WO2022089278A1 - Kitchen robot and seasoning box - Google Patents

Kitchen robot and seasoning box Download PDF

Info

Publication number
WO2022089278A1
WO2022089278A1 PCT/CN2021/125091 CN2021125091W WO2022089278A1 WO 2022089278 A1 WO2022089278 A1 WO 2022089278A1 CN 2021125091 W CN2021125091 W CN 2021125091W WO 2022089278 A1 WO2022089278 A1 WO 2022089278A1
Authority
WO
WIPO (PCT)
Prior art keywords
seasoning
motor
lid
cavities
pot
Prior art date
Application number
PCT/CN2021/125091
Other languages
French (fr)
Inventor
Hongbin JIANG
Xiaoliang ZHA
Min Zhang
Can FENG
He Xu
Guilin LIANG
Kai Liu
Yinglong WEI
Huaiqiang REN
Original Assignee
Tineco Intelligent Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011198085.0A external-priority patent/CN112568696A/en
Priority claimed from CN202011194288.2A external-priority patent/CN112401631B/en
Priority claimed from CN202011194242.0A external-priority patent/CN112426012A/en
Priority claimed from CN202011198100.1A external-priority patent/CN112568697A/en
Priority claimed from CN202011194250.5A external-priority patent/CN112426045A/en
Priority claimed from CN202011194278.9A external-priority patent/CN112336173A/en
Priority claimed from CN202011194232.7A external-priority patent/CN112426010A/en
Application filed by Tineco Intelligent Technology Co., Ltd. filed Critical Tineco Intelligent Technology Co., Ltd.
Publication of WO2022089278A1 publication Critical patent/WO2022089278A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J44/00Multi-purpose machines for preparing food with several driving units
    • A47J44/02Multi-purpose machines for preparing food with several driving units with provisions for drive either from top or from bottom, e.g. for separately-driven bowl

Definitions

  • This application relates to the field of household Internet of Things (IoT) technology, and in particular to a kitchen robot and its seasoning box.
  • IoT Internet of Things
  • a kitchen robot and its seasoning box may provide convenience to households and improve user experience by having a machine to cook and add seasonings.
  • the kitchen robot may be configured to automatically cook food including automatically heating and stirring ingredients, dispensing seasonings by specific amounts and orders during cooking.
  • the kitchen robot may be implemented as a stir-fry machine, rice cooker, stew machine, air-fry machine, etc.
  • a seasoning box may include a covered structure, and a body (e.g., 404) disposed inside the covered structure and configured to rotate relative to the covered structure.
  • the covered structure includes a top cover (e.g., 405) and a bottom structure (e.g., 406) .
  • the top cover includes a seasoning filling port.
  • the body includes a plurality of seasoning cavities. The body is configured to rotate among a plurality of filling positions. At each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings.
  • the bottom structure includes an output port. The seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
  • the plurality of seasoning cavities are disposed in a ring arrangement with respect to the axis (e.g., first axis 327) .
  • the axis is perpendicular to a plane of the seasoning filling port.
  • one of the plurality of seasoning cavities is configured to align with the seasoning filling port and a different one of the plurality of seasoning cavities is configured to align with the output port, as the body rotates about the axis.
  • the top cover comprises a cover plate attached to a sliding rail of the top cover; and the cover plate is configured to cover and uncover the seasoning filling port by sliding along the sliding rail.
  • each of one or more of the plurality of seasoning cavities is configured to align with the output port one by one for one or more seasonings in the seasoning cavity to correspondingly exit the output port, as the body completes one rotation about the axis.
  • the body is configured to rotate in only one direction.
  • each of one or more of the plurality of seasoning cavities is a through-hole; a first end of the through-hole is on a top surface of the body and matches with the seasoning filling port; and a second end of the through-hole is on a bottom surface of the body and matches with the output port.
  • the seasoning filling port, the first end of the through-hole, the second end of the through-hole, and the output port have a same shape.
  • the body comprises an inner gear disposed at a center of the body; and the inner gear is centrally symmetrical about the axis.
  • the bottom structure further comprises an opening at a center of the bottom structure; and the opening is centrally symmetrical about the axis.
  • the plurality of seasoning cavities comprises one or more first seasoning cavities and one or more second seasoning cavities; each of the first and second seasoning cavities includes an opening at a top surface of the body to align with the seasoning filling port; each of the first seasoning cavities includes an opening at a bottom surface of the body to align with the output port, the first seasoning cavities each forming a through-hole in the body; and each of the second seasoning cavities is sealed at the bottom surface of the body.
  • a kitchen robot may include a seasoning box.
  • the seasoning box comprises (i) a covered structure and (ii) a body disposed inside the covered structure and configured to rotate relative to the covered structure.
  • the covered structure includes a top cover and a bottom structure enclosing the body.
  • the top cover includes a seasoning filling port.
  • the body includes a plurality of seasoning cavities. The body is configured to rotate among a plurality of filling positions. At each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings.
  • the bottom structure includes an output port. The seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
  • the kitchen robot further comprises a driver disposed inside the seasoning box and at a same horizontal level as the seasoning cavities.
  • the driver is configured to drive the seasoning box to rotate about the axis.
  • the bottom structure comprises an output port; and each of one or more of the plurality of seasoning cavities is configured to align with the output port one by one for one or more seasonings in the seasoning cavity to correspondingly exit the output port, as the body completes one rotation about the axis.
  • the kitchen robot further comprises a pot disposed below the seasoning box and a lid coupled to the seasoning box and disposed between the seasoning box and the pot.
  • the lid comprises a drop port configured to align with the output port for the one or more seasonings in the seasoning cavity to correspondingly exit the output port and enter the pot.
  • the kitchen robot further comprises a rotating arm coupled to the seasoning box and configured to close the lid on the pot or lift the lid off the pot by rotation.
  • the kitchen robot further comprises a spatula mechanically coupled to the driver and disposed inside the pot.
  • the spatula comprises a stirrer configured to stir food in the pot and a scraper configured to scrape food in the pot.
  • the stirrer comprises a rotation shaft and a plurality of stirring arms attached to the rotation shaft.
  • the scraper comprises at least one horizontal scraping edge and at least one vertical scraping edge.
  • a kitchen robot may include a seasoning box, a spatula inside a pot, and a driver mechanically coupled to the seasoning box and the spatula.
  • the seasoning box comprises (i) a covered structure and (ii) a body disposed inside the covered structure and configured to rotate relative to the covered structure.
  • the covered structure includes a top cover and a bottom structure enclosing the body.
  • the top cover includes a seasoning filling port.
  • the body includes a plurality of seasoning cavities. The body is configured to rotate among a plurality of filling positions. At each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings.
  • the seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
  • a kitchen robot may include a pot; a lid disposed in a plane and configured to cover the pot, wherein a first axis perpendicular to the plane passes through a center of the lid, and a second axis is parallel to the first axis and off the center of the lid; a spatula disposed below the lid and inside the pot, wherein the spatula comprises a stirrer; and a motor (e.g., an electric driver of a driver component) disposed outside the pot, wherein the motor is configured to drive the stirrer to simultaneously revolve about the first axis and rotate about the second axis.
  • a motor e.g., an electric driver of a driver component
  • the kitchen robot further comprises a drive assembly coupled to the spatula and the motor, wherein: the drive assembly corresponds to a first drive path and second drive path; through the first drive path, the motor is configured to drive the stirrer to revolve about the first axis; and through the second drive path, the motor is configured to drive the stirrer to rotate about the second axis.
  • the kitchen robot comprises a driver component disposed above the lid and outside the pot, wherein the driver component comprises the motor and an output shaft disposed along the first axis.
  • the drive assembly comprises a support structure; the support structure comprises a sleeve coupled to the output shaft; and the stirrer is rotatively connected to the support structure along the second axis and configured to revolve about the first axis.
  • the kitchen robot further comprises a first gear block and a second gear block mutually engaged and both disposed on the support structure; the first gear block is configured to rotate about the first axis; and the second gear block is configured to revolve along a circumference of the first gear block.
  • the first gear block comprises a rotation stopper structure that matches with the lid; and the second gear block is attached to the stirrer along the second axis and configured to cause the stirrer to rotate about the second axis.
  • the stirrer comprises at least two stirring arms centrally symmetrical about the second axis; a length of each of the stirring arms is larger than a distance between the first axis and the second axis; and a length of the stirrer is larger than a radius of the pot and smaller than a diameter of the pot.
  • the sleeve is disposed at a center of the first gear block; the first gear block is attached to the sleeve; and the first gear block and the sleeve are configured to rotate about the first axis.
  • a position where the first gear block and the second gear block engage is between the first axis and the second axis; and the first gear block has more teeth than the second gear block.
  • the kitchen robot further comprises a magnet disposed in the sleeve, wherein the output shaft includes a magnetic material, and the magnet and the magnetic material attract to each other.
  • a perimeter of contact areas between the sleeve and the output shaft is in a polygon shape.
  • the drive assembly further comprises a housing cover disposed on the support structure, the housing cover and the support structure forming a closed housing space; the kitchen robot further comprises silicone disposed around a perimeter of the housing cover to seal the closed housing space.
  • the driver component further includes a belt connecting the output shaft and the electric driver; and the belt does not pass the first axis.
  • the electric driver is a DC (direct current) brushed electric driver
  • the driver component comprises a reduction gearbox.
  • the motor is configured to drive the spatula; the spatula further comprises a scraper attached to the support structure; the motor is configured to drive the scraper to rotate about the first axis; and the scraper and the stirrer are disposed at different sides of the sleeve.
  • a horizontal distance between the scraper and the first axis is larger than a horizontal distance between the stirrer and the first axis; the scraper comprises a scraping arm connected horizontally to the support structure; and a distance from the scraper to a bottom of the pot is larger than a distance from the stirrer to the bottom of the pot.
  • a body of the scraper is made of a rigid material, and a tip of the scraper close to an inner wall of the pot is made of a soft material.
  • the scraper comprises one or more horizontal scraping edges and one or more vertical scraping edges; the one or more horizontal scraping edges and the one or more vertical scraping edges are configured as configuration (i) , (ii) , or (iii) ; configuration (i) is a T-shape configuration, in which one end of a vertical scraping edge is attached to a horizontal scraping edge, and one end of the scraping arm is attached to the vertical scaping edge; configuration (ii) is an L-shape configuration, in which one end of a vertical scraping edge and one end of a horizontal scraping edge are respectively attached to two ends of an arc-shaped introductory structure, and one end of the scraping arm is attached to the horizontal scaping edge; and configuration (iii) is a U-shape configuration, in which one end of each of two vertical scraping edges is attached to an end of a horizontal scraping edge, the two vertical scaping edges are respectively connected to two ends of the horizontal scraping edge and are curved
  • the kitchen robot further comprises a seasoning box disposed above the lid and comprising an output port, wherein the lid comprises a drop port; a sensor disposed on the spatula and configured to emit a sensing signal indicating that the spatula is not below the drop port in a direction along the first axis; a receiver disposed on the lid or the drop port and configured to receive the sensing signal; and a micro-control unit (MCU) communicatively coupled to the receiver and configured to, responsive to the received sensing signal, rotate the seasoning box about the first axis to a seasoning dispense position that aligns the output port with the drop port for one or more seasonings in the seasoning box to drop from the seasoning box through the drop port into the pot.
  • MCU micro-control unit
  • a spatula may include a stirrer disposed off a center of the spatula and comprises a scraper, wherein the stirrer is configured to simultaneously revolve about a first axis that passes through the center and rotate about a second axis off the center, wherein the first axis and the second axis are parallel to each other.
  • FIG. 1 is an overview diagram of a kitchen robot, according to some embodiments of the present application.
  • FIG. 2 is a cross-sectional view diagram of a kitchen robot, according to some embodiments of the present application.
  • FIG. 3 is a first structural diagram of a kitchen robot, according to some embodiments of the present application.
  • FIG. 4 is a second structural diagram of a kitchen robot, according to some embodiments of the present application.
  • FIG. 5 is an exploded view of a schematic diagram of a lid and other components of a kitchen robot, according to some embodiments of the present application;
  • FIG. 6 is an exploded view of a schematic diagram of a first motor of a kitchen robot, according to some embodiments of the present application.
  • FIG. 7 is a first cross-sectional view diagram of a power surface and a slave surface of a kitchen robot, according to some embodiments of the present application.
  • FIG. 8 is a second cross-sectional view diagram of a power surface and a slave surface of a kitchen robot, according to some embodiments of the present application.
  • FIG. 9 is an exploded view of an assembly diagram of a seasoning unit of a kitchen robot, according to some embodiments of the present application.
  • FIG. 10 is an exploded view of a diagram of a seasoning unit of a kitchen robot, according to some embodiments of the present application.
  • FIG. 11 is a structural diagram of a top cover of a seasoning unit of a kitchen robot, according to some embodiments of the present application.
  • FIG. 12 is a top view diagram of a body of a seasoning unit of a kitchen robot, according to some embodiments of the present application.
  • FIG. 14 is a section view of a structural diagram of a seasoning unit of a kitchen robot, according to some embodiments of the present application.
  • FIG. 15 is a cross-sectional view diagram of a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 17 is a second structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 18 is a top view diagram of a stirrer of a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 19 is a third structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 20 is a fourth structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 21 is a fifth structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 22 is a first flow chart of a method for controlling a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 23 is a second flow chart of a method for controlling a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 24 is a third flow chart of a method for controlling a spatula of a kitchen robot, according to some embodiments of the present application.
  • FIG. 25 is a structural diagram of a lid of a kitchen robot, according to some embodiments of the present application.
  • FIG. 26 is a first flow chart of a method for opening or closing a lid of a kitchen robot, according to some embodiments of the present application.
  • FIG. 27 is a circuit diagram of a voltage detection circuit, according to some embodiments of the present application.
  • FIG. 28 is a second flow chart of a method for opening or closing a lid of a kitchen robot, according to some embodiments of the present application.
  • FIG. 29 is a structural diagram of a motor of a kitchen robot, according to some embodiments of the present application.
  • FIG. 30 is a schematic diagram of a pulse signal, according to some embodiments of the present application.
  • FIG. 31 is a third flow chart of a method for opening or closing a lid of a kitchen robot, according to some embodiments of the present application.
  • FIG. 32 is a flow chart of a method for rotating a seasoning box of a kitchen robot, according to some embodiments of the present application.
  • FIG. 33 is an illustrative diagram of a sensing signal waveform, according to some embodiments of the present application.
  • FIG. 35 is a section view of a seasoning unit disposed on a holder of a kitchen robot, according to some embodiments of the present application.
  • FIG. 36 is a structural diagram of a holder of a kitchen robot, according to some embodiments of the present application.
  • MCU 601-micro-control unit
  • first, second, and the like may be used in one or more embodiments of this specification to describe various types of information, such information should not be limited to these terms. These terms are used only to distinguish the same type of information from one another. For example, without departing from the scope of one or more embodiments of this specification, first may also be referred to as second, and similarly, second may also be referred to as first. Depending on the context, as used herein, the word “if” may be interpreted as “at ! or “when " or “in response to a determination” .
  • FIG. 1 provides a kitchen robot 1 configured to cook food automatically, freeing people from the arduous cooking process while still being able to enjoy healthy food.
  • Kitchen robot 1 may include base 2, cooking unit 3 disposed on base 2, seasoning unit 4 disposed above cooking unit 3, and arm unit 5 disposed at a side of cooking unit 3.
  • base 2 has a horizontal surface 201 to support cooking unit 3.
  • Surface 201 may be square-shaped or in another shape, such as round, triangle, etc.
  • the material of surface 201 may be made of explosion-proof glass for safety and protection and ease of cleaning.
  • base 2 also includes cavity space 202 and supporting legs 203.
  • Cavity space 202 may be configured to accommodate electric or electronic circuit components and wires connecting the electric or electronic circuit components.
  • heat dissipation structure 204 is disposed in cavity space 202.
  • Heat dissipation structure 204 may be a fan, heat sink, etc.
  • connection interface 205 may be disposed on a wall (e.g., side wall) of cavity space 202, such that a power cord can be connected to an external AC power source to provide the power needed for cooking or control circuits.
  • a battery pack may be installed in cavity space 202 to provide the power. Further, the battery pack may be removable for easy replacement and maintenance.
  • supporting legs 203 of surface 201 may be used to support base 2.
  • Supporting legs 203 have a preset height so that when base 2 is placed horizontally on the table, the bottom of cavity space 202 is spaced from the table top, which allows for easier handling and better heat dissipation.
  • the height of supporting legs 203 can be adjusted so that the height of base 2 can be adjusted within a preset range according to the actual usage scenario.
  • the number of supporting legs 203 may be four, and the supporting legs 203 are distributed around the four corners of the base to provide uniform support. When not in use, supporting legs 203 may be removed from base 2, and base 2 can be erected for easy storage.
  • the electric or electronic circuit components in cavity space 202 of base 2 may contain a main control board.
  • the electric or electronic circuit components may also include various sensors, such as temperature sensor, current sensor, magnetic sensor, etc.
  • the main control circuit board may be configured to receive commands from external users or sensing signals from various sensors to send corresponding control signals to control the kitchen robot 1 to automatically perform operations.
  • switch control 206 may be disposed on base 2.
  • Switch control 206 may be configured to input control commands to kitchen robot 1.
  • switch control 206 may be pressure-triggered in the vertical direction and rotated in its circumferential direction.
  • switch control 206 may be configured as sliding-triggered, vibration-triggered, touch-triggered, and the like.
  • Measuring unit 207 may be used to measure and weigh one or more main ingredients (e.g., food) or auxiliary ingredients (e.g., seasonings) to facilitate the standardization of the dishes.
  • main ingredients e.g., food
  • auxiliary ingredients e.g., seasonings
  • measuring unit 207 may include a measuring cup and/or an electronic balance on which the main ingredient (s) or auxiliary ingredient (s) can be placed, and correspondingly a weighing module may be disposed in base 2 below where the measuring cup is placed.
  • the weighing module may be configured to weigh and/or volume the material inside the cup and send the measurement back to the main control board.
  • Display pad 208 may be configured to display the information of the kitchen robot. In some embodiments, the display pad 208 may be elongated for displaying more information.
  • switch control 206, measuring unit 207, and display pad 208 may be disposed on the same side of the top surface closer to the user. Switch control 206 and measuring unit 207 may be respectively disposed at two corners of base 2.
  • cooking unit 3 may be disposed on surface 201 of base 2.
  • Cooking unit 3 may include bottom seat 301, pot 302, and lid 303.
  • Bottom seat 301 may be used to support pot 302, such that pot 302 can be stably placed on top of bottom seat 301.
  • Bottom seat 301 may include a depression to accommodate a portion of pot 302, and the depression may have a contour surface that matches the surface of pot 302.
  • the support surface may be formed by a continuous smooth curved surface with a preset curvature.
  • bottom seat 301 may include heating component 304.
  • heating component 304 may be configured to heat pot 302.
  • heating component 304 may include an electromagnetic plate, and the electromagnetic plate may include one or more electromagnetic solenoid coils configured to generate magnetic radiation to heat pot 302 during operation.
  • the electromagnetic plate may be circular in shape.
  • the back of bottom seat 301 may be provided with a grid of positioning ribs on which the electromagnetic plate may be disposed.
  • heating component 304 may include other forms of heating structure.
  • the heating component may include a heating wire component that uses the heat generated by the heating wire to directly heat the pot.
  • the main control board may electrically control an amount of current passing through the solenoid coil, thereby controlling the temperature to which the pot is heated.
  • the main control board may also control the temperature by controlling parameters such as voltage. The advantage of this is that the heating can be quantified and data of the parameters can be used to characterize the degree of heating for precise control purposes.
  • temperature measuring component 305 may be disposed at a bottom of a depression. Temperature measuring component 305 may be configured to detect a current temperature of pot 302 through a direct contact with pot 302 and to provide feedback to, e.g., the board control board. Thus, according to the current temperature of pot 302 measured in real time, the temperature can be controlled and adjusted accordingly. For example, when a dish needs to be stir-fried, the heating temperature of the heating component may be adjusted through the main control board or other control methods to heat up pot 302.
  • Temperature measuring component 305 detects the temperature of the pot in real time, and when the temperature of pot 302 reaches a preset heating temperature, the main control board or other control methods may adjust the heating temperature of heating component 304 again based on the real-time feedback from temperature measuring component 305 to maintain the temperature of the pot 302 at the current level.
  • bottom seat 301 may be fixedly mounted on base 2.
  • the bottom seat 301 may be mounted on surface 201 of base 2 and protrudes from the plane in which surface 201 is located, and the bottom seat may have an annular side surface. This configuration may provide an easier layout for the electrical connections between the heating component and the electric or electronic circuit components in the base.
  • pot 302 may include inner pot 306 and handle 307 for gripping.
  • Inner pot 306 may be recessed and have a smooth surface. The smooth surface of inner pot 306 matches a support surface of bottom seat 301, so that inner pot 306 can be stably supported on bottom seat 301.
  • Heating component 304 may be configured to heat pot 302 by primarily heating inner pot 306, so that the food in inner pot 306 is fully heated and the heating efficiency is improved.
  • inner pot 306 has skirt structure 308 projecting outward at the edge of inner pot 306, so that the outer surface of inner pot 306 and skirt structure 308 form a step, thus facilitating steady placement and positioning of pot 302 on bottom seat 301.
  • the size of skirt structure 308 is designed so that the side surface of skirt structure 308 and the side surface of bottom seat 301 together form a smooth surface.
  • the radius of skirt structure 308 is larger than the radius of bottom seat 301, so that the side surface of skirt structure 308 and bottom seat 301 resembles a side surface of an inverted cone.
  • the side surfaces of skirt structure 308 and bottom seat 301 may together form a cylindrical side surface. That is, the radius of the skirt structure and the radius of the bottom seat may be the same.
  • one or more handles 307 of pot 302 may be disposed on the side surface of skirt structure 308.
  • Two handles 307 may be provided symmetrically on opposite sides of pot 302, so that a user can easily lift pot 302 from bottom seat 301 by grabbing handles 307.
  • the number of handles 307 may be one. That is, the user can grab the handle from one side.
  • handle (s) 307 may be fixedly attached to skirt structure 308, so that handle (s) 307 are not removable from pot 302. The fixed connection may be screw locking or the like.
  • handle (s) 307 may be made movable.
  • handle (s) 307 may be foldable or rotatable, so that they can be stored away when not in use to reduce its size.
  • lid 303 is disposed on top of pot 302 to cover pot 302, so that dishes inside inner pot 306 are isolated from the outside world. Lid 303 may be structurally separated from pot 302, with no connection structure between the two. In some embodiments, lid 303 may be configured to open and close automatically based on a control command without human operation. This improves the user experience and reduces potential hazards. In some embodiments, lid 303 may have at least two states. In one state shown in FIG. 3, lid 303 is in contact with and covers the top rim of pot 302, that is, lid 303 is in a closed state. In the other state shown in FIG.
  • arm unit 5 may be configured to provide support when lid 303 opens or closes.
  • Arm unit 5 may include a supporting arm 501 and a rotating arm 502 that can rotate relative to each other. Thus, arm unit 5 may control the rotation, open, and close of lid 303.
  • supporting arm 501 is fixed, and rotating arm 502 is rotatable about an axis relative to supporting arm 501. The axis may be approximately horizontal and perpendicular to a longitudinal axis of lid 303 when lid 303 is placed on pot 302.
  • rotating arm 502 may have a rotation range of 60 degrees relative to supporting arm 501.
  • supporting arm 501 may be fixed on base 2.
  • supporting arm 501 may be disposed located near bottom seat 301, such that supporting arm 501 does not affect the normal operation of pot 302 on the bottom seat 301, and supporting arm 501 provides a base height for more easily controlling lid 303.
  • supporting arm 501 is set to closely fit with a part of the contour surface of the bottom seat 301.
  • base 2 has one side near the user and the other side away from the user.
  • supporting arm 501 may be disposed on the other side away from the user.
  • Transmission structure 523 may be configured to convert the longitudinal rotation drive of first motor 503 into the axial rotation of output end 504 in the horizontal direction. In view that a large torque is required for output end 504 to drive lid 303 and other structures, transmission structure 523 may have a reasonable speed reduction ratio design to increase the output torque.
  • transmission structure 523 may include a worm wheel gear assembly or an epicyclic gear.
  • the power unit may transmit power to the rotating arm by shaped matching.
  • output end 504 may have power surface 505
  • rotating arm 502 may have slave surface 506, and power surface 505 is matched with slave surface 506 to achieve power transmission.
  • Power surface 505 and slave surface 506 may both be flat surfaces crossing at an angle (e.g., 90 ⁇ 180 degrees) and in close contact with each other and tightly fit together to achieve the power transmission; and when they are disengaged, the power connection is lost.
  • output end 504 of the power unit may have a waist-shaped configuration.
  • output end 504 may have a horizontal output shaft axis, and a projection of output end 504 in a cross-sectional plane perpendicular to the shaft line is a waist-shaped configuration.
  • the waist-shaped configuration may include a pair of straight edges 507 and a pair of curved edges 508, where straight edges 507 are set parallel to each other at a preset distance apart, and the curved edges 508 are set opposite to each other and located between the straight edges 507, and curved edges 508 projects outward.
  • the length of straight edge 507 is greater than the radius of curved edge 508, so that the entire waist structure has an elongated profile. Further, a straight edge 507 may be tangential to a curved edge 508. In some embodiments, output end 504 may have other shapes, such as triangular or hexagonal shapes.
  • the center line of the waist structure may be set horizontally, and the center line overlaps with the output shaft axis. The central part of the waist structure has an opening for connecting the transmission structure, and the center line and the output shaft axis also pass through the opening. A projection of the power surface 505 in the cross-sectional plane falls upon the straight edge.
  • rotating arm 502 has waist-shaped connector 509 matching with the waist-shaped configuration of the output end.
  • waist-shaped connector 509 may be located at one end of rotating arm 502, e.g., near the end of supporting arm 501.
  • Waist-shaped connector 509 may be connected to a periphery of the waist-shaped structure of output end 504, so that waist-shaped connector 509 and the waist-shaped structure of output end 504 can rotate synchronously.
  • the other end of rotating arm 502, i.e., the end away from supporting arm 501 has first snap-on section 510 connected to lid 303.
  • First snap-on section 510 and lid 303 may be configured to quickly engage and disengage. As shown in FIGs.
  • Second snap-on section 311 may be disposed on mounting port 310 of lid 303.
  • Second snap-on section 311 has a tongue in the circumference around the center axis.
  • Groove 511 may be disposed on first snap-on section 510 of rotating arm 502 in a circumferential direction. Further, an end of groove 511 has a groove entrance. The opening direction of the groove entrance is perpendicular or at an angle to the extended direction of groove 511. The tongue may enter groove 511 from the groove entrance and move in the circumferential direction to complete the positioning.
  • lid 303 When lid 303 needs to disengage from rotating arm 502, lid 303 may be turned in the opposite direction, or in the second direction relative to second snap-on section 311. The second direction is opposite to the first direction, so as to allow the tongue to slide out of groove 511 to disengage, and lid 303 separates from rotating arm 502, which is convenient for storing or cleaning lid 303.
  • the waist-shaped connector of the rotating arm has a slave surface that matches with a power surface.
  • the waist-shaped connector has at least two slave surfaces: first slave surface 512 and second slave surface 513.
  • the power surface may engage with either first slave surface 512 or second slave surface 513.
  • Power surface 505 may engage with first slave surface 512 during normal power transfer, i.e., when output end 504 outputs power to drive the rotation of the lid 303. When the normal power transfer ends, i.e., when output end 504 stops outputting power, power surface 505 disengages from first slave surface 512 and engages with second slave surface 513.
  • first gap 514 When power surface 505 and first slave surface 512 are engaged, power surface 505 and second slave surface 513 are separated by first gap 514.
  • second gap 515 When power surface 505 and second slave surface 513 are engaged, power surface 505 and the first slave surface 512 are separated by second gap 515.
  • the area of first gap 514 may be no less than the area of the second gap 515.
  • first slave surface 512 and second slave surface 513 may both be planar and are connected to each other at an angle, so that power surface 505 may switch from engagement with one slave surface to another while in rotation.
  • the angle between first slave surface 512 and second slave surface 513 back-facing the power surface is an obtuse angle, e.g., 170 degrees.
  • waist-shaped connector 509 may also have curved contour edge 516 to match with curved edge 508 of output 504.
  • Curved contour edge 516 and curved edge 508 may have the same degree of curvature.
  • the arc length of curved contour edge 516 is greater than the arc length of curved edge 508, so that when power surface 505 switches engagement from first slave surface 512 to second slave surface 513, curved edge 508 stays in close contact with curved contour edge 516.
  • first slave surface 512, the second slave surface 513, and the curved contour edge 516 of the waist-shaped connection 509 may be connected in sequence.
  • first slave surface 512 respectively connect with second slave surface 513 and curved contour edge 516.
  • second slave surface 513 respectively connect with curved contour edge 516 and first slave surface 512.
  • curved contour edge 516 respectively connect with first slave surface 512 and second slave surface 513.
  • lid 303 since lid 303 has a closed position closing the pot 302 and an open position opening the pot 302, rotating arm 502 may drive lid 303 to switch between the closed position and the open position.
  • kitchen robot 1 may have trigger switches 517 corresponding to the closed position and the open position respectively.
  • Rotating arm 502 may trigger a corresponding trigger switch when rotating to a preset position.
  • Flange 518 may be disposed on rotating arm 502 and in contact with and trigger a corresponding trigger switch to generate a trigger signal accordingly.
  • the number of trigger switches 517 is two, and the two trigger switches 517 may be distributed along the vertical direction.
  • Trigger switches 517 and flange 518 may be disposed in an internal cavity of supporting arm 501. In some embodiments, two flanges and one trigger switch may be installed. Fixing bars may be disposed in the internal cavity of supporting arm 501 to fix the position of the trigger switch and first motor 503. Flange 518 may be disposed on waist-shaped connector 509 of rotating arm 502, so that flange 518 and slave surface 506 can rotate simultaneously.
  • first motor 503 when a user wants to close lid 303 or when a program or software automatically controls the closing of lid 303, first motor 503 starts to output rotating power. At this time, because power surface 505 of output end 504 and first slave surface 512 of rotating arm 502 are engaged, first motor 503 drives rotating arm 502 and the connected lid 303 to rotate towards the closed position. This movement is maintained until flange 518 on rotating arm 502 triggers one of trigger switches 517 to generate a signal to kitchen robot 1 to determine that lid 303 is closed in place and accordingly to control first motor 503 to shut down and stop power output. Therefore, power surface 505 of output end 504 also stops rotating immediately.
  • first slave surface 512 and second slave surface 513 may be disposed on rotating arm 502.
  • rotating arm 502 may continue to rotate for a short period of time by the gravity or rotational inertia of lid 303, so that slave surface 506 that matches with the power surface 505 switches from first slave surface 512 to second slave surface 513. This allows rotating arm 502 and lid 303 to continue moving a little further after first motor 503 stops rotating, thus achieving the purpose of completely closing the pot 302.
  • the kitchen robot may automatically add seasonings.
  • kitchen robot 1 may include seasoning unit 4 in addition to cooking unit 3.
  • Seasoning unit 4 may be configured to automatically add seasonings to pot 302.
  • seasoning unit 4 may be disposed on top of lid 303.
  • seasoning unit 4 may be disposed directly above lid 303. That is, the centerline of seasoning unit 4 coincides with the centerline of lid 303.
  • Drop port 312 may be disposed on lid 303, and drop port 312 may be configured to not interfere with a center opening of lid 303. Drop port 312 opens upwards.
  • An output port is disposed on seasoning unit 4, and the output port opens downward.
  • seasoning unit 4 When seasoning unit 4 is in a suitable position, drop port 312 and the output port of the seasoning unit 4 are aligned, and seasonings in seasoning unit 4 will enter the pot 302 through the drop port 312 and the output port of the seasoning unit 4 by gravity, thus completing ingredient filling.
  • seasoning unit 4 includes seasoning box 402 and driver structure 420 that drives seasoning box 402.
  • Seasoning cavity 403 may be disposed in seasoning box 402 for storing seasonings.
  • Driver structure 420 that drives the seasoning box 402 and rotating arm 502 and lid 303 have different sources of power.
  • driver structure 420 may be used to exclusively drive the seasoning box 402.
  • Driver structure 420 may include second motor 425 and a transmission structure. Through the transmission structure, second motor 425 may drive seasoning box 402 to rotate. Further, seasoning box 402 may rotate around an output shaft axis. The output shaft axis of seasoning box 402 may be set parallel to the center line of lid 303.
  • the output shaft axis of seasoning box 402 may be set longitudinally.
  • the output shaft axis of seasoning box 402 coincides with its center line, i.e., seasoning box 402 rotates around its center line.
  • driver structure 420 may control the seasoning box 402 to rotate to a position where drop port 312 and the output port are aligned, so that the seasonings can leave the seasoning box and enter the pot.
  • seasoning box 402 has multiple seasoning cavities 403 that are independent of each other, because it is often necessary to use multiple seasonings to cook a dish, and it is undesirable to mix the seasonings with each other. Therefore, seasoning box 402 may have multiple rotation positions, and each seasoning cavity 403 can be aligned with the output port and drop port 312 at a corresponding rotation position.
  • seasoning box 402 may be disposed on the rotating arm.
  • seasoning box 402 may be disposed on one end of rotating arm 502 away from supporting arm 501.
  • Rotating arm 502 has some thickness in the middle of its body, and a flat supporting disc 519 is disposed at an end of rotating arm 502. The thickness of supporting disc 519 is much less than the thickness of rotating arm 502 as a whole.
  • Supporting disc 519 has two opposite sides.
  • Seasoning box 402 may be disposed on supporting disc 519, and lid 303 may be disposed on supporting disc 519.
  • seasoning box 402 When seasoning box 402 is installed on supporting disc 519, the thickness of seasoning box 402 and supporting disc 519 altogether is approximately the same as the thickness of the middle of the rotating arm 502 as a whole.
  • seasoning box 402 may be disposed on one side of supporting disc 519, while lid 303 may be disposed on the opposite side of supporting disc 519. Therefore, supporting disc 519, as a part of rotating arm 502, is sandwiched between lid 303 and seasoning unit 4.
  • First snap-on section 510 may be disposed on the other side of supporting disc 519, thus matching second snap-on section 311 of lid 303, so that lid 303 may be detachably mounted on the other side.
  • seasoning box 402 may be detachably mounted on supporting disc 519.
  • seasoning box 402 and supporting disc 519 may be magnetically attached to each other. After installation, seasoning box 402 and supporting disc 519 may be magnetically attracted to each other. When a user needs to separate the two, they can be separated by overcoming the magnetic attraction, which is very convenient. As shown in FIG. 9, bulge 520 may be disposed on supporting disc 519, and seasoning box 402 may be mounted on bulge 520. Bulge 520 may be symmetrically configured about a center of supporting disc 519. After seasoning box 402 is installed onto bulge 520, the center of seasoning box 402 also coincides with the center of supporting disc 519.
  • Magnetic material 521 may be disposed on bulge 520, and similarly, a magnetic material may be disposed on seasoning box 402. In order to have uniform attraction, magnetic material 521 on bulge 520 may have a ring shape.
  • seasoning box 402 may have an overall cylindrical shape with a preset thickness.
  • Seasoning box 402 may include a cover body (e.g., 405 and 406 together) and a body 404 inside the cover body.
  • FIG. 10 shows top cover 405, body 404, and bottom structure 406 separated in space, body 404 may be placed inside bottom structure 406, and top cover 405 may be configured to cover bottom structure 406 with body 404 placed inside.
  • the cover body may form a periphery of seasoning box 402 as a protection cover, and may be hollow inside.
  • Body 404 may be disposed in the cover body. Body 404 may be driven for rotational movement after installation, while the cover body may be fixed.
  • seasoning box 402 may be quickly disassembled from supporting disc 519 on rotating arm 502, and the cover body and body 404 inside seasoning box 402 may be quickly disassembled to facilitate routine maintenance and cleaning.
  • the cover body may include a top cover 405 and a bottom structure 406.
  • Top cover 405 and bottom structure 406 may fit together to form a cavity space.
  • FIG. 10 shows the top surface of body 404 with one or more seasoning cavities 403, one or more sealed cavities 415, etc.
  • the bottom surface of body 404 (on the other side of the paper) is substantially parallel to the top surface of body 404.
  • First axis 327 may pass through the center of transmission hole 418 and be perpendicular to the top surface and bottom surface of body 404.
  • top cover 405 covers the top surface of body 404 and bottom structure 406 covers the bottom surface of body 404.
  • top cover 405 and bottom structure 406 are separated, thus body 404 can be easily removed from the space.
  • the cover body may take various forms.
  • the cover body may be formed by splicing three parts together, or the cover body may be formed in one piece.
  • Bottom structure 406 may be supported on supporting disc 519.
  • Bottom structure 406 may include a circular side wall 407 and a circular bottom 408.
  • Side wall 407 may be configured to enclose the flanks of body 404.
  • First opening 409 may be disposed at the center of bottom 408, and second opening 410 is set off the center of bottom 408.
  • First opening 409 may be configured for engaging onto bulge 520, so that bottom structure 406 may lay on support disc 519.
  • the diameter of bulge 520 may be slightly smaller than the diameter of first opening 409, so that first opening 409 fits onto bulge 520 and facilitates the positioning of the entire seasoning box 402.
  • First opening 409 may include a side wall extending in a direction of the opening, the side wall extending in the direction of the body, i.e., towards the inner side of bottom structure 406, such that the side wall and body 404 may match and engage.
  • Second opening 410 may also be configured to engage and align with the opening 411 on supporting disc 519.
  • Second opening 410 may also include a side wall extending in the direction of the opening, with the side wall of second opening 410 extending towards supporting disc 519, i.e., towards the outer side of the bottom structure, to engage with the opening 411 on supporting disc 519.
  • Opening 411 on supporting disc 519 may be aligned with drop port 312 on lid 303, thus ensuring that opening 411 and drop port 312 are connected. Therefore, with the relationship between second opening 410 and opening 411, second opening 410 on bottom structure 406 may be aligned with drop port 312 on the lid, when bottom structure 406 is mounted on supporting disc 519.
  • top cover 405 may have a circular shape.
  • the area of the top of top cover 405 is comparable in size to the area of bottom 408 of bottom structure 406.
  • Top cover 405 may include seasoning filling port 412 and cover plate 413 for opening and closing seasoning filling port 412.
  • cover plate 413 When seasoning needs to be added, cover plate 413 may be opened to expose the seasoning filling port; when seasoning does not need to be added, cover plate 413 may be closed to seal the seasoning filling port 412.
  • cover plate 413 When cover plate 413 is open, seasonings may be added to seasoning cavities 403 of body 404 from seasoning filling port 412.
  • cover plate 413 may be slidingly operated along the surface of top cover 405.
  • Sliding rail 414 may be disposed on a surface of top cover 405, and cover plate 413 has a rail to move along sliding rail 414. As shown in FIG. 11, when cover plate 413 of top cover 405 slides off sliding rail 414, sliding rail 414 and seasoning filling port 412 of top cover 405 are revealed. In some embodiments, cover plate 413 may be operated in other ways, such as push-button, touch, etc. In addition, to achieve better assembly with bottom structure 406, top cover 405 may have a step structure on the side of the cover 405 that fits into the side wall of bottom structure 406. Seasoning filling port 412 may have various shapes, such as square, circle, triangle, etc.
  • FIG. 14 provides a section view of the seasoning unit of the kitchen robot. That is, FIG. 14 shows a section view of top cover 405 with cover plate 413, body 404, and bottom structure 406 are installed together, and body 404 has been rotated to a position where seasoning filling port 412 aligns with a first seasoning cavity of seasoning cavities 403 (so that seasoning can be added to the first seasoning cavity) and output port 401 aligns with a second seasoning cavity of seasoning cavities 403 (so that the seasoning in second seasoning cavity can be drop into a pot placed below output port 401) .
  • seasoning filling port 412 and output port 401 do not overlap along a direction of an axis (e.g., the first axis) passing through a center of body 404 and perpendicular to the top surface and/or the bottom surface of body 404. This may separate seasoning refilling from seasoning dispensing.
  • axis e.g., the first axis
  • top cover 405 and bottom structure 406 may be fixed in position relative to body 404.
  • both top cover 405 and bottom structure 406 may be removably mounted, while body 404 may be rotatably mounted between top cover 405 and bottom structure 406.
  • Body 404 may be substantially cylindrical and magnetically attached to the cavity space formed by the cover.
  • Body 404 may include seasoning cavities 403. Seasonings may be added to seasoning cavities 403 from outside via seasoning filling port 412 for temporary storage, and then poured into pot 302 at a suitable time. Since cooking a dish may require multiple seasonings, and each dish may require different seasonings, there may be multiple seasoning cavities 403 in body 404. And multiple seasoning cavities 403 are independent of each other: each seasoning cavity may store one kind of seasoning, so that the different seasonings do not mix up with each other.
  • each seasoning cavity may contain several seasonings that do not interfere with each other.
  • the seasoning may be in solid or liquid form.
  • the number of seasoning cavities 403 is five, taking into account the type of seasoning typically required for a dish and the volume of the seasoning cavity.
  • the number of seasoning cavity 403 may be seven, six, four, three, etc.
  • Seasoning cavity 403 may be in the form of a through-hole, with both ends open and the center through. A first end of the through-hole may be on a top surface of body 404 and substantially matches with seasoning filling port 412, and a second end of the through-hole may be on a bottom surface of body 404 and substantially matches with output port 401.
  • Seasoning cavity 403 extends along the longitudinal direction.
  • body 404 may include sealed cavity 415 provided in parallel with seasoning cavity 403. Similar to seasoning cavity 403, sealed cavity 415 may extend in the longitudinal direction, except that both ends of sealed cavity 415 are closed.
  • the number of sealed cavities 415 may be one, two, three, four, etc.
  • Seasoning cavity 403 and sealed cavity 415 may be arranged around the centerline of body 404 in a ring.
  • the total number of seasoning cavities 403 and sealed cavities 415 is six, and the six cavities are evenly distributed along the ring. Therefore, the angle between two adjacent cavities is approximately 60 degrees. The angle may vary depending on the total number of cavities, roughly between 30 and 120 degrees. As shown in FIG.
  • body 404 may have depression 417. Depression 417 may be located at the center of body 404, and the output shaft axis of body 404 may pass through depression 417.
  • the structure of depression 417 may be a blind via hole in the body. The opening of the blind via hole faces bottom structure 406.
  • the blind via hole is located at the center of body 404, and its function is to match the shape of bulge 520 of supporting disc 519. When supporting disc 519 is installed in the seasoning box 402, bulge 520 on supporting disc 519 passes through first opening 409 at the center of bottom structure 406, and then fits into the blind via hole in body 404.
  • Transmission hole 418 may be disposed at the bottom of the blind via hole, which is the top of body 404. Transmission hole 418 may be used to connect with second motor 425 to achieve power transmission, so that second motor 425 may drive body 404 to rotate.
  • transmission hole 418 may include inner gear 419 that engages with the transmission gear of second motor 425.
  • driver structure 420 which drives the rotation of body 404, may be disposed in the depression 417 of body 404, so that seasoning cavity 403 of body 404 may be located at the same level with driver structure 420.
  • the height of seasoning cavity 403 and the height of driver structure 420 may be substantially the same.
  • Driver structure 420 may be located in the center, and seasoning cavities 403 may be arranged along around driver structure 420 in a ring.
  • the center line of driver structure 420 may be coincident with the center line of depression 417, and also coincident with the center line of lid 303.
  • Transmission hole 418 may be located at the bottom of depression 417 and engage with the gears of driver structure 420, so that second motor 425 directly drives the body 404 to rotate. This gearing facilitates the quick disassembly of body 404 and driver structure 420.
  • driver structure 420 since bulge 520 of supporting disc 519 engages with depression 417 of body 404, driver structure 420 may be disposed in the internal space of bulge 520.
  • the internal space of bulge 520 is slightly larger than the volume of driver structure 420, and slightly smaller than the internal space of depression 417 of body 404, and all three of them are connected in an interlocking relationship. At the same time, bulge 520 may be used as an outer cover to protect driver structure 420.
  • second motor 425 is a stepper electric driver, which may precisely control the rotation angle of body 404 in each cycle.
  • the stepper electric driver may rotate in one direction, such as clockwise, to simplify the control.
  • body 404 may be driven by driver structure 420 to rotate about its central axis (e.g., the first axis) .
  • body 404 may have multiple rotation positions relative to the cover body.
  • seasoning cavity 403 of the body and second opening 410 of bottom structure 406 are aligned, thus forming the output port 401 in the open state. Since drop port 312 on lid 303 and second opening 410 on bottom structure 406 are connected, seasonings in seasoning cavities 403 may pass through output port 401 and drop port 312 and enter into pot 302, which is a dispense position. Since the body may have multiple seasoning cavities 403, each seasoning cavity may correspond to a dispense position.
  • seasoning box body 404 may include sealed cavity 415.
  • sealed cavity 415 of body 404 is aligned with second opening 410 on bottom structure 406, thus forming a closed output port 401, at which time all the seasoning cavities are closed by bottom structure 406 -this is the sealed position.
  • the number of sealed positions and the number of sealed cavities are also equal. In one embodiment, there is one sealed cavity and only one sealed position. During one rotation of body 404 around the first axis, multiple dispense positions and sealed cavity positions will appear one by one.
  • seasoning filling port 412 on top cover 405 fits with seasoning cavity 403 of body 404 similarly as second opening 410 on bottom structure 406 fitting with the seasoning cavity 403.
  • Top cover 405 may be disposed near a top opening of seasoning cavity 403.
  • body 404 may be rotated, and at each filling position, one seasoning may be added to the seasoning cavity aligned with seasoning filling port 412, and then at the next filling position, there will be another seasoning cavity aligned with the seasoning filling port, where another seasoning can be added. So for seasoning cavity 403, the seasoning may be added from the top of body 404, and when the seasoning needs to be dispensed, the seasoning is dropped into the pot from the bottom of body 404.
  • seasoning cavity 403 needs to be sealed to prevent leakage of the seasoning from the end. Therefore, seasoning cavity 403 has sealing component 421 at the end of seasoning cavity 403, and sealing component 421 may be sealed against the inner surface of the lid.
  • sealing component 421 may be made of a different material than the seasoning cavity. Sealing component 421 may be made of silicone and is therefore highly flexible. Further, the material of the sealing component must be food-safe and must not cause food contamination. In some embodiments, sealing component 421 may be made of other materials with a preset degree of flexibility.
  • Seasoning cavity 403 may be provided with a sealing component at each of the top and bottom of each seasoning cavity 403.
  • the inner surface of the cavity is made of a different material, so that the friction coefficient between the different material and the material of the sealing component is less than 0.8.
  • the friction coefficient is less than 0.5.
  • the different material may be sprayed on the inner surface of the cover body.
  • the different material is polytetrafluoroethylene, i.e., Teflon, sprayed on the inner surface of the cover body.
  • the flexible silicone is in touch with the surface of the Teflon, thus forming a better seal.
  • the flexible silicone is slightly deformed, and under the driving force of the driver structure, the silicone slides on the surface of the Teflon without generating large frictional forces, thus reducing the torque required from the driver structure.
  • the material of the inner surface of the cover body may be glass, and the silicone slides on the surface of the glass. Similarly, this does not create a large frictional force.
  • top cover 405, bottom structure 406, and body 404 may be magnetically attached to each other in the direction of the centerline extension.
  • the body includes first magnetic material 423, while the top cover and bottom structures each include second magnetic material 424.
  • a highly lubricious material may be disposed between first magnetic material 423 and second magnetic material 424 to reduce friction.
  • First magnetic material 423 and second magnetic material 424 are magnetically attracted when they are within a preset distance. Therefore, top cover 405 and body 404 attract each other, and bottom structure 406 and body 404 also attract each other.
  • First magnetic material 423 may be a magnet
  • second magnetic material 424 may be iron or another metallic material.
  • first magnetic material 423 may be iron or another metallic material
  • second magnetic material 424 is a magnet
  • body 404 may include no magnetic material, but first magnetic material 423 is disposed in top cover 405, and second magnetic material 424 is disposed in bottom structure 406.
  • First magnetic material 423 and second magnetic material 424 are magnetically attracted to each other, so that body 404 between top cover 405 and bottom structure 406 are clamped and positioned.
  • top cover 405 and bottom structure 406 may include no metal materials such as iron sheets, but include corresponding quick-release structures, which facilitate quick disassembly and assembly of the top cover 405 and bottom structure 406.
  • the quick-release structure can be a combination of clips and slots, or a combination of tongue and groove.
  • the weight of the top cover 405 and bottom structure 406 may be further reduced compared to the metallic material.
  • kitchen robot 1 may include spatula 320.
  • Spatula320 may be disposed in pot 302 and configured to perform functions such as stir-frying the dish while cooking.
  • Kitchen robot 1 of the present application may be configured to control spatula 320 to perform stir-fry automatically, saving the time and effort of the user. Therefore, kitchen robot 1 may include driver component 321 for driving spatula 320 to rotate.
  • driver component 321 may be disposed outside pot 302, and spatula 320 may be disposed inside pot 302.
  • Driver component 321 may include, for example, a motor or any other alternative driving source. As shown in FIG. 2, driver component 321 may be disposed above lid 303, and spatula 320 may be disposed below lid 303.
  • Spatula 320 may be removably connected to driver component 321 by plugging and unplugging, which facilitates quick replacement and cleaning.
  • Driver component 321 may include output shaft 322, and spatula 320 may include sleeve 323 connected to output shaft 322, and output shaft 322 may be snapped into sleeve 323 to form a power transmission.
  • Magnet 324 may be disposed at the bottom of sleeve 323, and output shaft 322 may include magnetic material, so output shaft 322 can be quickly inserted into sleeve 323 and positioned.
  • the side surfaces of sleeve 323 and output shaft 322 have a mistake-proof design to prevent relative rotation between sleeve 323 and output shaft 322 during power transmission.
  • output shaft 322 is hexagonal, and sleeve 323 has a matching hexagonal shape.
  • Driver component 321 may include electric driver 325, output shaft 322, and belt 319 connecting output shaft 322 and electric driver 325.
  • Electric driver 325 may be a motor disposed in rotating arm 502. In some embodiments, since seasoning unit 4 is disposed above lid 303, electric driver 325 of the driver component 321 may therefore be configured off the center, leaving room for seasoning unit 4.
  • Output shaft 322 of driver component 321 may be configured along the center line of lid 303, and electric driver 325 and output shaft 322 may be connected by belt 319. Through belt 319, electric driver 325 may drive output shaft 322 to rotate around the center line of output shaft 322.
  • Electric driver 325 may be a DC brushed electric driver, which provides stable and reliable output with low loss. Further, in order to keep the speed of output shaft 322 within a desired range, driver component 321 may also include a reduction gearbox.
  • spatula 320 may include support structure 326.
  • Sleeve 323 may be fixed to support structure 326. Therefore, the output shaft 322 may drive support structure 326 to rotate around the centerline of output shaft 322, i.e. first axis 327.
  • First axis 327 may be coincident with the center line of lid 303.
  • support structure 326 may have a horizontal bottom 328 and a vertical side 329. Bottom 328 and side 329 form a holding space to support and accommodate the mutually engaging first gear block 331 (e.g., one or more first gears coupled together) and second gear block 332 (e.g., one or more second gears coupled together) .
  • Bottom 328 and side 329 may form an integrated body.
  • the drive assembly may include a housing cover 330 disposed on the support structure 326, forming a closed housing space.
  • Housing cover 330 may be a matching cover of bottom 328.
  • Housing cover 330 improves the sealing of the holding space and prevents first gear block 331 and second gear block 332 located in the holding space from receiving liquid gases such as water vapor from the pot 302.
  • the projected cross-section of housing cover 330 and the projected cross-section of bottom 328 may be substantially the same.
  • housing cover 330 may be removable from bottom 328, and silicone is provided around the perimeter of housing cover 330 to meet both the requirements of sealing and quick disassembly.
  • first gear block 331 may be fixed.
  • First gear block 331 may include a rotation stopper structure 334.
  • rotation stopper structure 334 is the inner gear on first gear block 331.
  • First snap-on section 510 of rotating arm 502 includes outer gear 522 that fits the inner gear. Once first gear block 331 is in place, the inner gear and outer gear 522 engage with each other. Since first snap-on section 510 is fixed to rotating arm 502, first gear block 331 may be fixed by the inner and outer gears and cannot rotate.
  • Alternative forms of rotation stopper structure are possible in other embodiments, as long as first gear block 331 is held in place.
  • first gear block 331 may be attached to the outside of the sleeve 323, and a shaft bushing 335 may be disposed on the inside of the first gear block 331.
  • Sleeve 323 may rotate relative to shaft bushing 335, that is, when sleeve 323 is driven by output shaft 322 to rotate, shaft bushing 335 does not rotate accordingly and first gear block 331 is in a relatively fixed position.
  • first gear block 331 may be installed at other locations on the support structure, as long as first gear block 331 is fixed in position.
  • second gear block 332 is movable. Since second gear block 332 is engaged with first gear block 331, second gear block 332 may rotate around the circumference of first gear block 331. In order to control the appropriate speed ratio, the number of teeth of second gear block 332 is less than that of first gear block 331. The centerline of second gear block 332 is set off the center of rotation of output shaft 322.
  • spatula 320 may include a working head used to process food.
  • the working head of the spatula may include stirrer 340.
  • Stirrer 340 may be configured to stir and even stir-fry food.
  • stirrer 340 may include two or more stirring arms 341 centrally symmetrical about second axis 337.
  • FIG. 18 shows two stirring arms 341.
  • the length of each stirring arm (e.g., from the tip of the stirring arm to second axis 337) may be larger than the distance between first axis 327 and second axis 337.
  • a length of stirrer 340 may be larger than the radius of pot 302 and smaller than the diameter of pot 302.
  • Each of the two or more stirring arms may be curved in the direction of the rotational movement of stirring arms 341 and is more curved at the middle than the edges of each arm. Therefore, as shown in FIG. 18, the entire stirrer 340 roughly resembles an S shape when viewed from above.
  • Each stirring arm may include slanted plane 342 disposed at the same location at one end of the stirring arm near stirrer edge 345, and the other end of the stirring arm is connected to the rotation shaft 343.
  • the stirring arms may rotate about the axis (second axis 337) of rotation shaft 343.
  • the thickness of each stirring arm grows smaller along the slanted plane towards stirrer edge 345.
  • the number of slanted planes 342 is two, and the slanted planes are centrally symmetrical about the rotation shaft 343.
  • the stirrer 340 is made of different materials.
  • the stirrer body 344 is made of a rigid material, while the stirrer edge 345 is made of a soft material.
  • the part of the stirrer that touches the dish is mainly the soft material.
  • the soft material is silicone, which is installed on the edges of the stirrer by an injection molding process. The advantage of using this material is that it adequately fills the gap between stirrer 340 and the inner wall of pot 302, without jamming or excessive resistance.
  • Stirrer body 344 may be made of metal, such as aluminum or aluminum alloy. The metal may be coated with Teflon.
  • rotation shaft 343 of stirrer 340 may be connected to the center of second gear block 332. As shown in FIG. 15, the rotation shaft 343 may be fixedly screwed to second gear block 332, so that second gear block 332 drives stirrer 340 to rotate synchronously.
  • first axis 327 may be perpendicular to a horizontal plane of lid 303 and may pass through a center of lid 303, and second axis 337 may be parallel to the first axis and off the center of lid 303.
  • the center line of second gear block 332 is defined as second axis 337, so that stirrer 340 may rotate around second axis 337.
  • Second axis 337 and first axis 327 may be parallel to and spaced from each other.
  • second axis 337 may be configured off the center with respect to first axis 327.
  • first gear block 331 and second gear block 332 are engaged at a position between first axis 327 and second axis 337.
  • second gear block 332 may drive stirrer 340 to rotate around second axis 337.
  • support structure 326 of the spatula 320 may rotate around first axis 327 at the same time, so that stirrer 340 may simultaneously revolves about first axis 327 and rotates about second axis 337.
  • driver component 321 may be configured to drive stirrer 340 to simultaneously revolve about first axis 327 and rotate/spin about second axis 337. This increases the stirring area in the pot without increasing the number of stirrers.
  • the drive assembly may be coupled to the spatula and the driver component and include a support structure.
  • the support structure may include a sleeve coupled to the output shaft, and the stirrer may be rotatively connected to the support structure along the second axis and configured to revolve about the first axis.
  • the drive assembly may include two drive paths (e.g., two different sets of gears and/or shafts) driven by the motor of the driver component.
  • first drive path output shaft 322 directly drives support structure 326 around first axis 327, so that stirrer 340 also revolves around first axis 327.
  • second drive path output shaft 322 drives support structure 326 while driving second gear block 332 around first gear block 331, and second gear block 332 drives stirrer 340 to rotate around second axis 337.
  • the height L1 from the top to the bottom of stirrer 340 may be in the range of 25mm to 35mm for a good mixing effect.
  • the distance L2 measures the length of stirrer 340.
  • the distance L3 between the top of stirrer 340 and lid 303 may be in the range of 45mm to 65mm.
  • the working head of spatula 320 may include scraper 350.
  • Scraper 350 may be configured to scrape off food stuck on the inner wall of the pot.
  • scraper 350 may be driven by driver component 321 to rotate.
  • scraper 350 is driven to rotate about first axis 327.
  • Scraper 350 may be fixedly connected to support structure 326, so that scraper 350 rotates together with support structure 326.
  • scraper 350 and stirrer 340 may be disposed on each side of support structure 326. That is, with sleeve 323 that is crossed by the rotation centerline being in the middle, scraper 350 and stirrer 340 may be disposed on opposite sides of sleeve 323.
  • scraper 350 may be further away from sleeve 323, and stirrer 340 may be closer to sleeve 323.
  • the horizontal distance from the furthest end of scraper 350 to first axis 327 is greater than the horizontal distance from the furthest end of stirrer 340 to first axis 327.
  • scraper 350 may include scraping arm 351 extending radially along a radius of the pot.
  • Scraping arm 351 may be connected horizontally to support structure 326, so that the height of scraper 350 to the bottom of the pot is greater than the height of stirrer 340 to the bottom of the pot. In other words, stirrer 340 is closer to the bottom of the pot than scraper 350.
  • scraper body 352 may be made of a rigid material, while edge 353 of the scraper near the inner wall of the pot may be made of a flexible material.
  • scraper 350 may have a variety of configurations.
  • scraper 350 may include a horizontal scraping edge 354 and a vertical scraping edge 355.
  • Horizontal scraping edge 354 and vertical scraping edge 355 may form a T-shape.
  • one end of scraping arm 351 is connected to vertical scraping edge 355.
  • scraper 350 may include horizontal scraping edge 354 and vertical scraping edge 355.
  • Horizontal scraping edge 354 and vertical scraping edge 355 form an L-shape, and one end of scraping arm 351 is connected to horizontal scraping edge 354.
  • vertical scraping edge 355 extends downward relative to horizontal scraping edge 354.
  • horizontal scraping edge 354 and the vertical scraping edge 355 may form an inverted U-shaped structure, with one end of scraper arm 351 connected to horizontal scraping edge 354 and two vertical scraping edges 355 connected to each end of horizontal scraping edge 354.
  • the vertical scraping edges 355 extend downward.
  • vertical scraping edges 355 each have a curved arc, and the two vertical scraping edges 355 are set opposite each other in the curved direction.
  • one end of stirrer 340 of spatula 320 is set horizontally, and an inclined plane 346 is provided at the end of stirrer 340.
  • Inclined plane 346 extends outward from horizontal stirring arm 341 and gradually decreases in thickness.
  • stirrer 340 rotates only around first axis 327.
  • the number of inclined planes may be one or two. In the case of two inclined planes, the two inclined planes extend from the stirring arm 341 to each side. The width of each of the inclined planes is the same as the length of stirring arm 341 at the end of stirrer 340.
  • spatula 320 may also include scraper 350.
  • Scraper 350 may rotate about first axis 327.
  • Scraper 350 may extend radially outward from rotation shaft 343, with an angle of 180 degrees between scraper 350 and stirrer 340.
  • spatula 320 may also be provided without scraper 350.
  • a method of controlling a spatula may include: (221) controlling the rotation of the spatula, such that the rotation speed of the spatula is V1 during a start-up time; (222) controlling the rotation of the spatula, such that the rotation speed of the spatula is V2 during normal rotation, where V2 is less than V1; (223) stopping the rotation of the spatula when a rotation angle of the spatula reaches W1; and (224) repeating the above steps.
  • the step of the start-up time the spatula needs to reach a high speed from stationary in a short period of time, therefore the driver structure drives the spatula to rotate at the speed V1.
  • the start-up time may be 0.5 to 1.5 seconds.
  • the driver structure drives the spatula to rotate at the speed V2, where V2 is less than V1.
  • the spatula is rotating at a slower speed during normal operation. This is because if the speed is too high, the spatula may destroy the food.
  • the spatula has rotated by a preset angle at the speed of V2, and the driver structure drives the spatula to pause for a period of time.
  • the rotation angle W1 may be less than 90 degrees
  • the pause time may be 2 ⁇ 5 seconds.
  • the rotation angle W1 may be variable and the rotation direction of the spatula may be changeable. Then the previous steps are repeated.
  • This setup allows the spatula to rotate intermittently, which is ideal for food mixing.
  • the spatula of the above method rotates in one direction, i.e., in the same direction as the tilt of the slanted plane.
  • the direction of rotation of the spatula may be forward (e.g., clockwise) at one time period and backward (e.g., counter-clockwise) at a different time period.
  • a rotation period is from the start to the pause, and the controlled rotation angle or pause time is adjustable in different rotation periods.
  • the kitchen robot may be configured to stir-fry food during a stir-fry phase.
  • the spatula may change from a stationary state to a starting state, so the driver structure controls the spatula to reach a high speed in a short period of time. Then, after a period of time, the spatula slows down and reaches a low speed to achieve a better stir-fry effect. After a preset angle of rotation, the spatula is stopped, which helps to reduce the possibility of food piling in the pot.
  • the stir-fry performed by the kitchen robot is sometimes fast and sometimes slow and stops after a while to allow the food to be cooked evenly inside.
  • the spatula may be blocked during the stir-fry process.
  • the control method may include: (231) controlling the spatula to rotate at a preset speed, for example, in a forward direction. In this state, the spatula works in a normal state.
  • the current of the electric driver that controls the rotation of the spatula is monitored, and if the current does not increase beyond a preset value, the current is kept constant. By checking the current value of the electric driver, it is possible to identify if a blocking condition is encountered. If the current does not exceed the preset value, the electric driver is in normal operation and the rotation speed of the spatula is kept constant.
  • the spatula will remain in its original state of rotation in the forward direction.
  • the spatula may rotate at a preset speed such as 30-50 rpm. This may be the normal rotation speed of the spatula.
  • the electric driver is controlled to rotate in the opposite direction, for example, in a backward direction. If the current increase exceeds the preset value, it indicates that the electric driver has encountered a blocking condition. In such a case, the electric driver may be controlled to rotate in the opposite direction.
  • the voltage of the electric driver may be boosted, and the electric driver may be controlled to rotate in the forward direction.
  • the voltage of the electric driver may be adjusted to increase its output torque, and then the electric driver switches back to rotate in the forward direction. For example, the voltage of the electric driver may be increased to the maximum voltage (e.g., 12V) , which provides more torque.
  • the current of the electric driver may still be monitored.
  • the voltage of the control electric driver may be controlled to decrease, so that the spatula continues to rotate at the preset speed. After the voltage of the electric driver drops, the rotation speed of the spatula may remain the same as the rotation speed of the spatula in normal operation.
  • the electric driver may be controlled to rotate in the opposite direction.
  • the electric driver may be controlled to reverse the rotation (e.g., in the backward direction) , utilizing the reverse impact to solve the blocking situation.
  • the voltage controlling the reverse rotation of the electric driver may be kept at the maximum voltage while the blockage persists.
  • step 247 includes controlling the electric driver to stop rather than reverse rotation as in step 237 of FIG. 23.
  • an alarm signal may be triggered at step 247 in FIG. 24.
  • the alarm signal may be in the form of sound, light, etc.
  • sensor 360 may be provided on the spatula 320 (e.g., disposed on housing cover 330 as shown in FIG. 17) , and a receiver 361 may be disposed on lid 303 (e.g., on an edge of the drop port of lid 303) . Responsive to a sensing signal sent by sensor 360 and received by receiver 361, seasoning unit 4 may rotate to the dispense position. Projections of spatula 320 and drop port 312 in the vertical direction do not overlap. This is so that when seasoning unit 4 is ready to drop seasonings into pot 302, spatula 320 will not block drop port 312.
  • sensor 360 may be fixedly attached to spatula 320, and as the spatula rotates, sensor 360 may rotate accordingly.
  • Receiver 361 configured to receive the sensing signal from sensor 360 may be disposed on first snap-on section 510 of rotating arm 502 as shown in FIG. 25.
  • receiver 361 is relatively fixed and set close to the center line of rotation (e.g., the first axis) , so that the signal can be received more accurately. Since lid 303 is fixedly attached to first snap-on section 510, receiver 361 may also be fixedly attached to lid 303.
  • Sensor 360 may be a proximity sensor. When the sensor is in a position close to the receiver, the receiver receives a signal from the sensor, whereas when the sensor is in a position far from the receiver, the receiver cannot receive the signal from the sensor.
  • sensor 360 may be a magnet, and receiver 361 may be a magnetic switch, which sends a high-level signal or a low-level signal accordingly. Based on the position of sensor 360 relative to drop port 312 and the received sensing signal, the position of spatula 320 relative to drop port 312 may be identified.
  • the kitchen robot includes a seasoning box disposed above the lid that has an output port, a sensor disposed on the spatula and configured to emit a sensing signal indicating that the spatula is not below a drop port of the lid in a direction along the first axis, a receiver disposed on the lid or the drop port and configured to receive the sensing signal, and a micro-control unit (MCU) communicatively coupled to the receiver and configured to, responsive to the received sensing signal, rotate the seasoning box about the first axis to a seasoning dispense position that aligns the output port with the drop port for one or more seasonings in the seasoning box to drop from the seasoning box through the drop port into the pot.
  • MCU micro-control unit
  • receiver 361 may be disposed at a position away from drop port 312.
  • the center of rotation of spatula 320 e.g., the first axis
  • drop port 312 and receiver 361 form an angle ranging from 90 to 270 degrees relative to the center of rotation of the spatula 320. In one embodiment, the angle is 180 degrees. Therefore, when sensor 360 on spatula 320 rotates to a position close to the receiver, it indicates that spatula 320 is not blocking drop port 312 and the seasoning can be dropped.
  • the MCU is configured to receive signals and issue control commands that control the rotation of seasoning unit 4.
  • the MCU When the MCU receives a signal from receiver 361, it controls the rotation of seasoning unit 4 to rotate to the dispense position. When sensor 360 on spatula 320 rotates to a position away from receiver 361, it indicates that spatula 320 may have blocked drop port 312 and the seasoning dispense should be stopped. In one embodiment, the MCU controls the rotation of seasoning unit 4 to stop when the MCU does not receive the signal from the receiver.
  • the magnetic switch control outputs a high-level signal when the magnet is far from the magnetic switch and outputs a low-level signal when the magnet is close to the magnetic switch.
  • seasoning unit 4 may be controlled to rotate to the dispense position and the seasonings in the seasoning unit 4 may be fed into the pot from the drop port.
  • the preset period of time may be between 0 to 30 milliseconds.
  • a user input command or a command configured inside the program may start the first motor, and the first motor will drive the lid to open via the rotating arm.
  • the first motor stops so that the lid stays in its position.
  • the main ingredients may be easily added to the pot.
  • the first motor may start again based on an external command or an internal command to close the lid. After the lid is closed, the first motor stops.
  • auxiliary ingredients When auxiliary ingredients need to be added, they can be added from the seasoning unit, and the lid does not need to be opened until when the cooking is finished and needs to be removed from the pot. This solves the problem of frequent lid opening during cooking and reduces the user's operational burden.
  • the kitchen robot has an automatically controlled seasoning unit, which can greatly reduce the user's effort in cooking and improve the quality of life.
  • the ingredient box may rotate to the number of filling positions one by one in sequence, such that the user can correspondingly put the seasonings needed for the current dish respectively into the seasoning cavities, thus providing all the ingredients needed for the dish at once.
  • the seasoning unit of the kitchen robot may be programmed to rotate the seasoning cavities to the dispense positions one by one within a predetermined period of time, such that the auxiliary ingredients in the seasoning cavity can be fed into the pot via the output port.
  • the spatula may rotate at a high speed when it is starts rotation and rotate at a low speed past the starting stage.
  • the low speed of stirring helps to protect the dish from damage.
  • the spatula may be controlled to pause the rotation, so that the food may disperse under their own gravity without external interference, and then the spatula may resume stirring at the low speed.
  • the food is stirred in a way that more resembles a chef's stirring style.
  • the stir-fry progresses, some food tends to get entangled with the spatula, thus increasing the load on the spatula and blocking the drive operation of the spatula by the electric driver.
  • the blocking situation may be detected by monitoring the current of the electric driver. If the current increases significantly, it indicates the spatula is blocked. Then, the spatula may be controlled to reverse the rotation, so that the spatula may disengage from the place where the blockage occurred. Then, the voltage of the electric driver may be increased, e.g., to the maximum voltage, so that the electric driver has a larger output torque to drive the spatula to rotate forward and break through the place where the blockage occurred, so as to solve the problem of blockage.
  • the current of the electric driver continues to be monitored. If the current returns to normal, it indicates that the blocking problem has been solved. If the current value is still high, the blocking problem is still present, for which another plan is prepared: controlling the voltage of the electric driver, e.g., to the maximum voltage, with the same purpose as before, to increase the output torque of the electric driver, and then controlling the electric driver to reverse the rotation to break through the blocked area in an opposite direction.
  • controlling the voltage of the electric driver e.g., to the maximum voltage, with the same purpose as before, to increase the output torque of the electric driver, and then controlling the electric driver to reverse the rotation to break through the blocked area in an opposite direction.
  • the spatula may be passing under the drop port and the seasoning may fall on the spatula instead of falling inside the pot.
  • a sensor and a receiver may be installed on the spatula and the lid or rotating arm, and the position of the spatula is sensed according to the signal from the sensor.
  • the seasoning unit is controlled to add the seasoning from the drop port, to avoid having the seasoning falling on the spatula.
  • the kitchen robot may use a motor (e.g., first motor 503) to control the lid to open or close.
  • a trigger switch e.g., a light touch sensor switch
  • the trigger switch may not be timely triggered.
  • the trigger switch may need to execute a jitter detection logic, which will further delay the triggering of the trigger switch, causing the lid to be opened or closed excessively, resulting in damage to the lid and/or the motor. To address this issue, methods for automatically controlling the lid are disclosed.
  • the methods may be based on the signal generated by the motor during the actuation of the lid to automatically identify whether the lid is fully opened or closed, without relying on the physical trigger switches.
  • based on signals generated by the motor in the process of driving the lid to move such as a working current and/or a sensing signal, it can be automatically determined whether the lid has been fully opened or closed, without relying on the physical structure of the trigger switch. This protects the lid, the motor, and the gear box from damage, improves their usability, and enhances the user experience.
  • the signals generated by the motor during the actuation of the lid may include a working current signal and/or a sensing signal. Depending on the signals used, several different methods of switching the lid control are provided.
  • FIG. 26 is a schematic flow diagram of a method 260 for opening or closing a lid, according to some embodiments of the present application. As shown in FIG. 26, method 260 includes steps 261-263.
  • Step 261 may include obtaining instructions for controlling a lid of a pot to open or close, and controlling a motor to drive the lid to open or close in a direction corresponding to the instructions.
  • Step 262 may include collecting a working current value of the motor during the opening or closing movement of the lid.
  • Step 263 may include controlling the motor to stop when the working current value meets a preset opening or closing condition.
  • method 260 is applicable to a kitchen robot to automatically control the opening or closing of the lid.
  • the kitchen robot may be, for example, an automatic stir-fry machine, an electric pancake pan, or an electric rice cooker.
  • the kitchen robot may include a master control unit, such as a Central Processing Unit (CPU) , a Graphics Processing Unit (GPU) , a Microcontroller Unit (MCU) , a processor chip or microcontroller based on a Field Programmable Gate Array (FPGA) or Complex Programming logic device (CPLD) , or the like.
  • the main control unit can receive and control the lid of the pot.
  • the main control unit receives the instructions to control the opening or closing of the lid, and controls the motor to drive the lid to move in the opening or closing direction corresponding to the instructions.
  • the instructions include open lid instructions or close lid instructions.
  • the kitchen robot has a voice recognition function, and a user may send an instruction to the kitchen robot to control the opening or closing of the lid by voice, and the instruction instructs the kitchen robot to open or close the lid.
  • the user may speak to the kitchen robot: "Please open the lid” , and the main control unit of the kitchen robot receives the opening instruction, and controls the motor to drive the lid to move in the opening/closing direction corresponding to the instruction.
  • the kitchen robot has a display pad, and the user can click a virtual button on the display pad to issue an instruction to open or close the lid to the kitchen robot.
  • the control unit receives the lid opening instruction or the lid closing instruction, and controls the motor to drive the lid to move in the opening/closing direction corresponding to the instruction.
  • the way of opening or closing the lid is not limited, for example, the lid may move up or down to open or close, or may be opened and closed by rotating left and right.
  • the opening direction refers to the direction in which the lid is gradually opened away from the pot body, and the opening instruction corresponds to the opening direction;
  • the closing direction can be the direction in which the lid inches close to the pot body and gradually closes the pot body.
  • the closing instructions correspond to the direction of closing the lid.
  • the motor may drive the lid to open and close. There is a corresponding relationship between the rotation direction of the motor and the opening and closing direction of the lid, but the rotation direction of the motor and the opening and closing direction of the lid are not necessarily the same, but depending on the connection between the motor and the lid.
  • the motor rotates clockwise it may drive the lid to move from bottom to top until it is opened; when the motor rotates counterclockwise, it can drive the lid to move from top to bottom until it is closed.
  • the motor rotates clockwise it may drive the lid to rotate clockwise to the outside of the pot body until it moves outside the pot body; when the motor rotates counterclockwise, it may drive the lid to rotate counterclockwise to the outside of the pot body.
  • the torque of the motor is related to the opening or closing state of the lid.
  • the motor torque increases, and the value of the working current increases.
  • the main control unit may collect and monitor the value of the working current of the motor; based on the change in the collected value, it can be determined whether the lid is fully open or closed, and stop the motor once determining that the lid is fully open or closed, so as to position the lid in the open and close position.
  • the implementation manner of collecting the value of the working current of the motor is not limited. For example, the value of the working current of the motor may be collected irregularly or periodically.
  • the values of the collected working current may be filtered. For example, 10 current values are collected and arranged in descending order, and after averaging the 6 working current values in the middle according to the order, the value of the motor's working current may be obtained. Due to the fluctuation of the working current of the motor, the fluctuation may lead to misjudgment of whether the pot has fully opened or closed. By filtering the working current values, the probability of misjudgment may be reduced and the accuracy of determining whether the lid has fully opened or closed may be improved. Therefore, the movement state of the lid as driven by the motor is related to the duration of the working current of the motor.
  • the kitchen robot main control unit may directly detect the working current of the motor.
  • a detection pin of the main control unit may be electrically connected to a working current output terminal of the motor.
  • a voltage detection circuit is provided between the motor and the main control unit, and the voltage detection circuit may convert the working current value of the motor into the working voltage value of the motor and output it to the main control unit.
  • the main control unit of the kitchen robot may collect the working voltage value of the motor detected by the voltage detection circuit; obtain the working current value of the motor according to the working voltage value of the motor and a sampling resistance value in the voltage detection circuit.
  • the main control unit drives the motor through the motor driver chip, and the voltage detection circuit is connected between the main control unit and the motor driver chip.
  • FIG. 27 is a schematic diagram of the structure of a voltage detection circuit and its connection relationship with the main control unit and the motor driver chip, according to some embodiments of the present application. As shown in FIG.
  • the chip U9 is a motor driver chip; the voltage detection circuit includes a resistor R18, a capacitor C46, and a resistor R35; JP10 is a motor; MOTOR1 IN1, MOTOR1 IN2, and MOTO1 ADC are the pins on the main control unit; the chip U9 Pin 1 is grounded, pin 2 IN2 and pin 3 IN1 are respectively connected to pins MOTOR1 IN2 and MOTOR1 IN1 on the main control unit; pin 4 of chip U9 is connected to a 3V power supply; pin 5 of chip U9 is connected to ground through capacitor C37 and electrolytic capacitor EC2, and a 12V voltage is connected between pin 5, the capacitor C37 and the electrolytic capacitor EC2; the capacitor C37 and the electrolytic capacitor EC2 are used for filtering and stabilizing.
  • Pin 6 and pin 8 of the chip U9 are connected to the motor JP10.
  • the main control unit may send a control instruction for controlling the operation of the motor to the chip U9 through the pins MOTOR1 IN2 and MOTOR1 IN1; the chip U9 receives the control instruction and sends a drive signal to the motor JP10 through pins 6 and 8 according to the control instruction, to let the motor drive the lid to rotate.
  • pin 7 of the chip U9 is grounded through a resistor R35, and at the same time through a resistor R18 and a capacitor C46. The middle point of the resistor R18 and the capacitor C46 is electrically connected to the MOTO1 ADC of the main control unit.
  • the working current value of the motor after the working current value of the motor is obtained, it can be determined whether the working current value of the motor meets a preset opening or closing condition; if not met, it means that the lid has not been opened or closed, then continue to control the motor to drive the lid; if met, it means that the lid has opened or closed fully, and the motor is controlled to stop driving the lid.
  • This method can automatically determine whether the lid has fully closed or opened according to the working current of the motor, without relying on the physical structure of the trigger switch, and preventing the excessive opening or closing of the lid caused by response delay in the trigger switch and avoiding damage to the motor gearbox and lid.
  • the opening and closing conditions are not limited. According to the opening and closing conditions respectively, it is determined whether the working current value of the motor satisfies the setting.
  • the implementation of the predetermined opening and closing conditions may vary.
  • the action of opening the lid and a corresponding current value at the rated power of the motor may be preset.
  • a first current threshold is greater than the current value at the rated power. Based on this, the collected working current value of the motor may be compared with the first current threshold, and when the working current value of the motor is greater than the preset first current threshold, it may be determined that the motor meets resistance for further opening the lid, because of which the motor torque increases, resulting in the working current value meeting the preset opening condition. This indicates that the lid is fully opened. Thus, the motor is stopped. If the collected working current value is not greater than the first current threshold value, the motor drives the lid to continue to open.
  • a first operation time may be set to indicate the time required for the motor to stabilize from start.
  • the first operation time may vary depending on the type, model, and brand of the motor. According to the first operation time, whether the lid is opened may correspond to two situations. The first situation is that the lid is opened within the first operation time (that is, before the motor stabilizes) ; the second case is that the lid is fully opened after the first operation time (that is, after the motor stabilizes) .
  • a first duration threshold is set.
  • the maximum duration of the glitch current generated when the motor is started may be used as a reference to set the first duration threshold.
  • the first duration threshold is not less than the maximum duration of the glitch current.
  • an opening condition is set to be when the running time of the motor is less than the set first operation time, the working current value of the motor is required to be continuously greater than the first current threshold for a duration greater than the first duration threshold.
  • the first duration threshold is less than the first operation time.
  • the first duration threshold is used to filter the glitch current when the motor is started to prevent misjudgment caused by the glitch current.
  • the value of the working current of the motor satisfies the opening condition, it can be determined, during a time period from the start of the motor until reaching the first operation time, whether the value of the working current of the motor is greater than the set first current threshold, and whether the time period is greater than the first duration threshold. (i) If so, it means that the value of the working current is not the glitch current value generated during the motor starting process, but is the current value of the motor generated due to the excessive motor torque after the lid has been opened to the maximum extent.
  • the motor is controlled to stop driving the lid. (ii) If not, the motor is controlled to continue moving.
  • the detected current may be the normal working current of the motor, and the lid has not been fully opened. Thus, the motor may continue to run. If the working current is greater than the first current threshold and the duration is less than the first duration threshold, the detected current may be the glitch current when the motor starts. In such a case, the motor may continue to drive the lid.
  • the main control unit of the kitchen robot may not determine whether the working current value of the motor meets the set opening condition, and not be able to determine at what moment to stop the motor.
  • a second operation time may be set, and the second operation time is greater than or equal to the maximum time required to open the lid. If the running time of the motor is greater than the set second operation time, it may be determined that the working current value of the motor meets the set lid opening condition, and thus the motor is stopped.
  • the second operation time may be set to 4s, and the set opening condition is: the running time of the motor is greater than the second operation time, that is, the motor is stopped if it runs for more than 4s to open the lid.
  • a second duration threshold may be set.
  • the second duration threshold may refer to the duration when the motor's working current value is greater than the set first current threshold.
  • the second duration threshold is for the main control unit to detect if the motor's working current value is greater than the set first current threshold, without damaging the pot lid or the motor gearbox.
  • the set opening condition may further include: when the motor's running time is greater than the set first operation time and less than the set second operation time, the time period during which the current of the motor is continuously greater than the first current threshold is greater than the second duration threshold.
  • determining whether the value of the working current of the motor satisfies the set opening condition also includes: when the running time of the motor is greater than the set first operation time and less than the set second operation time, if the working current of the motor is continuously greater than the first current threshold for a duration greater than the second duration threshold, it may be determined that the working current value of the motor meets the set opening condition, and thus the motor is stopped.
  • the action of closing the lid and corresponding current value at the rated power of the motor may be preset.
  • a second current threshold is greater than the current value at the rated power. Based on this, the collected working current value of the motor may be compared with the second current threshold, and when the working current value of the motor is greater than the preset second current threshold, it may be determined that the motor meets resistance for further closing the lid, because of which the motor torque increases, resulting in the working current value meeting the preset closing condition. This indicates that the lid is fully closed. Thus, the motor is stopped. If the collected working current value is not greater than the second current threshold value, the motor drives the lid to continue to close.
  • a first operation time may be set to indicate the time required for the motor to stabilize from start.
  • the first operation time may vary depending on the type, model, and brand of the motor. According to the first operation time, whether the lid is closed may correspond to two situations. The first situation is that the lid is closed within the first operation time (that is, before the motor stabilizes) ; the second case is that the lid is fully closed after the first operation time (that is, after the motor stabilizes) .
  • a first duration threshold is set.
  • the maximum duration of the glitch current generated when the motor is started may be used as a reference to set the first duration threshold.
  • the first duration threshold is not less than the maximum duration of the glitch current.
  • a closing condition is set to be when the running time of the motor is less than the set first operation time, the working current value of the motor is required to be continuously greater than the second current threshold for a duration greater than the first duration threshold.
  • the first duration threshold is less than the first operation time.
  • the first duration threshold is used to filter the glitch current when the motor is started to prevent misjudgment caused by the glitch current.
  • the value of the working current of the motor satisfies the closing condition, it can be determined, during a time period from the start of the motor until reaching the first operation time, whether the value of the working current of the motor is greater than the set second current threshold, and whether the time period is greater than the first duration threshold. (i) If so, it means that the value of the working current is not the glitch current value generated during the motor starting process, but is the current value of the motor generated due to the excessive motor torque after the lid has been closed to the maximum extent.
  • the motor is controlled to stop driving the lid. (ii) If not, the motor is controlled to continue moving.
  • the detected current may be the normal working current of the motor, and the lid has not been fully closed. Thus, the motor may continue to run. If the working current is greater than the second current threshold and the duration is less than the first duration threshold, the detected current may be the glitch current when the motor starts. In such case, the motor may continue to drive the lid.
  • the main control unit of the kitchen robot may not determine whether the working current value of the motor meets the set closing condition, and not be able to determine at what moment to stop the motor.
  • a second operation time may be set, and the second operation time is greater than or equal to the maximum time required to close the lid. If the running time of the motor is greater than the set second operation time, it may be determined that the working current value of the motor meets the set lid closing condition, and thus the motor is stopped.
  • the second operation time may be set to 4s, and the set closing condition is: the running time of the motor is greater than the second operation time, that is, the motor is stopped if it runs for more than 4s to close the lid.
  • a second duration threshold may be set.
  • the second duration threshold may refer to the duration when the motor's working current value is greater than the set second current threshold.
  • the second duration threshold is for the main control unit to detect if the motor's working current value is greater than the set second current threshold, without damaging the pot lid or the motor gearbox.
  • the set closing condition may further include: when the motor's running time is greater than the set first operation time and less than the set second operation time, the time period during which the current of the motor is continuously greater than the second current threshold is greater than the second duration threshold.
  • determining whether the value of the working current of the motor satisfies the set closing condition also includes: when the running time of the motor is greater than the set first operation time and less than the set second operation time, if the working current of the motor is continuously greater than the second current threshold for a duration greater than the second duration threshold, it may be determined that the working current value of the motor meets the set closing condition, and thus the motor is stopped.
  • the first operation time is 1.5s
  • the second operation time is 4s
  • the first time threshold is 80 milliseconds (ms)
  • the second time threshold is 5 milliseconds (ms)
  • the first current threshold is 800 milliamps (MA)
  • the second current threshold is 400 milliamps (MA) .
  • the working current value of the motor is greater than the set first current threshold 800MA and the duration is greater than 80ms, it indicates that the lid has been opened fully, and thus the motor is stopped. If the working current of the motor is less than or equal to the first current threshold of 800MA, the motor may be in the normal state of opening the lid. No matter how long the working current lasts, the motor is controlled to drive the lid to continue to move. If the working current of the motor is greater than the set first current threshold of 800MA and the duration is less than 80ms, it may be a glitch current when the motor just starts, and the motor is controlled to drive the lid to continue to move.
  • the motor is stopped. If the working current of the motor is less than or equal to the first current threshold of 800MA, the motor may be in the normal state of closing the lid. No matter how long the working current lasts, the motor is controlled to drive the lid to continue moving. If the working current of the motor is greater than the set second current threshold of 400MA, and the duration is less than 80ms, it may be a glitch current when the motor just starts, and the motor is controlled to drive the lid to continue to move.
  • the motor current value is greater than the second current threshold 400MA for a duration greater than the second duration threshold of 5 milliseconds, it indicates that the lid is closed fully, and thus the motor is stopped. If the working current of the motor is less than or equal to the second current threshold of 400MA, it may be that the motor is in the normal state of closing the lid. No matter how long the working current lasts, the motor is controlled to drive the lid to continue to move.
  • the motor In the process of closing the lid, when the running time of the motor is longer than the second operation time of 4 seconds, in order to protect the motor and the lid and prevent malfunctions, the motor is controlled to stop driving the lid to move.
  • the working current of the motor may be different when the lid is opened or closed. Based on this, the second current threshold corresponding to the lid-closing command and the first current threshold corresponding to the lid-opening command may be different. Considering that opening the lid requires more effort than closing the lid, the first current threshold corresponding to the lid-opening command may be set to be greater than the second current threshold corresponding to the lid-closing command.
  • the first operation time corresponding to the lid-closing command and the first operation time corresponding to the lid-opening command may also be different; the second operation time corresponding to the lid-closing command and the second operation time corresponding to the lid-opening command may also be different; the first duration threshold corresponding to the closing command and the first duration threshold corresponding to the opening command may also be different; the second time threshold corresponding to the closing command and the first time threshold corresponding to the opening command may also be different. There is no restriction here.
  • the method of controlling the pot lid to open/close according to the working current signal generated during the movement of the pot lid by the motor is provided.
  • the working current of the motor it is automatically determined whether the pot lid is fully opened or closed, without using any physical trigger switch. This may address the problem of excessive opening or closing of the pot lid caused by delay in the trigger switch, which often results in damage to the pot lid and the motor gear box. This improves the usability of the pot lid and the motor gear box and the user experience.
  • a method for controlling the opening and closing of the pot lid according to a sensing signal generated by the motor in the process of driving the pot lid is provided below.
  • FIG. 28 is a schematic flowchart of a method 280 for controlling lid opening and closing, according to some embodiments of the present application. As shown in FIG. 28, method 280 may include the following steps 281-283.
  • Step 281 may include obtaining instructions for controlling a lid of a pot to open or close, and controlling a motor to drive the lid to open or close in a direction corresponding to the instructions.
  • Step 282 may include collecting a sensing signal during the opening or closing of the lid.
  • the sensing signal is generated by a sensor and a trigger due to the rotation of the motor.
  • the sensor (s) or the trigger (s) are disposed on a stator, and the others are disposed on a rotor.
  • Steps 281 and 283 may be similar to steps 261 and 263, and details may be referred to the above descriptions.
  • the motor (e.g., first motor 503) may include stator 403a and rotor 403b.
  • Sensor 403c may be disposed on stator 403a, and trigger 403d may be disposed on rotor 403b.
  • sensor 403c may be disposed on rotor 403b, and trigger 403d may be disposed on stator 403a. Signals may be generated between sensor 403c and trigger 403d.
  • the motor may drive the lid to move, and the sensor or trigger installed on the rotor correspondingly rotates with the rotor.
  • the sensing signal may change with the rotation of the motor, for example, depending on the relative position of the sensor and the trigger.
  • the number of triggers may be one or more. Depending on the number of triggers, the number of sensing signals generated between the trigger and the sensor may also be different.
  • FIG. 29 provides an example of four triggers (one of which is blocked by sensor 403c) installed on the rotor and one sensor installed on the stator, but it is not limited to this.
  • the motor includes two triggers and two sensors. In various embodiments, the triggers or sensors may be evenly or unevenly spaced on the stator or rotor.
  • first motor 503 may move lid 303 in the opening and closing directions corresponding to the rotation direction through mechanical coupling (e.g., gears, shafts, etc. ) , and a sensing signal is generated between trigger (s) 403d and sensor (s) 403c.
  • the signal may indicate a state that first motor 503 is driving lid 303 to move.
  • the direction of the sensing signal may reflect the direction of the motor rotation, and the number or intensity of the sensing signals may reflect the number of rotations made by the motor.
  • Whether the lid has been fully opened or closed is related to the rotation of the motor. That is, there is a relationship between whether the lid is fully opened or closed and the sensing signal.
  • the main control unit may collect the sensing signal during the movement of the lid to determine whether the sensing signal meets the set opening or closing condition. If not, it indicates that the lid has not been opened or closed fully, and then the motor continues to drive the lid. If satisfied, it indicates that the lid has fully opened or closed, and thus the motor is stopped. This method may automatically identify whether the lid is fully opened or closed, and no longer rely on the physical structure of the touch switch, and prevents the excessive opening or closing of the lid which often damages the lid and the motor gear box.
  • the implementation of determining whether the sensing signal meets the set opening or closing condition is not limited.
  • whether the lid changes from a fully open state to a fully closed state, or from a fully closed state to a fully open state the number of motor rotations is basically the same. Based on this, whether the lid has been fully opened or closed may depend on the number of rotations made by the motor. The minimum number of rotations that the motor needs to run when the lid is fully closed or opened is preset, which is referred to as the number of rotation threshold. However, when the motor runs once, one round of sensing signals will be generated between the sensor (s) and trigger (s) installed on the stator and rotor.
  • the number of sensing signals generated may reflect the number of rotations of the motor.
  • an opening or closing condition may be whether the number of rotations of the motor reaches the set number of rotation threshold, and accordingly, a way to determine whether the sensing signal meets the opening or closing condition includes: determining the number of rotations of the motor according to the sensing signal; when the number of rotations reaches the set number of rotation threshold, the sensing signal meets the set opening or closing condition, indicating that the lid is fully opened or closed, and thus the motor is stopped.
  • a signal conversion circuit is provided between the main control unit and the motor. One end of the signal conversion circuit is electrically connected to the sensor, and the other end is electrically connected to the main control unit.
  • the signal conversion circuit may convert the sensing signal generated by the sensor and the trigger into a pulse signal and transmit the pulse signal to the main control unit.
  • the number of pulses may represent the number of rotations of the motor.
  • FIG. 30 is a schematic diagram of pulse signals, according to some embodiments of the present application. From the fully open state to the closed state, the number of rotations of the motor may be unchanged. The number of pulses generated by the motor running one revolution is fixed. The number of signals is related to the number of triggers, so the number of pulses indicates the number of rotations of the motor.
  • the main control unit receives the pulse signal output by the signal conversion circuit, and detects the number of pulses through a timer or counter, and determines whether the number of rotations of the motor is greater than the set number of rotation threshold according to the number of pulses.
  • the number of pulses generated as the motor makes one rotation is related to the number of triggers. In one embodiment, if the number of triggers is one, as the motor rotates once, the trigger and the sensor meet (e.g., being aligned) once to generate a sensing signal. The sensing signal is converted into a pulse signal by the signal conversion circuit and output to the main control unit. The main control unit may use the number of detected pulses as the number of rotations of the motor to determine whether the number of rotations of the motor is greater than the set threshold. If greater, the lid is fully opened or closed, and thus the motor is stopped.
  • the number of magnetic sensors is n
  • n is an integer greater than or equal to 2
  • the number of Hall sensors is 1. Then as the motor rotates once, there are n times that a trigger meets a sensor to generate n sensing signals. Each sensing signal is converted into a pulse signal by the signal conversion circuit and output to the main control unit.
  • the number of rotation threshold may be converted into a number threshold of pulses according to the number of triggers and recorded as a first number threshold. Based on this, in one embodiment, the main control unit may receive the pulse signal output by the signal conversion circuit, and detect the number of pulses through a timer or counter. Further, by comparison, it is determined whether the number of pulses is greater than the set first number threshold. If the number of pulses is greater than the set first number threshold, it indicates that the lid has fully opened or closed, and thus the motor is stopped.
  • the user can manually open or close the lid in addition to the automatic opening and closing of the lid by the motor through issuing a lid opening command or a lid closing command.
  • the motor When the user manually opens or closes the lid, the motor will passively rotate following the opening and closing of the lid.
  • the aforementioned signal conversion circuit will detect the sensing signal generated by the trigger (s) and sensor (s) during the rotation of the motor.
  • the signal conversion circuit will convert the sensing signal into a pulse signal.
  • the signal conversion circuit will obtain a direction signal of the rotation direction of the motor based on the sensing signal, and output the pulse signal and the direction signal to the main control unit.
  • the main control unit may receive the pulse signal and direction signal output by the signal conversion circuit even when it is not driving the motor, and when detecting that the number of pulses is greater than the set second number threshold, determine the opening or closing direction of the pot lid when the lid is manually opened and closed according to the received direction signal, and then control the motor to drive the pot lid to move in the opening or closing direction.
  • the main control unit may recognize the user's intention to open or close the lid according to the number of pulses and the direction signal, and actively actuate the motor to drive the lid to move in the direction of opening or closing the lid, converting the manual process of opening or closing the lid into an automatic process. In this way, without much effort from the user, a slight touch on the lid can achieve the purpose of opening or closing the lid, making the user case flexible, convenient, and efficient. This also prevents damage to the lid caused by the user’s excessive force and improves the user experience.
  • the above-mentioned method for controlling the opening and closing of the lid may be used alone or in combination based on the working current signal or sensing signal generated by the motor in the process of driving the lid to move.
  • Step 911 may include obtaining instructions for controlling a lid of a pot to open or close, and controlling a motor to drive the lid to open or close in a direction corresponding to the instructions.
  • Step 912 may include collecting a sensing signal and the working current value of the motor during the movement of the pot lid as driven by the motor.
  • the sensing signal is generated by sensor (s) and trigger (s) due to the rotation of the motor.
  • the sensor (s) or the trigger (s) are disposed on the stator, and the others are disposed on the rotor.
  • Step 913 may include, when the collected sensing signal meets a set first opening or closing condition and/or when the working current value meets a set second opening or closing condition, stopping the motor.
  • the opening or closing condition that the sensing signal needs to meet is referred to as the first opening or closing condition
  • the opening or closing condition that the working current value needs to meet is referred to as the second opening or closing condition.
  • the method provided by this embodiment is a combination of the embodiment shown in FIG. 26 and the embodiment shown in FIG. 28.
  • the working current value of the motor is collected, and when determining that the working current value meets the second opening or closing condition, it is determined that the lid has fully opened or closed, and thus the motor is stopped.
  • FIG. 32 is a flow chart of a method 920 for rotating a seasoning box of a kitchen robot, according to some embodiments of the present application.
  • Method 920 may include steps 921 to 923.
  • Step 921 may include controlling a motor to rotate a body of a seasoning box relative to a bottom structure of the seasoning box.
  • Step 923 may include positioning the seasoning box to a starting position based on the sensing signal.
  • the installation positions of the triggers and the sensors are not limited.
  • the sensors may be disposed on a holder, and the triggers may be disposed on a side wall of the body of the seasoning box, and vice versa.
  • the MCU position the box of the seasoning box to the starting position according to the detected sensing signal.
  • the implementations may vary depending on the correspondence between the starting position and the installation positions of the sensors or triggers on the side wall of the body of the seasoning box.
  • the sensor being a Hall sensor and the trigger being a magnetic sensor.
  • a magnetic sensor is installed on the inner side wall of the body of the seasoning box, and the position corresponding to the strongest sensing signal between the magnetic sensor and the Hall sensor is used as the starting position.
  • the position of each seasoning cavity may be designed based on the starting position.
  • the MCU may monitor the changing state of the sensing signal between the magnetic sensor and the Hall sensor. When the state of the sensing signal changes, the motor is controlled to stop rotating to position the body of the seasoning box at the starting position. As the body of the seasoning box rotates relative to the bottom structure of the seasoning box, the magnetic sensor and the Hall sensor approach each other, such that a sensing signal (e.g., voltage signal) generated between them will continue to increase to a peak value.
  • a sensing signal e.g., voltage signal
  • the magnetic sensor and the Hall sensor begin to move away from each other, and the value of the sensing signal will continue to decrease, that is, the waveform of the voltage signal will reach an inflection point.
  • the MCU may detect the sensing signal of the Hall sensor. If the sensing signal is detected to decrease after increasing for N consecutive times during the rotation of the seasoning box body, the position of the body of the seasoning box at this time may be determined as the starting position.
  • the sensing signal of the Hall sensor is also different. As shown in FIG. 33, in which the sensing signal is a voltage signal, the waveform is opposite for different polarities. Based on this, the MCU may detect the sensing signal of the Hall sensor. If the sensing signal is detected to increase after decreasing for N consecutive times during the rotation of the body of the seasoning box, the position of the body of the seasoning box at this time will be determined as the starting position.
  • the sensing signal may be a voltage signal, a current signal, a binary digital signal, etc.
  • a magnetic sensor is installed on the inner side wall of the seasoning box body, and the position corresponding to the strongest sensing signal between the magnetic sensor and the Hall sensor plus a preset angle of rotation is determined to be the starting position.
  • the position of each seasoning cavity is determined based on the starting position.
  • the MCU detects the changing state of the sensing signal between the magnetic sensor and the Hall sensor. When the state of the sensing signal changes, it is determined that the seasoning box body has rotated to the position corresponding to the strongest sensing signal. But this position is not the starting position.
  • the starting position is the preset angle of rotation away from the position corresponding to the strongest sensing signal.
  • the motor is controlled to continue to drive the seasoning box body to rotate by the preset angle to position the seasoning box body at the starting position.
  • the preset angle can be any angle, such as 30 degrees, 45 degrees, or 60 degrees.
  • a magnetic sensor is installed on the inner side wall of the seasoning box body, and the position corresponding to the strongest sensing signal between the magnetic sensor and the Hall sensor plus a predetermined distance is determined as the starting position.
  • the position of each seasoning cavity is determined based on the starting position.
  • the MCU detects the changing state of the sensing signal between the magnetic sensor and the Hall sensor. When the state of the sensing signal changes, it is determined that the seasoning box body has rotated to the position corresponding to the strongest sensing signal. But this position is not the starting position.
  • the starting position is the predetermined distance of rotation away from the position corresponding to the strongest sensing signal.
  • the motor is controlled to continue to drive the seasoning box body to rotate by the predetermined distance to position the seasoning box body at the starting position.
  • the predetermined distance can be any distance, such as 2cm, 5cm, 10cm, or 20cm.
  • the inflection point of the sensing signal may fluctuate, making it impossible to determine the sensing signal by setting a threshold.
  • the method of determining the inflection point of the induction signal based on the changing state of the sensing signal may overcome the problem that the inflection cannot be determined due to the fluctuation, and can accurately determine the inflection point of the induction signal.
  • the seasoning box body can be accurately positioned to the starting position.
  • a kitchen robot may include pot 302, lid 303, and micro-control unit (MCU) 601, and first motor 503.
  • first motor 503 may drive lid 303 to open from or close onto pot 302.
  • the kitchen robot may further include display pad 208 and/or audio component 602. Through audio component 602, a user may input a voice command for opening or closing lid 303. Through display pad 208, a user may input a command for opening or closing lid 303.
  • the display pad 208 may include a screen (e.g., liquid crystal display (LCD) , touch panel (TP) ) .
  • the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel.
  • the touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure of the user operation.
  • MCU 601 when MCU 601 receives an instruction to control the lid 303 to open or close, MCU 601 may control the first motor 503 to drive the lid 303 to move in the opening and closing direction corresponding to the instruction.
  • first motor 503 drives lid 303 to move, the working current of first motor 503 is collected.
  • first motor 503 is controlled to stop driving lid 303. If the command is a lid opening command, MCU 601 controls first motor 503 to drive lid 303 to move in the lid opening direction; if the command is a lid closing command, MCU 601 controls first motor 503 to drive lid 303 in the lid closing direction.
  • the senor (s) and the trigger (s) may be implemented in various ways, such as bump and micro switch, magnetic disc and Hall sensor, photoelectric switch and reflector board, infrared sensor and bump, etc.
  • the implementations of the sensor (s) and the trigger (s) are not limited as long as they generate signals corresponding to rotations between the stator and the rotor.
  • each sensor is a micro switch disposed on the rotor of the motor
  • each trigger is a protrusion disposed on the stator of the motor.
  • the micro switch is connected to the MCU. When the rotor rotates relative to the stator, the protrusion will also rotate with the rotor. When the protrusion rotates to the position corresponding to the micro switch, the micro switch is triggered to send a sensing signal (such as a current signal) to the MCU.
  • a magnetic disc is disposed on the rotor of the motor, and each sensor is a Hall sensor disposed on the motor housing above the magnetic disc.
  • Each trigger is a magnetic sensor disposed on the rotor of the motor.
  • MCU 601 may collect the sensing signal generated between trigger (s) 403d and sensor (s) 403c as first motor 503 drives lid 303, and when the sensing signal meets the set first opening or closing condition is met, the first motor 503 is stopped.
  • MCU 601 may determine whether lid 303 has been fully opened or closed according to the working current value of first motor 503 and/or the sensing signal. In any case, when determining that lid 303 has fully opened or closed, MCU 601 controls first motor 503 to stop driving lid 303. Among them, when determining whether lid 303 has been fully opened or closed according to the working current value of first motor 503 and the sensing signal, upon determining that the sensing signal satisfies the set first opening or closing condition and/or the working current value satisfies the set second opening or closing condition, the first motor 503 is stopped. Detailed descriptions of the first opening and closing conditions and the second opening and closing conditions may be referred to the descriptions above.
  • the kitchen robot may include seasoning box 402, base 2, heating component 304 disposed in base 2, rotating arm 502, and measuring unit 207.
  • Rotating arm 502 may be above pot 302, lid 303 may be below rotating arm 502.
  • MCU 601, display pad 208, audio component 602, and measuring unit 207 may be disposed on base 2. Through display pad 208, a user may input a command for opening or closing lid 303, browse the menu, and perform other interactions with the kitchen robot.
  • Switch control 206 may include audio component 602 (e.g., speaker and/or microphone) configured to broadcast audio (e.g., which and how much of an ingredient or ingredients to add into the pot or seasoning to add into the seasoning box, an order of adding the ingredients) and/or capture voice command.
  • Measuring unit 207 e.g., measuring cup
  • MCU 601 may alternatively be disposed on lid 303.
  • Audio component 602 may be configured to output and/or input audio signals.
  • the audio component includes a microphone.
  • the audio component is in an operation mode (e.g., call mode, recording mode, voice recognition mode)
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in a memory or sent via a communication channel.
  • the audio component 602 further includes a speaker for outputting audio signals.
  • a user may input an instruction of dispensing seasonings to the kitchen robot through display pad 208, for example, by clicking a virtual button on a screen.
  • the user may input the instruction through audio component 602, for example, by saying a trigger phrase “please add seasonings. ”
  • the user may input the instruction through a terminal device such as a mobile phone that is wirelessly coupled to the kitchen robot and relays the instruction to the kitchen robot.
  • the MCU may respond to the instruction and output an order of dispensing various seasonings through display pad 208, audio component 602, or the user’s terminal device, and control second motor 425 to drive body 404 of the seasoning box to rotate to appropriate positions for seasoning dispensing.
  • MCU 601 may control second motor 425 to actuate the rotation of the seasoning box relative to bottom structure 406 of the seasoning box.
  • MCU 601 may detect the sensing signal between the sensor (s) and the trigger (s) . According to the detected sensing signal, the seasoning box is positioned at an origin position, which is the starting position of rotation. After rotation, when seasoning cavity 403 is rotated to a seasoning dispense position, the seasoning in the seasoning cavity may be dispensed into the pot.
  • the starting position of rotation may be set, and by detecting the sensing signal between the sensor (s) and the trigger (s) which fluctuates with the rotation, the seasoning box may be rotated to complete orderly dispenses of different seasonings.
  • the present application realizes the automatic dispense of seasonings, and the user does not need to manually place the seasonings, which makes the cooking process more intelligent and efficient.
  • the cooking process of the kitchen robot is described with reference to cooking a tomato scrambled egg dish as an example.
  • the first opening or closing condition is that the number of pulses is 25 (that is, the motor rotates 6.25 revolutions) .
  • the second opening or closing condition is that (i) within 1.5s of motor operation, the motor's working current value is greater than the set first current threshold 800mA for more than 80ms; (ii) when the running time of the motor is between 1.5s-4s, the working current value of the motor is greater than the set first current threshold in 800mA for more than 5ms; or (iii) the motor has run for more than 4s.
  • a user may check the display pad of the kitchen robot to find an electronic recipe for tomato scrambled egg.
  • the user prepares the ingredients according to the electronic recipe: 250 grams of tomatoes, 100 grams of eggs; peel the tomatoes, cut the tomatoes into small pieces, and beat the eggs.
  • the MCU of the cooking machine drives the body 404 to rotate relative to the bottom structure 406 to reach the starting position of the seasoning box.
  • the user may send a command through the display pad to add seasoning, and the MCU responds to the user's instruction to add the seasoning.
  • the kitchen robot may display the order of dispensing seasonings and the amount of each dispensing seasoning on the display pad.
  • the kitchen robot may control the motor to drive the body of the seasoning box to rotate relative to the bottom structure of the seasoning box, such that the seasoning cavities one by one align with the seasoning filling port for the user to correspondingly add seasonings into the seasoning cavities.
  • the user prepares 10ml of oil, 3g of salt, 2g of sugar, 4g of chicken essence, and 10g of onion, ginger, and garlic mix according to the order and amount of seasonings displayed on the display pad.
  • the user correspondingly puts the five seasonings into five seasoning cavities.
  • the user sets the seasoning box back to the starting position through the display pad.
  • the filled seasoning cavities are not aligned with the drop port of the lid.
  • the user may trigger a workflow of cooking tomato scrambled eggs through the display pad of the kitchen robot.
  • the MCU controls the heating component to heat the pot.
  • the MCU controls the body of the seasoning box to rotate relative to the bottom structure of the seasoning box by 60 degrees, so that a first seasoning cavity aligns with the drop port of the lid for dispensing the 10ml of oil into the pot.
  • the oil temperature rises, and the MCU prompts the user through the display pad and speaker to add the beaten egg to the pot.
  • the MCU may send a signal to the motor to drive open the lid.
  • the MCU collects the motor's working current value. If the working current value within 1.5 seconds since the motor started is greater than the first set value 800mA for more than 80ms, the motor is stopped, and it is determined that the lid has been opened; otherwise, the motor is controlled to drive the lid to continue open.
  • the MCU continuously collects the working current value of the motor and the number of pulses generated between the trigger (s) and the sensor (s) .
  • the MCU determines that the lid is fully opened and controls the motor to stop, so that the user may put the beaten eggs and tomatoes into the pot. Then the user uses the display pad or voice control to close the lid. MCU controls the motor to start to drive the lid to close. During the lid closing process, the MCU continuously collects the working current value of the motor and the pulses generated between the trigger (s) and the sensor (s) .
  • the MCU determines that the lid is fully closed and controls the motor to stop. Otherwise, the MCU controls the motor to drive the lid to continue to close.
  • the MCU determines that the lid is fully closed and controls the motor to stop.
  • the MCU controls the rotation of the seasoning box body, and dispenses the 2g salt, 3g white sugar, 4g chicken essence, and 10g of onion, ginger, and garlic mix into the pot in sequence.
  • the cooking machine prompts the user through the display pad or speaker that cooking is finished.
  • the cooking process of the kitchen robot is described with reference to cooking a braised prawns with oil dish as an example.
  • the preset first opening or closing condition of the smart cooking machine during the opening of the lid, within 1.5s since the motor started, upon detecting that the working current value of the motor is greater than the set first current threshold of 800 mA for more than 80ms, the MCU stops the motor. During 1.5s-4s since the motor started, upon detecting that the working current value of the motor is greater than the set first current threshold 800 mA for more than 5ms, the MCU stops the motor. If the motor runs for more than 4s, the motor is stopped.
  • the motor is stopped.
  • the motor is stopped. If the motor’s running time exceeds 4s, the MCU stops the motor.
  • a user may check the display pad of the kitchen robot to find an electronic recipe of braised prawns with oil.
  • the user prepares the ingredients according to the electronic recipe: 500 grams of prawns.
  • the MCU of the cooking machine drives the body of the seasoning box to rotate relative to the bottom structure of the seasoning box to rotate to the starting position of the seasoning box.
  • the user may send a command through the display pad to add seasoning, and the MCU responds to the user's instruction to add the seasoning.
  • the kitchen robot may display the order of dispensing seasonings and the amount of each dispensing seasoning on the display pad.
  • the kitchen robot may control the motor to drive the body of the seasoning box to rotate relative to the bottom structure of the seasoning box, such that the seasoning cavities one by one align with the seasoning filling port for the user to correspondingly add seasonings into the seasoning cavities.
  • the user prepares 10ml of oil, 20g of spice, 3g of salt, 4g of chicken essence, and 10g of onion, ginger, and garlic mix according to the order and amount of seasonings displayed on the display pad.
  • the user correspondingly puts the five seasonings into five seasoning cavities.
  • the user sets the seasoning box back to the starting position through the display pad.
  • the filled seasoning cavities are not aligned with the drop port of the lid.
  • the user may trigger a workflow of cooking braised prawns with oil through the display pad of the kitchen robot.
  • the MCU controls the heating component to heat the pot.
  • the MCU controls the body of the seasoning box to rotate relative to the bottom structure of the seasoning box by 60 degrees, so that a first seasoning cavity aligns with the drop port of the lid for dispensing the 10ml of oil into the pot.
  • the oil temperature rises, and the MCU prompts the user through the display pad and speaker to add the prawns in the pot.
  • the MCU may send a signal to the motor to drive open the lid.
  • the MCU collects the motor's working current value. If the working current value within 1.5 seconds since the motor started is greater than the first set value 800mA for more than 80ms, the motor is stopped, and it is determined that the lid has been opened; otherwise, the motor is controlled to drive the lid to continue open.
  • the MCU continuously collects the working current value of the motor and the number of pulses generated between the trigger (s) and the sensor (s) .
  • the MCU determines that the lid is fully opened and controls the motor to stop, so that the user may put the prawns into the pot.
  • MCU controls the motor to start to drive the lid to close.
  • the MCU continuously collects the working current value of the motor and the pulses generated between the trigger (s) and the sensor (s) .
  • the MCU determines that the lid is fully closed and controls the motor to stop. Otherwise, the MCU controls the motor to drive the lid to continue to close.
  • the MCU determines that the lid is fully closed and controls the motor to stop. According to the electronic recipe of braised prawns with oil, after one minute, the MCU controls the rotation of the seasoning box body, and dispenses the 20g spice, 2g salt, 4g chicken essence, and 10g of onion, ginger, and garlic mix into the pot in sequence. After 30s of cooking, the cooking machine prompts the user through the display pad or speaker that cooking is finished.
  • the motor e.g., first motor 503 and the MCU 601 may be disposed on lid 303.
  • Lid 303 may further include a voltage detection circuit electrically connected between the motor and the MCU.
  • the voltage detection circuit may be configured to convert the working current value of the motor into a working voltage value and output the working voltage value to the MCU.
  • the MCU may obtain the working current value of the motor according to a working voltage value of the motor sampled by the voltage detection circuit and a resistance value sampled by the voltage detection circuit.
  • the motor when the rotor rotates relative to the stator, the motor may drive the lid body to move in the opening or closing direction corresponding to the rotation direction, and a sensing signal is generated between the trigger (s) and the sensor (s) to indicate the state that the motor drives the lid to move.
  • the MCU may collect the sensing signal generated between the trigger (s) and the sensor (s) , and when the sensing signal meets the set first opening or closing condition, control the motor to stop driving the lid.
  • the MCU is configured to determine the number of rotations of the motor according to the sensing signal, and when the number of rotations reaches the set threshold, control the motor to stop driving the lid.
  • the lid further includes: a signal conversion circuit electrically connected between the sensor (s) and the MCU, for converting the sensing signal into a pulse signal and outputting it to the MCU.
  • the MCU is configured for: receiving the pulse signal from the signal conversion circuit, and when the number of pulses is greater than the set first number threshold, the motor is controlled to stop driving the lid.
  • the number of pulses may represent the number of rotations of the motor.
  • the signal conversion circuit is further configured to obtain a direction signal indicating the rotation direction of the motor according to the sensing signal and output the direction signal to the MCU.
  • the MCU is configured to: when not driving the motor, if the number of pulses is detected to be greater than the set second number threshold, determine the opening or closing direction according to the direction signal when the lid body is manually opened or closed, and control the motor to drive the lid to move in the opening or closing direction.
  • the MCU may collect the sensing signal between the trigger (s) and the sensor (s) when collecting the working current value of the motor, and when the sensing signal meets the set first opening or closing condition and/or working current value meets the set second opening or closing condition, the motor is controlled to stop driving the lid. Details of the first opening and closing conditions and the second opening and closing conditions may be referred to from the above descriptions.
  • top cover 405 of the seasoning box and body 404 are detachably installed together.
  • the two can be clipped or buckled together, that is, top cover 405 of the seasoning box can be removed when needed.
  • top cover 405 and body 404 of the seasoning box are attached to each other, and the two are not detachable from each other.
  • top cover 405 of the seasoning box and body 404 are connected by a hinge, such that top cover 405 can be opened and closed.
  • body 404 and the bottom structure 406 may be detachably installed or attached together.
  • body 404 or bottom structure 406 may be removed separately when needed.
  • body 404 may be clipped or snapped into the bottom structure 406.
  • body 404 may be fixedly installed with bottom structure 406, that is, the two cannot be detached.
  • each seasoning cavity 403 may penetrate the top surface and the bottom surface of body 404, and the bottom surface of body 404 is in contact with bottom structure 406 to hold seasoning in the seasoning cavity 403.
  • the shape of seasoning cavity 403 is not limited.
  • the shape of each seasoning cavity 403 may be a circle, a triangle, a square, an ellipse, a rectangle, etc.
  • the number of seasoning cavities 403 is also not limited, which can be one or more.
  • seasoning cavities 403 may be uniformly or non-uniformly distributed.
  • second opening 410 of bottom structure 406 may be used as a feeding port.
  • Second opening 410 may be in the shape of, for example, a circle, a triangle, a square, an ellipse, a rectangle, etc.
  • the shape of second opening 410 may be the same as the shape of seasoning cavity 403.
  • both second opening 410 and seasoning cavity 403 are oval.
  • the shape of second opening 410 may be different from the shape of seasoning cavity 403.
  • second opening 410 is a square
  • seasoning cavity 403 is a circle. Regardless of the shapes, second opening 410 and each seasoning cavity 403 may at least partially overlap for dispensing seasonings from second opening 410.
  • second motor 425 may be installed at the lower part of body 404, and the two are rotatably connected by a bearing gear. As shown in FIG. 34, body 404 may include transmission hole 418 in the center. In one embodiment, by sending a signal to second motor 425, the MCU may control second motor 425 to drive the body 404 to rotate relative to bottom structure 406.
  • the MCU may be disposed on the kitchen robot or the seasoning box.
  • the signal may be, for example, Pulse Code Modulation (PCM) signal, Pulse Width Modulation (PWM) signal, etc. Further, the number of turns of rotation of second motor 425 may be controlled by adjusting the pulse width, amplitude, or frequency of the signal.
  • PCM Pulse Code Modulation
  • PWM Pulse Width Modulation
  • the number of turns of rotation of second motor 425 may be controlled by adjusting the pulse width, amplitude, or frequency of the signal.
  • body 404 may include one or more sealed cavities 415. At one time, one of the sealed cavities 415 and seasoning cavities 403 may be rotated to align with second opening 410. When sealed cavity 415 is rotated to align with second opening 410, second opening 410 is closed. In this way, when no seasoning is required, rotating one of sealed cavities 415 to align with second opening 410 prevents the seasonings from being dispensed.
  • sealed cavity 415 is not limited.
  • sealed cavity 415 may be similar to the seasoning cavity 403, except that sealed cavity 415 is sealed at its bottom with a cover instead of having a through-hole.
  • the cover may be larger or the same size as second opening 410.
  • the starting position in order to orderly dispense the seasonings from seasoning cavities 403, the starting position may be configured in advance as a reference position for rotation. At the starting position, none of the seasoning cavities 403 may align with second opening 410. One of the sealed cavities 415 may align with second opening 410. With the reference position, the MCU may determine by how much rotation any of the sealed cavities 415 and seasoning cavities 403 will align with second opening 410. Rotating from the starting position, at least one seasoning cavity 403 may align with second opening 410 for seasoning dispensing.
  • seasoning cavities 403 and sealed cavities 415 may be configured similarly to include movable covers at their bottom. The covers may be opened or closed under the control of the MCU. When any of seasoning cavities 403 and sealed cavities 415 is aligned with second opening 410, the MCU can control the cover to open for dispensing the seasoning in the cavity.
  • a user may add seasonings to seasoning cavities 403 and sealed cavities 415 in any order, and provide the corresponding relationship between the seasoning and the seasoning cavity to the MCU. Based on this, the MCU can find the required seasoning to dispense according to the corresponding relationship, and control the motor to drive body 404 to rotate to the right position and open the cover to dispense. During the rotation, other seasoning cavities that pass over the second opening 410 are still covered at their bottom, and thus no seasoning will leak into the pot by accident. Thus, the cover increases the flexibility of storing and dispensing seasonings.
  • seasoning box 402 may be disposed on a holder of the kitchen robot.
  • holder 111 may include rotating arm 502 and supporting disc 519.
  • Bottom structure 406 may be disposed on supporting disc 519, and supporting disc 519 may include opening 411.
  • Opening 411 may be aligned with second opening 410.
  • Opening 411 may be a through-hole for solid or liquid seasonings to pass through, and have various shapes such as round, square, etc.
  • holder 111 may include bulge 520 disposed at the center of supporting disc 519, and bottom structure 406 may include first opening 409 at the center of bottom structure 406.
  • First opening 409 may be sleeved on bulge 520 to hold the seasoning box in place on holder 111.
  • bottom structure 406 may be attached to supporting disc 519 by screws or rivets.
  • sensor (s) 113 may be disposed on the holder 111 and not rotate with body 404, and trigger (s) 112 may be installed on a side wall (e.g., an inner side wall of seasoning cavity 403 or sealed cavity 415) of body 404 and rotate with body 404.
  • the sensing signal between sensor (s) 113 and trigger (s) 112 may depend on their distance apart, which changes with the rotation. For example, a trigger emits a signal and a sensor receives the signal, and the strength of the signal is stronger when the trigger and sensor are closer.
  • the installation position of trigger 112 on body 404 is associated with the starting position.
  • the installation position of trigger 112 may be the starting position, or a preset distance or angle from the starting position. In this way, it can be determined whether body 404 has rotated to the starting position based on the sensing signal between sensor (s) 113 and trigger (s) 112.
  • trigger (s) 112 may be disposed on the holder 111 and not rotate with body 404, and sensor (s) 113 may be installed on a side wall (e.g., inner side wall) of body 404 and rotate with body 404, and the above description may similar apply.
  • body 404 may be rotated to the starting position before seasoning refill, and then seasonings may be added to the seasoning cavities and/or sealed cavities for a refill.
  • seasonings may be a solid powder, such as salt, sugar, five-spice powder, onion, ginger, garlic, or a liquid, such as oil, vinegar, soy sauce, tomato sauce, etc.
  • second motor 425 drives the body of the seasoning box (e.g., by sending a signal) to rotate from the starting position to a refill position which may be the same as the starting position or a predetermined distance or angle from the starting position.
  • a cavity to be refilled is aligned with seasoning filling port 412, so that the user can refill the cavity from the top of the kitchen robot.
  • second motor 425 controls body 404 to rotate to the next position to align a second cavity with seasoning filling port 412.
  • the same process may repeat for various cavities.
  • the user may lift top cover 405 off and refill the various cavities based on instructions provided by the kitchen robot.
  • second motor 425 drives the body 404 to rotate to a refill end position.
  • the refill end position may correspond to the refill position of refilling the last seasoning, the starting position, or any position in between. If the refill end position is not the same as the starting position, the MCU may control second motor 425 to drive body 404 to rotate to the starting position.
  • seasoning cavities 403 may be rotated to align with the second opening 410 in sequence, and the seasoning cavity 403 should be rotated to the position of the seasoning filling port 412.
  • the order of each seasoning cavity 403 rotated to align with second opening 410 may be the same as the order of each seasoning cavity 403 rotated to align with the seasoning filling port 412.
  • a projection of seasoning filling port 412 on bottom structure 406 may be downstream of second opening 410 in the rotation direction and not overlap with second opening 410.
  • body 404 may rotate in the same direction for seasoning refill and later for dispensing the refilled seasoning. In one embodiment, as body 404 rotates for a first turn, the seasoning refill is completed; and as the body 404 rotates for a second turn right after the first turn, the refilled seasonings are dispensed to the pot.
  • the MCU may control second motor 425 to drive body 404 to rotate from the refill end position for seasoning dispensing.
  • the MCU may drive body 404 to rotate from the refill end position according to the user’s instruction or according to a preset time in the electronic recipe.
  • a first seasoning needs to be added.
  • the MCU controls second motor 425 (e.g., by sending a signal) to drive body 404 to rotate from the refill end position, and rotate a first seasoning cavity holding the first seasoning to align with second opening 410 for dispensing the first seasoning into the pot.
  • a second seasoning needs to be added after another one minute.
  • the MCU controls second motor 425 to drive body 404 to continue to rotate from the current position, so that a second seasoning cavity holding the second seasoning becomes aligned with second opening 410 for dispensing the second seasoning into the pot.
  • the process repeats until all required seasonings are dispensed.
  • the signal (e.g., PWM signal) for rotating body 404 may last for the duration from aligning one cavity to aligning the next cavity. If all the cavities are evenly spaced, the angle of rotation is the same for positioning each cavity. On the contrary, if all the cavities are not evenly spaced, the angle of rotation may be different for positioning each cavity.
  • the signal may be preset in the kitchen robot, for example, in terms of pulse width and signal duration, for accurate positioning of the cavities. In application, the kitchen robot may obtain information of cavities for seasoning refill or dispense and accordingly determine the corresponding signal for positioning the cavities.
  • the embodiments of the present application also provide a computer-readable storage medium storing a computer program, which can implement each step in the above-mentioned methods for controlling the opening and closing of the lid when the computer program is executed.
  • the embodiments of the present specification may be provided as a method, a system, or a computer program product. Therefore, the present specification may be in a form of complete hardware embodiments, complete software embodiments, or embodiments combining software and hardware. Moreover, the present specification may use a form of a computer program product that is implemented on one or more computer-usable storage media (including but not limited to a disk memory, a CD-ROM, an optical memory, and the like) that include computer-usable program code.
  • computer-usable storage media including but not limited to a disk memory, a CD-ROM, an optical memory, and the like
  • Computer program instructions may be used for implementing each process and/or each block in the flowcharts and/or the block diagrams and a combination of a process and/or a block in the flowcharts and/or the block diagrams.
  • These computer program instructions may be provided for a general-purpose computer, a dedicated computer, an embedded processor, or a processor of any other programmable data processing device to generate a machine, so that the instructions executed by a computer or a processor of any other programmable data processing device generate an apparatus for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.
  • These computer program instructions may further be stored in a computer-readable memory that can instruct the computer or any other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory generate an artifact that includes an instruction apparatus.
  • the instruction apparatus implements a specified function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.
  • These computer program instructions may further be loaded onto a computer or another programmable data processing device, so that a series of operations and steps are performed on the computer or the another programmable device, thereby generating computer-implemented processing. Therefore, the instructions executed on the computer or the another programmable device provide steps for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.
  • the computer device includes one or more processors (CPUs) , an input/output interface, a network interface, and a memory.
  • the memory may include, among computer-readable media, a non-persistent memory such as a random access memory (RAM) and/or a non-volatile memory such as a read-only memory (ROM) or a flash memory (flash RAM) .
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • the computer-readable medium includes persistent, non-persistent, movable, and unmovable media that may implement information storage by using any method or technology.
  • Information may be a computer-readable instruction, a data structure, a program module, or other data.
  • Examples of computer storage media include but are not limited to a phase change memory (PRAM) , a static random access memory (SRAM) , a dynamic random access memory (DRAM) , other type of random access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable read-only memory (EEPROM) , a flash memory or other memory technology, a compact disc read-only memory (CD-ROM) , a digital versatile disc (DVD) or other optical storage, a cassette magnetic tape, tape and disk storage or other magnetic storage device or any other non-transmission media that may be configured to store information that a computing device can access.
  • the computer-readable medium does not include transitory computer-readable media (transitory media) ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Food-Manufacturing Devices (AREA)

Abstract

A seasoning box (402) may include a covered structure, and a body (404) disposed inside the covered structure and configured to rotate relative to the covered structure. The covered structure includes a top cover (405) and a bottom structure (406) enclosing the body (404). The top cover (405) includes a seasoning filling port (412). The body (404) includes a plurality of seasoning cavities (403). The body (404) is configured to rotate among a plurality of filling positions. At each of the filling positions, one of the seasoning cavities (403) aligns with the seasoning filling port (412) for filling the seasoning cavity (403) with one or more seasonings.

Description

KITCHEN ROBOT AND SEASONING BOX
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority to Chinese Patent Application No. 202011194278.9 filed on Oct. 30, 2020, Chinese Patent Application No. 202011194288.2 filed on Oct. 30, 2020, Chinese Patent Application No. 202011194232.7 filed on Oct. 30, 2020, Chinese Patent Application No. 202011194242.0 filed on Oct. 30, 2020, Chinese Patent Application No. 202011194250.5 filed on Oct. 30, 2020, Chinese Patent Application No. 202011198100.1 filed on Oct. 30, 2020, and Chinese Patent Application No. 202011198085.0 filed on Oct. 30, 2020. The entire contents of all of the above applications are incorporated herein by reference in their entirety.
TECHNICAL FIELD
This application relates to the field of household Internet of Things (IoT) technology, and in particular to a kitchen robot and its seasoning box.
BACKGROUND
Since ancient times, human beings have a strong desire for delicious cuisines with good color, aroma, and taste. However, the current food production process often relies on personal experiences to control factors such as heat control, use of the main ingredients and auxiliary ingredients, cooking time control, and the like, which are difficult to be standardized, thus not conducive for widespread duplication in society.
The functions of current kitchen appliances are relatively monotonic, only providing basic functions such as frying, boiling, stewing, and the like. While the current kitchen appliances are unable to take over the entire food production process, a lot of human participation is still required. With the increasing pace of society and technological advancement, people urgently need highly intelligent kitchen equipment that can free their energy from the process of food preparation while still being able to enjoy fine cuisines.
At the same time, it is also necessary to take into account the actual situations of families, and the kitchen equipment should be able to meet the needs of kitchen use.
SUMMARY
Various embodiments of the specification include, but are not limited to, a kitchen robot and  its seasoning box. The disclosed kitchen robot and seasoning box may provide convenience to households and improve user experience by having a machine to cook and add seasonings. The kitchen robot may be configured to automatically cook food including automatically heating and stirring ingredients, dispensing seasonings by specific amounts and orders during cooking. The kitchen robot may be implemented as a stir-fry machine, rice cooker, stew machine, air-fry machine, etc.
According to some embodiments, a seasoning box may include a covered structure, and a body (e.g., 404) disposed inside the covered structure and configured to rotate relative to the covered structure. The covered structure includes a top cover (e.g., 405) and a bottom structure (e.g., 406) . The top cover includes a seasoning filling port. The body includes a plurality of seasoning cavities. The body is configured to rotate among a plurality of filling positions. At each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings. The bottom structure includes an output port. The seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
In some embodiments, the plurality of seasoning cavities are disposed in a ring arrangement with respect to the axis (e.g., first axis 327) .
In some embodiments, the axis is perpendicular to a plane of the seasoning filling port.
In some embodiments, one of the plurality of seasoning cavities is configured to align with the seasoning filling port and a different one of the plurality of seasoning cavities is configured to align with the output port, as the body rotates about the axis.
In some embodiments, the top cover comprises a cover plate attached to a sliding rail of the top cover; and the cover plate is configured to cover and uncover the seasoning filling port by sliding along the sliding rail.
In some embodiments, each of one or more of the plurality of seasoning cavities is configured to align with the output port one by one for one or more seasonings in the seasoning cavity to correspondingly exit the output port, as the body completes one rotation about the axis.
In some embodiments, the body is configured to rotate in only one direction.
In some embodiments, each of one or more of the plurality of seasoning cavities is a through-hole; a first end of the through-hole is on a top surface of the body and matches with the seasoning filling port; and a second end of the through-hole is on a bottom surface of the body and matches with the output port.
In some embodiments, the top surface is parallel to the bottom surface; and the axis is perpendicular to the top surface and the bottom surface.
In some embodiments, the seasoning filling port, the first end of the through-hole, the  second end of the through-hole, and the output port have a same shape.
In some embodiments, the body comprises an inner gear disposed at a center of the body; and the inner gear is centrally symmetrical about the axis.
In some embodiments, the bottom structure further comprises an opening at a center of the bottom structure; and the opening is centrally symmetrical about the axis.
In some embodiments, the plurality of seasoning cavities comprises one or more first seasoning cavities and one or more second seasoning cavities; each of the first and second seasoning cavities includes an opening at a top surface of the body to align with the seasoning filling port; each of the first seasoning cavities includes an opening at a bottom surface of the body to align with the output port, the first seasoning cavities each forming a through-hole in the body; and each of the second seasoning cavities is sealed at the bottom surface of the body.
According to some embodiments, a kitchen robot may include a seasoning box. The seasoning box comprises (i) a covered structure and (ii) a body disposed inside the covered structure and configured to rotate relative to the covered structure. The covered structure includes a top cover and a bottom structure enclosing the body. The top cover includes a seasoning filling port. The body includes a plurality of seasoning cavities. The body is configured to rotate among a plurality of filling positions. At each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings. The bottom structure includes an output port. The seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
In some embodiments, the kitchen robot further comprises a driver disposed inside the seasoning box and at a same horizontal level as the seasoning cavities. The driver is configured to drive the seasoning box to rotate about the axis.
In some embodiments, the bottom structure comprises an output port; and each of one or more of the plurality of seasoning cavities is configured to align with the output port one by one for one or more seasonings in the seasoning cavity to correspondingly exit the output port, as the body completes one rotation about the axis.
In some embodiments, the kitchen robot further comprises a pot disposed below the seasoning box and a lid coupled to the seasoning box and disposed between the seasoning box and the pot. The lid comprises a drop port configured to align with the output port for the one or more seasonings in the seasoning cavity to correspondingly exit the output port and enter the pot.
In some embodiments, the kitchen robot further comprises a rotating arm coupled to the seasoning box and configured to close the lid on the pot or lift the lid off the pot by rotation.
In some embodiments, the kitchen robot further comprises a spatula mechanically coupled  to the driver and disposed inside the pot.
In some embodiments, the spatula comprises a stirrer configured to stir food in the pot and a scraper configured to scrape food in the pot.
In some embodiments, the stirrer comprises a rotation shaft and a plurality of stirring arms attached to the rotation shaft.
In some embodiments, the scraper comprises at least one horizontal scraping edge and at least one vertical scraping edge.
According to some embodiments, a kitchen robot may include a seasoning box, a spatula inside a pot, and a driver mechanically coupled to the seasoning box and the spatula. The seasoning box comprises (i) a covered structure and (ii) a body disposed inside the covered structure and configured to rotate relative to the covered structure. The covered structure includes a top cover and a bottom structure enclosing the body. The top cover includes a seasoning filling port. The body includes a plurality of seasoning cavities. The body is configured to rotate among a plurality of filling positions. At each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings. The seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
According to some embodiments, a kitchen robot may include a pot; a lid disposed in a plane and configured to cover the pot, wherein a first axis perpendicular to the plane passes through a center of the lid, and a second axis is parallel to the first axis and off the center of the lid; a spatula disposed below the lid and inside the pot, wherein the spatula comprises a stirrer; and a motor (e.g., an electric driver of a driver component) disposed outside the pot, wherein the motor is configured to drive the stirrer to simultaneously revolve about the first axis and rotate about the second axis.
In some embodiments, the kitchen robot further comprises a drive assembly coupled to the spatula and the motor, wherein: the drive assembly corresponds to a first drive path and second drive path; through the first drive path, the motor is configured to drive the stirrer to revolve about the first axis; and through the second drive path, the motor is configured to drive the stirrer to rotate about the second axis.
In some embodiments, the kitchen robot comprises a driver component disposed above the lid and outside the pot, wherein the driver component comprises the motor and an output shaft disposed along the first axis.
In some embodiments, the drive assembly comprises a support structure; the support structure comprises a sleeve coupled to the output shaft; and the stirrer is rotatively connected to the support structure along the second axis and configured to revolve about the first axis.
In some embodiments, the kitchen robot further comprises a first gear block and a second gear block mutually engaged and both disposed on the support structure; the first gear block is configured to rotate about the first axis; and the second gear block is configured to revolve along a circumference of the first gear block.
In some embodiments, the first gear block comprises a rotation stopper structure that matches with the lid; and the second gear block is attached to the stirrer along the second axis and configured to cause the stirrer to rotate about the second axis.
In some embodiments, the stirrer comprises at least two stirring arms centrally symmetrical about the second axis; a length of each of the stirring arms is larger than a distance between the first axis and the second axis; and a length of the stirrer is larger than a radius of the pot and smaller than a diameter of the pot.
In some embodiments, the sleeve is disposed at a center of the first gear block; the first gear block is attached to the sleeve; and the first gear block and the sleeve are configured to rotate about the first axis.
In some embodiments, a position where the first gear block and the second gear block engage is between the first axis and the second axis; and the first gear block has more teeth than the second gear block.
In some embodiments, the kitchen robot further comprises a magnet disposed in the sleeve, wherein the output shaft includes a magnetic material, and the magnet and the magnetic material attract to each other.
In some embodiments, a perimeter of contact areas between the sleeve and the output shaft is in a polygon shape.
In some embodiments, the drive assembly further comprises a housing cover disposed on the support structure, the housing cover and the support structure forming a closed housing space; the kitchen robot further comprises silicone disposed around a perimeter of the housing cover to seal the closed housing space.
In some embodiments, the driver component further includes a belt connecting the output shaft and the electric driver; and the belt does not pass the first axis.
In some embodiments, the electric driver is a DC (direct current) brushed electric driver, and the driver component comprises a reduction gearbox.
In some embodiments, the motor is configured to drive the spatula; the spatula further comprises a scraper attached to the support structure; the motor is configured to drive the scraper to rotate about the first axis; and the scraper and the stirrer are disposed at different sides of the sleeve.
In some embodiments, a horizontal distance between the scraper and the first axis is larger  than a horizontal distance between the stirrer and the first axis; the scraper comprises a scraping arm connected horizontally to the support structure; and a distance from the scraper to a bottom of the pot is larger than a distance from the stirrer to the bottom of the pot.
In some embodiments, a body of the scraper is made of a rigid material, and a tip of the scraper close to an inner wall of the pot is made of a soft material.
In some embodiments, the scraper comprises one or more horizontal scraping edges and one or more vertical scraping edges; the one or more horizontal scraping edges and the one or more vertical scraping edges are configured as configuration (i) , (ii) , or (iii) ; configuration (i) is a T-shape configuration, in which one end of a vertical scraping edge is attached to a horizontal scraping edge, and one end of the scraping arm is attached to the vertical scaping edge; configuration (ii) is an L-shape configuration, in which one end of a vertical scraping edge and one end of a horizontal scraping edge are respectively attached to two ends of an arc-shaped introductory structure, and one end of the scraping arm is attached to the horizontal scaping edge; and configuration (iii) is a U-shape configuration, in which one end of each of two vertical scraping edges is attached to an end of a horizontal scraping edge, the two vertical scaping edges are respectively connected to two ends of the horizontal scraping edge and are curved toward each other.
In some embodiments, the kitchen robot further comprises a seasoning box disposed above the lid and comprising an output port, wherein the lid comprises a drop port; a sensor disposed on the spatula and configured to emit a sensing signal indicating that the spatula is not below the drop port in a direction along the first axis; a receiver disposed on the lid or the drop port and configured to receive the sensing signal; and a micro-control unit (MCU) communicatively coupled to the receiver and configured to, responsive to the received sensing signal, rotate the seasoning box about the first axis to a seasoning dispense position that aligns the output port with the drop port for one or more seasonings in the seasoning box to drop from the seasoning box through the drop port into the pot.
According to some embodiments, a spatula may include a stirrer disposed off a center of the spatula and comprises a scraper, wherein the stirrer is configured to simultaneously revolve about a first axis that passes through the center and rotate about a second axis off the center, wherein the first axis and the second axis are parallel to each other.
These and other features of the systems and methods disclosed herein, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate  corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for purposes of illustration and description only and are not intended as limiting.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an overview diagram of a kitchen robot, according to some embodiments of the present application;
FIG. 2 is a cross-sectional view diagram of a kitchen robot, according to some embodiments of the present application;
FIG. 3 is a first structural diagram of a kitchen robot, according to some embodiments of the present application;
FIG. 4 is a second structural diagram of a kitchen robot, according to some embodiments of the present application;
FIG. 5 is an exploded view of a schematic diagram of a lid and other components of a kitchen robot, according to some embodiments of the present application;
FIG. 6 is an exploded view of a schematic diagram of a first motor of a kitchen robot, according to some embodiments of the present application;
FIG. 7 is a first cross-sectional view diagram of a power surface and a slave surface of a kitchen robot, according to some embodiments of the present application;
FIG. 8 is a second cross-sectional view diagram of a power surface and a slave surface of a kitchen robot, according to some embodiments of the present application;
FIG. 9 is an exploded view of an assembly diagram of a seasoning unit of a kitchen robot, according to some embodiments of the present application;
FIG. 10 is an exploded view of a diagram of a seasoning unit of a kitchen robot, according to some embodiments of the present application;
FIG. 11 is a structural diagram of a top cover of a seasoning unit of a kitchen robot, according to some embodiments of the present application;
FIG. 12 is a top view diagram of a body of a seasoning unit of a kitchen robot, according to some embodiments of the present application;
FIG. 13 is a cross-sectional view diagram of a body of a seasoning unit of a kitchen robot, according to some embodiments of the present application;
FIG. 14 is a section view of a structural diagram of a seasoning unit of a kitchen robot, according to some embodiments of the present application;
FIG. 15 is a cross-sectional view diagram of a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 16 is a first structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 17 is a second structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 18 is a top view diagram of a stirrer of a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 19 is a third structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 20 is a fourth structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 21 is a fifth structural diagram of a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 22 is a first flow chart of a method for controlling a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 23 is a second flow chart of a method for controlling a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 24 is a third flow chart of a method for controlling a spatula of a kitchen robot, according to some embodiments of the present application;
FIG. 25 is a structural diagram of a lid of a kitchen robot, according to some embodiments of the present application;
FIG. 26 is a first flow chart of a method for opening or closing a lid of a kitchen robot, according to some embodiments of the present application;
FIG. 27 is a circuit diagram of a voltage detection circuit, according to some embodiments of the present application;
FIG. 28 is a second flow chart of a method for opening or closing a lid of a kitchen robot, according to some embodiments of the present application;
FIG. 29 is a structural diagram of a motor of a kitchen robot, according to some embodiments of the present application;
FIG. 30 is a schematic diagram of a pulse signal, according to some embodiments of the present application;
FIG. 31 is a third flow chart of a method for opening or closing a lid of a kitchen robot, according to some embodiments of the present application;
FIG. 32 is a flow chart of a method for rotating a seasoning box of a kitchen robot, according to some embodiments of the present application;
FIG. 33 is an illustrative diagram of a sensing signal waveform, according to some embodiments of the present application;
FIG. 34 is a cross-sectional view diagram of a seasoning unit of a kitchen robot, according to some embodiments of the present application;
FIG. 35 is a section view of a seasoning unit disposed on a holder of a kitchen robot, according to some embodiments of the present application;
FIG. 36 is a structural diagram of a holder of a kitchen robot, according to some embodiments of the present application.
Illustration:
1-kitchen robot;
2-base;
3-cooking unit;
4-seasoning unit;
5-arm unit;
111-holder;
112-trigger;
113-sensor;
201-surface;
202-cavity space;
203-supporting leg;
204-heat dissipation structure;
205-connection interface;
206-switch control;
207-measuring unit;
208-display pad;
301-bottom seat;
302-pot;
303-lid;
304-heating component;
305-temperature measuring component;
306-inner pot;
307-handle;
308-skirt structure;
309-safety hole;
310-mounting port;
311-second snap-on section;
312-drop port;
319-belt;
320-spatula;
321-driver component;
322-output shaft;
323-sleeve;
324-magnet;
325-electric driver;
326-support structure;
327-first axis;
328-bottom;
329-side;
330-housing cover;
331-first gear block;
332-second gear block;
334-rotation stopper structure;
335-shaft bushing;
337-second axis;
340-stirrer;
341-stirring arm;
342-slanted plane;
343-rotation shaft;
344-stirrer body;
345-stirrer edge;
350-scraper;
346-inclined plane;
351-scraping arm;
352-scraper body;
353-scraper edge;
354-horizontal scraping edge;
355-vertical scraping edge;
356-introductory structure;
360-sensor;
361-receiver;
401-output port;
402-seasoning box;
403-seasoning cavity;
404-body;
405-top cover;
406-bottom structure;
407-side wall;
408-bottom;
409-first opening;
410-second opening;
411-opening;
412-seasoning filling port;
413-cover plate;
414-sliding rail;
415-sealed cavity;
416-inverted angular structure;
417-depression;
418-transmission hole;
419-inner gear;
420-driver structure;
421-sealing component;
422-highly lubricious material;
423-first magnetic material;
424-second magnetic material;
425-second motor;
426-short edge;
427-long edge;
501-supporting arm;
502-rotating arm;
503-first motor;
504-output end;
505-power surface;
506-slave surface;
507-straight edge;
508-curved edge;
509-waist-shaped connector;
510-first snap-on section;
511-groove;
512-first slave surface;
513-second slave surface;
514-first gap;
515-second gap;
516-curved contour edge;
517-trigger switch;
518-flange;
519-supporting disc;
520-bulge;
521-magnetic material;
522-outer gear;
523-transmission structure;
403a-stator;
403b-rotor;
403c-sensor;
403d-trigger;
601-micro-control unit (MCU) ;
602-audio component.
DETAILED DESCRIPTION
Specific details are set forth in the following description to facilitate a full understanding of the present application. However, the present application can be implemented in many other ways than those described herein, and those skilled in the art may make similar extensions without contradicting the content of the present application, and therefore the present application is not limited by the specific embodiments disclosed below.
The terminologies used in one or more embodiments of this specification are merely for the purpose of describing particular embodiment (s) and are not intended to limit the one or more embodiments of this specification. The singular forms of "a" , "said" , and "the" used in one or more embodiments of this specification and in the appended claims are also intended to include the plural form, unless the context clearly indicates otherwise. It should also be understood that the term "and/or" as used in one or more embodiments of this specification refers to and includes any or all possible combinations of one or more of the listed items.
It should be understood that while the terms first, second, and the like may be used in one or more embodiments of this specification to describe various types of information, such information should not be limited to these terms. These terms are used only to distinguish the same type of information from one another. For example, without departing from the scope of one or more embodiments of this specification, first may also be referred to as second, and similarly, second may also be referred to as first. Depending on the context, as used herein, the word "if" may be interpreted as "at …" or "when …" or "in response to a determination" .
In some embodiments, FIG. 1 provides a kitchen robot 1 configured to cook food automatically, freeing people from the arduous cooking process while still being able to enjoy healthy food. Kitchen robot 1 may include base 2, cooking unit 3 disposed on base 2, seasoning unit 4 disposed above cooking unit 3, and arm unit 5 disposed at a side of cooking unit 3.
In some embodiments, base 2 has a horizontal surface 201 to support cooking unit 3. Surface 201 may be square-shaped or in another shape, such as round, triangle, etc. The material of surface 201 may be made of explosion-proof glass for safety and protection and ease of cleaning.
In some embodiments, as shown in FIGs. 1, 2, and 3, below surface 201, base 2 also includes cavity space 202 and supporting legs 203. Cavity space 202 may be configured to accommodate electric or electronic circuit components and wires connecting the electric or electronic circuit components. In some embodiments, since the electronic circuit components may generate a lot of heat during operation, heat dissipation structure 204 is disposed in cavity space 202. Heat dissipation structure 204 may be a fan, heat sink, etc. In some embodiments,  connection interface 205 may be disposed on a wall (e.g., side wall) of cavity space 202, such that a power cord can be connected to an external AC power source to provide the power needed for cooking or control circuits. Additionally or alternatively, a battery pack may be installed in cavity space 202 to provide the power. Further, the battery pack may be removable for easy replacement and maintenance.
In some embodiments, supporting legs 203 of surface 201 may be used to support base 2. Supporting legs 203 have a preset height so that when base 2 is placed horizontally on the table, the bottom of cavity space 202 is spaced from the table top, which allows for easier handling and better heat dissipation. In some embodiments, the height of supporting legs 203 can be adjusted so that the height of base 2 can be adjusted within a preset range according to the actual usage scenario. In addition, the number of supporting legs 203 may be four, and the supporting legs 203 are distributed around the four corners of the base to provide uniform support. When not in use, supporting legs 203 may be removed from base 2, and base 2 can be erected for easy storage.
In some embodiments, the electric or electronic circuit components in cavity space 202 of base 2 may contain a main control board. In one embodiment, the electric or electronic circuit components may also include various sensors, such as temperature sensor, current sensor, magnetic sensor, etc. The main control circuit board may be configured to receive commands from external users or sensing signals from various sensors to send corresponding control signals to control the kitchen robot 1 to automatically perform operations.
As shown in FIG. 1, switch control 206, measuring unit 207, and display pad 208 may be disposed on base 2. Switch control 206 may be configured to input control commands to kitchen robot 1. In order to achieve a better user experience, in some embodiments, switch control 206 may be pressure-triggered in the vertical direction and rotated in its circumferential direction. Alternatively or additionally, switch control 206 may be configured as sliding-triggered, vibration-triggered, touch-triggered, and the like. Measuring unit 207 may be used to measure and weigh one or more main ingredients (e.g., food) or auxiliary ingredients (e.g., seasonings) to facilitate the standardization of the dishes. In some embodiments, measuring unit 207 may include a measuring cup and/or an electronic balance on which the main ingredient (s) or auxiliary ingredient (s) can be placed, and correspondingly a weighing module may be disposed in base 2 below where the measuring cup is placed. When the cup is placed in the designated position of the base, the weighing module may be configured to weigh and/or volume the material inside the cup and send the measurement back to the main control board. Display pad 208 may be configured to display the information of the kitchen robot. In some embodiments, the display pad 208 may be elongated for displaying more information. In some embodiments,  for better interactions, switch control 206, measuring unit 207, and display pad 208 may be disposed on the same side of the top surface closer to the user. Switch control 206 and measuring unit 207 may be respectively disposed at two corners of base 2.
In some embodiments, cooking unit 3 may be disposed on surface 201 of base 2. Cooking unit 3 may include bottom seat 301, pot 302, and lid 303. Bottom seat 301 may be used to support pot 302, such that pot 302 can be stably placed on top of bottom seat 301. Bottom seat 301 may include a depression to accommodate a portion of pot 302, and the depression may have a contour surface that matches the surface of pot 302. In some embodiments, the support surface may be formed by a continuous smooth curved surface with a preset curvature.
In some embodiments, bottom seat 301 may include heating component 304. When pot 302 is placed on bottom seat 301, heating component 304 may be configured to heat pot 302. In some embodiments, heating component 304 may include an electromagnetic plate, and the electromagnetic plate may include one or more electromagnetic solenoid coils configured to generate magnetic radiation to heat pot 302 during operation. The electromagnetic plate may be circular in shape. The back of bottom seat 301 may be provided with a grid of positioning ribs on which the electromagnetic plate may be disposed. In some embodiments, heating component 304 may include other forms of heating structure. For example, the heating component may include a heating wire component that uses the heat generated by the heating wire to directly heat the pot. In one embodiment, the main control board may electrically control an amount of current passing through the solenoid coil, thereby controlling the temperature to which the pot is heated. In some embodiments, the main control board may also control the temperature by controlling parameters such as voltage. The advantage of this is that the heating can be quantified and data of the parameters can be used to characterize the degree of heating for precise control purposes.
As shown in FIG. 2, temperature measuring component 305 may be disposed at a bottom of a depression. Temperature measuring component 305 may be configured to detect a current temperature of pot 302 through a direct contact with pot 302 and to provide feedback to, e.g., the board control board. Thus, according to the current temperature of pot 302 measured in real time, the temperature can be controlled and adjusted accordingly. For example, when a dish needs to be stir-fried, the heating temperature of the heating component may be adjusted through the main control board or other control methods to heat up pot 302. Temperature measuring component 305 detects the temperature of the pot in real time, and when the temperature of pot 302 reaches a preset heating temperature, the main control board or other control methods may adjust the heating temperature of heating component 304 again based on the real-time feedback from temperature measuring component 305 to maintain the temperature of the pot 302 at the current level.
In some embodiments, a safety component may be disposed at the bottom of the depression to preempt some accidental or uncontrollable factors. For example, when the temperature measuring component detects that the current temperature of the pot has exceeded a threshold alarm temperature, the safety component may send an alarm signal back to the main control board or other control methods to break the circuit in time to ensure the safety of the user. In some embodiments, the safety component includes a fuse connected to the circuit. When the temperature is higher than the melting temperature of the fuse, the fuse will melt to break the circuit to ensure safety of the circuit.
In some embodiments, bottom seat 301 may be fixedly mounted on base 2. For example, the bottom seat 301 may be mounted on surface 201 of base 2 and protrudes from the plane in which surface 201 is located, and the bottom seat may have an annular side surface. This configuration may provide an easier layout for the electrical connections between the heating component and the electric or electronic circuit components in the base.
In some embodiments, pot 302 may include inner pot 306 and handle 307 for gripping. Inner pot 306 may be recessed and have a smooth surface. The smooth surface of inner pot 306 matches a support surface of bottom seat 301, so that inner pot 306 can be stably supported on bottom seat 301. Heating component 304 may be configured to heat pot 302 by primarily heating inner pot 306, so that the food in inner pot 306 is fully heated and the heating efficiency is improved. In some embodiments, inner pot 306 has skirt structure 308 projecting outward at the edge of inner pot 306, so that the outer surface of inner pot 306 and skirt structure 308 form a step, thus facilitating steady placement and positioning of pot 302 on bottom seat 301. In some embodiments, the size of skirt structure 308 is designed so that the side surface of skirt structure 308 and the side surface of bottom seat 301 together form a smooth surface. In some embodiments, the radius of skirt structure 308 is larger than the radius of bottom seat 301, so that the side surface of skirt structure 308 and bottom seat 301 resembles a side surface of an inverted cone. In some embodiments, the side surfaces of skirt structure 308 and bottom seat 301 may together form a cylindrical side surface. That is, the radius of the skirt structure and the radius of the bottom seat may be the same.
In some embodiments, one or more handles 307 of pot 302 may be disposed on the side surface of skirt structure 308. Two handles 307 may be provided symmetrically on opposite sides of pot 302, so that a user can easily lift pot 302 from bottom seat 301 by grabbing handles 307. In some embodiments, the number of handles 307 may be one. That is, the user can grab the handle from one side. There may be many ways for connecting the handles 307. In some embodiments, handle (s) 307 may be fixedly attached to skirt structure 308, so that handle (s) 307 are not removable from pot 302. The fixed connection may be screw locking or the like.  Alternatively, handle (s) 307 may be made movable. For example, handle (s) 307 may be foldable or rotatable, so that they can be stored away when not in use to reduce its size.
In some embodiments, lid 303 is disposed on top of pot 302 to cover pot 302, so that dishes inside inner pot 306 are isolated from the outside world. Lid 303 may be structurally separated from pot 302, with no connection structure between the two. In some embodiments, lid 303 may be configured to open and close automatically based on a control command without human operation. This improves the user experience and reduces potential hazards. In some embodiments, lid 303 may have at least two states. In one state shown in FIG. 3, lid 303 is in contact with and covers the top rim of pot 302, that is, lid 303 is in a closed state. In the other state shown in FIG. 4, lid 303 is not in contact with pot 302, that is, lid 303 is in an open state, so that food can be removed from or put into pot 302. FIG. 5 provides a bottom view of lid 303, and FIG. 25 provides a top view of lid 303. As shown in FIGs. 5 and 25, lid 303 may be made of reinforced glass, which allows viewing of domestic food and ensures safety, and prevents spilling of food or hot oil from the pot. In addition, the surface of lid 303 may be provided with safety hole 309. Safety hole 309 may have a pressure relief function to ensure that the pressure inside pot 302 remains safe when lid 303 closes on pot 302. In one embodiment, safety hole 309 may include a similar shutter-like structure.
In some embodiments, arm unit 5 may be configured to provide support when lid 303 opens or closes. Arm unit 5 may include a supporting arm 501 and a rotating arm 502 that can rotate relative to each other. Thus, arm unit 5 may control the rotation, open, and close of lid 303. In some embodiments, supporting arm 501 is fixed, and rotating arm 502 is rotatable about an axis relative to supporting arm 501. The axis may be approximately horizontal and perpendicular to a longitudinal axis of lid 303 when lid 303 is placed on pot 302. In addition, rotating arm 502 may have a rotation range of 60 degrees relative to supporting arm 501.
In some embodiments, supporting arm 501 may be fixed on base 2. For example, supporting arm 501 may be disposed located near bottom seat 301, such that supporting arm 501 does not affect the normal operation of pot 302 on the bottom seat 301, and supporting arm 501 provides a base height for more easily controlling lid 303. In one embodiment, supporting arm 501 is set to closely fit with a part of the contour surface of the bottom seat 301. For example, with the bottom seat as a center, base 2 has one side near the user and the other side away from the user. To reduce interference, supporting arm 501 may be disposed on the other side away from the user.
In some embodiments, arm unit 5 may include a power unit configured to actuate movement of the lid. The power unit may include a first motor 503 located within supporting arm 501. First motor 503 may be configured to drive rotating arm 502 to rotate relative to  supporting arm 501. First motor 503 may be configured along the longitudinal direction. An output shaft axis of first motor 503 may be parallel to the longitudinal axis of lid 303, such that the lateral dimension of supporting arm 501 is smaller than its longitudinal dimension. Since output end 504 of the power unit is connected to supporting arm 501 and drives supporting arm 501 to rotate around a horizontal axis, transmission structure 523 is disposed between output end 504 and first motor 503. Transmission structure 523 may be configured to convert the longitudinal rotation drive of first motor 503 into the axial rotation of output end 504 in the horizontal direction. In view that a large torque is required for output end 504 to drive lid 303 and other structures, transmission structure 523 may have a reasonable speed reduction ratio design to increase the output torque. For example, transmission structure 523 may include a worm wheel gear assembly or an epicyclic gear.
In some embodiments, the power unit may transmit power to the rotating arm by shaped matching. For example, output end 504 may have power surface 505, rotating arm 502 may have slave surface 506, and power surface 505 is matched with slave surface 506 to achieve power transmission. Power surface 505 and slave surface 506 may both be flat surfaces crossing at an angle (e.g., 90~180 degrees) and in close contact with each other and tightly fit together to achieve the power transmission; and when they are disengaged, the power connection is lost.
Part A of the kitchen robot in FIG. 4 is zoomed in and shown more details in FIGs. 6-8. As shown in FIGs. 6 and 7, output end 504 of the power unit may have a waist-shaped configuration. In other words, output end 504 may have a horizontal output shaft axis, and a projection of output end 504 in a cross-sectional plane perpendicular to the shaft line is a waist-shaped configuration. For example, the waist-shaped configuration may include a pair of straight edges 507 and a pair of curved edges 508, where straight edges 507 are set parallel to each other at a preset distance apart, and the curved edges 508 are set opposite to each other and located between the straight edges 507, and curved edges 508 projects outward. The length of straight edge 507 is greater than the radius of curved edge 508, so that the entire waist structure has an elongated profile. Further, a straight edge 507 may be tangential to a curved edge 508. In some embodiments, output end 504 may have other shapes, such as triangular or hexagonal shapes. In addition, the center line of the waist structure may be set horizontally, and the center line overlaps with the output shaft axis. The central part of the waist structure has an opening for connecting the transmission structure, and the center line and the output shaft axis also pass through the opening. A projection of the power surface 505 in the cross-sectional plane falls upon the straight edge.
Correspondingly, in some embodiments, rotating arm 502 has waist-shaped connector 509 matching with the waist-shaped configuration of the output end. For example, waist-shaped  connector 509 may be located at one end of rotating arm 502, e.g., near the end of supporting arm 501. Waist-shaped connector 509 may be connected to a periphery of the waist-shaped structure of output end 504, so that waist-shaped connector 509 and the waist-shaped structure of output end 504 can rotate synchronously. The other end of rotating arm 502, i.e., the end away from supporting arm 501, has first snap-on section 510 connected to lid 303. First snap-on section 510 and lid 303 may be configured to quickly engage and disengage. As shown in FIGs. 5 and 25, the center of lid 303 has mounting port 310, and the center axis of lid 303 runs through mounting port 310. Second snap-on section 311 may be disposed on mounting port 310 of lid 303. Second snap-on section 311 has a tongue in the circumference around the center axis. Groove 511 may be disposed on first snap-on section 510 of rotating arm 502 in a circumferential direction. Further, an end of groove 511 has a groove entrance. The opening direction of the groove entrance is perpendicular or at an angle to the extended direction of groove 511. The tongue may enter groove 511 from the groove entrance and move in the circumferential direction to complete the positioning. In some embodiments, a tongue may be disposed on first snap-on section 510, and a groove may be disposed on second snap-on section 311. In some embodiments, lid 303 is close to first snap-on section 510 of rotating arm 502, allowing first snap-on section 510 to partially pass through the opening at the center of lid 303, so that the tongue on second snap-on section 311 is aligned with groove 511 on first snap-on section 510. Then lid 303 is rotated along the center axis, or lid 303 is rotated in the first direction relative to second snap-on section 311, so that the tongue slides into groove 511 and lid 303 is engaged to rotating arm 502. When lid 303 needs to disengage from rotating arm 502, lid 303 may be turned in the opposite direction, or in the second direction relative to second snap-on section 311. The second direction is opposite to the first direction, so as to allow the tongue to slide out of groove 511 to disengage, and lid 303 separates from rotating arm 502, which is convenient for storing or cleaning lid 303. In one embodiment, there are three sets of matching circumferential tongue and groove. And the three groups may be evenly distributed along the circumference. In some embodiments, it is possible to have different numbers of groups of matching tongue and groove, such as one group, two groups, or four groups.
In some embodiments, as shown in FIG. 7, the waist-shaped connector of the rotating arm has a slave surface that matches with a power surface. In one embodiment, the waist-shaped connector has at least two slave surfaces: first slave surface 512 and second slave surface 513. The power surface may engage with either first slave surface 512 or second slave surface 513. Power surface 505 may engage with first slave surface 512 during normal power transfer, i.e., when output end 504 outputs power to drive the rotation of the lid 303. When the normal power transfer ends, i.e., when output end 504 stops outputting power, power surface 505 disengages  from first slave surface 512 and engages with second slave surface 513. In some embodiments, as shown in FIG. 7, when power surface 505 and first slave surface 512 are engaged, power surface 505 and second slave surface 513 are separated by first gap 514. When power surface 505 and second slave surface 513 are engaged, power surface 505 and the first slave surface 512 are separated by second gap 515. In one embodiment, the area of first gap 514 may be no less than the area of the second gap 515. In some embodiments, first slave surface 512 and second slave surface 513 may both be planar and are connected to each other at an angle, so that power surface 505 may switch from engagement with one slave surface to another while in rotation. The angle between first slave surface 512 and second slave surface 513 back-facing the power surface is an obtuse angle, e.g., 170 degrees. The angle between first slave surface 512 and second slave surface 513 facing toward the power surface is an angle larger than 180 degrees. The length of the projection of power surface 505 in the cross-sectional plane is greater than the length of the projection of first slave surface 512 in the cross-sectional plane. The length of the projection of power surface 505 in the cross-sectional plane is greater than the length of the projection of second slave surface 513 in the cross-sectional plane. This makes it easier to switch engagement of the power surface between the slave surfaces. A projection of the output end in the cross-sectional plane may be a waist shape.
In some embodiments, to match with the output end, waist-shaped connector 509 may also have curved contour edge 516 to match with curved edge 508 of output 504. Curved contour edge 516 and curved edge 508 may have the same degree of curvature. Also the arc length of curved contour edge 516 is greater than the arc length of curved edge 508, so that when power surface 505 switches engagement from first slave surface 512 to second slave surface 513, curved edge 508 stays in close contact with curved contour edge 516. As shown in FIGs. 7 and 8, first slave surface 512, the second slave surface 513, and the curved contour edge 516 of the waist-shaped connection 509 may be connected in sequence. The two ends of first slave surface 512 respectively connect with second slave surface 513 and curved contour edge 516. The two ends of second slave surface 513 respectively connect with curved contour edge 516 and first slave surface 512. The two ends of curved contour edge 516 respectively connect with first slave surface 512 and second slave surface 513.
In some embodiments, since lid 303 has a closed position closing the pot 302 and an open position opening the pot 302, rotating arm 502 may drive lid 303 to switch between the closed position and the open position. For better control, kitchen robot 1 may have trigger switches 517 corresponding to the closed position and the open position respectively. Rotating arm 502 may trigger a corresponding trigger switch when rotating to a preset position. Flange 518 may be disposed on rotating arm 502 and in contact with and trigger a corresponding trigger switch to  generate a trigger signal accordingly. As shown in FIG. 3, for example, the number of trigger switches 517 is two, and the two trigger switches 517 may be distributed along the vertical direction. When flange 518 rotates to one of trigger switches 517 that corresponds to the open position, the trigger switch 517 corresponding to the open position emits a trigger signal representing that lid 303 is now in the open position. When the flange 518 turns to the other trigger switch 517 that corresponds to the closed position, the trigger switch 517 corresponding to the closed position emits a trigger signal to indicate that lid 303 is in the closed position. Trigger switches 517 and flange 518 may be disposed in an internal cavity of supporting arm 501. In some embodiments, two flanges and one trigger switch may be installed. Fixing bars may be disposed in the internal cavity of supporting arm 501 to fix the position of the trigger switch and first motor 503. Flange 518 may be disposed on waist-shaped connector 509 of rotating arm 502, so that flange 518 and slave surface 506 can rotate simultaneously.
In some embodiments, when a user wants to close lid 303 or when a program or software automatically controls the closing of lid 303, first motor 503 starts to output rotating power. At this time, because power surface 505 of output end 504 and first slave surface 512 of rotating arm 502 are engaged, first motor 503 drives rotating arm 502 and the connected lid 303 to rotate towards the closed position. This movement is maintained until flange 518 on rotating arm 502 triggers one of trigger switches 517 to generate a signal to kitchen robot 1 to determine that lid 303 is closed in place and accordingly to control first motor 503 to shut down and stop power output. Therefore, power surface 505 of output end 504 also stops rotating immediately. Considering the possibility of errors in actual implementations, such as tolerance error or delay control, when first motor 503 stops rotating, lid 303 may not be completely closed in place. In order to improve the accuracy, so that lid 303 can completely close in place, first slave surface 512 and second slave surface 513 may be disposed on rotating arm 502. When power surface 505 stops rotating, rotating arm 502 may continue to rotate for a short period of time by the gravity or rotational inertia of lid 303, so that slave surface 506 that matches with the power surface 505 switches from first slave surface 512 to second slave surface 513. This allows rotating arm 502 and lid 303 to continue moving a little further after first motor 503 stops rotating, thus achieving the purpose of completely closing the pot 302.
In some embodiments, due to the variability of different kitchen robots or of different executions of closing the lid by the same kitchen robot, complete consistency is hard to come by. For example, if a kitchen robot performs an action to close the lid, the lid may have already been closed when the motor is stopped. But in another instance of closing the lid, the lid needs to advance a bit further after the motor stops. The design of the two slave surfaces on the rotating arm 502 leaves some room for error to ensure that the lid can be closed precisely in more cases.  In addition, the rotating arm 502 and output end 504 are disconnected during the final stage of lid 303 shutdown, which also protects the motor from excessive torque that may potentially damage the motor.
In some embodiments, in addition to automatically opening/closing, the kitchen robot may automatically add seasonings. As shown in FIG. 1, kitchen robot 1 may include seasoning unit 4 in addition to cooking unit 3. Seasoning unit 4 may be configured to automatically add seasonings to pot 302. As shown in FIG. 1, FIG. 2, and FIG. 9, seasoning unit 4 may be disposed on top of lid 303. In one embodiment, seasoning unit 4 may be disposed directly above lid 303. That is, the centerline of seasoning unit 4 coincides with the centerline of lid 303. Drop port 312 may be disposed on lid 303, and drop port 312 may be configured to not interfere with a center opening of lid 303. Drop port 312 opens upwards. An output port is disposed on seasoning unit 4, and the output port opens downward. When seasoning unit 4 is in a suitable position, drop port 312 and the output port of the seasoning unit 4 are aligned, and seasonings in seasoning unit 4 will enter the pot 302 through the drop port 312 and the output port of the seasoning unit 4 by gravity, thus completing ingredient filling.
In some embodiments, seasoning unit 4 includes seasoning box 402 and driver structure 420 that drives seasoning box 402. Seasoning cavity 403 may be disposed in seasoning box 402 for storing seasonings. Driver structure 420 that drives the seasoning box 402 and rotating arm 502 and lid 303 have different sources of power. Here, driver structure 420 may be used to exclusively drive the seasoning box 402. Driver structure 420 may include second motor 425 and a transmission structure. Through the transmission structure, second motor 425 may drive seasoning box 402 to rotate. Further, seasoning box 402 may rotate around an output shaft axis. The output shaft axis of seasoning box 402 may be set parallel to the center line of lid 303. In other words, the output shaft axis of seasoning box 402 may be set longitudinally. In one embodiment, the output shaft axis of seasoning box 402 coincides with its center line, i.e., seasoning box 402 rotates around its center line. Thus, driver structure 420 may control the seasoning box 402 to rotate to a position where drop port 312 and the output port are aligned, so that the seasonings can leave the seasoning box and enter the pot. In one embodiment, seasoning box 402 has multiple seasoning cavities 403 that are independent of each other, because it is often necessary to use multiple seasonings to cook a dish, and it is undesirable to mix the seasonings with each other. Therefore, seasoning box 402 may have multiple rotation positions, and each seasoning cavity 403 can be aligned with the output port and drop port 312 at a corresponding rotation position.
In some embodiments, as shown in FIG. 9, seasoning box 402 may be disposed on the rotating arm. In one example, seasoning box 402 may be disposed on one end of rotating arm  502 away from supporting arm 501. Rotating arm 502 has some thickness in the middle of its body, and a flat supporting disc 519 is disposed at an end of rotating arm 502. The thickness of supporting disc 519 is much less than the thickness of rotating arm 502 as a whole. Supporting disc 519 has two opposite sides. Seasoning box 402 may be disposed on supporting disc 519, and lid 303 may be disposed on supporting disc 519. When seasoning box 402 is installed on supporting disc 519, the thickness of seasoning box 402 and supporting disc 519 altogether is approximately the same as the thickness of the middle of the rotating arm 502 as a whole. In addition, seasoning box 402 may be disposed on one side of supporting disc 519, while lid 303 may be disposed on the opposite side of supporting disc 519. Therefore, supporting disc 519, as a part of rotating arm 502, is sandwiched between lid 303 and seasoning unit 4. First snap-on section 510 may be disposed on the other side of supporting disc 519, thus matching second snap-on section 311 of lid 303, so that lid 303 may be detachably mounted on the other side. Similarly, seasoning box 402 may be detachably mounted on supporting disc 519. Supporting disc 519 may have a shape of a disc. First snap-on section 510 may be disposed around the center of the disc. When second snap-on section 311 on the mounting port of lid 303 and the first snap-on section 510 are snapped together, the center of the disc substantially coincides with the center of lid 303.
For easier disassembly and cleaning, in some embodiments, seasoning box 402 and supporting disc 519 may be magnetically attached to each other. After installation, seasoning box 402 and supporting disc 519 may be magnetically attracted to each other. When a user needs to separate the two, they can be separated by overcoming the magnetic attraction, which is very convenient. As shown in FIG. 9, bulge 520 may be disposed on supporting disc 519, and seasoning box 402 may be mounted on bulge 520. Bulge 520 may be symmetrically configured about a center of supporting disc 519. After seasoning box 402 is installed onto bulge 520, the center of seasoning box 402 also coincides with the center of supporting disc 519. Therefore, the center lines of lid 303, supporting disc 519, and lid 303 substantially coincide with one another. Magnetic material 521 may be disposed on bulge 520, and similarly, a magnetic material may be disposed on seasoning box 402. In order to have uniform attraction, magnetic material 521 on bulge 520 may have a ring shape.
In some embodiments, as shown in FIG. 10, seasoning box 402 may have an overall cylindrical shape with a preset thickness. Seasoning box 402 may include a cover body (e.g., 405 and 406 together) and a body 404 inside the cover body. Although FIG. 10 shows top cover 405, body 404, and bottom structure 406 separated in space, body 404 may be placed inside bottom structure 406, and top cover 405 may be configured to cover bottom structure 406 with body 404 placed inside. The cover body may form a periphery of seasoning box 402 as a protection cover,  and may be hollow inside. Body 404 may be disposed in the cover body. Body 404 may be driven for rotational movement after installation, while the cover body may be fixed. Therefore, body 404 may rotate relative to the cover body. In addition, seasoning box 402 may be quickly disassembled from supporting disc 519 on rotating arm 502, and the cover body and body 404 inside seasoning box 402 may be quickly disassembled to facilitate routine maintenance and cleaning.
In some embodiments, the cover body may include a top cover 405 and a bottom structure 406. Top cover 405 and bottom structure 406 may fit together to form a cavity space. FIG. 10 shows the top surface of body 404 with one or more seasoning cavities 403, one or more sealed cavities 415, etc. The bottom surface of body 404 (on the other side of the paper) is substantially parallel to the top surface of body 404. First axis 327 may pass through the center of transmission hole 418 and be perpendicular to the top surface and bottom surface of body 404. When installed, top cover 405 covers the top surface of body 404 and bottom structure 406 covers the bottom surface of body 404. When disassembled, top cover 405 and bottom structure 406 are separated, thus body 404 can be easily removed from the space. In some embodiments, the cover body may take various forms. For example, the cover body may be formed by splicing three parts together, or the cover body may be formed in one piece. Bottom structure 406 may be supported on supporting disc 519. Bottom structure 406 may include a circular side wall 407 and a circular bottom 408. Side wall 407 may be configured to enclose the flanks of body 404. First opening 409 may be disposed at the center of bottom 408, and second opening 410 is set off the center of bottom 408. First opening 409 may be configured for engaging onto bulge 520, so that bottom structure 406 may lay on support disc 519. The diameter of bulge 520 may be slightly smaller than the diameter of first opening 409, so that first opening 409 fits onto bulge 520 and facilitates the positioning of the entire seasoning box 402. First opening 409 may include a side wall extending in a direction of the opening, the side wall extending in the direction of the body, i.e., towards the inner side of bottom structure 406, such that the side wall and body 404 may match and engage. Second opening 410 may also be configured to engage and align with the opening 411 on supporting disc 519. Second opening 410 may also include a side wall extending in the direction of the opening, with the side wall of second opening 410 extending towards supporting disc 519, i.e., towards the outer side of the bottom structure, to engage with the opening 411 on supporting disc 519. Opening 411 on supporting disc 519 may be aligned with drop port 312 on lid 303, thus ensuring that opening 411 and drop port 312 are connected. Therefore, with the relationship between second opening 410 and opening 411, second opening 410 on bottom structure 406 may be aligned with drop port 312 on the lid, when bottom structure 406 is mounted on supporting disc 519.
In some embodiments, as shown in FIG. 10, top cover 405 may have a circular shape. The area of the top of top cover 405 is comparable in size to the area of bottom 408 of bottom structure 406. Top cover 405 may include seasoning filling port 412 and cover plate 413 for opening and closing seasoning filling port 412. When seasoning needs to be added, cover plate 413 may be opened to expose the seasoning filling port; when seasoning does not need to be added, cover plate 413 may be closed to seal the seasoning filling port 412. When cover plate 413 is open, seasonings may be added to seasoning cavities 403 of body 404 from seasoning filling port 412. In some embodiments, cover plate 413 may be slidingly operated along the surface of top cover 405. Sliding rail 414 may be disposed on a surface of top cover 405, and cover plate 413 has a rail to move along sliding rail 414. As shown in FIG. 11, when cover plate 413 of top cover 405 slides off sliding rail 414, sliding rail 414 and seasoning filling port 412 of top cover 405 are revealed. In some embodiments, cover plate 413 may be operated in other ways, such as push-button, touch, etc. In addition, to achieve better assembly with bottom structure 406, top cover 405 may have a step structure on the side of the cover 405 that fits into the side wall of bottom structure 406. Seasoning filling port 412 may have various shapes, such as square, circle, triangle, etc.
FIG. 14 provides a section view of the seasoning unit of the kitchen robot. That is, FIG. 14 shows a section view of top cover 405 with cover plate 413, body 404, and bottom structure 406 are installed together, and body 404 has been rotated to a position where seasoning filling port 412 aligns with a first seasoning cavity of seasoning cavities 403 (so that seasoning can be added to the first seasoning cavity) and output port 401 aligns with a second seasoning cavity of seasoning cavities 403 (so that the seasoning in second seasoning cavity can be drop into a pot placed below output port 401) . As shown, seasoning filling port 412 and output port 401 do not overlap along a direction of an axis (e.g., the first axis) passing through a center of body 404 and perpendicular to the top surface and/or the bottom surface of body 404. This may separate seasoning refilling from seasoning dispensing. When body 404 rotates about the axis, top cover 405 and bottom structure 406 may be fixed in position relative to body 404.
In some embodiments, both top cover 405 and bottom structure 406 may be removably mounted, while body 404 may be rotatably mounted between top cover 405 and bottom structure 406. Body 404 may be substantially cylindrical and magnetically attached to the cavity space formed by the cover. Body 404 may include seasoning cavities 403. Seasonings may be added to seasoning cavities 403 from outside via seasoning filling port 412 for temporary storage, and then poured into pot 302 at a suitable time. Since cooking a dish may require multiple seasonings, and each dish may require different seasonings, there may be multiple seasoning cavities 403 in body 404. And multiple seasoning cavities 403 are independent of each other: each seasoning  cavity may store one kind of seasoning, so that the different seasonings do not mix up with each other. Alternatively, each seasoning cavity may contain several seasonings that do not interfere with each other. The seasoning may be in solid or liquid form. In one embodiment, the number of seasoning cavities 403 is five, taking into account the type of seasoning typically required for a dish and the volume of the seasoning cavity. In some embodiments, the number of seasoning cavity 403 may be seven, six, four, three, etc. Seasoning cavity 403 may be in the form of a through-hole, with both ends open and the center through. A first end of the through-hole may be on a top surface of body 404 and substantially matches with seasoning filling port 412, and a second end of the through-hole may be on a bottom surface of body 404 and substantially matches with output port 401. Seasoning cavity 403 extends along the longitudinal direction. In one embodiment, body 404 may include sealed cavity 415 provided in parallel with seasoning cavity 403. Similar to seasoning cavity 403, sealed cavity 415 may extend in the longitudinal direction, except that both ends of sealed cavity 415 are closed. In some embodiments, the number of sealed cavities 415 may be one, two, three, four, etc. Seasoning cavity 403 and sealed cavity 415 may be arranged around the centerline of body 404 in a ring. In one embodiment, the total number of seasoning cavities 403 and sealed cavities 415 is six, and the six cavities are evenly distributed along the ring. Therefore, the angle between two adjacent cavities is approximately 60 degrees. The angle may vary depending on the total number of cavities, roughly between 30 and 120 degrees. As shown in FIG. 12, the cross-section of seasoning cavity 403 may be fan-shaped, with its width narrowing inward along the radial direction. Short edge 426 of the cross-section is closer to the center, and long edge 427 of the cross-section is closer to the edge. In addition, there is an inverted angular structure 416 at a corner of the cross-section. The cross-sectional area of sealed cavity 415 is the same as that of seasoning cavity 403 in the longitudinal direction.
In some embodiments, as shown in FIG. 13, body 404 may have depression 417. Depression 417 may be located at the center of body 404, and the output shaft axis of body 404 may pass through depression 417. The structure of depression 417 may be a blind via hole in the body. The opening of the blind via hole faces bottom structure 406. The blind via hole is located at the center of body 404, and its function is to match the shape of bulge 520 of supporting disc 519. When supporting disc 519 is installed in the seasoning box 402, bulge 520 on supporting disc 519 passes through first opening 409 at the center of bottom structure 406, and then fits into the blind via hole in body 404. Transmission hole 418 may be disposed at the bottom of the blind via hole, which is the top of body 404. Transmission hole 418 may be used to connect with second motor 425 to achieve power transmission, so that second motor 425 may drive body 404 to rotate. In one embodiment, transmission hole 418 may include inner gear 419 that engages  with the transmission gear of second motor 425.
In some embodiments, as shown in FIG. 2, driver structure 420, which drives the rotation of body 404, may be disposed in the depression 417 of body 404, so that seasoning cavity 403 of body 404 may be located at the same level with driver structure 420. In other words, the height of seasoning cavity 403 and the height of driver structure 420 may be substantially the same. Driver structure 420 may be located in the center, and seasoning cavities 403 may be arranged along around driver structure 420 in a ring. The center line of driver structure 420 may be coincident with the center line of depression 417, and also coincident with the center line of lid 303. Transmission hole 418 may be located at the bottom of depression 417 and engage with the gears of driver structure 420, so that second motor 425 directly drives the body 404 to rotate. This gearing facilitates the quick disassembly of body 404 and driver structure 420. In one embodiment, since bulge 520 of supporting disc 519 engages with depression 417 of body 404, driver structure 420 may be disposed in the internal space of bulge 520. The internal space of bulge 520 is slightly larger than the volume of driver structure 420, and slightly smaller than the internal space of depression 417 of body 404, and all three of them are connected in an interlocking relationship. At the same time, bulge 520 may be used as an outer cover to protect driver structure 420. In order to ensure smooth transmission, the drive gear of driver structure 420 extends beyond the end of bulge 520. In one embodiment, second motor 425 is a stepper electric driver, which may precisely control the rotation angle of body 404 in each cycle. In some embodiments, the stepper electric driver may rotate in one direction, such as clockwise, to simplify the control.
In some embodiments, body 404 may be driven by driver structure 420 to rotate about its central axis (e.g., the first axis) . Thus, body 404 may have multiple rotation positions relative to the cover body. In one of the rotating positions, seasoning cavity 403 of the body and second opening 410 of bottom structure 406 are aligned, thus forming the output port 401 in the open state. Since drop port 312 on lid 303 and second opening 410 on bottom structure 406 are connected, seasonings in seasoning cavities 403 may pass through output port 401 and drop port 312 and enter into pot 302, which is a dispense position. Since the body may have multiple seasoning cavities 403, each seasoning cavity may correspond to a dispense position. When a seasoning cavity and the bottom structure 406 form open output port 401, the bottoms of the other seasoning cavities are closed by bottom structure 406. In other words, each time it is turned to a dispense position, only one seasoning cavity may be opened, and only one seasoning may be added to pot 302. For example, when cooking a dish that requires three seasonings to be added to the pot, body 404 of the seasoning box needs to be turned to each of the three dispense positions so that the corresponding three seasoning cavities can open one after another, and the three  seasonings in the three seasoning cavities are added to pot 302. Therefore, the rotation of body 404 of the seasoning box will cause the seasoning box 402 to switch among the multiple dispense positions.
In some embodiments, seasoning box body 404 may include sealed cavity 415. When body 404 is in a rotating position, sealed cavity 415 of body 404 is aligned with second opening 410 on bottom structure 406, thus forming a closed output port 401, at which time all the seasoning cavities are closed by bottom structure 406 -this is the sealed position. The number of sealed positions and the number of sealed cavities are also equal. In one embodiment, there is one sealed cavity and only one sealed position. During one rotation of body 404 around the first axis, multiple dispense positions and sealed cavity positions will appear one by one.
In some embodiments, seasoning filling port 412 on top cover 405 fits with seasoning cavity 403 of body 404 similarly as second opening 410 on bottom structure 406 fitting with the seasoning cavity 403. Top cover 405 may be disposed near a top opening of seasoning cavity 403. When body 404 is rotated to a preset position, seasoning cavity 403 of body 404 is aligned with seasoning filling port 412, and the seasoning may be added to seasoning cavity 403 from seasoning filling port 412, and this position may be defined as the filling position. In the filling position, there is a seasoning cavity of body 404 aligned with seasoning filling port 412 to facilitate the filling. If more than one seasoning needs to be added, body 404 may be rotated, and at each filling position, one seasoning may be added to the seasoning cavity aligned with seasoning filling port 412, and then at the next filling position, there will be another seasoning cavity aligned with the seasoning filling port, where another seasoning can be added. So for seasoning cavity 403, the seasoning may be added from the top of body 404, and when the seasoning needs to be dispensed, the seasoning is dropped into the pot from the bottom of body 404.
In some embodiments, seasoning cavity 403 needs to be sealed to prevent leakage of the seasoning from the end. Therefore, seasoning cavity 403 has sealing component 421 at the end of seasoning cavity 403, and sealing component 421 may be sealed against the inner surface of the lid. For example, sealing component 421 may be made of a different material than the seasoning cavity. Sealing component 421 may be made of silicone and is therefore highly flexible. Further, the material of the sealing component must be food-safe and must not cause food contamination. In some embodiments, sealing component 421 may be made of other materials with a preset degree of flexibility. Seasoning cavity 403 may be provided with a sealing component at each of the top and bottom of each seasoning cavity 403. The sealing component at the bottom end of seasoning cavity 403 is in touch with the inner surface of the bottom structure, the sealing component at the top end of seasoning cavity 403 is in touch with the inner surface of the top  cover. Sealing component 421 may have a hollow ring structure that matches with the profile of the edge of seasoning cavity 403 or sealed cavity 415 on the bottom surface of body 404. The number of sealing component 421 matches the number of seasoning cavities 403 and the sealed cavities 415. In one embodiment, the ring structures of sealing components 421 may be connected to each other.
In some embodiments, in addition to the sealing effect between seasoning cavity 403 and the cover when they are stationary, it is also necessary to minimize the friction between seasoning cavity 403 and the cover when they are moving relative to each other. Therefore, the inner surface of the cavity is made of a different material, so that the friction coefficient between the different material and the material of the sealing component is less than 0.8. For example, the friction coefficient is less than 0.5. The different material may be sprayed on the inner surface of the cover body. In one embodiment, the different material is polytetrafluoroethylene, i.e., Teflon, sprayed on the inner surface of the cover body. In an actual use scenario, when the seasoning cavity and the cover body are relatively stationary, the flexible silicone is in touch with the surface of the Teflon, thus forming a better seal. When the seasoning cavity and the cap body are rotating, the flexible silicone is slightly deformed, and under the driving force of the driver structure, the silicone slides on the surface of the Teflon without generating large frictional forces, thus reducing the torque required from the driver structure. In one embodiment, the material of the inner surface of the cover body may be glass, and the silicone slides on the surface of the glass. Similarly, this does not create a large frictional force.
In some embodiments, for the ease of quick disassembly, top cover 405, bottom structure 406, and body 404 may be magnetically attached to each other in the direction of the centerline extension. In one embodiment, the body includes first magnetic material 423, while the top cover and bottom structures each include second magnetic material 424. A highly lubricious material may be disposed between first magnetic material 423 and second magnetic material 424 to reduce friction. First magnetic material 423 and second magnetic material 424 are magnetically attracted when they are within a preset distance. Therefore, top cover 405 and body 404 attract each other, and bottom structure 406 and body 404 also attract each other. First magnetic material 423 may be a magnet, and second magnetic material 424 may be iron or another metallic material. In some embodiments, first magnetic material 423 may be iron or another metallic material, and second magnetic material 424 is a magnet. In one embodiment, body 404 may include no magnetic material, but first magnetic material 423 is disposed in top cover 405, and second magnetic material 424 is disposed in bottom structure 406. First magnetic material 423 and second magnetic material 424 are magnetically attracted to each other, so that body 404 between top cover 405 and bottom structure 406 are clamped and positioned. In one embodiment,  top cover 405 and bottom structure 406 may include no metal materials such as iron sheets, but include corresponding quick-release structures, which facilitate quick disassembly and assembly of the top cover 405 and bottom structure 406. The quick-release structure can be a combination of clips and slots, or a combination of tongue and groove. Thus, the weight of the top cover 405 and bottom structure 406 may be further reduced compared to the metallic material.
In some embodiments, for cooking better food, kitchen robot 1 may include spatula 320. Spatula320 may be disposed in pot 302 and configured to perform functions such as stir-frying the dish while cooking. Kitchen robot 1 of the present application may be configured to control spatula 320 to perform stir-fry automatically, saving the time and effort of the user. Therefore, kitchen robot 1 may include driver component 321 for driving spatula 320 to rotate. For safety reasons and conservation of space, driver component 321 may be disposed outside pot 302, and spatula 320 may be disposed inside pot 302. Driver component 321 may include, for example, a motor or any other alternative driving source. As shown in FIG. 2, driver component 321 may be disposed above lid 303, and spatula 320 may be disposed below lid 303. Spatula 320 may be removably connected to driver component 321 by plugging and unplugging, which facilitates quick replacement and cleaning. Driver component 321 may include output shaft 322, and spatula 320 may include sleeve 323 connected to output shaft 322, and output shaft 322 may be snapped into sleeve 323 to form a power transmission. Magnet 324 may be disposed at the bottom of sleeve 323, and output shaft 322 may include magnetic material, so output shaft 322 can be quickly inserted into sleeve 323 and positioned. In addition, the side surfaces of sleeve 323 and output shaft 322 have a mistake-proof design to prevent relative rotation between sleeve 323 and output shaft 322 during power transmission. In one embodiment, output shaft 322 is hexagonal, and sleeve 323 has a matching hexagonal shape. Driver component 321 may include electric driver 325, output shaft 322, and belt 319 connecting output shaft 322 and electric driver 325. Electric driver 325 may be a motor disposed in rotating arm 502. In some embodiments, since seasoning unit 4 is disposed above lid 303, electric driver 325 of the driver component 321 may therefore be configured off the center, leaving room for seasoning unit 4. Output shaft 322 of driver component 321 may be configured along the center line of lid 303, and electric driver 325 and output shaft 322 may be connected by belt 319. Through belt 319, electric driver 325 may drive output shaft 322 to rotate around the center line of output shaft 322. Electric driver 325 may be a DC brushed electric driver, which provides stable and reliable output with low loss. Further, in order to keep the speed of output shaft 322 within a desired range, driver component 321 may also include a reduction gearbox.
In some embodiments, as shown in FIGs. 15 and 16, spatula 320 may include support structure 326. Sleeve 323 may be fixed to support structure 326. Therefore, the output shaft 322  may drive support structure 326 to rotate around the centerline of output shaft 322, i.e. first axis 327. First axis 327 may be coincident with the center line of lid 303. In some embodiments, support structure 326 may have a horizontal bottom 328 and a vertical side 329. Bottom 328 and side 329 form a holding space to support and accommodate the mutually engaging first gear block 331 (e.g., one or more first gears coupled together) and second gear block 332 (e.g., one or more second gears coupled together) . Bottom 328 and side 329 may form an integrated body. In addition, the drive assembly may include a housing cover 330 disposed on the support structure 326, forming a closed housing space. Housing cover 330 may be a matching cover of bottom 328. Housing cover 330 improves the sealing of the holding space and prevents first gear block 331 and second gear block 332 located in the holding space from receiving liquid gases such as water vapor from the pot 302. The projected cross-section of housing cover 330 and the projected cross-section of bottom 328 may be substantially the same. In addition, housing cover 330 may be removable from bottom 328, and silicone is provided around the perimeter of housing cover 330 to meet both the requirements of sealing and quick disassembly.
In some embodiments, first gear block 331 may be fixed. First gear block 331 may include a rotation stopper structure 334. In FIGs. 16 and 5, rotation stopper structure 334 is the inner gear on first gear block 331. First snap-on section 510 of rotating arm 502 includes outer gear 522 that fits the inner gear. Once first gear block 331 is in place, the inner gear and outer gear 522 engage with each other. Since first snap-on section 510 is fixed to rotating arm 502, first gear block 331 may be fixed by the inner and outer gears and cannot rotate. Alternative forms of rotation stopper structure are possible in other embodiments, as long as first gear block 331 is held in place. In addition, in some embodiments, first gear block 331 may be attached to the outside of the sleeve 323, and a shaft bushing 335 may be disposed on the inside of the first gear block 331. Sleeve 323 may rotate relative to shaft bushing 335, that is, when sleeve 323 is driven by output shaft 322 to rotate, shaft bushing 335 does not rotate accordingly and first gear block 331 is in a relatively fixed position. In some embodiments, first gear block 331 may be installed at other locations on the support structure, as long as first gear block 331 is fixed in position.
In some embodiments, second gear block 332 is movable. Since second gear block 332 is engaged with first gear block 331, second gear block 332 may rotate around the circumference of first gear block 331. In order to control the appropriate speed ratio, the number of teeth of second gear block 332 is less than that of first gear block 331. The centerline of second gear block 332 is set off the center of rotation of output shaft 322.
In some embodiments, spatula 320 may include a working head used to process food. In some embodiments, the working head of the spatula may include stirrer 340. Stirrer 340 may be configured to stir and even stir-fry food. As shown in FIG. 18, stirrer 340 may include two or  more stirring arms 341 centrally symmetrical about second axis 337. FIG. 18 shows two stirring arms 341. The length of each stirring arm (e.g., from the tip of the stirring arm to second axis 337) may be larger than the distance between first axis 327 and second axis 337. A length of stirrer 340 may be larger than the radius of pot 302 and smaller than the diameter of pot 302. Each of the two or more stirring arms may be curved in the direction of the rotational movement of stirring arms 341 and is more curved at the middle than the edges of each arm. Therefore, as shown in FIG. 18, the entire stirrer 340 roughly resembles an S shape when viewed from above. Each stirring arm may include slanted plane 342 disposed at the same location at one end of the stirring arm near stirrer edge 345, and the other end of the stirring arm is connected to the rotation shaft 343. The stirring arms may rotate about the axis (second axis 337) of rotation shaft 343. The thickness of each stirring arm grows smaller along the slanted plane towards stirrer edge 345. In one embodiment, the number of slanted planes 342 is two, and the slanted planes are centrally symmetrical about the rotation shaft 343.
In some embodiments, the stirrer 340 is made of different materials. For example, the stirrer body 344 is made of a rigid material, while the stirrer edge 345 is made of a soft material. Thus, the part of the stirrer that touches the dish is mainly the soft material. The advantage of having the soft material in contact with the dish is that it reduces destruction to the food, especially tender food, during the mixing process and preserves a better look of the cuisine. In some embodiments, the soft material is silicone, which is installed on the edges of the stirrer by an injection molding process. The advantage of using this material is that it adequately fills the gap between stirrer 340 and the inner wall of pot 302, without jamming or excessive resistance. Stirrer body 344 may be made of metal, such as aluminum or aluminum alloy. The metal may be coated with Teflon.
In some embodiments, rotation shaft 343 of stirrer 340 may be connected to the center of second gear block 332. As shown in FIG. 15, the rotation shaft 343 may be fixedly screwed to second gear block 332, so that second gear block 332 drives stirrer 340 to rotate synchronously. As shown, first axis 327 may be perpendicular to a horizontal plane of lid 303 and may pass through a center of lid 303, and second axis 337 may be parallel to the first axis and off the center of lid 303. The center line of second gear block 332 is defined as second axis 337, so that stirrer 340 may rotate around second axis 337. Second axis 337 and first axis 327 may be parallel to and spaced from each other. Alternatively, second axis 337 may be configured off the center with respect to first axis 327. In some embodiments, first gear block 331 and second gear block 332 are engaged at a position between first axis 327 and second axis 337. When second gear block 332 rotates around first gear block 331, second gear block 332 may drive stirrer 340 to rotate around second axis 337. Driven by the motor of the driver component, support structure  326 of the spatula 320 may rotate around first axis 327 at the same time, so that stirrer 340 may simultaneously revolves about first axis 327 and rotates about second axis 337. That is, driver component 321 may be configured to drive stirrer 340 to simultaneously revolve about first axis 327 and rotate/spin about second axis 337. This increases the stirring area in the pot without increasing the number of stirrers. In some embodiments, if the elements between the stirrer 340 and the driver structure are defined as a drive assembly (e.g., gears and/or shafts) , the drive assembly may be coupled to the spatula and the driver component and include a support structure. The support structure may include a sleeve coupled to the output shaft, and the stirrer may be rotatively connected to the support structure along the second axis and configured to revolve about the first axis. The drive assembly may include two drive paths (e.g., two different sets of gears and/or shafts) driven by the motor of the driver component. For the first drive path, output shaft 322 directly drives support structure 326 around first axis 327, so that stirrer 340 also revolves around first axis 327. For the second drive path, output shaft 322 drives support structure 326 while driving second gear block 332 around first gear block 331, and second gear block 332 drives stirrer 340 to rotate around second axis 337. As shown in FIG. 15, the height L1 from the top to the bottom of stirrer 340 may be in the range of 25mm to 35mm for a good mixing effect. The distance L2 measures the length of stirrer 340. The distance L3 between the top of stirrer 340 and lid 303 may be in the range of 45mm to 65mm.
In some embodiments, the working head of spatula 320 may include scraper 350. Scraper 350 may be configured to scrape off food stuck on the inner wall of the pot. In one embodiment, scraper 350 may be driven by driver component 321 to rotate. In one example, scraper 350 is driven to rotate about first axis 327. Scraper 350 may be fixedly connected to support structure 326, so that scraper 350 rotates together with support structure 326. As shown in FIGs. 15 to 17, scraper 350 and stirrer 340 may be disposed on each side of support structure 326. That is, with sleeve 323 that is crossed by the rotation centerline being in the middle, scraper 350 and stirrer 340 may be disposed on opposite sides of sleeve 323. And the distance from scraper 350 to sleeve 323 is greater than the distance from stirrer 340 to sleeve 323. Scraper 350 may be further away from sleeve 323, and stirrer 340 may be closer to sleeve 323. In other words, the horizontal distance from the furthest end of scraper 350 to first axis 327 is greater than the horizontal distance from the furthest end of stirrer 340 to first axis 327.
In some embodiments, scraper 350 may include scraping arm 351 extending radially along a radius of the pot. Scraping arm 351 may be connected horizontally to support structure 326, so that the height of scraper 350 to the bottom of the pot is greater than the height of stirrer 340 to the bottom of the pot. In other words, stirrer 340 is closer to the bottom of the pot than scraper 350. Similarly to stirrer 340, scraper body 352 may be made of a rigid material, while edge 353  of the scraper near the inner wall of the pot may be made of a flexible material.
In some embodiments, scraper 350 may have a variety of configurations. In one embodiment, as shown in FIG. 16, scraper 350 may include a horizontal scraping edge 354 and a vertical scraping edge 355. Horizontal scraping edge 354 and vertical scraping edge 355 may form a T-shape. And one end of scraping arm 351 is connected to vertical scraping edge 355. In another embodiment, as shown in FIG. 20, scraper 350 may include horizontal scraping edge 354 and vertical scraping edge 355. Horizontal scraping edge 354 and vertical scraping edge 355 form an L-shape, and one end of scraping arm 351 is connected to horizontal scraping edge 354. And vertical scraping edge 355 extends downward relative to horizontal scraping edge 354. The connection between the horizontal scraping edge 354 and the vertical scraping edge 355 is an arc-shaped introductory structure 356 to achieve a better scraping effect. In another embodiment, as shown in FIG. 21, horizontal scraping edge 354 and vertical scraping edges 355 may form an inverted U-shaped structure, with one end of scraper arm 351 connected to horizontal scraping edge 354 and two vertical scraping edges 355 connected to each end of horizontal scraping edge 354. The vertical scraping edges 355 extend downward. In one embodiment, vertical scraping edges 355 each have a curved arc, and the two vertical scraping edges 355 are set opposite each other in the curved direction.
In some embodiments, as shown in FIG. 19, one end of stirrer 340 of spatula 320 is set horizontally, and an inclined plane 346 is provided at the end of stirrer 340. Inclined plane 346 extends outward from horizontal stirring arm 341 and gradually decreases in thickness. In one embodiment, stirrer 340 rotates only around first axis 327. The number of inclined planes may be one or two. In the case of two inclined planes, the two inclined planes extend from the stirring arm 341 to each side. The width of each of the inclined planes is the same as the length of stirring arm 341 at the end of stirrer 340. In one embodiment, spatula 320 may also include scraper 350. Scraper 350 may rotate about first axis 327. Scraper 350 may extend radially outward from rotation shaft 343, with an angle of 180 degrees between scraper 350 and stirrer 340. In some embodiments, spatula 320 may also be provided without scraper 350.
In some embodiments, a method of controlling a spatula is disclosed. As shown in FIG. 22, the control method may include: (221) controlling the rotation of the spatula, such that the rotation speed of the spatula is V1 during a start-up time; (222) controlling the rotation of the spatula, such that the rotation speed of the spatula is V2 during normal rotation, where V2 is less than V1; (223) stopping the rotation of the spatula when a rotation angle of the spatula reaches W1; and (224) repeating the above steps. In the step of the start-up time, the spatula needs to reach a high speed from stationary in a short period of time, therefore the driver structure drives the spatula to rotate at the speed V1. The start-up time may be 0.5 to 1.5 seconds. In the step of  rotation at speed V2, the spatula has already reached the normal working state, so the driver structure drives the spatula to rotate at the speed V2, where V2 is less than V1. In other words, the spatula is rotating at a slower speed during normal operation. This is because if the speed is too high, the spatula may destroy the food. In the subsequent steps, the spatula has rotated by a preset angle at the speed of V2, and the driver structure drives the spatula to pause for a period of time. The rotation angle W1 may be less than 90 degrees, and the pause time may be 2~5 seconds. Depending on the cycle of the rotation, the rotation angle W1 may be variable and the rotation direction of the spatula may be changeable. Then the previous steps are repeated. This setup allows the spatula to rotate intermittently, which is ideal for food mixing. In the case where there is only one slanted plane, the spatula of the above method rotates in one direction, i.e., in the same direction as the tilt of the slanted plane. In the case where there are two slanted planes, the direction of rotation of the spatula may be forward (e.g., clockwise) at one time period and backward (e.g., counter-clockwise) at a different time period. In addition, in the above method, a rotation period is from the start to the pause, and the controlled rotation angle or pause time is adjustable in different rotation periods.
In some embodiments, the kitchen robot may be configured to stir-fry food during a stir-fry phase. At the beginning of the stir-fry phase, the spatula may change from a stationary state to a starting state, so the driver structure controls the spatula to reach a high speed in a short period of time. Then, after a period of time, the spatula slows down and reaches a low speed to achieve a better stir-fry effect. After a preset angle of rotation, the spatula is stopped, which helps to reduce the possibility of food piling in the pot. Just like humans, the stir-fry performed by the kitchen robot is sometimes fast and sometimes slow and stops after a while to allow the food to be cooked evenly inside.
In some embodiments, the spatula may be blocked during the stir-fry process. To solve this issue, a control method is disclosed. As shown in FIG. 23, the control method may include: (231) controlling the spatula to rotate at a preset speed, for example, in a forward direction. In this state, the spatula works in a normal state. At (232) , the current of the electric driver that controls the rotation of the spatula is monitored, and if the current does not increase beyond a preset value, the current is kept constant. By checking the current value of the electric driver, it is possible to identify if a blocking condition is encountered. If the current does not exceed the preset value, the electric driver is in normal operation and the rotation speed of the spatula is kept constant. That is, the spatula will remain in its original state of rotation in the forward direction. In normal operation, the spatula may rotate at a preset speed such as 30-50 rpm. This may be the normal rotation speed of the spatula. At (233) , if the detected current increase exceeds the preset value, the electric driver is controlled to rotate in the opposite direction, for example, in a backward  direction. If the current increase exceeds the preset value, it indicates that the electric driver has encountered a blocking condition. In such a case, the electric driver may be controlled to rotate in the opposite direction. At (234) , the voltage of the electric driver may be boosted, and the electric driver may be controlled to rotate in the forward direction. When the electric driver rotates in the reverse direction by a preset degree, the voltage of the electric driver may be adjusted to increase its output torque, and then the electric driver switches back to rotate in the forward direction. For example, the voltage of the electric driver may be increased to the maximum voltage (e.g., 12V) , which provides more torque. At (235) , the current of the electric driver may still be monitored. At (236) , if the detected current decreases below a preset value, the voltage of the control electric driver may be controlled to decrease, so that the spatula continues to rotate at the preset speed. After the voltage of the electric driver drops, the rotation speed of the spatula may remain the same as the rotation speed of the spatula in normal operation. In the process, if the current drops below the preset value, it indicates that the blocking problem is solved, and the current has returned to the normal operating current. At this time, the voltage of the electric driver is controlled to drop back to its normal level. In this process, if the current does not drop below the preset value, the electric driver may be controlled to rotate in the opposite direction. At (237) , if the current reduction is not obvious or does not reach the preset value, it indicates that the blocking problem still exists, then the electric driver may be controlled to reverse the rotation (e.g., in the backward direction) , utilizing the reverse impact to solve the blocking situation. The voltage controlling the reverse rotation of the electric driver may be kept at the maximum voltage while the blockage persists.
In some embodiments, as shown in FIG. 24, the steps of the control method are the same as the steps in FIG. 23 (steps 241-246 are similar to steps 231-236 respectively) , except for the last step. As shown in FIG. 24, step 247 includes controlling the electric driver to stop rather than reverse rotation as in step 237 of FIG. 23. In one embodiment, in addition to stopping the electric driver, an alarm signal may be triggered at step 247 in FIG. 24. The alarm signal may be in the form of sound, light, etc.
In some embodiments, in order to ensure that seasonings smoothly drop into the pot without being affected by spatula 320, sensor 360 may be provided on the spatula 320 (e.g., disposed on housing cover 330 as shown in FIG. 17) , and a receiver 361 may be disposed on lid 303 (e.g., on an edge of the drop port of lid 303) . Responsive to a sensing signal sent by sensor 360 and received by receiver 361, seasoning unit 4 may rotate to the dispense position. Projections of spatula 320 and drop port 312 in the vertical direction do not overlap. This is so that when seasoning unit 4 is ready to drop seasonings into pot 302, spatula 320 will not block drop port 312. Otherwise, seasonings dispensed from drop port 312 will likely fall on spatula 320 instead  of directly into pot 302, thus affecting the quality of seasoning and food mixing. Therefore, with receiver 361 and sensor 360, it is possible to ensure that spatula 320 inside the pot does not get in the way when seasoning unit 4 dispenses seasonings into the pot. In one embodiment, sensor 360 may be fixedly attached to spatula 320, and as the spatula rotates, sensor 360 may rotate accordingly. Receiver 361 configured to receive the sensing signal from sensor 360 may be disposed on first snap-on section 510 of rotating arm 502 as shown in FIG. 25. The advantage of this setting is that the position of receiver 361 is relatively fixed and set close to the center line of rotation (e.g., the first axis) , so that the signal can be received more accurately. Since lid 303 is fixedly attached to first snap-on section 510, receiver 361 may also be fixedly attached to lid 303. Sensor 360 may be a proximity sensor. When the sensor is in a position close to the receiver, the receiver receives a signal from the sensor, whereas when the sensor is in a position far from the receiver, the receiver cannot receive the signal from the sensor. For example, sensor 360 may be a magnet, and receiver 361 may be a magnetic switch, which sends a high-level signal or a low-level signal accordingly. Based on the position of sensor 360 relative to drop port 312 and the received sensing signal, the position of spatula 320 relative to drop port 312 may be identified.
In some embodiments, the kitchen robot includes a seasoning box disposed above the lid that has an output port, a sensor disposed on the spatula and configured to emit a sensing signal indicating that the spatula is not below a drop port of the lid in a direction along the first axis, a receiver disposed on the lid or the drop port and configured to receive the sensing signal, and a micro-control unit (MCU) communicatively coupled to the receiver and configured to, responsive to the received sensing signal, rotate the seasoning box about the first axis to a seasoning dispense position that aligns the output port with the drop port for one or more seasonings in the seasoning box to drop from the seasoning box through the drop port into the pot. In one embodiment, receiver 361 may be disposed at a position away from drop port 312. The center of rotation of spatula 320 (e.g., the first axis) is located between drop port 312 and receiver 361. In one embodiment, drop port 312 and receiver 361 form an angle ranging from 90 to 270 degrees relative to the center of rotation of the spatula 320. In one embodiment, the angle is 180 degrees. Therefore, when sensor 360 on spatula 320 rotates to a position close to the receiver, it indicates that spatula 320 is not blocking drop port 312 and the seasoning can be dropped. In some embodiments, the MCU is configured to receive signals and issue control commands that control the rotation of seasoning unit 4. When the MCU receives a signal from receiver 361, it controls the rotation of seasoning unit 4 to rotate to the dispense position. When sensor 360 on spatula 320 rotates to a position away from receiver 361, it indicates that spatula 320 may have blocked drop port 312 and the seasoning dispense should be stopped. In one  embodiment, the MCU controls the rotation of seasoning unit 4 to stop when the MCU does not receive the signal from the receiver.
In some embodiments, the magnetic switch control outputs a high-level signal when the magnet is far from the magnetic switch and outputs a low-level signal when the magnet is close to the magnetic switch. When the MCU detects a low-level signal for a preset period of time, seasoning unit 4 may be controlled to rotate to the dispense position and the seasonings in the seasoning unit 4 may be fed into the pot from the drop port. For example, the preset period of time may be between 0 to 30 milliseconds.
In one embodiment, receiver 361 may be mounted on drop port 312. Similar to the control logic of the previous embodiments, the MCU receives a signal from receiver 361 that spatula 320 is blocking the dispense into drop port 312 and therefore controls seasoning unit 4 to stop rotating.
In some embodiments, when the user needs to cook a dish and put in main ingredients into the pot, or when the user comes to the stage of putting in the main ingredient according to a program command, a user input command or a command configured inside the program may start the first motor, and the first motor will drive the lid to open via the rotating arm. When the lid is open, the first motor stops so that the lid stays in its position. At this point, the main ingredients may be easily added to the pot. When the main ingredients are added, the first motor may start again based on an external command or an internal command to close the lid. After the lid is closed, the first motor stops. When auxiliary ingredients need to be added, they can be added from the seasoning unit, and the lid does not need to be opened until when the cooking is finished and needs to be removed from the pot. This solves the problem of frequent lid opening during cooking and reduces the user's operational burden.
In some embodiments, it takes time and effort for the user to add seasonings manually because each dish requires various kinds of seasoning, such as cooking oil, salt, scallion, vinegar, soy sauce, etc., and the time of adding each seasoning is different. The kitchen robot has an automatically controlled seasoning unit, which can greatly reduce the user's effort in cooking and improve the quality of life. When it is in the stage of adding a number of auxiliary ingredients, the ingredient box may rotate to the number of filling positions one by one in sequence, such that the user can correspondingly put the seasonings needed for the current dish respectively into the seasoning cavities, thus providing all the ingredients needed for the dish at once. The seasoning unit of the kitchen robot may be programmed to rotate the seasoning cavities to the dispense positions one by one within a predetermined period of time, such that the auxiliary ingredients in the seasoning cavity can be fed into the pot via the output port.
In some embodiments, to achieve a good stir-fry effect when the spatula stir-fries food in  the pot, the spatula may rotate at a high speed when it is starts rotation and rotate at a low speed past the starting stage. The low speed of stirring helps to protect the dish from damage. After the spatula has been spinning at low speed for a preset time, or after a preset angle of rotation, the food tends to roll together after stirring, so the spatula may be controlled to pause the rotation, so that the food may disperse under their own gravity without external interference, and then the spatula may resume stirring at the low speed. Thus, the food is stirred in a way that more resembles a chef's stirring style.
In some embodiments, as the stir-fry progresses, some food tends to get entangled with the spatula, thus increasing the load on the spatula and blocking the drive operation of the spatula by the electric driver. The blocking situation may be detected by monitoring the current of the electric driver. If the current increases significantly, it indicates the spatula is blocked. Then, the spatula may be controlled to reverse the rotation, so that the spatula may disengage from the place where the blockage occurred. Then, the voltage of the electric driver may be increased, e.g., to the maximum voltage, so that the electric driver has a larger output torque to drive the spatula to rotate forward and break through the place where the blockage occurred, so as to solve the problem of blockage. Then, the current of the electric driver continues to be monitored. If the current returns to normal, it indicates that the blocking problem has been solved. If the current value is still high, the blocking problem is still present, for which another plan is prepared: controlling the voltage of the electric driver, e.g., to the maximum voltage, with the same purpose as before, to increase the output torque of the electric driver, and then controlling the electric driver to reverse the rotation to break through the blocked area in an opposite direction.
In some embodiments, at the moment when seasoning is added from the seasoning unit to the pot through the drop port, the spatula may be passing under the drop port and the seasoning may fall on the spatula instead of falling inside the pot. In this case, a sensor and a receiver may be installed on the spatula and the lid or rotating arm, and the position of the spatula is sensed according to the signal from the sensor. When the spatula is far away from the drop port, the seasoning unit is controlled to add the seasoning from the drop port, to avoid having the seasoning falling on the spatula.
As described above, the kitchen robot may use a motor (e.g., first motor 503) to control the lid to open or close. When the lid is opened or closed, a trigger switch (e.g., a light touch sensor switch) corresponding to the open or closed position may be triggered to stop the motor. However, due to the structural mismatch between the lid and the trigger switch, the trigger switch may not be timely triggered. In addition, the trigger switch may need to execute a jitter detection logic, which will further delay the triggering of the trigger switch, causing the lid to be opened or closed excessively, resulting in damage to the lid and/or the motor. To address this  issue, methods for automatically controlling the lid are disclosed. The methods may be based on the signal generated by the motor during the actuation of the lid to automatically identify whether the lid is fully opened or closed, without relying on the physical trigger switches. In some embodiments, based on signals generated by the motor in the process of driving the lid to move, such as a working current and/or a sensing signal, it can be automatically determined whether the lid has been fully opened or closed, without relying on the physical structure of the trigger switch. This protects the lid, the motor, and the gear box from damage, improves their usability, and enhances the user experience. The signals generated by the motor during the actuation of the lid may include a working current signal and/or a sensing signal. Depending on the signals used, several different methods of switching the lid control are provided.
FIG. 26 is a schematic flow diagram of a method 260 for opening or closing a lid, according to some embodiments of the present application. As shown in FIG. 26, method 260 includes steps 261-263.
Step 261 may include obtaining instructions for controlling a lid of a pot to open or close, and controlling a motor to drive the lid to open or close in a direction corresponding to the instructions.
Step 262 may include collecting a working current value of the motor during the opening or closing movement of the lid.
Step 263 may include controlling the motor to stop when the working current value meets a preset opening or closing condition.
In some embodiments, method 260 is applicable to a kitchen robot to automatically control the opening or closing of the lid. The kitchen robot may be, for example, an automatic stir-fry machine, an electric pancake pan, or an electric rice cooker. The kitchen robot may include a master control unit, such as a Central Processing Unit (CPU) , a Graphics Processing Unit (GPU) , a Microcontroller Unit (MCU) , a processor chip or microcontroller based on a Field Programmable Gate Array (FPGA) or Complex Programming logic device (CPLD) , or the like. The main control unit can receive and control the lid of the pot. The main control unit receives the instructions to control the opening or closing of the lid, and controls the motor to drive the lid to move in the opening or closing direction corresponding to the instructions. The instructions include open lid instructions or close lid instructions.
In some embodiments, there is no limitation to the implementation of receiving the instruction to control the opening or closing of the lid. In one embodiment, the kitchen robot has a voice recognition function, and a user may send an instruction to the kitchen robot to control the opening or closing of the lid by voice, and the instruction instructs the kitchen robot to open or close the lid. For example, the user may speak to the kitchen robot: "Please open the lid" , and  the main control unit of the kitchen robot receives the opening instruction, and controls the motor to drive the lid to move in the opening/closing direction corresponding to the instruction. In one embodiment, the kitchen robot has a display pad, and the user can click a virtual button on the display pad to issue an instruction to open or close the lid to the kitchen robot. The control unit receives the lid opening instruction or the lid closing instruction, and controls the motor to drive the lid to move in the opening/closing direction corresponding to the instruction.
In some embodiments, the way of opening or closing the lid is not limited, for example, the lid may move up or down to open or close, or may be opened and closed by rotating left and right. Correspondingly, the opening direction refers to the direction in which the lid is gradually opened away from the pot body, and the opening instruction corresponds to the opening direction; the closing direction can be the direction in which the lid inches close to the pot body and gradually closes the pot body. The closing instructions correspond to the direction of closing the lid. In addition, the motor may drive the lid to open and close. There is a corresponding relationship between the rotation direction of the motor and the opening and closing direction of the lid, but the rotation direction of the motor and the opening and closing direction of the lid are not necessarily the same, but depending on the connection between the motor and the lid. It depends on the structure. For example, in one embodiment, when the motor rotates clockwise, it may drive the lid to move from bottom to top until it is opened; when the motor rotates counterclockwise, it can drive the lid to move from top to bottom until it is closed. In another embodiment, when the motor rotates clockwise, it may drive the lid to rotate clockwise to the outside of the pot body until it moves outside the pot body; when the motor rotates counterclockwise, it may drive the lid to rotate counterclockwise to the outside of the pot body.
In some embodiments, in the process of opening or closing the lid by the motor, the torque of the motor is related to the opening or closing state of the lid. When the lid is fully opened or closed, the motor torque increases, and the value of the working current increases. Based on this, when the motor drives the lid to move, the main control unit may collect and monitor the value of the working current of the motor; based on the change in the collected value, it can be determined whether the lid is fully open or closed, and stop the motor once determining that the lid is fully open or closed, so as to position the lid in the open and close position. In one embodiment, the implementation manner of collecting the value of the working current of the motor is not limited. For example, the value of the working current of the motor may be collected irregularly or periodically. Further, optionally, the values of the collected working current may be filtered. For example, 10 current values are collected and arranged in descending order, and after averaging the 6 working current values in the middle according to the order, the value of the motor's working current may be obtained. Due to the fluctuation of the working  current of the motor, the fluctuation may lead to misjudgment of whether the pot has fully opened or closed. By filtering the working current values, the probability of misjudgment may be reduced and the accuracy of determining whether the lid has fully opened or closed may be improved. Therefore, the movement state of the lid as driven by the motor is related to the duration of the working current of the motor.
In some embodiments, the kitchen robot main control unit may directly detect the working current of the motor. For example, a detection pin of the main control unit may be electrically connected to a working current output terminal of the motor. In one embodiment, a voltage detection circuit is provided between the motor and the main control unit, and the voltage detection circuit may convert the working current value of the motor into the working voltage value of the motor and output it to the main control unit. The main control unit of the kitchen robot may collect the working voltage value of the motor detected by the voltage detection circuit; obtain the working current value of the motor according to the working voltage value of the motor and a sampling resistance value in the voltage detection circuit.
In some embodiments, the main control unit drives the motor through the motor driver chip, and the voltage detection circuit is connected between the main control unit and the motor driver chip. FIG. 27 is a schematic diagram of the structure of a voltage detection circuit and its connection relationship with the main control unit and the motor driver chip, according to some embodiments of the present application. As shown in FIG. 27, the chip U9 is a motor driver chip; the voltage detection circuit includes a resistor R18, a capacitor C46, and a resistor R35; JP10 is a motor; MOTOR1 IN1, MOTOR1 IN2, and MOTO1 ADC are the pins on the main control unit; the chip U9 Pin 1 is grounded, pin 2 IN2 and pin 3 IN1 are respectively connected to pins MOTOR1 IN2 and MOTOR1 IN1 on the main control unit; pin 4 of chip U9 is connected to a 3V power supply; pin 5 of chip U9 is connected to ground through capacitor C37 and electrolytic capacitor EC2, and a 12V voltage is connected between pin 5, the capacitor C37 and the electrolytic capacitor EC2; the capacitor C37 and the electrolytic capacitor EC2 are used for filtering and stabilizing. Pin 6 and pin 8 of the chip U9 are connected to the motor JP10. Among them, the main control unit may send a control instruction for controlling the operation of the motor to the chip U9 through the pins MOTOR1 IN2 and MOTOR1 IN1; the chip U9 receives the control instruction and sends a drive signal to the motor JP10 through pins 6 and 8 according to the control instruction, to let the motor drive the lid to rotate. Further, as shown in FIG. 27, pin 7 of the chip U9 is grounded through a resistor R35, and at the same time through a resistor R18 and a capacitor C46. The middle point of the resistor R18 and the capacitor C46 is electrically connected to the MOTO1 ADC of the main control unit.
In some embodiments, based on the voltage detection circuit shown in FIG. 27, the resistor  R35 is the sampling resistor of the voltage detection circuit and is responsible for converting the working current value of the motor into a working voltage value; the main control unit may collect the working voltage value of the motor through the pin MOTO1 ADC interface, and based on the sampling resistance value in the voltage detection circuit, that is, the resistance value of R35, obtain the working current value of the motor. For example, if the collected voltage value is A and the sampling resistance value in the voltage detection circuit is R, the working current value is I=A/R, where A represents the voltage value, and R represents the sampling resistance value.
In some embodiments, after the working current value of the motor is obtained, it can be determined whether the working current value of the motor meets a preset opening or closing condition; if not met, it means that the lid has not been opened or closed, then continue to control the motor to drive the lid; if met, it means that the lid has opened or closed fully, and the motor is controlled to stop driving the lid. This method can automatically determine whether the lid has fully closed or opened according to the working current of the motor, without relying on the physical structure of the trigger switch, and preventing the excessive opening or closing of the lid caused by response delay in the trigger switch and avoiding damage to the motor gearbox and lid.
In some embodiments, the opening and closing conditions are not limited. According to the opening and closing conditions respectively, it is determined whether the working current value of the motor satisfies the setting. The implementation of the predetermined opening and closing conditions may vary.
In some embodiments, the action of opening the lid and a corresponding current value at the rated power of the motor may be preset. A first current threshold is greater than the current value at the rated power. Based on this, the collected working current value of the motor may be compared with the first current threshold, and when the working current value of the motor is greater than the preset first current threshold, it may be determined that the motor meets resistance for further opening the lid, because of which the motor torque increases, resulting in the working current value meeting the preset opening condition. This indicates that the lid is fully opened. Thus, the motor is stopped. If the collected working current value is not greater than the first current threshold value, the motor drives the lid to continue to open.
In some embodiments, it takes time for the motor to stabilize its speed from start. The lid may have been fully opened during or after the time period required for the motor to stabilize. Therefore, a first operation time may be set to indicate the time required for the motor to stabilize from start. The first operation time may vary depending on the type, model, and brand of the motor. According to the first operation time, whether the lid is opened may correspond to  two situations. The first situation is that the lid is opened within the first operation time (that is, before the motor stabilizes) ; the second case is that the lid is fully opened after the first operation time (that is, after the motor stabilizes) . Further, for the first case, considering that a relatively large current (e.g., glitch current) may be generated during a short period of time when the motor is started, in order to prevent misjudgment based on this current that prematurely stops the lid, a first duration threshold is set. The maximum duration of the glitch current generated when the motor is started may be used as a reference to set the first duration threshold. For example, the first duration threshold is not less than the maximum duration of the glitch current. Based on this, an opening condition is set to be when the running time of the motor is less than the set first operation time, the working current value of the motor is required to be continuously greater than the first current threshold for a duration greater than the first duration threshold. The first duration threshold is less than the first operation time. The first duration threshold is used to filter the glitch current when the motor is started to prevent misjudgment caused by the glitch current.
In some embodiments, based on the above, to determine whether the value of the working current of the motor satisfies the opening condition, it can be determined, during a time period from the start of the motor until reaching the first operation time, whether the value of the working current of the motor is greater than the set first current threshold, and whether the time period is greater than the first duration threshold. (i) If so, it means that the value of the working current is not the glitch current value generated during the motor starting process, but is the current value of the motor generated due to the excessive motor torque after the lid has been opened to the maximum extent. Therefore, before reaching the first operation time, if the working current value is continuously greater than the first current threshold for a duration greater than the first duration threshold, it may be determined that the working current value of the motor meets the set opening condition. Thus, the motor is controlled to stop driving the lid. (ii) If not, the motor is controlled to continue moving. During the running time of the motor, if the working current is less than the first current threshold, the detected current may be the normal working current of the motor, and the lid has not been fully opened. Thus, the motor may continue to run. If the working current is greater than the first current threshold and the duration is less than the first duration threshold, the detected current may be the glitch current when the motor starts. In such a case, the motor may continue to drive the lid.
In some embodiments, once the hardware of the kitchen robot fails, for example, the voltage detection circuit fails, the main control unit of the kitchen robot may not determine whether the working current value of the motor meets the set opening condition, and not be able to determine at what moment to stop the motor. To address this issue, a second operation time may be set, and  the second operation time is greater than or equal to the maximum time required to open the lid. If the running time of the motor is greater than the set second operation time, it may be determined that the working current value of the motor meets the set lid opening condition, and thus the motor is stopped. For example, assuming that the longest time required to open the lid is 3s, the second operation time may be set to 4s, and the set opening condition is: the running time of the motor is greater than the second operation time, that is, the motor is stopped if it runs for more than 4s to open the lid.
In some embodiments, after the first operation time, the motor likely reaches a stable stage, during which the current value fluctuates slightly and no glitch current is generated. Then, a second duration threshold may be set. The second duration threshold may refer to the duration when the motor's working current value is greater than the set first current threshold. The second duration threshold is for the main control unit to detect if the motor's working current value is greater than the set first current threshold, without damaging the pot lid or the motor gearbox. Based on the second duration threshold, the set opening condition may further include: when the motor's running time is greater than the set first operation time and less than the set second operation time, the time period during which the current of the motor is continuously greater than the first current threshold is greater than the second duration threshold. Based on this, determining whether the value of the working current of the motor satisfies the set opening condition also includes: when the running time of the motor is greater than the set first operation time and less than the set second operation time, if the working current of the motor is continuously greater than the first current threshold for a duration greater than the second duration threshold, it may be determined that the working current value of the motor meets the set opening condition, and thus the motor is stopped.
In some embodiments, the action of closing the lid and corresponding current value at the rated power of the motor may be preset. A second current threshold is greater than the current value at the rated power. Based on this, the collected working current value of the motor may be compared with the second current threshold, and when the working current value of the motor is greater than the preset second current threshold, it may be determined that the motor meets resistance for further closing the lid, because of which the motor torque increases, resulting in the working current value meeting the preset closing condition. This indicates that the lid is fully closed. Thus, the motor is stopped. If the collected working current value is not greater than the second current threshold value, the motor drives the lid to continue to close.
In some embodiments, it takes time for the motor to stabilize its speed from start. The lid may have been fully closed during or after the time period required for the motor to stabilize. Therefore, a first operation time may be set to indicate the time required for the motor to  stabilize from start. The first operation time may vary depending on the type, model, and brand of the motor. According to the first operation time, whether the lid is closed may correspond to two situations. The first situation is that the lid is closed within the first operation time (that is, before the motor stabilizes) ; the second case is that the lid is fully closed after the first operation time (that is, after the motor stabilizes) . Further, for the first case, considering that a relatively large current (e.g., glitch current) may be generated during a short period of time when the motor is started, in order to prevent misjudgment based on this current that prematurely stops the lid, a first duration threshold is set. The maximum duration of the glitch current generated when the motor is started may be used as a reference to set the first duration threshold. For example, the first duration threshold is not less than the maximum duration of the glitch current. Based on this, a closing condition is set to be when the running time of the motor is less than the set first operation time, the working current value of the motor is required to be continuously greater than the second current threshold for a duration greater than the first duration threshold. The first duration threshold is less than the first operation time. The first duration threshold is used to filter the glitch current when the motor is started to prevent misjudgment caused by the glitch current.
In some embodiments, based on the above, to determine whether the value of the working current of the motor satisfies the closing condition, it can be determined, during a time period from the start of the motor until reaching the first operation time, whether the value of the working current of the motor is greater than the set second current threshold, and whether the time period is greater than the first duration threshold. (i) If so, it means that the value of the working current is not the glitch current value generated during the motor starting process, but is the current value of the motor generated due to the excessive motor torque after the lid has been closed to the maximum extent. Therefore, before reaching the first operation time, if the working current value is continuously greater than the second current threshold for a duration greater than the first duration threshold, it may be determined that the working current value of the motor meets the set closing condition. Thus, the motor is controlled to stop driving the lid. (ii) If not, the motor is controlled to continue moving. During the running time of the motor, if the working current is less than the second current threshold, the detected current may be the normal working current of the motor, and the lid has not been fully closed. Thus, the motor may continue to run. If the working current is greater than the second current threshold and the duration is less than the first duration threshold, the detected current may be the glitch current when the motor starts. In such case, the motor may continue to drive the lid.
In some embodiments, once the hardware of the kitchen robot fails, for example, the voltage detection circuit fails, the main control unit of the kitchen robot may not determine whether the  working current value of the motor meets the set closing condition, and not be able to determine at what moment to stop the motor. To address this issue, a second operation time may be set, and the second operation time is greater than or equal to the maximum time required to close the lid. If the running time of the motor is greater than the set second operation time, it may be determined that the working current value of the motor meets the set lid closing condition, and thus the motor is stopped. For example, assuming that the longest time required to close the lid is 3s, the second operation time may be set to 4s, and the set closing condition is: the running time of the motor is greater than the second operation time, that is, the motor is stopped if it runs for more than 4s to close the lid.
In some embodiments, after the first operation time, the motor likely reaches a stable stage, during which the current value fluctuates slightly and no glitch current is generated. Then, a second duration threshold may be set. The second duration threshold may refer to the duration when the motor's working current value is greater than the set second current threshold. The second duration threshold is for the main control unit to detect if the motor's working current value is greater than the set second current threshold, without damaging the pot lid or the motor gearbox. Based on the second duration threshold, the set closing condition may further include: when the motor's running time is greater than the set first operation time and less than the set second operation time, the time period during which the current of the motor is continuously greater than the second current threshold is greater than the second duration threshold. Based on this, determining whether the value of the working current of the motor satisfies the set closing condition also includes: when the running time of the motor is greater than the set first operation time and less than the set second operation time, if the working current of the motor is continuously greater than the second current threshold for a duration greater than the second duration threshold, it may be determined that the working current value of the motor meets the set closing condition, and thus the motor is stopped.
In some embodiments, assuming that the first operation time is 1.5s, the second operation time is 4s, the first time threshold is 80 milliseconds (ms) , the second time threshold is 5 milliseconds (ms) , and the first current threshold is 800 milliamps (MA) , and the second current threshold is 400 milliamps (MA) . The corresponding control logic of lid opening and closing is as follows.
In the process of opening the lid, within 1.5s since the motor started running, if the working current value of the motor is greater than the set first current threshold 800MA and the duration is greater than 80ms, it indicates that the lid has been opened fully, and thus the motor is stopped. If the working current of the motor is less than or equal to the first current threshold of 800MA, the motor may be in the normal state of opening the lid. No matter how long the working current  lasts, the motor is controlled to drive the lid to continue to move. If the working current of the motor is greater than the set first current threshold of 800MA and the duration is less than 80ms, it may be a glitch current when the motor just starts, and the motor is controlled to drive the lid to continue to move.
When the running time of the motor is greater than the set first operation time and less than the set second operation time (that is, when the motor is running smoothly within the time range of 1.5 seconds to 4 seconds) , if the motor current value is greater than the first current threshold 800MA for a duration greater than the second duration threshold of 5 milliseconds, it indicates that the lid is opened fully, and thus the motor is stopped. If the working current of the motor is less than or equal to the first current threshold of 800MA, it may be that the motor is in the normal state of opening the lid. No matter how long the working current lasts, the motor is controlled to drive the lid to continue to move.
In the process of opening the lid, when the running time of the motor is longer than the second operation time of 4 seconds, in order to protect the motor and the lid and prevent malfunctions, the motor is stopped.
During the lid closing process, within 1.5s since the motor started running, if the working current value of the motor is greater than the set second current threshold 400MA and the duration is greater than 80ms, it indicates that the lid has been closed fully, then the motor is stopped. If the working current of the motor is less than or equal to the first current threshold of 800MA, the motor may be in the normal state of closing the lid. No matter how long the working current lasts, the motor is controlled to drive the lid to continue moving. If the working current of the motor is greater than the set second current threshold of 400MA, and the duration is less than 80ms, it may be a glitch current when the motor just starts, and the motor is controlled to drive the lid to continue to move.
When the running time of the motor is longer than the set first operation time and less than the set second operation time (that is, the motor is running smoothly within the time range of 1.5 seconds to 4 seconds) , if the motor current value is greater than the second current threshold 400MA for a duration greater than the second duration threshold of 5 milliseconds, it indicates that the lid is closed fully, and thus the motor is stopped. If the working current of the motor is less than or equal to the second current threshold of 400MA, it may be that the motor is in the normal state of closing the lid. No matter how long the working current lasts, the motor is controlled to drive the lid to continue to move.
In the process of closing the lid, when the running time of the motor is longer than the second operation time of 4 seconds, in order to protect the motor and the lid and prevent malfunctions, the motor is controlled to stop driving the lid to move.
Because the lid has gravity, the working current of the motor may be different when the lid is opened or closed. Based on this, the second current threshold corresponding to the lid-closing command and the first current threshold corresponding to the lid-opening command may be different. Considering that opening the lid requires more effort than closing the lid, the first current threshold corresponding to the lid-opening command may be set to be greater than the second current threshold corresponding to the lid-closing command. In some embodiments, the first operation time corresponding to the lid-closing command and the first operation time corresponding to the lid-opening command may also be different; the second operation time corresponding to the lid-closing command and the second operation time corresponding to the lid-opening command may also be different; the first duration threshold corresponding to the closing command and the first duration threshold corresponding to the opening command may also be different; the second time threshold corresponding to the closing command and the first time threshold corresponding to the opening command may also be different. There is no restriction here.
As described above, the method of controlling the pot lid to open/close according to the working current signal generated during the movement of the pot lid by the motor is provided. Through the working current of the motor, it is automatically determined whether the pot lid is fully opened or closed, without using any physical trigger switch. This may address the problem of excessive opening or closing of the pot lid caused by delay in the trigger switch, which often results in damage to the pot lid and the motor gear box. This improves the usability of the pot lid and the motor gear box and the user experience. In addition, a method for controlling the opening and closing of the pot lid according to a sensing signal generated by the motor in the process of driving the pot lid is provided below.
FIG. 28 is a schematic flowchart of a method 280 for controlling lid opening and closing, according to some embodiments of the present application. As shown in FIG. 28, method 280 may include the following steps 281-283.
Step 281 may include obtaining instructions for controlling a lid of a pot to open or close, and controlling a motor to drive the lid to open or close in a direction corresponding to the instructions.
Step 282 may include collecting a sensing signal during the opening or closing of the lid. The sensing signal is generated by a sensor and a trigger due to the rotation of the motor. Among them, the sensor (s) or the trigger (s) are disposed on a stator, and the others are disposed on a rotor.
Step 283 may include controlling the motor to stop when the sensing signal meets a preset opening or closing condition.
Steps  281 and 283 may be similar to  steps  261 and 263, and details may be referred to the above descriptions.
In some embodiments, as shown in FIG. 29, the motor (e.g., first motor 503) may include stator 403a and rotor 403b. Sensor 403c may be disposed on stator 403a, and trigger 403d may be disposed on rotor 403b. Alternatively, sensor 403c may be disposed on rotor 403b, and trigger 403d may be disposed on stator 403a. Signals may be generated between sensor 403c and trigger 403d. When the rotor rotates relative to the stator, the motor may drive the lid to move, and the sensor or trigger installed on the rotor correspondingly rotates with the rotor. As a result, the sensing signal may change with the rotation of the motor, for example, depending on the relative position of the sensor and the trigger. In addition, the number of triggers may be one or more. Depending on the number of triggers, the number of sensing signals generated between the trigger and the sensor may also be different. FIG. 29 provides an example of four triggers (one of which is blocked by sensor 403c) installed on the rotor and one sensor installed on the stator, but it is not limited to this. For another example, the motor includes two triggers and two sensors. In various embodiments, the triggers or sensors may be evenly or unevenly spaced on the stator or rotor.
In some embodiments, when rotor 403b rotates relative to stator 403a, first motor 503 may move lid 303 in the opening and closing directions corresponding to the rotation direction through mechanical coupling (e.g., gears, shafts, etc. ) , and a sensing signal is generated between trigger (s) 403d and sensor (s) 403c. The signal may indicate a state that first motor 503 is driving lid 303 to move.
In some embodiments, since the sensing signal between the sensor and the trigger changes as the motor rotates, the direction of the sensing signal may reflect the direction of the motor rotation, and the number or intensity of the sensing signals may reflect the number of rotations made by the motor. Whether the lid has been fully opened or closed is related to the rotation of the motor. That is, there is a relationship between whether the lid is fully opened or closed and the sensing signal. Based on this, the main control unit may collect the sensing signal during the movement of the lid to determine whether the sensing signal meets the set opening or closing condition. If not, it indicates that the lid has not been opened or closed fully, and then the motor continues to drive the lid. If satisfied, it indicates that the lid has fully opened or closed, and thus the motor is stopped. This method may automatically identify whether the lid is fully opened or closed, and no longer rely on the physical structure of the touch switch, and prevents the excessive opening or closing of the lid which often damages the lid and the motor gear box.
In some embodiments, the implementation of determining whether the sensing signal meets the set opening or closing condition is not limited. In one embodiment, whether the lid changes  from a fully open state to a fully closed state, or from a fully closed state to a fully open state, the number of motor rotations is basically the same. Based on this, whether the lid has been fully opened or closed may depend on the number of rotations made by the motor. The minimum number of rotations that the motor needs to run when the lid is fully closed or opened is preset, which is referred to as the number of rotation threshold. However, when the motor runs once, one round of sensing signals will be generated between the sensor (s) and trigger (s) installed on the stator and rotor. That is, the number of sensing signals generated may reflect the number of rotations of the motor. Based on this, an opening or closing condition may be whether the number of rotations of the motor reaches the set number of rotation threshold, and accordingly, a way to determine whether the sensing signal meets the opening or closing condition includes: determining the number of rotations of the motor according to the sensing signal; when the number of rotations reaches the set number of rotation threshold, the sensing signal meets the set opening or closing condition, indicating that the lid is fully opened or closed, and thus the motor is stopped.
In some embodiments, a signal conversion circuit is provided between the main control unit and the motor. One end of the signal conversion circuit is electrically connected to the sensor, and the other end is electrically connected to the main control unit. The signal conversion circuit may convert the sensing signal generated by the sensor and the trigger into a pulse signal and transmit the pulse signal to the main control unit. Among them, the number of pulses may represent the number of rotations of the motor. FIG. 30 is a schematic diagram of pulse signals, according to some embodiments of the present application. From the fully open state to the closed state, the number of rotations of the motor may be unchanged. The number of pulses generated by the motor running one revolution is fixed. The number of signals is related to the number of triggers, so the number of pulses indicates the number of rotations of the motor. That is, whether the lid has been fully opened or closed may be determined according to the number of pulses. Based on this, the main control unit receives the pulse signal output by the signal conversion circuit, and detects the number of pulses through a timer or counter, and determines whether the number of rotations of the motor is greater than the set number of rotation threshold according to the number of pulses.
In some embodiments, the number of pulses generated as the motor makes one rotation is related to the number of triggers. In one embodiment, if the number of triggers is one, as the motor rotates once, the trigger and the sensor meet (e.g., being aligned) once to generate a sensing signal. The sensing signal is converted into a pulse signal by the signal conversion circuit and output to the main control unit. The main control unit may use the number of detected pulses as the number of rotations of the motor to determine whether the number of rotations of  the motor is greater than the set threshold. If greater, the lid is fully opened or closed, and thus the motor is stopped. In one embodiment, the number of magnetic sensors (as triggers) is n, n is an integer greater than or equal to 2, and the number of Hall sensors (as sensors) is 1. Then as the motor rotates once, there are n times that a trigger meets a sensor to generate n sensing signals. Each sensing signal is converted into a pulse signal by the signal conversion circuit and output to the main control unit. The main control unit may determine a ratio of the detected number of pulses P to the number of triggers n as the number of motor rotation turns. Then whether the number of motor rotations is greater than the set number of rotation threshold may be determined. If yes, it indicates that the lid is fully opened or closed, and thus the motor is stopped. As shown in FIG. 29, there are four magnetic sensors (one of which is blocked by sensor 403c) . Assuming that the rotor rotates relative to the stator and generates P=25 pulses, the number of rotations of the rotor is P/4=6.25.
In some embodiments, the number of rotation threshold may be converted into a number threshold of pulses according to the number of triggers and recorded as a first number threshold. Based on this, in one embodiment, the main control unit may receive the pulse signal output by the signal conversion circuit, and detect the number of pulses through a timer or counter. Further, by comparison, it is determined whether the number of pulses is greater than the set first number threshold. If the number of pulses is greater than the set first number threshold, it indicates that the lid has fully opened or closed, and thus the motor is stopped.
In some embodiments, the user can manually open or close the lid in addition to the automatic opening and closing of the lid by the motor through issuing a lid opening command or a lid closing command. When the user manually opens or closes the lid, the motor will passively rotate following the opening and closing of the lid. In this process, the aforementioned signal conversion circuit will detect the sensing signal generated by the trigger (s) and sensor (s) during the rotation of the motor. On one hand, the signal conversion circuit will convert the sensing signal into a pulse signal. On the other hand, the signal conversion circuit will obtain a direction signal of the rotation direction of the motor based on the sensing signal, and output the pulse signal and the direction signal to the main control unit. Based on this, the main control unit may receive the pulse signal and direction signal output by the signal conversion circuit even when it is not driving the motor, and when detecting that the number of pulses is greater than the set second number threshold, determine the opening or closing direction of the pot lid when the lid is manually opened and closed according to the received direction signal, and then control the motor to drive the pot lid to move in the opening or closing direction. In this case, the main control unit may recognize the user's intention to open or close the lid according to the number of pulses and the direction signal, and actively actuate the motor to drive the lid to move in the  direction of opening or closing the lid, converting the manual process of opening or closing the lid into an automatic process. In this way, without much effort from the user, a slight touch on the lid can achieve the purpose of opening or closing the lid, making the user case flexible, convenient, and efficient. This also prevents damage to the lid caused by the user’s excessive force and improves the user experience.
In some embodiments, the above-mentioned method for controlling the opening and closing of the lid may be used alone or in combination based on the working current signal or sensing signal generated by the motor in the process of driving the lid to move. The following describes embodiments that combine the two methods.
FIG. 31 is a schematic flowchart of a method 910 for controlling lid opening and closing, according to some embodiments of the present application. As shown in FIG. 31, method 910 includes steps 911-913.
Step 911 may include obtaining instructions for controlling a lid of a pot to open or close, and controlling a motor to drive the lid to open or close in a direction corresponding to the instructions.
Step 912 may include collecting a sensing signal and the working current value of the motor during the movement of the pot lid as driven by the motor. The sensing signal is generated by sensor (s) and trigger (s) due to the rotation of the motor. The sensor (s) or the trigger (s) are disposed on the stator, and the others are disposed on the rotor.
Step 913 may include, when the collected sensing signal meets a set first opening or closing condition and/or when the working current value meets a set second opening or closing condition, stopping the motor.
Among them, for ease of description and distinction, the opening or closing condition that the sensing signal needs to meet is referred to as the first opening or closing condition, and the opening or closing condition that the working current value needs to meet is referred to as the second opening or closing condition.
The method provided by this embodiment is a combination of the embodiment shown in FIG. 26 and the embodiment shown in FIG. 28. In the embodiment shown in FIG. 26, the working current value of the motor is collected, and when determining that the working current value meets the second opening or closing condition, it is determined that the lid has fully opened or closed, and thus the motor is stopped.
In the embodiment shown in FIG. 28, the sensing signal is collected, and when determining that the sensing signal meets the first opening or closing condition, it is determined that the lid has fully opened or closed, and thus the motor is stopped. In one embodiment, the working current value of the motor and the sensing signal generated by the sensor (s) and trigger (s) due to  the rotation of the motor are both collected. Further, in one embodiment, as long as one of (i) the first opening or closing condition and (ii) the second opening or closing condition is met, it is determined that the lid has fully opened or closed, and thus the motor is stopped. In one embodiment, only when both of (i) and (ii) are met, it is determined that the lid has fully opened and closed, and thus the motor is stopped. Details of the first opening or closing condition and the second opening or closing condition can be found above.
FIG. 32 is a flow chart of a method 920 for rotating a seasoning box of a kitchen robot, according to some embodiments of the present application. Method 920 may include steps 921 to 923.
Step 921 may include controlling a motor to rotate a body of a seasoning box relative to a bottom structure of the seasoning box.
Step 922 may include, during the rotation of the body, monitoring a sensing signal between one or more triggers and one or more sensors.
Step 923 may include positioning the seasoning box to a starting position based on the sensing signal.
In some embodiments, the installation positions of the triggers and the sensors are not limited. For example, the sensors may be disposed on a holder, and the triggers may be disposed on a side wall of the body of the seasoning box, and vice versa.
There is no limitation to the implementation for the MCU to position the box of the seasoning box to the starting position according to the detected sensing signal. The implementations may vary depending on the correspondence between the starting position and the installation positions of the sensors or triggers on the side wall of the body of the seasoning box. In the following, examples are provided with the sensor being a Hall sensor and the trigger being a magnetic sensor.
In some embodiments, a magnetic sensor is installed on the inner side wall of the body of the seasoning box, and the position corresponding to the strongest sensing signal between the magnetic sensor and the Hall sensor is used as the starting position. The position of each seasoning cavity may be designed based on the starting position. Based on this, the MCU may monitor the changing state of the sensing signal between the magnetic sensor and the Hall sensor. When the state of the sensing signal changes, the motor is controlled to stop rotating to position the body of the seasoning box at the starting position. As the body of the seasoning box rotates relative to the bottom structure of the seasoning box, the magnetic sensor and the Hall sensor approach each other, such that a sensing signal (e.g., voltage signal) generated between them will continue to increase to a peak value. At this time, as the body of the seasoning box continues to rotate relative to the bottom structure of the seasoning box, the magnetic sensor and the Hall  sensor begin to move away from each other, and the value of the sensing signal will continue to decrease, that is, the waveform of the voltage signal will reach an inflection point. When the body of the seasoning box rotates to the inflection point, this may correspond to the starting position. Based on this, the MCU may detect the sensing signal of the Hall sensor. If the sensing signal is detected to decrease after increasing for N consecutive times during the rotation of the seasoning box body, the position of the body of the seasoning box at this time may be determined as the starting position. In addition, considering that the magnetic sensor has N and S polarities, for different polarities, the sensing signal of the Hall sensor is also different. As shown in FIG. 33, in which the sensing signal is a voltage signal, the waveform is opposite for different polarities. Based on this, the MCU may detect the sensing signal of the Hall sensor. If the sensing signal is detected to increase after decreasing for N consecutive times during the rotation of the body of the seasoning box, the position of the body of the seasoning box at this time will be determined as the starting position. The sensing signal may be a voltage signal, a current signal, a binary digital signal, etc.
In some embodiments, a magnetic sensor is installed on the inner side wall of the seasoning box body, and the position corresponding to the strongest sensing signal between the magnetic sensor and the Hall sensor plus a preset angle of rotation is determined to be the starting position. The position of each seasoning cavity is determined based on the starting position. Based on this, the MCU detects the changing state of the sensing signal between the magnetic sensor and the Hall sensor. When the state of the sensing signal changes, it is determined that the seasoning box body has rotated to the position corresponding to the strongest sensing signal. But this position is not the starting position. The starting position is the preset angle of rotation away from the position corresponding to the strongest sensing signal. Thus, the motor is controlled to continue to drive the seasoning box body to rotate by the preset angle to position the seasoning box body at the starting position. The preset angle can be any angle, such as 30 degrees, 45 degrees, or 60 degrees.
In some embodiments, a magnetic sensor is installed on the inner side wall of the seasoning box body, and the position corresponding to the strongest sensing signal between the magnetic sensor and the Hall sensor plus a predetermined distance is determined as the starting position. The position of each seasoning cavity is determined based on the starting position. Based on this, the MCU detects the changing state of the sensing signal between the magnetic sensor and the Hall sensor. When the state of the sensing signal changes, it is determined that the seasoning box body has rotated to the position corresponding to the strongest sensing signal. But this position is not the starting position. The starting position is the predetermined distance of rotation away from the position corresponding to the strongest sensing signal. Thus, the motor is controlled to  continue to drive the seasoning box body to rotate by the predetermined distance to position the seasoning box body at the starting position. The predetermined distance can be any distance, such as 2cm, 5cm, 10cm, or 20cm.
In some embodiments, due to tolerances between the sensors and the triggers, assembly errors, or wear and tear of the triggers, the inflection point of the sensing signal may fluctuate, making it impossible to determine the sensing signal by setting a threshold. In one embodiment, the method of determining the inflection point of the induction signal based on the changing state of the sensing signal may overcome the problem that the inflection cannot be determined due to the fluctuation, and can accurately determine the inflection point of the induction signal. Thus, the seasoning box body can be accurately positioned to the starting position.
Referring to FIG. 1 to FIG. 3, a kitchen robot may include pot 302, lid 303, and micro-control unit (MCU) 601, and first motor 503. As described above, first motor 503 may drive lid 303 to open from or close onto pot 302. The kitchen robot may further include display pad 208 and/or audio component 602. Through audio component 602, a user may input a voice command for opening or closing lid 303. Through display pad 208, a user may input a command for opening or closing lid 303.
The display pad 208 may include a screen (e.g., liquid crystal display (LCD) , touch panel (TP) ) . The screen may be implemented as a touch screen to receive input signals from the user. The touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure of the user operation.
In some embodiments, when MCU 601 receives an instruction to control the lid 303 to open or close, MCU 601 may control the first motor 503 to drive the lid 303 to move in the opening and closing direction corresponding to the instruction. When first motor 503 drives lid 303 to move, the working current of first motor 503 is collected. When the working current value meets the set second opening or closing condition, first motor 503 is controlled to stop driving lid 303. If the command is a lid opening command, MCU 601 controls first motor 503 to drive lid 303 to move in the lid opening direction; if the command is a lid closing command, MCU 601 controls first motor 503 to drive lid 303 in the lid closing direction.
In some embodiments, the sensor (s) and the trigger (s) may be implemented in various ways, such as bump and micro switch, magnetic disc and Hall sensor, photoelectric switch and reflector board, infrared sensor and bump, etc. The implementations of the sensor (s) and the trigger (s) are not limited as long as they generate signals corresponding to rotations between the stator and the rotor.
In some embodiments, each sensor is a micro switch disposed on the rotor of the motor, and  each trigger is a protrusion disposed on the stator of the motor. The micro switch is connected to the MCU. When the rotor rotates relative to the stator, the protrusion will also rotate with the rotor. When the protrusion rotates to the position corresponding to the micro switch, the micro switch is triggered to send a sensing signal (such as a current signal) to the MCU.
In some embodiments, a magnetic disc is disposed on the rotor of the motor, and each sensor is a Hall sensor disposed on the motor housing above the magnetic disc. Each trigger is a magnetic sensor disposed on the rotor of the motor. When the rotor rotates relative to the stator, a sensing signal between the magnetic sensor and the Hall sensor continuously changes. At this time, the Hall sensor sends a sensing signal (e.g., a current signal) to the MCU.
On the basis of the above-mentioned sensing signal, MCU 601 may collect the sensing signal generated between trigger (s) 403d and sensor (s) 403c as first motor 503 drives lid 303, and when the sensing signal meets the set first opening or closing condition is met, the first motor 503 is stopped.
In some embodiments, MCU 601 may determine whether lid 303 has been fully opened or closed according to the working current value of first motor 503 and/or the sensing signal. In any case, when determining that lid 303 has fully opened or closed, MCU 601 controls first motor 503 to stop driving lid 303. Among them, when determining whether lid 303 has been fully opened or closed according to the working current value of first motor 503 and the sensing signal, upon determining that the sensing signal satisfies the set first opening or closing condition and/or the working current value satisfies the set second opening or closing condition, the first motor 503 is stopped. Detailed descriptions of the first opening and closing conditions and the second opening and closing conditions may be referred to the descriptions above.
Referring to FIGs. 1-3, 9 and 34-36, in some embodiments, the kitchen robot may include seasoning box 402, base 2, heating component 304 disposed in base 2, rotating arm 502, and measuring unit 207. Rotating arm 502 may be above pot 302, lid 303 may be below rotating arm 502. MCU 601, display pad 208, audio component 602, and measuring unit 207 may be disposed on base 2. Through display pad 208, a user may input a command for opening or closing lid 303, browse the menu, and perform other interactions with the kitchen robot. Switch control 206 may include audio component 602 (e.g., speaker and/or microphone) configured to broadcast audio (e.g., which and how much of an ingredient or ingredients to add into the pot or seasoning to add into the seasoning box, an order of adding the ingredients) and/or capture voice command. Measuring unit 207 (e.g., measuring cup) may be configured to measure the seasoning amount. MCU 601 may alternatively be disposed on lid 303.
Audio component 602 may be configured to output and/or input audio signals. For example, the audio component includes a microphone. When the audio component is in an operation mode  (e.g., call mode, recording mode, voice recognition mode) , the microphone is configured to receive external audio signals. The received audio signal may be further stored in a memory or sent via a communication channel. In some embodiments, the audio component 602 further includes a speaker for outputting audio signals.
In some embodiments, a user may input an instruction of dispensing seasonings to the kitchen robot through display pad 208, for example, by clicking a virtual button on a screen. Alternatively, the user may input the instruction through audio component 602, for example, by saying a trigger phrase “please add seasonings. ” Alternatively, the user may input the instruction through a terminal device such as a mobile phone that is wirelessly coupled to the kitchen robot and relays the instruction to the kitchen robot. Regardless, the MCU may respond to the instruction and output an order of dispensing various seasonings through display pad 208, audio component 602, or the user’s terminal device, and control second motor 425 to drive body 404 of the seasoning box to rotate to appropriate positions for seasoning dispensing.
In some embodiments, MCU 601 may control second motor 425 to actuate the rotation of the seasoning box relative to bottom structure 406 of the seasoning box. During the rotation of the seasoning box, MCU 601 may detect the sensing signal between the sensor (s) and the trigger (s) . According to the detected sensing signal, the seasoning box is positioned at an origin position, which is the starting position of rotation. After rotation, when seasoning cavity 403 is rotated to a seasoning dispense position, the seasoning in the seasoning cavity may be dispensed into the pot. In order to control the order for dispensing different seasonings, the starting position of rotation may be set, and by detecting the sensing signal between the sensor (s) and the trigger (s) which fluctuates with the rotation, the seasoning box may be rotated to complete orderly dispenses of different seasonings. The present application realizes the automatic dispense of seasonings, and the user does not need to manually place the seasonings, which makes the cooking process more intelligent and efficient.
In some embodiments, the cooking process of the kitchen robot is described with reference to cooking a tomato scrambled egg dish as an example. In one embodiment, the first opening or closing condition is that the number of pulses is 25 (that is, the motor rotates 6.25 revolutions) . The second opening or closing condition is that (i) within 1.5s of motor operation, the motor's working current value is greater than the set first current threshold 800mA for more than 80ms; (ii) when the running time of the motor is between 1.5s-4s, the working current value of the motor is greater than the set first current threshold in 800mA for more than 5ms; or (iii) the motor has run for more than 4s.
A user may check the display pad of the kitchen robot to find an electronic recipe for tomato scrambled egg. The user prepares the ingredients according to the electronic recipe: 250  grams of tomatoes, 100 grams of eggs; peel the tomatoes, cut the tomatoes into small pieces, and beat the eggs. With a click on a reset button on the display pad, the MCU of the cooking machine drives the body 404 to rotate relative to the bottom structure 406 to reach the starting position of the seasoning box. The user may send a command through the display pad to add seasoning, and the MCU responds to the user's instruction to add the seasoning. Accordingly, the kitchen robot may display the order of dispensing seasonings and the amount of each dispensing seasoning on the display pad. The kitchen robot may control the motor to drive the body of the seasoning box to rotate relative to the bottom structure of the seasoning box, such that the seasoning cavities one by one align with the seasoning filling port for the user to correspondingly add seasonings into the seasoning cavities. For example, the user prepares 10ml of oil, 3g of salt, 2g of sugar, 4g of chicken essence, and 10g of onion, ginger, and garlic mix according to the order and amount of seasonings displayed on the display pad. The user correspondingly puts the five seasonings into five seasoning cavities. Then the user sets the seasoning box back to the starting position through the display pad. During the seasoning filling and rotation, the filled seasoning cavities are not aligned with the drop port of the lid.
The user may trigger a workflow of cooking tomato scrambled eggs through the display pad of the kitchen robot. According to the electronic recipe of tomato scrambled egg selected by the user, first, the MCU controls the heating component to heat the pot. After one minute, the MCU controls the body of the seasoning box to rotate relative to the bottom structure of the seasoning box by 60 degrees, so that a first seasoning cavity aligns with the drop port of the lid for dispensing the 10ml of oil into the pot. After 30s, the oil temperature rises, and the MCU prompts the user through the display pad and speaker to add the beaten egg to the pot. At this time, the MCU may send a signal to the motor to drive open the lid. During the opening of the lid, the MCU collects the motor's working current value. If the working current value within 1.5 seconds since the motor started is greater than the first set value 800mA for more than 80ms, the motor is stopped, and it is determined that the lid has been opened; otherwise, the motor is controlled to drive the lid to continue open. The MCU continuously collects the working current value of the motor and the number of pulses generated between the trigger (s) and the sensor (s) . Upon detecting that, between 1.5s-4s when the motor is running, the working current value of the motor is greater than the set first current threshold 800mA for more than 5ms and the number of pulses is 25, the MCU determines that the lid is fully opened and controls the motor to stop, so that the user may put the beaten eggs and tomatoes into the pot. Then the user uses the display pad or voice control to close the lid. MCU controls the motor to start to drive the lid to close. During the lid closing process, the MCU continuously collects the working current value of the motor and the pulses generated between the trigger (s) and the sensor (s) . Upon detecting that,  within 1.5s since the motor started, the working current value of the motor is greater than the set second current threshold 400mA for more than 80ms and the number of pulses is 25, the MCU determines that the lid is fully closed and controls the motor to stop. Otherwise, the MCU controls the motor to drive the lid to continue to close. Upon detecting that, between 1.5s-4s since the motor started running, the working current value of the motor is greater than the set second current threshold 400mA for more than 5ms, the MCU determines that the lid is fully closed and controls the motor to stop. According to the electronic recipe of tomato scrambled eggs, after one minute, the MCU controls the rotation of the seasoning box body, and dispenses the 2g salt, 3g white sugar, 4g chicken essence, and 10g of onion, ginger, and garlic mix into the pot in sequence. After 30s of cooking, the cooking machine prompts the user through the display pad or speaker that cooking is finished.
In some embodiments, the cooking process of the kitchen robot is described with reference to cooking a braised prawns with oil dish as an example. The preset first opening or closing condition of the smart cooking machine: during the opening of the lid, within 1.5s since the motor started, upon detecting that the working current value of the motor is greater than the set first current threshold of 800 mA for more than 80ms, the MCU stops the motor. During 1.5s-4s since the motor started, upon detecting that the working current value of the motor is greater than the set first current threshold 800 mA for more than 5ms, the MCU stops the motor. If the motor runs for more than 4s, the motor is stopped. During the lid closing process, within 1.5s since the motor started, if the working current value of the motor is greater than the set second current threshold of 400mA for more than 80ms, the motor is stopped. During 1.5s-4s since the motor started, if the working current value of the motor is greater than the set second current threshold 400mA for more than 5ms, the motor is stopped. If the motor’s running time exceeds 4s, the MCU stops the motor.
A user may check the display pad of the kitchen robot to find an electronic recipe of braised prawns with oil. The user prepares the ingredients according to the electronic recipe: 500 grams of prawns. With a click on a reset button on the display pad, the MCU of the cooking machine drives the body of the seasoning box to rotate relative to the bottom structure of the seasoning box to rotate to the starting position of the seasoning box. The user may send a command through the display pad to add seasoning, and the MCU responds to the user's instruction to add the seasoning. Accordingly, the kitchen robot may display the order of dispensing seasonings and the amount of each dispensing seasoning on the display pad. The kitchen robot may control the motor to drive the body of the seasoning box to rotate relative to the bottom structure of the seasoning box, such that the seasoning cavities one by one align with the seasoning filling port for the user to correspondingly add seasonings into the seasoning cavities. For example, the user  prepares 10ml of oil, 20g of spice, 3g of salt, 4g of chicken essence, and 10g of onion, ginger, and garlic mix according to the order and amount of seasonings displayed on the display pad. The user correspondingly puts the five seasonings into five seasoning cavities. Then the user sets the seasoning box back to the starting position through the display pad. During the seasoning filling and rotation, the filled seasoning cavities are not aligned with the drop port of the lid.
The user may trigger a workflow of cooking braised prawns with oil through the display pad of the kitchen robot. According to the electronic recipe of braised prawns with oil selected by the user, first, the MCU controls the heating component to heat the pot. After one minute, the MCU controls the body of the seasoning box to rotate relative to the bottom structure of the seasoning box by 60 degrees, so that a first seasoning cavity aligns with the drop port of the lid for dispensing the 10ml of oil into the pot. After 30s, the oil temperature rises, and the MCU prompts the user through the display pad and speaker to add the prawns in the pot. At this time, the MCU may send a signal to the motor to drive open the lid. During the opening of the lid, the MCU collects the motor's working current value. If the working current value within 1.5 seconds since the motor started is greater than the first set value 800mA for more than 80ms, the motor is stopped, and it is determined that the lid has been opened; otherwise, the motor is controlled to drive the lid to continue open. The MCU continuously collects the working current value of the motor and the number of pulses generated between the trigger (s) and the sensor (s) . Upon detecting that, between 1.5s-4s when the motor is running, the working current value of the motor is greater than the set first current threshold 800mA for more than 5ms, the MCU determines that the lid is fully opened and controls the motor to stop, so that the user may put the prawns into the pot. Then the user uses the display pad or voice control to close the lid. MCU controls the motor to start to drive the lid to close. During the lid closing process, the MCU continuously collects the working current value of the motor and the pulses generated between the trigger (s) and the sensor (s) . Upon detecting that, within 1.5s since the motor started, the working current value of the motor is greater than the set second current threshold 400mA for more than 80ms, the MCU determines that the lid is fully closed and controls the motor to stop. Otherwise, the MCU controls the motor to drive the lid to continue to close. Upon detecting that, between 1.5s-4s since the motor started running, the working current value of the motor is greater than the set second current threshold 400mA for more than 5ms, the MCU determines that the lid is fully closed and controls the motor to stop. According to the electronic recipe of braised prawns with oil, after one minute, the MCU controls the rotation of the seasoning box body, and dispenses the 20g spice, 2g salt, 4g chicken essence, and 10g of onion, ginger, and garlic mix into the pot in sequence. After 30s of cooking, the cooking machine prompts the user through the display pad or speaker that cooking is finished.
In some embodiments, the motor (e.g., first motor 503) and the MCU 601 may be disposed on lid 303. Lid 303 may further include a voltage detection circuit electrically connected between the motor and the MCU. The voltage detection circuit may be configured to convert the working current value of the motor into a working voltage value and output the working voltage value to the MCU. The MCU may obtain the working current value of the motor according to a working voltage value of the motor sampled by the voltage detection circuit and a resistance value sampled by the voltage detection circuit.
In some embodiments, when the rotor rotates relative to the stator, the motor may drive the lid body to move in the opening or closing direction corresponding to the rotation direction, and a sensing signal is generated between the trigger (s) and the sensor (s) to indicate the state that the motor drives the lid to move.
In one embodiment, the MCU may collect the sensing signal generated between the trigger (s) and the sensor (s) , and when the sensing signal meets the set first opening or closing condition, control the motor to stop driving the lid.
In one embodiment, the MCU is configured to determine the number of rotations of the motor according to the sensing signal, and when the number of rotations reaches the set threshold, control the motor to stop driving the lid.
In one embodiment, the lid further includes: a signal conversion circuit electrically connected between the sensor (s) and the MCU, for converting the sensing signal into a pulse signal and outputting it to the MCU. The MCU is configured for: receiving the pulse signal from the signal conversion circuit, and when the number of pulses is greater than the set first number threshold, the motor is controlled to stop driving the lid. The number of pulses may represent the number of rotations of the motor.
In some embodiments, the signal conversion circuit is further configured to obtain a direction signal indicating the rotation direction of the motor according to the sensing signal and output the direction signal to the MCU.
In one embodiment, the MCU is configured to: when not driving the motor, if the number of pulses is detected to be greater than the set second number threshold, determine the opening or closing direction according to the direction signal when the lid body is manually opened or closed, and control the motor to drive the lid to move in the opening or closing direction.
In one embodiment, the MCU may collect the sensing signal between the trigger (s) and the sensor (s) when collecting the working current value of the motor, and when the sensing signal meets the set first opening or closing condition and/or working current value meets the set second opening or closing condition, the motor is controlled to stop driving the lid. Details of the first opening and closing conditions and the second opening and closing conditions may be  referred to from the above descriptions.
Referring to FIGs. 1-3, 9, 10, and 34-36, in some embodiments, top cover 405 of the seasoning box and body 404 are detachably installed together. For example, the two can be clipped or buckled together, that is, top cover 405 of the seasoning box can be removed when needed. In some embodiments, top cover 405 and body 404 of the seasoning box are attached to each other, and the two are not detachable from each other. For example, top cover 405 of the seasoning box and body 404 are connected by a hinge, such that top cover 405 can be opened and closed. Similarly, body 404 and the bottom structure 406 may be detachably installed or attached together. For example, body 404 or bottom structure 406 may be removed separately when needed. For another example, body 404 may be clipped or snapped into the bottom structure 406. For another example, body 404 may be fixedly installed with bottom structure 406, that is, the two cannot be detached.
In some embodiments, as described above, each seasoning cavity 403 may penetrate the top surface and the bottom surface of body 404, and the bottom surface of body 404 is in contact with bottom structure 406 to hold seasoning in the seasoning cavity 403. The shape of seasoning cavity 403 is not limited. For example, the shape of each seasoning cavity 403 may be a circle, a triangle, a square, an ellipse, a rectangle, etc. The number of seasoning cavities 403 is also not limited, which can be one or more. When there are multiple seasoning cavities 403, the distribution of multiple seasoning cavities 403 in body 404 is not limited. For example, seasoning cavities 403 may be uniformly or non-uniformly distributed.
In some embodiments, second opening 410 of bottom structure 406 may be used as a feeding port. Second opening 410 may be in the shape of, for example, a circle, a triangle, a square, an ellipse, a rectangle, etc. The shape of second opening 410 may be the same as the shape of seasoning cavity 403. For example, both second opening 410 and seasoning cavity 403 are oval. Alternatively, the shape of second opening 410 may be different from the shape of seasoning cavity 403. For example, second opening 410 is a square, and seasoning cavity 403 is a circle. Regardless of the shapes, second opening 410 and each seasoning cavity 403 may at least partially overlap for dispensing seasonings from second opening 410.
In some embodiments, second motor 425 may be installed at the lower part of body 404, and the two are rotatably connected by a bearing gear. As shown in FIG. 34, body 404 may include transmission hole 418 in the center. In one embodiment, by sending a signal to second motor 425, the MCU may control second motor 425 to drive the body 404 to rotate relative to bottom structure 406. The MCU may be disposed on the kitchen robot or the seasoning box. The signal may be, for example, Pulse Code Modulation (PCM) signal, Pulse Width Modulation (PWM) signal, etc. Further, the number of turns of rotation of second motor 425 may be  controlled by adjusting the pulse width, amplitude, or frequency of the signal.
In some embodiments, body 404 may include one or more sealed cavities 415. At one time, one of the sealed cavities 415 and seasoning cavities 403 may be rotated to align with second opening 410. When sealed cavity 415 is rotated to align with second opening 410, second opening 410 is closed. In this way, when no seasoning is required, rotating one of sealed cavities 415 to align with second opening 410 prevents the seasonings from being dispensed.
In some embodiments, the shape of sealed cavity 415 is not limited. For example, sealed cavity 415 may be similar to the seasoning cavity 403, except that sealed cavity 415 is sealed at its bottom with a cover instead of having a through-hole. The cover may be larger or the same size as second opening 410.
In some embodiments, as described above, in order to orderly dispense the seasonings from seasoning cavities 403, the starting position may be configured in advance as a reference position for rotation. At the starting position, none of the seasoning cavities 403 may align with second opening 410. One of the sealed cavities 415 may align with second opening 410. With the reference position, the MCU may determine by how much rotation any of the sealed cavities 415 and seasoning cavities 403 will align with second opening 410. Rotating from the starting position, at least one seasoning cavity 403 may align with second opening 410 for seasoning dispensing.
In some embodiments, seasoning cavities 403 and sealed cavities 415 may be configured similarly to include movable covers at their bottom. The covers may be opened or closed under the control of the MCU. When any of seasoning cavities 403 and sealed cavities 415 is aligned with second opening 410, the MCU can control the cover to open for dispensing the seasoning in the cavity.
In some embodiments, a user may add seasonings to seasoning cavities 403 and sealed cavities 415 in any order, and provide the corresponding relationship between the seasoning and the seasoning cavity to the MCU. Based on this, the MCU can find the required seasoning to dispense according to the corresponding relationship, and control the motor to drive body 404 to rotate to the right position and open the cover to dispense. During the rotation, other seasoning cavities that pass over the second opening 410 are still covered at their bottom, and thus no seasoning will leak into the pot by accident. Thus, the cover increases the flexibility of storing and dispensing seasonings.
In some embodiments, seasoning box 402 may be disposed on a holder of the kitchen robot. As shown in FIGs. 35 and 36, holder 111 may include rotating arm 502 and supporting disc 519. Bottom structure 406 may be disposed on supporting disc 519, and supporting disc 519 may include opening 411. Opening 411 may be aligned with second opening 410. Opening 411 may  be a through-hole for solid or liquid seasonings to pass through, and have various shapes such as round, square, etc. There may be various ways for disposing bottom structure 406 on supporting disc 519. For example, holder 111 may include bulge 520 disposed at the center of supporting disc 519, and bottom structure 406 may include first opening 409 at the center of bottom structure 406. First opening 409 may be sleeved on bulge 520 to hold the seasoning box in place on holder 111. Alternatively, bottom structure 406 may be attached to supporting disc 519 by screws or rivets.
In some embodiments, as shown in FIG. 35, sensor (s) 113 may be disposed on the holder 111 and not rotate with body 404, and trigger (s) 112 may be installed on a side wall (e.g., an inner side wall of seasoning cavity 403 or sealed cavity 415) of body 404 and rotate with body 404. The sensing signal between sensor (s) 113 and trigger (s) 112 may depend on their distance apart, which changes with the rotation. For example, a trigger emits a signal and a sensor receives the signal, and the strength of the signal is stronger when the trigger and sensor are closer. In some embodiments, the installation position of trigger 112 on body 404 is associated with the starting position. For example, the installation position of trigger 112 may be the starting position, or a preset distance or angle from the starting position. In this way, it can be determined whether body 404 has rotated to the starting position based on the sensing signal between sensor (s) 113 and trigger (s) 112. Alternatively, trigger (s) 112 may be disposed on the holder 111 and not rotate with body 404, and sensor (s) 113 may be installed on a side wall (e.g., inner side wall) of body 404 and rotate with body 404, and the above description may similar apply.
In some embodiments, body 404 may be rotated to the starting position before seasoning refill, and then seasonings may be added to the seasoning cavities and/or sealed cavities for a refill. For example, after the kitchen robot is turned on, second motor 425 drives body 404 to rotate to the starting position before refill. Each seasoning may be a solid powder, such as salt, sugar, five-spice powder, onion, ginger, garlic, or a liquid, such as oil, vinegar, soy sauce, tomato sauce, etc. When the user starts to add seasonings, second motor 425 drives the body of the seasoning box (e.g., by sending a signal) to rotate from the starting position to a refill position which may be the same as the starting position or a predetermined distance or angle from the starting position. At the refill position, a cavity to be refilled is aligned with seasoning filling port 412, so that the user can refill the cavity from the top of the kitchen robot. In one example, after a first cavity is refilled, second motor 425 controls body 404 to rotate to the next position to align a second cavity with seasoning filling port 412. The same process may repeat for various cavities. Alternatively, the user may lift top cover 405 off and refill the various cavities based on instructions provided by the kitchen robot. After the refill is finished, second motor 425 drives  the body 404 to rotate to a refill end position. The refill end position may correspond to the refill position of refilling the last seasoning, the starting position, or any position in between. If the refill end position is not the same as the starting position, the MCU may control second motor 425 to drive body 404 to rotate to the starting position.
In some embodiments, to ensure that various seasonings can be successfully added to seasoning cavities 403, seasoning cavities 403 may be rotated to align with the second opening 410 in sequence, and the seasoning cavity 403 should be rotated to the position of the seasoning filling port 412. In other words, the order of each seasoning cavity 403 rotated to align with second opening 410 may be the same as the order of each seasoning cavity 403 rotated to align with the seasoning filling port 412. A projection of seasoning filling port 412 on bottom structure 406 may be downstream of second opening 410 in the rotation direction and not overlap with second opening 410. In other words, body 404 may rotate in the same direction for seasoning refill and later for dispensing the refilled seasoning. In one embodiment, as body 404 rotates for a first turn, the seasoning refill is completed; and as the body 404 rotates for a second turn right after the first turn, the refilled seasonings are dispensed to the pot.
In some embodiments, according to the cooking requirements, the MCU may control second motor 425 to drive body 404 to rotate from the refill end position for seasoning dispensing. For example, the MCU may drive body 404 to rotate from the refill end position according to the user’s instruction or according to a preset time in the electronic recipe. For example, one minute after ingredients are added into the pot, a first seasoning needs to be added. Accordingly, one minute after the ingredients are added into the pot, the MCU controls second motor 425 (e.g., by sending a signal) to drive body 404 to rotate from the refill end position, and rotate a first seasoning cavity holding the first seasoning to align with second opening 410 for dispensing the first seasoning into the pot. A second seasoning needs to be added after another one minute. Accordingly, after another one minute, the MCU controls second motor 425 to drive body 404 to continue to rotate from the current position, so that a second seasoning cavity holding the second seasoning becomes aligned with second opening 410 for dispensing the second seasoning into the pot. The process repeats until all required seasonings are dispensed.
In some embodiments, the signal (e.g., PWM signal) for rotating body 404 may last for the duration from aligning one cavity to aligning the next cavity. If all the cavities are evenly spaced, the angle of rotation is the same for positioning each cavity. On the contrary, if all the cavities are not evenly spaced, the angle of rotation may be different for positioning each cavity. The signal may be preset in the kitchen robot, for example, in terms of pulse width and signal duration, for accurate positioning of the cavities. In application, the kitchen robot may obtain information of cavities for seasoning refill or dispense and accordingly determine the  corresponding signal for positioning the cavities.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this specification. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The examples of blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed embodiments. The examples of systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed embodiments.
The embodiments of the present application also provide a computer-readable storage medium storing a computer program, which can implement each step in the above-mentioned methods for controlling the opening and closing of the lid when the computer program is executed.
A person skilled in the art should appreciate that the embodiments of the present specification may be provided as a method, a system, or a computer program product. Therefore, the present specification may be in a form of complete hardware embodiments, complete software embodiments, or embodiments combining software and hardware. Moreover, the present specification may use a form of a computer program product that is implemented on one or more computer-usable storage media (including but not limited to a disk memory, a CD-ROM, an optical memory, and the like) that include computer-usable program code.
The present specification is described with reference to the flowcharts and/or block diagrams of the method, the device (system) , and the computer program product according to the embodiments of the present specification. Computer program instructions may be used for implementing each process and/or each block in the flowcharts and/or the block diagrams and a combination of a process and/or a block in the flowcharts and/or the block diagrams. These computer program instructions may be provided for a general-purpose computer, a dedicated computer, an embedded processor, or a processor of any other programmable data processing device to generate a machine, so that the instructions executed by a computer or a processor of any other programmable data processing device generate an apparatus for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.
These computer program instructions may further be stored in a computer-readable memory that can instruct the computer or any other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory generate an artifact that includes an instruction apparatus. The instruction apparatus implements a specified function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.
These computer program instructions may further be loaded onto a computer or another programmable data processing device, so that a series of operations and steps are performed on the computer or the another programmable device, thereby generating computer-implemented processing. Therefore, the instructions executed on the computer or the another programmable device provide steps for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.
In an exemplary configuration, the computer device includes one or more processors (CPUs) , an input/output interface, a network interface, and a memory.
The memory may include, among computer-readable media, a non-persistent memory such as a random access memory (RAM) and/or a non-volatile memory such as a read-only memory (ROM) or a flash memory (flash RAM) . The memory is an example of the computer-readable medium.
The computer-readable medium includes persistent, non-persistent, movable, and unmovable media that may implement information storage by using any method or technology. Information may be a computer-readable instruction, a data structure, a program module, or other data. Examples of computer storage media include but are not limited to a phase change memory (PRAM) , a static random access memory (SRAM) , a dynamic random access memory (DRAM) , other type of random access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable read-only memory (EEPROM) , a flash memory or other memory technology, a compact disc read-only memory (CD-ROM) , a digital versatile disc (DVD) or other optical storage, a cassette magnetic tape, tape and disk storage or other magnetic storage device or any other non-transmission media that may be configured to store information that a computing device can access. Based on the definition in the present disclosure, the computer-readable medium does not include transitory computer-readable media (transitory media) , such as a modulated data signal and a carrier.
Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order  illustrated. Structures and functionality presented as separate components in configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein. Furthermore, related terms (such as “first, ” “second, ” “third, ” etc. ) used herein do not denote any order, height, or importance, but rather are used to distinguish one element from another element. Furthermore, the terms “a, ” “an, ” and “plurality” do not denote a limitation of quantity herein, but rather denote the presence of at least one of the articles mentioned.
Although an overview of the subject matter has been described with reference to specific embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the specification. The Detailed Description should not be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.

Claims (20)

  1. A seasoning box, comprising:
    a covered structure; and
    a body disposed inside the covered structure and configured to rotate relative to the covered structure, wherein:
    the covered structure includes a top cover and a bottom structure enclosing the body,
    the top cover includes a seasoning filling port,
    the body includes a plurality of seasoning cavities,
    the body is configured to rotate among a plurality of filling positions,
    at each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings,
    the bottom structure includes an output port, and
    the seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
  2. The seasoning box of claim 1, wherein:
    the plurality of seasoning cavities are disposed in a ring arrangement with respect to the axis.
  3. The seasoning box of claim 3, wherein:
    one of the plurality of seasoning cavities is configured to align with the seasoning filling port and a different one of the plurality of seasoning cavities is configured to align with the output port, as the body rotates about the axis.
  4. The seasoning box of claim 1, wherein:
    the top cover comprises a cover plate attached to a sliding rail of the top cover; and
    the cover plate is configured to cover and uncover the seasoning filling port by sliding along the sliding rail.
  5. The seasoning box of claim 1, wherein:
    each of one or more of the plurality of seasoning cavities is configured to align with the output port one by one for one or more seasonings in the seasoning cavity to correspondingly exit the output port, as the body completes one rotation about the axis.
  6. The seasoning box of claim 5, wherein:
    the body is configured to rotate in only one direction.
  7. The seasoning box of claim 1, wherein:
    each of one or more of the plurality of seasoning cavities is a through-hole;
    a first end of the through-hole is on a top surface of the body and matches with the seasoning filling port;
    a second end of the through-hole is on a bottom surface of the body and matches with the output port;
    the top surface is parallel to the bottom surface; and
    the axis is perpendicular to the top surface and the bottom surface.
  8. The seasoning box of claim 7, wherein:
    the seasoning filling port, the first end of the through-hole, the second end of the through-hole, and the output port have a same shape.
  9. The seasoning box of claim 1, wherein:
    the body comprises an inner gear disposed at a center of the body;
    the inner gear is centrally symmetrical about the axis;
    the bottom structure further comprises an opening at a center of the bottom structure; and
    the opening is centrally symmetrical about the axis.
  10. The seasoning box of claim 9, wherein:
    the plurality of seasoning cavities comprises one or more first seasoning cavities and one or more second seasoning cavities;
    each of the first and second seasoning cavities includes an opening at a top surface of the body to align with the seasoning filling port;
    each of the first seasoning cavities includes an opening at a bottom surface of the body to align with the output port, the first seasoning cavities each forming a through-hole in the body; and
    each of the second seasoning cavities is sealed at the bottom surface of the body.
  11. A kitchen robot comprising a seasoning box, wherein:
    the seasoning box comprises (i) a covered structure and (ii) a body disposed inside the covered structure and configured to rotate relative to the covered structure;
    the covered structure includes a top cover and a bottom structure enclosing the body;
    the top cover includes a seasoning filling port;
    the body includes a plurality of seasoning cavities;
    the body is configured to rotate among a plurality of filling positions;
    at each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings;
    the bottom structure includes an output port; and
    the seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
  12. The kitchen robot of claim 11, further comprising a driver disposed inside the seasoning box and at a same horizontal level as the seasoning cavities, wherein:
    the driver is configured to drive the seasoning box to rotate about the axis.
  13. The kitchen robot of claim 11, wherein:
    each of one or more of the plurality of seasoning cavities is configured to align with the output port one by one for one or more seasonings in the seasoning cavity to correspondingly exit the output port, as the body completes one rotation about the axis.
  14. The kitchen robot of claim 13, further comprising a pot disposed below the seasoning box and a lid coupled to the seasoning box and disposed between the seasoning box and the pot, wherein:
    the lid comprises a drop port configured to align with the output port for the one or more seasonings in the seasoning cavity to correspondingly exit the output port and enter the pot.
  15. The kitchen robot of claim 14, further comprising
    a rotating arm coupled to the seasoning box and configured to close the lid on the pot or lift the lid off the pot by rotation.
  16. The kitchen robot of claim 14, further comprising:
    a spatula disposed inside the pot and mechanically coupled to the driver through an output shaft.
  17. The kitchen robot of claim 16, wherein:
    the spatula comprises a stirrer configured to stir food in the pot and a scraper configured to scrape food in the pot.
  18. The kitchen robot of claim 17, wherein:
    the stirrer comprises a rotation shaft and a plurality of stirring arms attached to the rotation shaft.
  19. The kitchen robot of claim 17, wherein:
    the scraper comprises at least one horizontal scraping edge and at least one vertical scraping edge.
  20. A kitchen robot comprising a seasoning box, a spatula inside a pot, and a driver mechanically coupled to the seasoning box and the spatula, wherein:
    the seasoning box comprises (i) a covered structure and (ii) a body disposed inside the covered structure and configured to rotate relative to the covered structure;
    the covered structure includes a top cover and a bottom structure enclosing the body;
    the top cover includes a seasoning filling port;
    the body includes a plurality of seasoning cavities;
    the body is configured to rotate among a plurality of filling positions;
    at each of the filling positions, one of the seasoning cavities aligns with the seasoning filling port for filling the seasoning cavity with one or more seasonings;
    the bottom structure includes an output port; and
    the seasoning filling port and output port do not overlap along a direction of an axis perpendicular to the top cover and passing through a center of the top cover.
PCT/CN2021/125091 2020-10-30 2021-10-20 Kitchen robot and seasoning box WO2022089278A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN202011198085.0A CN112568696A (en) 2020-10-30 2020-10-30 Kitchen robot and feeding box thereof
CN202011194232.7 2020-10-30
CN202011194288.2A CN112401631B (en) 2020-10-30 2020-10-30 Kitchen robot, seasoning box and control method of seasoning box
CN202011194242.0A CN112426012A (en) 2020-10-30 2020-10-30 Kitchen robot and feeding unit thereof
CN202011194278.9 2020-10-30
CN202011198100.1A CN112568697A (en) 2020-10-30 2020-10-30 Kitchen robot and feeding box thereof
CN202011194250.5 2020-10-30
CN202011194288.2 2020-10-30
CN202011198100.1 2020-10-30
CN202011194242.0 2020-10-30
CN202011198085.0 2020-10-30
CN202011194250.5A CN112426045A (en) 2020-10-30 2020-10-30 Kitchen robot and feeding box thereof
CN202011194278.9A CN112336173A (en) 2020-10-30 2020-10-30 Control method for opening and closing cover, cover and kitchen robot
CN202011194232.7A CN112426010A (en) 2020-10-30 2020-10-30 Kitchen robot and feeding unit thereof

Publications (1)

Publication Number Publication Date
WO2022089278A1 true WO2022089278A1 (en) 2022-05-05

Family

ID=81381928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125091 WO2022089278A1 (en) 2020-10-30 2021-10-20 Kitchen robot and seasoning box

Country Status (1)

Country Link
WO (1) WO2022089278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114603149A (en) * 2022-05-13 2022-06-10 成都大学 Alloy powder processing is with centrifugation preparation facilities

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106214006A (en) * 2016-09-29 2016-12-14 深圳市北鼎科技有限公司 Health-promotion kettle timing blanking structure and health-promotion kettle
CN107252257A (en) * 2017-06-26 2017-10-17 佛山市顺德区本味至尊科技有限公司 Cooking machine and cooking machine are used plus dish device
CN207804127U (en) * 2017-07-11 2018-09-04 王政光 A kind of condiment feedway for kitchen use
JP2018149217A (en) * 2017-03-15 2018-09-27 日立アプライアンス株式会社 rice cooker
CN208625290U (en) * 2017-09-28 2019-03-22 陕西科技大学 A kind of multifunctional intellectual charging electric cooker
KR20190111309A (en) * 2018-03-22 2019-10-02 주식회사 세원시스첸 Cooking pot and roasting apparatus comprising the same
CN209863266U (en) * 2018-08-31 2019-12-31 佛山市顺德区智烹科技有限公司 Dosing unit and machine of cooking
CN211243056U (en) * 2019-07-31 2020-08-14 江苏亨少米业发展有限公司 Novel powdered seasoning adding system
CN112274030A (en) * 2020-10-30 2021-01-29 添可智能科技有限公司 Kitchen robot and slice subassembly thereof
CN112336173A (en) * 2020-10-30 2021-02-09 添可智能科技有限公司 Control method for opening and closing cover, cover and kitchen robot
CN112401632A (en) * 2020-10-30 2021-02-26 添可智能科技有限公司 Slice assembly and control method thereof
CN112401631A (en) * 2020-10-30 2021-02-26 添可智能科技有限公司 Kitchen robot, seasoning box and control method of seasoning box
CN112426011A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot
CN112426045A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot and feeding box thereof
CN112426012A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot and feeding unit thereof
CN112426010A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot and feeding unit thereof
CN112426051A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot and slice subassembly thereof
CN112426048A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Power system for driving pot cover to be opened and closed and kitchen robot
CN112426050A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 A slice subassembly and kitchen robot for kitchen robot
CN112568697A (en) * 2020-10-30 2021-03-30 添可智能科技有限公司 Kitchen robot and feeding box thereof
CN112568696A (en) * 2020-10-30 2021-03-30 添可智能科技有限公司 Kitchen robot and feeding box thereof

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106214006A (en) * 2016-09-29 2016-12-14 深圳市北鼎科技有限公司 Health-promotion kettle timing blanking structure and health-promotion kettle
JP2018149217A (en) * 2017-03-15 2018-09-27 日立アプライアンス株式会社 rice cooker
CN107252257A (en) * 2017-06-26 2017-10-17 佛山市顺德区本味至尊科技有限公司 Cooking machine and cooking machine are used plus dish device
CN207804127U (en) * 2017-07-11 2018-09-04 王政光 A kind of condiment feedway for kitchen use
CN208625290U (en) * 2017-09-28 2019-03-22 陕西科技大学 A kind of multifunctional intellectual charging electric cooker
KR20190111309A (en) * 2018-03-22 2019-10-02 주식회사 세원시스첸 Cooking pot and roasting apparatus comprising the same
CN209863266U (en) * 2018-08-31 2019-12-31 佛山市顺德区智烹科技有限公司 Dosing unit and machine of cooking
CN211243056U (en) * 2019-07-31 2020-08-14 江苏亨少米业发展有限公司 Novel powdered seasoning adding system
CN112401632A (en) * 2020-10-30 2021-02-26 添可智能科技有限公司 Slice assembly and control method thereof
CN112336173A (en) * 2020-10-30 2021-02-09 添可智能科技有限公司 Control method for opening and closing cover, cover and kitchen robot
CN112274030A (en) * 2020-10-30 2021-01-29 添可智能科技有限公司 Kitchen robot and slice subassembly thereof
CN112401631A (en) * 2020-10-30 2021-02-26 添可智能科技有限公司 Kitchen robot, seasoning box and control method of seasoning box
CN112426011A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot
CN112426045A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot and feeding box thereof
CN112426012A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot and feeding unit thereof
CN112426010A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot and feeding unit thereof
CN112426051A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Kitchen robot and slice subassembly thereof
CN112426048A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 Power system for driving pot cover to be opened and closed and kitchen robot
CN112426050A (en) * 2020-10-30 2021-03-02 添可智能科技有限公司 A slice subassembly and kitchen robot for kitchen robot
CN112568697A (en) * 2020-10-30 2021-03-30 添可智能科技有限公司 Kitchen robot and feeding box thereof
CN112568696A (en) * 2020-10-30 2021-03-30 添可智能科技有限公司 Kitchen robot and feeding box thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114603149A (en) * 2022-05-13 2022-06-10 成都大学 Alloy powder processing is with centrifugation preparation facilities

Similar Documents

Publication Publication Date Title
CN112401632B (en) Slice assembly and control method thereof
CN112426048B (en) Power system for driving pot cover to be opened and closed and kitchen robot
CN112274030A (en) Kitchen robot and slice subassembly thereof
CN107048981B (en) Automatic dish cooking machine
CN112426051A (en) Kitchen robot and slice subassembly thereof
CN112426011A (en) Kitchen robot
WO2022089278A1 (en) Kitchen robot and seasoning box
CN112426050A (en) A slice subassembly and kitchen robot for kitchen robot
JP5857162B2 (en) Cooking stove having a drive assembly for driving a food processing assembly in a pan
CN112426010A (en) Kitchen robot and feeding unit thereof
KR20140010938A (en) Food cooking appliance comprising a stirring blade
CN112426055A (en) Control method of slice assembly
CN204617887U (en) The intelligent folding lid mechanism of electric pressure appliance
CN112568697A (en) Kitchen robot and feeding box thereof
CN112401631B (en) Kitchen robot, seasoning box and control method of seasoning box
CN112336173A (en) Control method for opening and closing cover, cover and kitchen robot
WO2022089332A1 (en) Kitchen robot and spatula
WO2022089333A1 (en) Internet-of-things device
CN214208150U (en) Kitchen robot and feeding unit thereof
CN215127103U (en) Kitchen robot and slice subassembly thereof
CN112426012A (en) Kitchen robot and feeding unit thereof
CN112426045A (en) Kitchen robot and feeding box thereof
CN112568696A (en) Kitchen robot and feeding box thereof
CN214548795U (en) Kitchen robot and slice subassembly thereof
WO2017113887A1 (en) Top-loading stir fryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885005

Country of ref document: EP

Kind code of ref document: A1