WO2022088727A1 - 一种激光自动校准机构及其校准方法 - Google Patents

一种激光自动校准机构及其校准方法 Download PDF

Info

Publication number
WO2022088727A1
WO2022088727A1 PCT/CN2021/103061 CN2021103061W WO2022088727A1 WO 2022088727 A1 WO2022088727 A1 WO 2022088727A1 CN 2021103061 W CN2021103061 W CN 2021103061W WO 2022088727 A1 WO2022088727 A1 WO 2022088727A1
Authority
WO
WIPO (PCT)
Prior art keywords
center
nozzle
laser
indicator light
camera
Prior art date
Application number
PCT/CN2021/103061
Other languages
English (en)
French (fr)
Inventor
刘泸
姜加伟
石文涛
Original Assignee
快克智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 快克智能装备股份有限公司 filed Critical 快克智能装备股份有限公司
Publication of WO2022088727A1 publication Critical patent/WO2022088727A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding

Definitions

  • the invention relates to the technical field of laser welding, in particular to an automatic laser calibration mechanism and a calibration method thereof.
  • Laser welding is an efficient and precise welding method that uses a high-energy-density laser beam as a heat source.
  • Laser welding is one of the important aspects of the application of laser material processing technology. In the 1970s, it was mainly used for welding thin-walled materials and low-speed welding.
  • the welding process is of thermal conduction type, that is, the surface of the workpiece is heated by laser radiation, and the surface heat diffuses to the interior through thermal conduction.
  • the position of the laser needs to be calibrated to ensure the accuracy of the laser test results; if there is a positional deviation, the welding effect will be greatly affected.
  • most of the existing laser position calibration mechanisms require the operation of the manual rotation adjustment mechanism. Under the naked eye, the center of the indicator light and the center of the nozzle are in a concentric state; under the naked eye, although the centers of the two coincide, there will still be deviations. ;
  • the technical problem to be solved by the present invention is: how to realize the automatic calibration of the laser;
  • the present invention adopts the following technical solutions:
  • the present invention is an automatic laser calibration mechanism, comprising: a frame; and a laser transmitter arranged on the frame, the laser transmitter can emit homologous indicating light and laser; an electric adjustment mechanism, the movable end of which is The laser transmitter is fixed, and is used to drive the laser transmitter to realize the two-axis plane movement of the X-axis and the Y-axis; the nozzle, the indicator light or laser emitted by the laser transmitter passes through the nozzle; a camera for grabbing the nozzle and identifying the center of the nozzle; and for capturing and identifying the center of the indicator light; a control system for acquiring the photographing information of the camera and controlling the The electric adjustment mechanism works; when the camera captures the deviation between the center of the indicating light and the center of the nozzle, the control system obtains and calculates the deviation between the center of the indicating light and the center of the nozzle, and The electric adjusting mechanism is driven to drive the laser transmitter to move, so that the center of the indicating light coincides with the center of the nozzle
  • the electric adjustment mechanism includes: a bracket, which is fixedly arranged with the frame; a first translation component, which is fixed on the bracket, and a partition plate is fixed at the movable end of the first translation component, and the first translation component is used to drive the partition plate along the Move in the X-axis direction; a second translation assembly, which is fixed on the partition, and a fixed arm is fixed at the movable end of the second translation assembly, and the end of the fixed arm is connected with a laser transmitter, and the second translation assembly is used to drive the laser The transmitter moves along the Y-axis direction;
  • first translation assembly and the second translation assembly have the same structure and are vertically arranged on different planes;
  • the second translation assembly includes: a motor; a fixing block, on which the motor is fixed on one side; It is connected with the fixing block through a sliding mechanism; wherein, the sliding block of the second translation assembly is fixedly connected with the fixing arm.
  • the second translation assembly includes: a motor; a fixed block, on which the motor is fixed on one side; a sliding block as a movable end, which is connected with the fixed block through a sliding mechanism; wherein, the first translation assembly has The sliding block is fixedly connected with the partition.
  • the sliding mechanism adopts linear bearings or a combination of sliding grooves and sliding rails
  • the present invention also relates to a calibration method for an automatic laser calibration mechanism, comprising the following steps: S1: the camera grabs the nozzle, and identifies the center of the nozzle; S2: the camera grabs the laser emitter The indicator light is emitted, and the center of the indicator light is identified; S3: The control system obtains and calculates the offset between the center of the nozzle and the center of the indicator light; S4: The control system calculates the offset according to S3 Move the amount, control the electric adjustment mechanism, and drive the laser transmitter to have a plane displacement, until the center of the indicating light and the center of the nozzle are in a concentric state; S5: Repeat S2-S3, and the camera confirms the instruction again Whether the light and the nozzle are in a concentric state; if yes, go to S6; if not, go to S4; S6: Confirmation is complete, calibration is complete.
  • an automatic laser calibration mechanism and a calibration method thereof provided by the present invention drive the laser transmitter to move through an electric adjustment mechanism, so that the laser and the nozzle are in a state of vertical coaxiality; the laser transmitter emits the same source
  • the CCD camera captures the center of the nozzle and the center of the indicator light, calculates the center offset of the two, and controls the movement of the electric adjustment mechanism to compensate for the offset, to ensure that the two are concentric, so as to ensure that the laser and the nozzle are concentric.
  • the nozzles are concentric; the entire calibration process is automated and the calibration is accurate.
  • Fig. 1 is the structural representation of the present invention
  • Fig. 2 is the structural representation of the electric adjustment mechanism of the present invention
  • Figure 3 is a picture of the camera capturing the center of the nozzle
  • Fig. 4 is a picture diagram of the camera capturing the center of the indication light
  • Fig. 5 is a state diagram in which the center of the nozzle and the center of the indicator light are in a concentric state
  • FIG. 6 is a screen view of the camera confirming that the center of the nozzle and the center of the indicator light are concentric.
  • the present invention is an automatic laser calibration mechanism and a calibration method thereof.
  • the automatic laser calibration mechanism of the present invention includes: a frame 1; a laser transmitter 3 capable of emitting homologous indicating light and laser light; and The electric adjustment mechanism 2 installed on the frame 1, the movable end of which fixes the laser transmitter 3, and is used to drive the laser transmitter 3 to realize the two-axis plane movement of the X-axis and the Y-axis; the nozzle 4, the indication of the laser transmitter emission
  • the light or laser passes through the nozzle;
  • the camera 5 is used to grab the nozzle 4 and identify the center of the nozzle 4; and capture the indicator light emitted by the laser emitter 3 and pass through the nozzle 4, and identify the indicator light Center; control system, when the camera 5 captures that the center of the indicator light and the center of the nozzle 4 are not concentric, the control system obtains and calculates the offset between the center of the indicator light and the center of the nozzle 4, and drives the electric adjustment mechanism 2 to drive the laser
  • the transmitter 3 moves
  • the laser transmitter 3, the nozzle 4 and the camera 5 are arranged from top to bottom, and the frame 1 plays the role of fixing the electric adjustment mechanism 2, the nozzle 4 and the camera 5, that is to say, in this device In the middle, the nozzle 4 and the camera 5 are kept still, and the electric adjustment mechanism 2 drives the laser transmitter 3 to make two-axis movements in a plane, so that the center of the indicator light emitted by the laser transmitter 3 coincides with the circle center of the nozzle 4; the control system can It plays the role of obtaining the offset between the center of the indicator light and the center of the nozzle 4 and driving the movable end of the electric adjustment mechanism 2 to move.
  • the present invention adopts the electric adjustment mechanism 2 to include: a bracket 6, which is fixedly arranged with the frame 1; a first translation component 7, which is fixed on the bracket 6, and the first The movable end of a translation assembly 7 is fixed with a partition 9, the first translation assembly 7 is used to drive the partition 9 to move along the X-axis direction; the second translation assembly 8 is fixed on the partition 9, and the second translation assembly 8 A fixed arm 10 is fixed at the movable end of the fixed arm 10, the end of the fixed arm 10 is connected with a laser transmitter 3, and the second translation assembly 8 is used to drive the laser transmitter 3 to move along the Y-axis direction;
  • the bracket 6 is L-shaped, the vertical part of the bracket 6 is fixedly connected with the frame 1, the horizontal part of the bracket 6 is used to connect with the first translation component 7, the first translation component 7, the second translation component 8 A partition 9 is provided between, and the first moving component 7 drives the partition 9 to move along the X-axis direction, that is, drives the second translation component 8 to move along the X-axis direction; similarly, the second translation component 8 and the laser transmitter 3 A fixed arm 10 is arranged therebetween, and the second translation assembly 8 drives the fixed arm 10 to move along the Y axis, thereby realizing that the second translation assembly 8 drives the laser transmitter 3 to move along the Y axis;
  • the cooperation of the two translation components 7 and 8 realizes the two-axis plane movement of the X-axis and the Y-axis of the laser transmitter 3 .
  • the translation assembly 8 includes: a motor 11; a fixed block 12, one side of which is fixed with the motor 11; 10 fixed connection;
  • the motor 11 is used as a power source to drive the movement of the sliding block 13 relative to the fixed block 12;
  • the first translation assembly 7 also includes: a motor 11; a fixed block, on which the motor 11 is fixed on one side; The mechanism is connected with the fixed block 12 ; wherein, the sliding block 13 of the first translation assembly 7 is fixedly connected with the partition plate 9 .
  • the sliding mechanism adopts a linear sliding rail or a combination of sliding grooves and sliding rails to realize the translation of the sliding block 13 relative to the fixed block 12 .
  • the camera 5 of the present invention adopts a CCD camera
  • the present invention adopts the following steps: S1: the camera 5 grabs the nozzle 4 and identifies the center of the nozzle 4; S2: the camera 5 grabs the laser The indicator light emitted by the transmitter 3, and the center of the indicator light is identified; S3: The control system obtains and calculates the offset between the center of the nozzle 4 and the center of the indicator light; S4: The control system controls according to the offset calculated in S3
  • the electric adjustment mechanism 2 drives the laser transmitter 3 to have a plane displacement, until the center of the indicator light and the center of the nozzle 4 are in a concentric state; S5: Repeat S2-S3, and the camera 5 confirms the indicator light and the nozzle twice (that is, again). 4 Whether it is in a concentric state; if so, go to S6; if not, go to S4; S6: Confirmation is complete, calibration is complete.
  • the cross coordinate displayed at this time is the center of the nozzle 4 captured by the camera 5, and the laser transmitter 3 has not yet worked;
  • the cross coordinate displayed at this time is the center of the indicator light captured by the camera 4, and the circle center of the nozzle 4 and the center of the indicator light are in a non-concentric state at this time;
  • the camera 5 confirms again, indicating whether the center of the light and the center of the nozzle 4 are concentric.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

公开了一种激光自动校准机构及其校准方法,激光自动校准机构包括:机架(1);以及设置在机架(1)上的激光发射器(3),激光发射器(3)能够发射同源的指示光和激光;电动调节机构(2),其活动端固定激光发射器(3),并用于带动激光发射器(3)实现X轴和Y轴的两轴平面运动;喷咀(4),激光发射器(3)发射的指示光或激光穿过喷咀(4);相机(5),其用于抓取喷咀(4),并且识别喷咀(4)的圆心;以及用于捕捉并识别指示光中心;控制系统,用于获取相机(5)的拍照信息,并控制电动调节机构(2)工作;当相机(5)捕捉到指示光中心与喷咀(4)的圆心有偏差时,控制系统获取并计算指示光中心与喷咀(4)的圆心的偏移量,并驱动电动调节机构(2)带动激光发射器(3)移动,使指示光中心与喷咀(4)的圆心重合。本发明整个校准过程实现自动化,且校准准确。

Description

一种激光自动校准机构及其校准方法 技术领域
本发明涉及激光焊接技术领域,具体是一种激光自动校准机构及其校准方法。
背景技术
激光焊接是利用高能量密度的激光束作为热源的一种高效精密焊接方法。激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。
在使用激光焊接产品前或者将喷咀拆下清洗重新安装后,需要对激光的位置进行校准,以保证激光测试结果的准确性;要是存在位置偏差,焊接效果影响是极大的。然而现有的激光位置校准机构大都需要手旋调节机构的操作,在通过肉眼观察,使得指示光中心与喷咀中心处于同心状态;在肉眼观察下,两者中心虽然重合,但是仍会出现偏差;
综上,如何实现激光的自动校准成为本公司研究人员急需解决的问题。
发明内容
本发明要解决的技术问题是:如何实现激光的自动校准;
为了解决上述技术问题,本发明采用如下技术方案:
本发明是一种激光自动校准机构,包括:机架;以及设置在所述机架上的激光发射器,所述激光发射器能够发射同源的指示光和激光;电动调节机构, 其活动端固定所述激光发射器,并用于带动所述激光发射器实现X轴和Y轴的两轴平面运动;喷咀,所述激光发射器发射的所述指示光或激光穿过所述喷咀;相机,其用于抓取所述喷咀,并且识别所述喷咀的圆心;以及用于捕捉并识别所述指示光中心;控制系统,用于获取所述相机的拍照信息,并控制所述电动调节机构工作;当所述相机捕捉到所述指示光中心与所述喷咀的圆心有偏差时,所述控制系统获取并计算指示光中心与所述喷咀的圆心的偏移量,并驱动所述电动调节机构带动所述激光发射器移动,使所述指示光中心与所述喷咀的圆心重合。
进一步,电动调节机构包括:支架,其与机架固定设置;第一平移组件,其固定在支架上,且第一平移组件的活动端固定有隔板,第一平移组件用于驱动隔板沿X轴方向移动;第二平移组件,其固定在隔板上,且第二平移组件的活动端固定有固定臂,固定臂的端部连接有激光发射器,第二平移组件用于驱动述激光发射器沿Y轴方向移动;
进一步,第一平移组件、第二平移组件的结构一致,且呈异面垂直设置;所述第二平移组件包括:电机;固定块,其一侧固定有所述电机;作为活动端的滑动块,其通过滑动机构与所述固定块连接;其中,所述第二平移组件的所述滑动块与所述固定臂固定连接。
进一步,所述第二平移组件包括:电机;固定块,其一侧固定有所述电机;作为活动端的滑动块,其通过滑动机构与所述固定块连接;其中,所述第一平移组件的所述滑动块与所述隔板固定连接。
进一步,滑动机构采用直线轴承或滑槽、滑轨的组合;
本发明还涉及一种激光自动校准机构的校准方法,包括如下步骤:S1:所述相机抓取所述喷咀,并且识别所述喷咀中心;S2:所述相机抓取所述激光发 射器发出的指示光,并且识别所述指示光中心;S3:所述控制系统获取并计算所述喷咀的圆心与指示光中心的偏移量;S4:所述控制系统根据S3中计算出的偏移量,控制所述电动调节机构,带动激光发射器发生平面位移,至所述指示光中心与所述喷咀的圆心处于同心状态;S5:重复S2-S3,所述相机再次确认所述指示光、所述喷咀是否处于同心状态;若是,跳转至S6;若否,跳转到S4;S6:确认完成,校准完成。
本发明的有益效果:本发明提供的一种激光自动校准机构及其校准方法,通过电动调节机构带动激光发射器移动,使激光和喷咀处于竖直同轴的状态;激光发射器发射同源的指示光和激光,CCD相机捕获喷咀的圆心和指示光中心,计算出二者的中心偏移量,并控制电动调节机构移动来补偿偏移量,确保二者同心,从而确保激光与喷咀同心;整个校准过程实现自动化,且校准准确。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的结构示意图;
图2是本发明电动调节机构的结构示意图;
图3是相机捕捉喷咀中心的画面图;
图4是相机捕捉指示光中心的画面图;
图5是喷咀中心、指示光中心处于同心状态的状态图;
图6是相机确认喷咀中心、指示光中心处于同心状态的画面图。
图中:1-机架、2-电动调节机构、3-激光发射器、4-喷咀、5-相机、6-支架、7-第一平移组件、8-第二平移组件、9-隔板、10-固定臂、11-电机、12-固定块、13-滑动块。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
本发明是一种激光自动校准机构及其校准方法,如图1所示,本发明的激光自动校准机构包括:机架1;激光发射器3,其能够发射同源的指示光和激光;以及安装在机架1上的电动调节机构2,其活动端固定激光发射器3,并用于带动激光发射器3实现X轴和Y轴的两轴平面运动;喷咀4,激光发射器发射的指示光或激光穿过喷咀;相机5,其用于抓取喷咀4,并且识别喷咀4的圆心;以及捕捉激光发射器3发出,且穿过喷咀4的指示光,并识别指示光中心;控制系统,当相机5捕捉到指示光中心与喷咀4的圆心不同心时,控制系统获取并计算指示光中心与喷咀4的圆心的偏移量,并驱动电动调节机构2带动激光发射器3移动,将指示光中心与喷咀4的圆心处于同心状态。
在本实施例中,激光发射器3、喷咀4以及相机5从上到下设置,机架1起到固定电动调节机构2、喷咀4以及相机5的作用,也就是说,在本装置中,喷咀4和相机5是保持静止的,电动调节机构2驱动激光发射器3做平面的两轴运动,使得激光发射器3发出的指示光中心与喷咀4的圆心重合;控制系统可以起到获取到指示光中心与喷咀4的圆心的偏移量,以及驱动电动调节机构2活动端移动的作用。
如图2所示,为了说明电动调节机构的具体结构,本发明采用电动调节机构2包括:支架6,其与机架1固定设置;第一平移组件7,其固定在支架6上,且第一平移组件7的活动端固定有隔板9,第一平移组件7用于驱动隔板9沿X轴方向移动;第二平移组件8,其固定在隔板9上,且第二平移组件8的活动端固定有固定臂10,固定臂10的端部连接有激光发射器3,第二平移组件8用于 驱动述激光发射器3沿Y轴方向移动;
在本方案中,支架6呈L型,支架6的竖直部与机架1固定连接,支架6的水平部用于与第一平移组件7连接,第一平移组件7、第二平移组件8之间设置有隔板9,第一移组件7带动隔板9沿X轴方向移动,也就是带动第二平移组件8沿X轴方向移动;同理,第二平移组件8与激光发射器3之间设置有固定臂10,第二平移组件8带动固定臂10沿Y轴运动,进而实现了第二平移组件8带动激光发射器3沿Y轴运动;综上,通过第一平移组件、第二平移组件7、8的配合实现了激光发射器3的X轴-Y轴的两轴平面运动。
如图2所示,为了说明第一平移组件7、第二平移组件8的具体结构,本发明采用第一平移组件7、第二平移组件8的结构一致,且呈异面垂直设置;第二平移组件8包括:电机11;固定块12,其一侧固定电机11;作为活动端的滑动块13,其通过滑动机构与固定块12连接;其中,第二平移组件8的滑动块13与固定臂10固定连接;
电机11作为动力来源驱动滑动块13相对于固定块12的移动;
由于第一平移组件7、第二平移组件8的结构一致,因处第一平移组件7也包括:电机11;固定块,其一侧固定有电机11;作为活动端的滑动块13,其通过滑动机构与固定块12连接;其中,第一平移组件7的滑动块13与隔板9固定连接。
如图2所示,在本实施例中,滑动机构采用直线滑轨或滑槽、滑轨组合的方式来实现滑动块13相对于固定块12的平移。
如图2所示,本发明的相机5采用CCD相机;
如图1-2所示,为了说明激光自动校准机构是如何工作的,本发明采用如下步骤:S1:相机5抓取喷咀4,并且识别喷咀4的圆心;S2:相机5抓取激光 发射器3发出的指示光,并且识别指示光中心;S3:控制系统获取并计算喷咀4的圆心与指示光中心的偏移量;S4:控制系统根据S3中计算出的偏移量,控制电动调节机构2,带动激光发射器3发生平面位移,至指示光中心与喷咀4的圆心处于同心状态;S5:重复S2-S3,相机5二次(也即再次)确认指示光、喷咀4是否处于同心状态;若是,跳转至S6;若否,跳转到S4;S6:确认完成,校准完成。
如图3所示,此时显示的十字坐标为相机5捕捉的喷咀4的圆心,激光发射器3尚未工作;
如图4所示,此时显示的十字坐标为相机4捕捉的指示光中心,此时喷咀4的圆心、指示光中心处于不同心状态;
如图5所示,此时通过电动调节机构2,已将指示光中心移动至与喷咀4的圆心重合;
如图6所示,此时相机5再确认,指示光中心、喷咀4的圆心是否已同心。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

  1. 一种激光自动校准机构,其特征在于,包括:
    机架;以及设置在所述机架上的
    激光发射器,所述激光发射器能够发射同源的指示光和激光;
    电动调节机构,其活动端固定所述激光发射器,并用于带动所述激光发射器实现X轴和Y轴的两轴平面运动;
    喷咀,所述激光发射器发射的所述指示光或激光穿过所述喷咀;
    相机,其用于抓取所述喷咀,并且识别所述喷咀的圆心;以及用于捕捉并识别所述指示光中心;
    控制系统,用于获取所述相机的拍照信息,并控制所述电动调节机构工作;
    当所述相机捕捉到所述指示光中心与所述喷咀的圆心有偏差时,所述控制系统获取并计算指示光中心与所述喷咀的圆心的偏移量,并驱动所述电动调节机构带动所述激光发射器移动,使所述指示光中心与所述喷咀的圆心重合。
  2. 根据权利要求1所述的一种激光自动校准机构,其特征在于,所述电动调节机构包括:
    支架,其与所述机架固定设置;
    第一平移组件,其固定在所述支架上,且所述第一平移组件的活动端固定有隔板,所述第一平移组件用于驱动所述隔板沿X轴方向移动;
    第二平移组件,其固定在所述隔板上,且所述第二平移组件的活动端固定有固定臂,所述固定臂的端部连接有所述激光发射器,所述第二平移组件用于驱动所述述激光发射器沿Y轴方向移动。
  3. 根据权利要求2所述的一种激光自动校准机构,其特征在于,所述第一平移组件、第二平移组件的结构一致,且呈异面垂直设置。
  4. 根据权利要求3所述的一种激光自动校准机构,其特征在于,所述第二 平移组件包括:
    电机;
    固定块,其一侧固定有所述电机;
    作为活动端的滑动块,其通过滑动机构与所述固定块连接;
    其中,所述第二平移组件的所述滑动块与所述固定臂固定连接。
  5. 根据权利要求3所述的一种激光自动校准机构,其特征在于,所述第二平移组件包括:
    电机;
    固定块,其一侧固定有所述电机;
    作为活动端的滑动块,其通过滑动机构与所述固定块连接;
    其中,所述第一平移组件的所述滑动块与所述隔板固定连接。
  6. 根据权利要求4或5所述的一种激光自动校准机构,其特征在于,所述滑动机构采用直线轴承或滑槽、滑轨的组合。
  7. 根据权利要求1所述的一种激光自动校准机构,其特征在于,所述相机采用CCD相机。
  8. 一种根据权利要求1-7任意一项所述的一种激光自动校准机构的校准方法,其特征在于,包括如下步骤:
    S1:所述相机抓取所述喷咀,并且识别所述喷咀的圆心;
    S2:所述相机抓取所述激光发射器发出的指示光,并且识别所述指示光中心;
    S3:所述控制系统获取并计算所述喷咀的圆心与指示光中心的偏移量;
    S4:所述控制系统根据S3中计算出的偏移量,控制所述电动调节机构,带动激光发射器发生平面位移,至所述指示光中心与所述喷咀的圆心处于同心状 态;
    S5:重复S2-S3,所述相机再次确认所述指示光、所述喷咀是否处于同心状态;若是,跳转至S6;若否,跳转到S4;
    S6:确认完成,校准完成。
PCT/CN2021/103061 2020-10-26 2021-06-29 一种激光自动校准机构及其校准方法 WO2022088727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011152600.1A CN112008231B (zh) 2020-10-26 2020-10-26 一种激光自动校准机构及其校准方法
CN202011152600.1 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022088727A1 true WO2022088727A1 (zh) 2022-05-05

Family

ID=73527704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103061 WO2022088727A1 (zh) 2020-10-26 2021-06-29 一种激光自动校准机构及其校准方法

Country Status (2)

Country Link
CN (1) CN112008231B (zh)
WO (1) WO2022088727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985976A (zh) * 2022-06-27 2022-09-02 苏州市宏石激光技术有限公司 一种自动调节切割头激光与喷嘴同轴的装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008231B (zh) * 2020-10-26 2021-02-26 快克智能装备股份有限公司 一种激光自动校准机构及其校准方法
CN113290330B (zh) * 2021-04-27 2022-05-10 中国科学院西安光学精密机械研究所 一种六轴五联动机床的激光加工头空间位置标定方法
CN116944667A (zh) * 2023-09-20 2023-10-27 江苏迅镭激光科技有限公司 一种激光焦点对中机构及对中方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215986A1 (en) * 2004-03-24 2005-09-29 Visx, Inc. Calibrating laser beam position and shape using an image capture device
CN201693290U (zh) * 2010-04-22 2011-01-05 广州中国科学院工业技术研究院 一种激光加工装置
CN105345256A (zh) * 2015-10-09 2016-02-24 江苏大金激光科技有限公司 自动对中激光切割头
CN211669428U (zh) * 2019-12-31 2020-10-13 武汉华工激光工程有限责任公司 基于内同轴视觉的自动对焦装置
CN112008231A (zh) * 2020-10-26 2020-12-01 快克智能装备股份有限公司 一种激光自动校准机构及其校准方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042775A (ja) * 1998-07-28 2000-02-15 Amada Co Ltd レーザ加工方法およびその装置
JP2005334926A (ja) * 2004-05-26 2005-12-08 Yamazaki Mazak Corp レーザ加工機におけるレーザ加工工具のノズルプリセッタ
CN101856773B (zh) * 2010-04-22 2012-08-22 广州中国科学院工业技术研究院 一种激光加工初始位置的对焦定位方法
CN102267009A (zh) * 2010-06-04 2011-12-07 和舰科技(苏州)有限公司 一种校正镭射头的装置及其校正方法
DE102018217919A1 (de) * 2018-10-19 2020-04-23 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Ermitteln einer korrigierten Bearbeitungskopf-Position und Bearbeitungsmaschine
JP6923585B2 (ja) * 2019-03-18 2021-08-18 ファナック株式会社 機械学習装置、制御装置、レーザ加工機、及び機械学習方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215986A1 (en) * 2004-03-24 2005-09-29 Visx, Inc. Calibrating laser beam position and shape using an image capture device
CN201693290U (zh) * 2010-04-22 2011-01-05 广州中国科学院工业技术研究院 一种激光加工装置
CN105345256A (zh) * 2015-10-09 2016-02-24 江苏大金激光科技有限公司 自动对中激光切割头
CN211669428U (zh) * 2019-12-31 2020-10-13 武汉华工激光工程有限责任公司 基于内同轴视觉的自动对焦装置
CN112008231A (zh) * 2020-10-26 2020-12-01 快克智能装备股份有限公司 一种激光自动校准机构及其校准方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985976A (zh) * 2022-06-27 2022-09-02 苏州市宏石激光技术有限公司 一种自动调节切割头激光与喷嘴同轴的装置及方法

Also Published As

Publication number Publication date
CN112008231A (zh) 2020-12-01
CN112008231B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022088727A1 (zh) 一种激光自动校准机构及其校准方法
CN103846529B (zh) 用于集装箱前墙板的自动焊接装置及焊接系统
CN111760849B (zh) 一种激光清洗设备及其焦点保持方法
CN103033919A (zh) 一种在自动扫描过程中自动补偿对焦的系统及方法与应用
CN110280864B (zh) 一种带有力控制和视觉定位的自动焊接装置
TWI581006B (zh) Gantry equipment and control methods
US20200316728A1 (en) Automated welding apparatus
CN110238521B (zh) 一种准直器栅格结构激光精密焊接装置与方法
CN114770016A (zh) 一种缸体加工系统及方法
JP2017000945A (ja) 液体塗布ユニットおよび液体塗布装置
CN211125345U (zh) 一种变压器铁芯自动叠片机器人
CN111774736A (zh) 一种外包层工件金属外套管激光非穿透切割设备及方法
CN110948507A (zh) 一种基于机器视觉的建筑预制构件精确就位机器人
CN207858734U (zh) 一种基于机器视觉的激光模组装配平台
CN107907053A (zh) 一种微位移测量系统
CN112539715A (zh) 同心度自动检测装置及方法
CN210755843U (zh) 一种可自动定位及检测的激光焊接设备
CN112171544A (zh) 视觉引导的斜导杆大型筒体自动对接系统及方法
CN116079175A (zh) 一种面向大间隙金属-玻璃激光复合焊接装置
JP6725344B2 (ja) プレスブレーキ及び角度検出装置
CN214749838U (zh) 一种布匹瑕疵视觉巡查机器人
JP2022013223A (ja) レーザ加工装置の制御装置、レーザ加工装置、及びレーザ加工方法
CN212932425U (zh) 3d线扫aoi机器人
CN217701802U (zh) 一种能够快速定焦的激光打标机
CN216576097U (zh) 一种激光枪头自动追随系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884466

Country of ref document: EP

Kind code of ref document: A1