WO2022088433A1 - 一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法 - Google Patents

一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法 Download PDF

Info

Publication number
WO2022088433A1
WO2022088433A1 PCT/CN2020/137240 CN2020137240W WO2022088433A1 WO 2022088433 A1 WO2022088433 A1 WO 2022088433A1 CN 2020137240 W CN2020137240 W CN 2020137240W WO 2022088433 A1 WO2022088433 A1 WO 2022088433A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
track
transition
transition zone
constraints
Prior art date
Application number
PCT/CN2020/137240
Other languages
English (en)
French (fr)
Inventor
李方义
鹿海洋
李燕乐
李剑峰
冉学举
杜际雨
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to AU2020466063A priority Critical patent/AU2020466063B2/en
Publication of WO2022088433A1 publication Critical patent/WO2022088433A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the invention relates to the technical field of thermal spraying, in particular to a design and performance prediction method for a transition zone of a tangential functional gradient coating based on the constraints of track width and track spacing.
  • the blade parts are impacted by gas-solid two-phase flow during service, and the erosion and wear of dust and particles can easily cause thinning damage.
  • the cermet coating has excellent wear resistance at low impact angles, but the blade parts are complex in shape and the impact angle varies widely, and the cermet coating has short erosion resistance at medium and high impact angles. plate.
  • tangentially functionally graded metals are prepared on the surface of blade parts Ceramic coating can effectively reduce the erosion rate of the coating.
  • the width, track spacing and coating overlap strategy, the unreasonable design of the transition zone may lead to the unstable transition of the erosion resistance in the transition zone, and there is a risk of stress concentration or unstable transition of the erosion resistance.
  • the tangential functional gradient coating There are technical gaps in the design and performance prediction of the layer transition zone.
  • the purpose of the present invention is to overcome the deficiencies of the above-mentioned prior art, provide a tangential functional gradient coating transition zone design and performance prediction method based on track width and track spacing constraints, design a reasonable transition zone structure, ensure that the spraying surface
  • the transition zone follows a consistent transition law to achieve smooth transition and prediction of erosion resistance in the transition zone.
  • a first aspect of the present invention provides a method for designing a transition zone of a tangential functional gradient coating based on the constraints of track width and track spacing, including:
  • the multi-track lap joint structure in the transition zone is determined, including: track spacing, transition zone width, and number of overlapping layers.
  • a third aspect of the present invention provides a method for predicting the performance of the transition zone of the tangential functionally graded coating based on the constraints of track width and track spacing, including:
  • the area weighting method is used to calculate the equivalent composite ratio k of the coating at each position of the transition zone;
  • the equivalent erosion rate ⁇ at the impact angle ⁇ is calculated to predict the erosion resistance of the transition zone.
  • a device for designing and/or predicting performance of a transition zone of a tangentially functionally graded coating based on the constraints of track width and track spacing comprising a controller;
  • the controller is configured to perform the steps of the above-described method for designing the transition zone of a tangentially functionally graded coating based on track width and track spacing constraints, and to design the coating based on the multi-track space overlap structure of the transition zone determined by the method ;
  • the controller is configured to perform the above steps of predicting the performance of the TFC transition zone based on track width and track spacing constraints, and to output a prediction result based on the erosion resistance performance determined by the method.
  • the present invention establishes a design and performance prediction method for the transition zone of the tangential functional gradient coating based on the constraints of track width and track spacing, which fills the design gap of the transition zone of the tangential functional gradient coating, and realizes the resistance of the transition zone. Smooth transition and prediction of erosion performance.
  • Figure 1 is a schematic diagram of a coating growth rate distribution function
  • Figure 2 is a schematic diagram of the relationship between track width and track spacing
  • Fig. 3 is the schematic diagram of the area before the transition, the middle area of the transition and the area after the transition;
  • Figure 4 is a schematic diagram of the overlay of the transition zone coating.
  • each area of the tangentially functional gradient coating is tangentially graded, and the design of the transition area between the areas involves the spraying track width, track distance and coating overlap strategy, and the design of the transition area is unreasonable. It may lead to unstable erosion resistance, stress concentration or unstable erosion resistance in the transition zone.
  • the present application proposes a design and performance prediction method for the transition zone of a tangentially functionally graded coating.
  • composite ratio refers to the mass proportion of a certain component in the composite material in the composite material
  • tangential direction refers to the direction parallel to the coating surface
  • normal direction refers to the direction parallel to the coating surface.
  • the vertical direction of the layer surface refers to the width of the coating along the normal direction of the spraying path during single-pass spraying
  • track spacing refers to the distance between tracks during multi-pass spraying.
  • the invention provides a method for designing and predicting the performance of a transition zone of a tangential functional gradient coating based on the constraints of track width and track spacing, comprising the following specific steps:
  • Step 1 Determine the coating growth rate distribution function and track width.
  • Step 2 Based on the constraints of track width and track spacing, determine the multi-track-spacing overlap structure in the transition area, which specifically includes determining the track spacing, the width of the transition area, and the number of overlapping layers.
  • Step 3 Calculate the equivalent composite ratio of the coating at each position in the transition zone by using the area weighting method, and predict the erosion resistance of the coating at each position in the transition zone.
  • the cut surface of a single sprayed coating is intercepted, an image recognition tool is used to extract the coating profile height value, and the coating profile function is fitted, which is the coating growth rate distribution function.
  • the growth rate distribution function depends on the spraying process and process parameters, and its fitting can use a normal distribution function model, a beta distribution function model, etc., whichever has a better goodness of fit.
  • the intercept of the growth rate distribution function is the width of a single spray.
  • the track width is selected to be an even multiple of the track spacing, and the width of the transition zone is an odd multiple of the track spacing.
  • the equivalent compound ratio of the transition zone is calculated by using the weighted average of the coating area.
  • the composite ratio, impact angle and erosion rate of the coating can correspond to those described in Patent ZL201711298231.5 "A Design Method for Tangentially Gradient Thermal Spray Coatings for Complex Profile Workpieces".
  • the equivalent erosion rate can be calculated according to the equivalent compound ratio, so as to predict the erosion resistance of the transition zone.
  • Step 1 Intercept the cut surface of a single spray coating, use the image recognition tool to extract the height value of the coating profile, and fit the coating profile function.
  • Step 2 In order to ensure that each transition area on the spray surface follows a consistent transition law, based on the constraints of the track width and track spacing, select the track width as 2m times the track spacing, then the track spacing is x 0 /m (denoted as ⁇ ), as shown in Figure 2
  • the width of the transition zone is selected as 2n+1 times the track pitch, the width of the transition zone is (2n+1) x 0 /m (ie (2n+1) ⁇ ), and the number of overlapping layers is 2m.
  • Step 3 Calculate the equivalent composite ratio of the coating at each position in the transition zone by using the area weighting method, and predict the erosion resistance of the coating at each position in the transition zone.
  • step 1 utilize wire cutting technology to intercept the cut surface of single spray coating, and utilize water abrasive paper to polish and profile the surface.
  • step 1 a microscope is used to take pictures to obtain the interface profile of the single-pass spraying.
  • ImageJ software is used to extract each position ⁇ x- i ,...x -3 ,x -2 ,x - 1 , x0 ,x1, x2 , x3 ,...x i ⁇ corresponds to the coating height value ⁇ h -i , whilh -3 ,h -2 ,h -1 ,h 0 ,h 1 ,h 2 ,h 3 , whil
  • the composite ratios of the two groups of coatings before and after the transition zone are k 1 and k 2 respectively, and the total number of superimposed layers at each position in the transition zone is 2m.
  • the width of the transition zone is smaller than the width of the track, that is, 2n+1 ⁇ 2m.
  • the deposition amount of each superimposed coating at the current position can be obtained by using the area integral of the coating growth rate distribution function at the current position.
  • the transition zone is divided into three parts: the pre-transition zone, the middle zone and the post-transition zone.
  • the pre-transition area refers to the area between the 1st to the nth track spacing
  • the middle transition area refers to the n+1th track spacing area
  • the post-transition area refers to the area between the n+1th to 2n+1th track spacing. area, as shown in Figure 3.
  • the transition middle area is 1 times the track pitch
  • the transition middle area with an interval range of [x 1 , x 2 ] consists of a coating with a composite ratio of k 1 and a coating with a composite ratio of k 2
  • Each stack is made of m channels, and a total of 2m layers are stacked, as shown in Figure 4, and the equivalent compound ratio is:
  • the pre-transition area has a total of n times the track spacing, wherein, the interval range is [x 1 -i ⁇ , x 1 -(i-1) ⁇ ] from the transition middle area to the transition area before the first transition.
  • the coating with a composite ratio of k 1 and a coating with a composite ratio of k 2 are each superimposed m+i track and mi track, a total of 2m layers are superimposed, as shown in Figure 4, the equivalent composite The ratio is:
  • a total of n times the track pitch in the post-transition area, where the interval range is [x 2 +(i-1) ⁇ , x 2 +i ⁇ ] is translated from the transition middle area to the post-transition area for the i-th
  • the coating with a composite ratio of k 1 and a coating with a composite ratio of k 2 are each superimposed with mi track and m+i track, a total of 2m layers are superimposed, as shown in Figure 4, the equivalent composite ratio for:
  • the composite ratio k of the coating, the impact angle ⁇ , and the erosion rate ⁇ can be corresponded according to the patent ZL201711298231.5 "A Design Method for Tangentially Gradient Thermal Spray Coatings for Complex Profile Workpieces"
  • the equivalent erosion rate ⁇ at the impact angle ⁇ can be calculated, so as to predict the erosion resistance performance of the transition zone.
  • each transition zone in the sprayed surface follows a consistent transition law, which reduces the risk of stress concentration or uneven transition of erosion resistance.
  • the equivalent erosion rate can be calculated, and the erosion resistance performance can be predicted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法,属于热喷涂领域,用于设计合理的过渡区结构,包括以下步骤:步骤1:确定涂层生长率分布函数和道宽;步骤2:基于道宽与道距约束,确定过渡区多道距搭接结构,具体包括确定道距、过渡区宽度、搭接层数;步骤3:利用面积加权法计算过渡区各位置处涂层的当量复合比,预测过渡区各位置处涂层的抗冲蚀性能。采用本方法制备的切向功能梯度涂层过渡区,涂层各过渡区遵循一致的过渡规律,过渡区抗冲蚀性能过渡平稳、可预测。

Description

一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法 技术领域
本发明涉及热喷涂技术领域,具体涉及一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
叶片类零部件服役时受气固两相流冲击作用,粉尘、微粒的冲蚀磨损易造成减薄损伤。金属陶瓷涂层在低冲击角度下具有优异的耐磨损性能,但叶片类零部件型面复杂,冲击角度变化范围大,金属陶瓷涂层在中、高冲击角度下的存在抗冲蚀性能短板。利用按需增韧理念,结合延性金属材料在中、高冲击角度下优异的抗冲蚀性能,不同冲击角度处匹配所需复合比的涂层,在叶片类零部件表面制备切向功能梯度金属陶瓷涂层,可有效降低涂层的冲蚀率。
发明人发现,与法向功能梯度涂层、均质涂层不同,沿切向方向,切向功能梯度涂层的各区域涂层的复合比渐变,且各区域间的过渡区设计涉及喷涂道宽、道距及涂层搭接策略,过渡区设计不合理可能导致过渡区抗冲蚀性能过渡不平稳,存在出现应力集中或抗冲蚀性能过渡不稳定的风险,另外,切向功能梯度涂层过渡区的设计及性能预测存在技术空白。
发明内容
本发明的目的是为克服上述现有技术的不足,提供一种基于道宽与道距约束 的切向功能梯度涂层过渡区设计及性能预测方法,设计合理的过渡区结构,保证喷涂表面各过渡区遵循一致的过渡规律,实现过渡区抗冲蚀性能的平稳过渡与预测。
为实现上述技术目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种基于道宽与道距约束的切向功能梯度涂层过渡区设计方法,包括:
确定涂层生长率分布函数和道宽;
基于道宽与道距约束,确定过渡区多道距搭接结构,包括:道距、过渡区宽度、搭接层数。
本发明的第二个方面,提供了任一上述的方法设计/制造的涂层。
本发明的第三个方面,提供了一种基于道宽与道距约束的切向功能梯度涂层过渡区的性能的预测方法,包括:
基于上述涂层的生长率分布函数,利用面积加权法计算过渡区各位置处涂层的当量复合比k;
确定涂层的复合比k、冲击角度α、冲蚀率ε三者的对应关系;
根据当量复合比,计算其在冲击角度α下的当量冲蚀率ε,从而预测过渡区的抗冲蚀性能。
本发明的第四个方面,提供了一种基于道宽与道距约束的切向功能梯度涂层过渡区设计和/或性能预测装置,所述装置包括控制器;
所述控制器被配制为执行上述基于道宽与道距约束的切向功能梯度涂层过渡区设计方法的步骤,并基于所述方法所确定过渡区的多道距搭接结构而设计涂层;
和/或所述控制器被配制为执行上述基于道宽与道距约束的切向功能梯度涂层过渡区性能的预测的步骤,并基于所述方法所确定抗冲蚀性能而输出预测结果。
本发明的有益效果在于:
(1)本发明建立了一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法,填补了切向功能梯度涂层过渡区的设计空白,实现了过渡区抗冲蚀性能的平稳过渡和预测。
(2)本发明的设计、预测方法简单、操作方便、实用性强,易于推广。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为涂层生长率分布函数示意图;
图2为道宽与道距关系示意图;
图3为过渡前区、过渡中区与过渡后区示意图;
图4为过渡区涂层叠加示意图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或 它们的组合。
正如背景技术所介绍的,切向功能梯度涂层的各区域沿切向渐变,且各区域之间的过渡区设计涉及到喷涂道宽、道距及涂层搭接策略,过渡区设计不合理可能导致过渡区抗冲蚀性能不平稳,出现应力集中或抗冲蚀性能不稳定,针对上述问题,本申请提出了一种切向功能梯度涂层过渡区设计及性能预测方法。
本发明中所述的“复合比”是指复合材料中某种成份在复合材料中的质量占比,“切向”是指沿涂层表面平行的方向,“法向”是指沿与涂层表面垂直的方向,“道宽”是指单道喷涂时涂层沿喷涂路径法向的宽度,“道距”是指多道喷涂时道与道之间的距离。
本发明提供了一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法,包括以下具体步骤:
步骤1:确定涂层生长率分布函数和道宽。
步骤2:基于道宽与道距约束,确定过渡区多道距搭接结构,具体包括确定道距、过渡区宽度、搭接层数。
步骤3:利用面积加权法计算过渡区各位置处涂层的当量复合比,预测过渡区各位置处涂层的抗冲蚀性能。
进一步的,所述步骤1中,截取单道喷涂涂层切面,利用图像识别工具提取涂层轮廓高度值,并拟合涂层轮廓函数,即为涂层生长率分布函数。
进一步的,所述步骤1中,生长率分布函数取决于喷涂工艺及工艺参数,其拟合可采用正态分布函数模型、β分布函数模型等,取拟合优度佳者。
进一步的,所述步骤1中,生长率分布函数的截距即为单道喷涂的道宽。
进一步的,所述步骤2中,为保证喷涂表面各过渡区遵循一致的过渡规律, 基于道宽与道距约束,选择道宽为偶数倍道距,且过渡区宽度为奇数倍道距。
进一步的,所述步骤3中,过渡区当量复合比采用涂层面积的加权平均计算。
进一步的,所述步骤3中,涂层的复合比、冲击角度、冲蚀率三者对应可根据专利ZL201711298231.5“一种复杂型面工件切向渐变热喷涂涂层设计方法”所记载的技术方案得到,根据当量复合比,可计算得到当量冲蚀率,从而预测过渡区的抗冲蚀性能。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例1:
以受气固两相流冲蚀磨损的某型号叶片(基体材料为FV520B)为例,表面制备Cr 3C 2-NiCr涂层(其中“Cr 3C 2”为脆性陶瓷材料、“NiCr”为韧性金属材料,以“NiCr”在复合涂层中的质量占比为复合比)的设计方法,具体包括以下步骤:
步骤1:截取单道喷涂涂层切面,利用图像识别工具提取涂层轮廓高度值,并拟合涂层轮廓函数。其中,h=f(x)即为涂层生长率分布函数,即道宽为2x 0,如图1所示。
步骤2:为保证喷涂表面各过渡区遵循一致的过渡规律,基于道宽与道距约束,选择道宽为2m倍道距,则道距为x 0/m(记为δ),如图2所示;选择过渡区宽度为2n+1倍道距,过渡区宽度为(2n+1)x 0/m(即(2n+1)δ),搭接层数为2m。其中,m和n为正整数,δ=x 0/m。
步骤3:利用面积加权法计算过渡区各位置处涂层的当量复合比,预测过渡区各位置处涂层的抗冲蚀性能。
进一步的,所述步骤1中,利用线切割技术截取单道喷涂涂层切面,并利用 水磨砂纸对表面进行打磨剖光。
进一步的,所述步骤1中,利用显微镜拍照,获取单道喷涂的界面轮廓。
进一步的,所述步骤1中,利用ImageJ软件,提取各位置{x -i,……x -3,x -2,x -1,x 0,x 1,x 2,x 3,……x i}所对应的涂层高度值{h -i,……h -3,h -2,h -1,h 0,h 1,h 2,h 3,……h i},并将所识别出的数据点坐标{(x -i,h -i),……(x -3,h -3),(x -2,h -2),(x -1,h -1),(x 0,h 0),(x 1,h 1),(x 2,h 2),(x 3,h 3),……(x i,h i)}导入Matlab软件,利用Curve fitting工具箱进行函数曲线拟合,经拟合优度优选涂层生长率分布函数h=f(x)。
进一步的,所述步骤2中,过渡区前后两组涂层的复合比分别为k 1和k 2,过渡区各位置处的叠加总层数均为2m。
进一步的,所述步骤2中,过渡区宽度小于道宽,即2n+1<2m。
进一步的,所述步骤3中,各叠加涂层在当前位置所沉积量可利用涂层生长率分布函数在当前位置的面积积分获得。
进一步的,所述步骤3中,过渡区分为过渡前区、过渡中区和过渡后区三个部分。其中,过渡前区指第1到第n倍道距之间的区域,过渡中区指第n+1倍道距区域,过渡后区指第n+1到第2n+1倍道距之间的区域,如图3所示。
进一步的,所述步骤3中,过渡中区共1倍道距,区间范围为[x 1,x 2]的过渡中区由复合比为k 1的涂层和复合比为k 2的涂层各叠加m道而成,共叠加2m层,如图4所示,其当量复合比为:
Figure PCTCN2020137240-appb-000001
进一步的,所述步骤3中,过渡前区共n倍道距,其中,区间范围为 [x 1-iδ,x 1-(i-1)δ]的由过渡中区向过渡前区平移第i倍道距处,由复合比为k 1的涂层和复合比为k 2的涂层各叠加m+i道和m-i道而成,共叠加2m层,如图4所示,其当量复合比为:
Figure PCTCN2020137240-appb-000002
进一步的,所述步骤3中,过渡后区共n倍道距,其中区间范围为[x 2+(i-1)δ,x 2+iδ]的由过渡中区向过渡后区平移第i倍道距处,由复合比为k 1的涂层和复合比为k 2的涂层各叠加m-i道和m+i道而成,共叠加2m层,如图4所示,其当量复合比为:
Figure PCTCN2020137240-appb-000003
进一步的,所述步骤3中,涂层的复合比k、冲击角度α、冲蚀率ε三者对应可根据专利ZL201711298231.5“一种复杂型面工件切向渐变热喷涂涂层设计方法”所记载的技术方案得到,根据当量复合比k,可计算其在冲击角度α下的当量冲蚀率ε,从而预测过渡区的抗冲蚀性能。
采用本实施例的方法制备的涂层过渡区,喷涂表面内各过渡区遵循一致的过渡规律,减小了出现应力集中或抗冲蚀性能过渡不平稳的风险,同时,过渡区各位置处的当量冲蚀率可计算,抗冲蚀性能可预测。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改 进等,均应包含在本发明的保护范围之内。上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种基于道宽与道距约束的切向功能梯度涂层过渡区设计方法,其特征在于,包括:
    确定涂层生长率分布函数和道宽;
    基于道宽与道距约束,确定过渡区多道距搭接结构,包括:道距、过渡区宽度、搭接层数。
  2. 如权利要求1所述的基于道宽与道距约束的切向功能梯度涂层过渡区设计方法,其特征在于,所述确定涂层生长率分布函数的具体步骤为:截取单道喷涂涂层切面,利用图像识别工具提取涂层轮廓高度值,并拟合涂层轮廓函数。
  3. 如权利要求1所述的基于道宽与道距约束的切向功能梯度涂层过渡区设计方法,其特征在于,所述生长率分布函数的拟合采用正态分布函数模型或β分布函数模型。
  4. 如权利要求1所述的基于道宽与道距约束的切向功能梯度涂层过渡区设计方法,其特征在于,所述生长率分布函数的截距即为单道喷涂的道宽。
  5. 如权利要求1所述的基于道宽与道距约束的切向功能梯度涂层过渡区设计方法,其特征在于,道宽为偶数倍道距,且过渡区宽度为奇数倍道距。
  6. 根据权利要求1-5任一项所述的方法设计/制造的涂层。
  7. 一种基于道宽与道距约束的切向功能梯度涂层过渡区的性能的预测方法,其特征在于,包括:
    基于权利要求6所述涂层的生长率分布函数,利用面积加权法计算过渡区各位置处涂层的当量复合比k;
    确定涂层的复合比k、冲击角度α、冲蚀率ε三者的对应关系;
    根据当量复合比,计算其在冲击角度α下的当量冲蚀率ε,从而预测过渡区的抗冲蚀性能。
  8. 如权利要求7所述的基于道宽与道距约束的切向功能梯度涂层过渡区性能的预测方法,其特征在于,所述过渡区分为过渡前区、过渡中区和过渡后区三个部分。
  9. 如权利要求8所述的基于道宽与道距约束的切向功能梯度涂层过渡区性能的预测方法,其特征在于,所述过渡中区共1倍道距,区间范围为[x 1,x 2]的过渡中区由复合比为k 1的涂层和复合比为k 2的涂层各叠加m道而成,共叠加2m层,其当量复合比为:
    Figure PCTCN2020137240-appb-100001
    或所述过渡前区共n倍道距,区间范围为[x 1-iδ,x 1-(i-1)δ]的由过渡中区向过渡前区平移第i倍道距处,由复合比为k 1的涂层和复合比为k 2的涂层各叠加m+i道和m-i道而成,共叠加2m层,其当量复合比为:
    Figure PCTCN2020137240-appb-100002
    或所述过渡后区共n倍道距,区间范围为[x 2+(i-1)δ,x 2+iδ]的由过渡中区向过渡后区平移第i倍道距处,由复合比为k 1的涂层和复合比为k 2的涂层各叠加m-i道和m+i道而成,共叠加2m层,其当量复合比为:
    Figure PCTCN2020137240-appb-100003
  10. 一种基于道宽与道距约束的切向功能梯度涂层过渡区设计和/或性能预 测装置,其特征在于,所述装置包括控制器;
    所述控制器被配制为执行上述权利要求1-5任一项所述的基于道宽与道距约束的切向功能梯度涂层过渡区设计方法的步骤,并基于所述方法所确定过渡区的多道距搭接结构而设计涂层;
    和/或所述控制器被配制为执行上述权利要求7-9任一项所述的基于道宽与道距约束的切向功能梯度涂层过渡区性能的预测的步骤,并基于所述方法所确定抗冲蚀性能而输出预测结果。
PCT/CN2020/137240 2020-10-30 2020-12-17 一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法 WO2022088433A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020466063A AU2020466063B2 (en) 2020-10-30 2020-12-17 Method for designing and predicting performance of lap zones of tangential functional gradient coating based on constraints of path width and path interval

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011190104.5 2020-10-30
CN202011190104.5A CN112307621B (zh) 2020-10-30 2020-10-30 一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法

Publications (1)

Publication Number Publication Date
WO2022088433A1 true WO2022088433A1 (zh) 2022-05-05

Family

ID=74332752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137240 WO2022088433A1 (zh) 2020-10-30 2020-12-17 一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法

Country Status (3)

Country Link
CN (1) CN112307621B (zh)
AU (1) AU2020466063B2 (zh)
WO (1) WO2022088433A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695901A (zh) * 2013-12-27 2014-04-02 中国科学院半导体研究所 消除多道激光熔覆搭接孔洞的方法
CN107798204A (zh) * 2017-12-08 2018-03-13 山东大学 一种复杂型面工件切向渐变热喷涂涂层设计方法
CN109332033A (zh) * 2018-11-13 2019-02-15 江苏大学 一种静电喷涂机器人针对非规则平面多边形涂层厚度均匀性的优化方法
CN112214864A (zh) * 2020-08-04 2021-01-12 沈阳工业大学 一种多道多层激光熔覆层尺寸预测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213969A1 (en) * 2011-02-18 2012-08-23 Syracuse University Functionally Graded Shape Memory Polymer
CN106354932B (zh) * 2016-08-30 2019-12-17 江苏大学 平滑曲面间弧面型曲面过渡区域的机器人喷涂及轨迹设定方法
CN108508846B (zh) * 2018-05-09 2020-04-03 清华大学 一种曲面喷涂轨迹规划方法
CN109261466B (zh) * 2018-11-16 2020-04-24 山东大学 一种考虑沉积率修正的功能梯度涂层设计方法
CN110032798B (zh) * 2019-04-15 2020-11-06 山东大学 一种双向功能梯度涂层设计方法
CN110144582B (zh) * 2019-04-23 2020-10-27 西安交通大学 一种用于制备结晶器或风口的金属基材料及其制备方法
CN111455301B (zh) * 2020-04-24 2022-03-25 常州大学 一种随钻测量仪器外筒耐磨耐蚀高熵合金梯度复合涂层

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695901A (zh) * 2013-12-27 2014-04-02 中国科学院半导体研究所 消除多道激光熔覆搭接孔洞的方法
CN107798204A (zh) * 2017-12-08 2018-03-13 山东大学 一种复杂型面工件切向渐变热喷涂涂层设计方法
CN109332033A (zh) * 2018-11-13 2019-02-15 江苏大学 一种静电喷涂机器人针对非规则平面多边形涂层厚度均匀性的优化方法
CN112214864A (zh) * 2020-08-04 2021-01-12 沈阳工业大学 一种多道多层激光熔覆层尺寸预测方法

Also Published As

Publication number Publication date
CN112307621B (zh) 2022-11-01
AU2020466063A1 (en) 2022-05-19
AU2020466063B2 (en) 2022-07-21
CN112307621A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
US7651758B2 (en) System for improving the wearability of a surface and related method
WO2021057050A1 (zh) 一种叶片表面双侧超声滚压加工轨迹协调方法
WO2002061177A2 (en) Thermal barrier coating applied with cold spray technique
CN105316629A (zh) 一种超硬纳微米多层复合涂层及其制备方法
JP2015530915A (ja) 熱的及び/又は動的なコーティングシステムのための可動のマスク
CN106363168A (zh) 一种基于3d打印技术的微织构硬质合金球头铣刀制备方法
WO2022088433A1 (zh) 一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法
CN110032798B (zh) 一种双向功能梯度涂层设计方法
CN102226263B (zh) 刀具及其制造方法
CN111797477B (zh) 一种配合二元式超声速进气道的前掠前缘型侧板结构
CN109226842B (zh) 一种采用二次插值生成板料渐进成形加工轨迹的方法
CN101837475B (zh) 加工铝材用涂层刀片及其制备方法
CN216006021U (zh) 一种硬质合金的熔敷结构
WO2022082979A1 (zh) 一种基于等冲击角线的切向功能梯度涂层制备方法
CN1781644A (zh) 薄带连铸结晶辊修复方法
CN101261098A (zh) 宽通道板式换热器的散热板及其表面强化工艺
CN205133727U (zh) 一种超硬纳微米多层复合涂层
JP5523375B2 (ja) 溶融金属めっき浴中ロール及び溶融金属めっき浴中ロールの製造方法
US20160115087A1 (en) Surface-coated boron nitride sintered body tool
RU2420610C1 (ru) Способ формирования дискретного наплавочного покрытия на пере лопатки турбомашины
CN113862665B (zh) 一种硬质合金的熔敷工艺
US11286794B2 (en) Erosion-resistant coating with patterned leading edge
CN203265668U (zh) 一种表面涂覆有抗冲击耐磨涂层的cbn刀片
JP3632918B2 (ja) 硬質材用ミーリング工具
CN117070873A (zh) 制备微沟槽减阻表面的热喷涂工艺

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020466063

Country of ref document: AU

Date of ref document: 20201217

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959591

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20959591

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.11.2023)