts and matches the participation of the new energy power station in the energy storage auxiliary market on the previous day according to the bidding of the new energy power station, and transmits the pairing relationship between the new energy power station and the energy storage power station to the AGC; According to the pairing relationship between the new energy power station and the energy storage power station, the AGC scans in real time whether there is a power limit of the power station. If the power is limited, the limited power ⁇ Gi of the power station is calculated. If multiple new energy power stations correspond to the same energy storage power station, the accumulated power is accumulated. The total curtailed power ⁇ G; the charging power of the energy storage power station can be determined based on the limited power ⁇ Gi or the total curtailed power ⁇ G.
  • determining the charging power of the energy storage power station based on the limited power of the new energy field station includes: in the case that the new energy field station and the energy storage power station are in a one-to-one relationship, determining The charging power is limited power; in the case of a many-to-one relationship between the new energy station and the energy storage power station, the total limited power of the energy storage power station is obtained, and based on the capacity of the new energy station, the charging power is determined as the total receiving power.
  • the target limited power in the limited power wherein the total limited power is the sum of the limited power of multiple new energy stations corresponding to the energy storage power station.
  • the charging power of the energy storage power station is equal to the limited power of the paired new energy power station ;
  • the new energy power station and the energy storage power station are allocated to each energy storage power station according to the proportion of the capacity of the new energy power station, and the full energy storage power station will no longer participate in the calculation.
  • the charging power of the energy storage power station is adjusted based on the adjustment rate of the new energy power station.
  • the method when the energy storage power station reaches the discharge time period, the method further includes: judging whether there is an upward adjustment demand in the power grid; if there is an upward adjustment demand in the power grid, determining a plurality of energy storage The discharge power of each energy storage power station in the power station; determine whether the maximum discharge power of multiple energy storage power stations meets the upward adjustment requirement; if the maximum discharge power does not meet the upward adjustment requirement, obtain the difference between the upward adjustment requirement and the maximum discharge power, and obtain the remaining adjustment demand; control the actual output power increase of the thermal power unit based on the remaining regulation demand.
  • the energy storage is discharged first, and the adjustment demand of the power grid is based on the rated discharge power of the energy storage power station.
  • the discharge power of all energy storage power stations is adjusted to the maximum and still cannot meet the demand of the grid, the output power of the water-fired unit will be increased until the discharge of the energy storage is completed.
  • the energy storage power station will keep the current power unchanged, that is, the charging and discharging power is 0.
  • the method further Including: judging whether the load rate of the thermal power unit and the new energy station is within the preset load range; if the load rate is within the preset load range, automatically control the thermal power unit according to the preset adjustment amount distribution mode.
  • the above-mentioned preset compliance range may be 50% to 55%, which may be set according to the actual situation.
  • the load rate of all units is between 55% and 50%
  • deep peak regulation can be enabled.
  • the quotation sequence table is organized into a quotation interval table, and the power plants with the same quotation are in the same sorting interval.
  • the principle of lower quotation interval and higher priority is adopted to ensure peak shaving. Lowest cost. Quotation order allocation or proportional allocation can be used when adjusting the amount allocation:
  • the quotation sorting and distribution method is the mode in which the quotation order is reduced from the first to the minimum output power
  • the proportional distribution method is to use various methods such as quotation ratio, capacity ratio, and reserve ratio to allocate adjustment amount to all units.
  • the adjustment gear can be determined.
  • the unit quotation is divided into two types, one of 50% to 40%, and one of 40% to the minimum.
  • N grades of auxiliary service quotations that is, all units are divided into N grades according to the quotation, and the grade of each unit is Ri, and the lower standby of each unit is calculated in turn:
  • the upward regulation reserve (P max,i -P i ) of each unit is also calculated, sorted according to the quotation from high to low, and accumulated The increase of each quotation gear is reserved, and then the gear i is calculated.
  • the target value is the upper limit of the current gear
  • the target value of the unit is the lower limit of the current gear
  • this control strategy considers all units to be sequenced and allocated at the same time. It is recommended that thermal power adopts a fixed-period delivery method, and all units issue commands at the same time, which can ensure fair allocation.
  • AGC obtains important data such as peak shaving auxiliary service quotations, medium and long-term trading power through the text interface; Plans and other important planning data; for the output interface, AGC can provide assessment calculation data to the assessment statistics module; it can also provide important data such as delivery records and alarm information, which can be well linked with other modules.
  • the dispatcher can quickly locate the section and the new energy station to improve the interaction efficiency; it provides more eye-catching and rich alarm functions, and intuitively displays the abnormal situation of the area, the section and the unit.
  • Pull and stop information, etc. provide anti-misoperation verification, modify the section limit value, add prompt information on the man-machine interface, and operate after the second confirmation to avoid safety accidents caused by misoperation.
  • an automatic power generation control system which can execute the automatic power generation control method in the above-mentioned embodiment.
  • FIG. 12 is a schematic diagram of an automatic power generation control system according to an embodiment of the present invention. As shown in FIG. 12 , the system includes:
  • the thermal power unit 122 and the new energy station 124 are located in the constructed target control area 120 .
  • the control main station 126 is connected in communication with the thermal power unit and the new energy station, and is used for the first planned output power and the first actual output power based on the thermal power unit, and the second planned output power and the second actual output of the new energy station Power, automatic power generation control for thermal power units.
  • the above-mentioned control master station may be a new energy AGC master station, which may execute the steps of the automatic power generation control method in the above-mentioned embodiment, which will not be repeated here.
  • a computer-readable storage medium includes a stored program, wherein, when the program is executed, the device where the computer-readable storage medium is located is controlled to perform the automatic power generation control in the foregoing embodiment 1 method.
  • a processor is provided, and the processor is used for running a program, wherein the automatic power generation control method in the above-mentioned Embodiment 1 is executed when the program is running.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the units may be a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种自动发电控制方法和系统。其中,该方法包括:构建目标控制区,其中,目标控制区包括:火电机组和新能源场站;获取火电机组的第一计划输出功率和第一实际输出功率,以及新能源场站的第二计划输出功率和第二实际输出功率;基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制。本发明解决了相关技术中自增益控制方法对特高压直流输电能力较差的技术问题。

Description

自动发电控制方法和系统 技术领域
本发明涉及电网控制领域,具体而言,涉及一种自动发电控制方法和系统。
背景技术
目前自增益控制主站的控制功能满足常规火、水电站机组控制需求,而且可以实现安全各类机组的统一协调控制。
但是,由于特高压直流通道输送容量提升,导致直流馈入受端电网呈现出“直流受电占比增大,系统转动惯性降低”的特性,导致电网调节能力下降。而且,直流闭锁等永久性故障带来大功率缺额将引发受端电网频率稳定问题,直接制约着交直流输电工程的稳态最大输电能力,影响新能源发电的外送能力。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种自动发电控制方法和系统,以至少解决相关技术中自增益控制方法对特高压直流输电能力较差的技术问题。
根据本发明实施例的一个方面,提供了一种自动发电控制方法,包括:构建目标控制区,其中,目标控制区包括:火电机组和新能源场站;获取火电机组的第一计划输出功率和第一实际输出功率,以及新能源场站的第二计划输出功率和第二实际输出功率;基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制。
可选地,获取火电机组的第一计划输出功率和新能源场站的第二计划输出功率包括:获取直流功率输送计划、以及新能源场站的短期功率预测数据和超短期功率预测数据;基于直流功率输送计划和短期功率预测数据,得到火电机组的预测输出功率;基于超短期功率预测数据和火电机组的预测输出功率,生成第一计划输出功率和第二计划输出功率。
可选地,基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制包括:基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,确定区域控制偏差;获取联变输送功率和第一预设限额的比较结果;基于区域控制偏差和比较结果,对火电机组进行自动发电控制。
可选地,基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,确定区域控制偏差包括:获取目标直流的第三计划输出功率和第三实际输出功率,其中,目标直流与目标控制区相对应;基于第一计划输出功率、第二计划输出功率和第三计划输出功率,确定目标控制区对外联络线的第四计划输出功率;基于第一实际输出功率、第二实际输出功率和第三实际输出功率,确定目标控制区对外联络线的第四实际输出功率;获取第四实际输出功率和第四计划输出功率的差值,得到区域控制偏差。
可选地,基于区域控制偏差和比较结果,对火电机组进行自动发电控制包括:基于比较结果,确定区域控制偏差的分配策略;基于分配策略对区域控制偏差进行分配,确定第一调节量;基于第一调节量调节火电机组的实际输出功率。
可选地,基于比较结果,确定区域控制偏差的分配策略包括:在比较结果为联变输送功率小于第一预设限额的情况下,确定分配策略是第一分配策略;在比较结果为联变输送功率与第一预设限额的差值位于预设区域内的情况下,确定分配策略是第二分配策略,其中,第一调节量用于控制火电机组的实际输出功率增加;在比较结果为联变 输送功率大于第一预设限额的差值的情况下,确定分配策略是第三分配策略。
可选地,在基于第一调节量调节火电机组的实际输出功率之前,该方法还包括:基于第一计划输出功率,确定火电机组的调节范围;判断第一调节量是否位于调节范围内;如果第一调节量位于调节范围内,则基于第一调节量调节火电机组的实际输出功率;如果第一调节量未位于调节范围内,则基于第一调节量确定位于调节范围内的第二调节量,并基于第二调节量调节火电机组的实际输出功率。
可选地,在基于区域控制偏差和比较结果,对火电机组进行自动发电控制之前,该方法还包括:对区域控制偏差进行数据滤波和动态死区滤波,得到滤波后的区域控制偏差;基于滤波后的区域控制偏差和比较结果,对火电机组进行自动发电控制。
可选地,在基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,确定区域控制偏差之前,该方法还包括:对第一计划输出功率和第一实际输出功率进行一阶滤波,得到滤波后的第一计划输出功率和滤波后的第一实际输出功率;对第二计划输出功率和第二实际输出功率进行中值滤波,得到滤波后的第二计划输出功率和滤波后的第二实际输出功率;基于滤波后的第一计划输出功率、滤波后的第一实际输出功率、滤波后的第二计划输出功率和滤波后的第二实际输出功率,确定区域控制偏差。
可选地,在基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制之后,该方法还包括:获取目标断面在预设时间段的总交易电力,其中,新能源场站位于目标断面下,总交易电力为目标断面下所有场站在预设时间段的交易电力之和;将总交易电力与第二预设限额进行比较,得到目标断面的第一校验结果;基于第一校验结果,确定新能源场站的目标输出功率;发送目标输出功率至新能源场站。
可选地,基于第一校验结果,确定新能源场站的目标输出功率包括:在第一校验结果为总交易电力超过第二预设限额的情况下,对新能源场站的交易电力进行下调,得到目标输出功率;在第一校验结果为总交易电力未超过第二预设限额的情况下,获取目标断面的总输出功率与总交易电力的差值,按照第一预设比例对差值进行处理,得到新能源场站对应的目标电力,并基于目标电力,得到目标输出功率。
可选地,基于目标电力,得到目标输出功率包括:判断新能源场站是否为目标场站;如果新能源场站是目标场站,则确定目标输出功率为新能源场站的交易电力和目标电力之和;如果新能源场站不是目标场站,则确定目标输出功率为目标电力。
可选地,在发送目标输出功率至新能源场站之前,该方法还包括:确定目标断面所属的当前状态;在当前状态为正常的情况下,发送目标输出功率或第一输出功率至新能源场站,其中,第一输出功率大于目标输出功率;在当前状态为跳变的情况下,发送目标输出功率至新能源场站;在当前状态为暂停的情况下,禁止发送目标输出功率至新能源场站;在当前状态为紧急的情况下,如果目标输出功率大于新能源场站的第二实际输出功率与预设值的乘积,则发送第二实际输出功率与乘积之和至新能源场站,其中,如果在下一个控制周期内当前状态仍然为紧急的情况下,发送目标输出功率和第二实际输出功率的最小输出功率至新能源场站。
可选地,在第一校验结果为总交易电力未超过第二预设限额的情况下,该方法还包括:获取目标断面的总现货电力,其中,总现货电力为目标断面下所有场站的现货电力之和;将总现货电力与第三预设限额进行比较,得到目标断面的第二校验结果;基于第二校验结果,确定目标输出功率。
可选地,基于第二校验结果,确定目标输出功率包括:在第二校验结果为总现货电力超过第三预设限额的情况下,对新能源场站的现货电力进行下调,得到目标输出功率;在第二校验结果为总现货电力未超过第三预设限额的情况下,获取目标断面的总输出功率与总现货电力的差值,按照第二预设比例对差值进行处理,得到新能源场站对应的分摊电力,并基于分摊电力,得到目标输出功率。
可选地,基于分摊电力,得到目标输出功率包括:判断新能源场站是否为目标场站;如果新能源场站是目标场站,则确定目标输出功率为新能源场站在预设时间段内的交易电力、现货电力和分摊电力之和;如果新能源场站不是目标场站,则确定目标输出功率为分摊电力。
可选地,在基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制之后,该方法还包括:获取新能源场站对应的储能电站;检测新能源场站是否存在限电情况;如果新能源场站存在限电情况,则基于新能源场站的受限电力,确定储能电站的充电功率。
可选地,基于新能源场站的受限电力,确定储能电站的充电功率包括:在新能源场站与储能电站为一对一关系的情况下,确定充电功率为受限电力;在新能源场站与储能电站为多对一关系的情况下,获取储能电站的总受限电力,并基于新能源场站的容量,确定充电功率为总受限电力中的目标受限电力,其中,总受限电力为储能电站对应的多个新能源场站的受限电力之和。
可选地,在确定充电功率为总受限电力中的目标受限电力之后,基于新能源场站的调节速率,调整储能电站的充电功率。
可选地,在储能电站到达放电时间段的情况下,该方法还包括:判断电网是否存在上调需求;如果电网存在上调需求,则基于上调需求确定多个储能电站中每个储能电站的放电功率;判断多个储能电站的最大放电功率是否满足上调需求;如果最大放电功率不满足上调需求,则获取上调需求与最大放电功率之差,得到剩余调节需求;基于剩余调节需求控制火电机组的实际输出功率增加。
可选地,在基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制之后,该方法还包括:判断火电机组和新能源场站的负荷率是否处于预设负荷范围内;如果负荷率处于预设负荷范围内,则按照预设调节量分配模式对火电机组进行自动发电控制。
根据本发明实施例的另一方面,还提供了一种自动发电控制系统,包括:火电机组和新能源场站,位于构建好的目标控制区内;控制主站,与火电机组和新能源场站,用于基于火电机组的第一计划输出功率和第一实际输出功率,以及新能源场站的第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制。
根据本发明实施例的另一方面,还提供了一种计算机可读存储介质,计算机可读存储介质包括存储的程序,其中,在程序运行时控制计算机可读存储介质所在设备执行上述的自动发电控制方法。
根据本发明实施例的另一方面,还提供了一种处理器,处理器用于运行程序,其中,程序运行时执行上述的自动发电控制方法。
在本发明实施例中,在构建目标控制区之后,可以基于火电机组的第一计划输出功率和第一实际输出功率,以及新能源场站的第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制,实现风光火打捆协调控制的目的。与相关技术相比,通过增加直流虚拟控制区,以直流通道安全为目标进行控制,达到了提升智能调度自动化水平,提升新能源消纳能力,较少电网整体发电成本,减少电网波动,提升电网安全稳定性的技术效果,进而解决了相关技术中自增益控制方法对特高压直流输电能力较差的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种自动发电控制方法的流程图;
图2是根据本发明实施例的一种可选的直流虚拟控制区的示意图;
图3是根据本发明实施例的一种可选的自动发电控制方法的流程图;
图4是根据本发明实施例的一种可选的计划带宽限制模式机组的调节范围的示意图;
图5是根据本发明实施例的一种可选的不同滤波算法的滤波后效果的示意图;
图6是根据本发明实施例的一种可选的新能源中长期交易各环节的示意图;
图7是根据本发明实施例的一种可选的交易数据合理性校验的流程图;
图8是根据本发明实施例的一种可选的新能源现货交易各环节的流程图;
图9是根据本发明实施例的一种可选的储能电站的充电策略的流程图;
图10是根据本发明实施例的一种可选的储能电站的放电策略的流程图;
图11是根据本发明实施例的一种可选的火电深度调峰策略的流程图;
图12是根据本发明实施例的一种自动发电控制系统的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
根据本发明实施例,提供了一种自动发电控制方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本发明实施例的一种自动发电控制方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,构建目标控制区,其中,目标控制区包括:火电机组和新能源场站。
上述的火电机组可以是火力发电机组,新能源场站可以包括:风力发电机组和光伏发电机组,但不仅限于此。
在一种可选的实施例中,可以根据直流风光火打捆外送的实际需要,将直流配套火电和配套新能源建立一个独立的虚拟控制区,即上述的目标控制区,并新增直流虚拟控制区控制功能。
步骤S104,获取火电机组的第一计划输出功率和第一实际输出功率,以及新能源场站的第二计划输出功率和第二实际输出功率。
在一种可选的实施例中,可以基于发电计划模型确定火电机组和新能源场站的日内滚动发电计划。
步骤S106,基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制。
在一种可选的实施例中,可以基于发电计划和实际输出功率实现风光火打捆协调控制,保证直流的安全稳定运行。
通过本发明上述实施例,在构建目标控制区之后,可以基于火电机组的第一计划输出功率和第一实际输出功率,以及新能源场站的第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制,实现风光火打捆协调控制的目的。与相关技术相比,通过增加直流虚拟控制区,以直流通道安全为目标进行控制,达到了提升智能调度自动化水平,提升新能源消纳能力,较少电网整体发电成本,减少电网波动,提升电网安全稳定性的技术效果,进而解决了相关技术中自增益控制方法对特高压直流输电能力较差的技术问题。
可选地,在本发明上述实施例中,获取火电机组的第一计划输出功率和新能源场站的第二计划输出功率包括:获取直流功率输送计划、以及新能源场站的短期功率预测数据和超短期功率预测数据;基于直流功率输送计划和短期功率预测数据,得到火电机组的预测输出功率;基于超短期功率预测数据和火电机组的预测输出功率,生成第一计划输出功率和第二计划输出功率。
在一种可选的实施例中,如图2和图3所示,由发电计划模式根据直流功率输送计划及配套风光短期功率预设数据,得出配套的火电机组日前计划(即上述的预设输出功率),然后根据超短期功率预测数据及火电机组的日前计划,形成火电机组和新能源场站的日内滚动计划(即上述的第一计划输出功率和第二计划输出功率)。AGC(Automatic Generation Control,自动发电控制)根据火电机组和新能源场站的日内滚动计划,以及新能源场站的实际输出功率,调用火电机组消除新能源场站的功率偏差,最终基于日前、日内滚动发电计划与AGC的多时间尺度的协调,时序递进,实现风光火打捆协调控制。
可选地,在本发明上述实施例中,基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制包括:基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,确定区域控制偏差;获取联变输送功率和第一预设限额的比较结果;基于区域控制偏差和比较结果,对火电机组进行自动发电控制。
需要说明的是,根据直流虚拟控制区的电网结构特点,从电网潮流走向来看,在直流外送计划确定后,联变下送潮流和配套火电机组的总输出功率之和是固定的,因此,只需要限定配套火电机组的总输出功率,就能保证换流站下送联变潮流不超过稳定限额。
在一种可选的实施例中,直流虚拟控制区的控制目标是通过调节火电机组的功率输出,来抵消配套风电基地功率输出的波动,保证直流外送通道的安全稳定。因此,直流虚拟控制区可以利用区域偏差控制和安全约束控制,实现风光火打捆外送功能,其中,区域偏差控制控制模式可以采用定联络线功率模式(Flattie-lineloadcontrol,FTC),该模式下控制区的区域控制偏差可以通过实际输出功率和计划输出功率确定;安全约束控制策略可以采用联变输送功率与稳定限额的比较结果进行确定。
可选地,在本发明上述实施例中,基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,确定区域控制偏差包括:获取目标直流的第三计划输出功率和第三实际输出功率,其中,目标直流与目标控制区相对应;基于第一计划输出功率、第二计划输出功率和第三计划输出功率,确定目标控制区对外联络线的第四计划输出功率;基于第一实际输出功率、第二实际输出功率和第三实际输出功率,确定目标控制区对外联络线的第四实际输出功率;获取第四实际输出功率和第四计划输出功率的差值,得到区域控制偏差。
在一种可选的实施例中,根据前面对直流虚拟控制区边界的划分,可以采用如下公式(1)计算第四实际输出功率:
I real=∑P Gi+P DC+∑P i-wind   (1),
其中,P Gi为火电机组的第一实际输出功率,P DC为目标直流的第三实际输出功率,P i-wind为新能源场站的第二实际输出功率;
可以采用如下公式(2)计算第四计划输出功率:
I schedule=∑I Gi-schedule+I DC-schedule+∑I i-wind-schedule    (2),
其中,I Gi-schedule为火电机组的第一计划输出功率,I DC-schedule为目标直流的第三计划输出功率,I i-wind-schedude为新能源场站的第二计划输出功率;
可以采用如下公式计算区域控制偏差ACE tz
ACE tz=I real-I schedule=∑P Gi+P DC+∑P i-wind-∑I Gi-schedule-I DC-schedule-∑I i-wind-schedule=∑P Gi-∑I Gi-schedule+P DC-I DC-schedule+∑P i-wind-∑I i-wind-schedule    (3)。
可选地,在本发明上述实施例中,基于区域控制偏差和比较结果,对火电机组进行自动发电控制包括:基于比较结果,确定区域控制偏差的分配策略;基于分配策略对区域控制偏差进行分配,确定第一调节量;基于第一调节量调节火电机组的实际输出功率。
可选地,基于比较结果,确定区域控制偏差的分配策略包括:在比较结果为联变输送功率小于第一预设限额的情况下,确定分配策略是第一分配策略;在比较结果为联变输送功率与第一预设限额的差值位于预设区域内的情况下,确定分配策略是第二分配策略,其中,第一调节量用于控制火电机组的实际输出功率增加;在比较结果为联变输送功率大于第一预设限额的差值的情况下,确定分配策略是第三分配策略。
上述的第一预设限额可以是联变输送功率对应的额定限额,可以根据实际需要进行确定。第一分配策略可以是调节配套火电机组的第一实际输出攻略来跟踪新能源场站的输出功率的波动的策略。第二分配策略可以是禁止火电机组减少输出功率,但增加输出功率的策略。第三分配策略可以是实际调节速率优先策略。
在一种可选的实施例中,当联变输送功率小于稳定限额时,通过调节配套火电机组第一实际输出功率,来跟踪新能源场站的第二实际输出功率的波动;当联变输送功率接近稳定限额时,禁止配套火电机组进一步减少第一实际输出功率,但增加功率方向允许;当联变输送功率超出稳定限额时,虚拟控制区的区域控制偏差即为联变输送功率越限量,控制偏差的分配策略可以采用按实际调节速率优先策略,尽快增加火电机组输出功率,消除稳定越限,保证联变的安全运行。
可选地,在本发明上述实施例中,在基于第一调节量调节火电机组的实际输出功率之前,该方法还包括:基于第一计划输出功率,确定火电机组的调节范围;判断第一调节量是否位于调节范围内;如果第一调节量位于调节范围内,则基于第一调节量调节火电机组的实际输出功率;如果第一调节量未位于调节范围内,则基于第一调节量确定位于调节范围内的第二调节量,并基于第二调节量调节火电机组的实际输出功率。
需要说明的是,针对火电机组的输出功率自动控制,常规AGC提供了多种手动和自动控制保模式,能够适应不同的控制需求和应用场合。如前所述,直流虚拟控制区总体控制思路是从预测到计划最后到基于计划的实时控制。采用常规自动模式时,机组的控制目标与发电计划无关,机组根据承担的调节功率,在机组的额定调节范围内进行调节。经过运行一段时间后,机组的实际输出功率会偏离发电计划。如果采用计划模式对机组进行控制,该模式下机组在全网ACE(Area Control Error,区域控制偏差)需要调节时偏离计划,在无调节需求时又重新回到计划值,会导致机组的来回调整,如果存在多台机组同时回到计划值,又可能对控制区产生新的冲击。
在一种可选的实施例中,直流虚拟控制区火电机组的控制模式宜采用计划带宽模式,该模式是一种特殊的自动控制模式,该模式下机组的控制目标仍然是区域的控制偏差,但机组的调节范围是动态变化的,与常规自动控制模式的调节范围是机组的额定调节范围有所不同。计划带宽模式的调节范围是以机组的发电计划为基准,上下扩充一定的带宽,带宽大小可以根据需要进行扩充,计划值配合带宽形成计划值调整带,作为计划带宽模式机组的实时调节范围,因此,计划带宽模式下机组的调节范围是随着计划的变化而变化,如图4所示。在正常情况下,机组只能在此计划值调整带范围内上下调节,通过在这个调整带内的调整,使得机组既能对区域控制偏差进行调节,又不偏离计划值太远。当机组的计划值无效,恢复机组固有的调节范围。
调整带生成方法如下:假设发电计划为P b,机组调节上限为P max,机组调节下限为P min,带宽为w,调整带上限为B max,调整带下限为B min。其中,调整带边界为:
B max=P b+w   (4),
B min=P b-w   (5),
同时要根据以下条件进行修正:
当P b+w>P max,B max=P max  (6),
当P b-w<P min,B min=P min  (7),
通过上述方法计算机组的调节范围,机组可以在这个调节范围内自由调节,而不用在调节ACE后返回计划值。
可选地,在本发明上述实施例中,在基于区域控制偏差和比较结果,对火电机组进行自动发电控制之前,该方法还包括:对区域控制偏差进行数据滤波和动态死区滤波,得到滤波后的区域控制偏差;基于滤波后的区域控制偏差和比较结果,对火电机组进行自动发电控制。
在一种可选的实施例中,如图3所示,直流控制区AGC周期性获取火电机组、新能源场站总输出功率以及直流送出联络线的实际输出功率,根据不同的输出功率特性,可以采用不同的滤波策略,其中,对区域控制偏差进行数据滤波(如图3所示的ACE滤波)和动态死区滤波,得到最终的控制调节量,该调节量经过分配策略,得到各个火电机组的控制目标(如图3所示的机组目标输出功率),该控制目标被发送至火电厂进行控制。
可选地,在本发明上述实施例中,在基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,确定区域控制偏差之前,该方法还包括:对第一计划输出功率和第一实际输出功率进行一阶滤波,得到滤波后的第一计划输出功率和滤波后的第一实际输出功率;对第二计划输出功率和第二实际输出功率进行中值滤波,得到滤波后的第二计划输出功率和滤波后的第二实际输出功率;基于滤波后的第一计划输出功率、滤波后的第一实际输出功率、滤波后的第二计划输出功率和滤波后的第二实际输出功率,确定区域控制偏差。
在一种可选的实施例中,如图3所示,直流量测一般认为数据稳定,可以不采用滤波方式(如图3所示的量测数据滤波);火电机组的输出功率波动较小,可以采用一阶滤波方式就可以满足控制要求;新能源场站的输出功率波动较大,可以采用中值滤波方式,滤波深度较深,滤除高频分量。再将滤波后的值减去对应的发电计划,得到虚拟控制区的区域控制偏差。
需要说明的是,由于火电机组调整速率相对较慢,为避免新能源功率的随机波动导致火电频繁反复调节,需要对新能源场站量测数据和区域控制偏差进行滤波处理,滤波方式主要有:用户可以根据需要对滤波深度进行选择,根据滤波深度的不同,滤波效果也随之改变。滤波深度越高,滤波效果越好。但是滤波深度的增加,会造成滤波延迟的增加。常规数字滤波方式包括:一阶滤波、二阶滤波器滤波和中值滤波。
其中,一阶低通滤波算法一般用一阶线性微分方程表示:
XFIL(K+1)=XFIL(K)+[XRAW(K+1)-XFIL(K)]*DTF  (8),
二阶低通滤波器的传递函数定义为:
Figure PCTCN2021125446-appb-000001
中值滤波是一种非线性平滑技术,基本原理是把数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的值接近的真实值,从而消除孤立的噪声点。
基于上述方案,对于电网的区域控制偏差,可以采用不同滤波算法进行滤波,滤波后的效果如图5所示。
可选地,在本发明上述实施例中,在基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制之后,该方法还包括:获取目标断面在预设时间段的总交易电力,其中,新能源场站位于目标断面下,总交易电力为目标断面下所有场站在预设时间段的交易电力之和;将总交易电力与第二预设限额进行比较,得到目标断面的第一校验结果;基于第一校验结果,确定新能源场站的目标输出功率;发送目标输出功率至新能源场站。
上述的预设时间段可以是中长期的时间段,可以根据实际需要进行确定。第二预设限额可以是中长期交易中设置的断面额定限额,可以根据实际需要进行确定。
在一种可选的实施例中,新能源AGC自动接收中长期交易电力,在保证各级嵌套断面安全的前提下,优先确 保中长期交易的精准执行,并实现剩余消纳空间在全部电厂的公平分配。在计算出各场站目标之后,经过步长校验、断面安全校验等一系列校验,形成合理指令下发各新能源场站执行。如图6所示,新能源中长期交易包括交易预处理、嵌套断面控制和安全闭锁校验等环节。
中长期市场提供交易计划,新能源AGC接收计划交易电力后,在断面安全情况下,优先保证中长期交易执行,若交易导致断面越限,应将各场站的实际交易电力按交易电力占比缩放。如图7所示,可以从交易模块实时获取各场站中长期交易电力,并计算目标断面下相关场站参与中长期总交易电力,判断中长期总交易电力是否导致断面越限,也即,判断中长期总交易电力是否超过第二预设限额,得到第一校验结果。进一步基于第一校验结果确定各场站中长期交易电力(即上述的目标输出功率),进一步基于中长期交易电力控制各场站的输出功率。
可选地,在本发明上述实施例中,基于第一校验结果,确定新能源场站的目标输出功率包括:在第一校验结果为总交易电力超过第二预设限额的情况下,对新能源场站的交易电力进行下调,得到目标输出功率;在第一校验结果为总交易电力未超过第二预设限额的情况下,获取目标断面的总输出功率与总交易电力的差值,按照第一预设比例对差值进行处理,得到新能源场站对应的目标电力,并基于目标电力,得到目标输出功率。
在一种可选的实施例中,如图7所示,为避免交易电力过大,导致断面越限,AGC会对交易数据进行安全校验,校验各断面下的新能源场站交易电力是否会导致断面越限,如果存在越限风险,则根据断面接纳能力对交易电力按比例进行等比例削减,保证断面安全及交易执行的公平性。若交易电力不存在断面越限风险,则在断面分配功率时,先将断面总目标功率(即上述的总输出功率)减去断面下场站交易电力的总和(即上述的总交易电力),再将剩余指标按比例分配给所有参与断面调节的场站(包括有交易电力的场站),分配完后,可以得到目标输出功率,保证在进行断面分配功率时,该场站优先分配到交易电力。
可选地,在本发明上述实施例中,基于目标电力,得到目标输出功率包括:判断新能源场站是否为目标场站;如果新能源场站是目标场站,则确定目标输出功率为新能源场站的交易电力和目标电力之和;如果新能源场站不是目标场站,则确定目标输出功率为目标电力。
上述的目标场站可以是指参与交易的场站,也即有交易电力的场站。
在一种可选的实时中,分配完成后,无交易电力的场站的目标输出功率为目标值,有交易电力的场站的目标输出功率为目标值再叠加上交易电力。
可选地,在本发明上述实施例中,在发送目标输出功率至新能源场站之前,该方法还包括:确定目标断面所属的当前状态;在当前状态为正常的情况下,发送目标输出功率或第一输出功率至新能源场站,其中,第一输出功率大于目标输出功率;在当前状态为跳变的情况下,发送目标输出功率至新能源场站;在当前状态为暂停的情况下,禁止发送目标输出功率至新能源场站;在当前状态为紧急的情况下,如果目标输出功率大于新能源场站的第二实际输出功率与预设值的乘积,则发送第二实际输出功率与乘积之和至新能源场站,其中,如果在下一个控制周期内当前状态仍然为紧急的情况下,发送目标输出功率和第二实际输出功率的最小输出功率至新能源场站。
上述的预设值可以是预先设置的固定步长,例如,可以是1/4步长,但不仅限于此。
在一种可选的实施例中,如图6所示,对于安全闭锁控制环节,考虑到断面下各场站对指令执行的滞后以及精度,导致欠调或过调现象,需在指令出口前设置最后一道安全闭锁防线。
若断面的当前状态为正常,也即断面处于正常区、帮助区,则考虑到断面空间充足,保证各场站不会出现减小输出功率的指令,因此,发送至新能源场站的可以是目标输出功率,此时各场站的输出功率保持不变,也可以是第一输出功率,此时各场站的输出功率增加;
若断面的当前状态为跳变,也即断面跳变,则所有实时功率场站下发当前输出功率指令,因此,发送目标输出功率发送至新能源场站;
若断面的当前状态为暂停,也即断面暂停,则所有场站不发指令,因此,禁止发送目标输出功率发送至新能源场站;
若断面的当前状态为紧急,也即断面越紧急调整限值,判断目标输出功率是否高于第二实际输出功率,考虑到各场站一般输出功率会低于指令问题,为避免过调,在当前控制周期内,若目标输出功率高于第二实际输出功率的1/4步长,则按第二实际输出功率+1/4步长第二实际输出功率下发指令(不发目标输出功率,避免场站大规模下调,最终出现断面输出功率功率的波形震荡),下一控制周期若断面仍在紧急限值之上,则指令值取目标输出功率与第二实际输出功率中的较小值,使断面快速恢复。
可选地,在本发明上述实施例中,在第一校验结果为总交易电力未超过第二预设限额的情况下,该方法还包括:获取目标断面的总现货电力,其中,总现货电力为目标断面下所有场站的现货电力之和;将总现货电力与第三预设限额进行比较,得到目标断面的第二校验结果;基于第二校验结果,确定目标输出功率。
上述的第三预设限额可以是现货交易中设置的断面额定限额,可以根据实际需要进行确定。
新能源AGC自动接收现货市场制定的各场站日前、日内现货电力,将二者叠加处理作为总现货,并在断面分配时预先分出现货部分保底,在保证断面安全的同时,实现现货电力的完成及各场站的公平分配。同时新能源AGC模块从现货交易模块实时接收奖惩系数(系数的计算规则由计划处制定)文件,并自动解析入库,AGC将基于各场站的奖惩系数指导全网新能源输出功率的分配,按照奖惩系数*最大容量(最大容量在0-装机容量之间)的比例进行全网新能源输出功率的分配,保障现货交易的顺利执行。
判断新能源断面状态的同时将对各新能源断面进行输出功率分配,AGC在对新能源场站进行输出功率分配时,需保证参与自备电厂替代交交易、跨省交易、直购电等交易的新能源场站的输出功率目标值得到优先分配。
在一种可选的实施例中,如图8所示,若中长期交易电力不会导致断面朝鲜,则从交易模块实时获取各场站实时现货电力,计算目标断面下相关场站参与实时总现货电力,并判断实时总现货电力是否导致断面越线,也即判断总现货电力与第三预设限额的大小,得到第二校验结果。进一步基于第二校验结果确定各场站中目标输出功率,进一步基于中长期交易电力控制各场站的输出功率。
可选地,在本发明上述实施例中,基于第二校验结果,确定目标输出功率包括:在第二校验结果为总现货电力超过第三预设限额的情况下,对新能源场站的现货电力进行下调,得到目标输出功率;在第二校验结果为总现货电力未超过第三预设限额的情况下,获取目标断面的总输出功率与总现货电力的差值,按照第二预设比例对差值进行处理,得到新能源场站对应的分摊电力,并基于分摊电力,得到目标输出功率。
第二预设比例可以是系数比例,但不仅限于此,可以根据实时需求进行确定。
在一种可选的实施例中,如图8所示,在总现货电力超过第三预设限额的情况下,确定总现货电力导致断面越限,可以根据断面接纳能力对各场站实时现货电力按比例进行下降,保证断面安全。在总现货电力未超过第三预设限额的情况下,可以计算交易执行后断面剩余空间,其中,断面剩余空间包括:总目标电力-总现货电力,并将剩余空间按系数比例分配到所有场站,得到分摊电力。进一步基于分摊电力得到目标输出功率。
可选地,在本发明上述实施例中,基于分摊电力,得到目标输出功率包括:判断新能源场站是否为目标场站;如果新能源场站是目标场站,则确定目标输出功率为新能源场站在预设时间段内的交易电力、现货电力和分摊电力之和;如果新能源场站不是目标场站,则确定目标输出功率为分摊电力。
上述的目标场站可以是参与电力交易的场站。
在一种可选的实施例中,如图8所示,对于参与交易的场站,目标输出功率为中长期交易电力+实时现货电力+断面分摊电力;对于非参与交易的场站,目标输出功率为断面分摊电力。
可选地,在本发明上述实施例中,在基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制之后,该方法还包括:获取新能源场站对应的储能电站;检测新能源场站是否存在限电情况;如果新能源场站存在限电情况,则基于新能源场站的受限电力,确定储能电站的充电功率。
在一种可选的实施例中,对于充电策略,如图9所示,可以设置储能充电时间段(该时间段的起始及终止时刻可修改,也可从别的模块接收),在该时间段内储能充电的启动由AGC进行控制,从充电开始直至充满的过程中 不能进行放电,充电过程可中断,分多个时间段进行充电。对参与辅助市场的新能源电站自动统计增发电量。
具体控制策略分以下主要过程:辅助市场根据新能源电站的竞价,在前一天对新能源电站参与储能辅助市场进行排序和匹配,并将新能源电站与储能电站的配对关系传至AGC;AGC根据新能源电站与储能电站的配对关系,实时扫描是否有电站限电,如果限电,则计算该电站的受限电力ΔGi,若多个新能源场站对应同一储能电站,则累加总限电电力ΔG;可以基于受限电力ΔGi或总限电电力ΔG,确定储能电站的充电功率。
可选地,在本发明上述实施例中,基于新能源场站的受限电力,确定储能电站的充电功率包括:在新能源场站与储能电站为一对一关系的情况下,确定充电功率为受限电力;在新能源场站与储能电站为多对一关系的情况下,获取储能电站的总受限电力,并基于新能源场站的容量,确定充电功率为总受限电力中的目标受限电力,其中,总受限电力为储能电站对应的多个新能源场站的受限电力之和。
在一种可选的实施例中,如图9所示,新能源场站与储能电站在“1对1”模式下,储能电站的充电功率等于与之配对的新能源电站限电电力;新能源场站与储能电站在“多对1”模式下,按新能源电站容量的比例分配至各储能电站,已经充满的储能电站不再参与计算。
可选地,在本发明上述实施例中,在确定充电功率为总受限电力中的目标受限电力之后,基于新能源场站的调节速率,调整储能电站的充电功率。
在一种可选的实施例中,如图9所示,为了避免储能电站充电功率变化太快对电网造成冲击,需根据参与辅助市场的新能源电站的上调速率,实时调整储能的充电功率,使储能电站的充电功率与对应新能源电站的增发功率保持一致,保证电网的平稳运行。
可选地,在本发明上述实施例中,在储能电站到达放电时间段的情况下,该方法还包括:判断电网是否存在上调需求;如果电网存在上调需求,则基于上调需求确定多个储能电站中每个储能电站的放电功率;判断多个储能电站的最大放电功率是否满足上调需求;如果最大放电功率不满足上调需求,则获取上调需求与最大放电功率之差,得到剩余调节需求;基于剩余调节需求控制火电机组的实际输出功率增加。
在一种可选的实施例中,对于放电策略,如图10所示,在储能非充电时段,如果电网出现上调需求,优先使储能放电,将电网调节需求按储能电站额定放电功率的比例进行分配,当所有储能电站放电功率调至最大仍不能满足电网需求时,再上调水火机组输出功率,直至储能放电完成。当电网没有上调需求时,则使储能电站维持当前电量不变,即充放功率为0。
可选地,在本发明上述实施例中,在基于第一计划输出功率、第一实际输出功率、第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制之后,该方法还包括:判断火电机组和新能源场站的负荷率是否处于预设负荷范围内;如果负荷率处于预设负荷范围内,则按照预设调节量分配模式对火电机组进行自动发电控制。
上述的预设符合范围可以是50%~55%,可以根据实际情况进行设定。
在一种可选的实施例中,当全部机组负荷率在55%~50%时,可启用深度调峰。补贴报价越低,调峰优先级越高,将报价序位表整理为报价区间表,报价相同的电厂处于同一排序区间内,调节时采用报价区间越低优先级越高的原则,保证调峰成本最低。在调节量分配时可采用报价排序分配或比例分配方式:
报价排序分配方式即以报价次序,由首位依次降低至最小输出功率的模式;
比例分配方式即采用报价比、容量比、备用比等各种方式,对所有机组分配调节量方式。
如图11所示,对于减小输出功率的情况,可以确定调节档位,通常机组报价分为2种,50%~40%一种,40%~最小方式一种。设辅助服务报价共N个档位,即所有机组按报价分为N个等级,每个机组所处等级为Ri,依次计算每个机组的下备用:
E down,i=P i-P min,i  (10),
累积每个档位的下备用:
P down,i=∑E down,i=∑(P i-P min,i)  (11),
假设区域总调节需求为P reg,总(假设该值为负,向下调节),按档位依次累加总下调备用,直至满足以下条件:
∑P down,i≤P reg,总≤∑P down,i+1    (12),
则i为调节档位。
目标值计算:
Figure PCTCN2021125446-appb-000002
这样保证档位i之前机组目标值为下限,而档位i之后机组不下调,不产生深调补偿。
对于增加输出功率的情况,当区域总调节需求P reg,总为正(区域上调)时,同样计算各机组的上调备用(P max,i-P i),按报价从高到低排序,累加各报价档位的上调备用,进而计算出档位i。
对于i档之前的机组,目标值为当前档位上限,i档之后机组目标值为当前档位下限。
对于适用情况,该控制策略考虑所有机组同时进行排序及分配,建议火电采用固定周期下发方式,所有机组在相同时刻下发指令,可保证分配的公平。
还需要说明的是,对于AGC的外部接口和人机优化,其中,对于输入接口,AGC通过文本接口形式获取调峰辅助服务报价、中长期交易电力等重要数据;通过计划定义表获取日前、日内计划等重要计划数据;对于输出接口,AGC可以向考核统计模块提供考核计算数据;也可以提供下发记录、告警信息等重要数据,可以很好地与其他模块联动配合。
结合电网实际的网架结构,以树状形式进行展示,方面调度员快速定位断面及新能源场站,提升交互效率;提供更为醒目、丰富的告警功能,直观展示区域、断面异常情况及机组拉停信息等;提供防误校验,对断面限值修改操作,在人机界面增加提示信息,二次确认后即可操作,避免出现误操作导致的安全事故。
通过上述方案,建立直流虚拟控制区,利用区域偏差控制和安全约束控制,实现风光火打捆外送功能;对风光新能源的中长期交易、现货交易及辅助服务等各种计划和交易数据进行精准自动发电控制,在保证断面安全的同时,保证各种市场化交易成分的精准执行;使AGC与火电调峰市场相结合,可根据辅助服务市场不同报价调节机组;对现有AGC界面优化,提升美观性和可操作性。此次功能完善可将电网安全与经济运行的有机结合,进一步提升智能调度自动化水平,提升新能源消纳能力,减少电网波动,提升青海电网安全稳定性。
实施例2
根据本发明实施例,提供了一种自动发电控制系统,该系统可以执行上述实施例中的自动发电控制方法,具体实现方案与优选应用场景与上述实施例相同,在此不做赘述。
图12是根据本发明实施例的一种自动发电控制系统的示意图,如图12所示,该系统包括:
火电机组122和新能源场站124,位于构建好的目标控制区120内。
控制主站126,与火电机组和新能源场站通信连接,用于基于火电机组的第一计划输出功率和第一实际输出功率,以及新能源场站的第二计划输出功率和第二实际输出功率,对火电机组进行自动发电控制。
上述的控制主站可以是新能源AGC主站,其可以执行上述实施例中的自动发电控制方法的步骤,在此不作赘述。
实施例3
根据本发明实施例,提供了一种计算机可读存储介质,计算机可读存储介质包括存储的程序,其中,在程序运 行时控制计算机可读存储介质所在设备执行上述实施例1中的自动发电控制方法。
实施例4
根据本发明实施例,提供了一种处理器,处理器用于运行程序,其中,程序运行时执行上述实施例1中的自动发电控制方法。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,RandomAccess Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (24)

  1. 一种自动发电控制方法,其特征在于,包括:
    构建目标控制区,其中,所述目标控制区包括:火电机组和新能源场站;
    获取所述火电机组的第一计划输出功率和第一实际输出功率,以及所述新能源场站的第二计划输出功率和第二实际输出功率;
    基于所述第一计划输出功率、所述第一实际输出功率、所述第二计划输出功率和所述第二实际输出功率,对所述火电机组进行自动发电控制。
  2. 根据权利要求1所述的方法,其特征在于,获取所述火电机组的第一计划输出功率和所述新能源场站的第二计划输出功率包括:
    获取直流功率输送计划、以及所述新能源场站的短期功率预测数据和超短期功率预测数据;
    基于所述直流功率输送计划和所述短期功率预测数据,得到所述火电机组的预测输出功率;
    基于所述超短期功率预测数据和所述火电机组的预测输出功率,生成所述第一计划输出功率和所述第二计划输出功率。
  3. 根据权利要求1所述的方法,其特征在于,基于所述第一计划输出功率、所述第一实际输出功率、所述第二计划输出功率和所述第二实际输出功率,对所述火电机组进行自动发电控制包括:
    基于所述第一计划输出功率、所述第一实际输出功率、所述第二计划输出功率和所述第二实际输出功率,确定区域控制偏差;
    获取联变输送功率和第一预设限额的比较结果;
    基于所述区域控制偏差和所述比较结果,对所述火电机组进行自动发电控制。
  4. 根据权利要求3所述的方法,其特征在于,基于所述第一计划输出功率、所述第一实际输出功率、所述第二计划输出功率和所述第二实际输出功率,确定区域控制偏差包括:
    获取目标直流的第三计划输出功率和第三实际输出功率,其中,所述目标直流与所述目标控制区相对应;
    基于所述第一计划输出功率、所述第二计划输出功率和所述第三计划输出功率,确定所述目标控制区对外联络线的第四计划输出功率;
    基于所述第一实际输出功率、所述第二实际输出功率和所述第三实际输出功率,确定所述目标控制区对外联络线的第四实际输出功率;
    获取所述第四实际输出功率和所述第四计划输出功率的差值,得到所述区域控制偏差。
  5. 根据权利要求3所述的方法,其特征在于,基于所述区域控制偏差和所述比较结果,对所述火电机组进行自动发电控制包括:
    基于所述比较结果,确定所述区域控制偏差的分配策略;
    基于所述分配策略对所述区域控制偏差进行分配,确定第一调节量;
    基于所述第一调节量调节所述火电机组的实际输出功率。
  6. 根据权利要求5所述的方法,其特征在于,基于所述比较结果,确定所述区域控制偏差的分配策略包括:
    在所述比较结果为所述联变输送功率小于所述第一预设限额的情况下,确定所述分配策略是第一分配策略;
    在所述比较结果为所述联变输送功率与所述第一预设限额的差值位于预设区域内的情况下,确定所述分配策略是第二分配策略,其中,所述第一调节量用于控制所述火电机组的实际输出功率增加;
    在所述比较结果为所述联变输送功率大于所述第一预设限额的差值的情况下,确定所述分配策略是第三分配策略。
  7. 根据权利要求5所述的方法,其特征在于,在基于所述第一调节量调节所述火电机组的实际输出功率之前,所述方法还包括:
    基于所述第一计划输出功率,确定所述火电机组的调节范围;
    判断所述第一调节量是否位于所述调节范围内;
    如果所述第一调节量位于所述调节范围内,则基于所述第一调节量调节所述火电机组的实际输出功率;
    如果所述第一调节量未位于所述调节范围内,则基于所述第一调节量确定位于所述调节范围内的第二调节量,并基于所述第二调节量调节所述火电机组的实际输出功率。
  8. 根据权利要求3所述的方法,其特征在于,在基于所述区域控制偏差和所述比较结果,对所述火电机组进行自动发电控制之前,所述方法还包括:
    对所述区域控制偏差进行数据滤波和动态死区滤波,得到滤波后的区域控制偏差;
    基于所述滤波后的区域控制偏差和所述比较结果,对所述火电机组进行自动发电控制。
  9. 根据权利要求3所述的方法,其特征在于,在基于所述第一计划输出功率、所述第一实际输出功率、所述第二计划输出功率和所述第二实际输出功率,确定区域控制偏差之前,所述方法还包括:
    对所述第一计划输出功率和所述第一实际输出功率进行一阶滤波,得到滤波后的第一计划输出功率和滤波后的第一实际输出功率;
    对所述第二计划输出功率和所述第二实际输出功率进行中值滤波,得到滤波后的第二计划输出功率和滤波后的第二实际输出功率;
    基于所述滤波后的第一计划输出功率、所述滤波后的第一实际输出功率、所述滤波后的第二计划输出功率和所述滤波后的第二实际输出功率,确定所述区域控制偏差。
  10. 根据权利要求1所述的方法,其特征在于,在基于所述第一计划输出功率、所述第一实际输出功率、所述第二计划输出功率和所述第二实际输出功率,对所述火电机组进行自动发电控制之后,所述方法还包括:
    获取目标断面在预设时间段的总交易电力,其中,所述新能源场站位于所述目标断面下,所述总交易电力为所述目标断面下所有场站在所述预设时间段的交易电力之和;
    将所述总交易电力与第二预设限额进行比较,得到所述目标断面的第一校验结果;
    基于所述第一校验结果,确定所述新能源场站的目标输出功率;
    发送所述目标输出功率至所述新能源场站。
  11. 根据权利要求10所述的方法,其特征在于,基于所述第一校验结果,确定所述新能源场站的目标输出功率包括:
    在所述第一校验结果为所述总交易电力超过所述第二预设限额的情况下,对所述新能源场站的交易电力进行下调,得到所述目标输出功率;
    在所述第一校验结果为所述总交易电力未超过所述第二预设限额的情况下,获取所述目标断面的总输出功率与所述总交易电力的差值,按照第一预设比例对所述差值进行处理,得到所述新能源场站对应的目标电力,并基于所述目标电力,得到所述目标输出功率。
  12. 根据权利要求11所述的方法,其特征在于,基于所述目标电力,得到所述目标输出功率包括:
    判断所述新能源场站是否为目标场站;
    如果所述新能源场站是所述目标场站,则确定所述目标输出功率为所述新能源场站的交易电力和所述目标电力之和;
    如果所述新能源场站不是所述目标场站,则确定所述目标输出功率为所述目标电力。
  13. 根据权利要求10所述的方法,其特征在于,在发送所述目标输出功率至所述新能源场站之前,所述方法还包括:
    确定所述目标断面所属的当前状态;
    在所述当前状态为正常的情况下,发送所述目标输出功率或第一输出功率至所述新能源场站,其中,所述第一输出功率大于所述目标输出功率;
    在所述当前状态为跳变的情况下,发送所述目标输出功率至所述新能源场站;
    在所述当前状态为暂停的情况下,禁止发送所述目标输出功率至所述新能源场站;
    在所述当前状态为紧急的情况下,如果所述目标输出功率大于所述新能源场站的第二实际输出功率与预设值的乘积,则发送所述第二实际输出功率与所述乘积之和至所述新能源场站,其中,如果在下一个控制周期内所述当前状态仍然为紧急的情况下,发送所述目标输出功率和所述第二实际输出功率的最小输出功率至所述新能源场站。
  14. 根据权利要求11所述的方法,其特征在于,在所述第一校验结果为所述总交易电力未超过所述第二预设限额的情况下,所述方法还包括:
    获取所述目标断面的总现货电力,其中,所述总现货电力为所述目标断面下所有场站的现货电力之和;
    将所述总现货电力与第三预设限额进行比较,得到所述目标断面的第二校验结果;
    基于所述第二校验结果,确定所述目标输出功率。
  15. 根据权利要求14所述的方法,其特征在于,基于所述第二校验结果,确定所述目标输出功率包括:
    在所述第二校验结果为所述总现货电力超过所述第三预设限额的情况下,对所述新能源场站的现货电力进行下调,得到所述目标输出功率;
    在所述第二校验结果为所述总现货电力未超过所述第三预设限额的情况下,获取所述目标断面的总输出功率与所述总现货电力的差值,按照第二预设比例对所述差值进行处理,得到所述新能源场站对应的分摊电力,并基于所述分摊电力,得到所述目标输出功率。
  16. 根据权利要求15所述的方法,其特征在于,基于所述分摊电力,得到所述目标输出功率包括:
    判断所述新能源场站是否为目标场站;
    如果所述新能源场站是所述目标场站,则确定所述目标输出功率为所述新能源场站在所述预设时间段内的交易电力、所述现货电力和所述分摊电力之和;
    如果所述新能源场站不是所述目标场站,则确定所述目标输出功率为所述分摊电力。
  17. 根据权利要求1所述的方法,其特征在于,在基于所述第一计划输出功率、所述第一实际输出功率、所述第二计划输出功率和所述第二实际输出功率,对所述火电机组进行自动发电控制之后,所述方法还包括:
    获取所述新能源场站对应的储能电站;
    检测所述新能源场站是否存在限电情况;
    如果所述新能源场站存在限电情况,则基于所述新能源场站的受限电力,确定所述储能电站的充电功率。
  18. 根据权利要求17所述的方法,其特征在于,基于所述新能源场站的受限电力,确定所述储能电站的充电功率包括:
    在所述新能源场站与所述储能电站为一对一关系的情况下,确定所述充电功率为所述受限电力;
    在所述新能源场站与所述储能电站为多对一关系的情况下,获取所述储能电站的总受限电力,并基于所述新能源场站的容量,确定所述充电功率为所述总受限电力中的目标受限电力,其中,所述总受限电力为所述储能电站对应的多个新能源场站的受限电力之和。
  19. 根据权利要求18所述的方法,其特征在于,在确定所述充电功率为所述总受限电力中的目标受限电力之后,基于所述新能源场站的调节速率,调整所述储能电站的充电功率。
  20. 根据权利要求17所述的方法,其特征在于,在所述储能电站到达放电时间段的情况下,所述方法还包括:
    判断电网是否存在上调需求;
    如果所述电网存在上调需求,则基于所述上调需求确定多个储能电站中每个储能电站的放电功率;
    判断所述多个储能电站的最大放电功率是否满足所述上调需求;
    如果所述最大放电功率不满足所述上调需求,则获取所述上调需求与所述最大放电功率之差,得到剩余调节需求;
    基于所述剩余调节需求控制所述火电机组的实际输出功率增加。
  21. 根据权利要求1所述的方法,其特征在于,在基于所述第一计划输出功率、所述第一实际输出功率、所述第二计划输出功率和所述第二实际输出功率,对所述火电机组进行自动发电控制之后,所述方法还包括:
    判断所述火电机组和所述新能源场站的负荷率是否处于预设负荷范围内;
    如果所述负荷率处于所述预设负荷范围内,则按照预设调节量分配模式对所述火电机组进行自动发电控制。
  22. 一种自动发电控制系统,其特征在于,包括:
    火电机组和新能源场站,位于构建好的目标控制区内;
    控制主站,与所述火电机组和新能源场站,用于基于所述火电机组的第一计划输出功率和第一实际输出功率,以及所述新能源场站的第二计划输出功率和第二实际输出功率,对所述火电机组进行自动发电控制。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机可读存储介质所在设备执行权利要求1至21中任意一项所述的自动发电控制方法。
  24. 一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至21中任意一项所述的自动发电控制方法。
PCT/CN2021/125446 2020-10-27 2021-10-21 自动发电控制方法和系统 WO2022089304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011167766.0 2020-10-27
CN202011167766.0A CN112467760A (zh) 2020-10-27 2020-10-27 自动发电控制方法和系统

Publications (1)

Publication Number Publication Date
WO2022089304A1 true WO2022089304A1 (zh) 2022-05-05

Family

ID=74834194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125446 WO2022089304A1 (zh) 2020-10-27 2021-10-21 自动发电控制方法和系统

Country Status (2)

Country Link
CN (1) CN112467760A (zh)
WO (1) WO2022089304A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115051419A (zh) * 2022-08-15 2022-09-13 国能日新科技股份有限公司 发电受限判断方法、装置、电子设备和存储介质
CN115173489A (zh) * 2022-07-29 2022-10-11 西安交通大学 一种基于二分法的火电集群调度方法及系统
CN115659595A (zh) * 2022-09-26 2023-01-31 中国华能集团清洁能源技术研究院有限公司 基于人工智能的新能源场站的储能控制方法及装置
CN117039941A (zh) * 2023-10-09 2023-11-10 长江三峡集团实业发展(北京)有限公司 自动发电控制的优化方法、装置、计算机设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467760A (zh) * 2020-10-27 2021-03-09 国家电网有限公司 自动发电控制方法和系统
CN115663786B (zh) * 2022-08-24 2023-06-06 上海联元智能科技有限公司 用电分配方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233679A1 (en) * 2013-10-18 2016-08-11 State Grid Corporation Of China A method and system for control of smoothing the energy storage in wind phtovolatic power fluctuation based on changing rate
CN106602613A (zh) * 2017-02-21 2017-04-26 国电南瑞科技股份有限公司 一种省地两级调度断面协调控制方法
CN107968443A (zh) * 2017-12-18 2018-04-27 国电南瑞科技股份有限公司 一种风光火打捆直流外送的agc控制方法
CN112467760A (zh) * 2020-10-27 2021-03-09 国家电网有限公司 自动发电控制方法和系统
CN213213111U (zh) * 2020-10-27 2021-05-14 国家电网有限公司 自动发电控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233679A1 (en) * 2013-10-18 2016-08-11 State Grid Corporation Of China A method and system for control of smoothing the energy storage in wind phtovolatic power fluctuation based on changing rate
CN106602613A (zh) * 2017-02-21 2017-04-26 国电南瑞科技股份有限公司 一种省地两级调度断面协调控制方法
CN107968443A (zh) * 2017-12-18 2018-04-27 国电南瑞科技股份有限公司 一种风光火打捆直流外送的agc控制方法
CN112467760A (zh) * 2020-10-27 2021-03-09 国家电网有限公司 自动发电控制方法和系统
CN213213111U (zh) * 2020-10-27 2021-05-14 国家电网有限公司 自动发电控制系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173489A (zh) * 2022-07-29 2022-10-11 西安交通大学 一种基于二分法的火电集群调度方法及系统
CN115173489B (zh) * 2022-07-29 2023-10-31 西安交通大学 一种基于二分法的火电集群调度方法及系统
CN115051419A (zh) * 2022-08-15 2022-09-13 国能日新科技股份有限公司 发电受限判断方法、装置、电子设备和存储介质
CN115051419B (zh) * 2022-08-15 2022-11-11 国能日新科技股份有限公司 发电受限判断方法、装置、电子设备和存储介质
CN115659595A (zh) * 2022-09-26 2023-01-31 中国华能集团清洁能源技术研究院有限公司 基于人工智能的新能源场站的储能控制方法及装置
CN115659595B (zh) * 2022-09-26 2024-02-06 中国华能集团清洁能源技术研究院有限公司 基于人工智能的新能源场站的储能控制方法及装置
CN117039941A (zh) * 2023-10-09 2023-11-10 长江三峡集团实业发展(北京)有限公司 自动发电控制的优化方法、装置、计算机设备及存储介质
CN117039941B (zh) * 2023-10-09 2024-01-26 长江三峡集团实业发展(北京)有限公司 自动发电控制的优化方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
CN112467760A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022089304A1 (zh) 自动发电控制方法和系统
CN106845807B (zh) 基于调峰辅助服务的结算方法及装置
CN109492861B (zh) 一种梯级水电站群中期电量交易计划分解方法
EP2688173A1 (en) Multi-service provision with energy storage system
CN112234638B (zh) 基于负荷侧智能充电桩集群控制的电网调峰系统和方法
CN104617590A (zh) 不同时间尺度下基于混合储能调度的微网能量优化方法
CN105046395A (zh) 一种含多类型新能源的电力系统日内滚动计划编制方法
CN107959285B (zh) 一种区域间日前发输电计划的优化方法、系统及装置
CN114079285B (zh) 基于多时间尺度的电网调度优化系统及方法
CN112116150A (zh) 一种负荷聚合商参与蓄热式电采暖电力市场调节方法
CN110472825A (zh) 一种多级调度机构协调的梯级水电站实时调度弃水削减方法
CN107528348A (zh) 一种基于来水不确定性的梯级水电站负荷调整方法
CN110889540B (zh) 电力市场环境下系统备用需求的优化方法及装置
CN110676887B (zh) 一种分区域共享送出断面的两级调度风火协调控制方法
CN114493743B (zh) 基于agc调频分区控制光储联合系统参与市场投标方法
CN110866647A (zh) 用户侧储能控制方法、装置、设备及存储介质
CN213213111U (zh) 自动发电控制系统
Abbasi et al. Risk-constrained offering strategies for a price-maker demand response aggregator
CN110826210B (zh) 基于功率互联的多区域楼宇虚拟电厂建模及优化协调方法
CN112436510B (zh) 一种风-光-火特高压直流外送调度方法及系统
CN114884135A (zh) 适用于地区级源网荷储日前协调控制方法
CN115081707A (zh) 一种基于源荷灵活性的微电网多时间尺度优化调度方法
CN110611308B (zh) 参与大用户直购电新能源场站最小有功功率修正确定方法
CN112821469B (zh) 基于调频消纳域分析的日前发电调度优化方法及装置
CN113346554A (zh) 一种配电网分布式协同调控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885031

Country of ref document: EP

Kind code of ref document: A1