WO2022088985A1 - 一种电子设备、侧键fpc及消除天线杂波的处理方法 - Google Patents

一种电子设备、侧键fpc及消除天线杂波的处理方法 Download PDF

Info

Publication number
WO2022088985A1
WO2022088985A1 PCT/CN2021/116402 CN2021116402W WO2022088985A1 WO 2022088985 A1 WO2022088985 A1 WO 2022088985A1 CN 2021116402 W CN2021116402 W CN 2021116402W WO 2022088985 A1 WO2022088985 A1 WO 2022088985A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
line
trace
electronic device
absorbing material
Prior art date
Application number
PCT/CN2021/116402
Other languages
English (en)
French (fr)
Inventor
李君�
丁瑒琛
潘毓
何毅
周静
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022088985A1 publication Critical patent/WO2022088985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to an electronic device, a side key FPC, and a processing method for eliminating antenna clutter.
  • the mobile phone antenna can be set in the middle frame. Specifically, the middle frame has the performance of the antenna by setting gaps in the middle frame. At this time, the energy radiated by the antenna is radiated by the mobile phone. Internal metal structures, metal traces, dielectric materials, etc. are absorbed, and the absorbed energy is eventually consumed in the form of heat, thereby deteriorating the in-band performance of the antenna and reducing the antenna performance index.
  • the present application provides an electronic device, a side key FPC, and a processing method for eliminating antenna clutter, which can improve the in-band performance of the antenna.
  • a first aspect of the present application provides an electronic device, the electronic device comprising: a housing provided with a side key; an antenna, the antenna being provided on the housing; a side key FPC, the side key FPC It is connected with the side key, and includes a board body and a wiring connected with the board body; wherein, the wiring includes a first wiring, and the first wiring comprises a body line and a branch line.
  • the route is used for electrical connection with the body wire, and is used for changing the electrical length of the first wire, so that the absorption frequency of the first wire is outside the working frequency band of the antenna.
  • the geometric length of the first line is increased.
  • the electrical length of the first line can be changed, so that the electrical length of the first line is the same as that of the antenna.
  • the working frequency band of the antenna does not match (the frequency of the electromagnetic wave absorbed by the first trace does not match the working frequency of the antenna), so that the first trace does not absorb the energy in the working frequency band of the antenna, that is, the in-band performance of the antenna is high.
  • connection reliability between the capacitor or inductance element and the side key FPC decreases as the number of pressings of the side key increases, which may cause the capacitor or inductance element to fall off.
  • connection reliability between the main line and the branch line is relatively high, so that the service life of the antenna can be improved while the in-band performance of the antenna is improved.
  • one end of the branch line is used for electrical connection with the body line, and the other end is a free end.
  • the branch line is an open line, and its function is equivalent to a capacitor. Therefore, after adding a branch line, the resonant frequency of the first line can be reduced, that is, the resonant frequency of the first line can be moved to a low frequency.
  • the first wiring is not easy to resonate with the antenna, thereby preventing the first wiring from absorbing the energy of the antenna in the working frequency band, and improving the in-band performance of the antenna.
  • the capacitor disposed on the first wiring is realized by the branch line, and there is no need to solder the capacitive element on the first wiring, thereby saving the cost and improving the reliability of the first wiring.
  • both ends of the branch line are used for electrical connection with the body line.
  • the branch line is a short-circuit line, and after adding a branch line to the first line, the function of the branch line is equivalent to the inductance set on the first line. Therefore, after adding a branch line, the first line can be reduced.
  • the resonant frequency of the trace that is, the resonant frequency of the first trace moves to a low frequency.
  • the first trace is not easy to resonate with the antenna, thereby preventing the first trace from absorbing the energy of the antenna in the working frequency band. Improve the in-band performance of the antenna.
  • the inductance disposed on the first wiring is realized by the branch line, and there is no need to weld the inductance element on the first wiring, thereby saving the cost and improving the reliability of the first wiring.
  • the body wire has an opening, and two ends of the branch wire are respectively used for electrical connection with the two ends of the opening. At this time, it is equivalent to replacing a section corresponding to the opening of the main body line through the branch line.
  • the setting of the branch line can change the geometric length of the first line (increase increase the geometric length of the first trace), thereby changing the electrical length of the first trace (increasing the electrical length of the first trace), so that the electrical length of the first trace does not match the working frequency band of the antenna, thus Therefore, the first trace will not absorb the energy in the working frequency band of the antenna, and the in-band performance of the antenna is improved.
  • the branch line has a preset length, and the preset length is configured to make the electrical length of the first line not match the electrical length required to absorb the energy of the antenna .
  • the electrical length of the first line can be increased, the resonant frequency of the first line can be reduced, and the resonant frequency point of the first line can be moved to a low frequency.
  • the first wiring is not easy to resonate with the antenna, thereby preventing the first wiring from absorbing the energy of the antenna in the working frequency band and improving the in-band performance of the antenna.
  • the shape of the branch line includes one or more of a straight line, a curved line, a broken line, a spiral line, a serpentine line, and an irregular line.
  • the branch line along the thickness direction of the branch line, includes one or more layers of electrical connection units, thereby increasing the geometric length of the branch line, thereby increasing the electrical length of the first line , so that the electrical length of the first line does not match the working frequency band of the antenna, and at the same time, when the branch line includes multilayer electrical connection units along the thickness direction, the space of the branch line along the thickness direction can be reasonably utilized, thereby reducing the The space occupied by the branch line in other directions reduces the risk of the branch line interfering with other components of the electronic device.
  • the body line and the branch line are integrally formed, or the body line and the branch line are fixedly connected.
  • the reliability between the main body line and the branch line is high.
  • the branch line will not fall off the main line, thereby improving the FPC of the side key. reliability and service life, and effectively improve the in-band performance of the antenna.
  • the body line and the branch line can be connected by welding or by conductive glue.
  • a second aspect of the present application provides an electronic device, the electronic device comprising: a housing provided with a side key; an antenna provided on the housing; a side key FPC, the side key FPC It is connected with the side key, and includes a board body and a wiring connected to the board body; wherein, the wiring includes a first wiring, and the first wiring comprises a body wire and a wire arranged on the body
  • the wave absorbing material is used to change the electrical length of the first trace, so that the absorption frequency of the first trace is outside the working frequency band of the antenna.
  • the electrical length of the first wire can be changed, so that the electrical length of the first wire is related to the operation of the antenna.
  • the frequency band does not match (the frequency at which the first trace absorbs electromagnetic waves does not match the working frequency of the antenna), so that the first trace does not absorb energy in the working frequency band of the antenna, that is, the in-band performance of the antenna is high.
  • the wave absorbing material is attached to the body wire.
  • the thickness of the wave absorbing material ranges from 0.2 mm to 0.6 mm.
  • the first trace will not absorb the energy in the working frequency band of the antenna, so as to ensure the in-band performance of the antenna, and at the same time, the waste of the wave absorbing material can be reduced.
  • the absorbing material covers the body wire.
  • the wave absorbing material is provided at a preset position of the body wire, and the preset position is configured as a position where the body wire absorbs the energy of the antenna in the working frequency band.
  • the absorbing material is arranged at the position where the clutter is generated on the first trace, the clutter at the position can be eliminated, that is, the electrical length of the first trace can be changed, so that the position where the clutter is generated can no longer absorb the antenna.
  • the energy in the working frequency band ensures the in-band performance of the antenna.
  • the wave absorbing material is arranged at a position of a strong point of clutter current in the first trace.
  • the coverage area of the wave absorbing material is configured such that the electrical length of the first trace does not match the electrical length required to absorb the energy of the antenna in the working frequency band.
  • a third aspect of the present application provides a side key FPC, the side key FPC includes a board body and a first wiring, the first wiring is connected to the board; wherein, the first wiring comprises a body wire and a branch line, the branch line is used for electrical connection with the body line.
  • one end of the branch line is used for electrical connection with the body line, and the other end is a free end.
  • both ends of the branch line are used for electrical connection with the body line.
  • a fourth aspect of the present application provides a side key FPC, wherein the side key FPC includes a board body and a first wiring, and the first wiring is connected to the board;
  • the first wire includes a body wire and a wave absorbing material arranged on the body wire, the wave absorbing material is used to change the electrical length of the first wire, so that the absorption frequency of the first wire is outside the operating frequency band of the antenna.
  • the absorbing material covers at least part of the body wire.
  • a fifth aspect of the present application provides a processing method for eliminating antenna clutter, which is used to eliminate clutter of an antenna of an electronic device, where the electronic device includes a side key FPC and an antenna, and the side key FPC includes a connected board body and an antenna.
  • the processing method includes: judging a first route that absorbs the energy of the antenna in the working frequency band; setting a branch route on the first route; wherein, the branch route is used to change the first route
  • the electrical length of the wire is such that the absorption frequency of the first wire is outside the working frequency band of the antenna.
  • the electrical length of the first trace can be changed, so that the electrical length of the first trace does not match the working frequency band of the antenna (the frequency of the electromagnetic wave absorbed by the first trace does not match the working frequency of the antenna) ), so that the first trace will not absorb the energy of the antenna in the working frequency band, that is, the in-band performance of the antenna is high.
  • the processing method before the branch line is set for the first line, the processing method further includes: judging and setting the branch line according to the working frequency band of the antenna and the environment where the first line is located. The preset position of the branch line.
  • the processing method before the branch line is set for the first line, the processing method further includes: judging the The preset length of the branch line.
  • the first wire includes a body wire, and when a branch wire is set on the first wire, at least one end of the branch wire is connected to the body wire.
  • a sixth aspect of the present application provides a processing method for eliminating antenna clutter, which is used to eliminate clutter of an antenna of an electronic device, where the electronic device includes a side key FPC and an antenna, and the side key FPC includes a connected board body and an antenna.
  • the processing method includes: judging a first line that absorbs the energy of the antenna in the working frequency band; setting a wave absorbing material on the first line; wherein, the wave absorbing material is used to change the first line
  • the electrical length of a trace is such that the absorption frequency of the first trace is outside the working frequency band of the antenna.
  • the electrical length of the first wire can be changed, so that the electrical length of the first wire does not match the working frequency band of the antenna (the frequency of the electromagnetic wave absorbed by the first wire does not match the working frequency of the antenna), Therefore, the first trace will not absorb energy in the working frequency band of the antenna, that is, the in-band performance of the antenna is relatively high.
  • the processing method before setting the wave absorbing material on the first trace, the processing method further includes: judging and setting a preset position of the wave absorbing material according to the working frequency band of the antenna.
  • the processing method before the wave absorbing material is arranged on the trace, the processing method further includes: judging the coverage area of the wave absorbing material according to the working frequency band of the antenna.
  • the electrical length of the first trace after the wave absorbing material is installed matches the working frequency band of the antenna, and if so, the preset position of the wave absorbing material is adjusted. and coverage area.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by the application in a specific embodiment
  • Fig. 2 is the structural representation of side key FPC in the first specific embodiment in Fig. 1;
  • Fig. 3 is a partial enlarged view of part I in Fig. 2;
  • FIG. 4 is a schematic structural diagram of FIG. 3 in another specific embodiment
  • FIG. 5 is a schematic structural diagram of FIG. 3 in another specific embodiment
  • FIG. 6 is a schematic structural diagram of the side key FPC in the second specific embodiment in FIG. 1;
  • Fig. 7 is a partial enlarged view of part II in Fig. 6;
  • FIG. 8 is a schematic structural diagram of FIG. 7 in another specific embodiment
  • FIG. 9 is a schematic structural diagram of the side key FPC in the third specific embodiment in FIG. 1;
  • Fig. 10 is a partial enlarged view of part III in Fig. 9;
  • FIG. 11 is a schematic structural diagram of FIG. 10 in another specific embodiment
  • FIG. 12 is a schematic structural diagram of the side key FPC in the fourth specific embodiment in FIG. 1;
  • FIG. 13 is a schematic structural diagram of the side key FPC in the fifth specific embodiment in FIG. 1;
  • FIG. 14 is a partial enlarged view of part IV in FIG. 13 .
  • the energy of the antenna is absorbed by metal structures, metal traces, and dielectric materials near the middle frame, thereby deteriorating the in-band performance of the antenna and reducing the performance index of the antenna.
  • the middle frame of the electronic device is provided with a side key, and the side key is connected with a side key FPC.
  • the distance between the side key FPC and the antenna is relatively short, and it is easy to absorb the radiation energy of the antenna, thereby reducing the performance of the antenna.
  • the energy of the antenna is easily coupled with the side bond FPC, and excites the 1/2 wavelength mode of the side bond FPC traces.
  • the 1/2 wavelength mode absorbs the radiated energy of the antenna and is finally consumed in the form of heat, resulting in the antenna If the radiation performance is poor, efficiency pits will appear, reducing the average efficiency in the antenna band.
  • an embodiment of the present application provides an electronic device, which may be a mobile phone, a tablet computer, a desktop computer, a laptop computer, a handheld computer, a notebook computer, or an ultra-mobile personal computer (ultra-mobile personal computer).
  • computer UMPC
  • netbooks and cellular phones
  • PDAs personal digital assistants
  • AR augmented reality
  • VR virtual reality
  • AI artificial intelligence
  • wearable device wearable device
  • vehicle-mounted device smart home device
  • smart city device smart city device
  • the electronic device may include components such as a casing, a processor, a battery, an antenna, a screen, an audio module, and a speaker.
  • the wireless communication function of the electronic device can be realized by an antenna, a mobile communication module, a modulation and demodulation processor, a baseband processor, and the like.
  • the housing 2 includes a middle frame 22 , which is made of metal and is provided with an antenna 221 .
  • the antenna 221 can be formed by providing an opening in the middle frame 22 .
  • the electronic device also includes a side key 21 disposed on the casing 2 , and the user controls the electronic device through the side key 21 to realize functions such as switching the electronic device on and off or adjusting the volume.
  • the side button 21 is connected with a side button FPC1, and the side button FPC1 is connected to the circuit board of the electronic device. When the user operates the side button 21, the signal can be transmitted to the circuit board of the electronic device through the side button FPC1, so as to realize the control of the electronic device. .
  • the side key FPC1 includes a board body 13 and a wiring connected to the board body 13 , the wiring comprises one or more second wirings 12 , and the absorption frequency of the second wirings 12 is located at outside the operating frequency of the antenna 221 , therefore, the second trace 12 will not absorb the energy of the antenna 221 in the operating frequency band, so that the in-band performance of the antenna 221 will not be degraded.
  • the absorption frequency of the first trace 11 of the trace is within the working frequency band of the antenna 221 , the first trace 11 will absorb the energy of the antenna 221 in the working frequency band, thereby reducing the in-band performance of the antenna 221 .
  • the route 112 is used for electrical connection with the body wire 111 of the first wire 11. Therefore, after the branch wire 112 is added to the first wire 11, the branch wire 112 can change the electrical length of the first wire 11, so that the first wire The absorption frequency of a trace 11 is outside the operating frequency band of the antenna 221 .
  • the electrical length of the first trace 11 refers to the ratio of the geometric length of the trace to the wavelength of the electromagnetic wave transmitted on the trace, and the geometric length of the first trace 11 is the sum of the lengths of the main trace 111 and the branch trace 112 , for the same first trace 11, when the wavelengths of the electromagnetic waves it transmits are different, the electrical lengths of the first traces 11 are different.
  • the electrical length of the wire 11 is related to the period and frequency of the electromagnetic wave.
  • the first trace 11 can absorb the energy of the antenna 221 in the working frequency band, and when the electrical length of the first trace 11 does not match the working frequency band of the antenna 221 (the frequency of the electromagnetic wave absorbed by the first trace 11 is the same as that of the antenna 221 ) When the working frequency does not match), the first trace 11 will not absorb the energy of the antenna 221 in the working frequency band.
  • the geometric length of the first line 11 is increased.
  • the electrical length of the first line 11 can be changed, so that the first line 11 can be changed.
  • the electrical length of 11 does not match the working frequency band of the antenna 221 (the frequency of the electromagnetic wave absorbed by the first trace 11 does not match the working frequency of the antenna 221), so that the first trace 11 will not absorb the electromagnetic wave in the working frequency band of the antenna 221.
  • the energy, ie the in-band performance of the antenna 221 is high.
  • the connection reliability between the capacitor or inductance element and the side key FPC decreases as the number of pressings of the side key 21 increases, which may cause the capacitor or inductance element to fall off.
  • the connection reliability between the main line 111 and the branch line 112 is relatively high, so that the service life of the antenna 221 can be improved while the in-band performance of the antenna 221 is improved.
  • the body line 111 and the branch line 112 are integrally formed.
  • the reliability between the body line 111 and the branch line 112 is high.
  • the support The line 112 will not fall off from the body line 111 , thereby improving the reliability and service life of the side key FPC1 and effectively improving the in-band performance of the antenna 221 .
  • the body wire 111 and the branch wire 112 are fixedly connected, and at this time, the body wire 111 and the branch wire 112 can be connected by welding or by conductive glue.
  • one end of the branch line 112 is used for electrical connection with the body line 111 , and the other end is a free end, that is, in the first wiring 11 , the branch line 112 is open line, and after adding a branch line 112 to the first line 11, the function of the branch line 112 is equivalent to the capacitance set on the first line 11. Therefore, after adding the branch line 112, the first line can be increased impedance of line 11.
  • the resonant frequency of the first trace 11 satisfies:
  • the resonant frequency of the first trace 11 is related to the parameter inductance L and the capacitance C. Therefore, after adding the branch trace 112 (adding the capacitance in the first trace 11 ), the resonant frequency of the first trace 11 can be reduced.
  • the resonant frequency that is, the resonant frequency point of the first trace 11 moves to a low frequency, at this time, the first trace 11 is not easy to resonate with the antenna 221, thereby preventing the first trace 11 from absorbing the antenna 221 in the working frequency band. energy, improving the in-band performance of the antenna 221.
  • the capacitor disposed on the first trace 11 is realized by the branch trace 112 , and there is no need to solder capacitor elements on the first trace 11 , thereby saving cost and improving the reliability of the first trace 11 .
  • both ends of the branch line 112 are used for electrical connection with the body line 111 , that is, in the first line 11 , the branch line 111 is connected in parallel with the body line 111 .
  • Route 112 the branch line 112 is a short-circuit line, and after adding a branch line 112 to the first line 11, the function of the branch line 112 is equivalent to the inductance set on the first line 11. Therefore, after adding the line 112, The impedance of the first trace 11 can be increased.
  • the resonant frequency of the first trace 11 satisfies:
  • the resonant frequency of the first trace 11 is related to the parameters inductance L and capacitance C. Therefore, after adding the branch trace 112 (inductance is added to the first trace 11 ), the resonant frequency of the first trace 11 can be reduced. Resonant frequency, even if the resonant frequency point of the first trace 11 moves to a low frequency, at this time, the first trace 11 is not easy to resonate with the antenna 221, thereby preventing the first trace 11 from absorbing the antenna 221 in the working frequency band. energy, improving the in-band performance of the antenna 221.
  • the inductance disposed on the first trace 11 is realized by the branch trace 112 , and there is no need to weld the inductance element on the first trace 11 , thereby saving cost and improving the reliability of the first trace 11 .
  • the body wire 111 has an opening 111a, and the two ends of the branch wire 112 are respectively used for electrical connection with the two ends of the opening 111a. At this time, it is equivalent to passing the branch wire 112 Replace the section corresponding to the opening 111a of the body line 111.
  • the setting of the branch line 112 can change the geometric length of the first line 11 (increase The geometric length of the first trace 11 ), thereby changing the electrical length of the first trace 11 (increasing the electrical length of the first trace 11 ), so that the electrical length of the first trace 11 and the working frequency band of the antenna 221 Not matching, so that the first trace 11 will not absorb the energy of the antenna 221 in the working frequency band, so that the in-band performance of the antenna 221 is improved.
  • the first wiring 11 may be provided with a plurality of branch lines 112 , wherein, in the first wiring 11 , a part of the branch lines 112 are open lines, and the other part of the branch lines are open lines.
  • 112 is a short-circuit line. At this time, it is equivalent to setting a capacitor and an inductance on the first line 11 , thereby increasing the impedance of the first line 11 .
  • the resonant frequency of the first trace 11 satisfies:
  • the resonant frequency of the first trace 11 is related to the parameter inductance L and capacitance C. Therefore, after adding the first trace 112 (adding the capacitance and inductance in the first trace 11), the first trace 11 can be reduced.
  • the resonant frequency of the first trace 11 moves the resonant frequency point of the first trace 11 to a low frequency. At this time, the first trace 11 is not easy to resonate with the antenna 221, thereby preventing the first trace 11 from absorbing the antenna 221.
  • the energy in the working frequency band improves the in-band performance of the antenna 221 .
  • the capacitance and inductance disposed on the first trace 11 are realized through the branch trace 112 , and there is no need to weld the capacitive element and the inductance element on the first trace 11 , thereby saving costs and improving the first trace 11 reliability.
  • the branch line 112 has a preset length, and the preset length is configured to make the electrical length of the first line 11 different from the electrical length required to absorb the energy of the antenna 221 in the working frequency band match.
  • the electrical length of the first line 11 can be increased, the resonant frequency of the first line 11 can be reduced, and the first line 11 can be reduced.
  • the resonant frequency point of 11 moves to the low frequency.
  • the first trace 11 is not easy to resonate with the antenna 221, thereby preventing the first trace 11 from absorbing the energy of the antenna 221 in the working frequency band and improving the in-band performance of the antenna 221. .
  • the branch line 112 is set at a preset position of the body line 111, and the preset position is configured to not interfere with other components of the electronic device, and to make the electrical length of the first trace 11 and the antenna 221 to absorb A location where the electrical length required for energy within the operating frequency band does not match.
  • the preset length and preset position of the branch line 112 in the first line 11 can be calculated according to the simulation software, and it can also be calculated by the simulation software whether the first line 11 after the branch line 112 is set absorbs the antenna 221 in the The energy in the working frequency band causes the in-band performance of the antenna 221 to degrade. If the first trace 11 does not reduce the in-band performance of the antenna 221, the preset length and preset position of the branch trace 112 are suitable.
  • the first trace 11 does not reduce the in-band performance of the antenna 221 If the line 11 still degrades the in-band performance of the antenna 221 , it is necessary to modify the preset length and/or the preset position of the branch line 112 until the first line 11 does not degrade the in-band performance of the antenna 221 .
  • the branch line 112 includes one or more layers of electrical connection units. Wherein, as shown in FIG. 4 and FIG. 7 , the branch line 112 includes multiple layers of electrical connection units along its thickness direction, and the branch line 112 is provided with a through hole 112 a.
  • each layer can be electrically connected
  • the units are electrically connected, thereby increasing the geometric length of the branch line 112, thereby increasing the electrical length of the first line 11, so that the electrical length of the first line 11 does not match the working frequency band of the antenna 221, and at the same time, when the branch line 112 includes multiple layers of electrical connection units along the thickness direction, the space in the thickness direction of the branch line 112 can be reasonably utilized, thereby reducing the space occupied by the branch line 112 in other directions, reducing the distance between the branch line 112 and other components of the electronic device risk of interference.
  • a branch line 112 can also be reserved.
  • the reserved branch line 112 can be connected to the line, thereby changing the electrical length of the line, so that the electrical length of the line does not match the working frequency band of the antenna 221, that is, the line should be The wire no longer absorbs the energy of the antenna 221 in the working frequency band, thereby conveniently improving the in-band performance of the antenna 221 and reducing the maintenance difficulty and cost of the antenna.
  • the shape of the branch line 112 is one or more of a straight line, a curved line, a broken line, a spiral line, a serpentine line, and an irregular line.
  • the shape of the branch line 112 is not specifically limited, as long as the in-band performance of the antenna 221 can be ensured and the interference of the branch line 112 with other components of the electronic device can be avoided.
  • an embodiment of the present application also provides a processing method for eliminating clutter of the antenna 221 of an electronic device, wherein the clutter is the clutter caused by the side key FPC1 in the electronic device, that is, the first clutter of the side key FPC1
  • the trace 11 absorbs the radiated energy of the antenna 221, resulting in the degradation of the in-band performance of the antenna 221.
  • the above-mentioned processing method may specifically include the following steps:
  • step S11 the simulation software is used to determine the first line 11 that generates clutter in each line in the side key FPC1.
  • a branch line is added to the first line 11. 112, the branch line 112 and the body line 111 of the first wiring 11 may be fixedly connected or integrally formed.
  • the electrical length of the first trace 11 can be changed, so that the electrical length of the first trace 11 does not match the working frequency band of the antenna 221 (the frequency of the electromagnetic wave absorbed by the first trace 11 is the same as that of the antenna 221).
  • the operating frequency of the antenna 221 does not match), so that the first trace 11 will not absorb the energy of the antenna 221 in the operating frequency band, that is, the in-band performance of the antenna 221 is relatively high.
  • step S12 it may specifically include:
  • S121 determine the preset position and preset length of the branch line 112 according to the working frequency band of the antenna 221 and the environment where the first routing line 11 is located;
  • the preset position and preset length set by the branch line 112 can be determined by the simulation software, and the preset position is configured to not interfere with other components of the electronic device, and can make the electrical length of the first line 11 equal to that of the other parts of the electronic device.
  • the electrical length of the first line 11 does not match the working frequency band of the antenna 221, so as to prevent the first line 11 from absorbing the antenna 221 in the The in-band performance of the antenna 221 is degraded due to the energy in the working frequency band.
  • the processing method may further include:
  • S13 Determine whether the electrical length of the first trace 11 after setting the branch line 112 matches the working frequency band of the antenna 221, and if so, adjust the preset position and preset length of the branch line 112; The preset position and preset length of the route 112 are suitable.
  • step S13 whether the preset position and the preset length of the branch line 112 are appropriate can be determined by simulation software, and if not, the preset position and preset length of the branch line 112 are optimized.
  • step S122 may specifically include:
  • S1221 Connect at least one end of the branch line 112 to the body line 111 .
  • branch line 112 when one end of the branch line 112 is connected to the body line 111, one end of the branch line 112 is used for electrical connection with the body line 111, and the other end is a free end, that is, in the first wiring 11, the branch line 112 It is an open line, and after a branch line 112 is added to the first line 11, the function of the branch line 112 is equivalent to the capacitance provided in the first line 11; when both ends of the branch line 112 are connected to the body line 111 , that is, in the first wiring 11, a branch line 112 is connected in parallel with the main line 111, the branch line 112 is a short-circuit line, and after adding a branch line 112 to the first wiring 11, the function of the branch line 112 is equivalent to The inductor is arranged on the first trace 11 .
  • the impedance of the first line 11 can be increased, thereby reducing the resonant frequency of the first line 11, that is, the resonant frequency of the first line 11 is directed At this time, the first trace 11 cannot easily resonate with the antenna 221 , thereby preventing the first trace 11 from absorbing the energy of the antenna 221 in the working frequency band and improving the in-band performance of the antenna 221 .
  • the inductance disposed on the first trace 11 is realized by the branch trace 112 , and there is no need to weld the inductance element on the first trace 11 , thereby saving cost and improving the reliability of the first trace 11 .
  • the first trace 11 includes a body wire 111 and a wave absorbing material 113 disposed on the body wire 111 , and the wave absorbing material 113 is used to change the first trace
  • the electrical length of the wire 11 is such that the electrical length of the first wire 11 does not match the working frequency band of the antenna 221 , that is, the absorption frequency of the first wire 11 is outside the working frequency band of the antenna 221 .
  • the wave absorbing material 113 refers to the energy that can absorb or weaken the electromagnetic waves received by the surface thereof, thereby reducing electromagnetic wave interference.
  • the wave absorbing material 113 may specifically be ferrite, graphene, graphite, carbon fiber, silicon carbide, or the like.
  • the specific type of the wave absorbing material 113 is not limited, as long as the impedance of the first trace 11 can be changed at the resonant frequency of the antenna 221 (that is, at the resonant frequency of the antenna 221, the wave absorbing material 113 The permittivity or permeability is larger).
  • the equivalent dielectric constant of the first trace 11 can be changed (adding the wave absorbing material 113 After that, the dielectric constant is increased compared with the addition of the wave absorbing material 113 ), that is, the electrical length of the first trace 11 can be changed, so that the electrical length of the first trace 11 does not match the working frequency band of the antenna 221 (The frequency at which the first trace 11 absorbs electromagnetic waves does not match the working frequency of the antenna 221 ), so that the first trace 11 does not absorb the energy of the antenna 221 in the working frequency band, that is, the in-band performance of the antenna 221 is high.
  • the side key FPC1 when eliminating the energy absorption of the antenna 221 in the working frequency band by the side key FPC1, it is not necessary to add capacitance, inductance and other components to the side key FPC1, but by absorbing the energy of the antenna 221 in the working frequency band.
  • the energy of the first trace 11 is realized by increasing the wave absorbing material 113, thereby saving costs.
  • the wave absorbing material 113 is adhered to the main body wire 111 by a glue material.
  • the adhesive material may be structural adhesive or conductive adhesive or the like.
  • the thickness of the wave absorbing material 113 is 0.2 mm ⁇ 0.6 mm, for example, the thickness of the wave absorbing material 113 may be 0.2 mm, 0.3 mm, 0.5 mm, 0.6 mm, and the like.
  • the thickness of the wave absorbing material 113 is too small (for example, less than 0.2 mm), the content of the wave absorbing material 113 disposed on the body wire 111 is too small, and the electrical length of the first trace 11 cannot be effectively changed, which may lead to the The first trace 11 will still absorb the radiated energy of the antenna 221, reducing the in-band performance of the antenna 221; if the thickness of the wave absorbing material 113 is too large (for example, greater than 0.6 mm), the electrical length of the first trace 11 and the antenna can be guaranteed.
  • the working frequency bands of 221 do not match, so as to ensure that the first trace 11 will not absorb the energy of the antenna 221 in the working frequency band, thereby ensuring the in-band performance of the antenna 221.
  • the thickness of the wave absorbing material 113 is too large, the antenna 221 The in-band performance will not further increase, resulting in waste of the absorbing material 113. Therefore, when the thickness of the wave absorbing material 113 is 0.2 mm to 0.6 mm, the first trace 11 will not absorb the energy of the antenna 221 in the working frequency band, so as to ensure the in-band performance of the antenna 221, and at the same time, the wave absorbing material can be reduced. 113 waste.
  • the wave absorbing material 113 covers the body wire 111 , that is, the wave absorbing material 113 is provided everywhere on the first wire 11 , so as to prevent the first wire Any position of 11 absorbs the radiated energy of the antenna 221 in the working frequency band, effectively preventing the first trace 11 from absorbing the energy of the antenna 221 in the working frequency band, and improving the in-band performance of the antenna 221 .
  • the side key FPC1 may include a plurality of first traces 11 , and each of the first traces 11 may be provided with a wave absorbing material 113 , so that the electrical length of each first trace 11 is the same as that of the antenna 221 .
  • the frequency bands are not matched, thereby preventing the first traces 11 from absorbing the energy of the antenna 221 in the working frequency band.
  • each trace (including the second trace 112) can be provided with a wave absorbing material 113, so that the electrical length of each trace in the side key FPC1 does not match the working frequency band of the antenna 221, This further prevents each trace of the side key FPC1 from absorbing the energy of the antenna 221 in the working frequency band, and improves the in-band performance of the antenna 221 .
  • the wave absorbing material 113 is provided at a preset position of the body wire 111 of the first trace 11 , and the preset position is that the absorption antenna 221 of the first trace 11 is working
  • the position of the energy in the frequency band, that is, the preset position is the position where the first trace 11 generates clutter.
  • the wave absorbing material 113 when the wave absorbing material 113 is arranged at the position where the clutter is generated on the first trace 11, the clutter at the position can be eliminated, that is, the electrical length of the first trace 11 can be changed, so that the generation of the clutter can be eliminated.
  • the position of the clutter no longer absorbs the energy of the antenna 221 in the working frequency band, so as to ensure the in-band performance of the antenna 221 .
  • it is not necessary to dispose the wave absorbing material 113 everywhere on the first wiring 11 so that the wave absorbing material can be saved and the cost can be reduced.
  • the absorbing material 113 is provided at a preset position of the body trace 111 , and the preset position is the position of the strong point of clutter current in the first trace 11 .
  • the energy absorbed by the antenna 221 mainly occurs at the strong point of the clutter current.
  • the electrical length of the first trace 11 at the position of the clutter current strong point is changed, and the electrical length of the first trace 11 is changed.
  • the length does not match the working frequency band of the antenna 221 , so that the position of the strong point of the clutter current no longer absorbs the energy of the antenna 221 in the working frequency band, thereby improving the in-band performance of the antenna 221 .
  • the coverage area of the wave absorbing material 113 is configured such that the electrical length of the first trace 11 does not match the electrical length required to absorb the energy of the antenna 221 .
  • the wave absorbing material 113 when the wave absorbing material 113 covers a part of the body wire 111, its coverage area satisfies the above conditions, wherein the covering area and the preset position of the wave absorbing material 113 in the first trace 11 can be calculated according to simulation software obtained, and it can also be calculated by the simulation software whether the first trace 11 after setting the wave absorbing material 113 absorbs the energy of the antenna 221 in the working frequency band and causes the in-band performance of the antenna 221 to degrade. If the first trace 11 does not reduce the performance of the antenna 221, the coverage area and preset position of the absorbing material 113 are appropriate. If the first trace 11 still reduces the in-band performance of the antenna 221, the coverage area and/or the absorbing material 113 needs to be modified. A preset position until the first trace 11 does not degrade the in-band performance of the antenna 221 .
  • an embodiment of the present application also provides a processing method for eliminating clutter of the antenna 221 of an electronic device, wherein the clutter is the clutter caused by the side key FPC1 in the electronic device, that is, the first clutter of the side key FPC1
  • the trace 11 absorbs the radiated energy of the antenna 221 in the working frequency band, resulting in the degradation of the in-band performance of the antenna 221.
  • the above processing method may specifically include the following steps:
  • S22 Arrange the wave absorbing material 113 on the first trace 11; wherein, the wave absorbing material 113 is used to change the electrical length of the first trace 11, so that the absorption frequency of the first trace 11 is located within the working frequency band of the antenna 221 outside.
  • step S21 the simulation software is used to determine the first trace 11 that generates clutter in each trace in the side key FPC1.
  • the first trace 11 is added to absorb waves.
  • the material 113, the wave absorbing material 113 and the body wire 111 of the first trace 11 can be adhered by an adhesive material.
  • the electrical length of the first trace 11 can be changed, so that the electrical length of the first trace 11 does not match the working frequency band of the antenna 221 (the frequency of the electromagnetic wave absorbed by the first trace 11 is the same as that of the antenna 221).
  • the operating frequency of the antenna 221 does not match), so that the first trace 11 will not absorb the energy of the antenna 221 in the operating frequency band, that is, the in-band performance of the antenna 221 is relatively high.
  • step S22 may specifically include:
  • S221 Determine the preset position of the wave absorbing material 113 according to the working frequency band of the antenna 221, and determine the coverage area of the wave absorbing material 113 according to the working frequency band of the antenna 221;
  • S222 Arrange the wave absorbing material 113 on the first trace 11, and the wave absorbing material 113 is arranged at a preset position, and its area is the above-mentioned coverage area.
  • the setting position and coverage area of the wave absorbing material 113 can be determined by the simulation software, and the preset position is configured to be: located in the position where the clutter is generated in the first wiring 11, or is located in the clutter in the first wiring 11.
  • the position of the strong point of the wave current; the coverage area is configured such that the electrical length of the first trace 11 does not match the electrical length required to absorb the energy of the antenna 221 in the working frequency band.
  • the electrical length of the first trace 11 after the wave absorbing material 113 is installed does not match the working frequency band of the antenna 221, thereby avoiding the first
  • the trace 11 absorbs the energy of the antenna 221 in the operating frequency band, resulting in the degradation of the in-band performance of the antenna 221 .
  • the processing method may further include:
  • S23 Determine whether the first trace 11 after setting the wave absorbing material 113 generates clutter, that is, determine whether the electrical length of the first trace 11 after setting the wave absorbing material 113 matches the working frequency band of the antenna 221, if it matches (if clutter is generated), the preset position and coverage area of the absorbing material 113 are adjusted; if they do not match (no clutter is generated), the preset position and coverage area of the absorbing material 113 of the first trace 11 are appropriate.
  • step S23 whether the preset position and coverage area of the wave absorbing material 113 are appropriate can be determined by simulation software, and if not, the preset position and coverage area of the wave absorbing material 113 are optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Telephone Set Structure (AREA)

Abstract

本申请涉及电子设备、侧键FPC、消除天线杂波的处理方法,电子设备包括:壳体,壳体设置有侧键;天线,天线设置于所述壳体;侧键FPC,侧键FPC与侧键连接,且包括板体和与板体连接的走线;其中,走线包括第一走线,第一走线包括本体线和支路线,支路线用于与本体线电连接,用于改变第一走线的电长度,以使第一走线的吸收频率位于天线的工作频段之外。通过在第一走线增加支路线,从而增加第一走线的几何长度,几何长度改变时,能够改变第一走线的电长度,使得该第一走线的电长度与天线的工作频段不匹配(第一走线吸收的电磁波的频率与天线的工作频率不匹配),从而使得第一走线不会吸收天线工作频段内的能量,即天线的带内性能较高。

Description

一种电子设备、侧键FPC及消除天线杂波的处理方法
本申请要求于2020年10月28日提交中国专利局、申请号为202011171445.8、发明名称为“一种电子设备、侧键FPC及消除天线杂波的处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种电子设备、侧键FPC、消除天线杂波的处理方法。
背景技术
通信技术从1G、2G到3G、4G、5G,从功能机到智能机,从单频段到多频段,发展到目前5G网络,终端通信时使用的天线个数增加,天线分布紧凑,考虑到成本、空间、功耗、天线性能等各方面因素的均衡,手机天线可以设置于中框,具体地,通过在中框设置缝隙来使得中框具有天线的性能,此时,天线辐射的能量被手机内部金属结构、金属走线、介质材料等吸收,吸收的能量最终以热的形式消耗,从而恶化天线带内性能,降低了天线性能指标。
申请内容
本申请提供了一种电子设备、侧键FPC、消除天线杂波的处理方法,能够提高天线的带内性能。
本申请第一方面提供一种电子设备,所述电子设备包括:壳体,所述壳体设置有侧键;天线,所述天线设置于所述壳体;侧键FPC,所述侧键FPC与所述侧键连接,且包括板体和与所述板体连接的走线;其中,所述走线包括第一走线,所述第一走线包括本体线和支路线,所述支路线用于与所述本体线电连接,用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
本申请中,通过在第一走线增加支路线,从而增加第一走线的几何长度,几何长度改变时,能够改变第一走线的电长度,使得该第一走线的电长度与天线的工作频段不匹配(第一走线吸收的电磁波的频率与天线的工作频率不匹配),从而使得第一走线不会吸收天线工作频段内的能量,即天线的带内性能较高。同时,在消除侧键FPC对天线能量的吸收时,无需通过在侧键FPC增加电容、电感等元件实现,而是通过在吸收天线的第一天线增加支路线的方式实现,从而节省成本。另外,当在侧键FPC焊接电容或电感元件时,随着侧键的按压次数的增加,电容或电感元件与侧键FPC之间的连接可靠性下降,从而可能导致电容或电感元件脱落,而本申请中本体线与支路线之间的连接可靠性较高,从而能够在提高天线带内性能的同时,提高使用寿命。
在一种可能的设计中,所述支路线的一端用于与所述本体线电连接,另一端为自 由端。本方案中,支路线为开路线,其作用相当于电容,因此,增加支路线后,能够减小第一走线的谐振频率,即使得第一走线的谐振频点向低频移动,此时,该第一走线不容易与天线发生谐振,从而防止第一走线吸收天线在工作频段内的能量,提高天线的带内性能。另外,设置于第一走线的电容通过支路线实现,而无需在第一走线焊接电容元件,从而节省成本,并提高第一走线的可靠性。
在一种可能的设计中,所述支路线的两端均用于与所述本体线电连接。本方案中,该支路线为短路线,且该第一走线增加支路线后,该支路线的作用相当于设置于第一走线的电感,因此,增加支路线后,能够减小第一走线的谐振频率,即使得第一走线的谐振频点向低频移动,此时,该第一走线不容易与天线发生谐振,从而防止第一走线吸收天线在工作频段内的能量,提高天线的带内性能。另外,设置于第一走线的电感通过支路线实现,而无需在第一走线焊接电感元件,从而节省成本,并提高第一走线的可靠性。
在一种可能的设计中,所述本体线具有开口,所述支路线的两端分别用于与所述开口的两端电连接。此时,相当于通过支路线将本体线的开口对应的一段替换,当支路线的长度与开口两端的连线的长度不同时,该支路线的设置能够改变第一走线的几何长度(增大第一走线的几何长度),从而改变第一走线的电长度(增大第一走线的电长度),进而使得该第一走线的电长度与天线的工作频段不匹配,从而使得第一走线不会吸收天线工作频段内的能量,提高天线的带内性能。
在一种可能的设计中,所述支路线具有预设长度,所述预设长度配置为:能够使所述第一走线的电长度与吸收所述天线的能量所需要的电长度不匹配。通过在第一走线的本体线设置支路线,能够增大该第一走线的电长度,降低第一走线的谐振频率,使得第一走线的谐振频点向低频移动,此时,该第一走线不容易与天线发生谐振,从而防止第一走线吸收天线在工作频段内的能量,提高天线的带内性能。
在一种可能的设计中,所述支路线的形状包括直线、曲线、折线、螺旋线、蛇形线、不规则线中的一种或多种。
在一种可能的设计中,沿所述支路线的厚度方向,所述支路线包括一层或多层电连接单元,从而增大支路线的几何长度,进而增大第一走线的电长度,以使该第一走线的电长度与天线的工作频段不匹配,同时,当该支路线沿厚度方向包括多层电连接单元时,能够合理利用支路线沿厚度方向的空间,从而减小支路线所占据的其他方向的空间,降低支路线与电子设备的其他部件干涉的风险。
在一种可能的设计中,所述本体线与所述支路线一体成型,或者,所述本体线与所述支路线固定连接。本体线与支路线一体成型时,使得该本体线与支路线之间的可靠性较高,侧键的按压次数增加时,该支路线也不会从本体线上脱落,从而提高侧键FPC的可靠性和使用寿命,并有效提高天线的带内性能。本体线与支路线固定连接时,该本体线与支路线之间可以焊接连接或者通过导电胶粘连。
本申请第二方面提供一种电子设备,所述电子设备包括:壳体,所述壳体设置有侧键;天线,所述天线设置于所述壳体;侧键FPC,所述侧键FPC与所述侧键连接,且包括板体和与所述板体连接的走线;其中,所述走线包括第一走线,所述第一走线包括本体线和设置于所述本体线的吸波材料,所述吸波材料用于改变所述第一走线的 电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
本方案中,在第一走线增设吸波材料后,由于吸波材料具有吸收电磁波能量的作用,能够改变该第一走线的电长度,使得该第一走线的电长度与天线的工作频段不匹配(第一走线吸收电磁波的频率与天线的工作频率不匹配),从而使得第一走线不会吸收天线工作频段内的能量,即天线的带内性能较高。同时,在消除侧键FPC对天线在工作频段内的能量的吸收时,无需通过在侧键FPC增加电容、电感等原件实现,而是通过在吸收天线的第一天线增加吸波材料的方式实现,从而节省成本。
在一种可能的设计中,所述吸波材料粘贴于所述本体线。
在一种可能的设计中,所述吸波材料的厚度为0.2mm~0.6mm。当吸波材料的厚度为0.2mm~0.6mm时,该第一走线不会吸收天线工作频段内的能量,保证天线的带内性能,同时,能够降低吸波材料的浪费。
在一种可能的设计中,所述吸波材料覆盖所述本体线。
在一种可能的设计中,所述本体线的预设位置设置有所述吸波材料,所述预设位置配置为:所述本体线吸收天线在工作频段内的能量的位置。当在第一走线的产生杂波的位置设置吸波材料时,能够将该位置的杂波消除,即能够改变第一走线的电长度,从而使得该产生杂波的位置不再吸收天线在工作频段内的能量,保证天线的带内性能。同时,无需在第一走线的各处均设置吸波材料,从而能够节省吸波材料,降低成本。
在一种可能的设计中,所述吸波材料设置于所述第一走线中杂波电流强点的位置。
在一种可能的设计中,所述吸波材料的覆盖面积配置为:能够使所述第一走线的电长度与吸收所述天线在工作频段内的能量所需要的电长度不匹配。
本申请第三方面提供一种侧键FPC,所述侧键FPC包括板体和第一走线,所述第一走线与所述板体连接;其中,所述第一走线包括本体线和支路线,所述支路线用于与所述本体线电连接。
在一种可能的设计中,所述支路线的一端用于与所述本体线电连接,另一端为自由端。
在一种可能的设计中,所述支路线的两端均用于与所述本体线电连接。
本申请第四方面提供一种侧键FPC,所述侧键FPC包括板体和第一走线,所述第一走线与所述板体连接;
所述第一走线包括本体线和设置于所述本体线的吸波材料,所述吸波材料用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
在一种可能的设计中,所述吸波材料覆盖所述本体线的至少部分。
本申请第五方面提供一种消除天线杂波的处理方法,用于消除电子设备的天线的杂波,所述电子设备包括侧键FPC和天线,所述侧键FPC包括相连的板体和走线,所述处理方法包括:判断吸收所述天线在工作频段内的能量的第一走线;在所述第一走线设置支路线;其中,所述支路线用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
因此,通过上述处理方法,能够改变第一走线的电长度,使得该第一走线的电长度与天线的工作频段不匹配(第一走线吸收的电磁波的频率与天线的工作频率不匹配),从而使得第一走线不会吸收天线在工作频段内的能量,即天线的带内性能较高。
在一种可能的设计中,在所述第一走线设置所述支路线之前,所述处理方法还包括:根据所述天线的工作频段以及所述第一走线所处的环境判断设置所述支路线的预设位置。
在一种可能的设计中,在所述第一走线设置所述支路线之前,所述处理方法还包括:根据所述天线的工作频段以及所述第一走线所处的环境判断所述支路线的预设长度。
在一种可能的设计中,判断设置所述支路线后的所述第一走线的电长度与所述天线的工作频段是否匹配,若匹配,则调整所述支路线的预设位置和预设长度。
在一种可能的设计中,所述第一走线包括本体线,在所述第一走线设置支路线时,将所述支路线的至少一端与所述本体线连接。
本申请第六方面提供一种消除天线杂波的处理方法,用于消除电子设备的天线的杂波,所述电子设备包括侧键FPC和天线,所述侧键FPC包括相连的板体和走线,所述处理方法包括:判断吸收所述天线在工作频段内的能量的第一走线;在所述第一走线设置吸波材料;其中,所述吸波材料用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
通过上述处理方法,能够改变第一走线的电长度,使得该第一走线的电长度与天线的工作频段不匹配(第一走线吸收的电磁波的频率与天线的工作频率不匹配),从而使得第一走线不会吸收在天线工作频段内的能量,即天线的带内性能较高。
在一种可能的设计中,在所述第一走线设置所述吸波材料之前,所述处理方法还包括:根据所述天线的工作频段判断设置所述吸波材料的预设位置。
在一种可能的设计中,在所述走线设置所述吸波材料之前,所述处理方法还包括:根据所述天线的工作频段判断所述吸波材料的覆盖面积。
在一种可能的设计中,判断设置所述吸波材料后的所述第一走线的电长度与所述天线的工作频段是否匹配,若匹配,则调整所述吸波材料的预设位置和覆盖面积。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请所提供电子设备在一种具体实施例中的结构示意图;
图2为图1中侧键FPC在第一种具体实施例中的结构示意图;
图3为图2中I部分的局部放大图;
图4为图3在另一种具体实施例中的结构示意图;
图5为图3在又一种具体实施例中的结构示意图;
图6为图1中侧键FPC在第二种具体实施例中的结构示意图;
图7为图6中II部分的局部放大图;
图8为图7在另一种具体实施例中的结构示意图;
图9为图1中侧键FPC在第三种具体实施例中的结构示意图;
图10为图9中III部分的局部放大图;
图11为图10在另一种具体实施例中的结构示意图;
图12为图1中侧键FPC在第四种具体实施例中的结构示意图;
图13为图1中侧键FPC在第五种具体实施例中的结构示意图;
图14为图13中IV部分的局部放大图。
附图标记:
1-侧键FPC;
11-第一走线;
111-本体线;
111a-开口;
112-支路线;
112a-通孔;
113-吸波材料;
12-第二走线;
13-板体;
2-壳体;
21-侧键;
22-中框;
221-天线。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
在一种具体实施例中,下面通过具体的实施例并结合附图对本申请做进一步的详细描述。
电子设备中,其天线的能量存在被中框附近的金属结构、金属走线、介质材料等吸收,从而恶化天线带内性能,降低了天线性能指标。其中,该电子设备的中框设置有侧键,侧键连接有侧键FPC,该侧键FPC与天线之间的距离较近,极易吸收天线的辐射能量从而降低天线的性能。具体地,天线的能量极易与侧键FPC耦合,并激励起侧键FPC走线的1/2波长模式,该1/2波长模式吸收天线的辐射能量,最终以热的形式消耗,导致天线的辐射性能则会出现效率凹坑,降低天线带内均值效率。
为了解决该技术问题,本申请实施例提供一种电子设备,该电子设备可以是手机、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人 计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备和/或智慧城市设备,本申请实施例对该电子设备的具体类型不作特殊限制。
其中,该电子设备可以包括壳体、处理器、电池、天线、屏幕、音频模块、扬声器等部件。其中,该电子设备的无线通信功能可以通过天线、移动通信模块、调制解调处理器以及基带处理器等实现。
具体地,如图1所示,该电子设备中,壳体2包括中框22,该中框22为金属材质,且设置有天线221,该天线221具体可以通过在中框22设置开口形成。同时,该电子设备还包括设置于壳体2的侧键21,用户通过该侧键21控制电子设备,以实现电子设备的开关机或者调解音量等功能。该侧键21连接有侧键FPC1,该侧键FPC1与电子设备的电路板连接,用户操作侧键21时,信号能够经侧键FPC1传递到电子设备的电路板,从而实现对电子设备的控制。
其中,如图2所示,该侧键FPC1包括板体13和与板体13连接的走线,该走线包括一个或多个第二走线12,该第二走线12的吸收频率位于天线221的工作频率之外,因此,该第二走线12不会吸收天线221在工作频段内的能量,从而不会降低天线221的带内性能。当该走线的第一走线11的吸收频率位于天线221的工作频段内时,该第一走线11会吸收天线221在工作频段内的能量,从而降低天线221的带内性能。
本实施例中,为了防止第一走线11吸收天线221在工作频段内的能量而降低天线221的带内性能,如图3所示,在该第一走线11增加支路线112,该支路线112用于与第一走线11的本体线111电连接,因此,该第一走线11增加支路线112后,该支路线112能够改变该第一走线11的电长度,以使第一走线11的吸收频率位于天线221的工作频段之外。其中,第一走线11的电长度指的是走线的几何长度与走线上传输的电磁波的波长的比值,第一走线11的几何长度为本体线111与支路线112的长度之和,对于同一第一走线11来说,当其传输的电磁波的波长不同时,该第一走线11的电长度不同,电长度是用来描述电磁波波形变化频繁程度的物理量,即第一走线11的电长度与电磁波的周期和频率有关,当第一走线11的电长度与天线221的工作频段相匹配(第一走线11吸收的电磁波的频率与天线221的工作频率匹配)时,第一走线11能够吸收天线221在工作频段内的能量,而当第一走线11的电长度与天线221的工作频段不匹配(第一走线11吸收的电磁波的频率与天线221的工作频率不匹配)时,第一走线11不会吸收天线221在工作频段内的能量。
本实施例中,通过在第一走线11增加支路线112,从而增加第一走线11的几何长度,几何长度改变时,能够改变第一走线11的电长度,使得该第一走线11的电长度与天线221的工作频段不匹配(第一走线11吸收的电磁波的频率与天线221的工作频率不匹配),从而使得第一走线11不会吸收天线221在工作频段内的能量,即天线221的带内性能较高。同时,本实施例中,在消除侧键FPC1对天线221在工作频段内能量的吸收时,无需通过在侧键FPC1增加电容、电感等原件实现,而是通过 在吸收天线221的第一走线11增加支路线112的方式实现,从而节省成本。另外,当在侧键FPC焊接电容或电感元件时,随着侧键21的按压次数的增加,电容或电感元件与侧键FPC之间的连接可靠性下降,从而可能导致电容或电感元件脱落,而本实施例中本体线111与支路线112之间的连接可靠性较高,从而能够在提高天线221带内性能的同时,提高使用寿命。
具体地,该本体线111与所述支路线112一体成型,二者一体成型时,使得该本体线111与支路线112之间的可靠性较高,侧键21的按压次数增加时,该支路线112也不会从本体线111上脱落,从而提高侧键FPC1的可靠性和使用寿命,并有效提高天线221的带内性能。或者,本体线111与支路线112固定连接,此时,该本体线111与支路线112之间可以焊接连接或者通过导电胶粘连。
在一种可能的设计中,如图3~5所示,该支路线112的一端用于与本体线111电连接,另一端为自由端,即在第一走线11中,支路线112为开路线,且在该第一走线11中增加支路线112后,该支路线112的作用相当于设置于第一走线11的电容,因此,增加支路线112后,能够增大第一走线11的阻抗。该第一走线11的谐振频率满足:
Figure PCTCN2021116402-appb-000001
从以上公式可知,第一走线11的谐振频率与参数电感L和电容C有关,因此,增加支路线112(在第一走线11中增加电容)后,能够减小第一走线11的谐振频率,即使得第一走线11的谐振频点向低频移动,此时,该第一走线11不容易与天线221发生谐振,从而防止第一走线11吸收天线221在工作频段内的能量,提高天线221的带内性能。另外,本实施例中,设置于第一走线11的电容通过支路线112实现,而无需在第一走线11焊接电容元件,从而节省成本,并提高第一走线11的可靠性。
在另一种可能的设计中,如图6~8所示,该支路线112的两端均用于与本体线111电连接,即该第一走线11中,在本体线111上并联支路线112,该支路线112为短路线,且该第一走线11增加支路线112后,该支路线112的作用相当于设置于第一走线11的电感,因此,增加走线112后,能够增大第一走线11的阻抗。该第一走线11的谐振频率满足:
Figure PCTCN2021116402-appb-000002
从以上公式可知,第一走线11的谐振频率与参数电感L和电容C有关,因此,增加支路线112(在第一走线11中增加电感)后,能够减小第一走线11的谐振频率, 即使得第一走线11的谐振频点向低频移动,此时,该第一走线11不容易与天线221发生谐振,从而防止第一走线11吸收天线221在工作频段内的能量,提高天线221的带内性能。另外,本实施例中,设置于第一走线11的电感通过支路线112实现,而无需在第一走线11焊接电感元件,从而节省成本,并提高第一走线11的可靠性。
具体地,如图8所示,该第一走线11中,本体线111具有开口111a,支路线112的两端分别用于与开口111a的两端电连接,此时,相当于通过支路线112将本体线111的开口111a对应的一段替换,当支路线112的长度与开口111a两端的连线的长度不同时,该支路线112的设置能够改变第一走线11的几何长度(增大第一走线11的几何长度),从而改变第一走线11的电长度(增大第一走线11的电长度),进而使得该第一走线11的电长度与天线221的工作频段不匹配,使得第一走线11不会吸收天线221在工作频段内的能量,提高天线221的带内性能。
如图9和图10所示的实施例中,该第一走线11可以设置有多条支路线112,其中,在第一走线11中,一部分支路线112为开路线,另一部分支路线112为短路线,此时,相当于在该第一走线11设置有电容和电感,从而增大第一走线11的阻抗。该第一走线11的谐振频率满足:
Figure PCTCN2021116402-appb-000003
从以上公式可知,第一走线11的谐振频率与参数电感L和电容C有关,因此,增加第一走线112(增加在第一走线11中增加电容和电感)后,能够减小第一走线11的谐振频率,即使得第一走线11的谐振频点向低频移动,此时,该第一走线11不容易与天线221发生谐振,从而防止第一走线11吸收天线221在工作频段内的能量,提高天线221的带内性能。另外,本实施例中,设置于第一走线11的电容和电感通过支路线112实现,而无需在第一走线11焊接电容元件和电感元件,从而节省成本,并提高第一走线11的可靠性。
以上各实施例中,该支路线112具有预设长度,该预设长度配置为:能够使第一走线11的电长度与吸收所述天线221在工作频段内的能量所需要的电长度不匹配。
以上各实施例中,通过在第一走线11的本体线111设置支路线112,能够增大该第一走线11的电长度,降低第一走线11的谐振频率,使得第一走线11的谐振频点向低频移动,此时,该第一走线11不容易与天线221发生谐振,从而防止第一走线11吸收天线221在工作频段内的能量,提高天线221的带内性能。
另外,该支路线112设置于本体线111的预设位置,该预设位置配置为:与电子设备的其他部件不干涉,且能够使得第一走线11的电长度与吸收所述天线221在工作频段内的能量所需要的电长度不匹配的位置。
其中,支路线112在第一走线11中的预设长度和预设位置可以根据仿真软件计 算得到,且还能够通过仿真软件计算设置支路线112后的第一走线11是否吸收天线221在工作频段内的能量而导致天线221带内性能下降,若该第一走线11不降低天线221的带内性能,则该支路线112的预设长度和预设位置合适,若该第一走线11仍然降低天线221的带内性能,则需要修改支路线112的预设长度和/或预设位置,直到第一走线11不降低天线221的带内性能。
在一种具体实施例中,沿支路线112的厚度方向,该支路线112包括一层或多层电连接单元。其中,如图4和图7所示,该支路线112沿其厚度方向包括多层电连接单元,且该支路线112设置有通孔112a,设置该通孔112a后,能够将各层电连接单元电连接,从而增大支路线112的几何长度,进而增大第一走线11的电长度,以使该第一走线11的电长度与天线221的工作频段不匹配,同时,当该支路线112沿厚度方向包括多层电连接单元时,能够合理利用支路线112沿厚度方向的空间,从而减小支路线112所占据的其他方向的空间,降低支路线112与电子设备的其他部件干涉的风险。
另一方面,如图11所示,在电子设备中,也可以预留支路线112,当电子设备使用过程中出现侧键FPC1的某走线吸收天线221在工作频段内的能量导致天线221的带内性能下降时,能够将该预留的支路线112与该走线连接,从而改变该走线的电长度,使得该走线的电长度与天线221的工作频段不匹配,即使得该走线不再吸收天线221在工作频段内的能量,从而方便地提高天线221的带内性能,降低天线的维修难度和成本。其中,该预留的支路线112可以有多个,且根据电子设备的内部空间合理布置各支路线112的位置。
以上各实施例中,该支路线112的形状为直线、曲线、折线、螺旋线、蛇形线、不规则形线中的一种或多种。本申请中,对支路线112的形状不做具体限定,只要能够保证天线221的带内性能,并能够避免支路线112与电子设备的其他部件干涉即可。
另外,本申请实施例还提供一种用于消除电子设备的天线221的杂波的处理方法,其中,该杂波为电子设备中侧键FPC1引起的杂波,即该侧键FPC1的第一走线11吸收天线221的辐射能量,导致天线221的带内性能下降,为了解决该技术问题,上述处理方法具体可以包括下述步骤:
S:11:判断产生杂波的第一走线11;
S12:在第一走线11设置支路线112;其中,该支路线112用于改变第一走线11的电长度,以使第一走线11的吸收频率位于天线221的工作频段之外。
步骤S11中,通过仿真软件来确定侧键FPC1中的各走线中产生杂波的第一走线11,确定第一走线11后,根据步骤S12,在该第一走线11增加支路线112,该支路线112与第一走线11的本体线111之间可以固定连接或一体成型。
因此,通过上述步骤S12,能够改变第一走线11的电长度,使得该第一走线11的电长度与天线221的工作频段不匹配(第一走线11吸收的电磁波的频率与天线221的工作频率不匹配),从而使得第一走线11不会吸收天线221在工作频段内的能量,即天线221的带内性能较高。
具体地,步骤S12中,具体可以包括:
S121:根据天线221的工作频段以及第一走线11所处的环境判断支路线112的 预设位置和预设长度;
S122:在第一走线11设置支路线112。
步骤S121中,可以通过仿真软件判断支路线112设置的预设位置和预设长度,该预设位置配置为:与电子设备的其他部件不干涉,且能够使得第一走线11的电长度与吸收所述天线221的能量所需要的电长度不匹配的位置;该预设长度配置为:能够使第一走线11的电长度与吸收所述天线221的能量所需要的电长度不匹配。
本实施例中,当支路线112满足上述预设位置预设长度的条件时,该第一走线11的电长度与天线221的工作频段不匹配,从而避免第一走线11吸收天线221在工作频段内的能量而导致天线221带内性能下降。
更具体地,上述步骤S122之后,该处理方法还可以包括:
S13:判断设置支路线112后的第一走线11的电长度与天线221的工作频段是否匹配,若匹配,则调整支路线112的预设位置和预设长度;若不匹配,则该支路线112的预设位置和预设长度合适。
步骤S13中,具体可以通过仿真软件判断支路线112的预设位置和预设长度是否合适,若不合适,则优化支路线112的预设位置和预设长度。
以上各实施例中,步骤S122具体可以包括:
S1221:将支路线112的至少一端与本体线111连接。
如上所述,当支路线112的一端与本体线111连接时,该支路线112的一端用于与本体线111电连接,另一端为自由端,即在第一走线11中,支路线112为开路线,且在该第一走线11中增加支路线112后,该支路线112的作用相当于设置于第一走线11的电容;当支路线112的两端均与本体线111连接时,即该第一走线11中,在本体线111上并联支路线112,该支路线112为短路线,且该第一走线11增加支路线112后,该支路线112的作用相当于设置于第一走线11的电感。因此,在该第一走线11增加支路线112时,能够增大第一走线11的阻抗,从而减小第一走线11的谐振频率,即使得第一走线11的谐振频点向低频移动,此时,该第一走线11不容易与天线221发生谐振,从而防止第一走线11吸收天线221在工作频段内的能量,提高天线221的带内性能。另外,本实施例中,设置于第一走线11的电感通过支路线112实现,而无需在第一走线11焊接电感元件,从而节省成本,并提高第一走线11的可靠性。
在另一种可能的设计中,如图12~14所示,该第一走线11包括本体线111和设置于本体线111的吸波材料113,该吸波材料113用于改变第一走线11的电长度,以使第一走线11的电长度与天线221的工作频段不匹配,即使得第一走线11的吸收频率位于天线221的工作频段之外。
其中,吸波材料113指的是能够吸收或者减弱其表面接收的的电磁波的能量,从而降低电磁波干扰。该吸波材料113具体可以为铁氧体、石墨烯、石墨、碳纤维、碳化硅等。本申请中,对吸波材料113的具体类型不作限定,只要满足能够在天线221的谐振频率改变第一走线11的阻抗即可(即在天线221的谐振频点处,该吸波材料113的介电常数或磁导率较大即可)。
本实施例中,在第一走线11增设吸波材料113后,由于吸波材料113具有吸收电磁波能量的作用,从而能够改变第一走线11的等效介电常数(增加吸波材料113 后,与不增加吸波材料113相比,介电常数增大),即能够改变该第一走线11的电长度,使得该第一走线11的电长度与天线221的工作频段不匹配(第一走线11吸收电磁波的频率与天线221的工作频率不匹配),从而使得第一走线11不会吸收天线221在工作频段内的能量,即天线221的带内性能较高。同时,本实施例中,在消除侧键FPC1对天线221在工作频段内能量的吸收时,无需通过在侧键FPC1增加电容、电感等原件实现,而是通过在吸收天线221的在工作频段内的能量的第一走线11增加吸波材料113的方式实现,从而节省成本。
具体地,该吸波材料113通过胶材粘贴于本体线111。其中,该胶材可以为结构胶或导电胶等。
更具体地,该吸波材料113的厚度为0.2mm~0.6mm,例如,该吸波材料113的厚度可以为0.2mm、0.3mm、0.5mm、0.6mm等。
其中,若吸波材料113的厚度过小(例如小于0.2mm),则设置于本体线111的吸波材料113的含量过少,无法有效改变第一走线11的电长度,从而可能导致该第一走线11仍然会吸收天线221的辐射能量,降低天线221的带内性能;若吸波材料113的厚度过大(例如大于0.6mm),能够保证第一走线11的电长度与天线221的工作频段不匹配,从而能够保证第一走线11不会吸收天线221在工作频段内的能量,进而保证天线221的带内性能,但是,吸波材料113的厚度过大时,天线221的带内性能也不会进一步增加,导致吸波材料113的浪费。因此,当吸波材料113的厚度为0.2mm~0.6mm时,该第一走线11不会吸收天线221在工作频段内的能量,保证天线221的带内性能,同时,能够降低吸波材料113的浪费。
在第一种具体实施例中,如图12所示,该吸波材料113覆盖本体线111,即该第一走线11的各处均设置有吸波材料113,从而能够防止第一走线11的任意位置吸收天线221在工作频段内的辐射能量,有效防止第一走线11吸收天线221在工作频段内的能量,提高天线221的带内性能。
另外,该侧键FPC1中可以包括多根第一走线11,且各第一走线11均可以设置有吸波材料113,从而使得各第一走线11的电长度均与天线221的工作频段不匹配,从而防止各第一走线11吸收天线221在工作频段内的能量。或者,该侧键FPC1中,各走线(包括第二走线112)均可以设置吸波材料113,从而使得侧键FPC1中的各走线的电长度均与天线221的工作频段不匹配,进一步防止侧键FPC1的各走线吸收天线221在工作频段内的能量,提高天线221的带内性能。
在第二种具体实施例中,如图13所示,第一走线11中本体线111的预设位置设置有吸波材料113,该预设位置为第一走线11吸收天线221在工作频段内的能量的位置,即该预设位置为第一走线11产生杂波的位置。
本实施例中,当在第一走线11的产生杂波的位置设置吸波材料113时,能够将该位置的杂波消除,即能够改变第一走线11的电长度,从而使得该产生杂波的位置不再吸收天线221在工作频段内的能量,保证天线221的带内性能。同时,该实施例中,无需在第一走线11的各处均设置吸波材料113,从而能够节省吸波材料,降低成本。
在第三种具体实施例中,第一走线11中,本体线111的预设位置设置有吸波材 料113,该预设位置为第一走线11中杂波电流强点的位置,该第一走线11中,吸收天线221的能量主要发生在杂波电流强点的位置。
本实施例中,当在第一走线11的杂波电流强点的位置设置吸波材料113时,使得该第一走线11在该杂波电流强点的位置的电长度改变,该电长度与天线221的工作频段不匹配,从而使得该杂波电流强点的位置不再吸收天线221在工作频段内的能量,提高天线221的带内性能。
具体地,吸波材料113的覆盖面积被配置为:能够使第一走线11的电长度与吸收天线221的能量所需要的电长度不匹配。
本实施例中,当吸波材料113覆盖本体线111的一部分时,其覆盖面积满足上述条件,其中,吸波材料113在第一走线11中的覆盖面积和预设位置可以根据仿真软件计算得到,且还能够通过仿真软件计算设置吸波材料113后的第一走线11是否吸收天线221在工作频段内的能量而导致天线221带内性能下降,若该第一走线11不降低天线221的带内性能,则该吸波材料113的覆盖面积和预设位置合适,若该第一走线11仍然降低天线221的带内性能,则需要修改吸波材料113的覆盖面积和/或预设位置,直到第一走线11不降低天线221的带内性能。
另外,本申请实施例还提供一种用于消除电子设备的天线221的杂波的处理方法,其中,该杂波为电子设备中侧键FPC1引起的杂波,即该侧键FPC1的第一走线11吸收天线221在工作频段内的辐射能量,导致天线221的带内性能下降,为了解决该技术问题,上述处理方法具体可以包括下述步骤:
S21:判断产生杂波的第一走线11;
S22:在第一走线11设置吸波材料113;其中,该吸波材料113用于改变第一走线11的电长度,以使第一走线11的吸收频率位于天线221的工作频段之外。
步骤S21中,通过仿真软件来确定侧键FPC1中的各走线中产生杂波的第一走线11,确定第一走线11后,根据步骤S22,在该第一走线11增加吸波材料113,该吸波材料113与第一走线11的本体线111之间可以通过胶材粘连。
因此,通过上述步骤S12,能够改变第一走线11的电长度,使得该第一走线11的电长度与天线221的工作频段不匹配(第一走线11吸收的电磁波的频率与天线221的工作频率不匹配),从而使得第一走线11不会吸收天线221在工作频段内的能量,即天线221的带内性能较高。
具体地,步骤S22具体可以包括:
S221:根据天线221的工作频段判断吸波材料113的预设位置,根据天线221的工作频段判断吸波材料113的覆盖面积;
S222:在第一走线11设置吸波材料113,且吸波材料113设置于预设位置,且其面积为上述覆盖面积。
步骤S221中,可以通过仿真软件判断吸波材料113的设置位置和覆盖面积,该预设位置配置为:位于第一走线11中产生杂波的位置,或者,位于第一走线11中杂波电流强点的位置;该覆盖面积配置为:能够使第一走线11的电长度与吸收天线221在工作频段内的能量所需要的电长度不匹配。
本实施例中,当吸波材料113满足上述预设位置和覆盖面积的条件时,设置吸波 材料113后的第一走线11的电长度与天线221的工作频段不匹配,从而避免第一走线11吸收天线221在工作频段内的能量而导致天线221带内性能下降。
更具体地,上述步骤S222之后,该处理方法还可以包括:
S23:判断设置吸波材料113后的第一走线11是否产生杂波,即判断设置吸波材料113后的第一走线11的电长度与天线221的工作频段是否匹配,若匹配(若产生杂波),则调整吸波材料113的预设位置和覆盖面积;若不匹配(不产生杂波),则该第一走线11的吸波材料113的预设位置和覆盖面积合适。
步骤S23中,具体可以通过仿真软件判断吸波材料113的预设位置和覆盖面积是否合适,若不合适,则优化吸波材料113的预设位置和覆盖面积。
需要指出的是,本专利申请文件的一部分包含受著作权保护的内容。除了对专利局的专利文件或记录的专利文档内容制作副本以外,著作权人保留著作权。

Claims (29)

  1. 一种电子设备,其特征在于,所述电子设备包括:
    壳体,所述壳体设置有侧键;
    天线,所述天线设置于所述壳体;
    侧键FPC,所述侧键FPC与所述侧键连接,且包括板体和与所述板体连接的走线;
    其中,所述走线包括第一走线,所述第一走线包括本体线和支路线,所述支路线用于与所述本体线电连接,用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
  2. 根据权利要求1所述的电子设备,其特征在于,所述支路线的一端用于与所述本体线电连接,另一端为自由端。
  3. 根据权利要求1所述的电子设备,其特征在于,所述支路线的两端均用于与所述本体线电连接。
  4. 根据权利要求3所述的电子设备,其特征在于,所述本体线具有开口,所述支路线的两端分别用于与所述开口的两端电连接。
  5. 根据权利要求1所述的电子设备,其特征在于,所述支路线具有预设长度,所述预设长度配置为:能够使所述第一走线的电长度与吸收所述天线在工作频段内的能量所需要的电长度不匹配。
  6. 根据权利要求1~5中任一项所述的电子设备,其特征在于,所述支路线的形状包括直线、曲线、折线、螺旋线、蛇形线、不规则线中的一种或多种。
  7. 根据权利要求1~5中任一项所述的电子设备,其特征在于,沿所述支路线的厚度方向,所述支路线包括一层或多层电连接单元。
  8. 根据权利要求1~5中任一项所述的电子设备,其特征在于,所述本体线与所述支路线一体成型,或者,所述本体线与所述支路线固定连接。
  9. 一种电子设备,其特征在于,所述电子设备包括:
    壳体,所述壳体设置有侧键;
    天线,所述天线设置于所述壳体;
    侧键FPC,所述侧键FPC与所述侧键连接,且包括板体和与所述板体连接的走线;
    其中,所述走线包括第一走线,所述第一走线包括本体线和设置于所述本体线的吸波材料,所述吸波材料用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
  10. 根据权利要求9所述的电子设备,其特征在于,所述吸波材料粘贴于所述本体线。
  11. 根据权利要求9所述的电子设备,其特征在于,所述吸波材料的厚度为0.2mm~0.6mm。
  12. 根据权利要求9所述的电子设备,其特征在于,所述吸波材料覆盖所述本体线。
  13. 根据权利要求9所述的电子设备,其特征在于,所述本体线的预设位置设置有所述吸波材料,所述预设位置配置为:所述本体线吸收天线在工作频段内的能量的位置。
  14. 根据权利要求13所述的电子设备,其特征在于,所述吸波材料设置于所述第一走线中杂波电流强点的位置。
  15. 根据权利要求9~14中任一项所述的电子设备,其特征在于,所述吸波材料的覆盖面积配置为:能够使所述第一走线的电长度与吸收所述天线在工作频段内的能量所需要的电长度不匹配。
  16. 一种侧键FPC,其特征在于,所述侧键FPC包括板体和第一走线,所述第一走线与所述板体连接;
    其中,所述第一走线包括本体线和支路线,所述支路线用于与所述本体线电连接。
  17. 根据权利要求16所述的侧键FPC,其特征在于,所述支路线的一端用于与所述本体线电连接,另一端为自由端。
  18. 根据权利要求16所述的侧键FPC,其特征在于,所述支路线的两端均用于与所述本体线电连接。
  19. 一种侧键FPC,其特征在于,所述侧键FPC包括板体和第一走线,所述第一走线与所述板体连接;
    所述第一走线包括本体线和设置于所述本体线的吸波材料,所述吸波材料用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
  20. 根据权利要求19所述的侧键FPC,其特征在于,所述吸波材料覆盖所述本体线的至少部分。
  21. 一种消除天线杂波的处理方法,用于消除电子设备的天线的杂波,其特征在于,所述电子设备包括侧键FPC和天线,所述侧键FPC包括相连的板体和走线,所述处理方法包括:
    判断吸收所述天线在工作频段内的能量的第一走线;
    在所述第一走线设置支路线;
    其中,所述支路线用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
  22. 根据权利要求21所述的处理方法,其特征在于,在所述第一走线设置所述支路线之前,所述处理方法还包括:
    根据所述天线的工作频段以及所述第一走线所处的环境判断设置所述支路线的预设位置。
  23. 根据权利要求21所述的处理方法,其特征在于,在所述第一走线设置所述支路线之前,所述处理方法还包括:
    根据所述天线的工作频段以及所述第一走线所处的环境判断所述支路线的预设长度。
  24. 根据权利要求21所述的处理方法,其特征在于,判断设置所述支路线后的所述第一走线的电长度与所述天线的工作频段是否匹配,若匹配,则调整所述支路线 的预设位置和预设长度。
  25. 根据权利要求21~24中任一项所述的处理方法,其特征在于,所述第一走线包括本体线,在所述第一走线设置支路线时,将所述支路线的至少一端与所述本体线连接。
  26. 一种消除天线杂波的处理方法,用于消除电子设备的天线的杂波,其特征在于,所述电子设备包括侧键FPC和天线,所述侧键FPC包括相连的板体和走线,所述处理方法包括:
    判断吸收所述天线在工作频段内的能量的第一走线;
    在所述第一走线设置吸波材料;
    其中,所述吸波材料用于改变所述第一走线的电长度,以使所述第一走线的吸收频率位于所述天线的工作频段之外。
  27. 根据权利要求26所述的处理方法,其特征在于,在所述第一走线设置所述吸波材料之前,所述处理方法还包括:
    根据所述天线的工作频段判断设置所述吸波材料的预设位置。
  28. 根据权利要求26所述的处理方法,其特征在于,在所述走线设置所述吸波材料之前,所述处理方法还包括:
    根据所述天线的工作频段判断所述吸波材料的覆盖面积。
  29. 根据权利要求26所述的处理方法,其特征在于,判断设置所述吸波材料后的所述第一走线的电长度与所述天线的工作频段是否匹配,若匹配,则调整所述吸波材料的预设位置和覆盖面积。
PCT/CN2021/116402 2020-10-28 2021-09-03 一种电子设备、侧键fpc及消除天线杂波的处理方法 WO2022088985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011171445.8A CN114421155A (zh) 2020-10-28 2020-10-28 一种电子设备、侧键fpc及消除天线杂波的处理方法
CN202011171445.8 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022088985A1 true WO2022088985A1 (zh) 2022-05-05

Family

ID=81260220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116402 WO2022088985A1 (zh) 2020-10-28 2021-09-03 一种电子设备、侧键fpc及消除天线杂波的处理方法

Country Status (2)

Country Link
CN (1) CN114421155A (zh)
WO (1) WO2022088985A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034855A1 (en) * 2001-08-16 2003-02-20 Wallace Douglas Elmer Printed circuit suppression of high-frequency spurious signals
CN101719588A (zh) * 2009-12-31 2010-06-02 中兴通讯股份有限公司 一种终端天线的实现方法及终端
CN201985917U (zh) * 2010-11-29 2011-09-21 上海华勤通讯技术有限公司 带蓝牙天线的手机
CN103078653A (zh) * 2012-12-26 2013-05-01 青岛歌尔声学科技有限公司 蓝牙设备电路及抑制fpc电路板对蓝牙天线影响的方法
CN202998084U (zh) * 2012-12-26 2013-06-12 青岛歌尔声学科技有限公司 蓝牙设备电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034855A1 (en) * 2001-08-16 2003-02-20 Wallace Douglas Elmer Printed circuit suppression of high-frequency spurious signals
CN101719588A (zh) * 2009-12-31 2010-06-02 中兴通讯股份有限公司 一种终端天线的实现方法及终端
CN201985917U (zh) * 2010-11-29 2011-09-21 上海华勤通讯技术有限公司 带蓝牙天线的手机
CN103078653A (zh) * 2012-12-26 2013-05-01 青岛歌尔声学科技有限公司 蓝牙设备电路及抑制fpc电路板对蓝牙天线影响的方法
CN202998084U (zh) * 2012-12-26 2013-06-12 青岛歌尔声学科技有限公司 蓝牙设备电路

Also Published As

Publication number Publication date
CN114421155A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
KR101393984B1 (ko) 근접도 기반 무선 주파수 전력 제어를 위한 정전용량형 근접 센서들을 갖는 전자 장치
TWI435498B (zh) 多頻段雙極天線
US20210351509A1 (en) Electronic device
TWI223910B (en) Miniaturized directional antenna
US20040150567A1 (en) Dual band antenna allowing easy reduction of size and height
KR20040034608A (ko) 유전체 안테나, 안테나 실장 기판 및 그것들을 내장하는이동 통신기
CN112751213B (zh) 天线组件及电子设备
KR20070098020A (ko) 안테나 및 이를 구비한 전자기기
RU2193264C2 (ru) Радиотелефон
WO2021254428A1 (zh) 导电泡棉和电子设备
EP1093675B1 (en) Substrate antenna incorporating an element preventing the coupling of energy between antenna and conductors
CN115332786A (zh) 一种天线装置和电子设备
CN106100662B (zh) 印刷电路板以及具有印刷电路板的无线通信装置
WO2022088985A1 (zh) 一种电子设备、侧键fpc及消除天线杂波的处理方法
JP6079886B2 (ja) アンテナ装置
CN101212496B (zh) 一种基于异向介质微带线的防辐射手机机壳
CN112531342B (zh) 天线模组及电子设备
CN113675586A (zh) 电子装置
JPWO2005057723A1 (ja) 折畳式携帯無線機器
TWI823597B (zh) 耦合式多支路天線系統
CN1452271A (zh) 内藏式多频天线
KR100764776B1 (ko) 광대역 안테나 및 이를 구비한 전자기기
WO2024125394A1 (zh) 一种电子设备
WO2024055870A1 (zh) 一种天线结构和电子设备
JP2006121315A (ja) 小型薄型アンテナ、多層基板および高周波モジュール、それらを搭載した無線端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884716

Country of ref document: EP

Kind code of ref document: A1