WO2022088920A1 - 射频系统、电子设备及计算机可读存储介质 - Google Patents

射频系统、电子设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2022088920A1
WO2022088920A1 PCT/CN2021/115446 CN2021115446W WO2022088920A1 WO 2022088920 A1 WO2022088920 A1 WO 2022088920A1 CN 2021115446 W CN2021115446 W CN 2021115446W WO 2022088920 A1 WO2022088920 A1 WO 2022088920A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
coupled
voltage dividing
potential
connection
Prior art date
Application number
PCT/CN2021/115446
Other languages
English (en)
French (fr)
Inventor
彭彪
姜丕锦
蔡佳佳
张新丽
刘抒民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022088920A1 publication Critical patent/WO2022088920A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/67Testing the correctness of wire connections in electric apparatus or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • G01R31/69Testing of releasable connections, e.g. of terminals mounted on a printed circuit board of terminals at the end of a cable or a wire harness; of plugs; of sockets, e.g. wall sockets or power sockets in appliances

Definitions

  • the present application relates to the technical field of radio frequency communication, and in particular, to a radio frequency system, an electronic device, and a computer-readable storage medium.
  • the radio frequency cable (RF cable) is used to connect the radio frequency circuit and antenna in electronic equipment such as terminal equipment, so that the terminal equipment can perform radio frequency communication through the connected radio frequency circuit and antenna.
  • the radio frequency circuit may be located on the main board of the terminal device, and the main board may also include a connection seat corresponding to the radio frequency circuit; the sub-board may include a connection seat that is connected to the antenna and corresponds one-to-one; the radio frequency connection line may pass through the main board and the sub-board
  • the connector socket connects the RF circuit and the antenna.
  • the present application provides a radio frequency system, an electronic device and a computer-readable storage medium, which solve the problem in the prior art that it is impossible to accurately determine that a radio frequency connection line in an electronic device is abnormally connected.
  • a first aspect provides a radio frequency system, comprising: a first radio frequency circuit, a second radio frequency circuit, a first antenna, a second antenna, a first radio frequency connection line and a second radio frequency connection line, the first antenna passing through the The first radio frequency connection line is coupled with the first radio frequency circuit or the second radio frequency circuit, and the second antenna is connected with the first radio frequency circuit or the second radio frequency circuit through the second radio frequency connection line coupling;
  • the radio frequency system further includes: a first node, a first voltage dividing element and a second voltage dividing element;
  • the first node is coupled to a first potential, the first node is coupled to a first end of the first radio frequency connection line, the second end of the second radio frequency connection line is coupled to a second potential, and the first end of the radio frequency connection line is coupled to a second potential. a potential higher than the second potential;
  • a first end of the first voltage dividing element is coupled to a third potential, and a second end of the first voltage dividing element is coupled between the first radio frequency connection line and the second radio frequency connection line, and the first potential is higher than the third potential;
  • the parallel coupling of the second voltage dividing element is at both ends of the first radio frequency connection line.
  • the first voltage dividing element and the second voltage dividing element in the radio frequency system, when the first radio frequency connection line and the second radio frequency connection line are disconnected, the current flow in the radio frequency system changes, and the first voltage dividing element and the second radio frequency connection line are disconnected.
  • the voltage division of the second voltage dividing element will also change, and the potential of the first node will also change, so that the connection between the first radio frequency connection line and the second radio frequency connection line can be determined according to the changed potential, and there is no need to set the cable
  • the proportional number of GPIO can reduce the hardware required to detect whether each cable is disconnected, and reduce the cost required to detect whether each cable is disconnected.
  • the radio frequency system further includes: a first capacitor to ground, the first capacitor to ground is connected in parallel with the first voltage dividing element.
  • the radio frequency signal serially connected to the radio frequency system in the radio frequency circuit can be guided to the third potential through the first capacitor to ground, that is, The ground potential can prevent the radio frequency signal in one radio frequency circuit from entering another radio frequency circuit through the radio frequency system, thereby improving the isolation degree between the two radio frequency circuits.
  • the radio frequency system further includes: a third voltage dividing element, and the third voltage dividing element is coupled in series to the between the first radio frequency connection line and the second radio frequency connection line.
  • the function of detecting connection errors can be combined, so as to improve the functional diversity of the radio frequency system, and reduce the need for detecting that the radio frequency connection line is in different abnormal states. required cost.
  • the radio frequency system further includes a power supply, and the first node is coupled to the power supply of the radio frequency system;
  • the power supply includes a DC voltage source and a pull-up resistor, a first end of the pull-up resistor is coupled to the output end of the DC voltage source, and a second end of the pull-up resistor is coupled to the first node.
  • the stability of the detection of the radio frequency connection line can be improved, and the pull-up resistor can improve the safety and accuracy of the detection of the radio frequency connection line.
  • the radio frequency system further includes: a detection module, and the radio frequency system collects the first potential of the node.
  • the detection module is an analog-to-digital converter ADC or a voltage comparator.
  • the detection modules including different circuits to detect the potential of the first node
  • the flexibility of detecting the radio frequency connection line can be improved.
  • multiple potentials of different magnitudes of the first node can be identified, and the detection of multiple potentials can be supported.
  • the radio frequency system further includes:
  • connection seat a first connection seat, a second connection seat, a third connection seat and a fourth connection seat
  • the first DC blocking capacitor, the second DC blocking capacitor, the third DC blocking capacitor and the fourth DC blocking capacitor are The first DC blocking capacitor, the second DC blocking capacitor, the third DC blocking capacitor and the fourth DC blocking capacitor;
  • a first choke inductance a second choke inductance, a third choke inductance, and a fourth choke inductance
  • the first radio frequency circuit is coupled to the first connection base, the first antenna is coupled to the second connection base, the second radio frequency circuit is coupled to the third connection base, and the second radio frequency circuit is coupled to the third connection base.
  • the antenna is coupled with the fourth connection base;
  • the first DC blocking capacitor is coupled between the first radio frequency circuit and the first connection seat, and the second DC blocking capacitor is coupled between the first antenna and the second connection seat, so The third DC blocking capacitor is coupled between the second radio frequency circuit and the third connection base, and the fourth DC blocking capacitor is coupled between the second antenna and the fourth connection base;
  • the first end of the first choke inductance is coupled between the first DC blocking capacitor and the first connection seat, and the second end of the first choke inductance is connected to the first voltage dividing element.
  • the second end is coupled to each other, the first end of the second choke inductance is coupled between the second DC blocking capacitor and the second connection seat, and the second end of the second choke inductance is coupled to the second connection seat.
  • the first node is coupled to each other, the first end of the third choke inductance is coupled between the third DC blocking capacitor and the third connection seat, and the second end of the third choke inductance is coupled to the third connection seat.
  • the second end of the first voltage dividing element is coupled to each other, the first end of the fourth choke inductance is coupled between the fourth DC blocking capacitor and the fourth connection seat, and the fourth end of the choke inductance
  • the second terminal is coupled to the third potential.
  • the RF signal in the RF circuit can be prevented from entering the RF system, and the current in the RF system can also be prevented from entering the RF circuit, thereby improving the isolation between the RF system and the RF circuit and improving the RF accuracy of the system.
  • the potential of the first node varies with the two ends of the first radio frequency connection line and the second Whether at least one of the two ends of the radio frequency connecting line is disconnected from the corresponding connecting seat varies.
  • the potential of the first node can be changed according to whether the first radio frequency connection line or the second radio frequency connection line is disconnected, so that the first node is used as the detection point, and the first radio frequency connection line and the second radio frequency connection line are determined according to the change of the potential of the detection point. Whether the radio frequency cable is disconnected.
  • the potential of the first node is in a first state
  • the potential of the first node is in the second state.
  • the coupling state of the first radio frequency connection line and the second radio frequency connection line can be determined, so that it can be determined whether each radio frequency connection line is disconnected according to the potential state of the detection point. Improve the accuracy and flexibility of detecting whether the RF cable is abnormally connected.
  • the first voltage dividing element and the second voltage dividing element are both resistors, and the second potential and the third potential are both ground potentials.
  • the cost of detecting the RF connection line can be reduced.
  • the radio frequency system further includes: a third radio frequency circuit, a third antenna, and a third radio frequency connection line, the A third radio frequency circuit is coupled to the first antenna, the second antenna or the third antenna through the third radio frequency connection line;
  • the radio frequency system further includes: a fourth voltage dividing element and a fifth voltage dividing element;
  • the first end of the fourth voltage dividing element is coupled to the third potential, and the second end of the fourth voltage dividing element is coupled between the second radio frequency connection line and the third radio frequency connection line;
  • the parallel coupling of the fifth voltage dividing element and the second voltage dividing element is at both ends of the second radio frequency connection line.
  • the connection state of each radio frequency connection line can be determined by a small number of components, the cost of detecting the radio frequency connection line is reduced, and the flexibility of detecting the radio frequency connection line is improved.
  • the radio frequency system further includes: a second capacitor to ground, the second capacitor to ground is the same as the The fourth voltage dividing element is connected in parallel.
  • the radio frequency signal serially connected to the radio frequency system in the radio frequency circuit can be guided to the third potential, that is, the ground potential through the capacitance to ground, which can prevent The radio frequency signal in one radio frequency circuit enters another radio frequency circuit through the radio frequency system, thereby improving the isolation degree between the two radio frequency circuits.
  • the radio frequency system further includes: a sixth voltage dividing element, the sixth dividing A pressure element is coupled in series between the second radio frequency connection line and the third radio frequency connection line.
  • the function of detecting connection errors can be combined, so as to improve the functional diversity of the radio frequency system, and reduce the problem of detecting that the radio frequency connection line is in different abnormal states. required cost.
  • the radio frequency system further includes:
  • the fifth blocking capacitor and the sixth blocking capacitor are The fifth blocking capacitor and the sixth blocking capacitor.
  • the third radio frequency circuit is coupled with the fifth connection base, and the third antenna is coupled with the sixth connection base;
  • the fifth DC blocking capacitor is coupled between the third radio frequency circuit and the fifth connection base, and the sixth DC blocking capacitor is coupled between the third antenna and the sixth connection base;
  • the first end of the fourth choke inductance is coupled between the fifth DC blocking capacitor and the fifth connection seat, and the second end of the fourth choke inductance is coupled with the second potential,
  • the first end of the fifth choke inductor is coupled between the third DC blocking capacitor and the third connection seat, and the second end of the fifth choke inductor is in phase with the first end of the fifth voltage dividing element.
  • the first end of the sixth choke inductance is coupled between the fourth DC blocking capacitor and the fourth connection seat
  • the second end of the sixth choke inductance is coupled with the first end of the fifth voltage dividing element are coupled to each other
  • the first end of the seventh choke inductor is coupled between the sixth DC blocking capacitor and the sixth connection seat
  • the second end of the seventh choke inductor is coupled to the fifth
  • the first ends of the voltage dividing elements are coupled to each other.
  • the RF signal in the RF circuit can be prevented from entering the RF system, and the current in the RF system can also be prevented from entering the RF circuit, thereby improving the isolation between the RF system and the RF circuit and improving the RF accuracy of the system.
  • the fourth voltage dividing element and the fifth voltage dividing element All elements are resistors.
  • the cost of detecting the RF connection line can be reduced.
  • the radio frequency system further includes a general-purpose input/output port GPIO detection module, and the first node is further connected to the The GPIO detection module is coupled.
  • the radio frequency system provided by the embodiment of the present application is added by adopting the route multiplexing method in combination with the original GPIO, so as to reduce the route and save the hardware resources. Moreover, based on the original GPIO function of determining whether each cable is disconnected, combined with the radio frequency system, it can determine whether each cable of the electronic device is connected incorrectly, thereby enriching the functions of the radio frequency system and improving the diversity of functions realized by the radio frequency system.
  • a radio frequency system including: N radio frequency circuits, N antennas, and N radio frequency connection lines, where N is an integer greater than or equal to 2, and the ith radio frequency circuit is connected to the ith radio frequency circuit through the ith radio frequency connection line.
  • i antenna couplings, i is a positive integer less than or equal to N-1;
  • the radio frequency system includes: a first node, N-1 first voltage dividing elements and N-1 second voltage dividing elements;
  • the first node is coupled to the first potential, the first node is coupled to the first end of the i-th radio frequency connection line, and the second end of the i+1-th radio frequency connection line is coupled to the second potential , the first potential is higher than the second potential;
  • the first end of the i-th first voltage dividing element is coupled to the third potential, and the second end of the i-th first voltage dividing element is coupled to the i-th radio frequency connection line and the i+1-th Between the radio frequency connection lines, the first potential is higher than the third potential;
  • the i-th second voltage dividing element is coupled in parallel with both ends of the i-th radio frequency connection line.
  • N voltage divider elements By setting N voltage divider elements in the radio frequency system, when at least two radio frequency connection lines are disconnected, the current flow in the radio frequency system changes, and the voltage divider of the N voltage divider elements also changes, then the first node The potential will also change, so that it can be determined whether the first RF connection line and the second RF connection line are disconnected according to the changed potential. There is no need to set a GPIO proportional to the number of cables, which can reduce the need to detect whether each cable is disconnected. required hardware, and reduce the cost of detecting whether each cable is disconnected.
  • the radio frequency system further includes: a capacitor to ground, where the capacitor to ground is connected in parallel with the first voltage dividing element.
  • the radio frequency signal serially connected to the radio frequency system in the radio frequency circuit can be guided to the third potential, that is, the ground potential through the capacitance to ground, which can prevent The radio frequency signal in one radio frequency circuit enters another radio frequency circuit through the radio frequency system, thereby improving the isolation degree between the two radio frequency circuits.
  • the radio frequency system further includes: N ⁇ 1 third voltage dividing elements, the i-th third voltage dividing element The voltage dividing element is coupled in series between the i th radio frequency connection line and the i+1 th radio frequency connection line.
  • the function of detecting connection errors can be combined, so as to improve the functional diversity of the radio frequency system, and reduce the need for detecting that the radio frequency connection line is in different abnormal states. required cost.
  • the radio frequency system further includes a power supply, and the first node is coupled to the power supply;
  • the power supply includes a DC voltage source and a pull-up resistor, a first end of the pull-up resistor is coupled to the output end of the DC voltage source, and a second end of the pull-up resistor is coupled to the first node.
  • the stability of the detection of the radio frequency connection line can be improved, and the pull-up resistor can improve the safety and accuracy of the detection of the radio frequency connection line.
  • the radio frequency system further includes: a detection module, and the radio frequency system collects the first potential of the node.
  • the detection module is an ADC or a voltage comparator.
  • the detection modules including different circuits to detect the potential of the first node
  • the flexibility of detecting the radio frequency connection line can be improved.
  • multiple potentials of different magnitudes of the first node can be identified, and the detection of multiple potentials can be supported.
  • the radio frequency system further includes: 2N connection bases, 2N DC blocking capacitors, and multiple choke inductors;
  • the two ends of the i-th radio frequency connection line are respectively coupled with the 2i-1th connection seat and the 2i-th connection seat;
  • a DC blocking capacitor is coupled between each of the antennas and the corresponding connection base, and a DC blocking capacitor is coupled between each of the radio frequency circuits and the corresponding connection base;
  • One of the choke inductors is coupled between each of the second voltage dividing elements and the adjacent connection bases, and one of the choke inductors is coupled between the first connection base and the first node,
  • the 2Nth connection socket is coupled to the second potential.
  • the RF signal in the RF circuit can be prevented from entering the RF system, and the current in the RF system can also be prevented from entering the RF circuit, thereby improving the isolation between the RF system and the RF circuit and improving the RF accuracy of the system.
  • the potential of the first node varies with whether at least one end of the i-th radio frequency connection line corresponds to the corresponding The connection socket is disconnected and changed.
  • the potential of the first node can be changed according to the change of the coupling mode of the first radio frequency connection line and the second radio frequency connection line, so that the first node is used as the detection point, and the first radio frequency connection line and the first radio frequency connection line are determined according to the change of the potential of the detection point.
  • the coupling mode of the second radio frequency connection line is determined according to the change of the coupling mode of the second radio frequency connection line.
  • the eighth possible implementation manner of the second aspect when the two ends of the i-th radio frequency connection line are respectively connected to the i-th radio frequency circuit and the When the i-th antenna is coupled, the potential of the detection point is in the first potential state;
  • the potential of the detection point is in a second potential state.
  • the coupling state of the first radio frequency connection line and the second radio frequency connection line can be determined, so that whether each radio frequency connection line is abnormally connected can be determined according to the potential state of the detection point, which can improve the Accuracy and flexibility to detect whether the RF cable is connected abnormally.
  • the first voltage dividing element and the second voltage dividing element are both resistors.
  • the cost of detecting the RF connection line can be reduced.
  • the radio frequency system further includes a general-purpose input/output port GPIO detection module, and the first node is further connected to the The GPIO detection module of the RF system is coupled.
  • the radio frequency system provided by the embodiment of the present application is added by adopting the route multiplexing method in combination with the original GPIO, so as to reduce the route and save the hardware resources. Moreover, based on the original GPIO function of determining whether each cable is disconnected, combined with the radio frequency system, it can determine whether each cable of the electronic device is connected incorrectly, thereby enriching the functions of the radio frequency system and improving the diversity of functions realized by the radio frequency system.
  • an electronic device comprising: a memory, a processor, a computer program stored in the memory and executable on the processor, and any one of the first and second aspects.
  • a radio frequency system when the processor executes the computer program, based on the radio frequency system according to any one of the first aspect and the second aspect, the detection of the radio frequency connection line in the electronic device is implemented.
  • the electronic device further includes: at least one of a display and a speaker;
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, based on the radio frequency according to any one of the first aspect and the second aspect
  • the system realizes the detection of radio frequency connecting lines in electronic equipment.
  • FIG. 1 is a schematic diagram of a scenario involved in a radio frequency system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a system architecture involved in a radio frequency system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a system architecture involved in another radio frequency system provided by an embodiment of the present application.
  • FIG. 4 is a circuit frame diagram of a GPIO-based radio frequency system provided by an embodiment of the present application.
  • FIG. 5 is a circuit frame diagram of another GPIO-based radio frequency system provided by an embodiment of the present application.
  • FIG. 6 is a circuit frame diagram of a radio frequency system provided by an embodiment of the present application.
  • FIG. 7 is a simplified schematic diagram of a radio frequency system provided by an embodiment of the present application.
  • FIG. 8 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 9 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 10 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 11 is a circuit frame diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 13 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 14 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 15 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 16 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 17 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 18 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 19 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 20 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • 21 is a circuit frame diagram of another radio frequency system provided by an embodiment of the present application.
  • 22 is a circuit frame diagram of another radio frequency system provided by an embodiment of the present application.
  • 23 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 24 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 25 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 26 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 27 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 28 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 29 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • FIG. 30 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • 31 is a circuit frame diagram of another radio frequency system provided by an embodiment of the present application.
  • 33 is a circuit frame diagram of another radio frequency system provided by an embodiment of the present application.
  • 35 is a schematic flowchart of a detection method provided by an embodiment of the present application.
  • FIG. 36 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • an electronic device may include a main board and a sub board.
  • a plurality of radio frequency circuits are provided on the main board (two radio frequency circuits are taken as an example for illustration in FIG. 1 ), and each radio frequency circuit can be connected to a corresponding connection socket on the main board.
  • the electronic device may also include a plurality of antennas, and similar to the radio frequency circuit, each antenna may be connected to a corresponding connection socket on the sub-board.
  • both the main board and the sub-board of the electronic device may be a printed circuit board (Printed Circuit Board, PCB), and the embodiment of the present application does not limit the main board and the sub-board.
  • PCB printed Circuit Board
  • the main board includes a radio frequency circuit 11 and a radio frequency circuit 12, and the radio frequency circuit 11 and the radio frequency circuit 12 respectively correspond to a connection seat;
  • the sub-board includes two connection seats, and the connection seat on the left side of the sub-board is in phase with the antenna 22.
  • the connection seat on the right side of the sub-board corresponds to the antenna 21, and the antenna 21 and the antenna 22 can be respectively connected to the corresponding connection seat on the sub-board.
  • the radio frequency circuit 11 may include one or more of power amplifiers, filters, linear amplifiers, and switches, and the radio frequency circuit 11 may also be coupled to a processor (eg, a baseband processor or a radio frequency transceiver, etc.), which is used to generate transmit signals , the radio frequency circuit 11 transmits the transmission signal to the antenna 21 through the radio frequency connection line (hereinafter referred to as cable) 31, and the antenna 21 transmits the generated wireless signal.
  • the antenna 21 can also receive wireless signals, the antenna 21 transmits the received wireless signals to the radio frequency circuit 11 through the cable 31 , and transmits the received wireless signals to the processor through the radio frequency circuit 11 .
  • the radio frequency circuit 12 may also include one or more devices among power amplifiers, filters, linear amplifiers and switches, and the radio frequency circuit 12 may also be coupled to a processor (such as a baseband processor or a radio frequency transceiver, etc.), and the processor uses In order to generate the transmission signal, the radio frequency circuit 12 transmits the transmission signal to the antenna 22 through the cable 32, and the antenna 22 transmits the generated wireless signal.
  • the antenna 22 can also receive wireless signals, the antenna 22 transmits the received wireless signals to the radio frequency circuit 12 through the cable 32 , and transmits the received wireless signals to the processor through the radio frequency circuit 12 .
  • the processor is also located on the motherboard.
  • the electronic device may include a plurality of cables, and each cable may include two ends, the first end is coupled to the connection socket corresponding to the radio frequency circuit, and the second end is coupled to the connection socket corresponding to the antenna.
  • the radio frequency circuit can send radio frequency signals to the antenna through the cable, and the antenna can receive and send radio frequency signals to realize the radio frequency communication of electronic equipment.
  • the first end of cable 31 is coupled to the connection socket corresponding to the radio frequency circuit 11
  • the second end of cable 31 is coupled to the connection socket corresponding to the antenna 21 ; similarly, the first end of cable 32 corresponds to the radio frequency circuit 12 .
  • the connection socket of the cable 32 is coupled, and the second end of the cable32 is coupled with the connection socket corresponding to the antenna 22 .
  • the radio frequency connection line may be a coaxial cable (Coaxial Cable), which is a kind of electric wire and signal transmission line, and has two concentric conductors, and the conductor and the shielding layer share the same axis.
  • coaxial cable has good transmission characteristics, which can ensure the stable operation of the communication network.
  • the coaxial cable has strong anti-electromagnetic interference and anti-bending performance, good flexibility, and is suitable for folding and rotating electronic products. application.
  • coaxial cables also have good heat and flame resistance, and can work in environments ranging from -55 degrees Celsius (°C) to 250°C.
  • Coaxial cables are suitable for the transmission of analog and digital signals and can be used in a wide variety of applications.
  • Coaxial cables have been widely used, for example, in electronic equipment such as smart phones, notebook computers, digital cameras, video cameras, global positioning system (GPS) locators, wireless routers, LCD TVs, precision medical instruments, etc. Used to communicatively connect different boards.
  • the radio frequency connection can transmit analog signals, such as radio frequency signals.
  • the resistance of the radio frequency connection line is generally relatively small.
  • the resistance value of the radio frequency connection line may range from 1 ohm ( ⁇ ) to 50 ⁇ , such as 5 ⁇ , 7.5 ⁇ , and the like.
  • the resistance value of the RF connection line can fluctuate.
  • the resistance value can be 7.5 ⁇
  • the resistance value can be Fluctuates between 8 ⁇ and 50 ⁇ .
  • each cable can be buckled and connected to the corresponding connection seat, but based on the buckle degree of each cable and the impact and vibration of the electronic equipment when the user is using the electronic equipment, etc. It will cause the cable and the connection seat to loosen or the cable to fall off the connection seat, so that the radio frequency circuit cannot transmit the radio frequency signal to the antenna, resulting in the deterioration of the communication quality of the electronic equipment.
  • the embodiment of the present application proposes a radio frequency system capable of detecting whether a cable is disconnected, and a detection method for detecting whether a cable is disconnected.
  • the potential of a preset detection point can be read through the radio frequency system to determine each The voltage divider of the resistance, so as to determine whether each cable is disconnected.
  • the detection point may be a position in the radio frequency system where a potential change occurs when each cable is disconnected or a connection error causes a change in the circuit coupling mode, and the embodiment of the present application does not limit the detection point of the radio frequency system.
  • the above-mentioned radio frequency circuit 11 may be the first radio frequency circuit
  • the radio frequency circuit 12 may be the second radio frequency circuit
  • the antenna 21 may be a first antenna
  • antenna 22 may be a second antenna
  • cable31 may be a first radio frequency connection line
  • cable32 may be a second radio frequency connection line.
  • the radio frequency circuit 13 can be the third radio frequency circuit
  • the antenna 23 can be the third antenna
  • the cable 33 can be the third radio frequency connecting wire.
  • any radio frequency circuit can be the ith radio frequency circuit
  • any antenna can be the ith antenna
  • the line may be the ith radio frequency connection line, wherein N is an integer greater than or equal to 2, and i is a positive integer less than or equal to N.
  • connection seat can be the following connection seat 41
  • the second connection seat can be the following connection seat
  • the connecting seat 42, the third connecting seat can be the following connecting seat 43, the fourth connecting seat can be the following connecting seat 44, the fifth connecting seat can be the following connecting seat 45, and the sixth connecting seat can be the following connecting seat
  • the first choke inductance may be the following choke inductance L1
  • the second choke inductance may be the following choke inductance L2
  • the third choke inductance may be the following choke inductance L3
  • the fourth choke inductance can be the following choke inductance L4
  • the fifth choke inductance can be the following choke inductance L5
  • the sixth choke inductance can be the following choke inductance L6
  • the inductor can be the following choke inductor L7
  • the first DC blocking capacitor can be the following choke inductor DC blocking capacitor C1
  • the second DC blocking capacitor can be the following choke inductor DC blocking capacitor C1
  • the second DC blocking capacitor can
  • any connection base can be the ith connection base
  • any choke inductor can be the ith choke Inductor
  • any DC blocking capacitor can be the ith DC blocking capacitor, where N is an integer greater than or equal to 2, and i is a positive integer less than or equal to N-1.
  • the first voltage dividing element can be the following R1
  • the second voltage dividing element can be the following R2
  • the third voltage dividing element It may be R5 described below
  • the fourth voltage dividing element may be R3 described below
  • the fifth voltage dividing element may be R4 described below
  • the sixth voltage dividing element may be R6 described below.
  • first voltage dividing element and the second voltage dividing element may form the following voltage dividing module, wherein the first voltage dividing element may be an element coupled to the ground potential in each voltage dividing module, and the second voltage dividing element may be Components connected in series between cables.
  • the radio frequency system may be applied to electronic equipment, the first potential in the radio frequency system may be a high potential, and both the second potential and the third potential may be low potentials.
  • the first potential may be a potential coupled to a power supply
  • the second potential and the third potential may be ground potentials, such as the second potential may be the ground potential GND1, the third potential may be the ground potential GND2, and the following includes 3
  • the third potential coupled with the fourth voltage dividing element may be the ground potential GND3.
  • the first potential is coupled with the power supply
  • the second potential and the third potential are both ground potentials.
  • FIG. 2 is a schematic diagram of a system architecture involved in a radio frequency system provided by an embodiment of the present application.
  • the system architecture may include: a radio frequency system 201 , a processor 202 , a memory 203 and multiple cables 204 .
  • the radio frequency system 201 may be coupled with each cable 204 , the radio frequency system 201 may also be coupled with the processor 202 , and the processor 202 may be coupled with the memory 203 .
  • the radio frequency system 201 can collect the potential of the detection point through a preset detection module, and send the potential information corresponding to the potential to the processor 202.
  • the processor 202 can receive the potential information, and determine a preset potential that matches the potential information from a plurality of preset potentials stored in advance, so that the connection state corresponding to the preset potential can be stored in the memory 203. , so that the maintenance personnel can know whether each cable 204 is disconnected according to the connection status stored in the memory 203 .
  • the multiple preset potentials pre-stored by the electronic device correspond to different connection states of each cable respectively.
  • the electronic device includes cable31 and cable32.
  • the electronic device can store 4 preset potentials in advance.
  • the first preset potential can correspond to the normal connection of cable31 and cable32
  • the second preset potential can correspond to the disconnection of cable31 and the connection of cable32.
  • the third preset potential can correspond to the normal connection of cable31 and the disconnection of cable32
  • the fourth preset potential can correspond to the disconnection of both cable31 and cable32.
  • the coupling mode of each voltage dividing resistor in the radio frequency system will change, and the potential of the detection point will also change accordingly. That is, the potential of the detection point can be changed according to the change of the coupling mode of each voltage dividing resistor in the radio frequency system.
  • the system architecture may further include: at least one of a display screen 205 and a speaker 206 , and both the display screen 205 and the speaker 206 may be coupled to the processor 202 .
  • the processor 202 determines that each cable 3204 is disconnected according to the state corresponding to the preset potential, the processor 202 can control the display screen 205 to remind the user, and the processor 202 can also control the speaker 206 to remind the user that each cable 204 is disconnected.
  • display screen 205 may display "RF cable disconnected, please check!, and/or speaker 206 may sound "RF cable disconnected, please check!”.
  • the electronic device may include multiple cables 204.
  • the following takes the electronic device including one cable 204 as an example to illustrate how to determine whether one cable 204 (the cable 31 shown in FIG. 4) is determined by the radio frequency system 201. There is a disconnected condition.
  • FIG. 4 is a circuit frame diagram of a GPIO-based radio frequency system provided by an embodiment of the present application.
  • the radio frequency system may include: a GPIO power supply module 401, GPIO detection module 402, multiple DC blocking capacitors (C1 and C2) and multiple choke inductors (L1 and L2), the GPIO power supply module 401 is coupled with the GPIO detection module 402, the multiple DC blocking capacitors and multiple choke inductors
  • the coupling method is shown in Figure 4.
  • the GPIO power supply module 401 may include a DC voltage source V0 and a pull-up resistor R0, and the pull-up resistor R0 is coupled to the output end of the DC voltage source V0.
  • the GPIO detection module 402 can collect the potential of the detection point in the radio frequency system, and the detection point can be the output end of the GPIO power supply module 401, that is, the pull-up resistor R0 and the GPIO detection module 402 one end of the coupling. If the cable of the electronic device is normally connected, the voltage drop in the radio frequency system is all on the pull-up resistor R0 in the GPIO power supply module 401, and the potential collected by the GPIO detection module 402 is low level, which can determine that the cable of the electronic device is normally connected . If the cable connection of the electronic device is disconnected and the radio frequency system cannot form a circuit loop, the potential collected by the GPIO detection module 402 is a high level, and it can be determined that the cable connection of the electronic device is disconnected.
  • the electronic device including one cable as an example, that is, whether one cable is disconnected is detected by one GPIO power supply module 401 and one GPIO detection module 402 .
  • two or more cables of the electronic device can also be detected to determine whether any one of the cables in the electronic device is disconnected.
  • FIG. 5 is a circuit frame diagram of another GPIO-based radio frequency system provided by an embodiment of the present application.
  • the radio frequency system may include: a GPIO power supply module 501, a GPIO detection module 502, a plurality of DC blocking capacitors (C1, C2, C3, and C4) and multiple choke inductors (L1, L2, L3, and L4), the radio frequency system shown in FIG. 5 is similar to the radio frequency system shown in FIG. 4, and will not be repeated here.
  • the radio frequency system cannot form a circuit loop, and the potential collected by the GPIO detection module 502 is a high level.
  • the radio frequency system can form a circuit loop, and the potential collected by the GPIO detection module 502 is a low level.
  • one GPIO power supply module 501 and one GPIO detection module 502 can be used to detect whether multiple cables are connected and disconnected, thereby reducing the hardware cost of the radio frequency system.
  • the above-mentioned GPIO-based radio frequency system can only detect whether the cables in the electronic device are disconnected, and cannot accurately determine which cables in the electronic device are disconnected.
  • FIG. 6 is a circuit frame diagram of a radio frequency system provided by an embodiment of the present application.
  • the radio frequency system may include: a voltage divider module 601, Multiple circuit modules such as the detection module 602 and the power supply module 603, the radio frequency system may further include: a first node (A), multiple DC blocking capacitors (C1, C2, C3 and C4) and multiple choke inductors (L1, L2) , L3 and L4).
  • the output end of the power supply module 603 can be respectively coupled to the detection module 602 and the voltage divider module 601 through the first node A, the power supply module 603 can supply power to the voltage divider module 601, and the voltage divider module 601 can be coupled according to different cables. , to form different partial pressures, so that the detection module 602 can detect the potential of the detection point, thereby obtaining different potentials corresponding to different coupling modes of each cable, and then can determine whether each cable is connected or disconnected according to different potentials.
  • both ends of the cable 31 may be coupled with a voltage dividing module 601 .
  • the voltage dividing module 601 can be short-circuited by the cable31; and when the cable31 is disconnected, the power supply module 603 can be coupled with the ground potential GND1 and the ground potential GND2 through the voltage dividing module 601 to form a loop.
  • both ends of cable32 can be coupled with ground potential GND1 and cable31 respectively, and there is no voltage divider module set at both ends of cable32.
  • the radio frequency system can form a loop through the cable32 coupled with the ground potential GND1; and when the cable32 is disconnected, the radio frequency system can be coupled with the ground potential GND2 through the voltage divider module 601 to form a loop.
  • a DC blocking capacitor can be set between the radio frequency circuit and the corresponding connection base, and a DC blocking capacitor can also be set between the antenna and the corresponding connection base to prevent the DC current of the radio frequency system from flowing into the radio frequency circuit and the antenna and causing interference to the radio frequency signal.
  • a choke inductance L1 may be provided between the voltage dividing module 601 and the cable 31; similarly, a choke inductance L2 may be provided between the power supply module 603 and the cable 31, and a choke may also be provided between the voltage dividing module 601 and the cable 32 Inductor L3.
  • the choke inductor has the effect of passing DC and blocking AC, which can prevent the AC RF signal in the RF circuit from entering the RF system and affecting the detection results of the RF system.
  • a choke inductance L4 can also be set between the cable32 and the ground potential GND1 to prevent the radio frequency signal sent by the radio frequency circuit from entering the ground potential GND1 and to avoid interference to the radio frequency signal.
  • a DC blocking capacitor C1 is provided between the radio frequency circuit 11 and the corresponding connection base 41, and a DC blocking capacitor C2 is provided between the antenna 21 and the corresponding connection base 42; similarly, the radio frequency circuit 12
  • a DC blocking capacitor C3 is provided between the antenna 22 and the corresponding connection base 43
  • a DC blocking capacitor C4 is provided between the antenna 22 and the corresponding connection base 44 .
  • the first end of the choke inductance L1 can be coupled between the DC blocking capacitor C1 and the connection seat 41 corresponding to the radio frequency circuit 11 , and the second end of the choke inductance L1 can be coupled with the voltage divider module 601 .
  • the first end of the choke inductance L2 can be coupled between the DC blocking capacitor C2 and the connection base 42 corresponding to the antenna 21, the second end of the choke inductance L2 can be coupled with the power supply module 603; the third end of the choke inductance L3 One end can be coupled between the DC blocking capacitor C3 and the connection seat 43 corresponding to the radio frequency circuit 12, the second end of the choke inductor L3 can be coupled with the voltage divider module 601; the first end of the choke inductor L4 can be coupled to the DC blocking Between the capacitor C4 and the connection base 44 corresponding to the antenna 22, the second end of the choke inductor L4 can be coupled to the ground potential GND1.
  • the power supply module 603 may include a DC voltage source V0 and a pull-up resistor R0, the output end of the DC voltage source V0 is coupled to the first end of the pull-up resistor R0, and the second end of the pull-up resistor R0 is connected to the choke through the first node A
  • the second end of the current inductor L2 is coupled, and the second end of the pull-up resistor R0 may be the output end of the power supply module 603 .
  • the DC voltage source V0 may be a built-in voltage source of the electronic device.
  • the DC voltage source V0 may be a built-in battery of the electronic device, or a step-down module connected to the built-in battery of the electronic device.
  • the DC voltage source V0 is not limited.
  • the power supply module 403 may be a circuit module in an integrated circuit that is coupled to the radio frequency system through the first node A, or may be a circuit module on a circuit board of an electronic device. The embodiment of the present application does not limit the power supply module.
  • the detection module 602 may include a voltage detection circuit, the input terminal of the voltage detection circuit may be coupled with the second terminal of the pull-up resistor R0, and the output terminal of the voltage detection circuit may be coupled with the processor in the system architecture shown in FIG. 2 .
  • the voltage detection circuit may be an analog-to-digital converter (analog-to-digital converter, ADC), a voltage comparator, or another circuit capable of reading voltage, which is not limited in the embodiments of the present application .
  • the voltage detection circuit is an ADC
  • the ADC in the process of collecting the potential of the detection point, the ADC can first collect the analog voltage signal in the detection circuit according to the preset sampling frequency, and then calculate the value of the collected analog voltage signal. Quantization, and finally, the quantized analog voltage signal is represented in digital form by coding, and the acquisition of the potential of the detection point is completed.
  • the voltage detection circuit includes at least one voltage comparator, in the process of collecting the potential of the detection point, each voltage comparator can first collect the potential of the detection point, and compare the collected potential with the preset potential, The magnitude relationship between the potential of the detection point and each preset potential is determined, so that the magnitude of the potential of the detection point can be determined according to multiple magnitude relationships.
  • the voltage dividing module 601 may include a first voltage dividing resistor R1 and a second voltage dividing resistor R2, the first end of the first voltage dividing resistor R1 is coupled to the ground potential GND2, and the second end of the first voltage dividing resistor R1 and the second voltage dividing resistor R1.
  • the second ends of the piezoresistor R2 are both coupled between the choke inductor L1 and the choke inductor L3.
  • the first end of the second voltage dividing resistor R2 is coupled to the second end of the pull-up resistor R0 in the power supply module 603 .
  • the second end of the pull-up resistor R0 is coupled between the DC blocking capacitor C2 and the connection base 42 corresponding to the antenna 21 , and the first end of the second voltage dividing resistor R2 is also coupled between the DC blocking capacitor C2 and the corresponding connection of the antenna 21 42, and the second end of the second voltage dividing resistor R2 is connected between C1 and the connecting seat 41 corresponding to the radio frequency circuit 11 through the choke inductor L1, then the second end of the second voltage dividing resistor R2 is also connected to the cable31 coupled, the second voltage dividing resistor R2 is connected in parallel with the cable31.
  • the above pull-up resistor R0, the first voltage divider resistor R1 and the second voltage divider resistor R2 can all be resistors in the kiloohm level, such as the pull-up resistor R0, the first voltage divider resistor R1 and the second voltage divider resistor.
  • the resistance of the resistor R2 is all greater than or equal to 1K ⁇ , so that the voltage division of each cable can be ignored, and the accuracy of detecting whether each cable is disconnected can be improved.
  • the DC voltage source V0 may provide a voltage of 1.8 volts (V)
  • the pull-up resistor R0 may be 20 kiloohms (K ⁇ )
  • the first voltage dividing resistor R1 may also be 20K ⁇
  • the second voltage dividing resistor R2 may be 10K ⁇ .
  • the specific parameter values of the pull-up resistor R0, the first voltage dividing resistor R1 and the second voltage dividing resistor R2 can be set according to the impedance of the electronic device and the built-in DC voltage source V0. The parameter value is not limited.
  • FIG. 7 is a simplified schematic diagram of a radio frequency system provided by an embodiment of the present application, and the radio frequency circuit, antenna, DC blocking capacitor and choke inductor shown in FIG. 6 are omitted.
  • the second voltage dividing resistor R2 in the RF system can be short-circuited by cable31
  • the first voltage dividing resistor R1 can be short-circuited by cable32
  • the current can flow through the pull-up resistor R0 , cable31 and cable32, so as to reach the ground potential GND1 to form a loop.
  • FIG. 8 is a simplified schematic diagram of another radio frequency system provided by the embodiment of the present application. Referring to FIG. 8 , the cable31 is disconnected. , the current flows through the second voltage dividing resistor R2 by the pull-up resistor R0. However, cable32 is connected normally, and the first voltage dividing resistor R1 is short-circuited by cable32. After the current flows through the second voltage dividing resistor R2, it can reach the ground potential GND1 through the cable32.
  • the resistance value, R2 is the resistance value corresponding to the second voltage dividing resistor R2.
  • FIG. 9 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application. Referring to FIG. 9 , cable31 is normally connected , the second voltage dividing resistor R2 is short-circuited by cable31. However, the connection of cable32 is disconnected, and after the current flows through the pull-up resistor R0 and cable31, it can only flow through the first voltage dividing resistor R1 to reach the ground potential GND2.
  • the resistance value, R1 is the resistance value corresponding to the first voltage dividing resistor R1.
  • FIG. 10 is a simplified schematic diagram of another radio frequency system provided by the embodiment of the present application. Referring to FIG. 10 , both cable31 and cable32 are connected. After disconnection, after the current flows through the pull-up resistor R0, it can only flow through the second voltage dividing resistor R2 and the first voltage dividing resistor R1 to reach the ground potential GND2.
  • V4 V*(R1+R2)/(R0+R1+R2), where V4 is the potential of the detection point, V is the potential of the DC voltage source V0, and R0 is the pull-up resistor
  • R0 is the pull-up resistor
  • R1 is the resistance value corresponding to the first voltage dividing resistor R1
  • R2 is the resistance value corresponding to the second voltage dividing resistor R2.
  • the resistance value of the pull-up resistor R0 is 20K ⁇
  • the resistance value of the first voltage dividing resistor R1 is 20K ⁇
  • the resistance value of the second voltage dividing resistor R2 is 10K ⁇ .
  • the capacitance value of the ground capacitor C5 is 20pF
  • the voltage dividing module 601 may also include a capacitor C5 to ground.
  • the capacitor C5 By setting the capacitor C5 to ground between the two radio frequency circuits, the radio frequency signals of the radio frequency system can be serially inserted into the two radio frequency circuits, and The ground capacitor C5 is guided to the ground potential GND2 to prevent the radio frequency signal in one radio frequency circuit from entering another radio frequency circuit through the radio frequency system, thereby improving the isolation between cable31 and cable32.
  • the ground capacitor C5 is connected in parallel with the first voltage dividing resistor R1, that is, the first end of the ground capacitor C5 is coupled with the ground potential GND2, and the second end of the ground capacitor C5 is respectively connected with the first voltage dividing resistor R1.
  • the second terminal is coupled to the second terminal of the second voltage dividing resistor R2.
  • the power supply module 603 of the radio frequency system is located on the sub-board of the electronic device, and the detection module 602 and the voltage divider module 601 of the radio frequency system are located on the main board of the electronic device.
  • the position of each circuit module of the radio frequency system can be adjusted according to the layout design of the main board and the sub-board.
  • the power supply module 603 and the detection module 602 can be set on the sub-board, and the voltage divider module 601 can be set on the main board; or, the power supply module 603 and the detection module 602 can also be set on the main board, and the voltage divider module 601 can be set on the main board.
  • the power supply module 603 can also be set on the main board, and the voltage divider module 601 and the detection module 602 can be set on the sub board; Sub-board, the embodiment of this application does not limit the position of each circuit module in the radio frequency system.
  • the voltage divider module 601 is coupled between the DC blocking capacitor C1 and the connection seat 41 corresponding to the radio frequency circuit 11 through the choke inductor L1, and is coupled to the connection seat 41 through the choke inductor L3. Between the DC blocking capacitor C3 and the connection seat 43 corresponding to the radio frequency circuit 12 .
  • the voltage dividing module 601 when the voltage dividing module 601 is coupled between the DC blocking capacitor C1 and the connection base 41 corresponding to the radio frequency circuit 11 through the choke inductor L1, the voltage dividing module 601 can be coupled to the DC blocking capacitor through the choke inductor L3 Between C4 and the connection seat 44 corresponding to the antenna 22, the first end of the choke inductor L4 is coupled between the DC blocking capacitor C3 and the connection seat 43 corresponding to the radio frequency circuit 12, and the second end can be coupled to the ground potential GND1.
  • the voltage dividing module 601 when the voltage dividing module 601 is coupled between the DC blocking capacitor C3 and the connection base 43 corresponding to the radio frequency circuit 12 through the choke inductor L3, the voltage dividing module 601 can be coupled between the DC blocking capacitor C2 and the antenna 21 through the choke inductor L1 Between the corresponding connection bases 42 , the power supply module 603 can be coupled between the DC blocking capacitor C1 and the connection base 41 corresponding to the radio frequency circuit 11 through the choke inductor L2 .
  • the voltage dividing module 601 may also be coupled between two adjacent cables in other manners, and the embodiment of the present application does not limit the coupling manner of the cables.
  • the power supply module 603 and the detection module 602 are respectively located on the main board and the sub board of the electronic device (for example, the power supply module 603 is located on the main board and the detection module 602 is located on the sub board, or, the power supply module 603 is located on the sub board and the detection module 602 is located on the main board)
  • the power supply module 603 and the detection module 602 can be coupled through a flexible printed circuit (FPC)
  • the FPC has the advantages of light weight and thin thickness
  • the FPC can be freely bent and folded, so that the position between the main board and the auxiliary board is Relationships can be flexibly adjusted.
  • the power supply module 403 and the detection module 402 may also be coupled through a signal line, which is not limited in this embodiment of the present application.
  • FIG. 12 is a circuit frame diagram of another radio frequency system provided by an embodiment of the present application.
  • the radio frequency system may include: a first voltage divider module 1201, a second voltage divider The voltage module 1202 , the detection module 1203 and the power supply module 1204 .
  • the output end of the power supply module 1204 can be coupled to the detection module 1203 through the first node A, the power supply module 1204 can also be coupled to the first voltage divider module 1201 through cable31, and the first voltage divider module 1201 can be connected to the second voltage divider through cable32 Module 1202 is coupled. That is, both ends of the cable 31 may be coupled with the first voltage dividing module 1201 . When the cable 31 is disconnected, a circuit loop can be formed through the first voltage dividing module 1201 . Similarly, both ends of the cable 32 may also be coupled with a second voltage dividing module 1202, and when the cable 32 is disconnected, a circuit loop may be formed by the second voltage dividing module 1202. In addition, both ends of cable33 can be respectively coupled to cable32 and ground potential GND1.
  • the radio frequency system in this embodiment of the present application may also include: a first node (A), a plurality of DC blocking capacitors (C1, C2, C3, C4, C6, and C7) and multiple choke inductors (L1, L2, L3, L4, L5, L6 and L7).
  • a first node A
  • C1, C2, C3, C4, C6, and C7 DC blocking capacitors
  • multiple choke inductors L1, L2, L3, L4, L5, L6 and L7.
  • multiple DC blocking capacitors such as C1, C2, C3, and C4, and multiple choke inductors, such as L1, L2, and L3, are consistent with the arrangement shown in FIG. 6, and will not be repeated here.
  • the choke inductor L4 shown in FIG. 6 is no longer located between the cable32 and the ground potential GND1, but is located between the cable33 and the ground potential GND1 as shown in FIG. 12 .
  • DC blocking capacitors C6 and C7
  • choke inductors L5, L6 and L7
  • a DC blocking capacitor C6 is provided between the radio frequency circuit 13 and the corresponding connection seat 45
  • a DC blocking capacitor C7 is provided between the antenna 23 and the corresponding connection base 46
  • a choke inductance L5 and a choke inductance L6 are provided between the second voltage dividing module 1202 and the cable 32
  • the choke inductance L5 and the choke inductance L6 are respectively connected
  • a choke inductor L7 is arranged between the second voltage dividing module 1202 and the cable 33 at both ends of the cable 32 .
  • the first end of the choke inductance L4 is coupled between the DC blocking capacitor C6 and the connection seat 45 corresponding to the radio frequency circuit 13, the second end of the choke inductance L4 is coupled with the ground potential GND1; the first end of the choke inductance L5 The end is coupled between the DC blocking capacitor C3 and the connection seat 43 corresponding to the radio frequency circuit 12, the second end of the choke inductor L5 is coupled to the second voltage dividing module 1202; the first end of the choke inductor L6 is coupled to the DC blocking capacitor C4
  • the connection bases 44 corresponding to the antenna 22 the second end of the choke inductance L6 is coupled to the second voltage dividing module 1202 ; the first end of the choke inductance L7 is coupled to the connection base 46 corresponding to the DC blocking capacitor C7 and the antenna 23 . In between, the second end of the choke inductor L7 is coupled with the second voltage dividing module 1202 .
  • the first voltage dividing module 1201 , the detection module 1203 and the power supply module 1204 in the embodiment of the present application are similar to the voltage dividing module 601 , the detection module 602 and the power supply module 603 shown in FIG. 6 , and will not be repeated here.
  • the second voltage dividing module 1202 in this embodiment of the present application is similar to the first voltage dividing module 1201 .
  • the second voltage dividing module 1202 may include a third voltage dividing resistor R3 and a fourth voltage dividing resistor R4 .
  • the first end of the third voltage dividing resistor R3 is coupled to the ground potential GND3, the second end of the third voltage dividing resistor R3 is coupled to the second end of the fourth voltage dividing resistor R4, and the first end of the fourth voltage dividing resistor R4
  • the terminal is coupled with the choke inductor L5.
  • both the second end of the third voltage dividing resistor R3 and the second end of the fourth voltage dividing resistor R4 may be coupled between the choke inductance L6 and the choke inductance L7.
  • the parameter value of the third voltage dividing resistor R3 may refer to the parameter value of the first voltage dividing resistor R1 in the first voltage dividing module 1201 in the embodiment of the present application, and the parameter value of the fourth voltage dividing resistor R4 may be implemented with reference to the present application.
  • the parameter values of the second voltage dividing resistor R2 in the first voltage dividing module 1201 will not be repeated here.
  • FIG. 13 is a simplified schematic diagram of a radio frequency system provided by an embodiment of the present application, and the radio frequency circuit, antenna, DC blocking capacitor and choke inductor shown in FIG. 12 are omitted.
  • the second voltage dividing resistor R2 in the RF system is short-circuited by cable31
  • the fourth voltage-dividing resistor R4 is short-circuited by cable32
  • the third voltage-dividing resistor R3 is short-circuited by cable33
  • the first voltage dividing resistor R1 is short-circuited by cable32 and cable33
  • the current flows through the pull-up resistors R0, cable31, cable32 and cable33, thereby reaching the ground potential GND1 to form a loop.
  • FIG. 14 is a simplified schematic diagram of another radio frequency system provided by the embodiment of the present application.
  • the current flows through the second voltage dividing resistor R2 from the pull-up resistor R0.
  • the first voltage dividing resistor R1 the third voltage dividing resistor R3 and the fourth voltage dividing resistor R4 are short-circuited.
  • the second voltage dividing resistor R2 it can reach the ground potential GND1 through the cable32 and the cable33.
  • V6 V*R2/(R0+R2), where V6 is the potential of the detection point, V is the potential of the DC voltage source V0, R0 is the resistance value corresponding to the pull-up resistor R0, R2 is the resistance value corresponding to the second voltage dividing resistor R2.
  • FIG. 15 is a simplified schematic diagram of another radio frequency system provided by the embodiment of the present application. Referring to FIG. It is normally connected to cable33, the second voltage dividing resistor R2 is short-circuited by cable31, and the third voltage-dividing resistor R3 is short-circuited by cable33. The cable32 is disconnected, and the first voltage dividing resistor R1 and the fourth voltage dividing resistor R4 are connected in parallel.
  • FIG. 16 is a simplified schematic diagram of another radio frequency system provided by the embodiment of the present application. Referring to FIG. 16 , cable31 It is normally connected to cable32, the second voltage dividing resistor R2 is short-circuited by cable31, and the fourth voltage-dividing resistor R4 is short-circuited by cable32. The cable33 is disconnected, and the first voltage dividing resistor R1 and the third voltage dividing resistor R3 are connected in parallel.
  • FIG. 17 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • the cable31 and cable32 of the electronic device are disconnected, the cable33 is normally connected, the third voltage dividing resistor R3 is short-circuited by the cable33, the first The voltage dividing resistor R1 and the fourth voltage dividing resistor R4 are connected in parallel, and the second voltage dividing resistor R2 is connected in series with the parallel first voltage dividing resistor R1 and the fourth voltage dividing resistor R4.
  • V9 V*(R2+Rx3)/(R0+R2+Rx3), where V9 is the potential of the detection point, V is the potential of the DC voltage source V0, and R0 is the pull-up resistor
  • R0 is the pull-up resistor
  • R0 is the resistance value corresponding to R0
  • R2 is the resistance value corresponding to the second voltage dividing resistor R2
  • Rx3 is the equivalent resistance of the first voltage dividing resistor R1 and the fourth voltage dividing resistor R4 connected in parallel
  • Rx3 R1*R4/(R1+ R4)
  • R1 is the resistance value corresponding to the first voltage dividing resistor R1
  • R4 is the resistance value corresponding to the fourth voltage dividing resistor R4.
  • FIG. 18 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • the cable32 and cable33 of the electronic device are disconnected, the cable31 is connected normally, the second voltage dividing resistor R2 is short-circuited by the cable31, and the third The voltage dividing resistor R3 and the fourth voltage dividing resistor R4 are connected in series, and the first voltage dividing resistor R1 is connected in parallel with the third voltage dividing resistor R3 and the fourth voltage dividing resistor R4 connected in series.
  • V10 V*Rx4/(R0+Rx4)
  • V10 is the potential of the detection point
  • V is the potential of the DC voltage source V0
  • R0 is the resistance value corresponding to the pull-up resistor R0
  • Rx4 is the equivalent resistance of the first voltage dividing resistor R1 and the third voltage dividing resistor R3 and the fourth voltage dividing resistor R4 connected in series in parallel
  • Rx4 R1*(R3+R4)/(R1+R3+R4)
  • R1 is The resistance value corresponding to the first voltage dividing resistor R1
  • R3 is the resistance value corresponding to the third voltage dividing resistor R3
  • R4 is the resistance value corresponding to the fourth voltage dividing resistor R4.
  • FIG. 19 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application.
  • the cable31 and cable33 of the electronic device are disconnected, the cable32 is normally connected, the fourth voltage dividing resistor R4 is short-circuited by the cable32, the first The voltage dividing resistor R1 and the third voltage dividing resistor R3 are connected in parallel, and the second voltage dividing resistor R2 is connected in series with the parallel first voltage dividing resistor R1 and the third voltage dividing resistor R3.
  • the resistance value corresponding to R0, R2 is the resistance value corresponding to the second voltage dividing resistor R2
  • Rx5 is the equivalent resistance of the first voltage dividing resistor R1 and the third voltage dividing resistor R3 in parallel
  • Rx5 R1*R3/(R1+R3 )
  • R1 is the resistance value corresponding to the first voltage dividing resistor R1
  • R3 is the resistance value corresponding to the third voltage dividing resistor R3.
  • FIG. 20 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application. As shown in FIG. 20 , cable31, cable32, and cable33 of the electronic device are all disconnected, and the first voltage divider R1 is connected to the third voltage divider in series The resistor R3 and the fourth voltage dividing resistor R4 are connected in parallel.
  • V12 V*(R2+Rx6)/(R0+R2+Rx6), where V12 is the potential of the detection point, V is the potential of the DC voltage source V0, and R0 is the pull-up resistor
  • R0 the resistance value corresponding to R0
  • R2 is the resistance value corresponding to the second voltage dividing resistor R2
  • Rx6 is the equivalent resistance of the first voltage dividing resistor R1 and the third voltage dividing resistor R3 and the fourth voltage dividing resistor R4 connected in series in parallel
  • Rx6 R1*(R3+R4)/(R1+R3+R4)
  • R1 is the resistance value corresponding to the first voltage dividing resistor R1
  • R3 is the resistance value corresponding to the third voltage dividing resistor R3
  • R4 is the fourth voltage dividing resistor The resistance value corresponding to R4.
  • the first voltage dividing module 1201 may further include a capacitor C5 to ground, and the capacitor C5 to ground is connected in parallel with the first voltage dividing resistor R1 to improve the isolation between cable31 and cable32.
  • the second voltage dividing module 1202 may further include a capacitor C8 to ground, and the capacitor C8 to ground is connected in parallel with the third voltage dividing resistor R3 to improve the isolation between cable32 and cable33.
  • ground capacitance C5 and ground capacitance C8 are similar to the ground capacitance C5 shown in FIG. 11 , and will not be repeated here.
  • the power supply module 1204 and the second voltage dividing module 1202 of the radio frequency system are located on the sub-board of the electronic device, while the detection module 1203 and the first voltage dividing module 1201 of the radio frequency system are located on the main board of the electronic device.
  • the position of each circuit module of the radio frequency system can be adjusted according to the layout design of the main board and the sub-board. For example, you can refer to the embodiments corresponding to FIG. 6 to FIG. The position of each circuit module is not limited in this embodiment of the present application.
  • first voltage dividing module 1201 and the second voltage dividing module 1202 can be coupled between two adjacent cables in different ways. Please refer to the different coupling modes corresponding to the voltage dividing module 601 in FIG. 6 , which are not repeated here. Repeat.
  • the radio frequency system can be further optimized to reduce the components in the radio frequency system, reduce the complexity of the radio frequency system, and reduce the frequency of the radio frequency system on the main board and sub-board of the electronic equipment. area occupied above.
  • the first voltage dividing module 1201 in the radio frequency system can be optimized, and the first voltage dividing resistor R1 in the first voltage dividing module 1201 can be removed to obtain the radio frequency system shown in FIG. 22 .
  • FIG. 22 is a circuit frame diagram of another radio frequency system provided by an embodiment of the present application.
  • the radio frequency system may include: a first voltage dividing module 2201 , a second voltage dividing module 2202 , a detection module 2203 and a power supply module 2204 , the radio frequency system may also include: multiple DC blocking capacitors (C1, C2, C3, C4, C6 and C7) and multiple choke inductors (L1, L2, L3, L4, L5, L6 and L7).
  • the power supply module 2204 , the detection module 2203 , the second voltage divider module 2202 , multiple DC blocking capacitors and multiple choke inductors are similar to the radio frequency system shown in FIG. 12 , and will not be repeated here.
  • the first voltage dividing module 2201 in the radio frequency system shown in FIG. 22 only includes the second voltage dividing resistor R2, and the first voltage dividing resistor R2 of the second voltage dividing resistor R2 The terminal is coupled to the second terminal of the pull-up resistor R0 in the power supply module 2204, and the second terminal of the second voltage dividing resistor R2 is coupled between the choke inductance L1 and the choke inductance L3.
  • FIG. 23 is a simplified schematic diagram of a radio frequency system provided by an embodiment of the present application, and the radio frequency circuit, antenna, DC blocking capacitor and choke inductor shown in FIG. 22 are omitted.
  • the second voltage dividing resistor R2 in the RF system is short-circuited by cable31
  • the fourth voltage-dividing resistor R4 is short-circuited by cable32
  • the third voltage-dividing resistor R3 is short-circuited by cable33 Short circuit
  • the current flows through the pull-up resistors R0, cable31, cable32 and cable33, thus reaching the ground potential GND1 to form a loop.
  • FIG. 24 is a simplified schematic diagram of another radio frequency system provided by the embodiment of the present application.
  • the current flows through the second voltage dividing resistor R2 from the pull-up resistor R0.
  • the third voltage dividing resistor R3 is short-circuited by cable33
  • the fourth voltage dividing resistor R4 is short-circuited by cable32. After the current flows through the second voltage dividing resistor R2, it reaches the ground potential GND1 through cable32 and cable33.
  • V14 V*R2/(R0+R2), where V14 is the potential of the detection point, V is the potential of the DC voltage source V0, R0 is the resistance value corresponding to the pull-up resistor R0, R2 is the resistance value corresponding to the second voltage dividing resistor R2.
  • FIG. 25 is a simplified schematic diagram of another radio frequency system provided by this embodiment of the present application. Referring to FIG. 25 , cable31 It is normally connected to cable33, the second voltage dividing resistor R2 is short-circuited by cable31, and the third voltage-dividing resistor R3 is short-circuited by cable33. The connection of cable32 is disconnected, and only the fourth voltage dividing resistor R4 is connected.
  • V15 V*R4/(R0+R4), where V15 is the potential of the detection point, V is the potential of the DC voltage source V0, R0 is the resistance value corresponding to the pull-up resistor R0, R4 is the resistance value corresponding to the fourth voltage dividing resistor R4.
  • FIG. 26 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application. Referring to FIG. 26 , cable31 It is normally connected to cable32, the second voltage dividing resistor R2 is short-circuited by cable31, and the fourth voltage-dividing resistor R4 is short-circuited by cable32. The cable33 is disconnected, and only the third voltage dividing resistor R3 is connected to the RF system.
  • V16 V*R3/(R0+R3), where V16 is the potential of the detection point, V is the potential of the DC voltage source V0, R0 is the resistance value corresponding to the pull-up resistor R0, R3 is the resistance value corresponding to the third voltage dividing resistor R3.
  • FIG. 27 to FIG. 30 a simplified schematic diagram of the radio frequency system shown in FIG. 22 is respectively shown when two cables or three cables are disconnected.
  • FIG. 27 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application. As shown in FIG. 27 , the cable31 and cable32 of the electronic device are disconnected, the cable33 is normally connected, the third voltage dividing resistor R3 is short-circuited by the cable33, and the second The voltage dividing resistor R2 is connected in series with the fourth voltage dividing resistor R4.
  • FIG. 28 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application. As shown in FIG. 28 , the cable32 and cable33 of the electronic device are disconnected, the cable31 is normally connected, the second voltage dividing resistor R2 is short-circuited by the cable31, and the third The voltage dividing resistor R3 and the fourth voltage dividing resistor R4 are connected in series.
  • FIG. 29 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application. As shown in FIG. 29 , the cable31 and cable33 of the electronic device are disconnected, the cable32 is normally connected, the fourth voltage dividing resistor R4 is short-circuited by the cable32, and the second The voltage dividing resistor R2 is connected in series with the third voltage dividing resistor R3.
  • FIG. 30 is a simplified schematic diagram of another radio frequency system provided by an embodiment of the present application. As shown in FIG. 30 , cable31, cable32, and cable33 of the electronic device are all disconnected, and the second voltage dividing resistor R2 and the third voltage dividing resistor R3 It is connected in series with the fourth voltage dividing resistor R4.
  • V20 V*(R2+R3+R4)/(R0+R2+R3+R4), where V20 is the potential of the detection point, V is the potential of the DC voltage source V0, and R0 is the resistance value corresponding to the pull-up resistor R0, R2 is the resistance value corresponding to the second voltage dividing resistor R2, R3 is the resistance value corresponding to the third voltage dividing resistor R3, and R4 is the resistance value corresponding to the fourth voltage dividing resistor R4.
  • the first voltage dividing module 2201 may further include a capacitor C5 to ground, and the capacitor C5 to ground is arranged between the second end of the second voltage dividing resistor R2 and the ground potential GND2, so as to increase cable31 and cable32 isolation between.
  • the second voltage dividing module 2202 may further include a capacitor C8 to ground, and the capacitor C8 to ground is connected in parallel with the third voltage dividing resistor R3 to improve the isolation between cable32 and cable33.
  • the above-mentioned capacitance to ground C5 and capacitance C8 to ground are similar to capacitance to ground C5 and capacitance C8 to ground shown in FIG. 22 , and details are not described herein again.
  • the power supply module 2204 and the second voltage divider module 2202 of the radio frequency system are located on the sub-board of the electronic device, while the detection module 2203 and the first voltage divider module 2201 of the radio frequency system are located on the main board of the electronic device.
  • the position of each circuit module of the radio frequency system can be adjusted according to the layout design of the main board and the sub-board. For example, you can refer to the embodiments corresponding to FIG. 6 to FIG. The position of each circuit module is not limited in this embodiment of the present application.
  • first voltage dividing module 2201 and the second voltage dividing module 2202 can be coupled between two adjacent cables in different ways. Please refer to the different coupling modes corresponding to the voltage dividing module 601 in FIG. 6 , which are not repeated here. Repeat.
  • the power supply module 2204 and the detection module 2203 are respectively located on the main board and the sub-board of the electronic device (for example, the power supply module 2204 is located on the main board and the detection module 2203 is located in the sub-board, or, the power supply module 2204 is located in the sub-board and the detection module 2203 is located in the main board. ), the power supply module 2204 and the detection module 2203 may be coupled through an FPC or through a signal line, which is not limited in this embodiment of the present application.
  • the application of the above RF system in electronic equipment requires a certain R&D cycle to update and verify the application program matching the RF system, and the application program matching the RF system is not updated before the verification is completed.
  • the existing application program of the electronic device still needs to implement the antenna presence detection mechanism through GPIO, that is, by detecting whether each cable is abnormally connected, the radio frequency communication of the antenna of the electronic device is affected.
  • radio frequency system shown in FIG. 6 , FIG. 11 , FIG. 12 , FIG. 21 , FIG. 22 , and FIG. 31 it is still necessary to add the radio frequency system shown in FIG. 6 , FIG. 11 , FIG. 12 , FIG. 21 , FIG. 22 , and FIG. 31 to the electronic device on the basis of the electronic device with GPIO, so as to implement different functions.
  • the radio frequency system shown in Figure 11 as an example, that is, when the electronic device includes GPIO and 2 cables (cable31 and cable32), add the radio frequency system shown in Figure 11, and the result is as shown in Figure 32 another radio frequency system.
  • the radio frequency system may include: a GPIO detection module 3201 , a GPIO power supply module 3202 , a voltage divider module 3203 , a detection module 3204 and a power supply module 3205 .
  • the radio frequency system may further include: a plurality of DC blocking capacitors (C1, C2, C3 and C4), a plurality of choke inductors (L1, L2, L3 and L4), and a capacitance to ground (C5).
  • the coupling mode of the voltage dividing module 3203, the detection module 3204, the power supply module 3205, the multiple DC blocking capacitors, the multiple choke inductors, and the grounding capacitor is the same as the voltage dividing module 601 and the detection module 602 shown in FIG. 11 .
  • the power supply module 603 , a plurality of DC blocking capacitors, a plurality of choke inductors, and a coupling manner of the grounding capacitor are similar, and will not be repeated here.
  • the GPIO power supply module 3202 is similar to the power supply module 3205 , and the GPIO detection module 3201 is also similar to the detection module 3204 .
  • the GPIO power supply module 3202 can provide voltage for each cable in the electronic device, and the GPIO detection module 3201 can sample the voltage to determine whether each cable in the electronic device is disconnected.
  • the GPIO power supply module 3202 and the power supply module 3205 of the radio frequency system are located on the sub-board of the electronic device, while the GPIO detection module 3201, the detection module 3204 and the voltage divider module 3203 of the radio frequency system are located on the main board of the electronic device.
  • the position of each circuit module of the radio frequency system can be adjusted according to the layout design of the main board and the sub-board. For example, you can refer to the embodiments corresponding to FIG. 6 to FIG. The position of each circuit module is not limited in this embodiment of the present application.
  • the voltage dividing module 3203 can be coupled between two adjacent cables in different ways, and the different coupling modes corresponding to the voltage dividing module 601 in FIG. 6 can be referred to, and details are not repeated here.
  • the detection module 3204 can use the wiring multiplexing method to realize the detection on the basis of the wiring of the GPIO detection module 3201
  • the wiring of the module 3204 can reduce the hardware cost of the wiring and the complexity of the radio frequency system.
  • the detection module 1604 can identify multiple potentials according to the collected potentials, so that the processor can determine the connection state of each cable according to the identified potentials.
  • the GPIO detection module 1601 can determine the potential level according to the collected potential, that is, determine the high potential or the low potential, and the processor can determine whether the cable is disconnected according to the high potential or the low potential.
  • the above-mentioned radio frequency system for detecting whether the cable is disconnected can be expanded to obtain the radio frequency system shown in Figure 33 that can also be used to detect whether the cable is disconnected.
  • 33 shows the circuit structure diagram of the radio frequency system when the electronic device includes 2 cables
  • the radio frequency system may include: multiple circuit modules such as a voltage divider module 3301, a detection module 3302 and a power supply module 3303, and the radio frequency system may also include: The first node (A), a plurality of DC blocking capacitors (C1, C2, C3 and C4) and a plurality of choke inductors (L1, L2, L3 and L4).
  • the voltage dividing module 3301 , the detection module 3302 and the power supply module 3303 are respectively similar to the voltage dividing module 601 , the detection module 602 and the power supply module 603 , and will not be repeated here.
  • the voltage dividing module 3301 may further include a fifth voltage dividing resistor R5, and the fifth voltage dividing resistor R5 is coupled in series between cable31 and cable32 between.
  • the process of determining the potential of the detection point and determining the connection state of each cable by the detection module 3302 is similar to the above-mentioned content, and will not be repeated here.
  • FIG. 34 shows another combined radio frequency system.
  • FIG. 34 shows a circuit structure diagram of the radio frequency system including 3 cables.
  • the radio frequency system may include: a first voltage divider module 3401, a second voltage divider module 3402, a detection module 3403, a power supply module 3404 and other circuit modules, the radio frequency system may also include: a first node (A), a plurality of DC blocking capacitors (C1, C2, C3, C4, C6 and C7) and multiple choke inductors (L1, L2, L3, L4, L5, L6 and L7).
  • A first node
  • C1, C2, C3, C4, C6 and C7 a plurality of DC blocking capacitors
  • L1, L2, L3, L4, L5, L6 and L7 multiple choke inductors
  • the first voltage dividing module 3401, the second voltage dividing module 3402, the detection module 3403 and the power supply module 3404 are respectively similar to the first voltage dividing module 1201, the second voltage dividing module 1202, the detection module 1203 and the power supply module 1204, here No longer.
  • the second voltage dividing module 3402 may further include a sixth voltage dividing resistor R6, and the sixth voltage dividing resistor R6 is coupled in series between cable32 and cable33.
  • At least one voltage divider module coupled to the power supply module is provided in the radio frequency system, and each voltage divider module is coupled in series, wherein each voltage divider module corresponds to a cable, and each voltage divider module corresponds to a cable.
  • a voltage divider module is coupled to both ends of the corresponding cable.
  • the current can flow to the next adjacent circuit module through the voltage divider module corresponding to the cable, so that the resistance in the voltage divider module divides the voltage, then the detection module connected to the power supply module
  • the changing potential can also be detected, so that each cable that is disconnected can be determined according to the changing potential, and there is no need to set a GPIO proportional to the number of cables, which can reduce the hardware required to detect whether each cable is disconnected, and reduce The cost of detecting whether each cable is disconnected.
  • cables can be coupled in series between the power supply module and the voltage divider module, between the voltage divider module and the ground potential, and between two adjacent voltage divider modules, and combined and arranged between the radio frequency system and the radio frequency circuit, and DC blocking capacitors and choke inductors are arranged between the radio frequency system and the antenna, which can prevent the radio frequency signal in the radio frequency circuit from entering the radio frequency system, and also prevent the current in the radio frequency system from entering the radio frequency circuit, thereby improving the connection between the radio frequency system and the radio frequency circuit. isolation and improve the accuracy of the RF system.
  • the radio frequency signal serially connected to the radio frequency system in the radio frequency circuit can be guided to the ground potential through the ground capacitance, which can prevent The radio frequency signal in one radio frequency circuit enters another radio frequency circuit through the radio frequency system, thereby improving the isolation degree between the two radio frequency circuits.
  • the radio frequency system provided by the embodiment of the present application may be added to the electronic device including the GPIO by using the route multiplexing method in combination with the original GPIO, so as to reduce the route and save the hardware resources. Moreover, based on the different functions of the original GPIO, combined with the radio frequency system, it can determine whether each cable of the electronic device is disconnected, thereby enriching the functions of the radio frequency system and improving the diversity of functions realized by the radio frequency system.
  • FIG. 35 is a schematic flowchart of a detection method provided by an embodiment of the present application.
  • the method may be applied to the processor connected to the radio frequency system as shown in FIG. 2 , see FIG. 35 , the method includes:
  • Step 3501 Acquire potential information corresponding to the detection point in the radio frequency system.
  • the potential information is used to indicate the current potential level of the detection point.
  • the detection point of the radio frequency system may be the second end of the pull-up resistor of the power supply module in the radio frequency system, or may be another position where the potential changes with the change of the circuit coupling mode in the radio frequency system.
  • the detection point of the radio frequency system is not limited.
  • cables can be installed on the connecting sockets of electronic equipment, but due to too many connecting sockets, the connection of multiple cables may be disconnected. Or, in the process of using the electronic device, the electronic device may be affected by collision and impact, causing the cable in the electronic device to fall off from the connection seat, resulting in the deterioration of the communication quality of the electronic device, or the inability to perform radio frequency communication.
  • the embodiment of the present application provides a detection method for detecting whether each cable in an electronic device is abnormal, that is, detecting whether each cable is connected incorrectly or disconnected, so that the storage and/or Remind the cable that there is an exception.
  • the processor can combine with the radio frequency system shown in FIG. 2 to obtain the potential information collected by the detection module in the radio frequency system, so that in the subsequent steps, the processor can determine the electrical potential information according to the potential information. Check whether each cable of the device is abnormal.
  • the processor can continuously acquire the potential information sent by the detection module in the radio frequency system, or can periodically acquire the potential information sent by the detection module, and the period of acquiring the potential information can be adjusted according to the circuit of the detection module.
  • the method of acquiring the potential information is not limited.
  • Step 3502 from a plurality of preset potentials, determine a target preset potential that matches the potential information.
  • each potential that can be detected by the detection point can be stored as a preset potential in the processor, so that in subsequent steps, an abnormal cable in the electronic device can be determined according to the matched target preset potential.
  • the number of preset potentials stored in the processor is proportional to the number of cables in the electronic device. If there are more cables in the electronic device, the more preset potentials are stored in the processor.
  • the processor may compare the potential indicated by the potential information with multiple pre-stored preset potentials, and then determine from multiple comparison results.
  • the target preset potential that matches the potential information.
  • the processor may subtract the potential indicated by the potential information from each preset potential, use the calculated difference as the comparison result, and then determine the target comparison result with the smallest absolute value of the parameter value from the multiple comparison results , and then the preset potential corresponding to the target comparison result can be used as the target preset potential.
  • the processor may pre-store the correspondence between the preset potential and the connection state.
  • the corresponding relationship may include multiple preset potentials and multiple connection states, and each preset potential corresponds to one connection state.
  • the connection state corresponding to the first preset potential in the corresponding relationship may be that cable31 and cable32 are connected incorrectly, that is, cable31 and cable32 are reversed;
  • the connection state corresponding to the second preset potential may be that cable33 is disconnected, or That is, at least one end of the cable 33 is detached from the corresponding connecting seat.
  • the processor can obtain a plurality of preset potentials from the corresponding relationship, so that in subsequent steps, it can determine whether each cable of the electronic device is based on the connection state corresponding to each preset potential. Abnormal.
  • Step 3503 Determine the target connection state corresponding to the target preset potential according to the preset correspondence.
  • the processor may search for the connection state corresponding to the target preset potential from the corresponding relationship according to the target preset potential, and then may use the corresponding connection state as the target corresponding to the target preset potential
  • the connection state that is, the connection state corresponding to the target preset potential is regarded as the target connection state corresponding to the potential information.
  • the processor may store the target connection state in the memory connected to the processor, so that when maintaining the electronic device, the user can, according to the target connection state stored in the memory, It is determined that the cable of the electronic equipment is abnormal, so as to facilitate the maintenance of the electronic equipment.
  • the processor may continue to execute step 3504.
  • the processor may also perform other operations according to the target connection state, and the embodiments of the present application do not limit the operations performed by the processor according to the target connection state.
  • Step 3504 according to the target connection state, remind the radio frequency connection line to be abnormally connected.
  • the processor determines the target connection state, if the target connection state indicates that the radio frequency connection line is abnormally connected, the processor can control the display screen and/or the speaker connected to the processor, alarm the user, and promptly remind the user of at least one of the electronic equipment.
  • the cable is abnormal, so that the user can maintain the electronic equipment in time.
  • the processor can obtain the pre-stored cable exception text, and control the display screen to display the cable exception text.
  • the display screen can display "The radio frequency cable is connected incorrectly, please check!, or it can display "The radio frequency cable is disconnected.” ,Please check!.
  • the processor can also obtain the pre-stored abnormal voice of the cable first, and control the speaker to play the abnormal voice of the cable.
  • the speaker can play "The radio frequency cable is connected incorrectly, please check!, or it can play "The radio frequency cable is disconnected.” ,Please check!.
  • the display screen is showing the cable
  • the speaker can play the abnormal voice of the cable corresponding to the abnormal text of the cable.
  • the detection method provided by the embodiment of the present application obtains the potential information corresponding to the detection point in the radio frequency system, and determines the target preset potential matching the potential information from a plurality of preset preset potentials, Then, the target connection state corresponding to the target preset potential is determined from the corresponding relationship, that is, information such as whether each cable in the electronic device is abnormal, and the abnormal type of each cable.
  • the preset potential corresponding to the abnormality of each cable on the basis of determining the abnormality of the cable, it is possible to further accurately determine which cable of the electronic device is abnormal, and can also determine the abnormal type of the abnormal cable (such as disconnection). or connection error), without setting GPIO proportional to the number of cables, it can reduce the hardware cost of detecting cables, and improve the functional diversity and flexibility of detecting cables.
  • FIG. 36 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device may include a processor 3610, an external memory interface 3620, an internal memory 3621, a universal serial bus (USB) interface 3630, a charge management module 3640, a power management module 3641, a battery 3642, an antenna 21, an antenna 22, Mobile communication module 3650, wireless communication module 3660, audio module 3670, speaker 3670A, receiver 3670B, microphone 3670C, headphone jack 3670D, sensor module 3680, button 3690, motor 3691, indicator 3692, camera 3693, display screen 3694, and user Identity module (subscriber identification module, SIM) card interface 3695 and so on.
  • SIM subscriber identification module
  • the sensor module 3680 may include a pressure sensor 3680A, a gyroscope sensor 3680B, an air pressure sensor 3680C, a magnetic sensor 3680D, an acceleration sensor 3680E, a distance sensor 3680F, a proximity light sensor 3680G, a fingerprint sensor 3680H, a temperature sensor 3680J, a touch sensor 3680K, and ambient light.
  • Sensor 3680L Bone Conduction Sensor 3680M, etc.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device.
  • the electronic device may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 3610 may include one or more processing units, for example, the processor 3610 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • graphics processor graphics processor
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the controller can be the nerve center and command center of the electronic device.
  • the controller can generate operation control signals according to the instruction opcode and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 3610 for storing instructions and data.
  • the memory in processor 3610 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 3610. If the processor 3610 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 3610 is reduced, thereby improving the efficiency of the system.
  • the processor 3610 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 3610 may contain multiple sets of I2C buses.
  • the processor 3610 can be respectively coupled to the touch sensor 3680K, charger, flash, camera 3693, etc. through different I2C bus interfaces.
  • the processor 3610 can couple the touch sensor 3680K through the I2C interface, so that the processor 3610 and the touch sensor 3680K communicate with each other through the I2C bus interface, so as to realize the touch function of the electronic device.
  • the I2S interface can be used for audio communication.
  • the processor 3610 may contain multiple sets of I2S buses.
  • the processor 3610 may be coupled with the audio module 3670 through an I2S bus to implement communication between the processor 3610 and the audio module 3670.
  • the audio module 3670 can transmit audio signals to the wireless communication module 3660 through the I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications, sampling, quantizing and encoding analog signals.
  • the audio module 3670 and the wireless communication module 3660 may be coupled through a PCM bus interface.
  • the audio module 3670 can also transmit audio signals to the wireless communication module 3660 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 3610 with the wireless communication module 3660.
  • the processor 3610 communicates with the Bluetooth module in the wireless communication module 3660 through the UART interface to realize the Bluetooth function.
  • the audio module 3670 can transmit audio signals to the wireless communication module 3660 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 3610 with the display screen 3694, the camera 3693 and other peripheral devices.
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 3610 communicates with the camera 3693 through a CSI interface to implement the photographing function of the electronic device.
  • the processor 3610 communicates with the display screen 3694 through the DSI interface to realize the display function of the electronic device.
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 3610 with the camera 3693, the display screen 3694, the wireless communication module 3660, the audio module 3670, the sensor module 3680, etc.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 3630 is an interface that conforms to the USB standard specification, which can be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 3630 can be used to connect a charger to charge the electronic device, and can also be used to transfer data between the electronic device and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiments of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device.
  • the electronic device may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 3640 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 3640 may receive charging input from the wired charger through the USB interface 3630.
  • the charging management module 3640 may receive wireless charging input through a wireless charging coil of the electronic device. While the charging management module 3640 charges the battery 3642, it can also supply power to the electronic device through the power management module 3641.
  • the power management module 3641 is used to connect the battery 3642 , the charging management module 3640 and the processor 3610 .
  • the power management module 3641 receives input from the battery 3642 and/or the charge management module 3640, and supplies power to the processor 3610, internal memory 3621, external memory, display screen 3694, camera 3693, and wireless communication module 3660.
  • the power management module 3641 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 3641 can also be provided in the processor 3610 .
  • the power management module 3641 and the charging management module 3640 may also be provided in the same device.
  • the wireless communication function of the electronic device can be implemented by the antenna 21, the antenna 22, the mobile communication module 3650, the wireless communication module 3660, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in an electronic device can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 21 can be multiplexed into a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 3650 can provide wireless communication solutions including 2G/3G/4G/5G etc. applied to electronic devices.
  • the mobile communication module 3650 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and the like.
  • the mobile communication module 3650 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 3650 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into electromagnetic waves for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 3650 may be provided in the processor 3610.
  • at least part of the functional modules of the mobile communication module 3650 may be provided in the same device as at least part of the modules of the processor 3610 .
  • the radio frequency circuit in the above embodiment may be the mobile communication module 4750 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to speaker 3670A, receiver 3670B, etc.), or displays images or videos through display screen 3694.
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 3610, and may be provided in the same device as the mobile communication module 3650 or other functional modules.
  • the wireless communication module 3660 can provide applications on electronic devices including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 3660 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 3660 receives electromagnetic waves via the antenna 22 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 3610 .
  • the wireless communication module 3660 can also receive the signal to be sent from the processor 3610 , perform frequency modulation on it, amplify it, and convert
  • the antenna 21 of the electronic device is coupled with the mobile communication module 3650, and the antenna 22 is coupled with the wireless communication module 3660, so that the electronic device can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (global positioning system, GPS), global navigation satellite system (global navigation satellite system, GLONASS), Beidou navigation satellite system (beidou navigation satellite system, BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • global positioning system global positioning system, GPS
  • global navigation satellite system global navigation satellite system, GLONASS
  • Beidou navigation satellite system beidou navigation satellite system, BDS
  • quasi-zenith satellite system quadsi -zenith satellite system, QZSS
  • SBAS satellite based augmentation systems
  • the electronic device realizes the display function through the GPU, the display screen 3694, and the application processor.
  • the GPU is a microprocessor for image processing, which is connected to the display screen 3694 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 3610 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 3694 is used to display images, videos, etc.
  • Display screen 3694 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the electronic device may include 1 or N display screens 3694, where N is a positive integer greater than 1.
  • the external memory interface 3620 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device.
  • the external memory card communicates with the processor 3610 through the external memory interface 3620 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 3621 may be used to store computer executable program code, which includes instructions.
  • the processor 3610 executes various functional applications and data processing of the electronic device by executing the instructions stored in the internal memory 3621 .
  • the internal memory 3621 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area can store data (such as audio data, phone book, etc.) created during the use of the electronic device.
  • the internal memory 3621 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the electronic device can implement audio functions through an audio module 3670, a speaker 3670A, a receiver 3670B, a microphone 3670C, an earphone interface 3670D, and an application processor. Such as music playback, recording, etc.
  • the disclosed apparatus and method may be implemented in other manners.
  • the system embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be realized in the form of hardware, and can also be realized in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include at least: any entity or device capable of carrying computer program codes to an electronic device, a recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunication signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transceivers (AREA)

Abstract

一种射频系统,适用于射频通信技术领域,包括:第一射频电路(11)、第二射频电路(12)、第一天线(21)、第二天线(22)、第一射频连接线(31)和第二射频连接线(32),射频系统还包括:第一节点、第一分压元件(R1)和第二分压元件(R2);第一节点与第一电位耦合,第二分压元件(R2)的并联耦合在第一射频连接线(31)的两端,第一分压元件(R1)的第一端与第三电位耦合,第一分压元件(R1)的第二端耦合在第一射频连接线(31)和第二射频连接线(32)之间,可以根据第一节点变化的电位确定第一射频连接线(31)和第二射频连接线(32)连接断开,减少检测各个射频连接线是否连接断开时所需的硬件,并降低检测各个射频连接线是否连接断开所需的成本。一种电子设备及计算机可读存储介质。

Description

射频系统、电子设备及计算机可读存储介质
本申请要求于2020年10月31日提交国家知识产权局、申请号为202011200695.X、申请名称为“射频系统、电子设备及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频通信技术领域,尤其涉及一种射频系统、电子设备及计算机可读存储介质。
背景技术
射频连接线(RF cable)用于连接终端设备等电子设备中的射频电路和天线,使得终端设备可以通过连接的射频电路和天线进行射频通信。其中,射频电路可以位于终端设备的主板,主板上还可以包括与射频电路对应的连接座;副板上可以包括与天线连接并一一对应的连接座;射频连接线可以通过主板和副板上的连接座连接射频电路和天线。
随着通信技术的发展,终端设备等电子设备中的天线数量越来越多,使得终端设备中射频连接线的数目增加,射频连接线经常出现连接异常(如连接错误或连接断开等异常状况)。
发明内容
本申请提供一种射频系统、电子设备及计算机可读存储介质,解决了现有技术中无法准确确定电子设备中的射频连接线出现连接异常的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种射频系统,包括:第一射频电路、第二射频电路、第一天线、第二天线、第一射频连接线和第二射频连接线,所述第一天线通过所述第一射频连接线与所述第一射频电路或所述第二射频电路相耦合,所述第二天线通过所述第二射频连接线与所述第一射频电路或所述第二射频电路相耦合;
所述射频系统还包括:第一节点、第一分压元件和第二分压元件;
所述第一节点与第一电位耦合,所述第一节点与所述第一射频连接线的第一端耦合,所述第二射频连接线的第二端与第二电位耦合,所述第一电位高于所述第二电位;
所述第一分压元件的第一端与第三电位耦合,所述第一分压元件的第二端耦合在所述第一射频连接线和所述第二射频连接线之间,所述第一电位高于所述第三电位;
所述第二分压元件的并联耦合在所述第一射频连接线的两端。
通过在射频系统中设置第一分压元件和第二分压元件,当第一射频连接线和第二射频连接线连接断开时,射频系统中电流的流向发生变化,第一分压元件和第二分压元件的分压也会发生变化,则第一节点的电位也会发生变化,从而可以根据变化的电位确定第一射频连接线和第二射频连接线连接断开,无需设置与cable数量成正比的GPIO,可以减少检测各个cable是否连接断开时所需的硬件,并降低检测各个cable 是否连接断开所需的成本。
在第一方面的第一种可能实施方式中,所述射频系统还包括:第一对地电容,所述第一对地电容与所述第一分压元件并联。
通过设置第一对地电容,使得第一对地电容位于两条射频电路之间,则射频电路中串入射频系统的射频信号可以通过第一对地电容被引导至第三电位,也即是地电位,从而可以防止一条射频电路中的射频信号通过射频系统进入另一条射频电路,进而可以提高两条射频电路之间的隔离度。
基于第一方面的任意一种可能的实现方式,在第一方面的第二种可能实现方式中,所述射频系统还包括:第三分压元件,所述第三分压元件串联耦合在所述第一射频连接线和所述第二射频连接线之间。
通过添加第三分压元件,可以在射频系统具备检测连接断开的功能的基础上,结合检测连接错误的功能,提高了射频系统的功能多样性,降低了检测射频连接线处于不同异常状态所需的成本。
基于第一方面的任意一种可能的实现方式,在第一方面的第三种可能实现方式中,所述射频系统还包括电源,所述第一节点与所述射频系统的电源耦合;
所述电源包括:直流电压源和上拉电阻,所述上拉电阻的第一端与所述直流电压源的输出端耦合,所述上拉电阻的第二端与所述第一节点耦合。
通过采用直流电压源为射频系统供电,可以提高检测射频连接线的稳定性,且上拉电阻可以提高检测射频连接线的安全性和准确性。
基于第一方面的任意一种可能的实现方式,在第一方面的第四种可能实现方式中,所述射频系统还包括:检测模块,所述射频系统通过所述检测模块采集所述第一节点的电位。
基于第一方面的第四种可能的实现方式,在第一方面的第五种可能实现方式中,所述检测模块为模数转换器ADC或电压比较器。
通过采用包括不同电路的检测模块对第一节点的电位进行检测,可以提高检测射频连接线的灵活性。而且,通过ADC或电压比较器对电位进行检测,可以对第一节点的多个不同大小的电位进行识别,可以支持对多个电位的检测。
基于第一方面的任意一种可能的实现方式,在第一方面的第六种可能实现方式中,所述射频系统还包括:
第一连接座、第二连接座、第三连接座和第四连接座;
第一隔直电容、第二隔直电容、第三隔直电容和第四隔直电容;
第一扼流电感、第二扼流电感、第三扼流电感和第四扼流电感;
其中,所述第一射频电路与所述第一连接座耦合,所述第一天线与所述第二连接座耦合,所述第二射频电路与所述第三连接座耦合,所述第二天线与所述第四连接座耦合;
所述第一隔直电容耦合在所述第一射频电路和所述第一连接座之间,所述第二隔直电容耦合在所述第一天线和所述第二连接座之间,所述第三隔直电容耦合在所述第二射频电路和所述第三连接座之间,所述第四隔直电容耦合在所述第二天线和所述第四连接座之间;
所述第一扼流电感的第一端耦合在所述第一隔直电容和所述第一连接座之间,所述第一扼流电感的第二端与所述第一分压元件的第二端相耦合,所述第二扼流电感的第一端耦合在所述第二隔直电容和所述第二连接座之间,所述第二扼流电感的第二端与所述第一节点相耦合,所述第三扼流电感的第一端耦合在所述第三隔直电容和所述第三连接座之间,所述第三扼流电感的第二端与所述第一分压元件的第二端相耦合,所述第四扼流电感的第一端耦合在所述第四隔直电容和所述第四连接座之间,所述第四扼流电感的第二端与所述第三电位相耦合。
通过设置隔直电容和扼流电感,可以防止射频电路中的射频信号进入射频系统,也可以防止射频系统中的电流进入射频电路,从而可以提高射频系统与射频电路之间的隔离度,提高射频系统的准确度。
基于第一方面的任意一种可能的实现方式,在第一方面的第七种可能实现方式中,所述第一节点的电位随着所述第一射频连接线的两端和所述第二射频连接线的两端中的至少一端是否与对应的连接座连接断开变化。
其中第一节点的电位可以根据第一射频连接线或第二射频连接线是否连接断开而变化,从而将第一节点作为检测点,并根据检测点电位的变化确定第一射频连接线和第二射频连接线是否连接断开。
基于第一方面的第七种可能的实现方式,在第一方面的第八种可能实现方式中,当所述第一射频连接线的两端分别与所述第一射频电路和所述第一天线耦合、且所述第二射频连接线的两端分别与所述第二射频电路和所述第二天线耦合时,所述第一节点的电位处于第一状态;
当所述第一射频连接线和所述第二射频连接线的至少一端与对应的连接座连接断开时,所述第一节点的电位处于第二状态。
基于检测点处于第一电位状态或第二电位状态,可以确定第一射频连接线和第二射频连接线的耦合状态,从而可以根据检测点的电位状态确定各个射频连接线是否连接断开,可以提高检测射频连接线是否连接异常的准确性和灵活性。
基于第一方面的任意一种可能的实现方式,在第一方面的第九种可能实现方式中,所述第一分压元件和所述第二分压元件均为电阻,所述第二电位和所述第三电位均为接地电位。
通过采用电阻作为分压元件,可以降低检测射频连接线的成本。
基于第一方面的任意一种可能的实现方式,在第一方面的第十种可能实现方式中,所述射频系统还包括:第三射频电路、第三天线和第三射频连接线,所述第三射频电路通过所述第三射频连接线与所述第一天线、所述第二天线或所述第三天线耦合;
所述射频系统还包括:第四分压元件和第五分压元件;
所述第四分压元件的第一端与所述第三电位耦合,所述第四分压元件的第二端耦合在所述第二射频连接线和所述第三射频连接线之间;
所述第五分压元件所述第二分压元件的并联耦合在所述第二射频连接线的两端。
通过在包括3个射频连接线的电子设备中设置射频系统,可以通过少量元器件确定每个射频连接线的连接状态,降低了检测射频连接线的成本,提高了检测射频连接线的灵活性。
基于第一方面的第十种可能的实现方式,在第一方面的第十一种可能实现方式中,所述射频系统还包括:第二对地电容,所述第二对地电容与所述第四分压元件并联。
通过设置对地电容,使得对地电容位于两条射频电路之间,则射频电路中串入射频系统的射频信号可以通过对地电容被引导至第三电位,也即是地电位,从而可以防止一条射频电路中的射频信号通过射频系统进入另一条射频电路,进而可以提高两条射频电路之间的隔离度。
基于第一方面的第十种或第十一种可能的实现方式,在第一方面的第十二种可能实现方式中,所述射频系统还包括:第六分压元件,所述第六分压元件串联耦合在所述第二射频连接线和所述第三射频连接线之间。
通过添加第六分压元件,可以在射频系统具备检测连接断开的功能的基础上,结合检测连接错误的功能,提高了射频系统的功能多样性,降低了检测射频连接线处于不同异常状态所需的成本。
基于第一方面的第十种、第十一种或第十二种可能的实现方式,在第一方面的第十三种可能实现方式中,所述射频系统还包括:
第五连接座和第六连接座;
第五隔直电容和第六隔直电容;
第四扼流电感、第五扼流电感、第六扼流电感和第七扼流电感;
其中,所述第三射频电路与所述第五连接座耦合,所述第三天线与所述第六连接座耦合;
所述第五隔直电容耦合在所述第三射频电路和所述第五连接座之间,所述第六隔直电容耦合在所述第三天线和所述第六连接座之间;
所述第四扼流电感的第一端耦合在所述第五隔直电容和所述第五连接座之间,所述第四扼流电感的第二端与所述第二电位相耦合,所述第五扼流电感的第一端耦合在第三隔直电容和第三连接座之间,所述第五扼流电感的第二端与所述第五分压元件的第一端相耦合,所述第六扼流电感的第一端耦合在第四隔直电容和第四连接座之间,所述第六扼流电感的第二端与所述第五分压元件的第一端相耦合,所述第七扼流电感的第一端耦合在所述第六隔直电容和所述第六连接座之间,所述第七扼流电感的第二端与所述第五分压元件的第一端相耦合。
通过设置隔直电容和扼流电感,可以防止射频电路中的射频信号进入射频系统,也可以防止射频系统中的电流进入射频电路,从而可以提高射频系统与射频电路之间的隔离度,提高射频系统的准确度。
基于第一方面的第十种至第十三种中任意一种可能的实现方式,在第一方面的第十四种可能实现方式中,所述第四分压元件和所述第五分压元件均为电阻。
通过采用电阻作为分压元件,可以降低检测射频连接线的成本。
基于第一方面的任意一种可能的实现方式,在第一方面的第十五种可能实现方式中,所述射频系统还包括通用输入/输出端口GPIO检测模块,所述第一节点还与所述GPIO检测模块耦合。
通过在包括GPIO的电子设备的基础上,结合原有的GPIO采用走线复用的方式,添加本申请实施例提供的射频系统,以减少走线、节约硬件资源。而且,在原有GPIO 具有确定各个cable是否断开的功能的基础上,结合射频系统可以确定电子设备的各个cable是否连接错误,从而可以丰富射频系统的功能,提高射频系统实现的功能的多样性。
第二方面,提供一种射频系统,包括:N个射频电路、N个天线和N个射频连接线,N为大于或等于2的整数,第i个射频电路通过第i个射频连接线与第i个天线耦合,i为小于或等于N-1的正整数;
所述射频系统包括:第一节点、N-1个第一分压元件和N-1个第二分压元件;
所述第一节点与第一电位耦合,所述第一节点与第i个所述射频连接线的第一端耦合,第i+1个所述射频连接线的第二端与第二电位耦合,所述第一电位高于所述第二电位;
第i个所述第一分压元件的第一端与第三电位耦合,第i个所述第一分压元件的第二端耦合在第i个所述射频连接线和第i+1个所述射频连接线之间,所述第一电位高于所述第三电位;
第i个所述第二分压元件并联耦合在第i个所述射频连接线的两端。
通过在射频系统中设置N个分压元件,当至少两个射频连接线连接断开时,射频系统中电流的流向发生变化,N个分压元件的分压也会发生变化,则第一节点的电位也会发生变化,从而可以根据变化的电位确定第一射频连接线和第二射频连接线是否连接断开,无需设置与cable数量成正比的GPIO,可以减少检测各个cable是否连接断开时所需的硬件,并降低检测各个cable是否连接断开所需的成本。
在第二方面的第一种可能实现方式中,所述射频系统还包括:对地电容,所述对地电容与所述第一分压元件并联。
通过设置对地电容,使得对地电容位于两条射频电路之间,则射频电路中串入射频系统的射频信号可以通过对地电容被引导至第三电位,也即是地电位,从而可以防止一条射频电路中的射频信号通过射频系统进入另一条射频电路,进而可以提高两条射频电路之间的隔离度。
基于第二方面的任意一种可能的实现方式,在第二方面的第二种可能实现方式中,所述射频系统还包括:N-1个第三分压元件,第i个所述第三分压元件串联耦合在第i个所述射频连接线和第i+1个所述射频连接线之间。
通过添加第三分压元件,可以在射频系统具备检测连接断开的功能的基础上,结合检测连接错误的功能,提高了射频系统的功能多样性,降低了检测射频连接线处于不同异常状态所需的成本。
基于第二方面的任意一种可能的实现方式,在第二方面的第三种可能实现方式中,所述射频系统还包括电源,所述第一节点与所述电源耦合;
所述电源包括:直流电压源和上拉电阻,所述上拉电阻的第一端与所述直流电压源的输出端耦合,所述上拉电阻的第二端与所述第一节点耦合。
通过采用直流电压源为射频系统供电,可以提高检测射频连接线的稳定性,且上拉电阻可以提高检测射频连接线的安全性和准确性。
基于第二方面的任意一种可能的实现方式,在第二方面的第四种可能实现方式中,所述射频系统还包括:检测模块,所述射频系统通过所述检测模块采集所述第一节点 的电位。
基于第二方面的第四种可能的实现方式,在第二方面的第五种可能实现方式中,所述检测模块为ADC或电压比较器。
通过采用包括不同电路的检测模块对第一节点的电位进行检测,可以提高检测射频连接线的灵活性。而且,通过ADC或电压比较器对电位进行检测,可以对第一节点的多个不同大小的电位进行识别,可以支持对多个电位的检测。
基于第二方面的任意一种可能的实现方式,在第二方面的第六种可能实现方式中,所述射频系统还包括:2N个连接座、2N个隔直电容和多个扼流电感;
所述第i个射频连接线的两端分别与第2i-1个连接座和第2i个连接座耦合;
每个所述天线与对应的所述连接座之间耦合有一个所述隔直电容,每个所述射频电路与对应的所述连接座之间耦合有一个所述隔直电容;
每个所述第二分压元件与相邻的连接座之间耦合有一个所述扼流电感,第1个所述连接座与所述第一节点之间耦合有一个所述扼流电感,第2N个所述连接座耦合至所述第二电位。
通过设置隔直电容和扼流电感,可以防止射频电路中的射频信号进入射频系统,也可以防止射频系统中的电流进入射频电路,从而可以提高射频系统与射频电路之间的隔离度,提高射频系统的准确度。
基于第二方面的任意一种可能的实现方式,在第二方面的第七种可能实现方式中,所述第一节点的电位随着第i个所述射频连接线的至少一端是否与对应的连接座连接断开而变化。
其中第一节点的电位可以根据第一射频连接线和第二射频连接线的耦合方式的变化而变化,从而将第一节点作为检测点,并根据检测点电位的变化确定第一射频连接线和第二射频连接线的耦合方式。
基于第二方面的第七种可能的实现方式,在第二方面的第八种可能实现方式中,当所述第i个射频连接线的两端分别与所述第i个射频电路和所述第i个天线耦合时,所述检测点的电位处于第一电位状态;
当所述第i个射频连接线的两端与所述第i个射频电路连接断开,或者与所述第i个天线连接断开时,所述检测点的电位处于第二电位状态。
基于检测点处于第一电位状态或第二电位状态,可以确定第一射频连接线和第二射频连接线的耦合状态,从而可以根据检测点的电位状态确定各个射频连接线是否连接异常,可以提高检测射频连接线是否连接异常的准确性和灵活性。
基于第二方面的任意一种可能的实现方式,在第二方面的第九种可能实现方式中,所述第一分压元件和所述第二分压元件均为电阻。
通过采用电阻作为分压元件,可以降低检测射频连接线的成本。
基于第二方面的任意一种可能的实现方式,在第二方面的第十种可能实现方式中,所述射频系统还包括通用输入/输出端口GPIO检测模块,所述第一节点还与所述射频系统的GPIO检测模块耦合。
通过在包括GPIO的电子设备的基础上,结合原有的GPIO采用走线复用的方式,添加本申请实施例提供的射频系统,以减少走线、节约硬件资源。而且,在原有GPIO 具有确定各个cable是否断开的功能的基础上,结合射频系统可以确定电子设备的各个cable是否连接错误,从而可以丰富射频系统的功能,提高射频系统实现的功能的多样性。
第三方面,提供一种电子设备,包括:存储器、处理器、存储在所述存储器中并可在所述处理器上运行的计算机程序、以及如第一方面和第二方面任一所述的射频系统,所述处理器执行所述计算机程序时,基于如第一方面和第二方面任一所述的射频系统,实现对所述电子设备中射频连接线的检测。
在第三方面的第一种可能实现方式中,所述电子设备还包括:显示器和扬声器中的至少一个;
当所述电子设备中的射频连接线连接异常时,通过所述显示器或所述扬声器进行报警。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时,基于如第一方面和第二方面任一所述的射频系统,实现对电子设备中射频连接线的检测。
附图说明
图1是本申请实施例提供的一种射频系统所涉及场景的场景示意图;
图2是本申请实施例提供的一种射频系统所涉及的系统架构示意图;
图3是本申请实施例提供的另一种射频系统所涉及的系统架构示意图;
图4是本申请实施例提供的一种基于GPIO的射频系统的电路框架图;
图5是本申请实施例提供的另一种基于GPIO的射频系统的电路框架图;
图6是本申请实施例提供的一种射频系统的电路框架图;
图7是本申请实施例提供的一种射频系统的简化示意图;
图8是本申请实施例提供的另一种射频系统的简化示意图;
图9是本申请实施例提供的又一种射频系统的简化示意图;
图10是本申请实施例提供的又一种射频系统的简化示意图;
图11是本申请实施例提供的另一种射频系统的电路框架图;
图12是本申请实施例提供的又一种射频系统的电路框架图;
图13是本申请实施例提供的又一种射频系统的简化示意图;
图14是本申请实施例提供的又一种射频系统的简化示意图;
图15是本申请实施例提供的又一种射频系统的简化示意图;
图16是本申请实施例提供的又一种射频系统的简化示意图;
图17是本申请实施例提供的又一种射频系统的简化示意图;
图18是本申请实施例提供的又一种射频系统的简化示意图;
图19是本申请实施例提供的又一种射频系统的简化示意图;
图20是本申请实施例提供的又一种射频系统的简化示意图;
图21是本申请实施例提供的又一种射频系统的电路框架图;
图22是本申请实施例提供的又一种射频系统的电路框架图;
图23是本申请实施例提供的又一种射频系统的简化示意图;
图24是本申请实施例提供的又一种射频系统的简化示意图;
图25是本申请实施例提供的又一种射频系统的简化示意图;
图26是本申请实施例提供的又一种射频系统的简化示意图;
图27是本申请实施例提供的又一种射频系统的简化示意图;
图28是本申请实施例提供的又一种射频系统的简化示意图;
图29是本申请实施例提供的又一种射频系统的简化示意图;
图30是本申请实施例提供的又一种射频系统的简化示意图;
图31是本申请实施例提供的又一种射频系统的电路框架图;
图32是本申请实施例提供的又一种射频系统的电路框架图;
图33是本申请实施例提供的又一种射频系统的电路框架图;
图34是本申请实施例提供的又一种射频系统的电路框架图;
图35是本申请实施例提供的一种检测方法的示意性流程图;
图36是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“所述”、“上述”和“该”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
首先,对本申请实施例所涉及的场景进行介绍,参见图1,电子设备中可以包括主板和副板。主板上设置有多个射频电路(图1中是以2个射频电路为例进行示例性说明),每个射频电路可以与主板上对应的连接座相连接。而且,电子设备还可以包括多个天线,与射频电路类似的,每个天线可以与副板上对应的连接座相连接。
其中,电子设备的主板和副板均可以为印制电路板(Printed Circuit Board,PCB),本申请实施例对主板和副板不做限定。
例如,参见图1,主板中包括射频电路11和射频电路12,射频电路11和射频电路12分别对应一个连接座;副板上包括2个连接座,副板左侧的连接座与天线22相对应,副板右侧的连接座与天线21相对应,天线21和天线22可以分别与副板上对应的连接座相连接。
射频电路11可以包括功率放大器、滤波器、线性放大器和开关中的一个或多个器件,射频电路11还可以耦合至处理器(例如基带处理器或射频收发器等),处理器用于产生发送信号,射频电路11通过射频连接线(以下简称为cable)31将发送信号传递给天线21,并由天线21将产生的无线信号发射出去。天线21还可以接收无线信号,天线21通过cable31将接收的无线信号传递给射频电路11,并通过射频电路11将接收的无线信号传递给处理器。同理,射频电路12也可以包括功率放大器、滤波器、线性放大器和开关中的一个或多个器件,射频电路12还可以耦合至处理器(例如基带处 理器或射频收发器等),处理器用于产生发送信号,射频电路12通过cable32将发送信号传递给天线22,并由天线22将产生的无线信号发射出去。天线22还可以接收无线信号,天线22通过cable32将接收的无线信号传递给射频电路12,并通过射频电路12将接收的无线信号传递给处理器。在一种具体的实施例中,处理器也位于主板上。
在一种可选实施例中,电子设备可以包括多个cable,每个cable可以包括两端,第一端与射频电路对应的连接座相耦合,第二端与天线对应的连接座相耦合。电子设备在进行射频通信的过程中,射频电路可以通过cable向天线发送射频信号,天线可以接收并发送射频信号,实现电子设备的射频通信。例如图1中所示的,cable31的第一端与射频电路11对应的连接座耦合,cable31的第二端与天线21对应的连接座耦合;类似的,cable32的第一端与射频电路12对应的连接座耦合,cable32的第二端与天线22对应的连接座耦合。
其中,射频连接线可以是同轴电缆(Coaxial Cable),同轴电缆是一种电线及信号传输线,具有两个同心导体,导体和屏蔽层共用同一轴心。同轴电缆的优点是:具有良好的传输特性,可以保证通信网络的稳定运行,同时同轴电缆的抗电磁干扰和抗弯折性能强,柔软性良好,适合在折叠和旋转式的电子产品中应用。此外,同轴电缆还具有良好的耐热、耐燃性能,可在-55摄氏度(℃)至250℃的环境下工作。同轴电缆适于传输模拟信号和数字信号,并且可适用于各种各样的应用。同轴电缆目前已经得到广泛的应用,例如在诸如智能手机、笔记本电脑、数码相机、摄像机、全球定位系统(global positioning system,GPS)定位仪、无线路由器、液晶电视、精密医疗器械等电子设备中使用,以通信连接不同电路板。在一个实施例中,射频连接线可以传输模拟信号,例如可以传输射频信号。
射频连接线的电阻一般比较小,在一个实施例中,射频连接线的电阻值的大小范围可以为1欧姆(Ω)至50Ω,例如5Ω、7.5Ω等。当射频连接线接入电路中时,射频连接线的电阻值可以波动,例如,当射频连接线未接入电路时的电阻值可以为7.5Ω,当射频连接线接入电路时的电阻值可以在8Ω至50Ω之间波动。
在电子设备的生产过程中,可以将各个cable扣合连接在相对应的连接座上,但是基于各个cable的扣合程度、以及用户在使用电子设备的过程中电子设备受到的碰撞振动等原因,会导致cable与连接座之间松动或者cable从连接座上脱落,导致射频电路无法向天线传输射频信号,造成电子设备的通信质量下降的问题。
因此,本申请实施例提出一种能够检测cable是否连接断开的射频系统、以及检测cable是否连接断开的检测方法,可以通过射频系统读取预先设置的检测点的电位,确定射频系统中各个电阻的分压,从而确定各个cable是否连接断开。其中,检测点可以为射频系统中随着各个cable连接断开或连接错误引起电路耦合方式的变化而出现电位变化的位置,本申请实施例对射频系统的检测点不做限定。
需要说明的是,在实际应用中,上述射频电路、天线和射频连接线可以有多种描述方式,例如,上述射频电路11可以为第一射频电路,射频电路12可以为第二射频电路,天线21可以为第一天线,天线22可以为第二天线,cable31可以为第一射频连接线,cable32可以为第二射频连接线。若电子设备包括3个射频电路、3个天线和3个射频连接线,则射频电路13可以为第三射频电路,天线23可以为第三天线,cable33 可以为第三射频连接线。类似的,当电子设备包括N个射频电路、N个天线和N个射频连接线时,则任意一个射频电路可以为第i个射频电路,任意一个天线可以为第i个天线,任意一个射频连接线可以为第i个射频连接线,其中N为大于或等于2的整数,i为小于或等于N的正整数。
而且,与每个cable耦合的连接座、扼流电感和隔直电容也可以有多种描述方式,例如,第一连接座可以为下述的连接座41、第二连接座可以为下述的连接座42、第三连接座可以为下述的连接座43、第四连接座可以为下述的连接座44、第五连接座可以为下述的连接座45、第六连接座可以为下述的连接座46,第一扼流电感可以为下述的扼流电感L1、第二扼流电感可以为下述的扼流电感L2、第三扼流电感可以为下述的扼流电感L3、第四扼流电感可以为下述的扼流电感L4、第五扼流电感可以为下述的扼流电感L5,第六扼流电感可以为下述的扼流电感L6、第七扼流电感可以为下述的扼流电感L7,第一隔直电容可以为下述的扼流电感隔直电容C1、第二隔直电容可以为下述的扼流电感隔直电容C2、第三隔直电容可以为下述的扼流电感隔直电容C3、第四隔直电容可以为下述的扼流电感隔直电容C4、第一对地电容可以为下述的对地电容C5、第五隔直电容可以为下述的隔直电容C6、第六隔直电容可以为下述的隔直电容C7、第二对地电容可以为下述的对地电容C8。
类似的,当电子设备包括2N个连接座、多个扼流电感和2N个隔直电容时,则任意一个连接座可以为第i个连接座,任意一个扼流电感可以为第i个扼流电感,任意一个隔直电容可以为第i个隔直电容,其中N为大于或等于2的整数,i为小于或等于N-1的正整数。
另外,对于射频系统中的各个分压元件也可以有多种描述方式,例如,第一分压元件可以为下述的R1、第二分压元件可以为下述的R2、第三分压元件可以为下述的R5、第四分压元件可以为下述的R3、第五分压元件可以为下述的R4、以及第六分压元件可以为下述的R6。
而且,第一分压元件和第二分压元件可以组成下述的分压模块,其中,第一分压元件可以为各个分压模块中与地电位耦合的元件,第二分压元件可以为串联在各个cable之间的元件。
需要说明的是,射频系统可以应用在电子设备中,射频系统中的第一电位可以为高电位,第二电位和第三电位均可以为低电位。例如,第一电位可以是与电源相耦合的电位,第二电位和第三电位可以为地电位,如第二电位可以为地电位GND1、第三电位可以为地电位GND2,而下述包括3个cable对应的射频系统中,与第四分压元件相耦合的第三电位可以为地电位GND3。下述实施例中,以第一电位与电源耦合、第二电位和第三电位均为地电位进行说明。
图2是本申请实施例提供的一种射频系统所涉及的系统架构示意图,作为示例而非限定,参见图2,该系统架构可以包括:射频系统201、处理器202、存储器203和多个cable204。
其中,射频系统201可以与各个cable204耦合,射频系统201还可以与处理器202耦合,处理器202可以与存储器203耦合。
在检测各个cable204是否连接断开时,射频系统201可以通过预先设置的检测模 块采集检测点的电位,并向处理器202发送该电位对应的电位信息。处理器202则可以接收该电位信息,并从预先存储的多个预设电位中,确定与该电位信息相匹配的预设电位,从而可以将该预设电位所对应的连接状态存储在存储器203中,以便维修人员可以根据存储器203中存储的连接状态获知各个cable204是否连接断开。
其中,电子设备预先存储的多个预设电位分别对应每个cable的不同连接状态。例如,电子设备包括cable31和cable32,电子设备可以预先存储4个预设电位,其中第一个预设电位可以对应cable31和cable32连接正常,第二个预设电位可以对应cable31连接断开、cable32连接正常,第三个预设电位可以对应cable31连接正常、cable32连接断开,第四个预设电位可以对应cable31和cable32均连接断开。
而且,在至少一个cable连接断开时,射频系统中各个分压电阻的耦合方式会发生变化,检测点的电位也会相应发生变化。也即是,检测点的电位是可以根据射频系统中各个分压电阻的耦合方式所发生的变化而变化的。
另外,参见图3,该系统架构还可以包括:显示屏205和扬声器206中的至少一个,显示屏205和扬声器206均可以与处理器202耦合。当处理器202根据预设电位对应的状态确定各个cable3204连接断开时,处理器202可以控制显示屏205提醒用户,处理器202也可以控制扬声器206提醒用户,告知用户各个cable204连接断开。
例如,显示屏205可以显示“射频连接线连接断开,请检查!”,和/或扬声器206可以发出语音“射频连接线连接断开,请检查!”。
另外,在实际应用中,电子设备中可以包括多个cable204,下述以电子设备包括1个cable204为例,举例说明如何通过射频系统201确定1个cable204(如图4中所示的cable31)是否存在连接断开的情况。
参见图4,本申请实施例提供了一种基于GPIO的射频系统,图4是本申请实施例提供的一种基于GPIO的射频系统的电路框架图,该射频系统可以包括:GPIO供电模块401、GPIO检测模块402、多个隔直电容(C1和C2)和多个扼流电感(L1和L2),GPIO供电模块401与GPIO检测模块402耦合,多个隔直电容和多个扼流电感的耦合方式如图4所示。
其中,GPIO供电模块401可以包括直流电压源V0和上拉电阻R0,上拉电阻R0与直流电压源V0的输出端耦合。
在检测cable是否连接断开的过程中,GPIO检测模块402可以采集射频系统中检测点的电位,该检测点可以为GPIO供电模块401的输出端,也即是上拉电阻R0与GPIO检测模块402耦合的一端。若电子设备的cable正常连接,则射频系统中的电压降全部在GPIO供电模块401中的上拉电阻R0上,则GPIO检测模块402采集的电位为低电平,可以确定电子设备的cable正常连接。若电子设备的cable连接断开,射频系统无法形成电路回路,则GPIO检测模块402采集的电位为高电平,可以确定电子设备的cable连接断开。
上述是以电子设备包括1个cable为例进行说明,即通过1个GPIO供电模块401和1个GPIO检测模块402检测1个cable是否连接断开。在如图4所示的基础上,还可以对电子设备的2个或2个以上的cable进行检测,确定电子设备中的任意一个cable是否存在连接断开的情况。
例如,以对2个cable(cable31和cable32)进行检测为例,在图4所示的射频系统的基础上,可以得到如图5所示的射频系统。参见图5,图5是本申请实施例提供的另一种基于GPIO的射频系统的电路框架图,该射频系统可以包括:GPIO供电模块501、GPIO检测模块502、多个隔直电容(C1、C2、C3和C4)和多个扼流电感(L1、L2、L3和L4),如图5所示的射频系统与如图4所示的射频系统类似,在此不再赘述。
当cable31和/或cable32连接断开时,射频系统无法形成电路回路,则GPIO检测模块502采集的电位为高电平。当cable31和cable32均连接正常时,射频系统可以形成电路回路,则GPIO检测模块502采集的电位为低电平。
如图5所示的射频系统,可以通过1个GPIO供电模块501和1个GPIO检测模块502,对多个cable是否连接断开进行检测,从而可以减少射频系统的硬件成本。但是,上述基于GPIO的射频系统仅能够检测电子设备中的cable是否连接断开,无法准确地确定电子设备中的哪些cable连接断开。
因此,本申请实施例又提出一种射频系统,参见图6,图6是本申请实施例提供的一种射频系统的电路框架图,参见图6,射频系统中可以包括:分压模块601、检测模块602和供电模块603等多个电路模块,射频系统还可以包括:第一节点(A)、多个隔直电容(C1、C2、C3和C4)和多个扼流电感(L1、L2、L3和L4)。
其中,供电模块603的输出端可以通过第一节点A分别与检测模块602和分压模块601耦合,供电模块603可以为分压模块601供电,分压模块601则可以根据各个cable不同的耦合方式,形成不同的分压,使得检测模块602可以对检测点的电位进行检测,从而得到与各个cable不同的耦合方式相对应的不同电位,进而可以根据不同的电位确定各个cable是否连接断开。
而且,cable31的两端可以耦合有分压模块601。在cable31正常连接时,分压模块601可以被cable31短路;而在cable31断开连接时,供电模块603可以通过分压模块601与地电位GND1和地电位GND2耦合,从而形成回路。
与cable31不同的是,cable32的两端可以分别耦合有地电位GND1和cable31,而且cable32两端并未设置分压模块。在cable32正常连接时,射频系统可以通过与地电位GND1耦合的cable32形成回路;而在cable32断开连接时,射频系统可以通过分压模块601与地电位GND2耦合,从而形成回路。
而且,射频电路与对应的连接座之间可以设置隔直电容,天线与对应的连接座之间也可以设置隔直电容,防止射频系统的直流电流流入射频电路和天线对射频信号造成干扰。而且,分压模块601与cable31之间可以设置有扼流电感L1;类似的,供电模块603与cable31之间可以设置有扼流电感L2,分压模块601与cable32之间也可以设置有扼流电感L3。扼流电感具有通直流、阻交流的效果,可以防止射频电路中的交流射频信号进入射频系统对射频系统的检测结果造成影响。进一步地,cable32与地电位GND1之间也可以设置扼流电感L4,防止射频电路发送的射频信号进入地电位GND1,避免对射频信号造成干扰。
具体地,针对各个隔直电容,射频电路11与对应的连接座41之间设置有隔直电容C1,天线21与对应的连接座42之间设置有隔直电容C2;类似的,射频电路12与 对应的连接座43之间设置有隔直电容C3,天线22与对应的连接座44之间设置有隔直电容C4。
而针对各个扼流电感,扼流电感L1的第一端可以耦合在隔直电容C1与射频电路11对应的连接座41之间,扼流电感L1的第二端可以与分压模块601耦合。类似的,扼流电感L2的第一端可以耦合在隔直电容C2与天线21对应的连接座42之间,扼流电感L2的第二端可以与供电模块603耦合;扼流电感L3的第一端可以耦合在隔直电容C3与射频电路12对应的连接座43之间,扼流电感L3的第二端可以与分压模块601耦合;扼流电感L4的第一端可以耦合在隔直电容C4与天线22对应的连接座44之间,扼流电感L4的第二端可以与地电位GND1耦合。
另外,供电模块603可以包括直流电压源V0和上拉电阻R0,直流电压源V0的输出端与上拉电阻R0的第一端耦合,上拉电阻R0的第二端通过第一节点A与扼流电感L2的第二端耦合,上拉电阻R0的第二端可以为供电模块603的输出端。
其中,直流电压源V0可以是电子设备内置的电压源,例如,直流电压源V0可以为电子设备的内置电池,也可以为与电子设备的内置电池相连接的降压模块,本申请实施例对直流电压源V0不做限定。
另外,供电模块403可以为集成电路中的电路模块,通过第一节点A与射频系统耦合,也可以为电子设备的电路板上的电路模块,本申请实施例对供电模块不做限定。
检测模块602可以包括电压检测电路,电压检测电路的输入端可以与上拉电阻R0的第二端耦合,电压检测电路的输出端可以与如图2所示的系统架构中的处理器耦合。其中,该电压检测电路可以是模数转换器(analog-to-digital converter,ADC),也可以是电压比较器,还可以是其他能够读取电压的电路,本申请实施例对此不做限定。
例如,若电压检测电路为ADC,则在采集检测点的电位的过程中,ADC可以先按照预先设定的采样频率对检测电路中的模拟电压信号进行采集,并将采集的模拟电压信号进行数值量化,最后通过编码将量化后的模拟电压信号采用数字形式进行表示,完成对检测点的电位的采集。或者,若电压检测电路包括至少一个电压比较器,则在采集检测点的电位的过程中,每个电压比较器可以先采集检测点的电位,并将采集的电位与预先设置的电位进行比较,确定检测点的电位与每个预先设置的电位之间的大小关系,从而可以根据多个大小关系,确定检测点的电位大小。
分压模块601可以包括第一分压电阻R1和第二分压电阻R2,第一分压电阻R1的第一端与地电位GND2耦合,第一分压电阻R1的第二端和第二分压电阻R2的第二端均耦合在扼流电感L1和扼流电感L3之间。第二分压电阻R2的第一端与供电模块603中上拉电阻R0的第二端耦合。而上拉电阻R0的第二端耦合在隔直电容C2与天线21对应的连接座42之间,则第二分压电阻R2的第一端也耦合在隔直电容C2与天线21对应的连接座42之间,且第二分压电阻R2的第二端通过扼流电感L1连接在C1和射频电路11对应的连接座41之间,则第二分压电阻R2的第二端也与cable31耦合,则第二分压电阻R2与cable31并联。
需要说明的是,上述上拉电阻R0、第一分压电阻R1和第二分压电阻R2均可以为千欧级的电阻,例如上拉电阻R0、第一分压电阻R1和第二分压电阻R2的电阻均大于等于1KΩ,从而可以忽略各个cable的分压,提高检测各个cable是否连接断开 的准确度。例如,直流电压源V0可以提供1.8伏特(V)的电压,上拉电阻R0可以为20千欧(KΩ),第一分压电阻R1也可以为20KΩ,第二分压电阻R2可以为10KΩ。当然,上拉电阻R0、第一分压电阻R1和第二分压电阻R2的具体参数值可以根据电子设备的阻抗和内置的直流电压源V0进行设置,本申请实施例对上述各个电阻的具体参数值不做限定。
图7是本申请实施例提供的一种射频系统的简化示意图,省略了如图6中所示的射频电路、天线、隔直电容和扼流电感。参见图7,若cable31和cable32均未连接断开,则射频系统中的第二分压电阻R2可以被cable31短路,第一分压电阻R1则可以被cable32短路,电流可以流过上拉电阻R0、cable31和cable32,从而到达地电位GND1形成回路。
因此,此时检测点的电位为V1=0,其中,V1为预先设置的检测点的电位。
但是,若cable31连接断开、cable32正常连接,则可以形成如图8所示的简化电路,图8是本申请实施例提供的另一种射频系统的简化示意图,参见图8,cable31连接断开,电流由上拉电阻R0流经第二分压电阻R2。但是,cable32正常连接,第一分压电阻R1被cable32短路。电流在流过第二分压电阻R2后,可以通过cable32到达地电位GND1。
因此,此时检测点的电位为V2=V*R2/(R0+R2),其中,V2为预先设置的检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值。
类似的,若cable31正常连接、cable32连接断开,则可以形成如图9所示的简化电路,图9是本申请实施例提供的又一种射频系统的简化示意图,参见图9,cable31正常连接,第二分压电阻R2被cable31短路。但是,cable32连接断开,电流在流过上拉电阻R0和cable31后,只能流过第一分压电阻R1到达地电位GND2。
因此,此时检测点的电位为V3=V*R1/(R0+R1),其中,V3为预先设置的检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R1为第一分压电阻R1对应的电阻值。
另外,若cable31和cable32均连接断开,则可以形成如图10所示的简化电路,图10是本申请实施例提供的又一种射频系统的简化示意图,参见图10,cable31和cable32均连接断开后,电流在流过上拉电阻R0后,只能流过第二分压电阻R2和第一分压电阻R1到达地电位GND2。
因此,此时检测点的电位为V4=V*(R1+R2)/(R0+R1+R2),其中,V4为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R1为第一分压电阻R1对应的电阻值,R2为第二分压电阻R2对应的电阻值。
例如,若直流电压源V0的电位为1.8V,上拉电阻R0的电阻值为20KΩ,第一分压电阻R1的电阻值为20KΩ,第二分压电阻R2的电阻值为10KΩ,且各个隔直电容对应的电容值为C1=C2=C3=C4=33pF(皮法),对地电容C5的电容值为20pF,各个扼流电感对应的电感值为L1=L2=L3=L4=68nH(纳亨),则根据上述公式可以计算得到,V1=0V、V2=0.6V、V3=0.9V、V4=1.08V。
进一步地,参见图11,分压模块601中还可以包括对地电容C5,通过在两个射 频电路之间设置对地电容C5,可以将两个射频电路中串入射频系统的射频信号,通过该对地电容C5引导至地电位GND2,防止一条射频电路中的射频信号通过射频系统进入另一条射频电路,从而可以提高cable31和cable32之间的隔离度。
其中,对地电容C5与第一分压电阻R1并联,也即是,对地电容C5的第一端与地电位GND2耦合,对地电容C5的第二端分别与第一分压电阻R1的第二端和第二分压电阻R2的第二端耦合。
需要说明的是,上述实施例中射频系统的供电模块603位于电子设备的副板,而射频系统的检测模块602和分压模块601则位于电子设备的主板。但是,在实际应用中,可以根据主板和副板的版图设计,对射频系统的每个电路模块所在的位置进行调整。例如,可以将供电模块603和检测模块602设置在副板,并将分压模块601设置在主板;或者,也可以将供电模块603和检测模块602设置在主板,并将分压模块601设置在副板;或者,还可以将供电模块603设置在主板,并将分压模块601和检测模块602设置在副板;或者,将分压模块601、检测模块602和供电模块603全部设置在主板或副板,本申请实施例对射频系统中每个电路模块所在的位置不做限定。
进一步地,图6和图11所示的射频系统中,分压模块601通过扼流电感L1耦合在隔直电容C1与射频电路11对应的连接座41之间,并通过扼流电感L3耦合在隔直电容C3与射频电路12对应的连接座43之间。
在其它实施例中,在分压模块601通过扼流电感L1耦合在隔直电容C1与射频电路11对应的连接座41之间时,分压模块601可以通过扼流电感L3耦合在隔直电容C4与天线22对应的连接座44之间,则扼流电感L4的第一端耦合在隔直电容C3与射频电路12对应的连接座43之间,第二端可以与地电位GND1耦合。
或者,在分压模块601通过扼流电感L3耦合在隔直电容C3与射频电路12对应的连接座43之间时,分压模块601可以通过扼流电感L1耦合在隔直电容C2与天线21对应的连接座42之间,则供电模块603可以通过扼流电感L2耦合在隔直电容C1与射频电路11对应的连接座41之间。
当然,分压模块601还可以采用其他方式耦合在相邻的两个cable之间,本申请实施例对cable的耦合方式不做限定。
另外,在供电模块603和检测模块602分别位于电子设备的主板和副板时(如供电模块603位于主板、检测模块602位于副板,或者,供电模块603位于副板、检测模块602位于主板),供电模块603和检测模块602之间可以通过柔性电路板(flexible printed circuit,FPC)耦合,FPC具有质量轻和厚度薄的优势,而且FPC可自由弯曲折叠,使得主板与副板之间的位置关系可以进行灵活调整。当然,供电模块403和检测模块402之间也可以通过信号线耦合,本申请实施例对此不做限定。
上述如图6至图11所示实施例中,是以电子设备包括2个cable为例进行说明,但是在实际应用中,电子设备可以包括多个cable,下述以电子设备包括3个cable(cable31、cable32和cable33)为例进行说明,参见图12,图12是本申请实施例提供的又一种射频系统的电路框架图,射频系统中可以包括:第一分压模块1201、第二分压模块1202、检测模块1203和供电模块1204。
其中,供电模块1204的输出端可以通过第一节点A与检测模块1203耦合,供电 模块1204还可以通过cable31与第一分压模块1201耦合,第一分压模块1201可以通过cable32与第二分压模块1202耦合。也即是,cable31的两端可以耦合有第一分压模块1201。当cable31断开连接时,可以通过第一分压模块1201形成电路回路。类似的,cable32的两端也可以耦合有第二分压模块1202,当cable32连接断开时,可以通过第二分压模块1202形成电路回路。另外,cable33的两端可以分别耦合cable32和地电位GND1。
而且,与图6中所示的射频系统类似的,本申请实施例中射频系统也可以包括:第一节点(A)、多个隔直电容(C1、C2、C3、C4、C6和C7)和多个扼流电感(L1、L2、L3、L4、L5、L6和L7)。其中,C1、C2、C3和C4等多个隔直电容、以及L1、L2和L3等多个扼流电感,与图6中所示的排布方式一致,在此不再赘述。但是,图6中所示的扼流电感L4则不再位于cable32与地电位GND1之间,而是位于如图12所示的cable33与地电位GND1之间。
而且,本申请实施例中还加入了其他的隔直电容(C6和C7)和扼流电感(L5、L6和L7),射频电路13与对应的连接座45之间设置有隔直电容C6,天线23与对应的连接座46之间设置有隔直电容C7;第二分压模块1202与cable32之间设置有扼流电感L5和扼流电感L6,扼流电感L5和扼流电感L6分别连接在cable32的两端,第二分压模块1202与cable33之间设置有扼流电感L7。
具体地,扼流电感L4的第一端耦合在隔直电容C6与射频电路13对应的连接座45之间,扼流电感L4的第二端与地电位GND1耦合;扼流电感L5的第一端耦合在隔直电容C3与射频电路12对应的连接座43之间,扼流电感L5的第二端与第二分压模块1202耦合;扼流电感L6的第一端耦合在隔直电容C4与天线22对应的连接座44之间,扼流电感L6的第二端与第二分压模块1202耦合;扼流电感L7的第一端耦合在隔直电容C7与天线23对应的连接座46之间,扼流电感L7的第二端与第二分压模块1202耦合。
另外,本申请实施例中的第一分压模块1201、检测模块1203和供电模块1204,与图6中所示的分压模块601、检测模块602和供电模块603类似,在此不再赘述。
本申请实施例中的第二分压模块1202与第一分压模块1201类似,参见图12,第二分压模块1202中可以包括第三分压电阻R3和第四分压电阻R4。其中,第三分压电阻R3的第一端与地电位GND3耦合,第三分压电阻R3的第二端与第四分压电阻R4的第二端耦合,第四分压电阻R4的第一端与扼流电感L5耦合。而且,第三分压电阻R3的第二端与第四分压电阻R4的第二端均可以耦合在扼流电感L6与扼流电感L7之间。
另外,上述第三分压电阻R3的参数值可以参照本申请实施例中第一分压模块1201中第一分压电阻R1的参数值,第四分压电阻R4的参数值可以参照本申请实施例中第一分压模块1201中第二分压电阻R2的参数值,在此不再赘述。
图13是本申请实施例提供的一种射频系统的简化示意图,省略了如图12中所示的射频电路、天线、隔直电容和扼流电感。参见图13,若cable31、cable32和cable33均未连接断开,则射频系统中的第二分压电阻R2被cable31短路、第四分压电阻R4被cable32短路、第三分压电阻R3被cable33短路、且第一分压电阻R1被cable32和 cable33短路,电流流过上拉电阻R0、cable31、cable32和cable33,从而到达地电位GND1形成回路。
因此,此时检测点的电位为V5=0,其中,V5为检测点的电位。
但是,若cable31连接断开、cable32和cable33正常连接,则可以形成如图14所示的简化电路,图14是本申请实施例提供的另一种射频系统的简化示意图,参见图14,cable31断开,电流由上拉电阻R0流经第二分压电阻R2。但是,cable32和cable33并未连接断开,则第一分压电阻R1、第三分压电阻R3和第四分压电阻R4被短路。电流在流过第二分压电阻R2后,可以通过cable32和cable33到达地电位GND1。
因此,此时检测点的电位为V6=V*R2/(R0+R2),其中,V6为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值。
类似的,若cable31和cable33正常连接、cable32连接断开,则可以形成如图15所示的简化电路,图15是本申请实施例提供的又一种射频系统的简化示意图,参见图15,cable31和cable33正常连接,第二分压电阻R2被cable31短路,第三分压电阻R3被cable33短路。cable32连接断开,第一分压电阻R1和第四分压电阻R4并联。
因此,此时检测点的电位为V7=V*Rx1/(R0+Rx1),其中,V7为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,Rx1为第一分压电阻R1和第四分压电阻R4并联连接的等效电阻,Rx1=R1*R4/(R1+R4),R1为第一分压电阻R1对应的电阻值,R4为第四分压电阻R4对应的电阻值。
类似的,若cable31和cable32正常连接、cable33连接断开,则可以形成如图16所示的简化电路,图16是本申请实施例提供的又一种射频系统的简化示意图,参见图16,cable31和cable32正常连接,第二分压电阻R2被cable31短路,第四分压电阻R4被cable32短路。cable33连接断开,第一分压电阻R1和第三分压电阻R3并联。
因此,此时检测点的电位为V8=V0*Rx2/(R0+Rx2),其中,V8为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,Rx2为第一分压电阻R1和第三分压电阻R3并联连接的等效电阻,Rx2=R1*R3/(R1+R3),R1为第一分压电阻R1对应的电阻值,R3为第三分压电阻R3对应的电阻值。
上述仅为电子设备的3个cable并未出现连接断开、以及任意一个cable断开时,预先设置的检测点所检测得到的电位。但是,在实际应用中,电子设备也可能会出现3个cable中的任意2个cable连接断开,或者出现3个cable全部连接断开的情况。参见图17至图20,分别示出了2个cable或3个cable连接断开时对应的射频系统的简化示意图。
图17是本申请实施例提供的又一种射频系统的简化示意图,如图17所示,电子设备的cable31和cable32连接断开、cable33正常连接,第三分压电阻R3被cable33短路,第一分压电阻R1和第四分压电阻R4并联,第二分压电阻R2则与并联的第一分压电阻R1和第四分压电阻R4串联。
因此,此时检测点的电位为V9=V*(R2+Rx3)/(R0+R2+Rx3),其中,V9为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值,Rx3为第一分压电阻R1和第四分压电阻R4并联连接 的等效电阻,Rx3=R1*R4/(R1+R4),R1为第一分压电阻R1对应的电阻值,R4为第四分压电阻R4对应的电阻值。
图18是本申请实施例提供的又一种射频系统的简化示意图,如图18所示,电子设备的cable32和cable33连接断开、cable31正常连接,第二分压电阻R2被cable31短路,第三分压电阻R3和第四分压电阻R4串联,第一分压电阻R1则与串联的第三分压电阻R3和第四分压电阻R4并联。
因此,此时检测点的电位为V10=V*Rx4/(R0+Rx4),其中,V10为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,Rx4为第一分压电阻R1与串联的第三分压电阻R3和第四分压电阻R4并联的等效电阻,Rx4=R1*(R3+R4)/(R1+R3+R4),R1为第一分压电阻R1对应的电阻值,R3为第三分压电阻R3对应的电阻值,R4为第四分压电阻R4对应的电阻值。
图19是本申请实施例提供的又一种射频系统的简化示意图,如图19所示,电子设备的cable31和cable33连接断开、cable32正常连接,第四分压电阻R4被cable32短路,第一分压电阻R1和第三分压电阻R3并联,第二分压电阻R2则与并联的第一分压电阻R1和第三分压电阻R3串联。
因此,此时检测点的电位为V11=V*(R2+Rx5)/(R0+R2+Rx5),其中,V11为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值,Rx5为第一分压电阻R1和第三分压电阻R3并联的等效电阻,Rx5=R1*R3/(R1+R3),R1为第一分压电阻R1对应的电阻值,R3为第三分压电阻R3对应的电阻值。
图20是本申请实施例提供的又一种射频系统的简化示意图,如图20所示,电子设备的cable31、cable32和cable33均连接断开,第一分压电阻R1与串联的第三分压电阻R3和第四分压电阻R4并联。
因此,此时检测点的电位为V12=V*(R2+Rx6)/(R0+R2+Rx6),其中,V12为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值,Rx6为第一分压电阻R1与串联的第三分压电阻R3和第四分压电阻R4并联的等效电阻,Rx6=R1*(R3+R4)/(R1+R3+R4),R1为第一分压电阻R1对应的电阻值,R3为第三分压电阻R3对应的电阻值,R4为第四分压电阻R4对应的电阻值。
进一步地,参见图21,第一分压模块1201中还可以包括对地电容C5,对地电容C5与第一分压电阻R1并联,以提高cable31和cable32之间的隔离度。类似的,第二分压模块1202中还可以包括对地电容C8,对地电容C8与第三分压电阻R3并联,以提高cable32和cable33之间的隔离度。
上述对地电容C5和对地电容C8与图11中所示的对地电容C5类似,在此不再赘述。
需要说明的是,上述实施例中射频系统的供电模块1204和第二分压模块1202位于电子设备的副板,而射频系统的检测模块1203和第一分压模块1201则位于电子设备的主板。但是,在实际应用中,可以根据主板和副板的版图设计,对射频系统的每个电路模块所在的位置进行调整,例如,可以参照图6至图11所对应的实施例对各个 电路模块所在的位置进行调整,本申请实施例对每个电路模块所在的位置不做限定。
而且,第一分压模块1201和第二分压模块1202可以采用不同的方式耦合在相邻的两个cable之间,可以参照图6中分压模块601对应的不同耦合方式,在此不再赘述。
另外,在如图12所示的射频系统的基础上,可以进一步对射频系统进行优化,以减少射频系统中的元器件,降低射频系统的复杂程度,减少射频系统在电子设备的主板和副板上所占的面积。例如,可以对射频系统中的第一分压模块1201进行优化,去除第一分压模块1201中的第一分压电阻R1,得到如图22所示的射频系统。
图22是本申请实施例提供的又一种射频系统的电路框架图,参见图22,射频系统中可以包括:第一分压模块2201、第二分压模块2202、检测模块2203和供电模块2204,射频系统还可以包括:多个隔直电容(C1、C2、C3、C4、C6和C7)和多个扼流电感(L1、L2、L3、L4、L5、L6和L7)。其中,供电模块2204、检测模块2203、第二分压模块2202、多个隔直电容和多个扼流电感与如图12所示的射频系统类似,在此不再赘述。
但是,与如图12所示的射频系统不同的是,如图22所示的射频系统中的第一分压模块2201中仅包括第二分压电阻R2,第二分压电阻R2的第一端与供电模块2204中上拉电阻R0的第二端耦合,第二分压电阻R2的第二端耦合在扼流电感L1和扼流电感L3之间。
图23是本申请实施例提供的一种射频系统的简化示意图,省略了如图22中所示的射频电路、天线、隔直电容和扼流电感。参见图23,若cable31、cable32和cable33均未连接断开,则射频系统中的第二分压电阻R2被cable31短路、第四分压电阻R4被cable32短路、且第三分压电阻R3被cable33短路,电流流过上拉电阻R0、cable31、cable32和cable33,从而到达地电位GND1形成回路。
因此,此时检测点的电位为V13=0,其中,V13为检测点的电位。
但是,若cable31连接断开、cable32和cable33正常连接,则可以形成如图24所示的简化电路,图24是本申请实施例提供的另一种射频系统的简化示意图,参见图24,cable31断开,电流由上拉电阻R0流经第二分压电阻R2。但是,cable32和cable33并未连接断开,则第三分压电阻R3被cable33短路、第四分压电阻R4被cable32被短路。电流在流过第二分压电阻R2后,通过cable32和cable33到达地电位GND1。
因此,此时检测点的电位为V14=V*R2/(R0+R2),其中,V14为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值。
类似的,若cable31和cable33正常连接、cable32连接断开,则可以形成如图25所示的简化电路,图25是本申请实施例提供的又一种射频系统的简化示意图,参见图25,cable31和cable33正常连接,第二分压电阻R2被cable31短路,第三分压电阻R3被cable33短路。cable32连接断开,仅有第四分压电阻R4接入。
因此,此时检测点的电位为V15=V*R4/(R0+R4),其中,V15为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R4为第四分压电阻R4对应的电阻值。
类似的,若cable31和cable32正常连接、cable33连接断开,则可以形成如图26所示的简化电路,图26是本申请实施例提供的又一种射频系统的简化示意图,参见图26,cable31和cable32正常连接,第二分压电阻R2被cable31短路,第四分压电阻R4被cable32短路。cable33连接断开,仅有第三分压电阻R3接入射频系统。
因此,此时检测点的电位为V16=V*R3/(R0+R3),其中,V16为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R3为第三分压电阻R3对应的电阻值。
与图17至图20相对应的,参见图27至图30,分别示出了2个cable或3个cable断开连接时,图22所示的射频系统的简化示意图。
图27是本申请实施例提供的又一种射频系统的简化示意图,如图27所示,电子设备的cable31和cable32连接断开、cable33正常连接,第三分压电阻R3被cable33短路,第二分压电阻R2与第四分压电阻R4串联。
因此,此时检测点的电位为V17=V*(R2+R4)/(R0+R2+R4),其中,V17为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值,R4为第四分压电阻R4对应的电阻值。
图28是本申请实施例提供的又一种射频系统的简化示意图,如图28所示,电子设备的cable32和cable33连接断开、cable31正常连接,第二分压电阻R2被cable31短路,第三分压电阻R3和第四分压电阻R4串联。
因此,此时检测点的电位为V18=V*(R3+R4)/(R0+R3+R4),其中,V18为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R3为第三分压电阻R3对应的电阻值,R4为第四分压电阻R4对应的电阻值。
图29是本申请实施例提供的又一种射频系统的简化示意图,如图29所示,电子设备的cable31和cable33连接断开、cable32正常连接,第四分压电阻R4被cable32短路,第二分压电阻R2与第三分压电阻R3串联。
因此,此时检测点的电位为V19=V*(R2+R3)/(R0+R2+R3),其中,V19为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值,R3为第三分压电阻R3对应的电阻值。
图30是本申请实施例提供的又一种射频系统的简化示意图,如图30所示,电子设备的cable31、cable32和cable33均连接断开,第二分压电阻R2、第三分压电阻R3和第四分压电阻R4串联。
因此,此时检测点的电位为V20=V*(R2+R3+R4)/(R0+R2+R3+R4),其中,V20为检测点的电位,V为直流电压源V0的电位,R0为上拉电阻R0对应的电阻值,R2为第二分压电阻R2对应的电阻值,R3为第三分压电阻R3对应的电阻值,R4为第四分压电阻R4对应的电阻值。
进一步地,参见图31,第一分压模块2201中还可以包括对地电容C5,对地电容C5设置在第二分压电阻R2的第二端与地电位GND2之间,以提高cable31和cable32之间的隔离度。类似的,第二分压模块2202中还可以包括对地电容C8,对地电容C8与第三分压电阻R3并联,以提高cable32和cable33之间的隔离度。上述对地电容C5和对地电容C8与图22中所示的对地电容C5和对地电容C8类似,在此不再赘述。
需要说明的是,上述实施例中射频系统的供电模块2204和第二分压模块2202位于电子设备的副板,而射频系统的检测模块2203和第一分压模块2201则位于电子设备的主板。但是,在实际应用中,可以根据主板和副板的版图设计,对射频系统的每个电路模块所在的位置进行调整,例如,可以参照图6至图11所对应的实施例对各个电路模块所在的位置进行调整,本申请实施例对每个电路模块所在的位置不做限定。
而且,第一分压模块2201、第二分压模块2202可以采用不同的方式耦合在相邻的两个cable之间,可以参照图6中分压模块601对应的不同耦合方式,在此不再赘述。
进一步地,在供电模块2204和检测模块2203分别位于电子设备的主板和副板时(如供电模块2204位于主板、检测模块2203位于副板,或者,供电模块2204位于副板、检测模块2203位于主板),供电模块2204和检测模块2203之间可以通过FPC耦合,也可以通过信号线耦合,本申请实施例对此不做限定。
另外,在实际应用中,将上述射频系统应用在电子设备中,需要一定的研发周期用于更新验证与射频系统相匹配的应用程序,则在射频系统相匹配的应用程序并未更新验证完毕之前,电子设备现有的应用程序仍需要通过GPIO实现天线在位检测机制,也即是通过检测各个cable是否连接异常导致电子设备的天线的射频通信受到影响。
因此,仍然需要在具有GPIO的电子设备的基础上,在电子设备中添加本申请实施例提出的如图6、图11、图12、图21、图22和图31所示的射频系统,以实现不同的功能。例如,以添加图11所示的射频系统为例,也即是,在电子设备包括GPIO和2个cable(cable31和cable32)时,加入如图11所示的射频系统,得到如图32所示的又一种射频系统。
参见图32,该射频系统中可以包括:GPIO检测模块3201、GPIO供电模块3202、分压模块3203、检测模块3204和供电模块3205。而且,该射频系统还可以包括:多个隔直电容(C1、C2、C3和C4)、多个扼流电感(L1、L2、L3和L4)、以及对地电容(C5)。
其中,分压模块3203、检测模块3204、供电模块3205、多个隔直电容、多个扼流电感、以及对地电容的耦合方式,与图11中所示的分压模块601、检测模块602、供电模块603、多个隔直电容、多个扼流电感、以及对地电容的耦合方式类似,在此不再赘述。
而且,GPIO供电模块3202与供电模块3205类似,GPIO检测模块3201也与检测模块3204类似。GPIO供电模块3202可以为电子设备中的各个cable提供电压,GPIO检测模块3201则可以对电压进行采样,以确定电子设备中的各个cable是否连接断开。
上述实施例中射频系统的GPIO供电模块3202和供电模块3205位于电子设备的副板,而射频系统的GPIO检测模块3201、检测模块3204和分压模块3203则位于电子设备的主板。但是,在实际应用中,可以根据主板和副板的版图设计,对射频系统的每个电路模块所在的位置进行调整,例如,可以参照图6至图11所对应的实施例对各个电路模块所在的位置进行调整,本申请实施例对每个电路模块所在的位置不做限定。
而且,分压模块3203可以采用不同的方式耦合在相邻的两个cable之间,可以参 照图6中分压模块601对应的不同耦合方式,在此不再赘述。
另外,若射频系统的检测模块3204和GPIO检测模块3201均位于电子设备的主板或副板,检测模块3204可以在GPIO检测模块3201的走线的基础上,采用走线复用的方式实现对检测模块3204的走线,以降低走线的硬件成本,降低射频系统的复杂程度。
例如,检测模块1604可以根据采集的电位,对多个电位大小进行识别,以便处理器可以根据识别得到的电位大小,确定各个cable的连接状态。而GPIO检测模块1601可以根据采集的电位,确定电位高低,也即是确定高电位或低电位,则处理器可以根据高电位或低电位确定cable是否连接断开。
需要说明的是,在实际应用中,可以在上述用于检测cable是否连接断开的射频系统进行扩展,得到如图33所示的还可以用于检测cable是否连接断开的射频系统,参见图33,示出了电子设备包括2个cable时的射频系统的电路结构图,该射频系统可以包括:分压模块3301、检测模块3302和供电模块3303等多个电路模块,射频系统还可以包括:第一节点(A)、多个隔直电容(C1、C2、C3和C4)和多个扼流电感(L1、L2、L3和L4)。
其中,分压模块3301、检测模块3302和供电模块3303分别与分压模块601、检测模块602和供电模块603类似,在此不再赘述。
但是,分压模块3301中除了第一分压电阻R1和第二分压电阻R2之外,分压模块3301还可以包括第五分压电阻R5,第五分压电阻R5串联耦合在cable31和cable32之间。
另外,通过检测模块3302确定检测点的电位、以及确定每个cable的连接状态的过程与前述内容类似,在此也不再赘述。
进一步地,图34示出了另一种结合后的射频系统,参见图34,图34示出了包括3个cable时的射频系统的电路结构图,该射频系统可以包括:第一分压模块3401、第二分压模块3402、检测模块3403和供电模块3404等多个电路模块,射频系统还可以包括:第一节点(A)、多个隔直电容(C1、C2、C3、C4、C6和C7)和多个扼流电感(L1、L2、L3、L4、L5、L6和L7)。
其中,第一分压模块3401、第二分压模块3402、检测模块3403和供电模块3404分别与第一分压模块1201、第二分压模块1202、检测模块1203和供电模块1204类似,在此不再赘述。
而且,第一分压模块3401中新增的第五分压电阻R5可以参照图33中所示的分压模块3301,在此也不再赘述。
另外,第二分压模块3402中除了第三分压电阻R3和第四分压电阻R4之外,第二分压模块3402还可以包括第六分压电阻R6,第六分压电阻R6串联耦合在cable32和cable33之间。
需要说明的是,通过检测模块3403确定检测点的电位、以及确定每个cable的连接状态的过程与前述内容类似,在此也不再赘述。
综上所述,本申请实施例提供的射频系统,射频系统中设置有与供电模块耦合的至少一个分压模块,且每个分压模块串联耦合,其中每个分压模块对应一个cable,每 个分压模块耦合在对应的cable的两端。若至少一个cable出现连接断开的情况,则电流可以通过cable对应的分压模块流至相邻的下一电路模块,使得分压模块中的电阻进行分压,则与供电模块连接的检测模块也可以检测到变化的电位,从而可以根据变化的电位确定连接断开的每个cable,无需设置与cable数量成正比的GPIO,可以减少检测各个cable是否连接断开时所需的硬件,并降低检测各个cable是否连接断开所需的成本。
而且,可以在供电模块与分压模块之间、分压模块与地电位之间、以及相邻的两个分压模块之间串联耦合cable,并结合设置在射频系统与射频电路之间、以及射频系统与天线之间设置隔直电容和扼流电感,可以防止射频电路中的射频信号进入射频系统,也可以防止射频系统中的电流进入射频电路,从而可以提高射频系统与射频电路之间的隔离度,提高射频系统的准确度。
另外,通过在分压模块中设置对地电容,使得对地电容位于两条射频电路之间,则射频电路中串入射频系统的射频信号可以通过对地电容被引导至地电位,从而可以防止一条射频电路中的射频信号通过射频系统进入另一条射频电路,进而可以提高两条射频电路之间的隔离度。
进一步地,还可以在包括GPIO的电子设备的基础上,结合原有的GPIO采用走线复用的方式,添加本申请实施例提供的射频系统,以减少走线、节约硬件资源。而且,在原有GPIO的不同功能的基础上,结合射频系统可以确定电子设备的各个cable是否连接断开,从而可以丰富射频系统的功能,提高射频系统所实现的功能的多样性。
图35是本申请实施例提供的一种检测方法的示意性流程图,作为示例而非限定,该方法可以应用于上述如图2中所示的与射频系统连接的处理器中,参见图35,该方法包括:
步骤3501、获取射频系统中检测点对应的电位信息。
其中,该电位信息用于表示检测点当前的电位高低。而且,射频系统的检测点可以为射频系统中供电模块的上拉电阻的第二端,也可以为其他可以随着射频系统中电路耦合方式的变化而出现电位变化的位置,本申请实施例对射频系统的检测点不做限定。
在生产电子设备的过程中,cable可以安装在电子设备的连接座上,但是由于连接座过多,可能会导致多个cable连接断开。或者,使用电子设备的过程中,电子设备可能会受到碰撞和撞击的影响,造成电子设备内的cable从连接座脱落,导致电子设备的通信质量下降,或者无法进行射频通信。
本申请实施例则提供了一种检测方法,用于检测电子设备中的各个cable是否出现异常,也即是,检测各个cable是否出现了连接错误或连接断开的情况,从而可以存储和/或提醒cable出现异常的信息。
在检测cable是否出现异常的过程中,处理器可以结合图2中所示的射频系统,获取射频系统中检测模块所采集得到的电位信息,以便在后续步骤中,处理器可以根据电位信息确定电子设备的各个cable是否出现异常。
例如,处理器可以持续获取射频系统中检测模块所发送的电位信息,也可以周期 性地获取检测模块发送的电位信息,获取电位信息的周期可以根据检测模块的电路进行调整,本申请实施例对获取电位信息的方式不做限定。
步骤3502、从多个预设电位中,确定与电位信息相匹配的目标预设电位。
在电子设备的任意一个cable出现异常时,与各个cable相耦合的射频系统中电流的流向会发生变化,射频系统中各个分压电阻的分压也会相应发生变化,则射频系统中检测点的电位也会出现变化。相应的,处理器中可以将检测点能够检测到的各个电位作为预设电位进行存储,以便在后续步骤中,可以根据匹配的目标预设电位确定电子设备中出现异常的cable。
其中,处理器中存储的预设电位的数目与电子设备中的cable数量成正比,若电子设备中的cable越多,则处理器中存储的预设电位也越多。
在一种可能的实现方式中,处理器在获取检测模块检测的电位信息后,可以将电位信息所指示的电位,与预先存储的多个预设电位进行比较,再从多个比较结果中确定与电位信息相匹配的目标预设电位。
例如,处理器可以将电位信息所指示的电位,与每个预设电位相减,将计算得到的差值作为比较结果,再从多个比较结果中确定参数值的绝对值最小的目标比较结果,之后可以将目标比较结果对应的预设电位作为目标预设电位。
需要说明的是,在实际应用中,处理器可以预先存储预设电位与连接状态之间的对应关系。该对应关系中可以包括多个预设电位和多个连接状态,每个预设电位对应一个连接状态。例如,对应关系中的第一预设电位对应的连接状态可以为cable31和cable32连接错误,也即是,cable31和cable32扣反;第二预设电位对应的连接状态可以为cable33连接断开,也即是,cable33的至少一端从对应的连接座上脱落。
相对应的,处理器在执行步骤3502的过程中,可以从对应关系中获取多个预设电位,以便在后续步骤中,可以根据各个预设电位对应的连接状态,确定电子设备的各个cable是否出现异常。
步骤3503、根据预先设置的对应关系,确定目标预设电位对应的目标连接状态。
在一种可能的实现方式中,处理器可以根据目标预设电位,从对应关系中查找与目标预设电位相对应的连接状态,之后可以将该对应的连接状态作为目标预设电位对应的目标连接状态,也即是,将该目标预设电位相对应的连接状态作为与电位信息相对应的目标连接状态。
需要说明的是,处理器在确定目标连接状态后,可以将目标连接状态存储在与处理器连接的存储器中,以便在对电子设备进行维护时,用户可以根据存储器中所存储的目标连接状态,确定电子设备的cable存在异常,便于对电子设备进行维护。
另外,处理器在执行完毕步骤3503后,可以继续执行步骤3504。当然,处理器还可以根据目标连接状态执行其他操作,本申请实施例对处理器根据目标连接状态所执行的操作不做限定。
步骤3504、根据目标连接状态,提醒射频连接线连接异常。
处理器在确定目标连接状态之后,若目标连接状态指示射频连接线连接异常,则处理器可以控制与处理器连接的显示屏和/或扬声器,向用户进行报警,及时提醒用户电子设备的至少一个cable出现异常,以便用户能够及时对电子设备进行维护。
例如,处理器可以获取预先存储的cable异常文本,并控制显示屏显示该cable异常文本,如显示屏可以显示“射频连接线连接错误,请检查!”,或者可以显示“射频连接线断开连接,请检查!”。当然,处理器也可以先获取预先存储的cable异常语音,并控制扬声器播放cable异常语音,如扬声器可以播放“射频连接线连接错误,请检查!”,或者,可以播放“射频连接线断开连接,请检查!”。进一步地,显示屏在显示cable
异常文本的同时,扬声器可以播放与cable异常文本相对应的cable异常语音。
综上所述,本申请实施例提供的检测方法,通过获取射频系统中检测点对应的电位信息,并从多个预先设置的预设电位中,确定与电位信息相匹配的目标预设电位,再从对应关系中确定与目标预设电位相对应的目标连接状态,也即是电子设备中每个cable是否出现异常、以及每个cable的异常类型等信息。通过每个cable出现异常所对应的预设电位,可以在确定cable出现异常的基础上,进一步准确确定是电子设备的哪个cable出现异常,并且还能够确定cable出现异常的异常类型(如连接断开或连接错误),无需设置与cable数量成正比的GPIO,即可降低检测cable的硬件成本,并提高检测cable的功能多样性和灵活性。
如图1至图34所示的电路架构、以及图35所示的方法流程可以应用在电子设备中。下述介绍本申请实施例涉及的电子设备。请参阅图36,图36是本申请实施例提供的一种电子设备的结构示意图。
电子设备可以包括处理器3610,外部存储器接口3620,内部存储器3621,通用串行总线(universal serial bus,USB)接口3630,充电管理模块3640,电源管理模块3641,电池3642,天线21,天线22,移动通信模块3650,无线通信模块3660,音频模块3670,扬声器3670A,受话器3670B,麦克风3670C,耳机接口3670D,传感器模块3680,按键3690,马达3691,指示器3692,摄像头3693,显示屏3694,以及用户标识模块(subscriber identification module,SIM)卡接口3695等。其中传感器模块3680可以包括压力传感器3680A,陀螺仪传感器3680B,气压传感器3680C,磁传感器3680D,加速度传感器3680E,距离传感器3680F,接近光传感器3680G,指纹传感器3680H,温度传感器3680J,触摸传感器3680K,环境光传感器3680L,骨传导传感器3680M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备的具体限定。在本申请另一些实施例中,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器3610可以包括一个或多个处理单元,例如:处理器3610可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备的神经中枢和指挥中心。控制器可以根据指令操作 码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器3610中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器3610中的存储器为高速缓冲存储器。该存储器可以保存处理器3610刚用过或循环使用的指令或数据。如果处理器3610需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器3610的等待时间,因而提高了系统的效率。
在一些实施例中,处理器3610可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器3610可以包含多组I2C总线。处理器3610可以通过不同的I2C总线接口分别耦合触摸传感器3680K,充电器,闪光灯,摄像头3693等。例如:处理器3610可以通过I2C接口耦合触摸传感器3680K,使处理器3610与触摸传感器3680K通过I2C总线接口通信,实现电子设备的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器3610可以包含多组I2S总线。处理器3610可以通过I2S总线与音频模块3670耦合,实现处理器3610与音频模块3670之间的通信。在一些实施例中,音频模块3670可以通过I2S接口向无线通信模块3660传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块3670与无线通信模块3660可以通过PCM总线接口耦合。在一些实施例中,音频模块3670也可以通过PCM接口向无线通信模块3660传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器3610与无线通信模块3660。例如:处理器3610通过UART接口与无线通信模块3660中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块3670可以通过UART接口向无线通信模块3660传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器3610与显示屏3694,摄像头3693等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器3610和摄像头3693通过CSI接口通信,实现电子设备的拍摄功能。处理器3610和显示屏3694通过DSI接口通信,实现电子设备的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器3610与摄像头3693,显 示屏3694,无线通信模块3660,音频模块3670,传感器模块3680等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口3630是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口3630可以用于连接充电器为电子设备充电,也可以用于电子设备与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备的结构限定。在本申请另一些实施例中,电子设备也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块3640用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块3640可以通过USB接口3630接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块3640可以通过电子设备的无线充电线圈接收无线充电输入。充电管理模块3640为电池3642充电的同时,还可以通过电源管理模块3641为电子设备供电。
电源管理模块3641用于连接电池3642,充电管理模块3640与处理器3610。电源管理模块3641接收电池3642和/或充电管理模块3640的输入,为处理器3610,内部存储器3621,外部存储器,显示屏3694,摄像头3693,和无线通信模块3660等供电。电源管理模块3641还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块3641也可以设置于处理器3610中。在另一些实施例中,电源管理模块3641和充电管理模块3640也可以设置于同一个器件中。
电子设备的无线通信功能可以通过天线21,天线22,移动通信模块3650,无线通信模块3660,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线21复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块3650可以提供应用在电子设备上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块3650可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块3650可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块3650还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块3650的至少部分功能模块可以被设置于处理器3610中。在一些实施例中,移动通信模块3650的至少部分功能模块可以与处理器3610的至少部分模块被设置在同一个器件中。上述实施例中的射频电路可以是移动通信模块4750。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处 理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器3670A,受话器3670B等)输出声音信号,或通过显示屏3694显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器3610,与移动通信模块3650或其他功能模块设置在同一个器件中。
无线通信模块3660可以提供应用在电子设备上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块3660可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块3660经由天线22接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器3610。无线通信模块3660还可以从处理器3610接收待发送的信号,对其进行调频,放大,经天线22转为电磁波辐射出去。
在一些实施例中,电子设备的天线21和移动通信模块3650耦合,天线22和无线通信模块3660耦合,使得电子设备可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备通过GPU,显示屏3694,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏3694和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器3610可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏3694用于显示图像,视频等。显示屏3694包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备可以包括1个或N个显示屏3694,N为大于1的正整数。
外部存储器接口3620可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备的存储能力。外部存储卡通过外部存储器接口3620与处理器3610通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器3621可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器3610通过运行存储在内部存储器3621的指令,从而执行电子设备的各种功能应用以及数据处理。内部存储器3621可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器3621可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备可以通过音频模块3670,扬声器3670A,受话器3670B,麦克风3670C,耳机接口3670D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成 的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到电子设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种射频系统,其特征在于,包括:第一射频电路、第二射频电路、第一天线、第二天线、第一射频连接线和第二射频连接线,所述第一天线通过所述第一射频连接线与所述第一射频电路相耦合,所述第二天线通过所述第二射频连接线与所述第二射频电路相耦合,所述第一射频连接线和所述第二射频连接线串联耦合;
    所述射频系统还包括:第一节点、第一分压元件和第二分压元件;
    所述第一节点与第一电位耦合,所述第一节点与所述第一射频连接线的第一端耦合,所述第二射频连接线的第二端与第二电位耦合,所述第一电位高于所述第二电位;
    所述第一分压元件的第一端与第三电位耦合,所述第一分压元件的第二端耦合在所述第一射频连接线和所述第二射频连接线之间,所述第一电位高于所述第三电位;
    所述第二分压元件的并联耦合在所述第一射频连接线的两端。
  2. 根据权利要求1所述的射频系统,其特征在于,所述射频系统还包括:第一对地电容,所述第一对地电容与所述第一分压元件并联。
  3. 根据权利要求1至2任一所述的射频系统,其特征在于,所述射频系统还包括电源,所述第一节点与所述电源耦合;
    所述电源包括:直流电压源和上拉电阻,所述上拉电阻的第一端与所述直流电压源的输出端耦合,所述上拉电阻的第二端与所述第一节点耦合。
  4. 根据权利要求1至3任一所述的射频系统,其特征在于,所述射频系统还包括:检测模块,所述射频系统通过所述检测模块采集所述第一节点的电位。
  5. 根据权利要求4所述的射频系统,其特征在于,所述检测模块为模数转换器ADC或电压比较器。
  6. 根据权利要求1至5任一所述的射频系统,其特征在于,所述射频系统还包括:
    第一连接座、第二连接座、第三连接座和第四连接座;
    第一隔直电容、第二隔直电容、第三隔直电容和第四隔直电容;
    第一扼流电感、第二扼流电感、第三扼流电感和第四扼流电感;
    其中,所述第一射频电路与所述第一连接座耦合,所述第一天线与所述第二连接座耦合,所述第二射频电路与所述第三连接座耦合,所述第二天线与所述第四连接座耦合;
    所述第一隔直电容耦合在所述第一射频电路和所述第一连接座之间,所述第二隔直电容耦合在所述第一天线和所述第二连接座之间,所述第三隔直电容耦合在所述第二射频电路和所述第三连接座之间,所述第四隔直电容耦合在所述第二天线和所述第四连接座之间;
    所述第一扼流电感的第一端耦合在所述第一隔直电容和所述第一连接座之间,所述第一扼流电感的第二端与所述第一分压元件的第二端相耦合,所述第二扼流电感的第一端耦合在所述第二隔直电容和所述第二连接座之间,所述第二扼流电感的第二端与所述第一节点相耦合,所述第三扼流电感的第一端耦合在所述第三隔直电容和所述第三连接座之间,所述第三扼流电感的第二端与所述第一分压元件的第二端相耦合,所述第四扼流电感的第一端耦合在所述第四隔直电容和所述第四连接座之间,所述第 四扼流电感的第二端与所述第三电位相耦合。
  7. 根据权利要求1至6任一所述的射频系统,其特征在于,所述第一节点的电位随着所述第一射频连接线的两端和所述第二射频连接线的两端中的至少一端是否与对应的连接座连接断开变化。
  8. 根据权利要求7所述的射频系统,其特征在于,当所述第一射频连接线的两端分别与所述第一射频电路和所述第一天线耦合、且所述第二射频连接线的两端分别与所述第二射频电路和所述第二天线耦合时,所述第一节点的电位处于第一状态;
    当所述第一射频连接线和所述第二射频连接线的至少一端与对应的连接座连接断开时,所述第一节点的电位处于第二状态。
  9. 根据权利要求1至8任一所述的射频系统,其特征在于,所述第一分压元件和所述第二分压元件均为电阻,所述第二电位和所述第三电位均为接地电位。
  10. 根据权利要求1至9任一所述的射频系统,其特征在于,所述射频系统还包括:第三射频电路、第三天线和第三射频连接线,所述第三射频电路通过所述第三射频连接线与所述第一天线、所述第二天线或所述第三天线耦合;
    所述射频系统还包括:第四分压元件和第五分压元件;
    所述第四分压元件的第一端与所述第三电位耦合,所述第四分压元件的第二端耦合在所述第二射频连接线和所述第三射频连接线之间;
    所述第五分压元件所述第二分压元件的并联耦合在所述第二射频连接线的两端。
  11. 根据权利要求10所述的射频系统,其特征在于,所述射频系统还包括:第二对地电容,所述第二对地电容与所述第四分压元件并联。
  12. 根据权利要求10至11任一所述的射频系统,其特征在于,所述射频系统还包括:
    第五连接座和第六连接座;
    第五隔直电容和第六隔直电容;
    第四扼流电感、第五扼流电感、第六扼流电感和第七扼流电感;
    其中,所述第三射频电路与所述第五连接座耦合,所述第三天线与所述第六连接座耦合;
    所述第五隔直电容耦合在所述第三射频电路和所述第五连接座之间,所述第六隔直电容耦合在所述第三天线和所述第六连接座之间;
    所述第四扼流电感的第一端耦合在所述第五隔直电容和所述第五连接座之间,所述第四扼流电感的第二端与所述第二电位相耦合,所述第五扼流电感的第一端耦合在第三隔直电容和第三连接座之间,所述第五扼流电感的第二端与所述第五分压元件的第一端相耦合,所述第六扼流电感的第一端耦合在第四隔直电容和第四连接座之间,所述第六扼流电感的第二端与所述第五分压元件的第一端相耦合,所述第七扼流电感的第一端耦合在所述第六隔直电容和所述第六连接座之间,所述第七扼流电感的第二端与所述第五分压元件的第一端相耦合。
  13. 根据权利要求10至12任一所述的射频系统,其特征在于,所述第四分压元件和所述第五分压元件均为电阻。
  14. 根据权利要求1至13任一所述的射频系统,其特征在于,所述射频系统还包 括通用输入/输出端口GPIO检测模块,所述第一节点还与所述GPIO检测模块耦合。
  15. 一种射频系统,其特征在于,包括:N个射频电路、N个天线和N个射频连接线,N为大于或等于2的整数,第i个射频电路通过第i个射频连接线与第i个天线耦合,i为小于或等于N-1的正整数;
    所述射频系统包括:第一节点、N-1个第一分压元件和N-1个第二分压元件;
    所述第一节点与第一电位耦合,所述第一节点与第i个所述射频连接线的第一端耦合,第i+1个所述射频连接线的第二端与第二电位耦合,所述第一电位高于所述第二电位;
    第i个所述第一分压元件的第一端与第三电位耦合,第i个所述第一分压元件的第二端耦合在第i个所述射频连接线和第i+1个所述射频连接线之间,所述第一电位高于所述第三电位;
    第i个所述第二分压元件并联耦合在第i个所述射频连接线的两端。
  16. 一种电子设备,其特征在于,包括:存储器、处理器、存储在所述存储器中并可在所述处理器上运行的计算机程序、以及如权利要求1至15任一所述的射频系统,所述处理器执行所述计算机程序时,基于如权利要求1至15任一所述的射频系统,实现对所述电子设备中射频连接线的检测。
  17. 根据权利要求16所述的电子设备,其特征在于,所述电子设备还包括:显示器和扬声器中的至少一个;
    当所述电子设备中的射频连接线连接异常时,通过所述显示器或所述扬声器进行报警。
  18. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,基于如权利要求1至15任一所述的射频系统,实现对电子设备中射频连接线的检测。
PCT/CN2021/115446 2020-10-31 2021-08-30 射频系统、电子设备及计算机可读存储介质 WO2022088920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011200695.X 2020-10-31
CN202011200695.XA CN114441998A (zh) 2020-10-31 2020-10-31 射频系统、电子设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022088920A1 true WO2022088920A1 (zh) 2022-05-05

Family

ID=81358158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115446 WO2022088920A1 (zh) 2020-10-31 2021-08-30 射频系统、电子设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114441998A (zh)
WO (1) WO2022088920A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008732A2 (en) * 2004-07-19 2006-01-26 Kodak IL. Ltd. Apparatus and method for interconnect verification
CN102141593A (zh) * 2010-12-24 2011-08-03 华为终端有限公司 用于检测射频接口外插连接的检测装置和方法
CN106299900A (zh) * 2015-06-24 2017-01-04 福特全球技术公司 用于未锁定连接器的自警告系统
US9647758B2 (en) * 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
WO2020122674A1 (en) * 2018-12-14 2020-06-18 Samsung Electronics Co., Ltd. Electronic device and method for identifying state of connection between connector and electrical path
CN111487564A (zh) * 2020-04-09 2020-08-04 Oppo(重庆)智能科技有限公司 一种空口检测电路、方法及电子设备
CN211478622U (zh) * 2019-12-31 2020-09-11 芯讯通无线科技(上海)有限公司 移动终端及其内置天线的自动检测电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008732A2 (en) * 2004-07-19 2006-01-26 Kodak IL. Ltd. Apparatus and method for interconnect verification
CN102141593A (zh) * 2010-12-24 2011-08-03 华为终端有限公司 用于检测射频接口外插连接的检测装置和方法
US9647758B2 (en) * 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
CN106299900A (zh) * 2015-06-24 2017-01-04 福特全球技术公司 用于未锁定连接器的自警告系统
WO2020122674A1 (en) * 2018-12-14 2020-06-18 Samsung Electronics Co., Ltd. Electronic device and method for identifying state of connection between connector and electrical path
CN211478622U (zh) * 2019-12-31 2020-09-11 芯讯通无线科技(上海)有限公司 移动终端及其内置天线的自动检测电路
CN111487564A (zh) * 2020-04-09 2020-08-04 Oppo(重庆)智能科技有限公司 一种空口检测电路、方法及电子设备

Also Published As

Publication number Publication date
CN114441998A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2018147590A1 (ko) 복수의 주파수 대역에서 통신하기 위한 안테나 시스템 및 안테나 시스템을 포함하는 전자 장치
US20100138572A1 (en) Universal serial bus device with millimeter wave transceiver and system with host device for use therewith
US20180351405A1 (en) Electronic system having power adapter for wired and wireless charging
CN111488273B (zh) 测试验证方法、测试验证装置、存储介质与电子设备
US20240145910A1 (en) Antenna Combination System and Terminal Device
EP3616391A1 (en) Method of outputting a signal using an antenna disposed adjacent to a conductive member of a connector and an electronic device using the same
WO2020153816A1 (ko) 고조파 신호를 처리하기 위한 전자 장치 및 방법
WO2018164432A1 (ko) 전자 장치 및 그의 안테나의 임피던스 매칭 방법
CN112118517B (zh) 一种音频芯片及终端
EP4224327A2 (en) Cable chip system
WO2022088920A1 (zh) 射频系统、电子设备及计算机可读存储介质
US9332295B2 (en) Wireless transmission and video integrated apparatus
CN107577370B (zh) 触控装置及电子设备
US7966038B2 (en) Wireless audio transfer system, wireless microphone, audio transmitting apparatus, audio receiving apparatus, image pickup apparatus, recording apparatus, and audio mixer
US20230353188A1 (en) Duplexer with balanced impedance ladder
US20160297301A1 (en) Modular unit identification in a modular upgradeable vehicle infotainment system
CN114442000A (zh) 射频系统、电子设备及计算机可读存储介质
CN114441999A (zh) 射频系统、电子设备及计算机可读存储介质
CN113810816B (zh) 耳机、调频信号接收系统和方法
US9684626B2 (en) Wireless transmission and video integrated apparatus
WO2020213858A1 (en) Electronic device, audio-purpose external electronic device, and method of receiving signal by electronic device connected with audio-purpose external electronic device
CN113206906A (zh) 电子设备组件和数字耳机
WO2018221847A1 (ko) 임피던스 튜닝을 이용한 안테나의 방사 성능을 개선하기 위한 장치 및 방법
WO2020116947A1 (ko) 빔 북을 생성하기 위한 방법 및 그 전자 장치
CN204087199U (zh) 无线传输及视频整合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884652

Country of ref document: EP

Kind code of ref document: A1