WO2022089177A1 - 时间同步方法及装置 - Google Patents

时间同步方法及装置 Download PDF

Info

Publication number
WO2022089177A1
WO2022089177A1 PCT/CN2021/122881 CN2021122881W WO2022089177A1 WO 2022089177 A1 WO2022089177 A1 WO 2022089177A1 CN 2021122881 W CN2021122881 W CN 2021122881W WO 2022089177 A1 WO2022089177 A1 WO 2022089177A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
time
port
message
tod
Prior art date
Application number
PCT/CN2021/122881
Other languages
English (en)
French (fr)
Inventor
许晓东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022089177A1 publication Critical patent/WO2022089177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements

Definitions

  • the present application relates to the technical field of time synchronization, and in particular, to a time synchronization method and device.
  • 5G is booming as a major trend in the communication industry. It is a mainstream application to connect an ONU (Optical NetWork Unit) under a wired network to a 5G base station.
  • base stations generally used GPS (Global Positioning System, Global Positioning System) to receive The module provides an accurate time reference for the base station, but the deployment density of the 5G base station is difficult to receive the high-cost deployment method of the GPS receiving module.
  • GPS Global Positioning System
  • the PTP Precision Time Protocol
  • the PTP Precision Time Protocol specified by the IEEE1588V2 standard of the Institute of Electrical and Electronics Engineers can not only meet the precise time synchronization requirements but also Can replace GPS receiver module.
  • Embodiments of the present application provide a time synchronization method and apparatus.
  • An embodiment of the present application provides a time synchronization method, including: setting TOD time information on a first port, where the first port is triggered by a second pulse to send a first pulse packet, where the first pulse packet includes a timestamp information; after receiving the second pulse packet sent by the second port triggered by the second pulse, send a response packet to the second port; calculating the pulse time difference according to the second pulse packet and the response packet, and according to the pulse 1PPS and the TOD time information are recovered from the time difference and the time stamp information; wherein, the TOD time information setting includes: adding 1S to the TOD time information after each second pulse is sent out according to the second pulse.
  • a time synchronization device comprising: a time stamp module for setting TOD time information on a first port, and after the first port sends a first pulse message triggered by a second pulse, adding a time stamp to the first pulse message information, and send the timestamp information to the 1PPS+TOD recovery module; the pulse packet processing module, after receiving the second pulse packet sent by the second port triggered by the second pulse, sends a response packet to the second port; 1PPS +TOD recovery module, calculates the pulse time difference according to the second pulse message and the response message, and restores 1PPS and the TOD time information according to the pulse time difference and the timestamp information; wherein, the TOD time The information setting includes: adding 1S to the TOD time information after each second pulse is sent out according to the second pulse.
  • Fig. 1 is the flow chart of the application method
  • Fig. 2 is the schematic diagram of the device of the application
  • Figure 3 is a schematic diagram of the flow of packets between ports
  • FIG. 4 is a schematic diagram of an embodiment of the device of the present application.
  • 5 is a schematic diagram of the calculation of the message interaction time t_ms
  • FIG. 6 is a schematic diagram of the pulse time difference Td.
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or indicating the number of technical features indicated, It is only used to distinguish the different components.
  • first port refers to the master port, that is, time synchronization is performed based on the clock of the master port.
  • second port refers to the slave port, which is synchronized with the clock of the master port through time synchronization.
  • Fig. 1 is the flow chart of the method of the application, as shown in Fig. 1, firstly, the TOD (Time of Day, time information) setting is performed on the first port, and the TOD time information setting is the TOD after each second pulse is sent out according to the second pulse
  • the time information is increased by 1S, and then the first port is triggered to send a first pulse packet according to a second pulse (ie, 1PPS), and the first pulse packet includes time stamp information T_tod.
  • the second port sends a second pulse packet to the first port according to the second pulse trigger.
  • the first port sends a response packet to the second port, calculates the pulse time difference according to the response packet, and finally calculates the pulse time difference according to the pulse time difference. and timestamp information T_tod to recover 1PPS and TOD.
  • the sending time stamp when the second port sends the second pulse message is t1, and the arrival time stamp of the second port receiving the reply message is t2; at the same time, after receiving the second pulse message and before sending the reply message, There is a calculated dwell time t_delta on the first port.
  • the calculated dwell time t_delta is added to the response packet, and the packet between the first port and the second port can be calculated.
  • Text interaction time t_ms (t2-t1-t_delta)/2.
  • the difference between t2 and the local time of the second port is Tp, then there is Td is the pulse time difference between the second port and the first port.
  • the second port adds Td on the basis of its local 1PPS (pulse per second) to output the restored 1PPS, and adds 1 to the timestamp information T_tod to output the restored TOD time information.
  • the generation and processing capabilities of time pulse packets are added to the hardware logic of the Ethernet port of the network device.
  • the pulse packet It is triggered every second by the second pulse of the system of the device where the port is located, and the current time of the device where the port is located is sent downstream as the content of the packet in the pulse packet.
  • the pulse packet receiver After receiving the pulse packet, the pulse packet receiver sends back a pulse packet response.
  • the pulse packet sender calculates the distance between ports according to the arrival time of the response, and uses the distance as the basis for the time transfer deviation.
  • port A of upstream device 1 uses EEC (Synchronous Ethernet Equipment Clock, synchronous Ethernet equipment clock) to synchronize the frequency to the downstream device.
  • EEC Synchronous Ethernet Equipment Clock, synchronous Ethernet equipment clock
  • the upstream device 1 and its downstream device 2 work at the same frequency.
  • the distance between port B of device 2 and port A of device 1 is measured through the exchange of pulse packets, based on the pulse packet information of port A of device 1 and the measured distance.
  • the obtained distance calculates the current precise time of port B, and transmits it to downstream devices one by one in the network in the same way.
  • a time stamp module, a pulse message processing module and a 1PPS+TOD recovery module are set in the NP (Network Processor) of the Ethernet port of the device.
  • the system of device 1 completes the TOD time information setting of the timestamp module corresponding to port A within the system pulse period, and the new TOD time information is incremented by 1S after each second pulse is sent according to the second pulse after completing the setting.
  • the pulse message processing module of port A is triggered by the system 1PPS pulse to send a pulse message to port B.
  • the pulse message contains the time stamp information T_tod of the time stamp module.
  • the 1PPS+TOD recovery module of port B receives the 1PPS+ of port B.
  • the TOD recovery module receives timestamp information T_tod, where T_tod is a high-precision ns-level accurate timestamp.
  • the pulse message processing module of system port B of device 2 is triggered by the system 1 PPS pulse to send a pulse message to port A, and the pulse message includes a sending time stamp t1.
  • the pulse message includes a sending time stamp t1.
  • After port B receives the response packet from port A, it can be calculated that the time required for packet exchange between port B and port A is t_ms (t2-t1-t_delta)/2, as shown in Figure 5, send t_ms to the 1PPS+TOD recovery module.
  • port B After port B receives the response message from port A, it records the time Tp that the arrival time of the response message is slower than the local system 1PPS of port B, and then the pulse message processing module of port B sends Tp to 1PPS+TOD Recovery module, 1PPS+TOD recovery module combined with historical data, through Calculate the 1PPS pulse time difference of port B relative to port A, as shown in Figure 6, where, is the average of all Tp data in a period of time, is the average of all t_ms data over a period of time. Finally, the 1PPS+TOD recovery module of port B adds Td to the system 1PPS of port B and outputs the recovered 1PPS, adds 1 to T_tod and then outputs the recovered TOD time information.
  • FIG. 2 is a schematic diagram of the device of the present application.
  • the time synchronization device described in the present application includes a time stamp module, a pulse message processing module and a 1PPS+TOD recovery module, and the time stamp module is set to: Set the TOD time information; after the first port sends the first pulse message triggered by the second pulse, add time stamp information to the first pulse message; add the sending time stamp t1 to the second pulse message, and add the arrival time stamp to the response message Timestamp t2.
  • the 1PPS+TOD recovery module is set to: receive the timestamp information of the timestamp module, and simultaneously receive the t_ms and Tp of the pulse message processing module, and calculate Td is the pulse time difference of the second port relative to the first port, and finally 1PPS and TOD are recovered according to Td and T_tod; wherein, is the average of all Tp over a period of time, is the average of all t_ms over a period of time.
  • any port of the device is equipped with a time stamp module, a pulse message processing module and a 1PPS+TOD recovery module respectively, that is, the NP of the first port is provided with a time stamp module, a pulse message processing module and a 1PPS+TOD recovery module.
  • Recovery module, the NP of the second port is also provided with a time stamp module, a pulse message processing module and a 1PPS+TOD recovery module.
  • port A when port A is used as an upstream port, its time stamp module sets the TOD time information for it. After the system triggers the sending of a pulse message, its time stamp module adds time stamp information T_tod to its pulse message, and uses the time stamp The stamp information T_tod is sent to the 1PPS+TOD recovery module of port B.
  • port B triggers to send a pulse message to port A, and then port A sends a response message to port B after receiving the response message.
  • port B receives the response message, its pulse message processing module processes the message to obtain t_ms, and Obtain the difference Tp between the arrival time of the response message arriving at port B and the local time of port B.
  • the pulse message processing module of port B sends t_ms and Tp to the 1PPS+TOD recovery module of port B itself, and the 1PPS+TOD of port B
  • the recovery module calculates the pulse time difference according to t_ms and Tp, and finally the 1PPS+TOD recovery module of port Bd recovers the 1PPS and TOD of port B according to the pulse time difference and the received timestamp information T_tod of port A.
  • the beneficial effects of the present application are: in the time synchronization method and device described in the present application, the TOD time information is set on the first port through the time stamp module, and after the first port is triggered to send the first pulse message according to the second pulse, the time stamp module Add time stamp information to the first pulse message, and send the time stamp information to the 1PPS+TOD recovery module; after the pulse message processing module receives the second pulse message sent by the second port triggered by the second pulse, Send a response message to the second port; the 1PPS+TOD recovery module calculates the pulse time difference according to the second pulse message and the response message, and restores the 1PPS and TOD time information according to the pulse time difference and the time stamp information .
  • a new method and device capable of precise time synchronization at the same time are provided, which enriches the method for transmitting precise time on the Ethernet, and provides more choices for time synchronization.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种时间同步方法及装置,涉及时间同步技术领域,解决了时间精确传递的方法不够丰富的技术问题,其技术方案要点是通过时间戳模块对第一端口进行TOD时间信息设置,第一端口按照秒脉冲触发发送第一脉冲报文后,时间戳模块为第一脉冲报文添加时间戳信息,并将时间戳信息发送给1PPS+TOD恢复模块;脉冲报文处理模块接收第二端口按照秒脉冲触发发送的第二脉冲报文后,向第二端口发送应答报文;1PPS+TOD恢复模块根据第二脉冲报文和应答报文计算脉冲时间差,根据脉冲时间差和时间戳信息恢复出1PPS和TOD时间信息。

Description

时间同步方法及装置
相关申请的交叉引用
本申请基于申请号为202011178071.2、申请日为2020年10月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及时间同步技术领域,尤其涉及一种时间同步方法及装置。
背景技术
随着通信网络的发展,网络中的组网模式越来越灵活,对网络的可靠性和可维护性以及性能的要求也越来越高。5G作为通讯行业大潮流正在蓬勃发展,通过有线网络下的ONU(Optical NetWork Unit,光网络单元)接5G基站是主流的应用,过去的基站普遍采用GPS(Global Positioning System,全球定位系统)的接收模块为基站提供精确时间基准,但5G基站的部署密度难以接收GPS接收模块这种高成本的部署方式。对此,通讯行业有一种解决方案,就是通过协议传送精确时间替代GPS的接收模块,电气和电子工程师协会的IEEE1588V2标准规定的PTP(Precision Time Protocol,精确时间协议)既能够满足精确时间同步要求又能够替代GPS接收模块。
目前为止,采用PTP协议还是在以太网上传递精确时间的唯一方法,需要提供更多传递精确时间的方法。
发明内容
本申请实施例提供了一种时间同步方法及装置。
本申请实施例提供了一种时间同步方法,包括:对第一端口进行TOD时间信息设置,所述第一端口按照秒脉冲触发发送第一脉冲报文,所述第一脉冲报文包括时间戳信息;接收第二端口按照秒脉冲触发发送的第二脉冲报文后,向第二端口发送应答报文;根据所述第二脉冲报文和所述应答报文计算脉冲时间差,根据所述脉冲时间差和所述时间戳信息恢复出1PPS和所述TOD时间信息;其中,所述TOD时间信息设置包括:根据秒脉冲在每个秒脉冲发出后为所述TOD时间信息增加1S。
一种时间同步装置,包括:时间戳模块,对第一端口进行TOD时间信息设置,所述第一端口按照秒脉冲触发发送第一脉冲报文后,为所述第一脉冲报文添加时间戳信息,并将所述时间戳信息发送给1PPS+TOD恢复模块;脉冲报文处理模块,接收第二端口按照秒脉冲触发发送的第二脉冲报文后,向第二端口发送应答报文;1PPS+TOD恢复模块,根据所述第二脉冲报文和所述应答报文计算脉冲时间差,根据所述脉冲时间差和所述时间戳信息恢复出1PPS和所述TOD时间信息;其中,所述TOD时间信息设置包括:根据秒脉冲在每个秒脉冲发出后为所述TOD时间信息增加1S。
附图说明
图1为本申请方法流程图;
图2为本申请装置示意图;
图3为端口之间报文流向示意图;
图4为本申请装置实施例示意图;
图5为报文交互时间t_ms的计算示意图;
图6为脉冲时间差Td的示意图。
具体实施方式
下面将结合附图对本申请技术方案进行详细说明。在本申请的描述中,需要理解地是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,仅用来区分不同的组成部分。本申请中“第一端口”指代主端口,即以主端口的时钟为基准来进行时间同步。“第二端口”指代从端口,从端口通过时间同步与主端口的时钟实现同步。
图1为本申请方法流程图,如图1所示,首先对第一端口进行TOD(Time of Day,时间信息)设置,该TOD时间信息设置即根据秒脉冲在每个秒脉冲发出后为TOD时间信息增加1S,然后第一端口按照秒脉冲(即1PPS)触发发送第一脉冲报文,第一脉冲报文包括时间戳信息T_tod。第二端口按照秒脉冲触发向第一端口发送第二脉冲报文,第一端口接收第二脉冲报文后,向第二端口发送应答报文,根据应答报文计算脉冲时间差,最后根据脉冲时间差和时间戳信息T_tod恢复出1PPS和TOD。
第二端口发送第二脉冲报文时的发送时间戳为t1,第二端口接收到应答报文的到达时间戳为t2;同时在接收第二脉冲报文之后和发送所述应答报文之前,第一端口上有计算驻留时间t_delta,当第一端口发送应答报文时,将该计算驻留时间t_delta添加到应答报文中,则可计算得到第一端口和第二端口之间的报文交互时间t_ms=(t2-t1-t_delta)/2。另外,t2与第二端口的本地时间之差为Tp,则有
Figure PCTCN2021122881-appb-000001
Td即为第二端口相对于第一端口的脉冲时间差。最终,第二端口在其本地1PPS(秒脉冲)的基础上加上Td输出恢复的1PPS,在时间戳信息T_tod的基础上加上1输出恢复的TOD时间信息。
在实际应用场景中,在网络设备的以太网端口的硬件逻辑中增加时间脉冲报文的发生和处理能力,如图3,在设备1的主端口和设备2的从端口之间,脉冲报文由端口所在设备的系统的秒脉冲按每秒触发,在脉冲的报文里面把所在设备的当前时间作为报文内容向下游发送。脉冲报文接收端在收到脉冲报文后,回送脉冲报文应答,脉冲报文发送端根据应答到达的时间计算出端口之间的距离,并将该距离作为时间传递偏差的依据。当设备1-3在时间同步工作运行的过程中,上游设备1的端口A采用EEC(Synchronous Ethernet Equipment Clock,同步以太网设备时钟)方式把频率同步给下游设备。上游设备1及其下游设备2采用相同的频率工作,设备2的端口B通过脉冲报文交互测得和设备1端口A之间的距离,并基于设备1端口A的脉冲报文信息以及已经测得的距离计算出端口B当前的精确时间,通过同样的方式在网络中逐一的向下游设备传递。
图4为本申请装置实施例示意图,如图所示,在设备以太网端口的NP(Network Processer,网络处理器)中设置时间戳模块、脉冲报文处理模块和1PPS+TOD恢复模块。结合图3,设备1 系统在系统脉冲周期内完成对端口A对应的时间戳模块的TOD时间信息设置,完成设置后新的TOD时间信息根据秒脉冲在每个秒脉冲发出后增加1S。端口A的脉冲报文处理模块由系统1PPS脉冲触发向端口B发送脉冲报文,该脉冲报文内包含时间戳模块的时间戳信息T_tod,端口B的1PPS+TOD恢复模块接收端口B的1PPS+TOD恢复模块接收时间戳信息T_tod,T_tod为高精度的ns级别的精确时间戳。
设备2系统端口B的脉冲报文处理模块由系统1PPS脉冲触发向端口A发送脉冲报文,该脉冲报文内包括发送时间戳t1。端口A接收到端口B的脉冲报文后,向端口B发送应答报文,端口B接收到端口A的应答报文后,可以计算得到端口B和端口A之间报文交互需要的时间为t_ms=(t2-t1-t_delta)/2,如图5所示,把t_ms发送给1PPS+TOD恢复模块。同时,端口B接收到端口A的应答报文后,记录该应答报文的到达时间比端口B本地系统1PPS慢了的时间Tp,然后端口B的脉冲报文处理模块将Tp发送给1PPS+TOD恢复模块,1PPS+TOD恢复模块结合历史数据,通过
Figure PCTCN2021122881-appb-000002
计算得到端口B相对于端口A的1PPS的脉冲时间差,如图6所示,其中,
Figure PCTCN2021122881-appb-000003
为一段时间内全部Tp数据的平均值,
Figure PCTCN2021122881-appb-000004
为一段时间内全部t_ms数据的平均值。最后,端口B的1PPS+TOD恢复模块在端口B的系统1PPS的基础上加上Td后输出恢复的1PPS,在T_tod的基础上加上1然后输出恢复的TOD时间信息。
图2为本申请装置示意图,如图2所示,本申请所述的时间同步装置包括时间戳模块、脉冲报文处理模块和1PPS+TOD恢复模块,时间戳模块被设置成:对第一端口进行TOD时间信息设置;第一端口按照秒脉冲触发发送第一脉冲报文后,为第一脉冲报文添加时间戳信息;为第二脉冲报文添加发送时间戳t1,为应答报文添加到达时间戳t2。
脉冲报文处理模块被设置成:接收第二端口按照秒脉冲触发发送的第二脉冲报文后,向第二端口发送应答报文;获取第一端口在接收第二脉冲报文之后且在发送应答报文之前的计算驻留时间t_delta,并将计算驻留时间t_delta添加到应答报文中,计算第一端口和第二端口之间的报文交互时间t_ms=(t2-t1-t_delta)/2;再获取t2与第二端口的本地时间之差为Tp,将t_ms和Tp发送给1PPS+TOD恢复模块。
1PPS+TOD恢复模块被设置成:接收时间戳模块的时间戳信息,同时接收脉冲报文处理模块的t_ms和Tp,计算得到
Figure PCTCN2021122881-appb-000005
Td即为第二端口相对于第一端口的脉冲时间差,最后根据Td和T_tod恢复出1PPS和TOD;其中,
Figure PCTCN2021122881-appb-000006
为一段时间内全部Tp的平均值,
Figure PCTCN2021122881-appb-000007
为一段时间内全部t_ms的平均值。
一般而言,设备的任一端口都分别设置有时间戳模块、脉冲报文处理模块和1PPS+TOD恢复模块,即第一端口的NP设有时间戳模块、脉冲报文处理模块和1PPS+TOD恢复模块,第二端口的NP也设有时间戳模块、脉冲报文处理模块和1PPS+TOD恢复模块。具体地,端口A作为上游端口时,其时间戳模块对其进行TOD时间信息设置,其系统触发发送脉冲报文后,其时间戳模块为其脉冲报文添加时间戳信息T_tod,并将该时间戳信息T_tod发送至端口B的1PPS+TOD恢复模块。
端口B的系统触发发送脉冲报文给端口A,端口A接收后再向端口B发送应答报文,端口B接收到应答报文后在其脉冲报文处理模块对报文进行处理得到t_ms,并获取应答报文到达端口B的到达时间与端口B的本地时间之差Tp,端口B的脉冲报文处理模块将t_ms和Tp发送给端口B自身的1PPS+TOD恢复模块,端口B的1PPS+TOD恢复模块根据t_ms和Tp计算得到脉冲时间差,最终端口Bd的1PPS+TOD恢复模块根据脉冲时间差和接收到的端口A的时 间戳信息T_tod恢复出端口B的1PPS和TOD。
本申请的有益效果在于:本申请所述的时间同步方法及装置,通过时间戳模块对第一端口进行TOD时间信息设置,第一端口按照秒脉冲触发发送第一脉冲报文后,时间戳模块为所述第一脉冲报文添加时间戳信息,并将所述时间戳信息发送给1PPS+TOD恢复模块;脉冲报文处理模块接收第二端口按照秒脉冲触发发送的第二脉冲报文后,向第二端口发送应答报文;1PPS+TOD恢复模块根据所述第二脉冲报文和所述应答报文计算脉冲时间差,根据所述脉冲时间差和所述时间戳信息恢复出1PPS和TOD时间信息。提供了一种新的且同时可以精确时间同步的方法及装置,丰富了以太网上传递精确时间的方法,为时间同步提供了更多的选择。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上为本申请一些实施例,本申请的保护范围由权利要求书及其等效物限定。

Claims (7)

  1. 一种时间同步方法,包括:
    对第一端口进行TOD时间信息设置,所述第一端口按照秒脉冲触发发送第一脉冲报文,所述第一脉冲报文包括时间戳信息;
    接收第二端口按照秒脉冲触发发送的第二脉冲报文后,向第二端口发送应答报文;
    根据所述第二脉冲报文和所述应答报文计算脉冲时间差,根据所述脉冲时间差和所述时间戳信息恢复出1PPS和所述TOD时间信息;
    其中,所述TOD时间信息设置包括:根据秒脉冲在每个秒脉冲发出后为所述TOD时间信息增加1S。
  2. 如权利要求1所述的时间同步方法,其中,为所述第二脉冲报文添加发送时间戳t1,为所述应答报文添加到达时间戳t2。
  3. 如权利要求2所述的时间同步方法,其中,所述脉冲时间差的计算包括:
    获取第一端口在接收所述第二脉冲报文之后且在发送所述应答报文之前的计算驻留时间t_delta,并将所述计算驻留时间t_delta添加到所述应答报文中;
    根据所述到达时间戳t2、发送时间戳t1和计算驻留时间t_delta计算第一端口和第二端口之间的报文交互时间t_ms;
    所述t2与第二端口的本地时间之差为Tp,根据所述Tp和t_ms计算第二端口相对于第一端口的脉冲时间差Td。
  4. 一种时间同步装置,包括:
    时间戳模块,被设置成对第一端口进行TOD时间信息设置,所述第一端口按照秒脉冲触发发送第一脉冲报文后,为所述第一脉冲报文添加时间戳信息,并将所述时间戳信息发送给1PPS+TOD恢复模块;
    脉冲报文处理模块,被设置成接收第二端口按照秒脉冲触发发送的第二脉冲报文后,向第二端口发送应答报文;
    1PPS+TOD恢复模块,被设置成根据所述第二脉冲报文和所述应答报文计算脉冲时间差,根据所述脉冲时间差和所述时间戳信息恢复出1PPS和所述TOD时间信息;
    其中,所述TOD时间信息设置包括:根据秒脉冲在每个秒脉冲发出后为所述TOD时间信息增加1S。
  5. 如权利要求4所述的时间同步装置,其中,所述时间戳模块还被设置成:为所述第二脉冲报文添加发送时间戳t1,为所述应答报文添加到达时间戳t2。
  6. 如权利要求5所述的时间同步装置,其中,所述脉冲报文处理模块还被设置成:
    获取第一端口在接收所述第二脉冲报文之后且在发送所述应答报文之前的计算驻留时间t_delta,并将所述计算驻留时间t_delta添加到所述应答报文中;
    根据所述到达时间戳t2、发送时间戳t1和计算驻留时间t_delta计算第一端口和第二端口之间的报文交互时间t_ms;
    所述t2与第二端口的本地时间之差为Tp,将所述t_ms和所述Tp发送给所述1PPS+TOD恢复模块。
  7. 如权利要求6所述的时间同步装置,其中,所述1PPS+TOD恢复模块还被设置成:
    接收所述时间戳信息;
    接收所述t_ms和所述Tp,根据所述t_ms和所述Tp计算得到第二端口相对于第一端口的脉冲时间差Td。
PCT/CN2021/122881 2020-10-29 2021-10-09 时间同步方法及装置 WO2022089177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011178071.2 2020-10-29
CN202011178071.2A CN114430302A (zh) 2020-10-29 2020-10-29 时间同步方法及装置

Publications (1)

Publication Number Publication Date
WO2022089177A1 true WO2022089177A1 (zh) 2022-05-05

Family

ID=81309907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122881 WO2022089177A1 (zh) 2020-10-29 2021-10-09 时间同步方法及装置

Country Status (2)

Country Link
CN (1) CN114430302A (zh)
WO (1) WO2022089177A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102651A (zh) * 2022-05-05 2022-09-23 阿里巴巴达摩院(杭州)科技有限公司 数据处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457956A (zh) * 2010-11-02 2012-05-16 中兴通讯股份有限公司 一种基准时钟信号的获取方法和系统
CN105450321A (zh) * 2015-11-06 2016-03-30 瑞斯康达科技发展股份有限公司 一种网络数据传输方法及装置
CN105610727A (zh) * 2015-11-06 2016-05-25 瑞斯康达科技发展股份有限公司 一种网络数据传输方法及装置
CN108551378A (zh) * 2018-02-08 2018-09-18 中国航天时代电子有限公司 一种射频信号远距离传输方法
CN109586830A (zh) * 2018-11-22 2019-04-05 中电科技扬州宝军电子有限公司 一种基于北斗导航系统和ptp的高铁同步授时方法及装置
CN110492965A (zh) * 2019-09-05 2019-11-22 南京南瑞继保电气有限公司 一种主从系统内串行报文对时的方法和装置
US20200064859A1 (en) * 2018-08-24 2020-02-27 Baidu Usa Llc Hardware centralized time synchronization hub for an autonomous driving vehicle
CN110971332A (zh) * 2019-11-26 2020-04-07 北京无线电计量测试研究所 一种秒脉冲时间信号同步装置和方法
CN111464252A (zh) * 2019-01-22 2020-07-28 华为技术有限公司 通信方法和光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457956A (zh) * 2010-11-02 2012-05-16 中兴通讯股份有限公司 一种基准时钟信号的获取方法和系统
CN105450321A (zh) * 2015-11-06 2016-03-30 瑞斯康达科技发展股份有限公司 一种网络数据传输方法及装置
CN105610727A (zh) * 2015-11-06 2016-05-25 瑞斯康达科技发展股份有限公司 一种网络数据传输方法及装置
CN108551378A (zh) * 2018-02-08 2018-09-18 中国航天时代电子有限公司 一种射频信号远距离传输方法
US20200064859A1 (en) * 2018-08-24 2020-02-27 Baidu Usa Llc Hardware centralized time synchronization hub for an autonomous driving vehicle
CN109586830A (zh) * 2018-11-22 2019-04-05 中电科技扬州宝军电子有限公司 一种基于北斗导航系统和ptp的高铁同步授时方法及装置
CN111464252A (zh) * 2019-01-22 2020-07-28 华为技术有限公司 通信方法和光模块
CN110492965A (zh) * 2019-09-05 2019-11-22 南京南瑞继保电气有限公司 一种主从系统内串行报文对时的方法和装置
CN110971332A (zh) * 2019-11-26 2020-04-07 北京无线电计量测试研究所 一种秒脉冲时间信号同步装置和方法

Also Published As

Publication number Publication date
CN114430302A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
US7903681B2 (en) Method for distributing a common time reference within a distributed architecture
US9178637B2 (en) Method and devices for synchronization using linear programming
CN107786293B (zh) 时间同步方法、主时钟设备、从时钟设备及时间同步系统
CN102244603B (zh) 传输承载时间的报文的方法、设备及系统
CN103166792B (zh) 线路非对称性补偿方法、设备及系统
US11700072B2 (en) Timing synchronization over cable networks
CN111385048A (zh) 一种时间同步方法及系统
CN101621713B (zh) 无源光网络同步时间的计算方法、系统及光网络设备
CN101455014A (zh) 传送所发送的或者所接收的消息的发送时间信息或者接收时间信息的方法和装置
EP2448168A1 (en) Method and system for bearing time synchronization protocol in optical transport network
CN106712885B (zh) 时钟同步方法、网络设备和网络系统
CN103563287A (zh) 同步设备和同步方法
WO2009043299A1 (en) A determining method and device for the synchronization port of a transparent clock equipment
WO2021008532A1 (zh) 有源天线单元时延对齐方法、装置及有源天线单元
WO2017000480A1 (zh) 时间同步方法、服务器及系统、存储介质
WO2022089177A1 (zh) 时间同步方法及装置
WO2018027704A1 (zh) 时间同步的方法和设备
CN103647614A (zh) 基于ieee1588协议的可靠提高时间同步精度方法
WO2012149751A1 (zh) 一种时钟等级分级方法及相关设备
WO2018076651A1 (zh) 一种时间同步方法、设备及计算机存储介质
EP3080933B1 (en) Method and devices for synchronization using linear programming
CN101257361A (zh) 通过同步数字体系网络进行精确时间传送的方法及网元
WO2022143548A1 (zh) 同步方法、装置、时间服务器及下游时间服务器
JP3538374B2 (ja) 時刻供給システム及び時刻供給装置
WO2019104522A1 (en) Methods and devices for flexe network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21884906

Country of ref document: EP

Kind code of ref document: A1