WO2022088189A1 - 超声波流量计 - Google Patents

超声波流量计 Download PDF

Info

Publication number
WO2022088189A1
WO2022088189A1 PCT/CN2020/125961 CN2020125961W WO2022088189A1 WO 2022088189 A1 WO2022088189 A1 WO 2022088189A1 CN 2020125961 W CN2020125961 W CN 2020125961W WO 2022088189 A1 WO2022088189 A1 WO 2022088189A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
boost
transducer
ultrasonic
Prior art date
Application number
PCT/CN2020/125961
Other languages
English (en)
French (fr)
Inventor
李富林
李传林
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/125961 priority Critical patent/WO2022088189A1/zh
Publication of WO2022088189A1 publication Critical patent/WO2022088189A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow

Definitions

  • the embodiments of the present application relate to the technical field of electronic circuits, and in particular, to an ultrasonic flowmeter.
  • Ultrasonic flowmeter is an instrument that measures fluid flow by detecting the action of fluid flow on ultrasonic beam (or ultrasonic pulse). It has been widely used in household water meters, household gas meters and industrial liquid or gas measurement. However, since the ultrasonic signal is seriously attenuated when propagating in some fluids (such as gas), the echo signal received by the receiving end is very weak, and the signal-to-noise ratio is poor, resulting in low measurement accuracy of the ultrasonic flowmeter.
  • the existing ultrasonic flowmeter usually adds an amplifier circuit 5 to amplify the voltage of the excitation signal generated by the signal transmission circuit 4, so as to adapt to the fluid composition with greater attenuation, and use multiplexing
  • the switch MUX 3 realizes the switching of the transceiver path, so as to transmit the high-voltage signal output by the amplifier circuit 5 to the transducer 1 or the transducer 2, and transmit the echo signal output by the transducer 1 or the transducer 2 to the signal receiving circuit 6.
  • an embodiment of the present application provides an ultrasonic flowmeter, so as to save costs while improving the flow measurement accuracy.
  • An embodiment of the present application provides an ultrasonic flowmeter for measuring flow information of fluid in a flow channel, including: a first single-ended transducer, a second single-ended transducer, a first signal transmitting module, and a first signal receiving module , a second signal transmitting module, a second signal receiving module, a first transceiver multiplexing line, and a second transceiver multiplexing line;
  • the first single-ended transducer and the second single-ended transducer are arranged on the flow channel;
  • the first signal transmission module is connected to the first single-ended transducer through the first transceiver multiplexing line, and the first signal transmission module includes a first signal transmission circuit and a first boost circuit; the The first signal transmitting circuit is used for generating a first excitation signal, the first boosting circuit is used for increasing the voltage of the first excitation signal and outputting the first boosting signal, and the first single-ended transducer is used for converting the first boost signal into a first ultrasonic signal;
  • the first signal receiving module is connected to the second single-ended transducer through the second transceiver multiplexing line, and the first signal receiving module includes a first protection circuit and a first signal receiving circuit; the first signal receiving module includes a first protection circuit and a first signal receiving circuit. Two single-ended transducers are used to convert the first ultrasonic signal into a first echo signal, and the first echo signal is output to the first signal receiving circuit through the first protection circuit;
  • the second signal transmission module is connected to the second single-ended transducer through the second transceiver multiplexing line, and the second signal transmission module includes a second signal transmission circuit and a second boost circuit; the The second signal transmitting circuit is used for generating the second excitation signal, the second boosting circuit is used for increasing the voltage of the second excitation signal and outputting the second boosting signal, the second single-ended transducer also for converting the second boost signal into a second ultrasonic signal;
  • the second signal receiving module is connected to the first single-ended transducer through the first transceiver multiplexing line, and the second signal receiving module includes a second protection circuit and a second signal receiving circuit; the first A single-ended transducer is further configured to convert the second ultrasonic signal into a second echo signal, and the second echo signal is output to the second signal receiving circuit through the second protection circuit;
  • the first protection circuit is used to prevent the second boost signal from damaging the first signal receiving circuit; the second protection circuit is used to prevent the first boost signal from damaging the second signal receiving circuit.
  • the first protection circuit and the second protection circuit can respectively prevent the first boost signal output by the first boost circuit from damaging the second signal receiving circuit at the same end , the second boost signal output by the second boost circuit damages the first signal receiving circuit at the same end, and will not affect the first signal receiving circuit to receive the first echo signal, and all The second signal receiving circuit receives the second echo signal.
  • the ultrasonic flowmeter provided in the embodiment of the present application does not use the MUX circuit, but uses the above-mentioned multi-channel integrated signal transmitting module and signal receiving module, so it will not be limited by the voltage of the MUX circuit, and also The voltage of the excitation signal can be raised to the desired level to accurately measure the flow information of the fluid without enabling the high-voltage MUX circuit, and it can also save costs.
  • the ultrasonic flowmeter further includes: a first processor; the first processor is respectively connected with the first signal transmitting circuit, the first signal receiving circuit, the second signal transmitting circuit and the the second signal receiving circuit is connected;
  • the first processor is configured to control the first signal transmission circuit to generate the first excitation signal at a first moment, and the second signal transmission circuit to generate the second excitation signal at a second moment; obtain the first excitation signal; An ultrasonic signal is transmitted from the first single-ended transducer to the first downstream time of the second single-ended transducer, and the second ultrasonic signal is transmitted from the second single-ended transducer to the second single-ended transducer. calculating the first reverse flow time of the first single-ended transducer; and calculating the flow information of the fluid in the flow channel according to the first forward flow time and the first reverse flow time.
  • the first signal transmission module further includes a first matching circuit
  • the second signal transmission module further includes a second matching circuit
  • the first matching circuit is used to realize the connection between the first signal transmission module and the second matching circuit.
  • impedance matching between the first single-ended transducers, and the second matching circuit is used to implement impedance matching between the second signal transmitting module and the second single-ended transducer.
  • the first boost circuit includes a first DC-DC boost converter and a first high-voltage level converter; an input end of the first DC-DC boost converter is connected to a DC power supply, The output end is connected to the first high-voltage level shifter; the input end of the first high-voltage level shifter is connected to the first signal transmitting circuit, and outputs the first boost signal from the output end .
  • the second boost circuit includes a second DC-DC boost converter and a second high-voltage level converter; an input end of the second DC-DC boost converter is connected to a DC power supply, The output end is connected to the second high-voltage level shifter; the input end of the second high-voltage level shifter is connected to the second signal transmitting circuit, and outputs the second boost signal from the output end .
  • the first DC-DC boost converter, the second DC-DC boost converter, the first high-voltage level converter or the second high-voltage level converter are devices with low static power consumption.
  • the model of the first DC-DC boost converter or the second DC-DC boost converter is TPS61080, TPS61096A, TLV61046A or TLV61048DBVT, and the first high-voltage level shifter or all
  • the model of the second high voltage level shifter is CD40109B, ADP3654 or ADP3630.
  • the first protection circuit or the second protection circuit is an NMOS transistor protection circuit or a double diode clamping protection circuit.
  • the first single-ended transducer and the second single-ended transducer are arranged on the same side of the flow channel;
  • the first ultrasonic signal emitted by the first single-ended transducer is reflected by the opposite side of the flow channel and then transmitted to the second single-ended transducer, and the second single-ended transducer emits The second ultrasonic signal is transmitted to the first single-ended transducer after being reflected by opposite sides of the flow channel.
  • Embodiments of the present application further provide an ultrasonic flowmeter for measuring flow information of fluid in a flow channel, including: a first differential transducer, a second differential transducer, a third signal transmitting module, a third signal receiving module, the fourth signal transmission module, the fourth signal reception module, the fifth signal transmission module, the fifth signal reception module, the sixth signal transmission module, the sixth signal reception module, the third transceiver multiplexing line, the fourth transceiver multiplexing line, a fifth transceiver multiplexing line and a sixth transceiver multiplexing line;
  • the first differential transducer and the second differential transducer are arranged on the flow channel;
  • the third signal transmission module is connected to the first differential transducer through the third transceiver multiplexing line, and the third signal transmission module includes a third signal transmission circuit and a third boost circuit;
  • the three-signal transmitting circuit is used to generate a third excitation signal, and the third boost circuit is used to boost the voltage of the third excitation signal and output the third boost signal;
  • the fourth signal transmission module is connected to the first differential transducer through the fourth transceiver multiplexing line, and the fourth signal transmission module includes a fourth signal transmission circuit and a fourth boost circuit;
  • the four-signal transmitting circuit is used to generate a fourth excitation signal, and the fourth excitation signal has the same amplitude and opposite phase as the third excitation signal;
  • the fourth boost circuit is used to increase the amplitude of the fourth excitation signal. voltage and output the fourth boost signal;
  • the first differential transducer is used to convert the third boost signal and the fourth boost signal into a third ultrasonic signal
  • the third signal receiving module is connected to the second differential transducer through the fifth transceiver multiplexing line, and the third signal receiving module includes a third protection circuit and a third signal receiving circuit;
  • the fourth The signal receiving module is connected to the second differential transducer through the sixth transceiving multiplexing line, and the fourth signal receiving module includes a fourth protection circuit and a fourth signal receiving circuit;
  • the second differential transducer uses In order to convert the third ultrasonic signal into a third echo signal and a fourth echo signal, the third echo signal is output to the third signal receiving circuit through the third protection circuit, and the fourth echo signal is output to the third signal receiving circuit.
  • the echo signal is output to the fourth signal receiving circuit through the fourth protection circuit;
  • the fifth signal transmitting module is connected to the second differential transducer through the fifth transceiving multiplexing line, and the fifth signal transmitting module includes a fifth signal transmitting circuit and a fifth boosting circuit; the first A five-signal transmitting circuit is used to generate a fifth excitation signal, and the fifth boost circuit is used to boost the voltage of the fifth excitation signal and output a fifth boost signal;
  • the sixth signal transmitting module is connected to the second differential transducer through the sixth transceiving multiplexing line, and the sixth signal transmitting module includes a sixth signal transmitting circuit and a sixth boosting circuit;
  • the six-signal transmitting circuit is used to generate a sixth excitation signal, and the sixth excitation signal has the same amplitude and opposite phase as the fifth excitation signal;
  • the sixth boost circuit is used to increase the amplitude of the sixth excitation signal. voltage and output the sixth boost signal;
  • the second differential transducer is further configured to convert the fifth boost signal and the sixth boost signal into a fourth ultrasonic signal
  • the fifth signal receiving module is connected to the first differential transducer through the third transceiver multiplexing line, and the fifth signal receiving module includes a fifth protection circuit and a fifth signal receiving circuit;
  • the sixth The signal receiving module is connected to the first differential transducer through the fourth transceiver multiplexing line, the sixth signal receiving module includes a sixth protection circuit and a sixth signal receiving circuit;
  • the first differential transducer It is also used to convert the fourth ultrasonic signal into a fifth echo signal and a sixth echo signal, the fifth echo signal is output to the fifth signal receiving circuit through the fifth protection circuit, and the fifth echo signal is output to the fifth signal receiving circuit.
  • the sixth echo signal is output to the sixth signal receiving circuit through the sixth protection circuit;
  • the third protection circuit is used to prevent the fifth boost signal from damaging the third signal receiving circuit; the fourth protection circuit is used to prevent the sixth boost signal from damaging the fourth signal receiving circuit; The fifth protection circuit is used to prevent the third boost signal from damaging the fifth signal receiving circuit; the sixth protection circuit is used to prevent the fourth boost signal from damaging the sixth signal receiving circuit.
  • the ultrasonic flowmeter uses a differential signal to excite the transducer, which can better adapt to the problem of serious attenuation of ultrasonic signals when propagating in some fluids, and the ultrasonic flowmeter can achieve Boost the voltage of the excitation signal to the desired level to achieve the preset flow measurement accuracy while saving costs.
  • the ultrasonic flowmeter further includes a second processor; the second processor is respectively connected with the third signal transmitting circuit, the third signal receiving circuit, the fourth signal transmitting circuit, the a fourth signal receiving circuit, the fifth signal transmitting circuit, the fifth signal receiving circuit, the sixth signal transmitting circuit and the sixth signal receiving circuit are connected;
  • the second processor is configured to control the third signal transmitting circuit and the fourth signal transmitting circuit to generate the third excitation signal and the fourth excitation signal respectively at a third moment, and the fifth signal transmitting circuit and the sixth signal transmitting circuit respectively generate the fifth excitation signal and the sixth excitation signal at the fourth moment; acquire the third ultrasonic signal and transmit it from the first differential transducer to the second a second downstream time for a differential transducer, a second upstream time for the fourth ultrasonic signal to be transmitted from the second differential transducer to the first differential transducer; and according to the second downstream time time and the second countercurrent time, the flow information of the fluid in the flow channel is obtained by calculation.
  • the third signal transmitting module further includes a third matching circuit
  • the fourth signal transmitting module further includes a fourth matching circuit
  • the fifth signal transmitting module further includes a fifth matching circuit
  • the sixth The signal transmitting module further includes a sixth matching circuit
  • the third matching circuit is used to implement impedance matching between the third signal transmitting module and the first differential transducer
  • the fourth matching circuit is used to implement the fourth signal transmitting module and the The impedance matching between the first differential transducers
  • the fifth matching circuit is used to realize the impedance matching between the fifth signal transmitting module and the second differential transducer
  • the sixth matching circuit uses For realizing impedance matching between the sixth signal transmitting module and the second differential transducer.
  • the third boost circuit includes a third DC-DC boost converter and a third high-voltage level converter; an input end of the third DC-DC boost converter is connected to a DC power supply, The output end is connected to the third high-voltage level shifter; the input end of the third high-voltage level shifter is connected to the third signal transmitting circuit, and outputs the third boost signal from the output end .
  • the third DC-DC boost converter or the third high-voltage level converter is a device with low static power consumption.
  • the model of the third DC-DC boost converter is TPS61080, TPS61096A, TLV61046A or TLV61048DBVT, and the model of the third high voltage level converter is CD40109B, ADP3654 or ADP3630.
  • the fourth boost circuit, the fifth boost circuit or the sixth boost circuit is the same as the third boost circuit.
  • the third protection circuit, the fourth protection circuit, the fifth protection circuit or the sixth protection circuit is an NMOS transistor protection circuit or a double diode clamping protection circuit.
  • the first differential transducer and the second differential transducer are arranged on the same side of the flow channel;
  • the third ultrasonic signal emitted by the first differential transducer is reflected by the opposite side of the flow channel and then transmitted to the second differential transducer, and the third ultrasonic signal emitted by the second differential transducer is transmitted to the second differential transducer.
  • Four ultrasonic signals are transmitted to the first differential transducer after being reflected by opposite sides of the flow channel.
  • Fig. 1 is the structural representation of ultrasonic flowmeter in the prior art
  • FIG. 2 is a schematic structural diagram of an ultrasonic flowmeter based on a single-ended architecture provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of another ultrasonic flowmeter based on a single-ended architecture provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a first boost circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the current consumption of the amplifier circuit in one cycle in the prior art
  • FIG. 6 is a schematic diagram of current consumption in one cycle of a first boost circuit with low static power consumption provided by an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an NMOS transistor protection circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a double diode clamp protection circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an ultrasonic flowmeter based on a differential architecture provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another ultrasonic flowmeter based on a differential architecture provided by an embodiment of the present application.
  • FIG. 2 a schematic structural diagram of an ultrasonic flowmeter based on a single-ended structure provided by an embodiment of the present application is used to measure the flow information of the fluid in the flow channel 10 .
  • the first single-ended transducer 101 and the second single-ended transducer 102 are disposed on the flow channel 10; specifically, the first single-ended transducer 101 and the second single-ended transducer 102 can be attached to The outside of the flow channel 10 may also be partially inserted into the inside of the flow channel 10, which is not limited in this embodiment of the present application.
  • the first single-ended transducer 101 and the second single-ended transducer 102 are both ultrasonic transducers integrating transceivers, and can realize bidirectional conversion between electrical signals and ultrasonic signals.
  • the first signal transmission module 20 is connected to the first single-ended transducer 101 through the first transceiver multiplexing line 40; the first signal transmission module 20 includes a first signal transmission circuit 201 and a first boost circuit 202, and the first signal
  • the transmitting circuit 201 is connected to the first boosting circuit 202; specifically, the first signal transmitting circuit 201 can generate a first excitation signal, and the first boosting circuit 202 can increase the voltage of the first excitation signal and output the first boosting signal , the first single-ended transducer 101 can convert the first boost signal into a first ultrasonic signal.
  • the first signal receiving module 60 is connected to the second single-ended transducer 102 through the second transceiver multiplexing line 70; the first signal receiving module 60 includes a first protection circuit 602 and a first signal receiving circuit 601, and the first protection circuit 602 is connected to the first signal receiving circuit 601; specifically, the first ultrasonic signal can be transmitted from the first single-ended transducer 101 to the second single-ended transducer 102 through the flow channel 10, and the second single-ended transducer 102 The first ultrasonic signal can be converted into a first echo signal, and the first echo signal can be output to the first signal receiving circuit 601 through the first protection circuit 602 .
  • the second signal transmission module 50 is connected to the second single-ended transducer 102 through the second transceiver multiplexing line 70; the second signal transmission module 50 includes a second signal transmission circuit 501 and a second boost circuit 502, and the second signal
  • the transmitter circuit 501 is connected to the second boost circuit 502; specifically, the second signal transmitter circuit 501 can generate a second excitation signal, and the second boost circuit 502 can boost the voltage of the second excitation signal and output the second boost signal , the second single-ended transducer 102 can also convert the second boosted signal into a second ultrasonic signal.
  • the second signal receiving module 30 is connected to the first single-ended transducer 101 through the first transceiver multiplexing line 40; the second signal receiving module 30 includes a second protection circuit 302 and a second signal receiving circuit 301, and the second protection circuit 302 is connected to the second signal receiving circuit 301; specifically, the second ultrasonic signal can be transmitted from the second single-ended transducer 102 to the first single-ended transducer 101 through the flow channel 10, and the first single-ended transducer 101 The second ultrasonic signal can also be converted into a second echo signal, and the second echo signal can be output to the second signal receiving circuit 301 through the second protection circuit 302 .
  • the first protection circuit 602 can prevent the second boost signal from damaging the first signal receiving circuit 601, and the second protection circuit 302 can prevent the first boost signal from damaging the second signal receiving circuit 301; specifically, the first signal receiving circuit 601 and
  • the second signal receiving circuit 301 may include: an amplifier circuit, a band-pass filter circuit, a variable gain adjustment circuit, an A/D sampling circuit, and the like.
  • first booster circuit 202 and the second booster circuit 502 to boost the voltages of the first excitation signal and the second excitation signal, respectively, can avoid the flow measurement result caused by the serious attenuation of the ultrasonic signal when propagating in some fluids Inaccurate. Since the voltage values of the first boost signal and the second boost signal are relatively high, if they flow directly into the second signal receiving circuit 301 or the first signal receiving circuit 601 at the same end, it is easy to receive the second signal receiving circuit 301 and the first signal.
  • the circuit 601 causes damage, so the second protection circuit 302 and the first protection circuit 602 are respectively provided to prevent the occurrence of such damage; and, because the first single-ended transducer 101 converts the first boost signal into the first After the ultrasonic signal, the first ultrasonic signal can be transmitted from the first single-ended transducer 101 to the second single-ended transducer 102 through the flow channel 10. During this process, the first ultrasonic signal will be attenuated to a certain extent.
  • the latter first ultrasonic signal can be converted into a first echo signal by the second single-ended transducer 102, so the voltage value of the first echo signal is low, and can be output to the first signal receiving circuit through the first protection circuit 602 601 ; similarly, the second echo signal may also be output to the second signal receiving circuit 301 through the second protection circuit 302 .
  • the first processor 80 is respectively connected to the first signal transmitting circuit 201 , the first signal receiving circuit 601 , the second signal transmitting circuit 501 and the second signal receiving circuit 301 .
  • the first processor 80 can control the first signal transmitting circuit 201 to generate the first excitation signal at the first moment, and control the second signal transmitting circuit 501 to generate the second excitation signal at the second moment; and, the first ultrasonic signal can be obtained from the The first downstream time for the first single-ended transducer 101 to be transmitted to the second single-ended transducer 102 , and the second ultrasonic signal is transmitted from the second single-ended transducer 102 to the first single-ended transducer 101 .
  • the first countercurrent time; finally, the flow information of the fluid in the flow channel 10 can be obtained by calculating according to the first downstream time and the first countercurrent time.
  • calculating the flow information of the fluid in the flow channel 10 according to the first forward flow time and the first reverse flow time may include the following steps:
  • the flow information of the fluid to be measured can be obtained.
  • the ultrasonic flowmeter based on the single-ended architecture provided by the embodiment of the present application can measure the flow in a time-sharing manner, that is, the flight time of the ultrasonic signal in the downstream state (referred to as the first downstream time) and in the countercurrent state are successively collected.
  • the flight time (recorded as the first countercurrent time); the following is an exemplary description of the time-sharing flow measurement method in conjunction with Figure 2:
  • the first processor 80 controls the first signal transmitting circuit 201 to generate the first excitation signal at the first moment; the first boost circuit 202 boosts the voltage of the first excitation signal and outputs the first boost signal; the first single-ended transduction
  • the transducer 101 converts the first boosted signal into a first ultrasonic signal; the first ultrasonic signal is transmitted from the first single-ended transducer 101 to the second single-ended transducer 102 and converted by the second single-ended transducer 102 is the first echo signal; the first echo signal is output to the first signal receiving circuit 601 through the first protection circuit 602; the first processor 80 acquires the first ultrasonic signal and transmits it from the first single-ended transducer 101 to the second the first downstream time of the single-ended transducer 102;
  • the first processor 80 controls the second signal transmitting circuit 501 to generate the second excitation signal at the second moment; the second boost circuit 502 boosts the voltage of the second excitation signal and outputs the second boost signal; the second single-ended transduction
  • the converter 102 converts the second boosted signal into a second ultrasonic signal; the second ultrasonic signal is transmitted from the second single-ended transducer 102 to the first single-ended transducer 101 and converted by the first single-ended transducer 101 is the second echo signal; the second echo signal is output to the second signal receiving circuit 301 through the second protection circuit 302 ; the first processor 80 acquires the second ultrasonic signal and transmits it from the second single-ended transducer 102 to the first the first countercurrent time of the single-ended transducer 101;
  • the first processor 80 calculates and obtains the flow information of the fluid in the flow channel 10 according to the first forward flow time and the first reverse flow time.
  • the ultrasonic flowmeter based on the single-ended architecture provided by the embodiment of the present application can increase the voltage of the excitation signal to a target level, so as to adapt to the situation that the ultrasonic signal is severely attenuated when propagating in some fluids, thereby improving the accuracy of the flow measurement result Moreover, by setting up a multi-channel integrated signal transmitting module and a signal receiving module, the high-voltage MUX circuit can be avoided, which can effectively reduce the cost.
  • the first processor 80 may also set the frequency, number, etc. of the first excitation signal and the second excitation signal.
  • the calculation method of the flow information is not limited to this, and the first ultrasonic signal and the second ultrasonic signal can also be used as input, and the time difference between the first forward flow time and the first reverse flow time can be calculated through a cross-correlation algorithm or TDC technology. , and then use the first downstream time, the first upstream time, the time difference between the first downstream time and the first upstream time, the angle between the propagation direction of the first ultrasonic signal and the second ultrasonic signal and the flow direction of the fluid, and Pipe parameters to calculate the flow information of the fluid.
  • the first signal transmitting module 20 further includes a first matching circuit 203
  • a second signal transmitting module 50 also includes a second matching circuit 503
  • the first matching circuit 203 and the second matching circuit 503 are respectively connected to the output ends of the first boosting circuit 202 and the second boosting circuit 503
  • the first matching circuit 203 can realize the first signal Impedance matching between the transmitting module 20 and the first single-ended transducer 101
  • the second matching circuit 503 can realize impedance matching between the second signal transmitting module 50 and the second single-ended transducer 102 .
  • the first matching circuit 203 and the second matching circuit 503 can make the first boosted signal output by the first signal transmitting module 20 and the second boosted signal output by the second signal transmitting module 50 to be effectively transmitted to the first single-ended respectively.
  • the transducer 101 and the second single-ended transducer 102 reduce the loss caused by signal reflection; in addition, by designing the first matching circuit 203, the impedance of the first signal transmitting module 20 can be as close as possible to that of the first matching circuit 203.
  • the impedance of a single-ended transducer 101 is matched and does not match the impedance of the second signal receiving module 30 at the same end as much as possible, so that the first boosted signal basically cannot flow into the second signal receiving module 30 at the same end, and is transmitted to the first single-ended transducer 101; similarly, by designing the second matching circuit 503, the second boosted signal can also be transmitted to the second single-ended transducer 102 as much as possible without flowing into the The first signal receiving module 60 at the same end finally receives the corresponding echo signal by the correct receiving module.
  • the ultrasonic flowmeter based on the single-ended architecture in the embodiment of the present application not only does not limit the level of voltage increase without using the MUX circuit, but can basically make the excitation signal and the echo signal flow into the correct sending and receiving path .
  • the first boost circuit 202 and the second boost circuit 502 may be high-voltage level conversion circuits; specifically, as shown in FIG. 4 , the first boost circuit 202 includes a first DC-DC boost circuit. voltage converter 2021 and first high-voltage level converter 2022; the input end of the first DC-DC boost converter 2021 is connected to the DC power supply, and the output end is connected to the first high-voltage level converter 2022; The input terminal of the voltage-level converter 2022 is connected to the first signal transmitting circuit 201, and the first boost signal is output from the output terminal.
  • the first DC-DC boost converter 2021 can convert a low-voltage DC power supply into a high-voltage output, and provide it to the first high-voltage level converter 2022, and the first high-voltage level converter 2022 can convert the first signal transmission circuit.
  • the voltage of the first excitation signal generated at 201 is boosted, and a first boost signal is output.
  • the first DC-DC boost converter 2021 and the first high-voltage level converter 2022 may be devices with low static power consumption; specifically, the models of the first DC-DC boost converter 2021 may be TPS61080, TPS61096A, TLV61046A or TLV61048DBVT, the model of the first high voltage level shifter 2022 may be CD40109B, ADP3654 or ADP3630.
  • an amplifier circuit is usually added to amplify the voltage of the signal, which leads to a significant increase in the overall power consumption of the ultrasonic flowmeter system;
  • the voltage circuit increases the voltage of the signal, and at the same time can reduce the average power consumption of the ultrasonic flowmeter system in one working cycle.
  • the first booster circuit with low static power consumption provided by the embodiment of the present application is in the ON state during the whole cycle, which avoids the generation of instantaneous high power consumption, and due to its ultra-low static current in the static mode, its In the static mode where the voltage of the first excitation signal does not need to be boosted, the power consumption can be kept low, so that the average power consumption in one cycle is also low.
  • the second boost circuit 502 may be the same as the first boost circuit 202 shown in FIG. 4 , that is, it includes a second DC-DC boost converter and a second high-voltage level converter; wherein, The input end of the second DC-DC boost converter is connected to the DC power supply, and the output end is connected to the second high-voltage level shifter; the input end of the second high-voltage level shifter and the output end of the second signal transmitting circuit connected, and output a second boost signal; and, the second DC-DC boost converter and the second high-voltage level converter can be devices with low static power consumption; specifically, the second DC-DC boost converter
  • the model of the device can be TPS61080, TPS61096A, TLV61046A or TLV61048DBVT, and the model of the second high voltage level shifter can be CD40109B, ADP3654 or ADP3630.
  • the first protection circuit 602 may be the NMOS transistor protection circuit shown in FIG. 7 or the double diode clamping protection circuit shown in FIG. 8 .
  • the first protection circuit 602 can be an NMOS transistor protection circuit; the gate of the NMOS transistor 6021 is connected to the DC power supply, the source is connected to the receiving end of the first signal receiving circuit 601, and the drain is connected to the receiving end of the first signal receiving circuit 601 through the second transceiver.
  • the multiplexing line is connected to the second single-ended transducer 102; when the received signal voltage is higher than the voltage of the DC power supply, the NMOS transistor 6021 is turned off, and the signal cannot be output to the first signal receiving circuit 601 through the NMOS transistor 6021; When the voltage of the received signal is lower than the voltage of the DC power supply, the NMOS transistor 6021 is turned on, and the signal can pass through the NMOS transistor 6021 and be output to the first signal receiving circuit 601 .
  • the NMOS transistor 6021 can be turned off because the voltage value of the second boosted signal output by the second signal transmitting module 50 is higher than the voltage value of the DC power supply. It cannot flow into the first signal receiving module 60 at the same end, but is transmitted to the second single-ended transducer 102; and the first echo signal can be made to cause the NMOS transistor 6021 to have a voltage value lower than that of the DC power supply because the voltage value is lower than that of the DC power supply. It is turned on, so it will not affect the normal reception of the first echo signal by the first signal receiving circuit 601 .
  • the second protection circuit 302 may be the same as the NMOS transistor protection circuit shown in FIG. 7 .
  • the first boosted signal output by the first signal transmission module 20 cannot flow into the second signal reception at the same end. module 30, but is transmitted to the first single-ended transducer 101, and will not affect the normal reception of the second echo signal by the second signal receiving circuit 601, so that the first excitation signal, the second excitation signal, the first echo The signal and the second echo signal flow into the correct sending and receiving channel to avoid signal loss.
  • the first protection circuit 602 can also be a double diode clamping protection circuit, wherein the P pole of the diode 6022 is grounded, and the N pole of the diode 6023 is connected to the DC power supply.
  • the voltage value of the signal flowing into the first protection circuit 602 is in the range of -UD to UD+VCC (UD is the turn-on voltage of the diode 6022 and the diode 6023, and VCC is the voltage of the DC power supply connected to the N pole of the diode 6023)
  • UD is the turn-on voltage of the diode 6022 and the diode 6023
  • VCC is the voltage of the DC power supply connected to the N pole of the diode 6023
  • the second boost signal output by the second signal transmitting module 50 can be prevented from flowing into the first signal receiving circuit 601 at the same end, and the first signal receiving circuit 601 can be prevented from being damaged due to the excessively high voltage value of the second boost signal, and The normal reception of the first echo signal by the first signal receiving circuit 601 is not affected.
  • the second protection circuit 302 may be the same as the double diode clamping protection circuit shown in FIG. 8 . Similarly, it can prevent the first boosted signal output by the first signal transmitting module 20 from being too high due to an excessively high voltage value. The damage to the second signal receiving circuit 301 does not affect the normal reception of the second echo signal by the second signal receiving circuit 301 .
  • the first single-ended transducer 101 and the second single-ended transducer 102 may be arranged on the same side of the flow channel 10; the first ultrasonic signal emitted by the first single-ended transducer 101 may be The opposite side of the flow channel 10 is reflected and transmitted to the second single-ended transducer 102, and the second ultrasonic signal emitted by the second single-ended transducer 102 can also be reflected by the opposite side of the flow channel 10 and then transmitted to the first single-ended Transducer 101 .
  • the first ultrasonic signal and the second ultrasonic signal are reflected by the side surface of the flow channel 10 to form a V-shaped transmission path, which is longer than the transmission path without using the reflection method, thereby increasing the ultrasonic signal in the first single-ended transduction.
  • the transmission time between the transducer 101 and the second single-ended transducer 102; especially, when the flow channel 10 is a small pipe, extending the propagation path of the ultrasonic signal can avoid the crosstalk between the first ultrasonic signal and the second ultrasonic signal. It is beneficial to accurately measure the time difference between the first forward flow time and the first reverse flow time, and then accurately calculate the flow information of the fluid in the flow channel 10 .
  • the embodiment of the present application also provides an ultrasonic flowmeter based on a differential architecture, which is used to measure the flow information of the fluid in the flow channel 10 .
  • FIG. 9 it is a schematic structural diagram of an ultrasonic flowmeter based on a differential architecture provided by an embodiment of the present application.
  • the first differential transducer 103 and the second differential transducer 104 are arranged on the flow channel 10 ; specifically, the first differential transducer 103 and the second differential transducer 104 can be attached to the flow channel 10 .
  • the outside can also be partially inserted into the inside of the flow channel 10, which is not limited in this embodiment of the present application.
  • the first differential transducer 103 and the second differential transducer 104 are both ultrasonic transducers integrating transceivers, that is, bidirectional conversion between electrical signals and ultrasonic signals can be realized.
  • the third signal transmitting module 21 is connected to the first differential transducer 103 through the third transceiving multiplexing line 41; the third signal transmitting module 21 includes a third signal transmitting circuit 211 and a third boosting circuit 212, and the third signal transmitting The circuit 211 is connected to the third boosting circuit 212; specifically, the third signal transmitting circuit 211 can generate a third excitation signal; the third boosting circuit 212 can boost the voltage of the third excitation signal and output the third boosting signal.
  • the fourth signal transmitting module 22 is connected to the first differential transducer 103 through the fourth transceiving multiplexing line 42; the fourth signal transmitting module 22 includes a fourth signal transmitting circuit 221 and a fourth boosting circuit 222, and the fourth signal transmitting The circuit 221 is connected to the fourth boosting circuit 222; specifically, the fourth signal transmitting circuit 221 can generate a fourth excitation signal, the fourth excitation signal and the third excitation signal have the same amplitude and opposite phase, and the fourth boosting circuit 222 can The voltage of the fourth excitation signal is boosted and a fourth boosted signal is output; the first differential transducer 103 can convert the third boosted signal and the fourth boosted signal into a third ultrasonic signal.
  • the third signal receiving module 61 is connected to the second differential transducer 104 through the fifth transceiving multiplexing line 71 , the third signal receiving module 61 includes a third protection circuit 612 and a third signal receiving circuit 611 , and the third protection circuit 612 Connected to the third signal receiving circuit 611;
  • the fourth signal receiving module 62 is connected to the second differential transducer 104 through the sixth transceiving multiplexing line 72, and the fourth signal receiving module 62 includes a fourth protection circuit 622 and a fourth signal receiving circuit 621, and the fourth protection circuit 622 is connected to the fourth signal receiving circuit 621;
  • the second differential transducer 104 can convert the third ultrasonic signal into a third echo signal and a fourth echo signal, the third echo signal
  • the fourth echo signal can be output to the third signal receiving circuit 611 through the third protection circuit 612 , and the fourth echo signal can be output to the fourth signal receiving circuit 621 through the fourth protection circuit 622 .
  • the fifth signal transmitting module 51 is connected to the second differential transducer 104 through the fifth transceiving multiplexing line 71, the fifth signal transmitting module 51 includes a fifth signal transmitting circuit 511 and a fifth boosting circuit 512, and the fifth signal transmitting The circuit 511 is connected to the fifth boosting circuit 512; the fifth signal transmitting circuit 511 can generate the fifth excitation signal, and the fifth boosting circuit 512 can boost the voltage of the fifth excitation signal and output the fifth boosting signal.
  • the sixth signal transmitting module 52 is connected to the second differential transducer 104 through the sixth transceiving multiplexing line 72, the sixth signal transmitting module 52 includes a sixth signal transmitting circuit 521 and a sixth boosting circuit 522, and the sixth signal transmitting
  • the circuit 521 is connected with the sixth boosting circuit 522; the sixth signal transmitting circuit 521 can generate a sixth excitation signal, and the sixth excitation signal and the fifth excitation signal have the same amplitude and opposite phase; the sixth boosting circuit 522 can boost the sixth excitation signal. the voltage of the six excitation signals and output a sixth boost signal; the second differential transducer 104 can also convert the fifth boost signal and the sixth boost signal into a fourth ultrasonic signal.
  • the fifth signal receiving module 31 is connected to the first differential transducer 103 through the third transceiving multiplexing line 41 , the fifth signal receiving module 31 includes a fifth protection circuit 312 and a fifth signal receiving circuit 311 , and the fifth protection circuit 312 connected to the fifth signal receiving circuit 311;
  • the sixth signal receiving module 32 is connected to the first differential transducer 103 through the fourth transceiving multiplexing line 42, and the sixth signal receiving module 32 includes a sixth protection circuit 322 and a sixth signal receiving circuit 321, and the sixth protection circuit 322 is connected to the sixth signal receiving circuit 321;
  • the first differential transducer 103 can also convert the fourth ultrasonic signal into a fifth echo signal and a sixth echo signal, the fifth echo
  • the signal may be output to the fifth signal receiving circuit 311 through the fifth protection circuit 312
  • the sixth echo signal may be output to the sixth signal receiving circuit 321 through the sixth protection circuit 322 .
  • the third protection circuit 612 can prevent the fifth boost signal from damaging the third signal receiving circuit 611; the fourth protection circuit 622 can prevent the sixth boost signal from damaging the fourth signal receiving circuit 621; the fifth protection circuit 312 can prevent the third boost signal from damaging the fourth signal receiving circuit 621 The voltage signal damages the fifth signal receiving circuit 311 ; the sixth protection circuit 322 can prevent the fourth boost signal from damaging the sixth signal receiving circuit 321 .
  • the third protection circuit 612, the fourth protection circuit 622, the fifth protection circuit 312 and the sixth protection circuit 322 can be integrated into a single power supply. protection unit, and use a common power supply for power supply; the third booster circuit 212, the fourth booster circuit 222, the fifth booster circuit 512 and the sixth booster circuit 522 can be integrated into a booster unit, and use a common booster circuit power supply.
  • the ultrasonic flowmeter based on the differential structure provided by the embodiment of the present application increases the voltage of the excitation signal, and the amount of the signal transmitted to the transducer is twice that of the ultrasonic flowmeter based on the single-ended structure, so it can better It adapts to the serious attenuation of ultrasonic signals when propagating in some fluids, and further improves the accuracy of flow measurement results; since the above signal transceiver unit, protection unit and booster unit each use a power supply The ultrasonic flowmeter of the architecture will not increase too much power consumption; in addition, although there are multiple groups of signal transmitting modules and signal receiving modules, the integrated design of each module can still ensure a lower cost.
  • the second processor 81 is respectively connected with the third signal transmitting circuit 211 , the third signal receiving circuit 611 , the fourth signal transmitting circuit 221 , the fourth signal receiving circuit 621 , the fifth signal transmitting circuit 511 , the fifth signal receiving circuit 311 , the The six signal transmitting circuit 521 is connected to the sixth signal receiving circuit 321 .
  • the second processor 81 can control the third signal transmitting circuit 211 and the fourth signal transmitting circuit 221 to respectively generate the third excitation signal and the fourth excitation signal at the third time, the fifth signal transmitting circuit 511 and the sixth signal transmitting circuit 521 at the The fifth excitation signal and the sixth excitation signal are respectively generated at the fourth moment; the second downstream time when the third ultrasonic signal is transmitted from the first differential transducer 103 to the second differential transducer 104, and the fourth ultrasonic wave can also be obtained.
  • the signal is transmitted from the second differential transducer 104 to the second reverse flow time of the first differential transducer 103 ; finally, the flow information of the fluid in the flow channel 10 can be calculated according to the second forward flow time and the second reverse flow time.
  • calculating the flow information of the fluid in the flow channel 10 according to the second forward flow time and the second reverse flow time may include the following steps:
  • the flow information of the fluid to be measured can be obtained.
  • the ultrasonic flowmeter based on the differential structure provided by the embodiment of the present application can be measured in a time-sharing manner, that is, the flight time of the ultrasonic signal in the downstream state (referred to as the second downstream time) and the flight time in the countercurrent state are successively collected. time (denoted as the second countercurrent time); the time-sharing flow measurement method is exemplarily described below with reference to FIG. 9 :
  • the second processor 81 controls the third signal transmitting circuit 211 and the fourth signal transmitting circuit 221 to respectively generate a third excitation signal and a fourth excitation signal at the third moment, the fourth excitation signal and the third excitation signal have the same amplitude and opposite phase
  • the third boost circuit 212 boosts the voltage of the third excitation signal and outputs the third boost signal
  • the fourth boost circuit 222 boosts the voltage of the fourth excitation signal and outputs the fourth boost signal
  • the converter 103 converts the third boost signal and the fourth boost signal into a third ultrasonic signal
  • the third ultrasonic signal is transmitted from the first differential transducer 103 to the second differential transducer 104, and is transduced by the second differential
  • the device 104 converts the third echo signal and the fourth echo signal; the third echo signal is output to the third signal receiving circuit 611 through the third protection circuit 612 , and the fourth echo signal is output to the third signal receiving circuit 611 through the fourth protection circuit 622 Four-signal receiving circuit 621
  • the second processor 81 controls the fifth signal transmitting circuit 511 and the sixth signal transmitting circuit 521 to respectively generate a fifth excitation signal and a sixth excitation signal at the fourth moment, the sixth excitation signal and the fifth excitation signal have the same amplitude and opposite phase
  • the fifth boost circuit 512 boosts the voltage of the fifth excitation signal and outputs the fifth boost signal
  • the sixth boost circuit 522 boosts the voltage of the sixth excitation signal and outputs the sixth boost signal
  • the device 104 converts the fifth boosted signal and the sixth boosted signal into a fourth ultrasonic signal; the fourth ultrasonic signal is transmitted from the second differential transducer 104 to the first differential transducer 103, and is transduced by the first differential
  • the device 103 converts the fifth echo signal and the sixth echo signal; the fifth echo signal is output to the fifth signal receiving circuit 311 through the fifth protection circuit 312 , and the sixth echo signal is output to the fifth signal receiving circuit 311 through the sixth protection circuit 322 Six signal receiving circuits 321
  • the second processor 81 calculates and obtains the flow information of the fluid in the flow channel 10 according to the second forward flow time and the second reverse flow time.
  • the ultrasonic flowmeter based on the differential architecture provided by the embodiment of the present application can increase the voltage of the excitation signal to a target level, so as to adapt to the serious attenuation of the ultrasonic signal when propagating in some fluids, thereby improving the accuracy of the flow measurement result;
  • high-voltage MUX circuits are avoided, which can effectively reduce costs and further increase the amount of signals transmitted to the transducer.
  • the second processor 81 may also set the frequency, number, etc. of the third excitation signal, the fourth excitation signal, the fifth excitation signal, and the sixth excitation signal.
  • the calculation method of the flow information is not limited to this, and the third ultrasonic signal and the fourth ultrasonic signal can also be used as input, and the time difference between the second forward flow time and the second reverse flow time can be calculated through a cross-correlation algorithm or TDC technology. , and then use the second downstream time, the second upstream time, the time difference between the second downstream time and the second upstream time, the angle between the propagation direction of the third ultrasonic signal and the fourth ultrasonic signal and the flow direction of the fluid, and Pipe parameters to calculate the flow information of the fluid.
  • the third signal transmitting module 21 further includes a third matching circuit 213
  • the fourth signal transmitting module 22 also includes a fourth matching circuit 223, the fifth signal transmitting module 51 further includes a fifth matching circuit 513
  • the sixth signal transmitting module 52 further includes a sixth matching circuit 523; the third matching circuit 213, the fourth matching circuit 223, the fifth matching circuit 523
  • the matching circuit 513 and the sixth matching circuit 523 are respectively connected to the outputs of the third boosting circuit 212, the fourth boosting circuit 222, the fifth boosting circuit 512 and the sixth boosting circuit 522;
  • the third matching circuit 213 can realize The impedance matching between the third signal transmitting module 21 and the first differential transducer 103
  • the fourth matching circuit 223 can realize the impedance matching between the fourth signal transmitting module 22 and the first differential transducer 103
  • the fifth matching The circuit 513 can realize the impedance matching between
  • the third boost circuit 212 may be the same as the first boost circuit 202 shown in FIG. 4 , that is, it includes a third DC-DC boost converter and a third high-voltage level converter; wherein, The input end of the third DC-DC boost converter is connected to the DC power supply, the output end is connected to the third high-voltage level shifter, the input end of the third high-voltage level shifter is connected to the third signal transmitting circuit, and The third boost signal is output from the output terminal; and, the third DC-DC boost converter and the third high voltage level shifter may be devices with low static power consumption, so as to achieve a higher average power consumption in one cycle.
  • the model of the third DC-DC boost converter may be TPS61080, TPS61096A, TLV61046A or TLV61048DBVT, and the model of the third high voltage level converter may be CD40109B, ADP3654 or ADP3630.
  • the fourth boost circuit 222 the fifth boost circuit 512 , and the sixth boost circuit 522 may be the same as the third boost circuit 212 , and thus detailed descriptions thereof may be omitted.
  • Using a booster circuit with low static power consumption to boost the voltage of the signal can reduce the average power consumption of the ultrasonic flowmeter system in one working cycle.
  • the third protection circuit 612 , the fourth protection circuit 622 , the fifth protection circuit 312 and the sixth protection circuit 322 may be the NMOS transistor protection circuit shown in FIG. 7 or the double diode clamp shown in FIG. 8 . Protection circuit, and its connection method and achieved technical effect are basically the same, and will not be repeated here.
  • the first differential transducer 103 and the second differential transducer 104 are arranged on the same side of the flow channel 10 ; the third ultrasonic signal emitted by the first differential transducer 103 passes through the opposite side of the flow channel 10 .
  • the side surface is reflected and transmitted to the second differential transducer 104
  • the fourth ultrasonic signal emitted by the second differential transducer 104 is reflected by the opposite side surface of the flow channel 10 and transmitted to the first differential transducer 103 .
  • the third ultrasonic signal and the fourth ultrasonic signal are reflected by the side surface of the flow channel 10 to form a V-shaped transmission path, which is longer than the transmission path without the reflection method, thereby increasing the ultrasonic signal in the first differential transducer.
  • the transmission time between 103 and the second differential transducer 104; especially, when the flow channel 10 is a small pipe, extending the propagation path of the ultrasonic signal can avoid the crosstalk between the third ultrasonic signal and the fourth ultrasonic signal, which is conducive to accurate
  • the time difference between the second forward flow time and the second reverse flow time is measured accurately, and then the flow information of the fluid in the flow channel 10 is accurately calculated.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种超声波流量计,用于测量流道(10)内流体的流量信息,包括:第一单端换能器(101)、第二单端换能器(102)、第一信号发射模块(20)、第一信号接收模块(60)、第二信号发射模块(50)、第二信号接收模块(30)、第一收发复用线路(40)以及第二收发复用线路(70);其中,第一信号发射模块(20)包括第一信号发射电路(201)和第一升压电路(202);第一信号接收模块(60)包括第一保护电路(602)和第一信号接收电路(601);第二信号发射模块(50)包括第二信号发射电路(501)和第二升压电路(502);第二信号接收模块(30)包括第二保护电路(302)和第二信号接收电路(301)。

Description

超声波流量计 技术领域
本申请实施例涉及电子电路技术领域,尤其涉及一种超声波流量计。
背景技术
超声波流量计是通过检测流体的流动对超声束(或超声脉冲)的作用来测量流体流量的仪表,目前已广泛应用于家用水表、家用燃气表和工业级液体或气体计量等领域。然而,由于超声波信号在某些流体(如燃气)中传播时衰减严重,所以接收端收到的回波信号十分微弱,信噪比较差,导致超声波流量计的测量精度较低。
因此,如图1所示,现有的超声波流量计通常会增加放大电路5,用于放大信号发射电路4产生的激励信号的电压,以适应衰减较大的流体成分,并利用多路复用开关MUX 3实现收发通路的切换,从而将放大电路5输出的高压信号传输至换能器1或换能器2,以及将换能器1或换能器2输出的回波信号传输至信号接收电路6。
但是,由于MUX电路的电压限制,通常无法将激励信号放大到理想水平,因此难以实现预期的流量测量精度,而启用高压的MUX电路会导致成本非常高昂。
发明内容
为了解决上述现有技术存在的问题,本申请实施例提供了一种超声波流量计,以在提高流量测量精度的同时,节约成本。
本申请实施例提供一种超声波流量计,用于测量流道内流体的流量信息,包括:第一单端换能器、第二单端换能器、第一信号发射模块、第一信号接收模块、第二信号发射模块、第二信号接收模块、第一收发复用线路以及第二收发复用线路;
所述第一单端换能器和所述第二单端换能器设置在所述流道上;
所述第一信号发射模块通过所述第一收发复用线路与所述第一单端换能器相连,所述第一信号发射模块包括第一信号发射电路和第一升压电路;所述第一信号发射电路用于产生第一激励信号,所述第一升压电路用于升高所述第一激励信号的电压并输出第一升压信号,所述第一单端换能器用于将所述第一升压信号转换为第一超声波信号;
所述第一信号接收模块通过所述第二收发复用线路与所述第二单端换能器相连,所述第一信号接收模块包括第一保护电路和第一信号接收电路;所述第二单端换能器用于将所述第一超声波信号转换为第一回波信号,所述第一回波信号经过所述第一保护电路输出至所述第一信号接收电路;
所述第二信号发射模块通过所述第二收发复用线路与所述第二单端换能器相连,所述第二信号发射模块包括第二信号发射电路和第二升压电路;所述第二信号发射电路用于产生第二激励信号,所述第二升压电路用于升高所述第二激励信号的电压并输 出第二升压信号,所述第二单端换能器还用于将所述第二升压信号转换为第二超声波信号;
所述第二信号接收模块通过所述第一收发复用线路与所述第一单端换能器相连,所述第二信号接收模块包括第二保护电路和第二信号接收电路;所述第一单端换能器还用于将所述第二超声波信号转换为第二回波信号,所述第二回波信号经过所述第二保护电路输出至所述第二信号接收电路;
所述第一保护电路用于防止所述第二升压信号损坏所述第一信号接收电路;所述第二保护电路用于防止所述第一升压信号损坏所述第二信号接收电路。
通过设置所述第一升压电路和所述第二升压电路分别升高所述第一激励信号和所述第二激励信号的电压,可以避免因超声波信号在某些流体中传播时衰减严重而导致流量测量结果不准确;所述第一保护电路和所述第二保护电路能够分别防止所述第一升压电路输出的所述第一升压信号损坏同端的所述第二信号接收电路,所述第二升压电路输出的所述第二升压信号损坏同端的所述第一信号接收电路,并且不会影响所述第一信号接收电路接收所述第一回波信号,以及所述第二信号接收电路接收所述第二回波信号。相较于现有技术,本申请实施例提供的超声波流量计没有采用MUX电路,而是采用了上述多路一体式的信号发射模块和信号接收模块,因此不会受到MUX电路的电压限制,也无需启用高压的MUX电路,既可以实现将激励信号的电压升高到理想水平,以准确地测量流体的流量信息,也可以节约成本。
可选地,所述超声波流量计进一步包括:第一处理器;所述第一处理器分别与所述第一信号发射电路、所述第一信号接收电路、所述第二信号发射电路和所述第二信号接收电路相连;
所述第一处理器用于控制所述第一信号发射电路在第一时刻产生所述第一激励信号,所述第二信号发射电路在第二时刻产生所述第二激励信号;获取所述第一超声波信号从所述第一单端换能器传输至所述第二单端换能器的第一顺流时间,所述第二超声波信号从所述第二单端换能器传输至所述第一单端换能器的第一逆流时间;以及根据所述第一顺流时间和所述第一逆流时间,计算得到所述流道内流体的流量信息。
可选地,所述第一信号发射模块还包括第一匹配电路,所述第二信号发射模块还包括第二匹配电路;所述第一匹配电路用于实现所述第一信号发射模块与所述第一单端换能器之间的阻抗匹配,所述第二匹配电路用于实现所述第二信号发射模块与所述第二单端换能器之间的阻抗匹配。
可选地,所述第一升压电路包括第一DC-DC升压转换器和第一高压电平转换器;所述第一DC-DC升压转换器的输入端连接至直流电源,输出端连接至所述第一高压电平转换器;所述第一高压电平转换器的输入端连接至所述第一信号发射电路,并从输出端输出所述第一升压信号。
可选地,所述第二升压电路包括第二DC-DC升压转换器和第二高压电平转换器;所述第二DC-DC升压转换器的输入端连接至直流电源,输出端连接至所述第二高压电平转换器;所述第二高压电平转换器的输入端连接至所述第二信号发射电路,并从输出端输出所述第二升压信号。
可选地,所述第一DC-DC升压转换器、所述第二DC-DC升压转换器、所述第一高压电平转换器或所述第二高压电平转换器为低静态功耗的器件。
可选地,所述第一DC-DC升压转换器或所述第二DC-DC升压转换器的型号为TPS61080、TPS61096A、TLV61046A或TLV61048DBVT,所述第一高压电平转换器或所述第二高压电平转换器的型号为CD40109B、ADP3654或ADP3630。
可选地,所述第一保护电路或所述第二保护电路为NMOS管保护电路或双二极管钳位保护电路。
可选地,所述第一单端换能器和所述第二单端换能器设置在所述流道的同一侧面上;
所述第一单端换能器发射的所述第一超声波信号经所述流道的相对侧面反射后传输至所述第二单端换能器,所述第二单端换能器发射的所述第二超声波信号经所述流道的相对侧面反射后传输至所述第一单端换能器。
本申请实施例还提供一种超声波流量计,用于测量流道内流体的流量信息,包括:第一差分换能器、第二差分换能器、第三信号发射模块、第三信号接收模块、第四信号发射模块、第四信号接收模块、第五信号发射模块、第五信号接收模块、第六信号发射模块、第六信号接收模块、第三收发复用线路、第四收发复用线路、第五收发复用线路以及第六收发复用线路;
所述第一差分换能器和所述第二差分换能器设置在所述流道上;
所述第三信号发射模块通过所述第三收发复用线路与所述第一差分换能器相连,所述第三信号发射模块包括第三信号发射电路和第三升压电路;所述第三信号发射电路用于产生第三激励信号,所述第三升压电路用于升高所述第三激励信号的电压并输出第三升压信号;
所述第四信号发射模块通过所述第四收发复用线路与所述第一差分换能器相连,所述第四信号发射模块包括第四信号发射电路和第四升压电路;所述第四信号发射电路用于产生第四激励信号,所述第四激励信号与所述第三激励信号的振幅相同、相位相反;所述第四升压电路用于升高所述第四激励信号的电压并输出第四升压信号;
所述第一差分换能器用于将所述第三升压信号和所述第四升压信号转换为第三超声波信号;
所述第三信号接收模块通过所述第五收发复用线路与所述第二差分换能器相连,所述第三信号接收模块包括第三保护电路和第三信号接收电路;所述第四信号接收模块通过所述第六收发复用线路与所述第二差分换能器相连,所述第四信号接收模块包括第四保护电路和第四信号接收电路;所述第二差分换能器用于将所述第三超声波信号转换为第三回波信号和第四回波信号,所述第三回波信号经过所述第三保护电路输出至所述第三信号接收电路,所述第四回波信号经过所述第四保护电路输出至所述第四信号接收电路;
所述第五信号发射模块通过所述第五收发复用线路与所述第二差分换能器相连,所述第五信号发射模块包括第五信号发射电路和第五升压电路;所述第五信号发射电路用于产生第五激励信号,所述第五升压电路用于升高所述第五激励信号的电压并输出第五升压信号;
所述第六信号发射模块通过所述第六收发复用线路与所述第二差分换能器相连,所述第六信号发射模块包括第六信号发射电路和第六升压电路;所述第六信号发射电路用于产生第六激励信号,所述第六激励信号与所述第五激励信号的振幅相同、相位 相反;所述第六升压电路用于升高所述第六激励信号的电压并输出第六升压信号;
所述第二差分换能器还用于将所述第五升压信号和所述第六升压信号转换为第四超声波信号;
所述第五信号接收模块通过所述第三收发复用线路与所述第一差分换能器相连,所述第五信号接收模块包括第五保护电路和第五信号接收电路;所述第六信号接收模块通过所述第四收发复用线路与所述第一差分换能器相连,所述第六信号接收模块包括第六保护电路和第六信号接收电路;所述第一差分换能器还用于将所述第四超声波信号转换为第五回波信号和第六回波信号,所述第五回波信号经过所述第五保护电路输出至所述第五信号接收电路,所述第六回波信号经过所述第六保护电路输出至所述第六信号接收电路;
所述第三保护电路用于防止所述第五升压信号损坏所述第三信号接收电路;所述第四保护电路用于防止所述第六升压信号损坏所述第四信号接收电路;所述第五保护电路用于防止所述第三升压信号损坏所述第五信号接收电路;所述第六保护电路用于防止所述第四升压信号损坏所述第六信号接收电路。
其中,所述第三升压信号与所述第四升压信号为差分信号,所述第五升压信号与所述第六升压信号为差分信号;由于差分信号的信号量是相应的单端信号的二倍,因此所述超声波流量计中采用差分信号对换能器进行激励,可以更好地适应超声波信号在某些流体中传播时衰减严重的问题,并且所述超声波流量计可以实现将激励信号的电压升高到理想水平,以达到预设的流量测量精度,同时节约成本。
可选地,所述超声波流量计进一步包括第二处理器;所述第二处理器分别与所述第三信号发射电路、所述第三信号接收电路、所述第四信号发射电路、所述第四信号接收电路、所述第五信号发射电路、所述第五信号接收电路、所述第六信号发射电路和所述第六信号接收电路相连;
所述第二处理器用于控制所述第三信号发射电路和所述第四信号发射电路在第三时刻分别产生所述第三激励信号和所述第四激励信号,所述第五信号发射电路和所述第六信号发射电路在第四时刻分别产生所述第五激励信号和所述第六激励信号;获取所述第三超声波信号从所述第一差分换能器传输至所述第二差分换能器的第二顺流时间,所述第四超声波信号从所述第二差分换能器传输至所述第一差分换能器的第二逆流时间;以及根据所述第二顺流时间和所述第二逆流时间,计算得到所述流道内流体的流量信息。
可选地,所述第三信号发射模块还包括第三匹配电路,所述第四信号发射模块还包括第四匹配电路,所述第五信号发射模块还包括第五匹配电路,所述第六信号发射模块还包括第六匹配电路;
所述第三匹配电路用于实现所述第三信号发射模块与所述第一差分换能器之间的阻抗匹配,所述第四匹配电路用于实现所述第四信号发射模块与所述第一差分换能器之间的阻抗匹配,所述第五匹配电路用于实现所述第五信号发射模块与所述第二差分换能器之间的阻抗匹配,所述第六匹配电路用于实现所述第六信号发射模块与所述第二差分换能器之间的阻抗匹配。
可选地,所述第三升压电路包括第三DC-DC升压转换器和第三高压电平转换器;所述第三DC-DC升压转换器的输入端连接至直流电源,输出端连接至所述第三高压电 平转换器;所述第三高压电平转换器的输入端连接至所述第三信号发射电路,并从输出端输出所述第三升压信号。
可选地,所述第三DC-DC升压转换器或所述第三高压电平转换器为低静态功耗的器件。
可选地,所述第三DC-DC升压转换器的型号为TPS61080、TPS61096A、TLV61046A或TLV61048DBVT,所述第三高压电平转换器的型号为CD40109B、ADP3654或ADP3630。
可选地,所述第四升压电路、所述第五升压电路或所述第六升压电路与所述第三升压电路相同。
可选地,所述第三保护电路、所述第四保护电路、所述第五保护电路或所述第六保护电路为NMOS管保护电路或双二极管钳位保护电路。
可选地,所述第一差分换能器和所述第二差分换能器设置在所述流道的同一侧面上;
所述第一差分换能器发射的所述第三超声波信号经所述流道的相对侧面反射后传输至所述第二差分换能器,所述第二差分换能器发射的所述第四超声波信号经所述流道的相对侧面反射后传输至所述第一差分换能器。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元器件表示为基本相同的元器件,除非有特别申明,附图中的图不构成比例限制。
图1为现有技术中超声波流量计的结构示意图;
图2为本申请实施例提供的一种基于单端架构的超声波流量计的结构示意图;
图3为本申请实施例提供的另一种基于单端架构的超声波流量计的结构示意图;
图4为本申请实施例提供的一种第一升压电路的结构示意图;
图5为现有技术中放大电路在一个周期内的电流消耗示意图;
图6为本申请实施例提供的一种低静态功耗的第一升压电路在一个周期内的电流消耗示意图;
图7为本申请实施例提供的一种NMOS管保护电路的结构示意图;
图8为本申请实施例提供的一种双二极管钳位保护电路的结构示意图;
图9为本申请实施例提供的一种基于差分架构的超声波流量计的结构示意图;
图10为本申请实施例提供的另一种基于差分架构的超声波流量计的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。
另外,“第一”、“第二”、“第三”等术语仅用于区别类似的对象,而不能理解为指示或暗示相对重要性,或者隐含指明所指示的技术特征的数量。由此,限定 有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。
如图2所示,为本申请实施例提供的一种基于单端架构的超声波流量计的结构示意图,用于测量流道10内流体的流量信息。其中,第一单端换能器101和第二单端换能器102设置在流道10上;具体的,第一单端换能器101和第二单端换能器102可以贴合在流道10的外部,也可以部分插进流道10的内部,本申请实施例对此不作限定。第一单端换能器101和第二单端换能器102均为收发一体的超声波换能器,可以实现电信号与超声波信号之间的双向转换。
第一信号发射模块20通过第一收发复用线路40与第一单端换能器101相连;第一信号发射模块20包括第一信号发射电路201和第一升压电路202,并且第一信号发射电路201与第一升压电路202相连;具体的,第一信号发射电路201可以产生第一激励信号,第一升压电路202可以升高第一激励信号的电压并输出第一升压信号,第一单端换能器101可以将第一升压信号转换为第一超声波信号。
第一信号接收模块60通过第二收发复用线路70与第二单端换能器102相连;第一信号接收模块60包括第一保护电路602和第一信号接收电路601,并且第一保护电路602与第一信号接收电路601相连;具体的,第一超声波信号可以通过流道10从第一单端换能器101传输至第二单端换能器102,第二单端换能器102可以将第一超声波信号转换为第一回波信号,第一回波信号可以经过第一保护电路602输出至第一信号接收电路601。
第二信号发射模块50通过第二收发复用线路70与第二单端换能器102相连;第二信号发射模块50包括第二信号发射电路501和第二升压电路502,并且第二信号发射电路501与第二升压电路502相连;具体的,第二信号发射电路501可以产生第二激励信号,第二升压电路502可以升高第二激励信号的电压并输出第二升压信号,第二单端换能器102还可以将第二升压信号转换为第二超声波信号。
第二信号接收模块30通过第一收发复用线路40与第一单端换能器101相连;第二信号接收模块30包括第二保护电路302和第二信号接收电路301,并且第二保护电路302与第二信号接收电路301相连;具体的,第二超声波信号可以通过流道10从第二单端换能器102传输至第一单端换能器101,第一单端换能器101还可以将第二超声波信号转换为第二回波信号,第二回波信号可以经过第二保护电路302输出至第二信号接收电路301。
第一保护电路602可以防止第二升压信号损坏第一信号接收电路601,第二保护电路302可以防止第一升压信号损坏第二信号接收电路301;具体的,第一信号接收电路601和第二信号接收电路301可以包括:放大电路、带通滤波电路、可变增益调节电路以及A/D采样电路等。
利用第一升压电路202和第二升压电路502分别对第一激励信号和第二激励信号的电压进行升高,可以避免因超声波信号在某些流体中传播时衰减严重而导致流量测量结果不准确。由于第一升压信号和第二升压信号的电压值较高,若直接流入同端的第二信号接收电路301或第一信号接收电路601,容易对第二信号接收电路301和第一信号接收电路601造成损坏,所以分别设置第二保护电路302和第一保护电路602,以防止这种损坏情况的发生;并且,因为第一单端换能器101将第一升压信号转换为 第一超声波信号后,第一超声波信号可以通过流道10从第一单端换能器101传输至第二单端换能器102,在此过程中,第一超声波信号会发生一定程度的衰减,衰减后的第一超声波信号可以被第二单端换能器102转换为第一回波信号,所以第一回波信号的电压值较低,可以经过第一保护电路602输出至第一信号接收电路601;同理,第二回波信号也可以经过第二保护电路302输出至第二信号接收电路301。
第一处理器80分别与第一信号发射电路201、第一信号接收电路601、第二信号发射电路501和第二信号接收电路301相连。
第一处理器80可以控制第一信号发射电路201在第一时刻产生第一激励信号,以及控制第二信号发射电路501在第二时刻产生第二激励信号;并且,可以获取第一超声波信号从第一单端换能器101传输至第二单端换能器102的第一顺流时间,以及第二超声波信号从第二单端换能器102传输至第一单端换能器101的第一逆流时间;最后,可以根据第一顺流时间和第一逆流时间计算得到流道10内流体的流量信息。
具体的,根据第一顺流时间和第一逆流时间计算得到流道10内流体的流量信息可以包括以下步骤:
计算第一顺流时间与第一逆流时间的时间差;
结合第一顺流时间与第一逆流时间的时间差、第一超声波信号和第二超声波信号的传播方向与流体的流动方向之间的夹角以及超声波在零流量情况下的传播速度得到待测流体的流速;
结合待测流体的流速以及流道自身的管道参数(如横截面积),即可获得待测流体的流量信息。
本申请实施例提供的基于单端架构的超声波流量计可以采用分时方式进行流量测量,即先后采集超声波信号在顺流状态下的飞行时间(记为第一顺流时间)和在逆流状态下的飞行时间(记为第一逆流时间);下面结合图2对分时的流量测量方式进行示例性说明:
第一处理器80控制第一信号发射电路201在第一时刻产生第一激励信号;第一升压电路202升高第一激励信号的电压并输出第一升压信号;第一单端换能器101将第一升压信号转换为第一超声波信号;第一超声波信号从第一单端换能器101传输至第二单端换能器102,并被第二单端换能器102转换为第一回波信号;第一回波信号经过第一保护电路602输出至第一信号接收电路601;第一处理器80获取第一超声波信号从第一单端换能器101传输至第二单端换能器102的第一顺流时间;
第一处理器80控制第二信号发射电路501在第二时刻产生第二激励信号;第二升压电路502升高第二激励信号的电压并输出第二升压信号;第二单端换能器102将第二升压信号转换为第二超声波信号;第二超声波信号从第二单端换能器102传输至第一单端换能器101,并被第一单端换能器101转换为第二回波信号;第二回波信号经过第二保护电路302输出至第二信号接收电路301;第一处理器80获取第二超声波信号从第二单端换能器102传输至第一单端换能器101的第一逆流时间;
第一处理器80根据第一顺流时间和第一逆流时间计算得到流道10内流体的流量信息。
本申请实施例提供的基于单端架构的超声波流量计可以将激励信号的电压升高到目标水平,以适应超声波信号在某些流体中传播时衰减严重的情况,从而提高流量 测量结果的准确度;并且,通过设置多路一体式的信号发射模块和信号接收模块,可以避免采用高压的MUX电路,相比之下能够有效降低成本。
具体的,应该根据实际的测量情况,使第一时刻与第二时刻之间具有合适的时间间隔;若时间间隔过长,会导致因测量过程中流体的流量发生变化而造成流量测量结果不准确;若时间间隔过短,则容易导致第一超声波信号与第二超声波信号之间发生串扰,无法准确地测得第一顺流时间与第一逆流时间的时间差,影响流量测量结果的准确性。
另外,第一处理器80还可以对第一激励信号和第二激励信号的频率、个数等进行设置。
需要说明的是,流量信息的计算方式不限于此,也可以将第一超声波信号和第二超声波信号作为输入,通过互相关算法或者TDC技术来计算第一顺流时间与第一逆流时间的时间差,而后利用第一顺流时间、第一逆流时间、第一顺流时间与第一逆流时间的时间差、第一超声波信号和第二超声波信号的传播方向与流体的流动方向之间的夹角以及管道参数来计算流体的流量信息。
如图3所示,为本申请实施例提供的另一种基于单端架构的超声波流量计的结构示意图;具体的,第一信号发射模块20还包括第一匹配电路203,第二信号发射模块50还包括第二匹配电路503;第一匹配电路203和第二匹配电路503分别与第一升压电路202和第二升压电路503的输出端相连;第一匹配电路203可以实现第一信号发射模块20与第一单端换能器101之间的阻抗匹配,第二匹配电路503可以实现第二信号发射模块50与第二单端换能器102之间的阻抗匹配。
设置第一匹配电路203和第二匹配电路503,可以使得第一信号发射模块20输出的第一升压信号和第二信号发射模块50输出的第二升压信号分别有效传输至第一单端换能器101和第二单端换能器102,减少因信号反射而造成的损耗;另外,通过对第一匹配电路203进行设计,可以使得第一信号发射模块20的阻抗尽可能地与第一单端换能器101的阻抗匹配,并且尽可能地与同端的第二信号接收模块30的阻抗不相匹配,从而使第一升压信号基本无法流入同端的第二信号接收模块30,而是传输至第一单端换能器101;同理,通过对第二匹配电路503进行设计,也可以使得第二升压信号尽可能地传输至第二单端换能器102,而不流入同端的第一信号接收模块60,最终由正确的接收模块接收到对应的回波信号。
因此,本申请实施例中的基于单端架构的超声波流量计在不采用MUX电路的情况下,不仅不会限制电压升高的水平,而且基本可以使得激励信号和回波信号流入正确的收发通路。
本申请实施例中,第一升压电路202和第二升压电路502可以为高压电平转换电路;具体的,如图4所示,第一升压电路202包括第一DC-DC升压转换器2021和第一高压电平转换器2022;第一DC-DC升压转换器2021的输入端连接至直流电源,输出端连接至第一高压电平转换器2022;第一高压电平转换器2022的输入端连接至第一信号发射电路201,并从输出端输出第一升压信号。
第一DC-DC升压转换器2021可以将低压的直流电源转化为高压输出,并提供给第一高压电平转换器2022,第一高压电平转换器2022可以对第一信号发射电路201产生的第一激励信号的电压进行升高,并输出第一升压信号。
第一DC-DC升压转换器2021和第一高压电平转换器2022可以为低静态功耗的器件;具体的,第一DC-DC升压转换器2021的型号可以为TPS61080、TPS61096A、TLV61046A或TLV61048DBVT,第一高压电平转换器2022的型号可以为CD40109B、ADP3654或ADP3630。
现有的超声波流量计为了提高测量精度,通常增设放大电路对信号的电压进行放大,导致超声波流量计系统的整体功耗明显增加;因此,本申请实施例提供了一种低静态功耗的升压电路对信号的电压进行升高,同时能够降低超声波流量计系统在一个工作周期内的平均功耗。具体的,通过对比图5所示的现有技术中放大电路在一个周期内的电流消耗示意图,以及图6所示的本申请实施例提供的一种低静态功耗的第一升压电路在一个周期内的电流消耗示意图,可以看到,由于现有技术中放大电路的功耗较高,为了节约功耗,通常是在需要对激励信号的电压进行升高时将放大电路接通,不需要时断开,但是因为在放大电路接通的瞬间会产生冲击电流,并由此产生瞬时高功耗,所以会导致现有技术中的放大电路在一个周期内的平均功耗较高;而本申请实施例提供的低静态功耗的第一升压电路在整个周期内都处于接通状态,避免了瞬时高功耗的产生,并且由于其在静态模式下的超低静态电流,使其在不需要对第一激励信号的电压进行升高的静态模式下也可以保持较低的功耗,进而使得在一个周期内的平均功耗也较低。
本申请实施例中,第二升压电路502可以与图4所示的第一升压电路202相同,即包括第二DC-DC升压转换器和第二高压电平转换器;其中,第二DC-DC升压转换器的输入端连接至直流电源,输出端连接至第二高压电平转换器;第二高压电平转换器的输入端与第二信号发射电路的输出端相连,并输出第二升压信号;并且,第二DC-DC升压转换器和第二高压电平转换器可以为低静态功耗的器件;具体的,第二DC-DC升压转换器的型号可以为TPS61080、TPS61096A、TLV61046A或TLV61048DBVT,第二高压电平转换器的型号可以为CD40109B、ADP3654或ADP3630。
本申请实施例中,第一保护电路602可以为图7所示的NMOS管保护电路或图8所示的双二极管钳位保护电路。
如图7所示,第一保护电路602可以为NMOS管保护电路;将NMOS管6021的栅极与直流电源相连,源极与第一信号接收电路601的接收端相连,漏极通过第二收发复用线路与第二单端换能器102相连;当接收到的信号电压高于直流电源的电压时,NMOS管6021截止,该信号无法经过NMOS管6021输出至第一信号接收电路601;当接收到的信号电压低于直流电源的电压时,NMOS管6021导通,该信号可以经过NMOS管6021并输出至第一信号接收电路601。
由此,通过为上述直流电源设置一个合适的电压值,可以使得第二信号发射模块50输出的第二升压信号因电压值高于该直流电源的电压值,而导致NMOS管6021截止,所以无法流入同端的第一信号接收模块60,而是传输至第二单端换能器102;并且,可以使得第一回波信号因电压值低于该直流电源的电压值,而使NMOS管6021导通,所以不会影响第一信号接收电路601正常接收第一回波信号。
本申请实施例中,第二保护电路302可以与图7所示的NMOS管保护电路相同,同理,可以使得第一信号发射模块20输出的第一升压信号无法流入同端的第二信号接收模块30,而是传输至第一单端换能器101,并且不会影响第二信号接收电路601正 常接收第二回波信号,从而使第一激励信号、第二激励信号、第一回波信号和第二回波信号流入正确的收发通路,避免信号的损耗。
如图8所示,第一保护电路602也可以为双二极管钳位保护电路,其中,二极管6022的P极接地,二极管6023的N极连接至直流电源。当流入第一保护电路602的信号其电压值在-UD到UD+VCC(UD为二极管6022和二极管6023的导通电压,VCC为与二极管6023的N极相连的直流电源的电压)范围内时,可以输出至第一信号接收电路601;而当其电压值低于-UD或者高于UD+VCC时,则无法输出至第一信号接收电路601。
因此,可以防止第二信号发射模块50输出的第二升压信号流入同端的第一信号接收电路601,避免了由于第二升压信号的电压值过高而损坏第一信号接收电路601,并且不影响第一信号接收电路601正常接收第一回波信号。
本申请实施例中,第二保护电路302可以与图8所示的双二极管钳位保护电路相同,同理,可以防止第一信号发射模块20输出的第一升压信号因电压值过高,而损坏第二信号接收电路301,并且不影响第二信号接收电路301正常接收第二回波信号。
本申请实施例中,第一单端换能器101和第二单端换能器102可以设置在流道10的同一侧面上;第一单端换能器101发射的第一超声波信号可以经流道10的相对侧面反射后传输至第二单端换能器102,第二单端换能器102发射的第二超声波信号也可以经流道10的相对侧面反射后传输至第一单端换能器101。
第一超声波信号和第二超声波信号经流道10的侧面反射而形成V字型的传输路径,相比于不利用反射方式的传播路径更长,从而增加了超声波信号在第一单端换能器101和第二单端换能器102之间传输的时间;尤其,当流道10为小型管道时,延长超声波信号的传播路径,可以避免第一超声波信号与第二超声波信号发生串扰,有利于准确地测量第一顺流时间与第一逆流时间的时间差,进而准确地计算出流道10内流体的流量信息。
本申请实施例还提供一种基于差分架构的超声波流量计,用于测量流道10内流体的流量信息。
如图9所示,为本申请实施例提供的一种基于差分架构的超声波流量计的结构示意图。其中,第一差分换能器103和第二差分换能器104设置在流道10上;具体的,第一差分换能器103和第二差分换能器104可以贴合在流道10的外部,也可以部分插进流道10的内部,本申请实施例对此不作限定。第一差分换能器103和第二差分换能器104均为收发一体的超声波换能器,即可以实现电信号与超声波信号之间的双向转换。
第三信号发射模块21通过第三收发复用线路41与第一差分换能器103相连;第三信号发射模块21包括第三信号发射电路211和第三升压电路212,并且第三信号发射电路211与第三升压电路212相连;具体的,第三信号发射电路211可以产生第三激励信号;第三升压电路212可以升高第三激励信号的电压并输出第三升压信号。
第四信号发射模块22通过第四收发复用线路42与第一差分换能器103相连;第四信号发射模块22包括第四信号发射电路221和第四升压电路222,并且第四信号发射电路221与第四升压电路222相连;具体的,第四信号发射电路221可以产生第四激励信号,第四激励信号与第三激励信号的振幅相同、相位相反,第四升压电路222 可以升高第四激励信号的电压并输出第四升压信号;第一差分换能器103可以将第三升压信号和第四升压信号转换为第三超声波信号。
第三信号接收模块61通过第五收发复用线路71与第二差分换能器104相连,第三信号接收模块61包括第三保护电路612和第三信号接收电路611,并且第三保护电路612与第三信号接收电路611相连;第四信号接收模块62通过第六收发复用线路72与第二差分换能器104相连,第四信号接收模块62包括第四保护电路622和第四信号接收电路621,并且第四保护电路622与第四信号接收电路621相连;第二差分换能器104可以将第三超声波信号转换为第三回波信号和第四回波信号,第三回波信号可以经过第三保护电路612输出至第三信号接收电路611,第四回波信号可以经过第四保护电路622输出至第四信号接收电路621。
第五信号发射模块51通过第五收发复用线路71与第二差分换能器104相连,第五信号发射模块51包括第五信号发射电路511和第五升压电路512,并且第五信号发射电路511与第五升压电路512相连;第五信号发射电路511可以产生第五激励信号,第五升压电路512可以升高第五激励信号的电压并输出第五升压信号。
第六信号发射模块52通过第六收发复用线路72与第二差分换能器104相连,第六信号发射模块52包括第六信号发射电路521和第六升压电路522,并且第六信号发射电路521与第六升压电路522相连;第六信号发射电路521可以产生第六激励信号,第六激励信号与第五激励信号的振幅相同、相位相反;第六升压电路522可以升高第六激励信号的电压并输出第六升压信号;第二差分换能器104还可以将第五升压信号和第六升压信号转换为第四超声波信号。
第五信号接收模块31通过第三收发复用线路41与第一差分换能器103相连,第五信号接收模块31包括第五保护电路312和第五信号接收电路311,并且第五保护电路312与第五信号接收电路311相连;第六信号接收模块32通过第四收发复用线路42与第一差分换能器103相连,第六信号接收模块32包括第六保护电路322和第六信号接收电路321,并且第六保护电路322与第六信号接收电路321相连;第一差分换能器103还可以将第四超声波信号转换为第五回波信号和第六回波信号,第五回波信号可以经过第五保护电路312输出至第五信号接收电路311,第六回波信号可以经过第六保护电路322输出至第六信号接收电路321。
第三保护电路612可以防止第五升压信号损坏第三信号接收电路611;第四保护电路622可以防止第六升压信号损坏第四信号接收电路621;第五保护电路312可以防止第三升压信号损坏第五信号接收电路311;第六保护电路322可以防止第四升压信号损坏第六信号接收电路321。
其中,第三信号发射电路211、第四信号发射电路221、第五信号发射电路511、第六信号发射电路521、第三信号接收电路611、第四信号接收电路621、第五信号接收电路311和第六信号接收电路321可以集成为一个信号收发单元,并共同采用一个电源进行供电;第三保护电路612、第四保护电路622、第五保护电路312和第六保护电路322可以集成为一个保护单元,并共同采用一个电源进行供电;第三升压电路212、第四升压电路222、第五升压电路512和第六升压电路522可以集成为一个升压单元,并共同采用一个电源进行供电。
本申请实施例提供的基于差分架构的超声波流量计将激励信号的电压进行了升 高,并且其传输至换能器的信号量是基于单端架构的超声波流量计的二倍,所以能够更好地适应超声波信号在某些流体中传播时衰减严重的情况,进一步提高流量测量结果的准确度;由于上述信号收发单元、保护单元和升压单元各自采用一个电源进行供电,因此相比基于单端架构的超声波流量计不会增加过多的功耗;另外,尽管设置有多组信号发射模块和信号接收模块,但通过将各个模块进行集成设计,仍然能够保证较低的成本。
第二处理器81分别与第三信号发射电路211、第三信号接收电路611、第四信号发射电路221、第四信号接收电路621、第五信号发射电路511、第五信号接收电路311、第六信号发射电路521和第六信号接收电路321相连。
第二处理器81可以控制第三信号发射电路211和第四信号发射电路221在第三时刻分别产生第三激励信号和第四激励信号、第五信号发射电路511和第六信号发射电路521在第四时刻分别产生第五激励信号和第六激励信号;还可以获取第三超声波信号从第一差分换能器103传输至第二差分换能器104的第二顺流时间,以及第四超声波信号从第二差分换能器104传输至第一差分换能器103的第二逆流时间;最后,可以根据第二顺流时间和第二逆流时间计算得到流道10内流体的流量信息。
具体的,根据第二顺流时间和第二逆流时间计算得到流道10内流体的流量信息可以包括以下步骤:
计算第二顺流时间与第二逆流时间的时间差;
结合第二顺流时间与第二逆流时间的时间差、第三超声波信号和第四超声波信号的传播方向与流体的流动方向之间的夹角以及超声波在零流量情况下的传播速度得到待测流体的流速;
结合待测流体的流速以及流道自身的管道参数(如横截面积),即可获得待测流体的流量信息。
本申请实施例提供的基于差分架构的超声波流量计可以采用分时方式进行测量,即先后采集超声波信号在顺流状态下的飞行时间(记为第二顺流时间)和在逆流状态下的飞行时间(记为第二逆流时间);下面结合图9对分时的流量测量方式进行示例性说明:
第二处理器81控制第三信号发射电路211和第四信号发射电路221在第三时刻分别产生第三激励信号和第四激励信号,第四激励信号与第三激励信号的振幅相同、相位相反;第三升压电路212升高第三激励信号的电压并输出第三升压信号,第四升压电路222升高第四激励信号的电压并输出第四升压信号;第一差分换能器103将第三升压信号和第四升压信号转换为第三超声波信号;第三超声波信号从第一差分换能器103传输至第二差分换能器104,并被第二差分换能器104转换为第三回波信号和第四回波信号;第三回波信号经过第三保护电路612输出至第三信号接收电路611,第四回波信号经过第四保护电路622输出至第四信号接收电路621;第二处理器81获取第三超声波信号从第一差分换能器103传输至第二差分换能器104的第二顺流时间;
第二处理器81控制第五信号发射电路511和第六信号发射电路521在第四时刻分别产生第五激励信号和第六激励信号,第六激励信号与第五激励信号的振幅相同、相位相反;第五升压电路512升高第五激励信号的电压并输出第五升压信号,第六升压电路522升高第六激励信号的电压并输出第六升压信号;第二差分换能器104将第 五升压信号和第六升压信号转换为第四超声波信号;第四超声波信号从第二差分换能器104传输至第一差分换能器103,并被第一差分换能器103转换为第五回波信号和第六回波信号;第五回波信号经过第五保护电路312输出至第五信号接收电路311,第六回波信号经过第六保护电路322输出至第六信号接收电路321;第二处理器81获取第四超声波信号从第二差分换能器104传输至第一差分换能器103的第二逆流时间;
第二处理器81根据第二顺流时间和第二逆流时间计算得到流道10内流体的流量信息。
本申请实施例提供的基于差分架构的超声波流量计可以将激励信号的电压升高到目标水平,以适应超声波信号在某些流体中传播时衰减严重的情况,从而提高流量测量结果的准确度;并且,通过增加多组信号发射模块和信号接收模块,而避免采用高压的MUX电路,相比之下能够有效降低成本,也能够进一步增加传输至换能器的信号的信号量。
具体的,应该根据实际的测量情况,使第三时刻与第四时刻之间具有合适的时间间隔;若时间间隔过长,会导致因测量过程中流体的流量发生变化而造成流量测量结果不准确;若时间间隔过短,则容易导致第三超声波信号与第四超声波信号之间发生串扰,从而影响流量测量结果的准确性。
另外,第二处理器81还可以对第三激励信号、第四激励信号、第五激励信号和第六激励信号的频率、个数等进行设置。
需要说明的是,流量信息的计算方式不限于此,也可以将第三超声波信号和第四超声波信号作为输入,通过互相关算法或者TDC技术来计算第二顺流时间与第二逆流时间的时间差,而后利用第二顺流时间、第二逆流时间、第二顺流时间与第二逆流时间的时间差、第三超声波信号和第四超声波信号的传播方向与流体的流动方向之间的夹角以及管道参数来计算流体的流量信息。
如图10所示,为本申请实施例提供的另一种基于差分架构的超声波流量计的结构示意图;具体的,第三信号发射模块21还包括第三匹配电路213,第四信号发射模块22还包括第四匹配电路223,第五信号发射模块51还包括第五匹配电路513,第六信号发射模块52还包括第六匹配电路523;第三匹配电路213、第四匹配电路223、第五匹配电路513和第六匹配电路523分别与第三升压电路212、第四升压电路222、第五升压电路512和第六升压电路522的输出端相连;第三匹配电路213可以实现第三信号发射模块21与第一差分换能器103之间的阻抗匹配,第四匹配电路223可以实现第四信号发射模块22与第一差分换能器103之间的阻抗匹配,第五匹配电路513可以实现第五信号发射模块51与第二差分换能器104之间的阻抗匹配,第六匹配电路523可以实现第六信号发射模块52与第二差分换能器104之间的阻抗匹配。
类似于图3所示的第一匹配电路203和第二匹配电路503,本申请实施例中通过设置第三匹配电路213、第四匹配电路223、第五匹配电路513和第六匹配电路523,可以有效减少因第三升压信号、第四升压信号、第五升压信号或第六升压信号反射或流入同端的接收模块而造成的损耗。
本申请实施例中,第三升压电路212可以与图4所示的第一升压电路202相同,即包括第三DC-DC升压转换器和第三高压电平转换器;其中,第三DC-DC升压转换器的输入端连接至直流电源,输出端连接至第三高压电平转换器,第三高压电平转换 器的输入端连接至第三信号发射电路,并从输出端输出第三升压信号;并且,第三DC-DC升压转换器和第三高压电平转换器可以为低静态功耗的器件,以实现在一个周期内的平均功耗较低;具体的,第三DC-DC升压转换器的型号可以为TPS61080、TPS61096A、TLV61046A或TLV61048DBVT,第三高压电平转换器的型号可以为CD40109B、ADP3654或ADP3630。
本申请实施例中,第四升压电路222、第五升压电路512和第六升压电路522可以与第三升压电路212相同,因此其详细描述可被省略。
采用低静态功耗的升压电路对信号的电压进行升高,能够降低超声波流量计系统在一个工作周期内的平均功耗。
本申请实施例中,第三保护电路612、第四保护电路622、第五保护电路312和第六保护电路322可以为图7所示的NMOS管保护电路或图8所示的双二极管钳位保护电路,并且其连接方式和达到的技术效果基本相同,此处不再赘述。
本申请实施例中,第一差分换能器103和第二差分换能器104设置在流道10的同一侧面上;第一差分换能器103发射的第三超声波信号经流道10的相对侧面反射后传输至第二差分换能器104,第二差分换能器104发射的第四超声波信号经流道10的相对侧面反射后传输至第一差分换能器103。
第三超声波信号和第四超声波信号经流道10的侧面反射而形成V字型的传输路径,相比于不利用反射方式的传播路径更长,从而增加了超声波信号在第一差分换能器103和第二差分换能器104之间传输的时间;尤其,当流道10为小型管道时,延长超声波信号的传播路径,可以避免第三超声波信号与第四超声波信号发生串扰,有利于准确地测量第二顺流时间与第二逆流时间的时间差,进而准确地计算出流道10内流体的流量信息。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意地相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,本申请实施例中的具体实施方式仅是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落入本申请的保护范围。

Claims (18)

  1. 一种超声波流量计,用于测量流道内流体的流量信息,其特征在于,包括:第一单端换能器、第二单端换能器、第一信号发射模块、第一信号接收模块、第二信号发射模块、第二信号接收模块、第一收发复用线路以及第二收发复用线路;
    所述第一单端换能器和所述第二单端换能器设置在所述流道上;
    所述第一信号发射模块通过所述第一收发复用线路与所述第一单端换能器相连,所述第一信号发射模块包括第一信号发射电路和第一升压电路;所述第一信号发射电路用于产生第一激励信号,所述第一升压电路用于升高所述第一激励信号的电压并输出第一升压信号,所述第一单端换能器用于将所述第一升压信号转换为第一超声波信号;
    所述第一信号接收模块通过所述第二收发复用线路与所述第二单端换能器相连,所述第一信号接收模块包括第一保护电路和第一信号接收电路;所述第二单端换能器用于将所述第一超声波信号转换为第一回波信号,所述第一回波信号经过所述第一保护电路输出至所述第一信号接收电路;
    所述第二信号发射模块通过所述第二收发复用线路与所述第二单端换能器相连,所述第二信号发射模块包括第二信号发射电路和第二升压电路;所述第二信号发射电路用于产生第二激励信号,所述第二升压电路用于升高所述第二激励信号的电压并输出第二升压信号,所述第二单端换能器还用于将所述第二升压信号转换为第二超声波信号;
    所述第二信号接收模块通过所述第一收发复用线路与所述第一单端换能器相连,所述第二信号接收模块包括第二保护电路和第二信号接收电路;所述第一单端换能器还用于将所述第二超声波信号转换为第二回波信号,所述第二回波信号经过所述第二保护电路输出至所述第二信号接收电路;
    所述第一保护电路用于防止所述第二升压信号损坏所述第一信号接收电路;所述第二保护电路用于防止所述第一升压信号损坏所述第二信号接收电路。
  2. 根据权利要求1所述的超声波流量计,其特征在于,进一步包括:第一处理器;
    所述第一处理器分别与所述第一信号发射电路、所述第一信号接收电路、所述第二信号发射电路和所述第二信号接收电路相连;
    所述第一处理器用于控制所述第一信号发射电路在第一时刻产生所述第一激励信号,所述第二信号发射电路在第二时刻产生所述第二激励信号;获取所述第一超声波信号从所述第一单端换能器传输至所述第二单端换能器的第一顺流时间,所述第二超声波信号从所述第二单端换能器传输至所述第一单端换能器的第一逆流时间;以及根据所述第一顺流时间和所述第一逆流时间,计算得到所述流道内流体的流量信息。
  3. 根据权利要求1或2所述的超声波流量计,其特征在于,所述第一信号 发射模块还包括第一匹配电路,所述第二信号发射模块还包括第二匹配电路;
    所述第一匹配电路用于实现所述第一信号发射模块与所述第一单端换能器之间的阻抗匹配,所述第二匹配电路用于实现所述第二信号发射模块与所述第二单端换能器之间的阻抗匹配。
  4. 根据权利要求1或2所述的超声波流量计,其特征在于,所述第一升压电路包括第一DC-DC升压转换器和第一高压电平转换器;所述第一DC-DC升压转换器的输入端连接至直流电源,输出端连接至所述第一高压电平转换器;所述第一高压电平转换器的输入端连接至所述第一信号发射电路,并从输出端输出所述第一升压信号。
  5. 根据权利要求4所述的超声波流量计,其特征在于,所述第二升压电路包括第二DC-DC升压转换器和第二高压电平转换器;所述第二DC-DC升压转换器的输入端连接至直流电源,输出端连接至所述第二高压电平转换器;所述第二高压电平转换器的输入端连接至所述第二信号发射电路,并从输出端输出所述第二升压信号。
  6. 根据权利要求5所述的超声波流量计,其特征在于,所述第一DC-DC升压转换器、所述第二DC-DC升压转换器、所述第一高压电平转换器或所述第二高压电平转换器为低静态功耗的器件。
  7. 根据权利要求6所述的超声波流量计,其特征在于,所述第一DC-DC升压转换器或所述第二DC-DC升压转换器的型号为TPS61080、TPS61096A、TLV61046A或TLV61048DBVT,所述第一高压电平转换器或所述第二高压电平转换器的型号为CD40109B、ADP3654或ADP3630。
  8. 根据权利要求1或2所述的超声波流量计,其特征在于,所述第一保护电路或所述第二保护电路为NMOS管保护电路或双二极管钳位保护电路。
  9. 根据权利要求1或2所述的超声波流量计,其特征在于,所述第一单端换能器和所述第二单端换能器设置在所述流道的同一侧面上;
    所述第一单端换能器发射的所述第一超声波信号经所述流道的相对侧面反射后传输至所述第二单端换能器,所述第二单端换能器发射的所述第二超声波信号经所述流道的相对侧面反射后传输至所述第一单端换能器。
  10. 一种超声波流量计,用于测量流道内流体的流量信息,其特征在于,包括:第一差分换能器、第二差分换能器、第三信号发射模块、第三信号接收模块、第四信号发射模块、第四信号接收模块、第五信号发射模块、第五信号接收模块、第六信号发射模块、第六信号接收模块、第三收发复用线路、第四收发复用线路、第五收发复用线路以及第六收发复用线路;
    所述第一差分换能器和所述第二差分换能器设置在所述流道上;
    所述第三信号发射模块通过所述第三收发复用线路与所述第一差分换能器相连,所述第三信号发射模块包括第三信号发射电路和第三升压电路;所述第三信号发射电路用于产生第三激励信号,所述第三升压电路用于升高所述第三激励信号的电压并输出第三升压信号;
    所述第四信号发射模块通过所述第四收发复用线路与所述第一差分换能器相连,所述第四信号发射模块包括第四信号发射电路和第四升压电路;所述第四信号发射电路用于产生第四激励信号,所述第四激励信号与所述第三激励信号的振幅相同、相位相反;所述第四升压电路用于升高所述第四激励信号的电压并输出第四升压信号;
    所述第一差分换能器用于将所述第三升压信号和所述第四升压信号转换为第三超声波信号;
    所述第三信号接收模块通过所述第五收发复用线路与所述第二差分换能器相连,所述第三信号接收模块包括第三保护电路和第三信号接收电路;所述第四信号接收模块通过所述第六收发复用线路与所述第二差分换能器相连,所述第四信号接收模块包括第四保护电路和第四信号接收电路;所述第二差分换能器用于将所述第三超声波信号转换为第三回波信号和第四回波信号,所述第三回波信号经过所述第三保护电路输出至所述第三信号接收电路,所述第四回波信号经过所述第四保护电路输出至所述第四信号接收电路;
    所述第五信号发射模块通过所述第五收发复用线路与所述第二差分换能器相连,所述第五信号发射模块包括第五信号发射电路和第五升压电路;所述第五信号发射电路用于产生第五激励信号,所述第五升压电路用于升高所述第五激励信号的电压并输出第五升压信号;
    所述第六信号发射模块通过所述第六收发复用线路与所述第二差分换能器相连,所述第六信号发射模块包括第六信号发射电路和第六升压电路;所述第六信号发射电路用于产生第六激励信号,所述第六激励信号与所述第五激励信号的振幅相同、相位相反;所述第六升压电路用于升高所述第六激励信号的电压并输出第六升压信号;
    所述第二差分换能器还用于将所述第五升压信号和所述第六升压信号转换为第四超声波信号;
    所述第五信号接收模块通过所述第三收发复用线路与所述第一差分换能器相连,所述第五信号接收模块包括第五保护电路和第五信号接收电路;所述第六信号接收模块通过所述第四收发复用线路与所述第一差分换能器相连,所述第六信号接收模块包括第六保护电路和第六信号接收电路;所述第一差分换能器还用于将所述第四超声波信号转换为第五回波信号和第六回波信号,所述第五回波信号经过所述第五保护电路输出至所述第五信号接收电路,所述第六回波信号经过所述第六保护电路输出至所述第六信号接收电路;
    所述第三保护电路用于防止所述第五升压信号损坏所述第三信号接收电路;所述第四保护电路用于防止所述第六升压信号损坏所述第四信号接收电路;所述第五保护电路用于防止所述第三升压信号损坏所述第五信号接收电路;所述第六保护电路用于防止所述第四升压信号损坏所述第六信号接收电路。
  11. 根据权利要求10所述的超声波流量计,其特征在于,进一步包括:第二处理器;
    所述第二处理器分别与所述第三信号发射电路、所述第三信号接收电路、所述第四信号发射电路、所述第四信号接收电路、所述第五信号发射电路、所述第五信号接收电路、所述第六信号发射电路和所述第六信号接收电路相连;
    所述第二处理器用于控制所述第三信号发射电路和所述第四信号发射电路在第三时刻分别产生所述第三激励信号和所述第四激励信号,所述第五信号发射电路和所述第六信号发射电路在第四时刻分别产生所述第五激励信号和所述第六激励信号;获取所述第三超声波信号从所述第一差分换能器传输至所述第二差分换能器的第二顺流时间,所述第四超声波信号从所述第二差分换能器传输至所述第一差分换能器的第二逆流时间;以及根据所述第二顺流时间和所述第二逆流时间,计算得到所述流道内流体的流量信息。
  12. 根据权利要求10或11所述的超声波流量计,其特征在于,所述第三信号发射模块还包括第三匹配电路,所述第四信号发射模块还包括第四匹配电路,所述第五信号发射模块还包括第五匹配电路,所述第六信号发射模块还包括第六匹配电路;
    所述第三匹配电路用于实现所述第三信号发射模块与所述第一差分换能器之间的阻抗匹配,所述第四匹配电路用于实现所述第四信号发射模块与所述第一差分换能器之间的阻抗匹配,所述第五匹配电路用于实现所述第五信号发射模块与所述第二差分换能器之间的阻抗匹配,所述第六匹配电路用于实现所述第六信号发射模块与所述第二差分换能器之间的阻抗匹配。
  13. 根据权利要求10或11所述的超声波流量计,其特征在于,所述第三升压电路包括第三DC-DC升压转换器和第三高压电平转换器;所述第三DC-DC升压转换器的输入端连接至直流电源,输出端连接至所述第三高压电平转换器;所述第三高压电平转换器的输入端连接至所述第三信号发射电路,并从输出端输出所述第三升压信号。
  14. 根据权利要求13所述的超声波流量计,其特征在于,所述第三DC-DC升压转换器或所述第三高压电平转换器为低静态功耗的器件。
  15. 根据权利要求14所述的超声波流量计,其特征在于,所述第三DC-DC升压转换器的型号为TPS61080、TPS61096A、TLV61046A或TLV61048DBVT,所述第三高压电平转换器的型号为CD40109B、ADP3654或ADP3630。
  16. 根据权利要求13-15任一项所述的超声波流量计,其特征在于,所述第四升压电路、所述第五升压电路或所述第六升压电路与所述第三升压电路相同。
  17. 根据权利要求10或11所述的超声波流量计,其特征在于,所述第三保护电路、所述第四保护电路、所述第五保护电路或所述第六保护电路为NMOS管保护电路或双二极管钳位保护电路。
  18. 根据权利要求10或11所述的超声波流量计,其特征在于,所述第一差分换能器和所述第二差分换能器设置在所述流道的同一侧面上;
    所述第一差分换能器发射的所述第三超声波信号经所述流道的相对侧面反 射后传输至所述第二差分换能器,所述第二差分换能器发射的所述第四超声波信号经所述流道的相对侧面反射后传输至所述第一差分换能器。
PCT/CN2020/125961 2020-11-02 2020-11-02 超声波流量计 WO2022088189A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125961 WO2022088189A1 (zh) 2020-11-02 2020-11-02 超声波流量计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125961 WO2022088189A1 (zh) 2020-11-02 2020-11-02 超声波流量计

Publications (1)

Publication Number Publication Date
WO2022088189A1 true WO2022088189A1 (zh) 2022-05-05

Family

ID=81381723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125961 WO2022088189A1 (zh) 2020-11-02 2020-11-02 超声波流量计

Country Status (1)

Country Link
WO (1) WO2022088189A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144041A (zh) * 2022-06-30 2022-10-04 东北大学 一种多声道超声流量计系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088085A1 (fr) * 2004-03-11 2005-09-22 Total France Procede et dispositif de mesure en temps reel a l’aide de traceurs radioactifs de la consommation d’huile du systeme de separation d’huile moteur
CN105181046A (zh) * 2015-07-13 2015-12-23 浙江威星智能仪表股份有限公司 一种基于双核心架构的数字化超声波流量计系统及方法
CN105865551A (zh) * 2016-06-13 2016-08-17 江苏赛达电子科技有限公司 一种超声波流量传感器和流量检测方法
CN106546296A (zh) * 2017-01-13 2017-03-29 北京捷成世纪科技股份有限公司 一种能够减小零点误差和漂移的超声波流量测量电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088085A1 (fr) * 2004-03-11 2005-09-22 Total France Procede et dispositif de mesure en temps reel a l’aide de traceurs radioactifs de la consommation d’huile du systeme de separation d’huile moteur
CN105181046A (zh) * 2015-07-13 2015-12-23 浙江威星智能仪表股份有限公司 一种基于双核心架构的数字化超声波流量计系统及方法
CN105865551A (zh) * 2016-06-13 2016-08-17 江苏赛达电子科技有限公司 一种超声波流量传感器和流量检测方法
CN106546296A (zh) * 2017-01-13 2017-03-29 北京捷成世纪科技股份有限公司 一种能够减小零点误差和漂移的超声波流量测量电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144041A (zh) * 2022-06-30 2022-10-04 东北大学 一种多声道超声流量计系统

Similar Documents

Publication Publication Date Title
CN103090916B (zh) 一种超声波流量测量装置及其测量方法
CN107478282B (zh) 超声流量检测信号处理方法及装置、时差法超声检测系统
US9080906B2 (en) Ultrasonic flow meter with zero impedance measuring electronics
RU2000125676A (ru) Передающая и приемная схема для ультразвукового расходомера
CN109579950B (zh) 一种气体超声波流量计的防错波检测装置
CN110646042A (zh) 一种用于低功耗超声流量计飞行时间差计算的互相关插值方法
CN201795821U (zh) 超声波流量计
WO2022088189A1 (zh) 超声波流量计
CN106706053B (zh) 一种气体超声波流量计信号收发电路
CN112362119B (zh) 超声波流量计
JP2007187506A (ja) 超音波流量計
CN112649056A (zh) 一种超声波气体流量计量方法及装置
CN112903043A (zh) 一种多声道超声波流量计系统
CN114877959A (zh) 一种采用双频换能器的超声波流量计
CN102023038A (zh) 一种管道流量的超声波测量方法
WO2019047634A1 (zh) 一种直线距离上平均流体流速测量系统
CN210426646U (zh) 一种超声波流量装置
CN111812622B (zh) 一种基于透镜回波的超声探头带宽检测方法及系统
CN110346003B (zh) 一种气体超声波流量计信号激励与获取电路
CN108847827B (zh) 一种应用于超声波燃气表的连续可变增益放大电路
CN215261913U (zh) 一种回波获取电路、流量测量电路和计量仪表
CN104568036A (zh) 高精度低功耗超声流量计
CN116338240B (zh) 一种基于抛物线拟合的超声波液体流速测量方法及测量装置
CN117073810B (zh) 一种超声波流量计渡越时间测量精度检测修正方法及应用
CN116961629A (zh) 一种超声波放大控制电路及应用其的超声波仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959349

Country of ref document: EP

Kind code of ref document: A1