WO2022088032A1 - 一种辐射单元、天线阵列以及网络设备 - Google Patents

一种辐射单元、天线阵列以及网络设备 Download PDF

Info

Publication number
WO2022088032A1
WO2022088032A1 PCT/CN2020/125231 CN2020125231W WO2022088032A1 WO 2022088032 A1 WO2022088032 A1 WO 2022088032A1 CN 2020125231 W CN2020125231 W CN 2020125231W WO 2022088032 A1 WO2022088032 A1 WO 2022088032A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
vibrator
metal sheet
radiation unit
radiation
Prior art date
Application number
PCT/CN2020/125231
Other languages
English (en)
French (fr)
Inventor
包涵
覃芳军
薛狄
邵勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023526428A priority Critical patent/JP7551920B2/ja
Priority to CN202080106441.3A priority patent/CN116438714A/zh
Priority to PCT/CN2020/125231 priority patent/WO2022088032A1/zh
Priority to EP20959194.0A priority patent/EP4220858A4/en
Publication of WO2022088032A1 publication Critical patent/WO2022088032A1/zh
Priority to US18/302,009 priority patent/US20230261391A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • the present application relates to the field of communications, and in particular, to a radiation unit, an antenna array and a network device.
  • base station antennas In mobile communication, base station antennas usually use dual-polarized antennas to form polarization diversity to reduce signal attenuation caused by multipath fading.
  • the magnitude of polarization isolation represents the mutual interference degree of two mutually perpendicular polarized antennas, thus affecting the data throughput of the whole machine. Therefore, it is very important to improve the polarization isolation of the base station antenna.
  • the present application provides a radiation unit, an antenna array and a network device. It is used to improve the polarization self-isolation inside the vibrator in the antenna and improve the radiation performance of the antenna.
  • the present application provides a radiation unit, comprising: at least one vibrator and a reflector;
  • At least one vibrator is arranged on the surface of the reflective plate; each vibrator in the at least one vibrator includes a radiating surface, the radiating surface includes a plurality of metal sheets forming a ring, and at least two metal sheets in the at least one vibrator are covered with metal convex structures, The length of the metal raised structure is less than the length of the covered metal sheet.
  • a metal convex structure can be added to the metal sheet on the radiation surface of the vibrator, and the width of the metal arm or the radiation ratio can be changed, thereby changing the amplitude or phase of the polarization isolation vector of the vibrator, etc.
  • the change of the polarization isolation of the oscillator itself can improve the isolation of the polarization isolation of the oscillator.
  • the metal protruding structure covered on at least one vibrator is integrally formed. Therefore, the embodiments of the present application provide an arrangement manner of the metal protrusion structure.
  • the metal protruding structure covered on at least one vibrator is a metal patch. Therefore, the embodiment of the present application provides another arrangement manner of the metal protrusion structure.
  • At least one vibrator includes four ring structures composed of a plurality of metal sheets, and the four ring structures are opposite to each other. Therefore, in the embodiment of the present application, each vibrator may include four ring structures, thereby realizing a dual-polarized vibrator.
  • the four ring structures form two mutually perpendicular polarization directions, and the two polarization directions are not parallel to the metal sheets of the four ring structures, and the four ring structures include the first A ring structure and a second ring structure, the first metal sheet in the first ring structure and the second metal sheet in the second ring structure are provided with metal protrusion structures, the first metal sheet and the second metal sheet slices adjacent.
  • the vibrator can form ⁇ 45° polarization, there are gaps between the ring structures, and the gap can form a cross structure.
  • the polarization direction crosses the cross structure formed by the gap between the ring structures, it can be Set adjacent metal sheets in the vibrator with metal protrusion structures.
  • the metal sheet can be a metal protrusion structure that can be added to the metal sheet where the two radiating arms in one polarization direction are located, so as to change the polarization isolation vector The phase or amplitude of , so as to increase the polarization isolation.
  • the four annular structures form two mutually perpendicular polarization directions
  • the four annular structures include metal sheets parallel to the two polarization directions
  • the four annular structures include Three ring structures and a fourth ring structure
  • the third ring structure and the fourth ring structure are not adjacent to each other
  • the third metal sheet and the fourth metal sheet in the third ring structure are provided with metal protruding structures
  • the fifth metal sheet and the sixth metal sheet in the fourth annular structure are provided with metal protruding structures
  • the top angle formed by the third metal sheet and the fourth metal sheet is the same as the top angle formed by the fifth metal sheet and the sixth metal sheet relatively.
  • the vibrator can form ⁇ 45° polarization, there are gaps between the ring structures, and the gap can form a cross structure.
  • a metal convex structure can be set on the metal sheet corresponding to the top angle between the two ring structures in the vibrator, and the phase or amplitude of the polarization isolation vector can be changed, thereby increasing the polarization. role of isolation.
  • the length of the metal raised structure is in the range of 0.1-0.25 times the wavelength corresponding to the center frequency of the radiation unit, and the height of the metal raised structure is 1-2 times the thickness of the covered metal sheet times within the range. Therefore, in the embodiments of the present application, the added metal protrusion structure does not affect the size and structure of the vibrator, and improves the self-isolation of the vibrator on the basis of not affecting the radiation performance of the vibrator.
  • each vibrator further includes a feeding structure, and the four metal sheets included in each annular structure are connected to the reflection plate through the feeding structure, and the feeding structure is used for transmitting electrical signals.
  • a second aspect of the present application provides an antenna array, including: a reflector and at least two radiation units;
  • At least two radiation units are arranged on the reflective plate, and the at least two radiation units may include the radiation units in the first aspect or any optional embodiment of the first aspect.
  • the antenna may include a reflector and a plurality of radiation elements.
  • the reflector can be used to reflect electromagnetic waves.
  • the vibrator arm of each vibrator on the radiation unit is covered with a periodic structure.
  • the electromagnetic wave can be diffracted, so that the electromagnetic wave can be transmitted from one side of the vibrator to the opposite side, which reduces the change of the direction of the electromagnetic wave radiated to the vibrator and improves the radiation performance.
  • the at least two radiation units include a first radiation unit and a second radiation unit
  • the working frequency band of the first radiation unit is different from the working frequency band of the second radiation unit.
  • the antenna may include a first radiation unit and a second radiation unit, and the working frequency bands of the first radiation unit and the second radiation unit may be different, so that the antenna can simultaneously radiate electromagnetic waves of different frequency bands.
  • a third aspect of the present application provides a network device, where the network device may include the radiation unit in the foregoing first aspect or any optional implementation manner of the first aspect.
  • the radiation unit may include one or more vibrator arms and a support rod, the vibrator arms may be covered with a periodic structure, the periodic material is made of electromagnetic material, and the periodic structure has gaps.
  • the periodic structure can change at least one of the equivalent permittivity or the equivalent magnetic permeability of the vibrator for the transmitted electromagnetic waves, so that the electromagnetic waves radiated to the first surface of each vibrator are conducted to the second surface of each vibrator . Therefore, when the radiation unit provided by the embodiment of the present application receives electromagnetic waves radiated by other vibrators, the electromagnetic waves can be conducted normally by means of diffraction, thereby reducing the shielding of the radiated electromagnetic waves, thereby avoiding the shielding of the oscillators. The resulting distortion of the radiation direction can improve the radiation performance of the antenna.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a radiation unit provided by an embodiment of the present application.
  • FIG. 4 is another schematic structural diagram of a radiation unit provided by an embodiment of the present application.
  • FIG. 5A is another schematic structural diagram of a radiation unit provided by an embodiment of the present application.
  • FIG. 5B is another schematic structural diagram of a radiation unit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of a radiation unit provided by an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram of a radiation unit provided by an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a radiation unit provided by an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a radiation unit provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the present application provides a radiation unit, an antenna array and a network device. It is used to improve the polarization self-isolation inside the vibrator in the antenna and improve the radiation performance of the antenna.
  • the network device may be various devices with wireless reception or transmission functions.
  • the network equipment may be a base station or other equipment that needs to use an antenna, and so on. More specifically, the base station may be a macro base station, a micro base station, a hot spot (pico), a home base station (femeto), a transmission point (TP), a relay (Relay), an access point (Access Point, AP), etc. It may be a base station (eNodeB, eNB) in a long term evolution (long term evolution, LTE), a base station (gNodeB, gNB) in a new radio interface (New Radio, NR), and so on.
  • eNodeB, eNB in a long term evolution (long term evolution, LTE)
  • gNodeB, gNB base station in a new radio interface (New Radio, NR), and so on.
  • the network device can be applied to various wireless communication systems, for example, a base station (BS) in the global system for mobile communication (GSM), a wideband code division multiple access mobile communication system ( Wideband code division multiple access, WCDMA), LTE, NR, etc., can also be applied to future communication networks, such as 6G networks, 7G networks and other communication systems. More specifically, the network device can also be applied to low-latency and high-reliability communications (Ultra-Reliable and low latency communications, URLLC) in 5G, and can also support massive machine type communication (mMTC), and can also support mass machine type communication (mMTC). Applied to mobile broadband services (mobile broadband, MBB) and so on.
  • GSM global system for mobile communication
  • WCDMA Wideband code division multiple access
  • LTE long term evolution
  • NR NR
  • future communication networks such as 6G networks, 7G networks and other communication systems.
  • the network device can also be applied to low-latency and high-reliability communications (Ultra-Reliable and low late
  • FIG. 1 is a schematic diagram of an application scenario in an embodiment of the present application.
  • wireless data transmission is performed between the base station and the terminal.
  • the baseband module can convert the data to be transmitted into baseband signals, and then radiate the baseband signals through the antenna array of the radio frequency module.
  • the baseband module can also decode the signals received by the antenna to obtain digital signals.
  • Both the base station and the terminal may include a radio frequency module and a baseband module to implement data transmission between the base station and the terminal.
  • the terminal can send uplink signals through the radio frequency module, and can also receive downlink signals sent by the base station.
  • the network device provided by this application may include one or more antenna arrays, and one antenna array may include multiple radiating units.
  • the polarization isolation of the antenna greatly affects the data throughput of the antenna.
  • the antenna unit structure can improve the polarization isolation, but makes the antenna unit structure more complicated, increases the difficulty of processing and manufacturing, and increases the industrial cost. Therefore, the present application provides a radiation unit that improves the polarization isolation of the vibrator, which is less difficult to implement and has a lower industrial cost.
  • the antenna array provided by the present application may include one or more radiating elements.
  • the working frequency bands of each radiating element in the multiple radiating elements may be the same or different.
  • the plurality of radiation units may include two radiation units, and the operating frequency bands of the two radiation units may be the same or different.
  • the antenna array may further include a reflector, which may be used to radiate electromagnetic waves.
  • the plurality of radiation units may be arranged on the reflective plate. In other words, each radiation unit has a corresponding reflector, and each radiation unit is disposed on the corresponding reflector.
  • the antenna array may be an antenna array composed of 6 rows and 4 columns of high frequencies and 3 rows and 2 columns of low frequencies in which high frequencies and low frequencies coexist, and the high frequency vibrators may be arranged around the low frequency vibrators.
  • the structure of the antenna array may be as shown in FIG. 2 .
  • " ⁇ " can be expressed as a high-frequency dual-polarized antenna element
  • "+” can be expressed as a low-frequency dual-polarized antenna element.
  • the high-frequency oscillator and the low-frequency oscillator are closely arranged around the low-frequency oscillator.
  • the size of the antenna is related to the wavelength of the supported frequency band. The larger the wavelength, the larger the size of the antenna. Therefore, the size of the low-frequency antenna element may be larger than that of the high-frequency antenna element, and the low-frequency element may radiate to the high-frequency element.
  • the electromagnetic wave formed by the shielding will affect the radiation direction of the high-frequency vibrator, thereby affecting the radiation performance of the high-frequency vibrator.
  • the high frequency and the low frequency in this application are relative terms, and the frequency of the high frequency is greater than the frequency of the low frequency.
  • frequencies higher than the frequency threshold can be understood as high frequencies, and frequencies not higher than the frequency threshold can be understood as low frequencies.
  • 690MHz-960MHz can be understood as a low frequency band
  • 1700MHz-2700MHz can be understood as a high frequency band.
  • the ranges of high frequency and low frequency can be adjusted according to actual application scenarios, which are not limited here.
  • metal protrusions can be arranged in part of the metal sheet of the radiation surface of the vibrator, so that the metal arm of the radiation unit is locally widened, and the polarization isolation of the radiation unit is improved, thereby reducing the interference between the vibrators. , to improve the radiation performance of the antenna.
  • the radiation unit can be applied to the aforementioned network device or antenna array, and can improve the radiation performance of the network device or antenna array.
  • the radiation unit, the antenna array, the network equipment, etc. provided by the present application will be described separately below.
  • the radiation unit provided by the present application may include at least one vibrator and a reflection plate; the at least one vibrator is arranged on the surface of the reflection plate; each vibrator in the at least one vibrator includes a radiation surface, and the radiation surface includes a plurality of metal sheets forming a ring, the At least two metal sheets of at least one vibrator are covered with metal raised structures, the length of the metal raised structures is less than the length of the covered metal sheets, and the height of the raised metal raised structures is greater than zero.
  • a metal convex structure is added to the metal sheet on the radiating surface of the vibrator, so that the local change of the metal arm of the radiating unit changes the phase or amplitude of the vibrator that is derived from the isolation vector, such as Increase the amplitude of the source isolation vector, thereby improving the polarization self-isolation of the vibrator, improving the polarization self-isolation of the antenna, and improving the radiation performance of the antenna.
  • additional branches are loaded on the radiating surface of the oscillator, so that the radiating metal arm is locally widened, thereby changing the amplitude or phase of the polarization isolation vector of the oscillator, so that the magnitude of the polarization isolation of the oscillator can be improved, thereby Improve the polarization self-isolation of the oscillator.
  • Provide a dual-polarized antenna (base station antenna,) unit and its array self-isolation improvement technology by loading metal branches or trough structures on specific metal parts of the unit radiation surface, so as to achieve unit self-isolation and array self-isolation amount level improvement.
  • the metal sheet or the metal protrusion structure may be a structure composed of metal, or may be a structure obtained by covering a metal coating on a substrate, which may be adjusted according to actual application scenarios. And the length of the metal protrusion structure is not greater than the length of the metal sheet, so that the polarization self-isolation of the antenna is improved on the basis of maintaining the radiation performance of the antenna.
  • each radiation unit may include a plurality of ring-shaped metal structures, and the ring-shaped metal structures are disposed on the reflective plate.
  • the radiation surface of the radiation unit can be as shown in FIG. 3 , the radiation unit may include multiple radiation surfaces, and each radiation surface may include a square ring formed by a metal sheet, wherein the reflector is arranged under the radiation plate, as shown in FIG. 3 .
  • the radiating planes shown are parallel.
  • the radiation unit includes a radiation surface, and the radiation surface includes a square ring formed by a plurality of metal sheets.
  • the present application takes the radiation unit including a plurality of radiation surfaces as an example for illustration.
  • the radiation surface 01 includes a metal sheet 301, and the metal sheet 01 is provided with a metal protrusion structure 302, and the radiation surface 02 includes a metal sheet 303, which is provided with a metal sheet 303.
  • the metal protrusion structure 304 can improve the polarization isolation of the vibrator itself through the metal protrusions arranged in the metal ring. For example, the magnitude of the polarization isolation can be increased, thereby improving the polarization isolation.
  • the metal raised structure provided on the metal sheet may be integrally formed during the preparation of the metal sheet, and the metal raised structure may also be a metal patch covered on the metal sheet. It can be understood that the radiation unit provided by the present application This can be achieved in various ways, and the local width of the radiating metal arm can be increased by means of integral molding or metal patch, so as to improve the polarization self-isolation of the vibrator.
  • the length of the metal raised structure is within a certain multiple range of the wavelength corresponding to the center frequency of the radiation unit, for example, the length of the metal raised structure is in the range of 0.1-0.25 times the wavelength corresponding to the center frequency of the radiation unit.
  • the length of the metal protrusion structure covering the metal sheet may be in the range of 0.1-0.25 times the wavelength corresponding to 960MHz.
  • the length of the metal protruding structure may be the length in the direction of the metal arm formed with the metal sheet. Therefore, in the embodiments of the present application, the added metal protrusion structure does not affect the size and structure of the vibrator, and improves the self-isolation of the vibrator on the basis of not affecting the radiation performance of the vibrator.
  • the height of the metal protrusion structure is within a certain multiple range of the thickness of the covered metal sheet, for example, the height of the metal protrusion structure relative to the metal sheet protrusion is within a certain multiple range of the thickness of the covered metal sheet 1 -2 times the range.
  • the width of the metal protrusion structure may be the height in the direction perpendicular to the metal arm formed by the metal sheet. Therefore, in the embodiments of the present application, the added metal protrusion structure does not affect the size and structure of the vibrator, and improves the self-isolation of the vibrator on the basis of not affecting the radiation performance of the vibrator.
  • a partially enlarged metal protrusion structure may be as shown in FIG. 4 , wherein the length of the metal protrusion structure may be the length of ab as shown in FIG. 4 , ab is parallel to the metal sheet 301 , and the metal protrusion
  • the height of the raised structure may be ac as shown in FIG. 4 , ac is perpendicular to the metal sheet 301 .
  • each vibrator further includes a feeding structure, and the four metal sheets included in each vibrator are connected to the reflection plate through the feeding structure, and the feeding structure is used for transmitting electrical signals.
  • the corresponding feeding structure can also be divided into two parts, which respectively form paths in different polarization directions.
  • the structure of an antenna may be as shown in FIG. 5A , wherein the vibrator 501 is arranged on the top of the feed structure 502, and the vibrator 501 may be arranged on the top of the feed structure 502 by means of electrical connection, snap connection or fixed connection, etc.
  • the metal arms or radiating arms of some metal sheets are widened, which is equivalent to adding metal branches.
  • the feeding structure 502 is fixed on the reflective plate (not shown in FIG. 5A ). Feeding structures 502 are provided at the top corners of the four metal rings that are opposite to each other to form a cross structure.
  • the reflector can be a printed circuit board (PCB) or a substrate.
  • the reflector can be used to radiate electromagnetic wave signals.
  • the reflector may consist of metal or a PCB including a metal coating.
  • the reflective plate may include multiple layers, for example, one or more of metal layers, dielectric layers, conductor layers, ground layers, and the like.
  • the structure of another antenna may be as shown in FIG. 5B , in which the vibrator 501 is arranged on the top of the feeding structure 502 , and the vibrator 501 may be arranged on the top of the feeding structure 502 by means of electrical connection, snap connection or fixed connection.
  • the structure of the radiation unit is similar to the aforementioned FIG. 5A , the only difference is that the shape of the feeding structure 502 is a sheet-like structure.
  • each of the aforementioned vibrators may include a plurality of annular structures composed of metal sheets.
  • four ring structures are used as an example for illustration.
  • the following four ring structures can also be replaced with more or less ring structures, which can be adjusted according to actual application scenarios. Illustrative and not limiting.
  • annular structure provided by this application may be a regular or irregular quadrilateral, hexagonal or octagonal structure, which can be adjusted according to actual application scenarios.
  • the ring is taken as an example for illustration, and it can also be replaced with a structure such as a hexagon or an octagon, which is not limited.
  • the four ring structures form two mutually perpendicular polarization directions, and the two polarization directions are not parallel to the metal sheets of the four ring structures, and the four ring structures include
  • the first vibrator and the second vibrator, the first metal sheet in the first vibrator and the second metal sheet in the second vibrator are all provided with metal protruding structures, and the first metal sheet is adjacent to the second metal sheet.
  • the radiating element can be a dual-polarized antenna.
  • the two polarization directions can be perpendicular to each other, and the diagonal of the radiating surface of the oscillator can be aligned with one of the polarizations.
  • the directions are parallel or nearly parallel, and metal protruding structures may be provided on the two adjacent metal sheets of the two vibrators.
  • the position of the metal sheet on which the metal protrusion structure is arranged is related to the polarization direction.
  • a metal protrusion structure can be added to the metal sheet where the two radiating arms in one polarization direction are located, so as to change the phase of the polarization isolation vector or amplitude, thereby increasing the polarization isolation.
  • the four ring structures form two mutually perpendicular polarization directions
  • the four ring structures include metal sheets parallel to the two polarization directions
  • the four ring structures Including a third vibrator and a fourth vibrator, the third vibrator and the fourth vibrator are not adjacent to each other, the third metal sheet and the fourth metal sheet in the third vibrator are provided with metal convex structures, and the fourth vibrator
  • the fifth metal sheet and the sixth metal sheet are provided with metal protruding structures, and the top corners formed by the third metal sheet and the fourth metal sheet are opposite to the top corners formed by the fifth metal sheet and the sixth metal sheet.
  • the radiating unit can be a dual-polarized antenna.
  • the two polarization directions can be perpendicular to each other, and the metal sheet of the radiating surface of the vibrator can be aligned with one of the polarization directions.
  • metal convex structures can be set on the two sides of the two opposite angles of the two oscillators, thereby increasing the mutual impedance between the radiating surfaces and increasing the polarization between the radiating surfaces of the oscillator. isolation.
  • the position of the metal sheet on which the metal raised structure is arranged is related to the polarization direction.
  • metal can be added to the metal sheets of the two non-radiating arms (or called metal arms) in one polarization direction. Protruding structure, so as to increase polarization isolation.
  • the radiation unit or antenna array provided by this application can be divided into various situations, such as the long direction of the metal sheet is parallel to the polarization direction, or the long direction of the metal sheet and the polarization direction are at an angle of 45 degrees, etc.
  • a specific scenario is taken as an example for illustration.
  • the metal sheet forms an angle of 45 degrees with the polarization direction
  • the antenna array provided by the present application is composed of two columns of low-frequency radiation units 02 placed on a metal reflector 00 and a metal baffle 01 located between the two columns of low-frequency radiation.
  • the number of low-frequency units in each column may be determined by specific application scenarios and requirements.
  • each column of low-frequency units is composed of 5 radiating units.
  • the radiation unit includes four square rings and forms a polarization direction of ⁇ 45°, and the diagonals of the four square rings can be aligned with one of the The polarization directions are parallel.
  • the radiation surface of the radiation unit may include four square rings 01, 02, 03 and 04, each square ring may include 4 metal sheets, and the square ring 01 may include metal sheets 01a, 01b, 01c, 01d, and the square ring
  • the ring 02 may include metal sheets 02a, 02b, 02c, and 02d, the square ring 01 may include metal sheets 01a, 01b, 01c, and 01d, and the square ring 01 may include metal sheets 01a, 01b, 01c, and 01d, wherein the metal square ring 01 and 03 constitutes +45° polarization, and metal square rings 02 and 04 constitute -45° polarization.
  • a metal branch is loaded on one of the arms 01b of the square ring 01 and the arm 03d of the square ring 03.
  • the loaded metal branch is shown as local broadening 01b and 03d in Fig. 6, and the local width becomes the original M0 times the arm width, where 1 ⁇ M0 ⁇ 3.
  • the length of the widened part is N0 times the length of the original arm, where 0.5 ⁇ N0 ⁇ 1 (less than 2d width).
  • a metal branch is loaded on one of the arms 02d of the square ring 02 and the arm 04b of the square ring 04.
  • the metal branch After the metal branch is loaded, it appears as a partial broadening of 02d and 04b in the schematic diagram, and the local width becomes the original P0 times the arm width, where 1 ⁇ P0 ⁇ 3.
  • the length of the widened part is Q0 times the length of the original arm, where 0.5 ⁇ Q0 ⁇ 1.
  • the operating frequency band of the low-frequency array in this embodiment can include 690MHz-960MHz, and the radiation surface used by the low-frequency array in this embodiment is shown in FIG.
  • the structure of the metal strip line 12 is similar to that of FIG. 7 , the width of the metal strip line without the metal protrusion structure is 1 mm, and the width of the metal strip line parts of 12 a , 12 b , 12 c and 12 d shown in FIG. 8 is 2 mm , compared with no metal raised structure in the radiation surface, the length of the strip line in the changed part is about 5/6 of the original length.
  • the radiating surface after the metal convex structure is provided can realize the polarization self-isolation improvement of the low frequency unit and even the array.
  • the radiation metal arm is locally widened, thereby changing the amplitude or phase of the polarization isolation vector, and the polarization self-isolation of the unit can be improved to improve the polarization self-isolation of the antenna array.
  • the metal sheet is parallel to the polarization direction
  • the antenna array provided by the present application is composed of two columns of low-frequency radiation units 02 placed on a reflector 00 and a metal baffle 01 located between the two columns of low-frequency radiation.
  • the number of low-frequency units in each column may be determined by specific application scenarios and requirements.
  • each column of low-frequency units has 5 radiating units.
  • the radiation unit includes four square rings and forms a polarization direction of ⁇ 45°, and the diagonals of the four square rings can be aligned with one of the The polarization directions are parallel.
  • the radiation surface of the radiation unit may include four square rings 01, 02, 03 and 04, each square ring may include four metal sheets, and the square ring 01 may include metal sheets 01a, 01b, 01c, 01d, square ring 02 may include metal sheets 02a, 02b, 02c, 02d, square ring 01 may include metal sheets 01a, 01b, 01c, 01d, square ring 01 may include metal sheets 01a, 01b, 01c, 01d .
  • the metal arms 11a, 11b, 12b, 12c, 14a, 14d, 13c and 13d constitute +45° polarization, of which 11b, 14d, 12b and 13d are radiating arms.
  • the metal arms 11d, 11c, 14b, 14c, 12d, 12a, 13b and 13a constitute -45° polarization, wherein 11c, 14c, 12a and 13a are radiation arms.
  • metal branches are loaded on the metal arm 12c of the square ring 12 and the arm 14a of the square ring 14, as shown in FIG. times, where 1 ⁇ M1 ⁇ 3.
  • the length of the broadening is N1 times the length of the original arm, where 0.5 ⁇ N1 ⁇ 1.
  • metal branches are loaded on the metal arm 12d of the square ring 12 and the arm 14b of the square ring 14, which are shown as local broadenings 12d and 14b in the schematic diagram, and the local width becomes P1 times the width of the original arm, where 1 ⁇ P1 ⁇ 3.
  • the widened length is Q1 times the length of the original arm, where 0.5 ⁇ Q1 ⁇ 1.
  • the operating frequency band of the low-frequency array in this embodiment may include 690MHz-960MHz, which is composed of a non-metallic dielectric substrate 11 and a metal strip line 12 attached to its front and back surfaces, wherein the metal strip line 12 is connected to the
  • the structure of 10 in Fig. 7 is similar.
  • the difference between before and after the change lies in the metal strip line parts of 12a, 12b, 12c and 12d in the figure. 12d is 1.2mm narrower than the metal strip line before the change, and the change length is 10mm.
  • the radiating surface provided by the present application can realize the polarization self-isolation improvement of the low-frequency unit and even the array.
  • the foregoing describes the radiation units provided by the embodiments of the present application.
  • the radiation units may be arranged on the antenna array.
  • the antenna array provided by the present application may include a reflector and one or more radiation units.
  • the one or more radiation units are arranged on the reflector, and specifically, the low-frequency vibrators and the high-frequency vibrators may be alternately arranged.
  • the radiation units or antenna arrays provided in the embodiments of the present application may also be applied to various network devices with wireless communication functions, such as terminals, base stations, and the like.
  • the structure of the network device may be as shown in FIG. 12 .
  • the network device 1200 includes: a processor 1210, a memory 1220, a baseband circuit 1270, a radio frequency circuit 1240, and an antenna 1250; wherein, the processor 1210, the memory 1220, the baseband circuit 1270, the radio frequency circuit 1240, and the antenna 1250 are connected through a bus or other connection means ; Corresponding operation instructions are stored in the memory 1220; the processor 1210 controls the radio frequency circuit 1240, the baseband circuit 1270 and the antenna 1250 to work by executing the above-mentioned operation instructions to perform corresponding operations. For example, the processor 1210 can control the radio frequency circuit to generate a synthesized signal, and then radiate the signal in the first frequency band and the signal in the second frequency band through the antenna.
  • the antenna may include the antenna array or radiating element provided in this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种辐射单元、天线阵列以及网络设备。用于在提高天线中的振子内部的极化自隔,提高天线的辐射性能。该辐射单元包括:至少一个振子和反射板;所述至少一个振子设置在所述反射板表面;所述至少一个振子中的每个振子包括辐射面,所述辐射面包括形成环形的多个金属片,所述至少一个振子的中至少有两个金属片上覆盖有金属凸起结构,所述金属凸起结构的长度小于覆盖的金属片的长度。

Description

一种辐射单元、天线阵列以及网络设备 技术领域
本申请涉及通信领域,尤其涉及一种辐射单元、天线阵列以及网络设备。
背景技术
在移动通信中,基站天线通常采用双极化天线形成极化分集来降低由多径衰落带来的信号衰减。对于双极化天线,极化隔离度的量级表征着两个相互垂直的极化天线的相互干扰程度,从而影响到整机的数据吞吐量。因此,提升基站天线整机的极化隔离度很重要。
发明内容
本申请提供一种辐射单元、天线阵列以及网络设备。用于在提高天线中的振子内部的极化自隔,提高天线的辐射性能。
第一方面,本申请提供一种辐射单元,包括:至少一个振子和反射板;
至少一个振子设置在反射板表面;至少一个振子中的每个振子包括辐射面,辐射面包括形成环形的多个金属片,至少一个振子的中至少有两个金属片上覆盖有金属凸起结构,金属凸起结构的长度小于覆盖的金属片的长度。
因此,在本申请实施方式中,可以在振子的辐射面的金属片中增加金属凸起结构,改变金属臂或者辐射比的宽度,从而改变振子的极化隔离矢量的幅度或者相位等,可以实现对振子自身的极化隔离的改变,可以提高振子的极化隔离的隔离度。
在一种可能的实施方式中,至少一个振子上覆盖的金属凸起结构为一体成型得到。因此,本申请实施例提供了一种金属凸起结构的设置方式。
在一种可能的实施方式中,至少一个振子上覆盖的金属凸起结构为金属贴片。因此,本申请实施例提供了另一种金属凸起结构的设置方式。
在一种可能的实施方式中,至少一个振子包括多个金属片组成的四个环状结构,四个环状结构两两对置。因此,本申请实施例中,每个振子可以包括四个环状结构,从而实现双极化振子。
在一种可能的实施方式中,四个环状结构形成互相垂直的两个极化方向,且两个极化方向与四个环状结构的金属片均不平行,四个环状结构包括第一环状结构和第二环状结构,第一环状结构中的第一金属片和第二环状结构中的第二金属片都设置有金属凸起结构,第一金属片与第二金属片相邻。
本申请实施方式中,振子可以形成±45°极化,环状结构之间有空隙,该空隙可以形成十字结构,当该极化方向与环状结构之间空隙形成的十字结构交叉时,可以将振子内的相邻的金属片设置金属凸起结构,例如,该金属片可以是可以在一个极化方向上的两个辐射臂所在的金属片上增加金属凸起结构,从而改变极化隔离矢量的相位或者幅度,从而起到增加极化隔离的作用。
在一种可能的实施方式中,四个环状结构形成互相垂直的两个极化方向,四个环状结构中包括与两个极化方向与平行的金属片,四个环状结构包括第三环状结构和第四环状结 构,第三环状结构与第四环状结构互不相邻,第三环状结构中的第三金属片和第四金属片设置有金属凸起结构,第四环状结构中的第五金属片和第六金属片设置有金属凸起结构,第三金属片和第四金属片形成的顶角与第五金属片和第六金属片形成的顶角相对。
因此,在本申请实施方式中,振子可以形成±45°极化,环状结构之间有空隙,该空隙可以形成十字结构,当该极化方向与环状结构之间空隙形成的十字结构重合或者各个方向平行或接近平行时,可以将振子内两个环状结构之间的顶角应的金属片上设置金属凸起结构,而改变极化隔离矢量的相位或者幅度,从而起到增加极化隔离的作用。
在一种可能的实施方式中,金属凸起结构的长度是辐射单元的中心频点对应的波长的0.1-0.25倍范围内,金属凸起结构的高度是覆盖的金属片的厚度的1-2倍范围内。因此,在本申请实施方式中,增加的金属凸起结构不影响振子的大小结构,在不影响振子的辐射性能的基础上,提高了振子的自隔离。
在一种可能的实施方式中,每个振子还包括馈电结构,每个环状结构包括的四个金属片通过馈电结构与反射板连接,馈电结构用于传输电信号。
本申请第二方面提供一种天线阵列,包括:反射板以及至少两个辐射单元;
至少两个辐射单元排列于反射板上,至少两个辐射单元可以包括前述第一方面或第一方面的任一可选实施方式中的辐射单元。
在本申请实施例中,天线可以包括反射板以及多个辐射单元。该反射板可以用于反射电磁波,该辐射单元上的每个振子的振子臂上覆盖有周期结构,该周期结构可以改变振子的等效介电常数或者等效磁导率,使得辐射至振子的电磁波可以产生绕射,使得电磁波可以从振子的一面,传导至相对的另一面,降低对辐射至振子的电磁波的方向的改变,提高辐射性能。
可选地,在一些可能的实施方式中,至少两个辐射单元包括第一辐射单元与第二辐射单元;
第一辐射单元的工作频段与第二辐射单元的工作频段不同。
在本申请实施例中,天线可以包括第一辐射单元与第二辐射单元,且第一辐射单元与第二辐射单元的工作频段可以不相同,使得天线可以同时辐射不同频段的电磁波。
本申请第三方面提供一种网络设备,该网络设备可以包括前述第一方面或第一方面的任一可选实施方式中的辐射单元。
在本申请实施例中,辐射单元可以包括一个或多个振子臂以及支撑杆,振子臂上可以覆盖周期结构,该周期材料由电磁材料构成,周期结构上有缝隙。周期结构可以改变振子对于传导过来的电磁波的等效介电常数或等效磁导率中的至少一项,使得向每个振子第一面辐射来的电磁波,传导至每个振子的第二面。因此,本申请实施例提供的辐射单元,在接收到其他振子辐射的电磁波时,可以通过绕射的方式使该电磁波正常传导,减少对辐射来的电磁波的遮挡,进而可以避免因对振子形成遮挡而导致的辐射方向畸变,可以提高天线的辐射性能。
附图说明
图1为本申请实施例的应用场景示意图;
图2为本申请实施例提供的天线阵列的一种结构示意图;
图3为本申请实施例提供的辐射单元的一种结构示意图;
图4为本申请实施例提供的辐射单元的另一种结构示意图;
图5A为本申请实施例提供的辐射单元的另一种结构示意图;
图5B为本申请实施例提供的辐射单元的另一种结构示意图;
图6为本申请实施例提供的天线阵列的一种结构示意图;
图7为本申请实施例提供的辐射单元的另一种结构示意图;
图8为本申请实施例提供的辐射单元的另一种结构示意图;
图9为本申请实施例提供的天线阵列的另一种结构示意图;
图10为本申请实施例提供的辐射单元的另一种结构示意图;
图11为本申请实施例提供的辐射单元的另一种结构示意图;
图12为本申请实施例提供的网络设备的一种结构示意图。
具体实施方式
本申请提供一种辐射单元、天线阵列以及网络设备。用于在提高天线中的振子内部的极化自隔,提高天线的辐射性能。
本申请提供的网络设备可以是各种具有无线接收或发送功能的设备。该网络设备可以是基站或者其他需要使用的天线的设备等等。更具体的,该基站可以是宏基站、微基站、热点(pico)、家庭基站(femeto)、传输点(TP)、中继(Relay)、接入点(Access Point,AP)等,该基站可以是长期演进(long term evolution,LTE)中的基站(eNodeB,eNB),新空口(New Radio,NR)中的基站(gNodeB,gNB)等等。
更进一步第,该网络设备可以适用于各种无线通信系统,例如,移动通信全球系统(global system for mobile communication,GSM)中的基站(base station,BS)、宽带码分多址移动通信系统(wideband code division multiple access,WCDMA)、LTE、NR等,还可以应用于未来通信网络,例如,6G网络、7G网络等等通信系统。更具体地,该网络设备还可以应用于5G中的低时延高可靠通信(Ultra-Reliable and low latency communications,URLLC),也可以支持海量物联网通信(massive machine type communication,mMTC),还可以应用于移动宽带业务(mobile broadband,MBB)等等。
示例性地,以一个基站与终端之间的通信进行示例性说明。请参阅图1,本申请实施例中的一种应用场景示意图。
其中,基站与终端之间进行无线数据传输。基带模块可以将需要传输的数据转换为基带信号,进而通过射频模块的天线阵列,将基带信号辐射出去。基带模块还可以对天线接收到的信号进行解码,得到数字信号等。基站与终端都可以包括射频模块与基带模块,以实现基站与终端之间的数据的传输。终端可以通过射频模块发送上行信号,也可以接收基站发送的下行信号。
本申请提供的网络设备可以包括一个或多个天线阵列,一个天线阵列可以包括多个辐 射单元。通常,天线的极化隔离度很大地影响了天线的数据吞吐量。在一些场景中,通过增加电流的路径方式,将主极化方向的电流路径加长,交叉极化方向垂直的电流路径减少,使得激发的交叉极化电流小,从而改善单元的隔离度。然而,该天线单元结构能够提升极化隔离度,但是使得天线单元结构变得更加复杂,加大加工制作的难度,工业成本增加。因此,本申请提供一种提高振子的极化隔离度的辐射单元,且实施起来难度更低,工业成本更低。
本申请提供的天线阵列可以包括一个或多个辐射单元。当该天线阵列包括多个辐射单元时,该多个辐射单元中的每个辐射单元的工作频段可以相同也可以不相同。例如,该多个辐射单元可以包括两个辐射单元,该两个辐射单元的工作频段可以相同,也可以不同。除了辐射单元,该天线阵列还可以包括反射板,该反射板可以用于辐射电磁波。该多个辐射单元可以排列于反射板上。或者说,每个辐射单元都具有对应的反射板,每个辐射单元设置在对应的反射板上。例如,该天线阵列可以是高频与低频共存的6行4列高频、3行2列低频组成的天线阵列,高频振子可以围绕低频振子排列。
示例性地,天线阵列的结构可以如图2所示。其中,“×”可以表示为高频双极化天线振子,“+”可以表示为低频双极化天线振子。其中,高频振子与低频振子紧密排布在低频振子的周围。通常,天线的尺寸与支持的频段的波长相关,波长越大,天线的尺寸也就越大,因此,低频天线振子的尺寸可能大于高频天线振子的尺寸,低频振子可能会对高频振子辐射的电磁波形成遮挡,影响高频振子的辐射方向,进而影响高频振子的辐射性能。
需要说明的是,本申请中的高频与低频为相对而言,高频的频率大于低频的频率。通常,高于频率阈值的频率可以理解为高频,不高于频率阈值的频率可以理解为低频。例如,690MHz-960MHz可以理解为低频频段,1700MHz-2700MHz可以理解为高频频段。其中,高频与低频的范围可以根据实际应用场景进行调整,此处并不作限定。
在本申请提供的辐射单元中,可以在振子的辐射面的部分金属片中设置金属凸起,使辐射单元的金属臂局部变宽,提升辐射单元的极化隔离,从而减少振子之间的干扰,提高天线的辐射性能。该辐射单元可以应用于前述的网络设备或者天线阵列,可以提高该网络设备或者天线阵列的辐射性能。
下面对本申请提供的辐射单元、天线阵列以及网络设备等分别进行说明。
本申请提供的辐射单元可以包括至少一个振子和反射板;该至少一个振子设置在反射板表面;该至少一个振子中的每个振子包括辐射面,辐射面包括形成环形的多个金属片,该至少一个振子的中至少有两个金属片上覆盖有金属凸起结构,金属凸起结构的长度小于覆盖的金属片的长度,金属凸起结构凸起的高度大于0。
因此,在本申请实施方式中,在振子的辐射面上的金属片中增加了金属凸起结构,使得辐射单元的金属臂的局部变化,改变振子的有源自隔离矢量的相位或者幅度,如增加有源自隔离矢量的幅度,从而提升振子的极化自隔离,提升天线的极化自隔离,提高天线的辐射性能。可以理解为,在振子的辐射面上加载了额外的枝节,使得辐射金属臂局部变宽,从而改变振子的极化隔离矢量的幅度或者相位,从而可以提高振子的极化隔离的量级,从而提升振子的极化自隔离。提供一种双极化天线的(基站天线,)单元及其阵列自隔离改良 技术,通过在单元辐射面特定的金属部位上加载金属枝节或槽形结构,从而实现单元自隔离以及阵列自隔离量级的提升。
金属片或者金属凸起结构可以是由金属构成的结构,也可以是在基板上覆盖金属涂层得到的结构,具体可以根据实际应用场景进行调整。且金属凸起结构的长度不大于金属片的长度,从而在保持天线的辐射性能的基础上,提高天线的极化自隔离。
示例性地,每个辐射单元可以包括多个环形金属结构,环形金属结构设置在反射板上。辐射单元的辐射面可以如图3所示,该辐射单元可以包括多个辐射面,每个辐射面可以包括金属片形成的方形环,其中,反射板设置于辐射板之下,与图3中所示的辐射面平行。或者,也可以说辐射单元包括一个辐射面,该一个辐射面中包括多个金属片形成的方形环,为便于理解,本申请以辐射单元包括多个辐射面为例进行示例性说明。以其中两个辐射面01和02为例,辐射面01中包括金属片301,该金属片01中设置有金属凸起结构302,辐射面02中包括金属片303,该金属片303中设置有金属凸起结构304,从而通过在金属环中设置的金属凸起,提高振子自身的极化隔离,例如可以增加极化隔离的量级的幅度,从而提高极化隔离的量级。
可选地,金属片上设置的金属凸起结构可以是在制备金属片时一体成型的,该金属凸起结构也可以是覆盖于金属片上的金属贴片,可以理解为,本申请提供的辐射单元可以通过多种方式来实现,可以通过一体成型的方式或者金属贴片的方式来实现对辐射金属臂的局部宽度的增加,从而提升振子的极化自隔离。
可选地,该金属凸起结构的长度是辐射单元的中心频点对应的波长一定倍数范围内,例如该金属凸起结构的长度是辐射单元的中心频点对应的波长的0.1-0.25倍范围内,例如,若辐射单元的中心频点为960MHz,则覆盖在金属片上的金属凸起结构的长度可以是960MHz对应的波长的0.1-0.25倍范围内。其中,金属凸起结构的长度可以是与金属片形成的金属臂方向上的长度。因此,在本申请实施方式中,增加的金属凸起结构不影响振子的大小结构,在不影响振子的辐射性能的基础上,提高了振子的自隔离。
可选地,金属凸起结构的高度是覆盖的金属片的厚度的一定倍数范围内,例如,金属凸起结构相对于金属片凸起的高度是覆盖的金属片的厚度的一定倍数范围内1-2倍范围内。其中,金属凸起结构的宽度可以是与金属片形成的金属臂垂直的方向上的高度。因此,在本申请实施方式中,增加的金属凸起结构不影响振子的大小结构,在不影响振子的辐射性能的基础上,提高了振子的自隔离。
示例性地,局部放大后的金属凸起结构可以如图4所示,其中,该金属凸起结构的长度可以是如图4中所示的ab的长度,ab与金属片301平行,该金属凸起结构的高度可以是如图4中所示的ac,ac与金属片301垂直。
在一种可能的实施方式中,该每个振子还包括馈电结构,每个振子包括的四个金属片通过馈电结构与反射板连接,馈电结构用于传输电信号。通常,若振子为双极化振子,则对应的馈电结构也可以分为两部分,分别形成不同极化方向上的通路。
示例性地,一种天线的结构可以如图5A所示,其中,振子501设置在馈电结构502顶部,振子501可以通过电连接、卡接或者固定连接等方式设置在馈电结构502顶部,部分 金属片的金属臂或者辐射臂进行了加宽,相当于加在了金属枝节。馈电结构502固定于反射板(图5A中未示出)上。四个金属环相对设置的顶角处设置馈电结构502,形成十字结构。反射板可以是印制电路板(printed circuit board,PCB),也可以理解为基板。该反射板可以用于辐射电磁波信号。通常,该反射板可以由金属或者包括金属涂层的PCB组成。该反射板可以包括多层,例如,金属层、介质层、导体层、接地层等等中的一种或多种。
示例性地,另一种天线的结构可以如图5B所示,其中,振子501设置在馈电结构502顶部,振子501可以通过电连接、卡接或者固定连接等方式设置在馈电结构502顶部。该辐射单元的结构与前述图5A类似,区别仅在于,馈电结构502的形状为片状结构。
通常,前述的每个振子可以包括由金属片组成的多个环形结构。本申请实施例中,以四个环形结构为例进行示例性说明,以下的四个环形结构也可以替换为更多或者更少的环形结构,具体可以根据实际应用场景进行调整,本申请仅仅是示例性说明,并不作为限定。
需要说明的是,本申请提供的环形结构,可以是规则或者不规则的四边形、六边形或者八边形等结构,具体可以根据实际应用场景调整,在本申请以下实施例中,仅以方形环为例进行示例性说明,也可以替换为六边形或者八边形等结构,并不作为限定。
在一种可能的实施方式中,该四个环状结构形成互相垂直的两个极化方向,且两个极化方向与四个环状结构的金属片均不平行,四个环状结构包括第一振子和第二振子,第一振子中的第一金属片和第二振子中的第二金属片都设置有金属凸起结构,第一金属片与第二金属片相邻。
例如,在一些常见的场景中,辐射单元可以是双极化天线,以辐射面作为一个水平面为例,两个极化方向可以互相垂直,振子的辐射面的对角线可以与其中一个极化方向平行或者接近平行,可以在两个振子相邻的两个金属片上设置金属凸起结构。通常,设置金属凸起结构的金属片的位置与极化方向相关,例如,可以在一个极化方向上的两个辐射臂所在的金属片上增加金属凸起结构,从而改变极化隔离矢量的相位或者幅度,从而起到增加极化隔离的作用。
在另一种可能的实施方式中,该四个环状结构形成互相垂直的两个极化方向,四个环状结构中包括于两个极化方向与平行的金属片,四个环状结构包括第三振子和第四振子,第三振子与第四振子互不相邻,第三振子中的第三金属片和第四金属片设置有金属凸起结构,第四振子中的第五金属片和第六金属片设置有金属凸起结构,第三金属片和第四金属片形成的顶角与第五金属片和第六金属片形成的顶角相对。
例如,在一些常见的场景中,辐射单元可以是双极化天线,以辐射面作为一个水平面为例,两个极化方向可以互相垂直,振子的辐射面的金属片可以与其中一个极化方向平行或者接近平行,此时,在两个振子相对的两个夹角的两条边上可以设置金属凸起结构,从而增加辐射面之间的互阻抗,增加振子的辐射面之间的极化隔离度。在此场景中,通常,设置金属凸起结构的金属片的位置与极化方向相关,例如,可以在一个极化方向上的两个非辐射臂(或者称为金属臂)的金属片上增加金属凸起结构,从而起到增加极化隔离的作用。
前述对本申请提供的辐射单元的结构进行了详细介绍,下面结合天线,对本申请提供的辐射单元以及天线的结构进行更详细的介绍。
本申请提供的辐射单元或者天线阵列可以分为多种情况,如金属片的长的方向与极化方向平行,或者金属片的长的方向与极化方向呈45度夹角等,下面以一些具体的场景为例进行示例性说明。
场景一、金属片与极化方向呈45度夹角
示例性地,如图6所示,本申请提供的天线阵列由置于金属反射板00上的两列低频辐射单元02以及位于两列低频之间的金属挡板01构成。其中每列低频单元的数目可视具体应用场景和需求而定,本实施例中每列低频由5个辐射单元构成。
以其中一个辐射单元为例,可以如图7所示,其中,该辐射单元包括了四个方形环,且形成了±45°的极化方向,四个方形环的对角线可以与其中一个极化方向平行。具体地,该辐射单元的辐射面可以包括01、02、03以及04四个方形环,每个方形环可以包括4个金属片,方形环01可以包括金属片01a、01b、01c、01d,方形环02可以包括金属片02a、02b、02c、02d,方形环01可以包括金属片01a、01b、01c、01d,方形环01可以包括金属片01a、01b、01c、01d,其中金属方形环01和03组成+45°极化,金属方形环02和04组成-45°极化。对于+45°极化而言,在方形环01的其中一个臂01b和方形环03的臂03d上加载金属枝节,加载金属枝节在图6中表现为局部展宽01b和03d,局部宽度变为原臂宽度的M0倍,其中1<M0≤3。变宽部分的长度为原臂长的N0倍,其中0.5≤N0≤1(小于2d宽度)。对于-45°极化而言,在方形环02的其中一个臂02d和方形环04的臂04b上加载金属枝节,加载金属枝节以后在示意图中表现为局部展宽02d和04b,局部宽度变为原臂宽度的P0倍,其中1<P0≤3。变宽部分的长度为原臂长的Q0倍,其中0.5≤Q0≤1。
更具体地,本实施例低频阵列的工作频段可以包括690MHz-960MHz,其所采用的辐射面如图8所示,由非金属介质基板11和附着于其正反表面的金属带线12构成,其中金属带线12与图7的结构相似,未设置金属凸起结构的金属带线宽度均为1mm,图8中所示出的12a、12b、12c和12d的金属带线部分的宽度为2mm,与在辐射面中不设置金属凸起结构相比,变化部分带线长度为原长度的5/6左右。相比未设置金属凸起结构的前辐射面,设置金属凸起结构后的辐射面可以实现低频单元乃至阵列的极化自隔离提升。
因此,通过以上在单元辐射面上加载枝节,使得辐射金属臂局部变宽,从而改变极化隔离矢量的幅度或者相位,可以提升单元的极化自隔离以提升天线阵列的极化自隔离。
场景二、金属片与极化方向平行
如图9所示,本申请提供的天线阵列由置于反射板00上的两列低频辐射单元02以及位于两列低频之间的金属挡板01构成。其中每列低频单元数目可视具体应用场景和需求而定,本实施例中每列低频有5个辐射单元。
以其中一个辐射单元为例,可以如图10所示,其中,该辐射单元包括了四个方形环,且形成了±45°的极化方向,四个方形环的对角线可以与其中一个极化方向平行。具体地,与前述图6类似地,该辐射单元的辐射面可以包括01、02、03以及04四个方形环,每个方形环可以包括4个金属片,方形环01可以包括金属片01a、01b、01c、01d,方形环02 可以包括金属片02a、02b、02c、02d,方形环01可以包括金属片01a、01b、01c、01d,方形环01可以包括金属片01a、01b、01c、01d。金属臂11a、11b、12b、12c、14a、14d、13c和13d组成+45°极化,其中11b、14d、12b、13d为辐射臂。金属臂11d、11c、14b、14c、12d、12a、13b和13a组成-45°极化,其中11c、14c、12a、13a为辐射臂。对于+45°极化而言,在方形环12的金属臂12c和方形环14的臂14a上加载金属枝节,如图9中表现为局部展宽12c和14a,局部宽度变为原臂宽度的M1倍,其中1<M1≤3。变宽的长度为原臂长的N1倍,其中0.5≤N1≤1。对于-45°极化而言,在方形环12的金属臂12d和方形环14的臂14b上加载金属枝节,示意图中表现为局部展宽12d和14b,局部宽度变为原臂宽度的P1倍,其中1<P1≤3。变宽的长度为原臂长的Q1倍,其中0.5≤Q1≤1。
更具体地,如图11所示,本实施例低频阵列的工作频段可以包括690MHz-960MHz,由非金属介质基板11和附着于其正反表面的金属带线12构成,其中金属带线12与图7中10的结构相似,变化后与变化前的区别在于图中12a、12b、12c和12d的金属带线部分,其中12a和12b相比变化前金属带线部分变宽1mm,而12c和12d相比变化前金属带线部分变窄1.2mm,变化长度均为10mm。相比未增加金属凸起结构的辐射面,本申请提供的辐射面可以实现低频单元乃至阵列的极化自隔离提升。
前述对本申请实施例提供的辐射单元进行了说明,该辐射单元可以排列在天线阵列上,具体第,本申请提供的天线阵列可以包括反射板以及一个或多个辐射单元。该一个或多个辐射单元排列于反射板上,具体地,可以是低频振子与高频振子交替排列。
本申请实施例提供的辐射单元或者天线阵列,还可以应用于各种具有无线通信功能的网络设备,例如,终端、基站等等。示例性地,该网络设备的结构可以如图12所示。
网络设备1200包括:处理器1210、存储器1220、基带电路1270、射频电路1240以及天线1250;其中,处理器1210、存储器1220、基带电路1270、射频电路1240和天线1250通过总线或者其他连接装置相连接;存储器1220中存储有相应的操作指令;处理器1210通过执行上述操作指令,控制射频电路1240、基带电路1270和天线1250工作从而执行对应的操作。例如,处理器1210可以控制射频电路产生合成信号,然后通过天线辐射处于第一频段的信号与处于第二频段的信号。该天线可以包括本申请提供的天线阵列或者辐射单元。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种辐射单元,其特征在于,包括:至少一个振子和反射板;
    所述至少一个振子设置在所述反射板表面;
    所述至少一个振子中的每个振子包括辐射面,所述辐射面包括形成环形的多个金属片,所述至少一个振子的中至少有两个金属片上覆盖有金属凸起结构,所述金属凸起结构的长度小于覆盖的金属片的长度。
  2. 根据权利要求1所述的辐射单元,其特征在于,所述至少一个振子上覆盖的金属凸起结构为一体成型得到。
  3. 根据权利要求1所述的辐射单元,其特征在于,所述至少一个振子上覆盖的金属凸起结构为金属贴片。
  4. 根据权利要求1-3中任一项所述的辐射单元,其特征在于,所述至少一个振子包括多个金属片组成的四个环状结构,所述四个环状结构两两对置。
  5. 根据权利要求4所述的辐射单元,其特征在于,所述四个环状结构形成互相垂直的两个极化方向,且所述两个极化方向与所述四个环状结构的金属片均不平行,所述四个环状结构包括第一环状结构和第二环状结构,所述第一环状结构中的第一金属片和所述第二环状结构中的第二金属片都设置有所述金属凸起结构,所述第一金属片与所述第二金属片相邻。
  6. 根据权利要求4所述的辐射单元,其特征在于,所述四个环状结构形成互相垂直的两个极化方向,所述四个环状结构中包括与所述两个极化方向与平行的金属片,所述四个环状结构包括第三环状结构和第四环状结构,所述第三环状结构与所述第四环状结构互不相邻,所述第三环状结构中的第三金属片和第四金属片设置有所述金属凸起结构,所述第四环状结构中的第五金属片和第六金属片设置有所述金属凸起结构,所述第三金属片和所述第四金属片形成的顶角与所述第五金属片和所述第六金属片形成的顶角相对。
  7. 根据权利要求1-6中任一项所述的辐射单元,其特征在于,所述金属凸起结构的长度是所述辐射单元的中心频点对应的波长的0.1-0.25倍范围内,所述金属凸起结构的高度是覆盖的金属片的厚度的1-2倍范围内。
  8. 根据权利要求1-7中任一项所述的辐射单元,其特征在于,所述每个振子还包括馈电结构,所述每个环状结构包括的四个金属片通过所述馈电结构与所述反射板连接,所述馈电结构用于传输电信号。
  9. 一种天线阵列,其特征在于,包括:反射板以及至少两个辐射单元;
    所述至少两个辐射单元排列于所述反射板上,所述至少两个辐射单元包括如权利要求1-8中任一项所述的辐射单元。
  10. 一种网络设备,其特征在于,所述网络设备包括如权利要求1-8中任一项所述的辐射单元。
PCT/CN2020/125231 2020-10-30 2020-10-30 一种辐射单元、天线阵列以及网络设备 WO2022088032A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023526428A JP7551920B2 (ja) 2020-10-30 2020-10-30 放射素子、アンテナアレイ、およびネットワーク機器
CN202080106441.3A CN116438714A (zh) 2020-10-30 2020-10-30 一种辐射单元、天线阵列以及网络设备
PCT/CN2020/125231 WO2022088032A1 (zh) 2020-10-30 2020-10-30 一种辐射单元、天线阵列以及网络设备
EP20959194.0A EP4220858A4 (en) 2020-10-30 2020-10-30 RADIANT UNIT, ANTENNA ARRAY AND NETWORK DEVICE
US18/302,009 US20230261391A1 (en) 2020-10-30 2023-04-18 Radiating element, antenna array, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125231 WO2022088032A1 (zh) 2020-10-30 2020-10-30 一种辐射单元、天线阵列以及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/302,009 Continuation US20230261391A1 (en) 2020-10-30 2023-04-18 Radiating element, antenna array, and network device

Publications (1)

Publication Number Publication Date
WO2022088032A1 true WO2022088032A1 (zh) 2022-05-05

Family

ID=81383459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125231 WO2022088032A1 (zh) 2020-10-30 2020-10-30 一种辐射单元、天线阵列以及网络设备

Country Status (5)

Country Link
US (1) US20230261391A1 (zh)
EP (1) EP4220858A4 (zh)
JP (1) JP7551920B2 (zh)
CN (1) CN116438714A (zh)
WO (1) WO2022088032A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552519A (zh) * 2015-12-04 2016-05-04 京信通信系统(广州)有限公司 一种宽频双极化辐射单元及基站天线
US20180034165A1 (en) * 2016-03-21 2018-02-01 Zimeng LI Miniaturized dual-polarized base station antenna
CN109066060A (zh) * 2018-07-03 2018-12-21 广东博纬通信科技有限公司 一种超宽频双极化双回路天线辐射单元
CN109103592A (zh) * 2018-08-29 2018-12-28 江苏亨鑫科技有限公司 一种双极化辐射单元及带有该双极化辐射单元的阵列天线
CN110323553A (zh) * 2019-04-01 2019-10-11 深圳三星通信技术研究有限公司 天线的辐射单元及天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860121A1 (de) 1998-12-23 2000-07-13 Kathrein Werke Kg Dualpolarisierter Dipolstrahler
JP4413698B2 (ja) 2004-07-15 2010-02-10 日本電業工作株式会社 無給電素子付きリングアンテナ
CA2853219C (en) 2011-10-24 2017-12-12 Poynting Antennas (Pty) Limited Antenna arrangement
US10148015B2 (en) * 2016-03-14 2018-12-04 Kathrein-Werke Kg Dipole-shaped antenna element arrangement
CN111313155B (zh) * 2018-12-11 2021-11-19 华为技术有限公司 天线和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552519A (zh) * 2015-12-04 2016-05-04 京信通信系统(广州)有限公司 一种宽频双极化辐射单元及基站天线
US20180034165A1 (en) * 2016-03-21 2018-02-01 Zimeng LI Miniaturized dual-polarized base station antenna
CN109066060A (zh) * 2018-07-03 2018-12-21 广东博纬通信科技有限公司 一种超宽频双极化双回路天线辐射单元
CN109103592A (zh) * 2018-08-29 2018-12-28 江苏亨鑫科技有限公司 一种双极化辐射单元及带有该双极化辐射单元的阵列天线
CN110323553A (zh) * 2019-04-01 2019-10-11 深圳三星通信技术研究有限公司 天线的辐射单元及天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220858A4 *

Also Published As

Publication number Publication date
EP4220858A1 (en) 2023-08-02
US20230261391A1 (en) 2023-08-17
JP7551920B2 (ja) 2024-09-17
EP4220858A4 (en) 2023-11-01
CN116438714A (zh) 2023-07-14
JP2023547928A (ja) 2023-11-14

Similar Documents

Publication Publication Date Title
EP3716402B1 (en) Antenna unit and antenna array
JP4223564B2 (ja) マイクロストリップアンテナとアレーアンテナ
WO2018230039A1 (ja) アンテナ装置
KR20160133450A (ko) 방사 벡터들의 가상 회전을 사용한 밀집된 안테나 어레이
CN112582784B (zh) 一种基于环加载和开槽的宽带基站天线及无线通信设备
Su et al. A novel broadband polarization diversity antenna using a cross-pair of folded dipoles
EP3622581B1 (en) A broadband antenna
JP6919730B2 (ja) アンテナ装置
WO2019077813A1 (ja) アンテナ装置
CN110676579A (zh) 一种平面扩频宽带基站天线
Yin et al. Isolation improvement of compact microbase station antenna based on metasurface spatial filtering
WO2022088032A1 (zh) 一种辐射单元、天线阵列以及网络设备
EP4156408A1 (en) Antenna and base station
CN108023163B (zh) 矢量合成基站天线单元
US11522270B2 (en) Solution for beam tilting associated with dual-polarized mm-Wave antennas in 5G terminals
KR101557765B1 (ko) 집적도 증가와 간섭 저감을 위한, 메타재질 0차 공진형 전기장 분포를 갖는 소형 mimo 안테나와 그의 다중 배치 구조
Ryan et al. A broadband transmitarray using double square ring elements
Nia et al. Ultra thin dual-polarized flexible patch antenna for the 5G communication
CN210607617U (zh) 一种平面扩频宽带基站天线
JP5993319B2 (ja) リフレクトアレー及び素子
US11848507B2 (en) Radiating element, antenna array, and network device
EP3959778B1 (en) Solution for beam tilting associated with dual-polarized mm-wave antennas in 5g terminals
EP4322336A1 (en) Antenna apparatus
KR20170010777A (ko) 공간 혼합-차수 대역통과 필터를 갖는 렌즈
TW202341676A (zh) 增益模式重疊減少

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023526428

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2020959194

Country of ref document: EP

Effective date: 20230425

NENP Non-entry into the national phase

Ref country code: DE