WO2022089073A1 - 波束赋形的处理方法、装置及可读存储介质 - Google Patents

波束赋形的处理方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2022089073A1
WO2022089073A1 PCT/CN2021/118497 CN2021118497W WO2022089073A1 WO 2022089073 A1 WO2022089073 A1 WO 2022089073A1 CN 2021118497 W CN2021118497 W CN 2021118497W WO 2022089073 A1 WO2022089073 A1 WO 2022089073A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
disturbed
angle
data
weight data
Prior art date
Application number
PCT/CN2021/118497
Other languages
English (en)
French (fr)
Inventor
郑占旗
刘龙
李健之
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022089073A1 publication Critical patent/WO2022089073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present application relates to the technical field of smart antennas, and in particular, to a beamforming processing method, apparatus, and readable storage medium.
  • Array antenna is the core technology of mobile communication (such as 5G, 6G, etc.).
  • beamforming technology is used to generate dedicated beams directed to user terminals.
  • the beams of different user terminals are spatially distinguished, so that different user terminals can
  • the same cell performs data communication at the same time and at the same frequency, which effectively improves the utilization rate of time-frequency resources.
  • the beamforming technology considers maximizing the channel gain of the user terminal in the current cell, the array antenna interferes with the co-channel channel of the base station of the adjacent cell.
  • the shaped beam of the current cell minimizes the uplink interference to the base station of the neighboring cell.
  • the Capon algorithm and the orthogonal projection method are commonly used methods for generating nulls, but the Capon algorithm and the orthogonal projection method are not flexible enough to control the depth of the nulls.
  • Embodiments of the present application provide a beamforming processing method, device, and readable storage medium, which are used for beamforming of a base station array antenna, and solve the problem of the nulling depth caused by the nulling generation operation in the beamforming process of the prior art. Control is not flexible enough and so on.
  • an embodiment of the present application provides a beamforming processing method, including:
  • beamforming is performed on the to-be-transmitted signal of the base station array antenna of the current cell, and a null is generated at the target disturbed angle.
  • an embodiment of the present application provides a beamforming processing apparatus, including:
  • a memory for storing a computer program
  • a processor for reading the computer program in the memory and performing the following operations:
  • beamforming is performed on the to-be-transmitted signal of the base station array antenna of the current cell, and a null is generated at the target disturbed angle.
  • an embodiment of the present application provides a beamforming processing apparatus, including:
  • an obtaining unit used to obtain the target nulling depth of the target disturbed angle configured by the user
  • a determining unit configured to determine a nulling depth coefficient corresponding to the target disturbed angle according to the target nulling depth
  • the adjustment unit is configured to use the original disturbing beam weight data of the current cell as the object of interference suppression, and adjust the original disturbing beam weight according to the null depth coefficient and the disturbed spatial data corresponding to the target disturbed angle.
  • the value data is adjusted to generate new scrambling beam weight data;
  • the processing unit is configured to perform beamforming on the to-be-transmitted signal of the base station array antenna of the current cell according to the new disturbing beam weight data, and generate a null at the target disturbed angle.
  • embodiments of the present application provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor executes the computer-executable instructions, the first aspect and the The method described in the various possible designs of the first aspect.
  • an embodiment of the present application provides a beamforming processing apparatus, the apparatus including: a processor, a memory, and a transceiver;
  • the transceiver performs data reception and transmission under the control of the processor
  • the memory storing computer instructions
  • the processor is configured to read computer instructions in the memory and execute the method described in the first aspect and various possible designs of the first aspect above.
  • the beamforming processing method, device and readable storage medium provided by the present application, by acquiring the target nulling depth of the target disturbed angle configured by the user, and determining the nulling depth coefficient corresponding to the target disturbed angle according to the target nulling depth, Take the original disturbing beam weight data of the current cell as the object of interference suppression, adjust the original disturbing beam weight data according to the zero-notch depth coefficient and the disturbed space data corresponding to the target disturbed angle, and generate a new disturbing beam weight. value data, according to the weight data of the newly disturbed beam, beamforming the to-be-transmitted signal of the base station array antenna of the current cell to generate a null at the target disturbed angle.
  • the zero-sag depth corresponding to the target disturbed angle realizes the flexibility and controllability of the zero-sag depth.
  • FIG. 1 is a schematic structural diagram of a processing system on which an embodiment of the present application is based;
  • FIG. 2 is a schematic flowchart of a processing method for beamforming according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a processing method for beamforming provided by another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a zero-sag generation process provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the original disturbing beam and the characteristic beam direction of the disturbed angle according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of the directions of the original disturbing beam and the projected beam at the disturbed angle according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of the beam amplification result in FIG. 6 according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a beam after interference suppression provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a beamforming processing apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a beamforming processing apparatus according to another embodiment of the present application.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • the Capon algorithm or the orthogonal projection method is used to generate the null trap.
  • the main principle of the Capon algorithm is to minimize the total output power of the array while maintaining the maximum power gain in the desired direction, so as to suppress interference and reduce interference.
  • the purpose of noise; the main principle of the orthogonal projection method is to project the direction steering vector of the desired direction to the space composed of the direction steering vector of the zero point direction to make an orthogonal complementary space projection, so as to obtain the optimal weight vector.
  • Beam projection analysis creatively discovered an Interference Beam Projection (IBP) method, which can constrain the null depth through a simple null depth coefficient, so that the null depth can be flexibly controlled.
  • IBP Interference Beam Projection
  • the present application proposes a beamforming processing scheme.
  • the beam weight data of the current cell (which can be called the original disturbing beam weight data in order to distinguish it) is extracted as the interference suppression object, based on the target nulling depth of the target disturbed angle configured by the user according to the actual demand, to determine the nulling depth coefficient corresponding to the target disturbed angle, and according to the nulling depth coefficient and the disturbed space data corresponding to the target disturbed angle, Perform interference suppression on the original disturbing beam weight data to obtain new disturbing beam weight data, which is used for beamforming of the base station array antenna of the current cell, thereby suppressing the influence of the original disturbing beam weight data on neighboring cells.
  • the zero-sag depth corresponding to the target disturbed angle can be configured according to actual requirements, and the flexibility and controllability of the zero-sag depth is realized.
  • FIG. 1 it is a schematic structural diagram of a processing system on which an embodiment of the present application is based.
  • the processing system includes a base station array antenna and a baseband signal processor (or called a baseband processing unit, BBU for short). It can also include a remote radio unit RRU. After the baseband signal processor performs beamforming processing on the to-be-transmitted signal of the array antenna, the radio frequency remote unit performs radio frequency processing and transmits it to the array antenna for transmission through the radio frequency feeder.
  • the baseband signal processor obtains the target nulling depth of the target interference angle configured by the user, determines the nulling depth coefficient corresponding to the target interference angle according to the target nulling depth, and calculates the original interference beam weight data of the current cell
  • the original disturbing beam weight data is adjusted according to the disturbed space data corresponding to the null-notch depth coefficient and the target disturbed angle, and new disturbing beam weight data is generated.
  • the new disturbing beam weight data perform beamforming on the signal to be transmitted from the base station array antenna of the current cell, and generate a null at the target disturbed angle. Flexible controllability of zero-sag depth.
  • the target disturbed angle may be one or more.
  • the above-mentioned beamforming processing method is adopted in the nulling generation process. The difference is that for multiple target disturbed angles,
  • the interference suppression object that is, the original disturbing beam weight data of the current cell
  • An embodiment of the present application provides a beamforming processing method, which is used for beamforming a transmission signal of an array antenna of a base station.
  • the execution body of the method is a beamforming processing device, and the beamforming processing device can be set to In the base station, for example, it can be set in the baseband signal processor of the base station.
  • the processing function of all baseband digital signals is completed in the baseband signal processor.
  • the baseband signal processor uses the concept of software radio and mainly works on general hardware platforms such as single-chip microcomputer (MCU), digital signal processor (DSP) and programmable logic device (FPGA or CPLD).
  • the beamforming processing method provided by this application may include:
  • Step 101 Obtain the target nulling depth of the target disturbed angle configured by the user.
  • the working principle of the base station array antenna mainly includes two processes.
  • One is the direction of arrival of the multipath signal transmitted from the mobile terminal by the antenna system (such as the processing system including the base station array antenna, baseband signal processor, radio frequency remote unit, etc.).
  • (DOA) estimation determine the distance, downtilt angle, and azimuth angle (also called horizontal angle) between the mobile terminal and the base station, and then perform spatial filtering to suppress the interference of other terminals to the base station. Then the base station adjusts the base station array antenna according to the DOA information.
  • the weights of the amplitude and phase of the signals of each antenna (ie each antenna element) in the base station are used to beamform the signal to be transmitted by the base station array antenna, so that the main lobe of the signal transmitted by the base station can be transmitted with a smaller lobe angle and a higher angle.
  • the power density is sent back to the mobile terminal along the direction of arrival of the radio wave signal of the mobile terminal, so that the main lobe direction of the signal transmitted by the base station array antenna is aligned with the desired user, and the zero lobe direction (ie, the angle generated by the null notch) is aligned with the disturbed source. , the angle of the victim source is the victim angle.
  • the target nulling depths of different target disturbed angles may be the same or different.
  • the target nulling depth represents the nulling depth expected to be formed at the target disturbed angle, and the target nulling depth is used as the adjustment target for subsequent adjustment of the beam weight data of the current cell (that is, the original disturbing beam weight data) to A null of the desired depth is created at the target disturbed angle.
  • Step 102 Determine a nulling depth coefficient corresponding to the target disturbed angle according to the target nulling depth.
  • the user-configured target zero-trough depth is converted into a corresponding zero-trough depth coefficient to play a role in practical applications to achieve flexible and controllable zero-trough depth.
  • the nulling depth coefficient may be determined according to the weight data of the original disturbing beam, the direction guidance data corresponding to the target disturbed angle, and the target nulling depth.
  • the direction guidance data corresponding to the target disturbed angle can be constructed according to the target disturbed angle.
  • Step 103 Take the original disturbing beam weight data of the current cell as the object of interference suppression, and adjust the original disturbing beam weight data according to the zero-notch depth coefficient and the disturbed spatial data corresponding to the target disturbed angle to generate a new disturbing beam. Scramble beam weight data.
  • the original disturbing beam weight data of the current cell can be used as the object of interference suppression.
  • the corresponding disturbed spatial data adjusts the original disturbing beam weight data to generate new disturbing beam weight data, which is used for beamforming the signal to be transmitted.
  • the disturbed spatial data corresponding to the target disturbed angle may be directional guidance data corresponding to the target disturbed angle constructed according to the target disturbed angle, and then the disturbed spatial data can be obtained according to the directional guidance data.
  • the target disturbed angle is ⁇ 1
  • the original direction guidance data constructed according to the target disturbed angle is the direction guide vector v0( ⁇ 1 ):
  • the disturbed space data obtained according to the direction steering data is the disturbed space matrix R( ⁇ 1 ):
  • represents the working wavelength of the current cell base station array antenna
  • d represents the distance between two adjacent antennas in the same row of the current cell base station array antenna
  • T represents the transpose
  • H represents the conjugate transpose
  • v( ⁇ 1 ) H represents the value of v( ⁇ 1 ) Conjugate transpose
  • norm(v0( ⁇ 1 )) means to find the norm of v0( ⁇ 1 ).
  • Step 104 According to the weight data of the newly disturbed beam, beamforming is performed on the to-be-transmitted signal of the base station array antenna of the current cell, and a null is generated at the target disturbed angle.
  • the beamforming of the signal to be transmitted from the base station array antenna of the current cell can be performed according to the weight data of the new disturbing beam, and a null is generated at the target disturbed angle, so that the The target interference angle is used for effective interference suppression, and the main lobe of the signal to be transmitted from the base station array antenna can be transmitted to the mobile terminal of the desired user with a smaller lobe angle and higher power density.
  • the target nulling depth of the target interference angle configured by the user is obtained, and the nulling depth coefficient corresponding to the target interference angle is determined according to the target nulling depth, and the original application of the current cell
  • the scramble beam weight data is used as the object of interference suppression, and the original scramble beam weight data is adjusted according to the disturbed space data corresponding to the null-notch depth coefficient and the target disturbed angle, and the new scramble beam weight data is generated.
  • Scrambling beam weight data, beamforming the signal to be transmitted from the base station array antenna of the current cell and generate a null at the target interference angle.
  • the zero corresponding to the target interference angle can be configured according to actual needs.
  • the sag depth realizes the flexibility and controllability of the zero sag depth.
  • Another embodiment of the present application provides further supplementary descriptions of the method provided by the foregoing embodiment.
  • FIG. 3 it is a schematic flowchart of the beamforming processing method provided in this embodiment.
  • determining the nulling depth coefficient corresponding to the target disturbed angle according to the target nulling depth including:
  • Step 1021 Obtain the original disturbing beam weight data and the direction steering data corresponding to the target disturbed angle.
  • the original disturbing beam weight data is the beam weight data generated without nulling at the target disturbed angle. If there are multiple target disturbed angles (such as K), for the first target disturbed angle, the original disturbing beam weight data is the beam weight data generated without nulling at the target disturbed angle. For each target disturbed angle, the original disturbing beam weight data is the new disturbing beam weight data corresponding to the j-1 th target disturbed angle, and more nulls can be generated through iteration.
  • the direction guidance data corresponding to the target disturbed angle may be constructed according to the target disturbed angle, for example, it may be a constructed direction guide vector.
  • Step 1022 Determine a nulling depth coefficient corresponding to the target disturbed angle according to the original disturbing beam weight data, the direction guide data corresponding to the target disturbed angle, and the target nulling depth.
  • the target nulling depth After obtaining the original disturbing beam weight data and the direction steering data corresponding to the target disturbed angle, it is possible to obtain the target nulling depth according to the original disturbing beam weight data, the direction guide data corresponding to the target disturbed angle and the user-configured target nulling depth. Determine the nulling depth coefficient corresponding to the target disturbed angle.
  • the weight data of the original disturbing beam the direction guidance data corresponding to the target disturbed angle, and the target nulling depth, determine the nulling depth coefficient corresponding to the target disturbed angle, including:
  • the following formula 1 is used to determine the nulling depth coefficient corresponding to the target disturbed angle ⁇ 1 :
  • the original beam weight data w may be a weight matrix corresponding to the base station array antenna, wherein each element is the weight value of the corresponding antenna in the base station array antenna.
  • the original beam weight data w may be an N ⁇ M weight matrix, that is, the columns of the weight matrix correspond to the rows of the base station array antenna.
  • the weight data of the newly scrambled beam is also an N ⁇ M weight matrix.
  • ⁇ 1i and w(i) in the above formula 1 are vectors representing the null depth coefficient and weight vector corresponding to the i-th row of the base station array antenna, and the null depth coefficient ⁇ 1 corresponding to the target disturbed angle is an M ⁇ 1 vector.
  • it is necessary to traverse i 1, 2, .
  • the original disturbing beam weight data is adjusted according to the zero-notch depth coefficient and disturbed spatial data corresponding to the target disturbed angle to generate a new Scrambling beam weight data, including:
  • Step 2011 Calculate the disturbance adjustment data according to the nulling depth coefficient, the disturbed space data corresponding to the target disturbed angle, and the weight data of the original disturbing beam.
  • Step 2012 using the interference adjustment data to adjust the original interference beam weight data to generate new interference beam weight data.
  • the disturbing adjustment data can be calculated according to the zero-notch depth coefficient, disturbed spatial data corresponding to the target disturbed angle, and the original disturbing beam weight data, and the disturbing The adjustment data adjusts the original scramble beam weight data to generate new scramble beam weight data.
  • the disturbed spatial data corresponding to the target disturbed angle may be determined according to the direction guidance data corresponding to the target disturbed angle.
  • the interference adjustment data is calculated according to the nulling depth coefficient, the disturbed space data corresponding to the target disturbed angle, and the original disturbing beam weight data, including:
  • the following formula 2 is used to calculate the disturbing adjustment Data w':
  • the original scrambling beam weight data is adjusted by the scrambling adjustment data to generate new scrambling beam weight data, including:
  • w(i)′ is the interference adjustment data corresponding to the i-th row antenna in the base station array antenna
  • w new (i) represents the new interference beam weight data corresponding to the i-th row antenna in the base station array antenna
  • ⁇ 1i represents Null depth coefficient corresponding to the i-th row antenna in the base station array antenna
  • ⁇ 1 represents the horizontal angle of the disturbed cell corresponding to the target disturbed angle in the current cell coordinate system, that is, the disturbed base station (the base station corresponding to the disturbed cell)
  • the method further includes:
  • Step 2031 Determine direction guidance data according to the target disturbed angle.
  • Step 2032 Determine the disturbed space data corresponding to the target disturbed angle according to the direction guidance data.
  • the direction guidance data is determined according to the target disturbed angle, including:
  • represents the working wavelength of the current cell base station array antenna
  • d represents the distance between two adjacent antennas in the same row of the current cell base station array antenna
  • T is the transpose
  • H is the conjugate transpose
  • v( ⁇ 1 ) H is the v( ⁇ 1 ) The conjugate transpose of .
  • determine the disturbed space data corresponding to the target disturbed angle including:
  • H represents the conjugate transpose
  • v( ⁇ 1 ) H represents the conjugate transpose of v( ⁇ 1 ).
  • the target disturbed angles are K, and K is an integer greater than or equal to 2;
  • a schematic diagram of a zero-sag generation process provided in this embodiment is provided.
  • theta1 is equivalent to ⁇ 1
  • R1 is R( ⁇ 1 )
  • theta2, R2, ..., thetaK, RK are the same.
  • the nulling generation process in the embodiment of the present application may be referred to as an IBP algorithm, and the purpose of the algorithm is to suppress the influence of the weight data of the original harassing beam on neighboring cells.
  • the specific process of the algorithm is as follows:
  • the user can configure the nulling depth G 0 required by the first target disturbed angle according to actual needs, and convert it into a nulling depth coefficient.
  • the beam weight matrix is used to beamform the to-be-transmitted signal of the base station array antenna of the current cell to generate a nulling of the required depth at the first target disturbed angle:
  • any row of the array antenna is taken as an example, the meaning of each symbol is the same as the previous one, and will not be repeated here.
  • the new beam weight matrix corresponding to the first target disturbed angle as the original disturbed beam weight data corresponding to the second target disturbed angle, and construct the corresponding direction steering vector v( ⁇ 2 ), further construct the disturbed space matrix R( ⁇ 2 ) of the second target disturbed angle, and obtain the second target disturbed angle corresponding to the target null depth G 1 according to the second target disturbed angle
  • the weight of the original disturbing beam corresponding to the second target disturbed angle is calculated.
  • the data is adjusted to generate a new beam weight matrix corresponding to the second target disturbed angle, which is used to beamform the to-be-transmitted signal of the array antenna of the base station of the current cell, so as to generate a zero of the required depth at the second target disturbed angle.
  • the specific operation method is the same as that of the first target disturbed angle, which is not repeated here.
  • multiple (for example, K) target disturbed angles can be generated by iteration.
  • L is the number of angle values, such as the angle is the target disturbed angle ⁇ 1 , and can also include other target disturbed angles, such as angle is the target disturbed angle ⁇ 2 , that is, the K target disturbed angles ⁇ 1 - ⁇ K are
  • K is less than or equal to L.
  • Array Steering Vector all direction steering vectors in (for example ) is a norm-normalized vector modulo 1:
  • the beam pattern of the array can be expressed as:
  • the direction steering vector corresponding to the target disturbed angle is a column element of the array steering vector.
  • the eigenbeam representing the interference direction (that is, the target interference angle ⁇ 1 direction), Indicates that the eigenbeam is in the original scrambled beam
  • the projection on , the projection coefficient is w(i) H v( ⁇ 1 ), which represents the difference between the original disturbing beam weight w(i) and the direction steering vector v( ⁇ 1 ) of the target disturbed angle ⁇ 1
  • the correlation coefficient between Indicates the gain of the null-suppressed beam at the jth angle.
  • FIG. 5 a schematic diagram of the characteristic beam directions of the original disturbing beam and the disturbed angle provided by the present embodiment
  • FIG. 6 the original disturbing beam and the disturbed angle provided by the present embodiment.
  • Schematic diagram of the direction of the projected beam; among them, the scrambling beam is the original scrambling beam.
  • w(i) H v( ⁇ 1 ) represents the side lobe value of the original disturbing beam at the target disturbed angle ⁇ 1 , which is also the peak value of the projected beam, as shown in FIG. 7 , in FIG. 6 provided in this embodiment.
  • Schematic diagram of the beam amplification result. After enlarging the projection beam in Fig. 6, when the two values of the target disturbed angle ⁇ 1 are equal, the gain value B( ⁇ 1 ) in formula 9 is zero, which is - ⁇ in the dB value. It can be seen that when ⁇ 1i 1, the sidelobe can be well suppressed.
  • FIG. 8 a schematic diagram of a beam after interference suppression provided in this embodiment is shown. It can be seen that the gain at the target interference angle (9.5 degrees) is suppressed to below -300dB. At the same time, it can be seen from formula 9 that when ⁇ 1i is not 1, there will be gain residue on the target disturbed angle. , the nulling depth can be controlled by the nulling depth coefficient.
  • nulls of multiple disturbed angles can be realized in an iterative manner, and when the nulls are set at several nearby disturbed angles, the values of the null depth coefficients should be matched. Use to widen the null width.
  • the nulling depth coefficient is determined by the required nulling depth, the weight data of the original disturbing beam, and the direction steering data corresponding to the target disturbed angle of the required nulling, that is, for the base station array of any row (i-th row) Antenna, the nulling depth coefficient ⁇ 1i corresponding to this row is determined by the required nulling depth G 0 , the original disturbing beam weight data w(i) corresponding to this row, and the direction steering vector v corresponding to the target disturbed angle ⁇ 1 ( ⁇ 1 ) determines that when the value of ⁇ 1i is 1, the zero-sag depth is the deepest, and when the value of ⁇ 1i is slightly deviated from 1, the zero-sag depth will become shallower, and at the same time, the zero-sag width will increase.
  • the depth-controllable IBP algorithm that generates nulls can be expressed as:
  • Equation 11 is essentially Equation 3 above.
  • the IBP algorithm that generates the null trap does not need to perform matrix inversion, which can greatly reduce the complexity of generating the null trap.
  • the inverse Capon algorithm and orthogonal projection method avoid complex matrix inversion operations, and only realize the generation of zero traps through matrix multiplication and subtraction, which greatly simplifies the generation process of zero traps, and the depth of zero traps can be changed by simple zero traps. Constrained by the sag depth coefficient, the depth of any zero sag can be controlled. Compared with the orthogonal projection method, the control flexibility is stronger.
  • the above formula 11 can be executed for each target disturbed angle to generate separate K nulls corresponding to the target disturbed angles ⁇ 1 to ⁇ K. It should be noted that, for the target disturbed angle ⁇ j whose j is greater than or equal to 2, when a zero depression occurs in its direction, the original disturbing beam weight data used can be the new applied target disturbed angle ⁇ j-1 . Scramble beam weight data.
  • the embodiment of the present application obtains a new perturbing beam weight with a null notch by subtracting the vector change of the known perturbing beam weight in the interfered space from the known perturbing beam weight,
  • the nulling generation process of each disturbed angle can be iterated, so that different disturbed angles do not have to have the condition of being uncorrelated with each other.
  • the IBP algorithm for generating nulls does not need to perform matrix inversion, which can greatly reduce the complexity of generating nulls.
  • the cross-projection method avoids the complex matrix inversion operation, and only realizes the generation of the zero trap through matrix multiplication and subtraction, which greatly simplifies the generation process of the zero trap, and the zero trap depth can be constrained by a simple zero trap depth coefficient.
  • the depth of any null can be controlled, which is more flexible than the orthogonal projection method.
  • Still another embodiment of the present application provides a beamforming processing apparatus, which is used to execute the method of any one of the foregoing embodiments.
  • the beamforming processing device includes: a processor 610 and a memory 620 .
  • the memory 620 is used to store computer programs; the processor 610 is used to read the computer programs in the memory and perform the following operations:
  • beamforming is performed on the to-be-transmitted signal of the base station array antenna of the current cell, and a null is generated at the target disturbed angle.
  • the beamforming processing apparatus may further include a transceiver, and the transceiver is used to send and receive data under the control of the processor 610, such as receiving corresponding data from the base station array antenna, sending corresponding data to the remote radio unit, and so on. .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 610 and various circuits of memory represented by memory 620 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • a transceiver may be a number of elements, including a transmitter and a receiver, that provide means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 610 is responsible for managing the bus architecture and general processing, and the memory 620 may store data used by the processor 610 in performing operations.
  • the processor 610 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Comple6 Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the processor 610 is specifically configured to read the computer program in the memory and perform the following operations:
  • the nulling depth coefficient corresponding to the target disturbed angle is determined.
  • the processor 610 is specifically configured to read the computer program in the memory and perform the following operations:
  • the following formula is used to determine the nulling depth coefficient ⁇ corresponding to the target disturbed angle 1 :
  • the processor 610 is specifically configured to read the computer program in the memory and perform the following operations:
  • the original scrambling beam weight data is adjusted by the scrambling adjustment data to generate new scrambling beam weight data.
  • the processor 610 is specifically configured to read the computer program in the memory and perform the following operations:
  • the following formula is used to calculate the disturbing adjustment data w':
  • the processor 610 is specifically configured to read the computer program in the memory and perform the following operations:
  • w(i)' is the scrambling adjustment data corresponding to the i-th row antenna in the base station array antenna
  • wnew(i) represents the new scrambling beam weight data corresponding to the i-th row antenna in the base station array antenna
  • ⁇ 1i represents the base station
  • ⁇ 1 represents the horizontal angle of the disturbed cell corresponding to the target disturbed angle in the current cell coordinate system
  • M and M are the number of rows and columns of the current cell base station array antenna, respectively.
  • the processor 610 is further configured to read the computer program in the memory and perform the following operations:
  • the disturbed space data corresponding to the target disturbed angle is determined.
  • the processor 610 is specifically configured to read the computer program in the memory and perform the following operations:
  • represents the working wavelength of the current cell base station array antenna
  • d represents the distance between two adjacent antennas in the same row of the current cell base station array antenna
  • T is the transpose
  • H is the conjugate transpose
  • v( ⁇ 1 ) H is the v( ⁇ 1 ) The conjugate transpose of .
  • the processor 610 is specifically configured to read the computer program in the memory and perform the following operations:
  • the following formula is used to determine the disturbed spatial data R( ⁇ 1 ) corresponding to the target disturbed angle:
  • H represents the conjugate transpose
  • v( ⁇ 1 ) H represents the conjugate transpose of v( ⁇ 1 ).
  • the target disturbed angles are K, and the K is an integer greater than or equal to 2;
  • the processor 610 is specifically configured to read a computer program in the memory and perform the following operations:
  • Yet another embodiment of the present application provides a beamforming processing apparatus, which is used to implement the method provided by any of the foregoing method embodiments.
  • the beamforming processing device 80 includes: an acquisition unit 81 , a determination unit 82 , an adjustment unit 83 and a processing unit 84 .
  • the obtaining unit is used to obtain the target nulling depth of the target disturbed angle configured by the user;
  • a determining unit used for determining the nulling depth coefficient corresponding to the target disturbed angle according to the target nulling depth
  • the adjustment unit is configured to use the original disturbing beam weight data of the current cell as the object of interference suppression, and adjust the original disturbing beam weight data according to the null-notch depth coefficient and the disturbed spatial data corresponding to the target disturbed angle , to generate new scrambling beam weight data;
  • the processing unit is configured to perform beamforming on the to-be-transmitted signal of the base station array antenna of the current cell according to the weight data of the newly disturbed beam, and generate a null at the target disturbed angle.
  • the determining unit is specifically configured to:
  • the nulling depth coefficient corresponding to the target disturbed angle is determined.
  • the determining unit is specifically configured to:
  • the following formula is used to determine the nulling depth coefficient ⁇ corresponding to the target disturbed angle 1 :
  • the adjustment unit is specifically used for:
  • the original scrambling beam weight data is adjusted by the scrambling adjustment data to generate new scrambling beam weight data.
  • the adjustment unit is specifically used for:
  • the following formula is used to calculate the disturbing adjustment data w':
  • Adjustment unit specifically for:
  • w(i)′ is the interference adjustment data corresponding to the i-th row antenna in the base station array antenna
  • w new (i) represents the new interference beam weight data corresponding to the i-th row antenna in the base station array antenna
  • ⁇ 1i represents The nulling depth coefficient corresponding to the i-th row antenna in the base station array antenna
  • ⁇ 1 represents the horizontal angle of the disturbed cell corresponding to the target disturbed angle in the current cell coordinate system
  • M and N are the number of rows and columns of the current cell base station array antenna, respectively.
  • the determining unit is specifically configured to:
  • the disturbed space data corresponding to the target disturbed angle is determined.
  • the determining unit is specifically configured to:
  • represents the working wavelength of the current cell base station array antenna
  • d represents the distance between two adjacent antennas in the same row of the current cell base station array antenna
  • T represents the transpose
  • H represents the conjugate transpose
  • v( ⁇ 1 ) H represents the value of v( ⁇ 1 ) Conjugate Transpose.
  • the determining unit is specifically configured to:
  • determine the disturbed space data corresponding to the target disturbed angle including:
  • the following formula is used to determine the disturbed spatial data R( ⁇ 1 ) corresponding to the target disturbed angle:
  • H represents the conjugate transpose
  • v( ⁇ 1 ) H represents the conjugate transpose of v( ⁇ 1 ).
  • the target disturbed angles are K, and the K is an integer greater than or equal to 2;
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute any one of the above method embodiments.
  • the processor-readable storage medium may be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Abstract

本申请提供一种波束赋形的处理方法、装置及可读存储介质,包括:获取用户配置的目标受扰角度的目标零陷深度;根据所述目标零陷深度确定所述目标受扰角度对应的零陷深度系数;将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据;根据所述新施扰波束权值数据,对所述当前小区的基站阵列天线的待发射信号进行波束赋形,在所述目标受扰角度产生零陷。在零陷产生过程中,能够根据实际需求配置目标受扰角度对应的零陷深度,实现了零陷深度的灵活可控性。

Description

波束赋形的处理方法、装置及可读存储介质 技术领域
本申请涉及智能天线技术领域,尤其涉及一种波束赋形的处理方法、装置及可读存储介质。
背景技术
阵列天线是移动通信(比如5G、6G等)的核心技术,在阵列天线中通过波束赋形技术,产生指向用户终端的专用波束,不同用户终端的波束在空间进行区分,使得不同用户终端能在同一小区同时同频地进行数据通信,有效提高时频资源的利用率。波束赋形技术在考虑最大化当前小区用户终端信道增益时,阵列天线对邻小区基站的同频信道产生干扰,为了消除这种干扰,需要在邻小区所在角度方向产生对应的波束零陷,使当前小区的赋形波束对邻小区基站上行的干扰降到最低。
现有技术中,Capon算法和正交投影法是常用的零陷产生方法,但是,Capon算法和正交投影法对零陷深度的控制不够灵活。
发明内容
本申请实施例提供一种波束赋形的处理方法、装置及可读存储介质,用于基站阵列天线的波束赋形,解决了现有技术波束赋形过程中零陷产生运算对零陷深度的控制不够灵活等问题。
第一个方面,本申请实施例提供一种波束赋形的处理方法,包括:
获取用户配置的目标受扰角度的目标零陷深度;
根据所述目标零陷深度确定所述目标受扰角度对应的零陷深度系数;
将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据;
根据所述新施扰波束权值数据,对所述当前小区的基站阵列天线的待 发射信号进行波束赋形,在所述目标受扰角度产生零陷。
第二个方面,本申请实施例提供一种波束赋形的处理装置,包括:
包括存储器,处理器:
存储器,用于存储计算机程序;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
获取用户配置的目标受扰角度的目标零陷深度;
根据所述目标零陷深度确定所述目标受扰角度对应的零陷深度系数;
将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据;
根据所述新施扰波束权值数据,对所述当前小区的基站阵列天线的待发射信号进行波束赋形,在所述目标受扰角度产生零陷。
第三个方面,本申请实施例提供一种波束赋形的处理装置,包括:
获取单元,用于获取用户配置的目标受扰角度的目标零陷深度;
确定单元,用于根据所述目标零陷深度确定所述目标受扰角度对应的零陷深度系数;
调整单元,用于将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据;
处理单元,用于根据所述新施扰波束权值数据,对所述当前小区的基站阵列天线的待发射信号进行波束赋形,在所述目标受扰角度产生零陷。
第四个方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如上第一个方面以及第一个方面各种可能的设计所述的方法。
第五个方面,本申请实施例提供一种波束赋形的处理装置,所述装置包括:处理器、存储器和收发机;
所述收发机,在处理器的控制下进行数据的接收和发送;
所述存储器,存储计算机指令;
所述处理器,用于读取所述存储器中的计算机指令并执行如上第一个方面以及第一个方面各种可能的设计所述的方法。
本申请提供的波束赋形的处理方法、装置及可读存储介质,通过获取用户配置的目标受扰角度的目标零陷深度,根据目标零陷深度确定目标受扰角度对应的零陷深度系数,将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据零陷深度系数及目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据,根据新施扰波束权值数据,对当前小区的基站阵列天线的待发射信号进行波束赋形,以在目标受扰角度产生零陷,在零陷产生过程中,能够根据实际需求配置目标受扰角度对应的零陷深度,实现了零陷深度的灵活可控性。
应当理解,上述发明内容部分中所描述的内容并非旨在限定本申请的实施例的关键或重要特征,亦非用于限制本申请的范围。本申请的其它特征将通过以下的描述变得容易理解。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例基于的处理系统的架构示意图;
图2为本申请一实施例提供的波束赋形的处理方法的流程示意图;
图3为本申请另一实施例提供的波束赋形的处理方法的流程示意图;
图4为本申请一实施例提供的零陷产生流程示意图;
图5为本申请一实施例提供的原施扰波束及受扰角度的特征波束方向示意图;
图6为本申请一实施例提供的原施扰波束及受扰角度投影波束方向示意图;
图7为本申请一实施例提供的图6中波束放大结果示意图;
图8为本申请一实施例提供的干扰抑制后的波束示意图;
图9为本申请一实施例提供的波束赋形的处理装置的结构示意图;
图10为本申请另一实施例提供的波束赋形的处理装置的结构示意图。
具体实施方式
(一)本申请中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了清楚地理解本申请的技术方案,首先对现有技术的方案进行详细介绍。现有技术中,采用Capon算法或正交投影法产生零陷,Capon算法的主要原理为:维持期望方向上的功率增益最大的情况下,让阵列总的输出功率达到最小,从而实现抑制干扰和噪声的目的;正交投影法的主要原理是将期望方向的方向导向矢量向由零点方向的方向导向矢量构成的空间作正交补空间投影,从而求出最优的权矢量。然而,发明人在研究中发现,在运算过程中,Capon算法和正交投影法对零陷深度均不能灵活控制。发明人考虑到在不同情况下,对零陷深度有不同的需求,因此,发明人对如何灵活控制零陷深度进行了深入研究,在对Capon算法进行干扰特征空间分解的理论基础上,通过干扰波束投影分析,创造性地发现一种干扰波束投影法(Interference Beam Projection,简称:IBP),能够通过简单的零陷深度系数来约束零陷深度,使得零陷深度能够灵活控制。
基于上述发明人的创造性研究,本申请提出一种波束赋形的处理方案,本申请中,提取当前小区的波束权值数据(为了区分可称为原施扰波束权值数据)作为干扰抑制的对象,基于用户根据实际需求配置的目标受扰角度的目标零陷深度,来确定目标受扰角度对应的零陷深度系数,根据该零陷深度系数及目标受扰角度对应的受扰空间数据,对原施扰波束权值数据 进行干扰抑制,获得新施扰波束权值数据,用于当前小区的基站阵列天线的波束赋形,从而抑制该原施扰波束权值数据对邻小区的影响。在零陷产生过程中,能够根据实际需求配置目标受扰角度对应的零陷深度,实现了零陷深度的灵活可控性。
如图1所示,为本申请实施例基于的处理系统的架构示意图。该处理系统包括基站阵列天线和基带信号处理器(或称基带处理单元,简称BBU)。还可以包括射频拉远单元RRU,基带信号处理器对阵列天线的待发射信号进行波束赋形处理后,经射频拉远单元进行射频处理,通过射频馈线传送到阵列天线进行发射。具体来说,基带信号处理器获取用户配置的目标受扰角度的目标零陷深度,根据目标零陷深度确定目标受扰角度对应的零陷深度系数,将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据零陷深度系数及目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据,根据新施扰波束权值数据,对当前小区的基站阵列天线的待发射信号进行波束赋形,在目标受扰角度产生零陷,在零陷产生过程中,能够根据实际需求配置目标受扰角度对应的零陷深度,实现了零陷深度的灵活可控性。
可选地,目标受扰角度可以是一个或多个,对于每个目标受扰角度,其零陷产生过程均采用上述波束赋形的处理方法,不同的是,对于多个目标受扰角度,第1个目标受扰角度的零陷产生的干扰抑制对象(即当前小区的原施扰波束权值数据)是零陷产生前的初始波束权值数据,第j个目标受扰角度采用的原施扰波束权值数据为第j-1个目标受扰角度产生零陷的新施扰波束权值数据,j=2,…,K,K为目标受扰角度的个数。
以下将参照附图来描述本申请的实施例。
本申请一实施例提供一种波束赋形的处理方法,用于基站阵列天线的发射信号的波束赋形,该方法的执行主体为波束赋形的处理装置,该波束赋形的处理装置可以设置在基站,比如可以设置在基站的基带信号处理器中。在基带信号处理器中完成全部基带数字信号的处理功能。基带信号处理器使用软件无线电的概念,主要工作在单片机(MCU)、数字信号处理器(DSP)和可编程逻辑器件(FPGA或CPLD)等通用硬件平台上完成。
如图2所示,为本实施例提供的波束赋形的处理方法的流程示意图。 本申请提供的波束赋形的处理方法可以包括:
步骤101,获取用户配置的目标受扰角度的目标零陷深度。
基站阵列天线的工作原理主要包括两个过程,一是天线系统(比如包括基站阵列天线、基带信号处理器、射频拉远单元等的处理系统)对来自移动终端发射的多径信号的波达方向(DOA)进行估计,确定移动终端与基站的距离、下倾角、方位角(也称水平角度)后进行空间滤波,从而抑制其他终端对基站的干扰,再是基站根据DOA信息,调整基站阵列天线中各天线(即各天线阵子)的信号的幅度和相位的权值,对基站阵列天线待发射信号进行波束赋形,使得基站发射信号的主瓣能够以较小的波瓣角和较高的功率密度,沿着移动终端电波信号的波达方向送回移动终端,从而使基站阵列天线发射信号的主瓣方向对准期望用户,零瓣方向(即零陷产生的角度)对准受扰源,受扰源所在角度即受扰角度。
目标受扰角度可以是一个或多个,用户可以根据实际需求来配置各目标受扰角度的零陷深度(称为目标零陷深度),比如第1个目标受扰角度对应的目标零陷深度为G 0,第j个目标受扰角度对应的目标零陷深度为G j-1,j=2,…,K,K为目标受扰角度的个数。可选地,不同目标受扰角度的目标零陷深度可以相同也可以不同。
目标零陷深度表示期望在目标受扰角度形成的零陷深度,目标零陷深度作为调节目标,用于后续对当前小区的波束权值数据(即原施扰波束权值数据)进行调整,以在目标受扰角度产生期望深度的零陷。
步骤102,根据目标零陷深度确定目标受扰角度对应的零陷深度系数。
用户配置的目标零陷深度在实际应用中被转换成对应的零陷深度系数发挥作用,实现零陷深度的灵活可控性。
具体来说,零陷深度系数可以根据原施扰波束权值数据、目标受扰角度对应的方向导向数据及目标零陷深度来确定。目标受扰角度对应的方向导向数据可以根据目标受扰角度来构建。
步骤103,将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据零陷深度系数及目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据。
在确定了目标受扰角度对应的零陷深度系数后,则可以将当前小区的 原施扰波束权值数据作为干扰抑制的对象,根据目标受扰角度对应的零陷深度系数及目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,来生成新施扰波束权值数据,用于对待发射信号进行波束赋形。
其中,目标受扰角度对应的受扰空间数据可以是根据目标受扰角度构建目标受扰角度对应的方向导向数据,进而根据该方向导向数据获得该受扰空间数据。
示例性的,目标受扰角度为θ 1,根据目标受扰角度构建的原方向导向数据为方向导向矢量v0(θ 1):
Figure PCTCN2021118497-appb-000001
对原方向导向数据v0(θ 1)进行归一化,获得所述方向导向数据v(θ 1),使得v(θ 1)为范数归一的模为1的矢量,v(θ 1) Hv(θ 1)=1。即:
Figure PCTCN2021118497-appb-000002
进而,根据该方向导向数据获得的受扰空间数据为受扰空间矩阵R(θ 1):
R(θ 1)=v(θ 1)v(θ 1) H
其中,λ表示当前小区基站阵列天线的工作波长,d表示当前小区基站阵列的同一行天线中相邻两天线之间的距离,v(θ 1)为范数归一的模为1的矢量,v(θ 1) Hv(θ 1)=1,N为当前小区基站阵列天线的列数,T表示转置,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置,norm(v0(θ 1))表示求v0(θ 1)的范数。
步骤104,根据新施扰波束权值数据,对当前小区的基站阵列天线的待发射信号进行波束赋形,在目标受扰角度产生零陷。
在生成了新施扰波束权值数据后,则可以根据新施扰波束权值数据,对当前小区的基站阵列天线的待发射信号进行波束赋形,在目标受扰角度产生零陷,使得在目标受扰角度进行有效的干扰抑制,基站阵列天线的待发射信号的主瓣能够以较小的波瓣角和较高的功率密度,发射到期望用户的移动终端。
本实施例提供的波束赋形的处理方法,通过获取用户配置的目标受扰 角度的目标零陷深度,根据目标零陷深度确定目标受扰角度对应的零陷深度系数,将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据零陷深度系数及目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据,根据新施扰波束权值数据,对当前小区的基站阵列天线的待发射信号进行波束赋形,在目标受扰角度产生零陷,在零陷产生过程中,能够根据实际需求配置目标受扰角度对应的零陷深度,实现了零陷深度的灵活可控性。
本申请另一实施例对上述实施例提供的方法做进一步补充说明。
如图3所示,为本实施例提供的波束赋形的处理方法的流程示意图。
作为一种可实施的方式,在上述实施例的基础上,可选地,根据目标零陷深度确定目标受扰角度对应的零陷深度系数,包括:
步骤1021,获取原施扰波束权值数据和目标受扰角度对应的方向导向数据。
若只有一个目标受扰角度,原施扰波束权值数据为在目标受扰角度未进行零陷产生的波束权值数据。若有多个目标受扰角度(比如K个),对于第1个目标受扰角度,原施扰波束权值数据为在目标受扰角度未进行零陷产生的波束权值数据,对于第j个目标受扰角度,原施扰波束权值数据为第j-1个目标受扰角度对应的新施扰波束权值数据,通过迭代实现更多零陷的产生。
目标受扰角度对应的方向导向数据可以根据目标受扰角度来构建,比如可以是构建的方向导向矢量。
步骤1022,根据原施扰波束权值数据、目标受扰角度对应的方向导向数据及目标零陷深度,确定目标受扰角度对应的零陷深度系数。
在获取到原施扰波束权值数据和目标受扰角度对应的方向导向数据后,可以根据原施扰波束权值数据、目标受扰角度对应的方向导向数据及用户配置的目标零陷深度,确定目标受扰角度对应的零陷深度系数。
可选地,根据原施扰波束权值数据、目标受扰角度对应的方向导向数据及目标零陷深度,确定目标受扰角度对应的零陷深度系数,包括:
根据原施扰波束权值数据w、目标受扰角度θ 1对应的方向导向数据v(θ 1)及目标零陷深度G 0,采用如下公式一,确定目标受扰角度对应的零陷 深度系数α 1
Figure PCTCN2021118497-appb-000003
Figure PCTCN2021118497-appb-000004
其中,
Figure PCTCN2021118497-appb-000005
w=[w(1) w(2)…w(M)],i=1,2,…,M;H表示共轭转置,目标零陷深度的单位为dB,M、N分别为当前小区基站阵列天线的行数和列数。
具体来说,原波束权值数据w可以是基站阵列天线对应的权值矩阵,其中,每个元素为基站阵列天线中对应天线的权值。对于M行N列的基站阵列天线,原波束权值数据w可以为N×M的权值矩阵,也即权值矩阵的列对应基站阵列天线的行。同理,新施扰波束权值数据也是N×M的权值矩阵。上述公式一中的α 1i和w(i)是表示基站阵列天线第i行对应的零陷深度系数和权值矢量,目标受扰角度对应的零陷深度系数α 1为M×1的向量。实际应用中对于基站阵列天线,需要遍历i=1,2,…,M,即基站阵列天线所有行的权值都要进行零陷产生运算。
作为另一种可实施的方式,在上述实施例的基础上,可选地,根据零陷深度系数及目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据,包括:
步骤2011,根据零陷深度系数、目标受扰角度对应的受扰空间数据及原施扰波束权值数据计算施扰调整数据。
步骤2012,采用施扰调整数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据。
在确定了目标受扰角度对应的零陷深度系数后,可以根据该零陷深度系数、目标受扰角度对应的受扰空间数据及原施扰波束权值数据计算施扰调整数据,采用施扰调整数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据。其中,目标受扰角度对应的受扰空间数据可以根据目标受扰角度对应的方向导向数据来确定。
可选地,根据零陷深度系数、目标受扰角度对应的受扰空间数据及原施扰波束权值数据计算施扰调整数据,包括:
根据原施扰波束权值数据w、目标受扰角度θ 1对应的受扰空间数据R(θ 1)及目标受扰角度对应的零陷深度系数α 1,采用如下公式二,计算施扰调整数据w′:
w′=[w(1)′ w(2)′…w(M)′]
w(i)′=α 1iR(θ 1)w(i)     公式二
采用施扰调整数据对原施扰波束权值数据进行调整,以生成新施扰波束权值数据,包括:
利用如下公式三采用施扰调整数据对原施扰波束权值数据进行调整,以生成新施扰波束权值数据w new
w new=[w new(1) w new(2)…w new(M)]
w new(i)=w(i)-w(i)′     公式三
其中,w(i)′为基站阵列天线中第i行天线对应的施扰调整数据,w new(i)表示基站阵列天线中第i行天线对应的新施扰波束权值数据,α 1i表示基站阵列天线中第i行天线对应的零陷深度系数,θ 1表示目标受扰角度对应的受扰小区在当前小区坐标系中的水平角度,也即受扰基站(受扰小区对应的基站)与施扰基站(当前小区对应的基站)的连线与施扰基站天线面板法线方向的夹角,
Figure PCTCN2021118497-appb-000006
w=[w(1) w(2)…w(M)],i=1,2,…,M;M、N分别为当前小区基站阵列天线的行数和列数。
作为另一种可实施的方式,在上述实施例的基础上,可选地,在将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据零陷深度系数及目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据之前,该方法还包括:
步骤2031,根据目标受扰角度确定方向导向数据。
步骤2032,根据方向导向数据,确定目标受扰角度对应的受扰空间数据。
可选地,根据目标受扰角度确定方向导向数据,包括:
根据目标受扰角度θ 1,采用如下公式四,确定原方向导向数据v0(θ 1):
Figure PCTCN2021118497-appb-000007
对原方向导向数据v0(θ 1)进行归一化,获得方向导向数据v(θ 1);
其中,λ表示当前小区基站阵列天线的工作波长,d表示当前小区基站阵列的同一行天线中相邻两天线之间的距离,v(θ 1)为范数归一的模为1的矢量,v(θ 1) H*v(θ 1)=1,N为当前小区基站阵列天线的列数,T表示转置,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置。
可选地,根据方向导向数据,确定目标受扰角度对应的受扰空间数据,包括:
根据方向导向数据v(θ 1),采用如下公式五,确定目标受扰角度对应的受扰空间数据R(θ 1):
R(θ 1)=v(θ 1)v(θ 1) H      公式五
其中,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置。
作为另一种可实施的方式,在上述实施例的基础上,可选地,目标受扰角度为K个,K为大于或等于2的整数;
针对第j个目标受扰角度,当前小区的原施扰波束权值数据为第j-1个目标受扰角度对应的新施扰波束权值数据,j=2,…,K。
作为一种示例性的实施方式,可选地,如图4所示,为本实施例提供的零陷产生流程示意图。其中,theta1即相当于θ 1,R1即为R(θ 1),theta2、R2、…、thetaK、RK同理。本申请实施例中零陷产生过程可以称为IBP算法,该算法的目的是抑制原施扰波束权值数据对邻小区的影响。该算法的具体过程如下:
1、提取当前小区初始波束权值矩阵,作为第1目标受扰角度对应的原施扰波束权值数据,该原施扰波束权值数据作为干扰抑制的对象。
2、构建第1目标受扰角度的受扰空间矩阵(即第1目标受扰角度对 应的受扰空间数据)。
具体的,可通过已知的第1受扰小区基站角度位置(即第1目标受扰角度)θ 1,构建对应的方向导向矢量v(θ 1),进一步构建受扰空间的相关矩阵(即受扰空间矩阵)R(θ 1)=v(θ 1)*v(θ 1) H,H表示共轭转置,受扰空间矩阵作为干扰抑制的空间使用。
3、确定第1目标受扰角度对应的零陷深度系数
用户可以根据实际需求配置第1目标受扰角度所需的零陷深度G 0,转换为零陷深度系数。
上述步骤1和2不分先后顺序。
4、基于第1目标受扰角度对应的零陷深度系数及构建的第1目标受扰角度对应的受扰空间矩阵,对初始波束权值矩阵进行调整,生成第1目标受扰角度对应的新波束权值矩阵,用于对当前小区基站阵列天线的待发射信号进行波束赋形,以在第1目标受扰角度产生所需深度的零陷:
w new(i)=w(i)-α 1iR(θ 1)w(i)=w(i)-α 1iv(θ 1)v(θ 1) Hw(i)
这里以阵列天线任意一行为例,各符号的含义与前面一致,在此不再赘述。
5、若有第2目标受扰角度θ 2,将第1目标受扰角度对应的新波束权值矩阵作为第2目标受扰角度对应的原施扰波束权值数据,构建对应的方向导向矢量v(θ 2),进一步构建第2目标受扰角度的受扰空间矩阵R(θ 2),并根据第2目标受扰角度对应的目标零陷深度G 1,获得第2目标受扰角度对应的零陷深度系数,基于第2目标受扰角度对应的零陷深度系数及构建的第2目标受扰角度对应的受扰空间矩阵,对第2目标受扰角度对应的原施扰波束权值数据进行调整,生成第2目标受扰角度对应的新波束权值矩阵,用于对当前小区基站阵列天线的待发射信号进行波束赋形,以在第2目标受扰角度产生所需深度的零陷,具体操作方式与第1目标受扰角度一致,在此不再赘述,以此类推,通过迭代可以实现多个(比如K个)目标 受扰角度的零陷产生。
下面对本申请实施例提供的IBP算法的原理进行分析说明:
首先,引入阵列导向矢量范德蒙矩阵
Figure PCTCN2021118497-appb-000008
L为角度取值个数,比如其中角度
Figure PCTCN2021118497-appb-000009
为目标受扰角度θ 1,还可以包括其他目标受扰角度,比如角度
Figure PCTCN2021118497-appb-000010
为目标受扰角度θ 2,也即K个目标受扰角度θ 1K
Figure PCTCN2021118497-appb-000011
这L个角度中的K个角度,K小于或等于L。
Figure PCTCN2021118497-appb-000012
是一个N行L列的矩阵,例如L=181表示将施扰基站天线面板视场按1°的间隔分成180份,通常
Figure PCTCN2021118497-appb-000013
取值为
Figure PCTCN2021118497-appb-000014
阵列导向矢量
Figure PCTCN2021118497-appb-000015
中的所有方向导向矢量
Figure PCTCN2021118497-appb-000016
(比如
Figure PCTCN2021118497-appb-000017
)是一个范数归一的模为1的矢量:
Figure PCTCN2021118497-appb-000018
Figure PCTCN2021118497-appb-000019
表示构建的角度
Figure PCTCN2021118497-appb-000020
对应的原方向导向数据,即:
Figure PCTCN2021118497-appb-000021
其中,各符号与前述一致,在此不再赘述。
以任一行基站阵列天线对应的权值w(i)为例,阵列的波束方向图可表示为:
Figure PCTCN2021118497-appb-000022
其中,
Figure PCTCN2021118497-appb-000023
其中,
Figure PCTCN2021118497-appb-000024
即目标受扰角度对应的方向导向矢量为阵列导向矢量的一个列元素。共轭展开后:
Figure PCTCN2021118497-appb-000025
Figure PCTCN2021118497-appb-000026
其中,
Figure PCTCN2021118497-appb-000027
表示干扰方向(即目标受扰角度θ 1方向)的特征波束,
Figure PCTCN2021118497-appb-000028
表示该特征波束在原施扰波束
Figure PCTCN2021118497-appb-000029
上的投影,投影系数为w(i) Hv(θ 1),该投影系数表征了原施扰波束权值w(i)与目标受扰角度θ 1的方向导向矢量v(θ 1)之间的相关系数,
Figure PCTCN2021118497-appb-000030
表示零陷抑制后的波束在第j个角度的增益。
示例性的,如图5所示,为本实施例提供的原施扰波束及受扰角度的特征波束方向示意图,如图6所示,为本实施例提供的原施扰波束及受扰角度投影波束方向示意图;其中,施扰波束即原施扰波束。
公式七中,零陷抑制后的波束在目标受扰角度θ 1的增益B(θ 1)的取值为:
B(θ 1)=w(i) Hv(θ 1)-α 1iw(i) Hv(θ 1)v(θ 1) Hv(θ 1)  公式八
代入v(θ 1) Hv(θ 1)=1,获得:
B(θ 1)=w(i) Hv(θ 1)-α 1iw(i) Hv(θ 1)=(1-α 1i)w(i) Hv(θ 1)  公式九
其中,w(i) Hv(θ 1)表示原施扰波束在目标受扰角度θ 1的副瓣值,也是投影波束的峰值,如图7所示,为本实施例提供的图6中波束放大结果示意图。对图6中的投影波束放大后,当在目标受扰角度θ 1的两个值相等时,公式九中增益值B(θ 1)则为零,表现到dB值上即为-∞。由此可见,当α 1i=1,该副瓣可得到很好抑制。
如图8所示,为本实施例提供的干扰抑制后的波束示意图。可见在目标受扰角度(9.5度)上的增益抑制到了-300dB以下。同时,由公式九可知,当α 1i不为1时,会出现在目标受扰角度上的增益残留,有增益残留时,目标受扰角度上的增益会上升,零陷深度会变浅,因此,可以由零陷深度系数来控制零陷深度。
若需要产生更多受扰角度的零陷,可采用迭代的方式实现多个受扰角度零陷的产生,且零陷设置在较近的几个受扰角度上时,配合零陷深度系数的使用,可展宽零陷宽度。
由公式九可知,定义B(θ 1)为在目标受扰角度θ 1上所需的零陷深度,单 位取dB即G 0=20*log(B(θ 1)),因此有:
Figure PCTCN2021118497-appb-000031
可得上述公式一:
Figure PCTCN2021118497-appb-000032
可知,零陷深度系数由所需的零陷深度、原施扰波束权值数据、所需零陷的目标受扰角度对应的方向导向数据决定,即对于任一行(第i行)的基站阵列天线,该行对应的零陷深度系数α 1i由所需的零陷深度G 0,该行对应的原施扰波束权值数据w(i)、目标受扰角度θ 1对应的方向导向矢量v(θ 1)决定,当α 1i的取值为1时,零陷深度最深,当α 1i的取值稍微偏离1时,零陷深度会变浅,同时零陷宽度会增加,因此,零陷深度可控的产生零陷的IBP算法可表示为:
Figure PCTCN2021118497-appb-000033
公式十一实质上即为上述公式三。
综上可知,本申请实施例提供的波束赋形的处理方法中,产生零陷的IBP算法无需进行矩阵求逆,可大大降低零陷产生的复杂度,相对于现有的均需要进行矩阵求逆的Capon算法和正交投影法,避免了复杂的矩阵求逆运算,仅通过矩阵乘法和减法运算来实现零陷的产生,大大简化了零陷的产生过程,且零陷深度可由简单的零陷深度系数来约束,可以控制任意一个零陷的深度,相比于正交投影法,控制灵活性更强。
当需要产生多个零陷时,即存在需要产生零陷的多个目标受扰角度θ 1~θ K,则对每个目标受扰角度分别执行上述公式十一即可在原施扰波束产生分别对应于目标受扰角度θ 1~θ K的K个零陷。需要说明的是,对于j大于或等于2的目标受扰角度θ j,在其方向产生零陷时,采用的原施扰波束权值数据可以为目标受扰角度θ j-1对应的新施扰波束权值数据。
本申请实施例基于最大化信干噪比原则,通过已知施扰波束权值减去受扰空间对已知施扰波束权值的矢量变化,获得具备零陷的新施扰波束权 值,当需要抑制多个受扰角度的增益时,可对每个受扰角度的零陷产生过程进行迭代,使不同受扰角度不必具备互不相关的条件。
需要说明的是,本实施例中各可实施的方式可以单独实施,也可以在不冲突的情况下以任意组合方式结合实施本申请不做限定。
本实施例提供的波束赋形的处理方法,产生零陷的IBP算法无需进行矩阵求逆,可大大降低零陷产生的复杂度,相对于现有的均需要进行矩阵求逆的Capon算法和正交投影法,避免了复杂的矩阵求逆运算,仅通过矩阵乘法和减法运算来实现零陷的产生,大大简化了零陷的产生过程,且零陷深度可由简单的零陷深度系数来约束,可以控制任意一个零陷的深度,相比于正交投影法,控制灵活性更强。
本申请再一实施例提供一种波束赋形的处理装置,用于执行上述任一实施例的方法。
如图9所示,为本实施例提供的波束赋形的处理装置的结构示意图。该波束赋形的处理装置包括:处理器610和存储器620。
其中,存储器620,用于存储计算机程序;处理器610,用于读取存储器中的计算机程序并执行以下操作:
获取用户配置的目标受扰角度的目标零陷深度;
根据目标零陷深度确定目标受扰角度对应的零陷深度系数;
将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据零陷深度系数及所述目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据;
根据新施扰波束权值数据,对当前小区的基站阵列天线的待发射信号进行波束赋形,在所述目标受扰角度产生零陷。
可选地,该波束赋形的处理装置还可以包括收发机,收发机用于在处理器610控制下收发数据,比如从基站阵列天线接收相应的数据,向射频拉远单元发送相应数据等等。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器610代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此, 本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器610负责管理总线架构和通常的处理,存储器620可以存储处理器610在执行操作时所使用的数据。
处理器610可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Comple6 Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在一些实施例中,处理器610,具体用于读取存储器中的计算机程序并执行以下操作:
获取所述原施扰波束权值数据和所述目标受扰角度对应的方向导向数据;
根据原施扰波束权值数据、目标受扰角度对应的方向导向数据及目标零陷深度,确定目标受扰角度对应的零陷深度系数。
在一些实施例中,处理器610,具体用于读取存储器中的计算机程序并执行以下操作:
根据原施扰波束权值数据w、目标受扰角度θ 1对应的方向导向数据v(θ 1)及目标零陷深度G 0,采用如下公式,确定目标受扰角度对应的零陷深度系数α 1
Figure PCTCN2021118497-appb-000034
Figure PCTCN2021118497-appb-000035
其中,
Figure PCTCN2021118497-appb-000036
w=[w(1) w(2)…w(M)],i=1,2,…,M;H表示共轭转置,目标零陷深度的单位为dB,M、N分别为所述当前小区基站阵列天线的行数和列数。
在一些实施例中,处理器610,具体用于读取存储器中的计算机程序 并执行以下操作:
根据零陷深度系数、目标受扰角度对应的受扰空间数据及原施扰波束权值数据计算施扰调整数据;
采用施扰调整数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据。
在一些实施例中,处理器610,具体用于读取存储器中的计算机程序并执行以下操作:
根据原施扰波束权值数据w、目标受扰角度θ 1对应的受扰空间数据R(θ 1)及目标受扰角度对应的零陷深度系数α 1,采用如下公式,计算施扰调整数据w′:
w′=[w(1)′ w(2)′…w(M)′]
w(i)′=α 1iR(θ 1)w(i)
处理器610,具体用于读取存储器中的计算机程序并执行以下操作:
利用如下公式采用施扰调整数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据w new
w new=[w new(1) w new(2)…w new(M)]
w new(i)=w(i)-w(i)′
其中,w(i)′为基站阵列天线中第i行天线对应的施扰调整数据,wnew(i)表示基站阵列天线中第i行天线对应的新施扰波束权值数据,α 1i表示基站阵列天线中第i行天线对应的零陷深度系数,θ 1表示目标受扰角度对应的受扰小区在当前小区坐标系中的水平角度,
Figure PCTCN2021118497-appb-000037
w=[w(1) w(2)…w(M)],i=1,2,…,M;M、M分别为当前小区基站阵列天线的行数和列数。
在一些实施例中,处理器610,还用于读取存储器中的计算机程序并执行以下操作:
根据目标受扰角度确定方向导向数据;
根据方向导向数据,确定目标受扰角度对应的受扰空间数据。
在一些实施例中,处理器610,具体用于读取存储器中的计算机程序 并执行以下操作:
根据目标受扰角度θ 1,采用如下公式,确定原方向导向数据v0(θ 1):
Figure PCTCN2021118497-appb-000038
对原方向导向数据v0(θ 1)进行归一化,获得方向导向数据v(θ 1);
其中,λ表示当前小区基站阵列天线的工作波长,d表示当前小区基站阵列的同一行天线中相邻两天线之间的距离,v(θ 1)为范数归一的模为1的矢量,v(θ 1) H*v(θ 1)=1,N为当前小区基站阵列天线的列数,T表示转置,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置。
在一些实施例中,处理器610,具体用于读取存储器中的计算机程序并执行以下操作:
根据方向导向数据v(θ 1),采用如下公式,确定目标受扰角度对应的受扰空间数据R(θ 1):
R(θ 1)=v(θ 1)v(θ 1) H
其中,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置。
在一些实施例中,所述目标受扰角度为K个,所述K为大于或等于2的整数;处理器610,具体用于读取存储器中的计算机程序并执行以下操作:
针对第j个目标受扰角度,当前小区的原施扰波束权值数据为第j-1个目标受扰角度对应的新施扰波束权值数据,j=2,…,K。
在此需要说明的是,本申请提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本申请又一实施例提供一种波束赋形的处理装置,用于实现上述任一方法实施例提供的方法。
如图10所示,为本实施例提供的波束赋形的处理装置的结构示意图。该波束赋形的处理装置80包括:获取单元81、确定单元82、调整单元83和处理单元84。
其中,获取单元,用于获取用户配置的目标受扰角度的目标零陷深度;
确定单元,用于根据目标零陷深度确定目标受扰角度对应的零陷深度 系数;
调整单元,用于将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据零陷深度系数及所述目标受扰角度对应的受扰空间数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据;
处理单元,用于根据新施扰波束权值数据,对所述当前小区的基站阵列天线的待发射信号进行波束赋形,在所述目标受扰角度产生零陷。
在一些实施例中,可选地,确定单元,具体用于:
获取所述原施扰波束权值数据和所述目标受扰角度对应的方向导向数据;
根据原施扰波束权值数据、目标受扰角度对应的方向导向数据及目标零陷深度,确定目标受扰角度对应的零陷深度系数。
在一些实施例中,可选地,确定单元,具体用于:
根据原施扰波束权值数据w、目标受扰角度θ 1对应的方向导向数据v(θ 1)及目标零陷深度G 0,采用如下公式,确定目标受扰角度对应的零陷深度系数α 1
Figure PCTCN2021118497-appb-000039
Figure PCTCN2021118497-appb-000040
其中,
Figure PCTCN2021118497-appb-000041
w=[w(1) w(2)…w(M)],i=1,2,…,M;H表示共轭转置,所述目标零陷深度的单位为dB,M、N分别为所述当前小区基站阵列天线的行数和列数。
在一些实施例中,可选地,调整单元,具体用于:
根据零陷深度系数、目标受扰角度对应的受扰空间数据及原施扰波束权值数据计算施扰调整数据;
采用施扰调整数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据。
在一些实施例中,可选地,调整单元,具体用于:
根据原施扰波束权值数据w、目标受扰角度θ 1对应的受扰空间数据R(θ 1)及目标受扰角度对应的零陷深度系数α 1,采用如下公式,计算施扰调整数据w′:
w′=[w(1)′ w(2)′…w(M)′]
w(i)′=α 1iR(θ 1)w(i)
调整单元,具体用于:
利用如下公式采用施扰调整数据对原施扰波束权值数据进行调整,生成新施扰波束权值数据w new
w new=[w new(1) w new(2)…w new(M)]
w new(i)=w(i)-w(i)′
其中,w(i)′为基站阵列天线中第i行天线对应的施扰调整数据,w new(i)表示基站阵列天线中第i行天线对应的新施扰波束权值数据,α 1i表示基站阵列天线中第i行天线对应的零陷深度系数,θ 1表示目标受扰角度对应的受扰小区在当前小区坐标系中的水平角度,
Figure PCTCN2021118497-appb-000042
w=[w(1) w(2)…w(M)],i=1,2,…,M;M、N分别为当前小区基站阵列天线的行数和列数。
在一些实施例中,可选地,确定单元,具体用于:
根据目标受扰角度确定方向导向数据;
根据方向导向数据,确定目标受扰角度对应的受扰空间数据。
在一些实施例中,可选地,确定单元,具体用于:
根据目标受扰角度θ 1,采用如下公式,确定方向导向数据v0(θ 1):
Figure PCTCN2021118497-appb-000043
对原方向导向数据v0(θ 1)进行归一化,获得方向导向数据v(θ 1);
其中,λ表示当前小区基站阵列天线的工作波长,d表示当前小区基站阵列的同一行天线中相邻两天线之间的距离,v(θ 1)为范数归一的模为1 的矢量,v(θ 1) Hv(θ 1)=1,N为当前小区基站阵列天线的列数,T表示转置,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置。
在一些实施例中,可选地,确定单元,具体用于:
根据方向导向数据,确定目标受扰角度对应的受扰空间数据,包括:
根据方向导向数据v(θ 1),采用如下公式,确定目标受扰角度对应的受扰空间数据R(θ 1):
R(θ 1)=v(θ 1)v(θ 1) H
其中,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置。
在一些实施例中,可选地,所述目标受扰角度为K个,所述K为大于或等于2的整数;
针对第j个目标受扰角度,当前小区的原施扰波束权值数据为第j-1个目标受扰角度对应的新施扰波束权值数据,j=2,…,K。
在此需要说明的是,本申请提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请再一实施例提供一种处理器可读存储介质。处理器可读存储介 质存储有计算机程序,计算机程序用于使处理器执行上述任一种方法实施例。
其中,处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离 本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种波束赋形的处理方法,其特征在于,所述方法包括:
    获取用户配置的目标受扰角度的目标零陷深度;
    根据所述目标零陷深度确定所述目标受扰角度对应的零陷深度系数;
    将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据;
    根据所述新施扰波束权值数据,对所述当前小区的基站阵列天线的待发射信号进行波束赋形,在所述目标受扰角度产生零陷。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述目标零陷深度确定所述目标受扰角度对应的零陷深度系数,包括:
    获取所述原施扰波束权值数据和所述目标受扰角度对应的方向导向数据;
    根据所述原施扰波束权值数据、所述目标受扰角度对应的方向导向数据及所述目标零陷深度,确定所述目标受扰角度对应的零陷深度系数。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述原施扰波束权值数据、所述目标受扰角度对应的方向导向数据及所述目标零陷深度,确定所述目标受扰角度对应的零陷深度系数,包括:
    根据所述原施扰波束权值数据w、所述目标受扰角度θ 1对应的方向导向数据v(θ 1)及所述目标零陷深度G 0,采用如下公式,确定所述目标受扰角度对应的零陷深度系数α 1
    Figure PCTCN2021118497-appb-100001
    Figure PCTCN2021118497-appb-100002
    其中,
    Figure PCTCN2021118497-appb-100003
    H表示共轭转置,所述目标零陷深度的单位为dB,M、N分别为所述当前小区基站阵列天线的行数和列数。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据,包括:
    根据所述零陷深度系数、所述目标受扰角度对应的受扰空间数据及所述原施扰波束权值数据计算施扰调整数据;
    采用所述施扰调整数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述零陷深度系数、所述目标受扰角度对应的受扰空间数据及所述原施扰波束权值数据计算施扰调整数据,包括:
    根据所述原施扰波束权值数据w、所述目标受扰角度θ 1对应的受扰空间数据R(θ 1)及所述目标受扰角度对应的零陷深度系数α 1,采用如下公式,计算施扰调整数据w′:
    w′=[w(1)′ w(2)′ … w(M)′]
    w(i)′=α 1iR(θ 1)w(i)
    所述采用所述施扰调整数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据,包括:
    利用如下公式采用所述施扰调整数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据w new
    w new=[w new(1) w new(2) … w new(M)]
    w new(i)=w(i)-w(i)′
    其中,w(i)′为基站阵列天线中第i行天线对应的施扰调整数据,w new(i)表示基站阵列天线中第i行天线对应的新施扰波束权值数据,α 1i表示基站阵列天线中第i行天线对应的零陷深度系数,θ 1表示所述目标受扰角度对应的受扰小区在当前小区坐标系中的水平角度,
    Figure PCTCN2021118497-appb-100004
    Figure PCTCN2021118497-appb-100005
    M、N分别为当前小区基站阵列天线的行数和列数。
  6. 根据权利要求1所述的方法,其特征在于,在所述将当前小区的 原施扰波束权值数据作为干扰抑制的对象,根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据之前,所述方法还包括:
    根据所述目标受扰角度确定方向导向数据;
    根据所述方向导向数据,确定所述目标受扰角度对应的受扰空间数据。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述目标受扰角度确定方向导向数据,包括:
    根据所述目标受扰角度θ 1,采用如下公式,确定原方向导向数据v0(θ 1):
    Figure PCTCN2021118497-appb-100006
    对所述原方向导向数据v0(θ 1)进行归一化,获得所述方向导向数据v(θ 1);
    其中,λ表示当前小区基站阵列天线的工作波长,d表示当前小区基站阵列的同一行天线中相邻两天线之间的距离,v(θ 1)为范数归一的模为1的矢量,v(θ 1) Hv(θ 1)=1,N为当前小区基站阵列天线的列数,T表示转置,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述方向导向数据,确定所述目标受扰角度对应的受扰空间数据,包括:
    根据所述方向导向数据v(θ 1),采用如下公式,确定所述目标受扰角度对应的受扰空间数据R(θ 1):
    R(θ 1)=v(θ 1)v(θ 1) H
    其中,H表示共轭转置,v(θ 1) H表示v(θ 1)的共轭转置。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述目标受扰角度为K个,所述K为大于或等于2的整数;
    针对第j个目标受扰角度,当前小区的原施扰波束权值数据为第j-1个目标受扰角度对应的新施扰波束权值数据,j=2,…,K。
  10. 一种波束赋形的处理装置,其特征在于,包括存储器,处理器:
    存储器,用于存储计算机程序;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    获取用户配置的目标受扰角度的目标零陷深度;
    根据所述目标零陷深度确定所述目标受扰角度对应的零陷深度系数;
    将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据;
    根据所述新施扰波束权值数据,对所述当前小区的基站阵列天线的待发射信号进行波束赋形,在所述目标受扰角度产生零陷。
  11. 一种波束赋形的处理装置,其特征在于,包括:
    获取单元,用于获取用户配置的目标受扰角度的目标零陷深度;
    确定单元,用于根据所述目标零陷深度确定所述目标受扰角度对应的零陷深度系数;
    调整单元,用于将当前小区的原施扰波束权值数据作为干扰抑制的对象,根据所述零陷深度系数及所述目标受扰角度对应的受扰空间数据对所述原施扰波束权值数据进行调整,生成新施扰波束权值数据;
    处理单元,用于根据所述新施扰波束权值数据,对所述当前小区的基站阵列天线的待发射信号进行波束赋形,在所述目标受扰角度产生零陷。
  12. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如权利要求1至9中任一项所述的方法。
  13. 一种波束赋形的处理装置,其特征在于,所述装置包括:处理器、存储器和收发机;
    所述收发机,在处理器的控制下进行数据的接收和发送;
    所述存储器,存储计算机指令;
    所述处理器,用于读取所述存储器中的计算机指令并执行如权利要求1至9中任一项所述的方法。
PCT/CN2021/118497 2020-10-26 2021-09-15 波束赋形的处理方法、装置及可读存储介质 WO2022089073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011158199.2A CN114499612A (zh) 2020-10-26 2020-10-26 波束赋形的处理方法、装置及可读存储介质
CN202011158199.2 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022089073A1 true WO2022089073A1 (zh) 2022-05-05

Family

ID=81381885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118497 WO2022089073A1 (zh) 2020-10-26 2021-09-15 波束赋形的处理方法、装置及可读存储介质

Country Status (2)

Country Link
CN (1) CN114499612A (zh)
WO (1) WO2022089073A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117156451A (zh) * 2022-05-23 2023-12-01 大唐移动通信设备有限公司 波束权值调整方法、装置、接入网设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049382A (zh) * 2015-06-18 2015-11-11 哈尔滨工程大学 一种抗期望信号导向矢量失配的零陷展宽自适应天线波束成形方法
WO2018009516A1 (en) * 2016-07-05 2018-01-11 Idac Holdings, Inc. High resolution angle of arrival estimation and dynamic beam nulling
CN109254261A (zh) * 2018-08-30 2019-01-22 湖北工业大学 基于均匀圆阵epuma的相干信号零陷加深方法
CN109635240A (zh) * 2018-12-13 2019-04-16 南京理工大学 大规模数字阵列零陷展宽自适应波束形成方法
CN110261826A (zh) * 2019-05-17 2019-09-20 北京理工大学 一种零陷展宽的相干干扰抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049382A (zh) * 2015-06-18 2015-11-11 哈尔滨工程大学 一种抗期望信号导向矢量失配的零陷展宽自适应天线波束成形方法
WO2018009516A1 (en) * 2016-07-05 2018-01-11 Idac Holdings, Inc. High resolution angle of arrival estimation and dynamic beam nulling
CN109254261A (zh) * 2018-08-30 2019-01-22 湖北工业大学 基于均匀圆阵epuma的相干信号零陷加深方法
CN109635240A (zh) * 2018-12-13 2019-04-16 南京理工大学 大规模数字阵列零陷展宽自适应波束形成方法
CN110261826A (zh) * 2019-05-17 2019-09-20 北京理工大学 一种零陷展宽的相干干扰抑制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO SHENG; ZHANG CHENGENG; YANG XIAOPENG; XUE JUNQI: "Adaptive Beamforming Based on Eigen-Oblique Projection for Mainlobe Interference Suppression", 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL, INFORMATION AND DATA PROCESSING (ICSIDP), IEEE, 11 December 2019 (2019-12-11), pages 1 - 4, XP033813523, DOI: 10.1109/ICSIDP47821.2019.9173405 *
HUAWEI, HISILICON: "Spatial emission and interference mitigation", 3GPP DRAFT; R4-2010489, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051913412 *

Also Published As

Publication number Publication date
CN114499612A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
KR100947650B1 (ko) 간섭 억제를 실현하는 빔 성형 방법
Varade et al. Robust algorithms for DOA estimation and adaptive beamforming for smart antenna application
CN107104720B (zh) 基于协方差矩阵虚拟域离散化重建的互质阵列自适应波束成形方法
Palacios et al. Lightweight and effective sector beam pattern synthesis with uniform linear antenna arrays
Li et al. On adaptive beamforming for coherent interference suppression via virtual antenna array
Khalaf et al. Different adaptive beamforming algorithms for performance investigation of smart antenna system
JP2017521916A (ja) アンテナポートマッピングの方法及び装置
WO2022089073A1 (zh) 波束赋形的处理方法、装置及可读存储介质
Tong et al. Null-Steering Beamformers for Suppressing Unknown Direction Interferences in Sidelobes.
Enahoro et al. Massive multiple-input multiple-output antenna architecture for multiband 5G adaptive beamforming applications
CN111817765B (zh) 一种基于频率约束的广义旁瓣对消宽带波束形成方法
Kumbar Adaptive beamforming smart antenna for wireless communication system
CN105306117A (zh) 一种基于协方差矩阵扩展的半虚拟天线阵波束形成方法
Mondal Studies of different direction of arrival (DOA) estimation algorithm for smart antenna in wireless communication
Imtiaj et al. Revisiting smart antenna array design with multiple interferers using basic adaptive beamforming algorithms: Comparative performance study with testbed results
Li et al. An effective technique for enhancing anti-interference performance of adaptive virtual antenna array
CN105187105B (zh) 智能天线波束赋形中采用中心天线改善零陷的优化方法
KR20180080768A (ko) 복수의 무선 신호들을 컴바이닝하는 방법 및 장치
Adrian-Ionut et al. A speed convergence Least Squares Constant Modulus Algorithm for smart antenna beamforming
Abdulrahman et al. Modifying MVDR beamformer for reducing direction-of-arrival estimation mismatch
Basha et al. Enhancement in gain and interference of smart antennas using two stage genetic algorithm by implementing it on beam forming
Singh et al. Beamforming Showing Effect on BER with Change in Antenna Configuration
Moghaddam Improving LMS/NLMS-based beamforming using Shirvani-Akbari array
Ma et al. Symmetric Extension of Steering Vectors and Beamforming
Hogade et al. Performance improvement in beamforming of Smart Antenna by using LMS algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884803

Country of ref document: EP

Kind code of ref document: A1