WO2022087935A1 - 一种支持汽车低温启动的多回路热泵空调系统及汽车 - Google Patents

一种支持汽车低温启动的多回路热泵空调系统及汽车 Download PDF

Info

Publication number
WO2022087935A1
WO2022087935A1 PCT/CN2020/124605 CN2020124605W WO2022087935A1 WO 2022087935 A1 WO2022087935 A1 WO 2022087935A1 CN 2020124605 W CN2020124605 W CN 2020124605W WO 2022087935 A1 WO2022087935 A1 WO 2022087935A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
liquid
heat pump
heat exchanger
cooled condenser
Prior art date
Application number
PCT/CN2020/124605
Other languages
English (en)
French (fr)
Inventor
张园园
卢树强
柳达云
Original Assignee
浙江吉利控股集团有限公司
宁波吉利汽车研究开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 宁波吉利汽车研究开发有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to EP20959098.3A priority Critical patent/EP4239254A4/en
Priority to CN202080102455.8A priority patent/CN116194312A/zh
Priority to PCT/CN2020/124605 priority patent/WO2022087935A1/zh
Publication of WO2022087935A1 publication Critical patent/WO2022087935A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/00499Heat or cold storage without phase change including solid bodies, e.g. batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the invention relates to the technical field of vehicle thermal management, in particular to a multi-circuit heat pump air conditioning system and an automobile that support low temperature startup of automobiles.
  • heat pump air conditioning systems are used in many electric vehicles to meet the needs of interior heating in winter.
  • the heat pump system is based on the air conditioning system, adding heat pump components, which greatly increases the complexity and coupling of the system.
  • the outside heat exchanger of the heat pump system is prone to frost, and the heating effect in winter is poor. Therefore, auxiliary heating is used. This method has a greater impact on the battery life of the vehicle, and the life of the battery will also be reduced.
  • the automobile heat pump air-conditioning system with low temperature start-up function changes the refrigerant state by designing a refrigerant state changing device to make the electric compressor operate normally at low temperature, so as to realize the low temperature start of the heat pump system, but the addition of the refrigerant state changing device makes the system complicated. The degree and cost of the system also increase, and the reliability and maintainability of the system deteriorate.
  • the heating modes of the existing automobile heat pump air conditioning system are not rich enough, and the utilization of heat sources inside and outside the vehicle is not flexible and sufficient, and the energy utilization rate of the whole system is low. Under extreme conditions, such as about -30°C, the refrigerant is liquid, which makes the compressor's heating effect at low temperatures poor. Therefore, it is necessary to improve the existing technology to solve the above problems.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the first aspect of the present invention proposes a multi-circuit heat pump air conditioning system that supports low-temperature startup of an automobile, including a cooling liquid system, a heat pump system and an electric control system;
  • the cooling liquid system includes a cooling liquid circuit, and the cooling liquid circuit includes a DC/DC, a motor, a battery pack, a cooling liquid pipeline, a hydraulic valve and at least one water pump provided in the cooling liquid pipeline;
  • the heat pump system includes a refrigerant circuit, and the refrigerant circuit includes a gas-liquid separator, a compressor, a battery heat exchanger, a liquid-cooled condenser, a cooling liquid heater, a refrigerant pipeline, and a hydraulic pressure set in the refrigerant pipeline.
  • the coolant heater is used to heat the coolant when the ambient temperature is lower than the preset temperature and the heat pump system is in a non-working state
  • the compressor is used to do work after the heat pump system is started to heat the refrigerant in the refrigerant pipeline.
  • the electronic control system includes a communication unit, a processor and a switching module;
  • the communication unit is configured to receive the ambient temperature outside the vehicle, the temperature regulation requirements of the passenger compartment and the battery pack, and the heat storage state of the battery pack;
  • the processor is configured to receive In order to generate a working mode switching instruction according to the ambient temperature outside the vehicle, the temperature regulation requirements of the passenger compartment and the battery pack, and the heat storage state of the battery pack;
  • the switching module is used for switching in response to the working mode switching instruction. the connection state of the cooling liquid circuit and/or the refrigerant circuit;
  • the communication unit is electrically connected to the processor, the processor is electrically connected to the switching module, and the cooling liquid circuit is thermally connected to the refrigerant circuit.
  • the heat pump system further includes an HVAC assembly and a battery electronic expansion valve
  • the HVAC assembly includes an internal condenser, a blower, a damper and an air duct
  • the electronic control system further includes an air conditioner controller
  • the HVAC assembly is electrically connected to the air conditioner controller, and the air conditioner controller is electrically connected to the processor;
  • One end of the liquid-cooled condenser is connected to one end of the motor through the hydraulic valve, and the other end of the liquid-cooled condenser is connected to one end of the battery heat exchanger through the hydraulic valve, and the battery is exchanged.
  • the other end of the heater is connected to one end of the battery pack through the hydraulic valve, and the other end of the battery pack is connected to the other end of the motor through the hydraulic valve;
  • One end of the internal condenser is connected to one end of the battery electronic expansion valve, the other end of the battery electronic expansion valve is connected to the other end of the battery heat exchanger, and one end of the battery heat exchanger is connected to the battery heat exchanger.
  • One end of the gas-liquid separator is connected, the other end of the gas-liquid separator is connected with one end of the compressor, and the other end of the compressor is connected with the other end of the internal condenser.
  • HVAC assembly further includes an internal radiator
  • the other end of the liquid-cooled condenser is connected to one end of the internal radiator, and the other end of the internal radiator is connected to the other end of the motor.
  • the other end of the liquid-cooled condenser is connected with one end of the cooling liquid heater, the other end of the cooling liquid heater is connected with one end of the internal radiator, and the other end of the internal radiator is connected Connect to the other end of the motor.
  • the HVAC assembly further includes an internal evaporator and an electronic expansion valve for the evaporator;
  • One end of the internal condenser is connected to one end of the evaporator electronic expansion valve, the other end of the evaporator electronic expansion valve is connected to one end of the internal evaporator, and the other end of the internal evaporator is connected to the One end of the gas-liquid separator is connected.
  • the HVAC assembly further includes an internal evaporator and an electronic expansion valve for the evaporator;
  • the other end of the liquid-cooled condenser is connected with one end of the cooling liquid heater, and the other end of the cooling liquid heater is connected with one end of the battery pack;
  • the other end of the internal condenser is connected to one end of the electronic expansion valve of the evaporator, the other end of the electronic expansion valve of the evaporator is connected to one end of the internal evaporator, and the other end of the internal evaporator is connected to the other end of the internal evaporator. Connect one end of the gas-liquid separator.
  • the other end of the gas-liquid separator is connected to one end of the liquid-cooled condenser
  • the other end of the liquid-cooled condenser is connected to one end of the battery electronic expansion valve
  • the battery electronic expansion valve is connected to one end of the battery electronic expansion valve. The other end is connected to the battery heat exchanger.
  • the heat pump system further includes a radiator
  • the other end of the liquid-cooled condenser is connected to one end of the radiator, and the other end of the radiator is connected to one end of the battery heat exchanger through the hydraulic valve
  • One end of the liquid-cooled condenser is connected to the other end of the gas-liquid separator, the other end of the liquid-cooled condenser is connected to one end of the battery electronic expansion valve, and the other end of the battery electronic expansion valve is connected to the battery electronic expansion valve.
  • the battery heat exchanger is connected.
  • the heat pump system further includes an HVAC assembly, the HVAC assembly includes an internal evaporator and an electronic expansion valve for the evaporator, and the electronic control system further includes an air conditioner controller;
  • the HVAC assembly is electrically connected to the air conditioner controller, and the air conditioner controller is electrically connected to the processor;
  • One end of the liquid-cooled condenser is connected to one end of the motor through the hydraulic valve, and the other end of the liquid-cooled condenser is connected to one end of the battery heat exchanger through the hydraulic valve, and the battery is exchanged.
  • the other end of the heater is connected to one end of the battery pack through the hydraulic valve, and the other end of the battery pack is connected to the other end of the motor through the hydraulic valve;
  • the other end of the liquid-cooled condenser is connected to one end of the electronic expansion valve of the evaporator, the other end of the electronic expansion valve of the evaporator is connected to one end of the internal evaporator, and the other end of the internal evaporator is connected to one end of the internal evaporator.
  • One end of the gas-liquid separator is connected, the other end of the gas-liquid separator is connected to one end of the compressor, and the other end of the compressor is connected to one end of the liquid-cooled condenser.
  • the heat pump system further includes a radiator
  • the other end of the liquid-cooled condenser is connected to one end of the radiator, and the other end of the radiator is connected to one end of the battery heat exchanger through the hydraulic valve.
  • the other end of the liquid-cooled condenser is connected to the other end of the battery heat exchanger, and one end of the battery heat exchanger is connected to one end of the gas-liquid separator.
  • the heat pump system further includes a battery electronic expansion valve
  • One end of the liquid-cooled condenser is connected to one end of the motor through the hydraulic valve, and the other end of the liquid-cooled condenser is connected to one end of the battery heat exchanger through the hydraulic valve, and the battery is exchanged.
  • the other end of the heater is connected to one end of the battery pack through the hydraulic valve, and the other end of the battery pack is connected to the other end of the motor through the hydraulic valve;
  • the other end of the liquid-cooled condenser is connected with one end of the cooling liquid heater, and the other end of the cooling liquid heater is connected with one end of the battery pack;
  • the other end of the liquid-cooled condenser is connected to one end of the battery electronic expansion valve, the other end of the battery electronic expansion valve is connected to the other end of the battery heat exchanger, and one end of the battery heat exchanger is connected to the other end of the battery heat exchanger.
  • One end of the gas-liquid separator is connected, the other end of the gas-liquid separator is connected to one end of the compressor, and the other end of the compressor is connected to one end of the liquid-cooled condenser.
  • the heat pump system further includes a radiator, the heat pump system further includes an HVAC assembly and an electronic battery expansion valve, and the HVAC assembly includes an internal condenser;
  • One end of the battery pack is connected to one end of the motor through the hydraulic valve, and the other end of the battery pack is connected to the other end of the motor through the hydraulic valve;
  • the other end of the battery heat exchanger is connected to one end of the liquid-cooled condenser through the hydraulic valve, the other end of the liquid-cooled condenser is connected to one end of the radiator, and the other end of the radiator is connected connected with one end of the battery heat exchanger through the hydraulic valve;
  • One end of the internal condenser is connected to one end of the battery electronic expansion valve, the other end of the battery electronic expansion valve is connected to the other end of the battery heat exchanger, and one end of the battery heat exchanger is connected to the battery heat exchanger.
  • One end of the gas-liquid separator is connected, the other end of the gas-liquid separator is connected with one end of the compressor, and the other end of the compressor is connected with the other end of the internal condenser.
  • a second aspect of the present invention provides an automobile, which includes the multi-circuit heat pump air-conditioning system for supporting low-temperature startup of the automobile according to the first aspect of the present invention.
  • the cooling liquid is heated by the cooling liquid heater and the heat is transferred to the battery heat exchanger, and the temperature of the refrigerant after absorbing the heat of the cooling liquid through the battery heat exchanger Increase, and change from liquid to gaseous state, so that the compressor can operate normally at low temperature, realize the low temperature start of the heat pump system, and then use the compressor to do work to heat the passenger compartment, solve the problem that the heat pump system is difficult to start at low temperature, and reduce additional components
  • the use of the system can reduce the cost of the system and avoid the maintenance of the corresponding devices, and is also conducive to saving energy.
  • the embodiment of the present invention not only realizes the thermal connection between the cooling liquid system and the heat pump system, but also supports the use of the compressor to work (instead of the water heater) to heat the passenger compartment and the battery pack at low temperature, so as to meet the optimal working temperature of the battery , reducing its attenuation at low temperature, which is conducive to improving battery life and increasing battery life, and reducing energy consumption.
  • FIG. 1 is a schematic diagram of a multi-circuit heat pump air-conditioning system that supports low-temperature startup of an automobile according to an embodiment of the present invention
  • FIG. 2 is a working principle diagram of heating mode 1 provided by an embodiment of the present invention.
  • FIG. 3 is a working principle diagram of heating mode 2 provided by an embodiment of the present invention.
  • FIG. 5 is a working principle diagram of heating mode 4 provided by an embodiment of the present invention.
  • FIG. 6 is a working principle diagram of heating mode 5 provided by an embodiment of the present invention.
  • FIG. 8 is a working principle diagram of a heating mode 7 provided by an embodiment of the present invention.
  • FIG. 9 is a working principle diagram of cooling mode 1 provided by an embodiment of the present invention.
  • FIG. 10 is a working principle diagram of heating mode 8 and heating mode 9 provided by an embodiment of the present invention.
  • FIG. 11 is a working principle diagram of a cooling mode 2 provided by an embodiment of the present invention.
  • FIG. 12 is a working principle diagram of cooling mode 3 provided by an embodiment of the present invention.
  • FIG. 13 is a working principle diagram of the heating mode 10 and the heating mode 11 provided by the embodiment of the present invention.
  • FIG. 14 is a working principle diagram of the heating mode 12 and the heating mode 13 provided by the embodiment of the present invention.
  • FIG. 1 is a structural diagram of a multi-circuit heat pump air-conditioning system that supports low-temperature startup of automobiles provided by an embodiment of the present invention. Specifically, as shown in FIG. 1 , a multi-circuit heat pump air-conditioning system that supports low-temperature startup of automobiles proposed by an embodiment of the present invention systems, including coolant systems, heat pump systems and electronic control systems.
  • the cooling liquid system includes a cooling liquid circuit, and the cooling liquid circuit includes DC/DC, a motor, a battery pack, a cooling liquid pipeline, a hydraulic valve and at least one water pump arranged in the cooling liquid pipeline, and at least one water pump Configured to pump coolant through a coolant circuit in a specific flow direction.
  • the motor includes a front motor and a rear motor, the front motor is connected in series with the DC/DC, and the front motor and the DC/DC are connected in parallel with the rear motor.
  • the hydraulic valve includes, but is not limited to, a three-way valve, a proportional three-way valve, a four-way valve, an eight-way valve, and a normally open valve, wherein the eight-way valve can also be replaced by two four-way valves.
  • the battery system and the electric drive system can be connected in series or in parallel.
  • the heat pump system includes a refrigerant circuit
  • the refrigerant circuit includes a gas-liquid separator, a compressor, a battery heat exchanger, a liquid-cooled condenser, a cooling liquid heater, a refrigerant pipeline, and a hydraulic pressure set in the refrigerant pipeline. valve.
  • the gas-liquid separator is generally installed between the evaporator and the compressor; the main functions are: 1. Prevent the low-temperature steam returning to the compressor from carrying too many droplets, prevent the liquid refrigerant from entering the compressor cylinder, and prevent the compressor from causing damage to the compressor. Liquid strike. 2Prevent the dilution of compressor oil by excessive refrigerant.
  • the separator also has the functions of filtration, oil return and liquid storage. Filtering the refrigerant can ensure that the gas entering the compressor is clean; oil return can ensure that the compressor oil is fully lubricated; liquid storage refers to accommodating part of the refrigerant that is not used in the system, in addition to preventing liquid shock, it can also ensure sufficient refrigerant circulation in the system .
  • the coolant heater is used to heat the coolant when the ambient temperature is lower than the preset temperature and the heat pump system is in a non-working state; the compressor is used to do work to heat the refrigerant in the refrigerant pipeline after the heat pump system is started; the refrigerant circuit has high pressure side and low pressure side, the compressor work makes the refrigerant circuit form a high pressure side and a low pressure side, thereby promoting the flow of the refrigerant.
  • the electronic control system includes a communication unit, a processor and a switching module;
  • the communication unit is configured to receive the ambient temperature outside the vehicle, the temperature regulation requirements of the passenger compartment and the battery pack, and the heat storage state of the battery pack;
  • the processor is configured to receive In order to generate a working mode switching instruction according to the ambient temperature outside the vehicle, the temperature regulation requirements of the passenger compartment and the battery pack, and the heat storage state of the battery pack;
  • the switching module is used for switching in response to the working mode switching instruction. the connection status of the cooling liquid circuit and/or the refrigerant circuit;
  • the communication unit is electrically connected to the processor, the processor is electrically connected to the switching module, and the cooling liquid circuit is thermally connected to the refrigerant circuit.
  • the thermal connection here refers to the heat exchange between the cooling liquid circuit and the refrigerant circuit.
  • the heat exchange between the cooling liquid and the refrigerant in the two circuits is realized through the battery heat exchanger or the liquid-cooled condenser. Exchange is not a single heat exchange, but a complex heat exchange process including heat convection and heat conduction.
  • the outside temperature sensor is disposed outside the vehicle body, for example, on the engine cover, luggage compartment cover, vehicle window, etc., for detecting the outside ambient temperature and sending the outside ambient temperature to the communication unit.
  • the battery heat exchanger can also be used as an evaporator.
  • FIG. 2 is a working principle diagram of a heating mode 1 provided by an embodiment of the present invention. Please refer to FIG. 2.
  • the multi-circuit heat pump air conditioning system works in the heating mode 1, and the multi-circuit heat pump air conditioning system includes a cooling liquid system. , heat pump system and electronic control system.
  • the cooling liquid system includes an electric drive module, a battery pack, a cooling liquid pipeline, a hydraulic valve and at least one water pump provided in the cooling liquid pipeline.
  • One end of the electric drive module is connected to one end of the liquid-cooled condenser through a hydraulic valve
  • the other end of the liquid-cooled condenser is connected to one end of the expansion kettle
  • the other end of the expansion kettle is connected to one end of the battery heat exchanger through a hydraulic valve.
  • the other end of the heater is connected to one end of the battery pack through a hydraulic valve
  • the other end of the battery pack is connected to the other end of the electric drive module through a hydraulic valve.
  • a water pump configured to pump the cooling liquid along the direction from the battery pack to the electric drive module, and between the expansion kettle and the battery heat exchanger is configured to pump the cooling liquid along the self-liquid
  • the water pump that flows from the cold condenser to the battery heat exchanger, and the flow direction of the cooling liquid is specifically shown in Figure 2: electric drive module ⁇ liquid cooling condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module.
  • the heat pump system includes a refrigerant circuit, an HVAC assembly (ie, the HVAC shown in FIG. 2 ) and a battery electronic expansion valve.
  • the refrigerant circuit includes a gas-liquid separator, a compressor, a battery heat exchanger, a liquid-cooled condenser, a cooling liquid heater, a refrigerant pipeline and a hydraulic valve arranged in the refrigerant pipeline.
  • the HVAC assembly includes an internal condenser, a blower, a damper and an air duct, and the electronic control system further includes an air conditioner controller.
  • the HVAC assembly is electrically connected to the air conditioner controller, and the air conditioner controller is electrically connected to the processor.
  • the opening of the battery electronic expansion valve increases or decreases according to the size of the load.
  • the refrigerant circuit has a high-pressure side and a low-pressure side.
  • the work of the compressor makes the refrigerant circuit form a high-pressure side and a low-pressure side, thereby pushing the refrigerant to flow in a specific flow direction in the refrigerant circuit.
  • the flow direction of the refrigerant is specifically shown in Figure 2 as follows: internal condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser.
  • the heat pump system absorbs heat from the battery system through the battery heat exchanger to heat the passenger compartment. At this time, the energy efficiency ratio (Coefficient Of Performance, COP) )Greater than 1.
  • the electronic control system determines that the heat conduction connection mode of the multi-circuit heat pump air conditioning system is heating mode 1.
  • the value of the first preset temperature range can be set according to actual needs.
  • the value of the first preset temperature range can be [-10°C, 10°C] or [-11°C, 9°C] , [-12°C, 12°C], etc. It should be pointed out that the above examples are only used to illustrate the value of the first preset temperature range, and should not be regarded as a limitation on the protection scope of the present invention. In practical applications, the value of the first preset temperature range includes but not Limited to the above temperature range.
  • the multi-circuit heat pump air conditioning system may not include a radiator as shown in FIG. 2 , or may include a radiator and set the radiator to a short-circuit state as shown in FIG. 1 .
  • the air conditioner is switched to partial internal circulation, and at this time, the fresh air is mixed with the air volume circulating in the passenger compartment.
  • the multi-circuit heat pump air conditioning system can work in heating mode 1 (refer to the above description about heating mode 1, which will not be repeated here), and can also work in heating mode 2.
  • FIG. 3 is a working principle diagram of a heating mode 2 provided by an embodiment of the present invention. Please refer to FIG. 2 and FIG. 3 .
  • the HVAC assembly of the multi-circuit heat pump air conditioning system shown in FIG. 3 also includes an internal radiator
  • the connection relationship between the internal radiator and other components in the multi-circuit heat pump air conditioning system is specifically: the other end of the liquid-cooled condenser is connected to one end of the internal radiator, and the other end of the internal radiator is connected to the The other end of the motor is connected.
  • the heat pump system When the ambient temperature outside the vehicle is within the first preset temperature range, when the passenger compartment needs to be heated, the passenger compartment is heated by the residual heat of the motor.
  • the heat pump system is used in combination with heating mode 1 to heat the passenger compartment. , the heat pump system absorbs heat from the battery system through the battery heat exchanger to heat the passenger compartment, and COP>1 at this time.
  • the electronic control system determines that the heat conduction connection mode of the multi-circuit heat pump air conditioning system is the heating mode 2 .
  • the heating mode 2 is a mixed heating mode, and its COP>1.
  • the flow direction of the coolant in heating mode 2 is: electric drive module ⁇ liquid-cooled condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module, electric drive module ⁇ liquid-cooled condenser ⁇ internal radiator ⁇ electric drive module.
  • the flow direction of the refrigerant in heating mode 2 is: internal condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser.
  • the multi-circuit heat pump air conditioning system can work in the heating mode 3 (see the above description about the heating mode 2, which will not be repeated here), and can also work in the heating mode 3.
  • Fig. 4 is a working principle diagram of heating mode 3 provided by an embodiment of the present invention. Please refer to Fig. 3 and Fig. 4. Compared with Fig. 3, the connection relationship of each component in the multi-circuit heat pump air conditioning system shown in Fig. 4 also includes the following Contents: The other end of the liquid-cooled condenser is connected to one end of the coolant heater, the other end of the coolant heater is connected to one end of the internal radiator, and the other end of the internal radiator is connected to the other end of the electric drive module.
  • the battery has excess heat storage, and when the passenger compartment needs to be heated, the heat pump and the coolant heater are used to heat the passenger compartment at the same time.
  • the heat source for the passenger compartment comes from the heat pump system and the coolant heater. Therefore, compared with heating mode 1, heating mode 3 can provide more heat for the passenger compartment.
  • heating mode 3 can provide more heat for the passenger compartment.
  • the second preset temperature range includes, but is not limited to, the ambient temperature outside the vehicle ⁇ -10°C.
  • the flow direction of the coolant in heating mode 3 is: electric drive module ⁇ liquid-cooled condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module, electric drive module ⁇ liquid-cooled condenser ⁇ coolant heater ⁇ internal radiator ⁇ electrical drive drive module.
  • the flow direction of the refrigerant in heating mode 3 is: internal condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser.
  • the air conditioner is switched to external circulation when heating mode 3 is adopted, which can support the defrosting operation to eliminate frost on the evaporator of the passenger compartment.
  • the coolant heater runs at partial power.
  • the power of the coolant heater in the air conditioning system is 8KW.
  • the partial power operation is only the heat source part to make up for the insufficient heat pump, and does not run at the power of 8KW, so as to achieve energy saving. Purpose.
  • the coolant heater includes but is not limited to a high-voltage coolant heater (High Voltage Coolant Heater, HVCH), wherein the high-voltage electric heater is also called a water heating PTC.
  • HVCH High Voltage Coolant Heater
  • Fig. 5 is a working principle diagram of heating mode 4 provided by an embodiment of the present invention. Please refer to Fig. 2 and Fig. 5.
  • the HVAC assembly of the multi-circuit heat pump air conditioning system shown in Fig. 5 also includes an internal evaporator and evaporator electronic expansion valve; the connection relationship of each component in the multi-circuit heat pump air conditioning system also includes the following content: one end of the internal condenser is connected to one end of the evaporator electronic expansion valve, and the evaporator electronic expansion valve The other end of the internal evaporator is connected to one end of the internal evaporator, and the other end of the internal evaporator is connected to one end of the gas-liquid separator.
  • the opening degree of the electronic expansion valve of the evaporator increases or decreases corresponding to the size of the load. open.
  • the battery When the ambient temperature outside the vehicle is within the second preset temperature range, the battery has no or little heat storage, and when the passenger compartment needs to be heated, heat is absorbed from the battery system through the heat pump system and ambient air in the passenger compartment is absorbed through the passenger compartment evaporator
  • the flow direction of the coolant in heating mode 4 is: electric drive module ⁇ liquid-cooled condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module.
  • the flow direction of refrigerant in heating mode 4 is: internal condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser, internal condenser ⁇ internal evaporator ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser.
  • Fig. 6 is a working principle diagram of heating mode 5 provided by an embodiment of the present invention. Please refer to Fig. 4 and Fig. 6.
  • the HVAC assembly of the multi-circuit heat pump air conditioning system shown in Fig. 6 also includes an internal evaporator and evaporator electronic expansion valve; the connection relationship of each component in the multi-circuit heat pump air conditioning system also includes the following content: one end of the internal condenser is connected to one end of the evaporator electronic expansion valve, and the evaporator electronic expansion valve The other end of the internal evaporator is connected to one end of the internal evaporator, and the other end of the internal evaporator is connected to one end of the gas-liquid separator.
  • the battery has heat storage, and when the passenger compartment needs to be heated with high power, the heat pump system is used to absorb heat from the battery system, and the auxiliary coolant heater is heated (not running at full power), The passenger compartment is heated by absorbing ambient heat through the passenger compartment evaporator. It is a mixed mode, and COP>1 at this time. Specifically, in this mode, the air is mixed in the air-conditioning system, and the internal evaporator of the HVAC assembly is connected in series with the internal condenser.
  • the flow direction of the coolant in heating mode 5 is: electric drive module ⁇ liquid-cooled condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module, electric drive module ⁇ liquid-cooled condenser ⁇ coolant heater ⁇ internal radiator ⁇ electrical drive drive module.
  • the flow direction of refrigerant in heating mode 5 is: internal condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser, internal condenser ⁇ internal evaporator ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser.
  • FIG. 7 is a working principle diagram of heating mode 6 provided by an embodiment of the present invention. Please continue to refer to FIG. 2 and FIG. 7.
  • the HVAC assembly shown in FIG. 7 further includes an internal evaporator and an evaporator electronic expansion valve; the other end of the liquid-cooled condenser is connected to one end of the cooling liquid heater, and the other end of the cooling liquid heater is connected to one end of the battery pack; the The other end of the internal condenser is connected to one end of the evaporator electronic expansion valve, the other end of the evaporator electronic expansion valve is connected to one end of the internal evaporator, and the other end of the internal evaporator is connected to the gas.
  • One end of the liquid separator is connected.
  • the battery When the ambient temperature outside the vehicle is within the second preset temperature range, the battery has no heat storage, and when the passenger compartment needs to be heated, under extreme conditions, for example, the ambient temperature outside the vehicle is about -30°C, the coolant temperature of the battery system is low , it is impossible to extract heat from it, and the passenger compartment is quickly heated through the work of the compressor.
  • the coolant heater is used to heat the coolant first.
  • the battery heat exchanger is turned on as the evaporator, and the internal evaporator is turned off; after a preset period of time, such as 4-5 minutes, the coolant heater and the battery exchange heat.
  • the compressor is closed, and the internal evaporator and the internal condenser are used in series, and the compressor is used to heat the passenger compartment. So as to achieve low temperature start and use the compressor to do work.
  • the flow direction of the coolant in heating mode 6 is: electric drive module ⁇ liquid-cooled condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module, electric drive module ⁇ liquid-cooled condenser ⁇ coolant heater ⁇ battery pack ⁇ electric drive module.
  • the flow direction of refrigerant in heating mode 6 is: internal condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser, internal condenser ⁇ internal evaporator ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser.
  • FIG. 8 is a working principle diagram of a heating mode 7 provided by an embodiment of the present invention. Please continue to refer to FIGS. 7 and 8.
  • the gas-liquid separator in FIG. The other end is connected to one end of the liquid-cooled condenser, the other end of the liquid-cooled condenser is connected to one end of the battery electronic expansion valve, and the other end of the battery electronic expansion valve is connected to the battery heat exchanger .
  • the ambient temperature outside the vehicle is within the second preset temperature range, when the battery and the passenger compartment need to be heated, under extreme conditions, the ambient temperature outside the vehicle is about -30°C, and the passenger compartment can be quickly heated without taking heat from the battery ,
  • the battery is heated by the liquid-cooled condenser, mainly to improve the charging efficiency and the discharge current of the battery.
  • the three-way valve downstream of the compressor controls the distribution of refrigerant flow, giving priority to the comfort of the passenger compartment.
  • the coolant heater is used to heat the coolant first.
  • the battery heat exchanger is turned on as the evaporator, and the internal evaporator is turned off; after a preset time, such as 4-5 minutes, the coolant heater and The battery heat exchanger is turned off, using an internal evaporator and an internal condenser in series, using compressor work to heat the passenger compartment. So as to achieve low temperature start and use the compressor to do work.
  • the flow direction of the coolant in heating mode 7 is: electric drive module ⁇ liquid-cooled condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module, electric drive module ⁇ liquid-cooled condenser ⁇ coolant heater ⁇ battery pack ⁇ electric drive module.
  • the flow direction of the refrigerant in heating mode 7 is: liquid-cooled condenser/internal condenser ⁇ battery heat exchanger/internal evaporator ⁇ gas-liquid separator ⁇ compressor ⁇ liquid-cooled condenser/internal condenser.
  • FIG. 9 is a working principle diagram of a cooling mode 1 provided by an embodiment of the present invention. Please continue to refer to FIGS. 2 and 9.
  • the heat pump system shown in FIG. 9 It also includes a radiator; the other end of the liquid-cooled condenser is connected to one end of the radiator, and the other end of the radiator is connected to one end of the battery heat exchanger through the hydraulic valve; the liquid cooling One end of the condenser is connected to the other end of the gas-liquid separator, the other end of the liquid-cooled condenser is connected to one end of the battery electronic expansion valve, and the other end of the battery electronic expansion valve is connected to the battery exchange. Heater connection.
  • the battery When the battery reaches above 40°C in summer, the battery has a forced cooling demand, and the passenger compartment has a little heating demand, after the refrigerant flows through the compressor, the flow distribution is controlled by the three-way valve, and the excess heat outside the passenger compartment heating demand is passed through the coolant.
  • the condenser and radiator are transmitted to the environment to dissipate heat. In this mode, the battery and the motor are connected in series through the eight-way valve, and the radiator works.
  • the flow direction of the coolant in cooling mode 1 is: electric drive module ⁇ liquid-cooled condenser ⁇ radiator ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module.
  • the flow direction of the refrigerant in cooling mode 1 is: liquid-cooled condenser/internal condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ liquid-cooled condenser/internal condenser.
  • FIG. 10 is a working principle diagram of heating mode 8 and heating mode 9 provided by an embodiment of the present invention.
  • the heat pump system further includes an HVAC assembly, and the HVAC assembly includes an internal evaporator and an evaporator electronic expansion valve,
  • the electronic control system further includes an air conditioner controller; the HVAC assembly is electrically connected to the air conditioner controller, and the air conditioner controller is electrically connected to the processor.
  • One end of the liquid-cooled condenser is connected to one end of the motor through the hydraulic valve, and the other end of the liquid-cooled condenser is connected to one end of the battery heat exchanger through the hydraulic valve, and the battery is exchanged.
  • the other end of the heater is connected to one end of the battery pack through the hydraulic valve, and the other end of the battery pack is connected to the other end of the motor through the hydraulic valve.
  • the other end of the liquid-cooled condenser is connected to one end of the electronic expansion valve of the evaporator, the other end of the electronic expansion valve of the evaporator is connected to one end of the internal evaporator, and the other end of the internal evaporator is connected to one end of the internal evaporator.
  • One end of the gas-liquid separator is connected, the other end of the gas-liquid separator is connected to one end of the compressor, and the other end of the compressor is connected to one end of the liquid-cooled condenser.
  • the evaporator in the passenger compartment absorbs the heat in the environment to heat the battery. It is generally used before driving or driving.
  • rear remote air conditioning system Among them, heating mode 8 is partial internal circulation, and mode 9 is full internal circulation.
  • the coolant system does not include the radiator or the radiator is shorted.
  • the third preset temperature range includes, but is not limited to, the ambient temperature outside the vehicle >-10°C.
  • the flow direction of the cooling liquid in heating mode 8 and heating mode 9 is: electric drive module ⁇ liquid-cooled condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module.
  • the flow direction of the refrigerant in heating mode 8 and heating mode 9 is: internal condenser ⁇ gas-liquid separator ⁇ compressor ⁇ liquid-cooled condenser ⁇ internal condenser.
  • FIG. 11 is a working principle diagram of the cooling mode 2 provided by the embodiment of the present invention.
  • FIG. 11 shows a mode in which the passenger compartment has a cooling demand in summer. In this mode, the internal condenser is activated to dehumidify the fresh air in a reheating manner. Fulfills the dehumidification needs of a warm cabin environment.
  • the multi-circuit heat pump air conditioning system of FIG. 11 further includes a radiator; the other end of the liquid-cooled condenser is connected to one end of the radiator, and the other end of the radiator is connected to the radiator through the hydraulic valve. One end of the battery heat exchanger is connected. The radiator works and the air is mixed in the air conditioning system.
  • the flow direction of the coolant in cooling mode 2 is: electric drive module ⁇ liquid-cooled condenser ⁇ radiator ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module.
  • the flow direction of refrigerant in cooling mode 2 is: internal evaporator ⁇ gas-liquid separator ⁇ compressor ⁇ liquid-cooled condenser ⁇ internal evaporator.
  • FIG. 12 is a working principle diagram of cooling mode 3 provided by an embodiment of the present invention.
  • FIG. 12 shows a mode in which the passenger compartment and the battery system are simultaneously cooled in summer.
  • the other end of the liquid-cooled condenser in FIG. 12 is The other end of the battery heat exchanger is connected, and one end of the battery heat exchanger is connected to one end of the gas-liquid separator.
  • the flow direction of the coolant in cooling mode 3 is: electric drive module ⁇ liquid-cooled condenser ⁇ radiator ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module.
  • the flow direction of the refrigerant in cooling mode 3 is: liquid-cooled condenser ⁇ internal evaporator/battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ liquid-cooled condenser.
  • FIG. 13 is a working principle diagram of the heating mode 10 and the heating mode 11 provided by the embodiment of the present invention.
  • the multi-circuit heat pump air conditioning system supporting the low temperature start of an automobile shown in FIG. 13 includes a cooling liquid system, a heat pump system and an electric control system.
  • the cooling liquid system includes a cooling liquid circuit, and the cooling liquid circuit includes DC/DC, a motor, a battery pack, a cooling liquid pipeline, a hydraulic valve and at least one water pump arranged in the cooling liquid pipeline, and at least one water pump Configured to pump coolant through a coolant circuit in a specific flow direction.
  • the coolant system may not include a radiator or set the electrical connection state of the radiator to a short circuit, and the refrigerant transfers heat to the battery through the coolant condenser.
  • the heat pump system includes a refrigerant circuit, and the refrigerant circuit includes a gas-liquid separator, a compressor, a battery heat exchanger, a liquid-cooled condenser, a cooling liquid heater, a battery electronic expansion valve, a refrigerant pipeline, and Hydraulic valve in line.
  • the refrigerant circuit includes a gas-liquid separator, a compressor, a battery heat exchanger, a liquid-cooled condenser, a cooling liquid heater, a battery electronic expansion valve, a refrigerant pipeline, and Hydraulic valve in line.
  • connection relationship of each component in the refrigerant circuit is as follows:
  • One end of the liquid-cooled condenser is connected to one end of the motor through the hydraulic valve, and the other end of the liquid-cooled condenser is connected to one end of the battery heat exchanger through the hydraulic valve, and the battery is exchanged.
  • the other end of the heater is connected to one end of the battery pack through the hydraulic valve, and the other end of the battery pack is connected to the other end of the motor through the hydraulic valve;
  • the other end of the liquid-cooled condenser is connected with one end of the cooling liquid heater, and the other end of the cooling liquid heater is connected with one end of the battery pack;
  • the other end of the liquid-cooled condenser is connected to one end of the battery electronic expansion valve, the other end of the battery electronic expansion valve is connected to the other end of the battery heat exchanger, and one end of the battery heat exchanger is connected to the other end of the battery heat exchanger.
  • One end of the gas-liquid separator is connected, the other end of the gas-liquid separator is connected to one end of the compressor, and the other end of the compressor is connected to one end of the liquid-cooled condenser.
  • the flow direction of the coolant in heating mode 10 and heating mode 11 is: electric drive module ⁇ liquid-cooled condenser ⁇ battery heat exchanger ⁇ battery pack ⁇ electric drive module, electric drive module ⁇ liquid-cooled condenser ⁇ coolant heater ⁇ battery Package ⁇ electric drive module.
  • the flow direction of the refrigerant in heating mode 9 and heating mode 10 is: liquid-cooled condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ liquid-cooled condenser.
  • the difference between the heating mode 9 and the heating mode 10 is that the heating mode 9 uses the coolant heater to assist in starting the heat pump system and then turns it off, and the mode 10 is that when the battery requires a large amount of heat, the coolant heater is no longer turned off (not fully power operation) together with the heat pump system to heat the battery.
  • FIG. 14 is a working principle diagram of the heating mode 12 and the heating mode 13 provided by an embodiment of the present invention.
  • the cooling liquid system further includes a radiator
  • the heat pump system further includes a radiator
  • the heat pump system further includes an HVAC An assembly and battery electronic expansion valve, the HVAC assembly including an internal condenser;
  • One end of the battery pack is connected to one end of the motor through the hydraulic valve, and the other end of the battery pack is connected to the other end of the motor through the hydraulic valve;
  • the other end of the battery heat exchanger is connected to one end of the liquid-cooled condenser through the hydraulic valve, the other end of the liquid-cooled condenser is connected to one end of the radiator, and the other end of the radiator is connected connected with one end of the battery heat exchanger through the hydraulic valve;
  • One end of the internal condenser is connected to one end of the battery electronic expansion valve, the other end of the battery electronic expansion valve is connected to the other end of the battery heat exchanger, and one end of the battery heat exchanger is connected to the battery heat exchanger.
  • One end of the gas-liquid separator is connected, the other end of the gas-liquid separator is connected with one end of the compressor, and the other end of the compressor is connected with the other end of the internal condenser.
  • both the passenger compartment and the battery need to be heated.
  • the heat pump system absorbs the heat of the cooling liquid in the circulation through the battery heat exchanger, and the temperature of the cooling liquid continues to decrease.
  • the coolant absorbs heat from the environment as it flows through the radiator.
  • the electronic control system determines that the heat conduction connection mode of the multi-circuit heat pump air conditioning system is the heating mode 12, and the eight-way valve/four-way valve in the heating mode 12 realizes the battery
  • the heat exchanger is connected in series with the radiator, and the battery system is connected in series with the motor system. When the temperature of the motor system is higher than that of the battery, it is used for preheating the battery, which is beneficial to improve the efficiency.
  • the radiator works and the HVAC is circulated outside.
  • the battery When the ambient temperature outside the vehicle is within the third preset temperature range, the battery has a certain amount of heat storage. During the preheating of the passenger compartment, the heat in the environment is collected through the radiator to preheat the passenger compartment. When the ambient temperature outside the vehicle is moderate (- 10°C or higher, the battery temperature is slightly lower than the ambient temperature outside the vehicle) is more effective for heating the passenger compartment. The radiator works and the HVAC is recirculated. In this state, the electronic control system determines that the heat conduction connection mode of the multi-circuit heat pump air conditioning system is heating mode 13. In heating mode 13, the internal evaporator and condenser are connected in series, which can support dehumidification of the passenger compartment in a low temperature environment.
  • the flow direction of the cooling liquid in heating mode 12 and heating mode 13 is: electric drive module ⁇ battery pack ⁇ electric drive module, liquid-cooled condenser ⁇ radiator ⁇ battery heat exchanger ⁇ liquid-cooled condenser.
  • the flow direction of the refrigerant in heating mode 12 and heating mode 13 is: internal condenser ⁇ battery heat exchanger ⁇ gas-liquid separator ⁇ compressor ⁇ internal condenser.
  • the multi-circuit heat pump air conditioning system provided by the embodiment of the present invention may have all or some of the components shown in FIG. 1 , and the connection relationship between the components may adopt the connection methods described in one or more of the above embodiments, Therefore, there are multiple heating modes and/or cooling modes.
  • the multi-circuit heat pump air-conditioning system has all the components and connection relationships shown in More mixing is performed in heating modes 3, 4, and 5, heating mode 6 is used when the heat source is insufficient, and heating modes 7, 10, and 11 are used if the battery is in urgent need of heating; Car air conditioning heating modes 8, 9 and 11, etc.
  • the embodiment of the present invention determines the heat conduction connection mode of the multi-circuit heat pump air conditioning system according to the ambient temperature outside the vehicle, the temperature regulation requirements of the passenger compartment and the battery pack, and the heat storage state of the battery pack, so that the heat pump system can be started at extremely low temperature and heated to other Mode transition, so as to solve the problem of battery life in winter and thermal comfort of the passenger compartment, which is conducive to the flexible use of heat sources inside and outside the car.
  • An embodiment of the present invention further provides an automobile, which includes the multi-circuit heat pump air conditioning system for supporting the low temperature start of the automobile proposed in any of the foregoing embodiments.
  • the embodiments of the present invention support the low-temperature start-up of the heat pump system without adding additional refrigerant state changing devices, reducing additional
  • the use of components can reduce the cost of the system and avoid the maintenance of the corresponding equipment.
  • it also supports the heat storage of the passenger compartment in the battery, and uses this part of the heat to heat the passenger compartment during the next drive (about 1-2 hours), thereby improving the utilization rate of energy.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种支持汽车低温启动的多回路热泵空调系统及汽车,其中,系统包括冷却液系统、热泵系统和电控系统;冷却液系统包括冷却液回路;热泵系统包括冷媒回路,冷媒回路包括气液分离器、压缩机、电池换热器、液冷冷凝器、冷却液加热器、冷媒管路以及设于冷媒管路中的液压阀;冷却液加热器用于在环境温度低于预设温度且热泵系统处于非工作状态时加热冷却液;压缩机用于在热泵系统启动后做功以加热冷媒管路中的冷媒;电控系统包括通信单元、处理器和切换模块;冷却液回路与冷媒回路热连接。在不增加额外冷媒状态改变装置的前提下,解决了低温下热泵系统难以启动的问题。

Description

一种支持汽车低温启动的多回路热泵空调系统及汽车 技术领域
本发明涉及车辆热管理技术领域,具体涉及一种支持汽车低温启动的多回路热泵空调系统及汽车。
背景技术
随着新能源车销量的日益增长,整车热管理也成为汽车行业中快速增长的子行业和需重点突破的领域之一。目前,许多电动汽车中使用热泵空调系统,以满足冬季车内供暖的需求。但热泵系统是在空调系统的基础上增加热泵的零部件,导致系统的复杂度和耦合度大大增加,同时热泵系统的车外换热器易结霜,冬季制热效果差,因此配合辅助加热方式,此方式对车辆的续航影响较大,而且电池的寿命也会有所降低。
现有技术中具有低温启动功能的汽车热泵空调系统通过设计冷媒状态改变装置改变冷媒状态使电动压缩机在低温下正常运转,实现热泵系统的低温启动,但冷媒状态改变装置的增加使得系统的复杂度及系统的成本也随之增加,系统可靠性和可维护性变差。同时现有的汽车热泵空调系统加热模式不够丰富,对于车内外的热源利用不够灵活与充分,整个系统的能量利用率较低。极端条件下,例如-30℃左右,冷媒为液态使得压缩机在低温下的加热效果较差。因此,有必要对现有技术加以改进以解决上述问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明第一方面提出一种支持汽车低温启动的多回路热泵空调系统,包括冷却液系统、热泵系统和电控系统;
所述冷却液系统包括冷却液回路,所述冷却液回路包括DC/DC、电机、 电池包、冷却液管路以及设于所述冷却液管路中的液压阀和至少一个水泵;
所述热泵系统包括冷媒回路,所述冷媒回路包括气液分离器、压缩机、电池换热器、液冷冷凝器、冷却液加热器、冷媒管路以及设于所述冷媒管路中的液压阀;所述冷却液加热器用于在环境温度低于预设温度且热泵系统处于非工作状态时加热冷却液;所述压缩机用于在热泵系统启动后做功以加热所述冷媒管路中的冷媒;
所述电控系统包括通信单元、处理器和切换模块;所述通信单元被配置为接收车外环境温度、乘员舱和电池包的温度调控需求和电池包储热状态;所述处理器被配置为根据所述车外环境温度、所述乘员舱和电池包的温度调控需求以及所述电池包储热状态,生成工作模式切换指令;所述切换模块用于响应于所述工作模式切换指令切换所述冷却液回路和/或所述冷媒回路的连接状态;
所述通信单元与所述处理器电连接,所述处理器与所述切换模块电连接,所述冷却液回路与所述冷媒回路热连接。
进一步地,所述热泵系统还包括HVAC总成和电池电子膨胀阀,所述HVAC总成包括内部冷凝器、鼓风机、风门及风道,所述电控系统还包括空调控制器;
所述HVAC总成与所述空调控制器电连接,所述空调控制器与所述处理器电连接;
所述液冷冷凝器的一端通过所述液压阀与所述电机的一端连接,所述液冷冷凝器的另一端通过所述液压阀与所述电池换热器的一端连接,所述电池换热器的另一端通过所述液压阀与所述电池包的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
所述内部冷凝器的一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述内部冷凝器的另一端连接。
进一步地,所述HVAC总成还包括内部散热器;
所述液冷冷凝器的另一端与所述内部散热器的一端连接,所述内部散 热器的另一端与所述电机的另一端连接。
进一步地,所述液冷冷凝器的另一端与所述冷却液加热器的一端连接,所述冷却液加热器的另一端与所述内部散热器的一端连接,所述内部散热器的另一端与所述电机的另一端连接。
进一步地,所述HVAC总成还包括内部蒸发器和蒸发器电子膨胀阀;
所述内部冷凝器的一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接。
进一步地,所述HVAC总成还包括内部蒸发器和蒸发器电子膨胀阀;
所述液冷冷凝器的另一端与所述冷却液加热器的一端连接,所述冷却液加热器的另一端与所述电池包的一端连接;
所述内部冷凝器的另一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接。
进一步地,所述气液分离器的另一端与所述液冷冷凝器的一端连接,所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器连接。
进一步地,所述热泵系统还包括散热器;
所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接
所述液冷冷凝器的一端与所述气液分离器的另一端连接,所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器连接。
进一步地,所述热泵系统还包括HVAC总成,所述HVAC总成包括内部蒸发器和蒸发器电子膨胀阀,所述电控系统还包括空调控制器;
所述HVAC总成与所述空调控制器电连接,所述空调控制器与所述处理器电连接;
所述液冷冷凝器的一端通过所述液压阀与所述电机的一端连接,所述液冷冷凝器的另一端通过所述液压阀与所述电池换热器的一端连接,所述 电池换热器的另一端通过所述液压阀与所述电池包的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
所述液冷冷凝器的另一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述液冷冷凝器的一端连接。
进一步地,所述热泵系统还包括散热器;
所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接。
进一步地,所述液冷冷凝器的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接。
进一步地,所述热泵系统还包括电池电子膨胀阀;
所述液冷冷凝器的一端通过所述液压阀与所述电机的一端连接,所述液冷冷凝器的另一端通过所述液压阀与所述电池换热器的一端连接,所述电池换热器的另一端通过所述液压阀与所述电池包的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
所述液冷冷凝器的另一端与所述冷却液加热器的一端连接,所述冷却液加热器的另一端与所述电池包的一端连接;
所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述液冷冷凝器的一端连接。
进一步地,所述热泵系统还包括散热器,所述热泵系统还包括HVAC总成和电池电子膨胀阀,所述HVAC总成包括内部冷凝器;
所述电池包的一端通过所述液压阀与所述电机的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
所述电池换热器的另一端通过所述液压阀与所述液冷冷凝器的一端连接,所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接;
所述内部冷凝器的一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述内部冷凝器的另一端连接。
本发明第二方面提出一种汽车,所述汽车包括本发明第一方面所述的支持汽车低温启动的多回路热泵空调系统。
实施本发明具有以下有益效果:
(1)本发明实施例在不增加额外冷媒状态改变装置的前提下,通过冷却液加热器加热冷却液并将热量输送至电池换热器,冷媒通过电池换热器吸收冷却液的热量后温度增加,并从液态转变为气态,从而使压缩机能够在低温下正常运转,实现热泵系统的低温启动,而后利用压缩机做功加热乘员舱,解决了低温下热泵系统难以启动的问题,减少额外部件的使用,可降低系统的成本及避免对相应装置的维护,还有利于节约能源。
(2)本发明实施例不仅实现了冷却液系统和热泵系统的热连接,还支持低温下使用压缩机做功(而非水加热器)加热乘员舱和电池包,从而满足电池的最佳工作温度,减少其低温下的衰减,有利于提高电池的寿命及增加续航,并减少能耗。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本发明实施例提供的一种支持汽车低温启动的多回路热泵空调系统的架构图;
图2是本发明实施例提供的加热模式1的工作原理图;
图3是本发明实施例提供的加热模式2的工作原理图;
图4是本发明实施例提供的加热模式3的工作原理图;
图5是本发明实施例提供的加热模式4的工作原理图;
图6是本发明实施例提供的加热模式5的工作原理图;
图7是本发明实施例提供的加热模式6的工作原理图;
图8是本发明实施例提供的加热模式7的工作原理图;
图9是本发明实施例提供的制冷模式1的工作原理图;
图10是本发明实施例提供的加热模式8和加热模式9的工作原理图;
图11是本发明实施例提供的制冷模式2的工作原理图;
图12是本发明实施例提供的制冷模式3的工作原理图;
图13是本发明实施例提供的加热模式10和加热模式11的工作原理图;
图14是本发明实施例提供的加热模式12和加热模式13的工作原理图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
实施例
图1是本发明实施例提供的一种支持汽车低温启动的多回路热泵空调系统的架构图,具体的如图1所示,本发明实施例提出的一种支持汽车低温启动的多回路热泵空调系统,包括冷却液系统、热泵系统和电控系统。
所述冷却液系统包括冷却液回路,所述冷却液回路包括DC/DC、电机、电池包、冷却液管路以及设于所述冷却液管路中的液压阀和至少一个水泵,至少一个水泵构造成泵送冷却液沿特定的流动方向通过冷却液回路。
详细地,电机包括前电机和后电机,前电机与DC/DC串联连接,前电机和DC/DC与后电机并联连接。
详细地,液压阀包括但不限于三通阀、比例三通阀、四通阀、八通阀、常开阀,其中,八通阀还可以用两个四通阀替代。根据四通阀和/或八通阀的连通状态不同,电池系统与电驱系统之间可以形成串联与并联状态。
所述热泵系统包括冷媒回路,所述冷媒回路包括气液分离器、压缩机、电池换热器、液冷冷凝器、冷却液加热器、冷媒管路以及设于所述冷媒管路中的液压阀。其中,气液分离器一般安装在蒸发器和压缩机之间;主要作用是:①防止返回压缩机的低温蒸汽携带过多的液滴,防止液体制冷剂进入压缩机气缸,防止对压缩机造成液击。②防止过多冷剂对压缩机油的稀释。③分离器同时具有过滤、回油、贮液等功能。过滤冷媒可以保证进入压缩机的气体洁净;回油可以保证压缩机油充分的润滑;贮液是指容纳系统中不用的部分冷媒,除了防止液击外还可以保证系统中有充分的冷剂循环。冷却液加热器用于在环境温度低于预设温度且热泵系统处于非工作状态时加热冷却液;压缩机用于在热泵系统启动后做功以加热所述冷媒管路中的冷媒;冷媒回路有高压侧和低压侧,压缩机做功使得冷媒回路形成高压侧和低压侧,从而推动冷媒流动。
所述电控系统包括通信单元、处理器和切换模块;所述通信单元被配置为接收车外环境温度、乘员舱和电池包的温度调控需求和电池包储热状态;所述处理器被配置为根据所述车外环境温度、所述乘员舱和电池包的温度调控需求以及所述电池包储热状态,生成工作模式切换指令;所述切换模块用于响应于所述工作模式切换指令切换所述冷却液回路和/或所述冷媒回路的连接状态;
所述通信单元与所述处理器电连接,所述处理器与所述切换模块电连接,所述冷却液回路与所述冷媒回路热连接。这里的热连接是指冷却液回路与冷媒回路之间有热量交换,通过电池换热器或者液冷冷凝器实现两个回路中的冷却液与冷媒之间的热交换,换热器内的热交换不是单一的换热,而是包含热对流与热传导的复杂换热过程。
具体地,车外温度传感器设置在车体外部,例如,发动机盖、行李舱盖、 车窗等位置,用于检测车外环境温度并将车外环境温度发送给通信单元。
具体地,电池换热器还可以作为蒸发器使用。
图2是本发明实施例提供的加热模式1的工作原理图,请参照图2,在一个实施例中,多回路热泵空调系统工作在加热模式1下,该多回路热泵空调系统包括冷却液系统、热泵系统和电控系统。
冷却液系统包括电驱模块、电池包、冷却液管路以及设于所述冷却液管路中的液压阀和至少一个水泵。电驱模块的一端通过液压阀与液冷冷凝器的一端连接,液冷冷凝器的另一端与膨胀水壶的一端连接,膨胀水壶的另一端通过液压阀与电池换热器的一端连接,电池换热器的另一端通过液压阀与电池包的一端连接,电池包的另一端通过液压阀与电驱模块的另一端连接。
电池包与电驱模块之间设置有构造成泵送冷却液沿自电池包向电驱模块的方向流动的水泵,膨胀水壶与电池换热器之间设置有构造成泵送冷却液沿自液冷冷凝器向电池换热器的方向流动的水泵,冷却液的流向具体地如图2所示为:电驱模块→液冷冷凝器→电池换热器→电池包→电驱模块。
热泵系统包括冷媒回路、HVAC总成(即图2示出的HVAC)和电池电子膨胀阀。所述冷媒回路包括气液分离器、压缩机、电池换热器、液冷冷凝器、冷却液加热器、冷媒管路以及设于所述冷媒管路中的液压阀。所述HVAC总成包括内部冷凝器、鼓风机、风门及风道,所述电控系统还包括空调控制器。所述HVAC总成与所述空调控制器电连接,所述空调控制器与所述处理器电连接。电池电子膨胀阀的开度相应于负载的大小而增减。
所述内部冷凝器的一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述内部冷凝器的另一端连接。冷媒回路有高压侧和低压侧,压缩机做功使得冷媒回路形成高压侧和低压侧,从而推动冷媒在冷媒回路内沿特定的流动方向流动。冷媒的流向具体地如图2所示为:内部冷凝器→电池换热器→气液分离器→压缩机→内部冷凝器。
在车外环境温度在第一预设温度范围内,仅乘员舱需要加热时,热泵系统通过电池换热器从电池系统吸收热量,对乘员舱进行加热,此时能效比(Coefficient Of Performance,COP)大于1。当电机循环系统中部件的温度高于电池系统的温度时,电控系统确定多回路热泵空调系统的热传导连接模式为加热模式1。
其中,第一预设温度范围的取值可以根据实际需要进行设置,例如第一预设温度范围的取值可以是[-10℃,10℃],还可以是[-11℃,9℃]、[-12℃,12℃]等。需要指出的是,上述示例仅用于对第一预设温度范围的取值进行举例说明,不应视为对本发明保护范围的限制,实际应用中第一预设温度范围的取值包括但不限于以上温度范围。
在其他方案中多回路热泵空调系统可以如图2所示不包括散热器,也可以如图1所示包括散热器并将散热器设置为短路状态。
具体地,该模式下空调切换至部分内循环,此时新风和乘员舱内循环的风量混合。
在一个实施例中,多回路热泵空调系统可以在加热模式1下工作(参见上述关于加热模式1的记载,此处不再赘述),也可以在加热模式2下工作。
图3是本发明实施例提供的加热模式2的工作原理图,请参照图2和图3,与图2相比,图3示出的多回路热泵空调系统的HVAC总成还包括内部散热器;该内部散热器与多回路热泵空调系统内的其他部件连接关系具体为:所述液冷冷凝器的另一端与所述内部散热器的一端连接,所述内部散热器的另一端与所述电机的另一端连接。
在车外环境温度在第一预设温度范围内,乘员舱需要加热时,通过电机的余热加热乘员舱,当此方式不能满足乘员舱的加热需求时,结合加热模式1,通过热泵系统进行加热,热泵系统通过电池换热器从电池系统吸收热量,对乘员舱进行加热,此时COP>1。当电机循环系统中部件的温度高于电池系统的温度时,电控系统确定多回路热泵空调系统的热传导连接模式为加热模式2。加热模式2为混合加热模式,其COP>1。
加热模式2中冷却液的流向为:电驱模块→液冷冷凝器→电池换热器 →电池包→电驱模块,电驱模块→液冷冷凝器→内部散热器→电驱模块。
加热模式2中冷媒的流向为:内部冷凝器→电池换热器→气液分离器→压缩机→内部冷凝器。
在一个实施例中,多回路热泵空调系统可以在加热模式3下工作(参见上述关于加热模式2的记载,此处不再赘述),也可以在加热模式3下工作。
图4是本发明实施例提供的加热模式3的工作原理图,请参照图3和图4,与图3相比,图4示出的多回路热泵空调系统内的各部件连接关系还包括以下内容:液冷冷凝器的另一端与冷却液加热器的一端连接,冷却液加热器的另一端与内部散热器的一端连接,内部散热器的另一端与电驱模块的另一端连接。
在车外环境温度在第二预设温度范围内,电池有多余储热,乘员舱需加热时,通过热泵与冷却液加热器同时对乘员舱加热。热泵加热时COP>1,冷却液加热器加热时COP=1,因此,加热模式3为混合加热模式,其COP>1。
乘员舱的热源来自于热泵系统和冷却液加热器。因此,加热模式3相比于加热模式1,能为乘员舱提供更多的热量,当电池系统的温度较低,无法满足乘员舱的热舒适需求,或者乘员舱有分区需求(例如主副驾要求不同的出风温度)时,采用此模式进行加热。具体的,第二预设温度范围包括但不限于车外环境温度<-10℃。
加热模式3中冷却液的流向为:电驱模块→液冷冷凝器→电池换热器→电池包→电驱模块,电驱模块→液冷冷凝器→冷却液加热器→内部散热器→电驱模块。
加热模式3中冷媒的流向为:内部冷凝器→电池换热器→气液分离器→压缩机→内部冷凝器。
具体地,采用加热模式3时空调切换至外循环,该模式可支持除霜操作,以消除乘员舱蒸发器上的结霜。具体地,冷却液加热器为非全功率运行,例如,空调系统的冷却液加热器功率是8KW,这里非全功率运行只是弥补热泵不足的热源部分,不以8KW的功率运行,从而达到节能的目的。
可选地,冷却液加热器包括但不限于高压冷却液加热器(High Voltage  Coolant Heater,HVCH),其中,高压电加热器又称水暖PTC。
图5是本发明实施例提供的加热模式4的工作原理图,请参照图2和图5,与图2相比,图5示出的多回路热泵空调系统的HVAC总成还包括内部蒸发器和蒸发器电子膨胀阀;该多回路热泵空调系统内的各部件连接关系还包括以下内容:所述内部冷凝器的一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接。
具体地,在仅有制热/制冷功能运行时,蒸发器电子膨胀阀的开度相应于负载的大小而增减,在除湿除雾和消除蒸发器结霜功能运行时,电子膨胀阀为全开。
在车外环境温度在第二预设温度范围内,电池无储热或储热不多,乘员舱需加热时,通过热泵系统从电池系统吸热同时通过乘员舱蒸发器吸收乘员舱内环境空气的热量加热乘员舱,从电池吸热的热泵系统COP>1,从乘员舱内空气吸收热量的COP=1,此模式为混合模式,COP>1。
加热模式4中冷却液的流向为:电驱模块→液冷冷凝器→电池换热器→电池包→电驱模块。
加热模式4中冷媒的流向为:内部冷凝器→电池换热器→气液分离器→压缩机→内部冷凝器,内部冷凝器→内部蒸发器→气液分离器→压缩机→内部冷凝器。
图6是本发明实施例提供的加热模式5的工作原理图,请参照图4和图6,与图4相比,图6示出的多回路热泵空调系统的HVAC总成还包括内部蒸发器和蒸发器电子膨胀阀;该多回路热泵空调系统内的各部件连接关系还包括以下内容:所述内部冷凝器的一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接。
在车外环境温度在第二预设温度范围内,电池有储热,乘员舱需较大功率加热时,通过热泵系统从电池系统吸热,辅助冷却液加热器加热(非全功率运行),通过乘员舱蒸发器吸收环境热量对乘员舱进行加热。为混合模式,此时COP>1。具体地,该模式下空调系统内混风,HVAC总成的内 部蒸发器与内部冷凝器串联。
加热模式5中冷却液的流向为:电驱模块→液冷冷凝器→电池换热器→电池包→电驱模块,电驱模块→液冷冷凝器→冷却液加热器→内部散热器→电驱模块。
加热模式5中冷媒的流向为:内部冷凝器→电池换热器→气液分离器→压缩机→内部冷凝器,内部冷凝器→内部蒸发器→气液分离器→压缩机→内部冷凝器。
图7是本发明实施例提供的加热模式6的工作原理图,请继续参照图2和图7,与图2示出的多回路热泵空调系统相比,图7示出的HVAC总成还包括内部蒸发器和蒸发器电子膨胀阀;所述液冷冷凝器的另一端与所述冷却液加热器的一端连接,所述冷却液加热器的另一端与所述电池包的一端连接;所述内部冷凝器的另一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接。
在车外环境温度在第二预设温度范围内,电池无储热,乘员舱需加热时,在极端的条件下,例如,车外环境温度-30℃左右,电池系统的冷却液温度较低,无法从中取热,通过压缩机做功来快速对乘员舱加热。具体是先使用冷却液加热器加热冷却液,此时开启的是电池换热器作为蒸发器,内部蒸发器关闭;经过预设时长,例如4-5分钟后,冷却液加热器和电池换热器关闭,使用内部蒸发器和内部冷凝器串联的方式,利用压缩机做功来为乘员舱加热。从而实现低温启动并利用压缩机做功。
该模式下COP=1,空调系统内混风,需要保持最佳的内外循环比例和最低的舒适性需求,若全内循环易引起乘客的憋闷及起雾风险增加。
加热模式6中冷却液的流向为:电驱模块→液冷冷凝器→电池换热器→电池包→电驱模块,电驱模块→液冷冷凝器→冷却液加热器→电池包→电驱模块。
加热模式6中冷媒的流向为:内部冷凝器→电池换热器→气液分离器→压缩机→内部冷凝器,内部冷凝器→内部蒸发器→气液分离器→压缩机→内部冷凝器。
图8是本发明实施例提供的加热模式7的工作原理图,请继续参照图7和图8,与图7示出的多回路热泵空调系统相比,图8中所述气液分离器的另一端与所述液冷冷凝器的一端连接,所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器连接。
在车外环境温度在第二预设温度范围内,电池和乘员舱需加热时,在极端条件下,车外环境温度-30℃左右,在不从电池取热的情况下,快速加热乘员舱,当有多余的加热功率时,通过液冷冷凝器来对电池加热,主要为提高充电效率和电池的放电电流。压缩机下游的三通阀来控制冷媒流量分配,优先保证乘员舱的舒适性。
该模式下具体是先使用冷却液加热器加热冷却液,此时开启的是电池换热器作为蒸发器,内部蒸发器关闭;经过预设时长,例如4-5分钟后,冷却液加热器和电池换热器关闭,使用内部蒸发器和内部冷凝器串联的方式,利用压缩机做功来为乘员舱加热。从而实现低温启动并利用压缩机做功。
加热模式7中冷却液的流向为:电驱模块→液冷冷凝器→电池换热器→电池包→电驱模块,电驱模块→液冷冷凝器→冷却液加热器→电池包→电驱模块。
加热模式7中冷媒的流向为:液冷冷凝器/内部冷凝器→电池换热器/内部蒸发器→气液分离器→压缩机→液冷冷凝器/内部冷凝器。
图9是本发明实施例提供的制冷模式1的工作原理图,请继续参照图2和图9,与图2示出的多回路热泵空调系统相比,图9中示出的所述热泵系统还包括散热器;所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接;所述液冷冷凝器的一端与所述气液分离器的另一端连接,所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器连接。
在夏季电池达到40℃以上,电池有强制冷需求,且乘员舱有少许加热需求时,冷媒流经压缩机后,通过三通阀控制流量分配,满足乘员舱加热 需求外的多余热量通过冷却液冷凝器及散热器传至环境中散热。此模式下电池与电机通过八通阀大循环串联,散热器工作。
制冷模式1中冷却液的流向为:电驱模块→液冷冷凝器→散热器→电池换热器→电池包→电驱模块。
制冷模式1中冷媒的流向为:液冷冷凝器/内部冷凝器→电池换热器→气液分离器→压缩机→液冷冷凝器/内部冷凝器。
图10是本发明实施例提供的加热模式8和加热模式9的工作原理图,请参照图10,热泵系统还包括HVAC总成,所述HVAC总成包括内部蒸发器和蒸发器电子膨胀阀,所述电控系统还包括空调控制器;所述HVAC总成与所述空调控制器电连接,所述空调控制器与所述处理器电连接。
所述液冷冷凝器的一端通过所述液压阀与所述电机的一端连接,所述液冷冷凝器的另一端通过所述液压阀与所述电池换热器的一端连接,所述电池换热器的另一端通过所述液压阀与所述电池包的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接。
所述液冷冷凝器的另一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述液冷冷凝器的一端连接。
在车外环境温度在第三预设温度范围内时,乘员舱有余热,为电池预加热/储热时,通过乘员舱的蒸发器吸收环境中的热量实现加热电池,一般应用行驶前或行驶后的远程空调系统。其中,加热模式8为部分内循环,模式9为全内循环。其中,冷却液系统不包括散热器或散热器短路。
具体的,第三预设温度范围包括但不限于车外环境温度>-10℃。
加热模式8和加热模式9中冷却液的流向为:电驱模块→液冷冷凝器→电池换热器→电池包→电驱模块。
加热模式8和加热模式9中冷媒的流向为:内部冷凝器→气液分离器→压缩机→液冷冷凝器→内部冷凝器。
图11是本发明实施例提供的制冷模式2的工作原理图,图11示出了夏季乘员舱有制冷需求的模式,此模式下内部冷凝器处于激活状态,以再 热的方式为新风除湿,实现温暖客舱环境的除湿需求。与图10相比,图11的多回路热泵空调系统还包括散热器;所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接。散热器工作,空调系统内混风。
制冷模式2中冷却液的流向为:电驱模块→液冷冷凝器→散热器→电池换热器→电池包→电驱模块。
制冷模式2中冷媒的流向为:内部蒸发器→气液分离器→压缩机→液冷冷凝器→内部蒸发器。
图12是本发明实施例提供的制冷模式3的工作原理图,图12示出了夏季乘员舱和电池系统同时制冷的模式,与图11相比,图12中液冷冷凝器的另一端与电池换热器的另一端连接,电池换热器的一端与气液分离器的一端连接。
制冷模式3中冷却液的流向为:电驱模块→液冷冷凝器→散热器→电池换热器→电池包→电驱模块。
制冷模式3中冷媒的流向为:液冷冷凝器→内部蒸发器/电池换热器→气液分离器→压缩机→液冷冷凝器。
图13是本发明实施例提供的加热模式10和加热模式11的工作原理图,图13示出的支持汽车低温启动的多回路热泵空调系统包括冷却液系统、热泵系统和电控系统。
所述冷却液系统包括冷却液回路,所述冷却液回路包括DC/DC、电机、电池包、冷却液管路以及设于所述冷却液管路中的液压阀和至少一个水泵,至少一个水泵构造成泵送冷却液沿特定的流动方向通过冷却液回路。冷却液系统可以不包括散热器或将散热器的电连接状态设置为短路,冷媒通过冷却液冷凝器为电池传递热量。
所述热泵系统包括冷媒回路,所述冷媒回路包括气液分离器、压缩机、电池换热器、液冷冷凝器、冷却液加热器、电池电子膨胀阀、冷媒管路以及设于所述冷媒管路中的液压阀。
其中,冷媒回路中各部件的连接关系如下所述:
所述液冷冷凝器的一端通过所述液压阀与所述电机的一端连接,所述 液冷冷凝器的另一端通过所述液压阀与所述电池换热器的一端连接,所述电池换热器的另一端通过所述液压阀与所述电池包的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
所述液冷冷凝器的另一端与所述冷却液加热器的一端连接,所述冷却液加热器的另一端与所述电池包的一端连接;
所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述液冷冷凝器的一端连接。
在车外环境温度在第二预设温度范围内,且仅电池需加热时,以压缩机作为热源快速加热电池,当车速优先级较高或者较冷的环境中充电时,此模式较为有效,COP=1。
加热模式10与加热模式11中冷却液的流向为:电驱模块→液冷冷凝器→电池换热器→电池包→电驱模块,电驱模块→液冷冷凝器→冷却液加热器→电池包→电驱模块。
加热模式9与加热模式10中冷媒的流向为:液冷冷凝器→电池换热器→气液分离器→压缩机→液冷冷凝器。
具体地,加热模式9与加热模式10的区别在于,加热模式9是采用冷却液加热器辅助启动热泵系统后关闭,模式10是电池需热量较大时,冷却液加热器不再关闭(非全功率运行)与热泵系统共同为电池加热。
图14是本发明实施例提供的加热模式12和加热模式13的工作原理图,请参照图14,冷却液系统还包括散热器,所述热泵系统还包括散热器,所述热泵系统还包括HVAC总成和电池电子膨胀阀,所述HVAC总成包括内部冷凝器;
所述电池包的一端通过所述液压阀与所述电机的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
所述电池换热器的另一端通过所述液压阀与所述液冷冷凝器的一端连接,所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接;
所述内部冷凝器的一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述内部冷凝器的另一端连接。
在车外环境温度在第一预设温度范围内,乘员舱和电池均需要加热,电机为电池预热时,热泵系统通过电池换热器吸收循环中冷却液的热量,冷却液的温度不断降低,冷却液流经散热器时吸收环境中的热量。同时不对电池系统造成影响,对乘员舱加热,COP>1;该状态下电控系统确定多回路热泵空调系统的热传导连接模式为加热模式12,加热模式12下八通阀/四通阀实现电池换热器与散热器串联,电池系统与电机系统串联,当电机系统的温度高于电池时,用于电池的预热,有利于提高效率。散热器工作,HVAC外循环。
在车外环境温度在第三预设温度范围内,电池有一定储热,乘员舱的预加热时,通过散热器收集环境中的热量用于预热乘员舱,在中等车外环境温度(-10℃或更高,电池温度稍低于车外环境温度)为乘员舱加热较有效。散热器工作,HVAC内循环。该状态下电控系统确定多回路热泵空调系统的热传导连接模式为加热模式13,加热模式13下内部蒸发器与冷凝器串联,可支持低温环境下乘员舱除湿。
加热模式12和加热模式13中冷却液的流向为:电驱模块→电池包→电驱模块,液冷冷凝器→散热器→电池换热器→液冷冷凝器。
加热模式12和加热模式13中冷媒的流向为:内部冷凝器→电池换热器→气液分离器→压缩机→内部冷凝器。
请继续参照图1,本发明实施例提供的多回路热泵空调系统可以具有图1示出的全部或部分部件,各部件之间的连接关系可以采用上述一个或多个实施例记载的连接方式,从而具有多种加热模式和/或制冷模式,例如,多回路热泵空调系统具有图1示出的全部部件及连接关系,该多回路热泵空调系统运行时电控系统默认采用加热模式1,并逐步在加热模式3、4、5进行更多的混合,热源不足时采用加热模式6,电池若迫切需要加热采用加热模式7、10、11;此外,该多回路热泵空调系统还提供了适用于驻车空调的 加热模式8、9和11等。
本发明实施例根据车外环境温度、乘员舱和电池包的温度调控需求以及电池包储热状态,确定多回路热泵空调系统的热传导连接模式,可在极低温度下启动热泵系统并向其他加热模式过渡,从而解决冬季电池续航和乘员舱的热舒适性问题,有利于灵活利用车内外的热源。
本发明实施例还提出一种汽车,该汽车包括上述任一实施例提出的支持汽车低温启动的多回路热泵空调系统。
由上述本发明提供的一种支持汽车低温启动的多回路热泵空调系统及汽车的实施例可见,本发明实施例在不增加额外冷媒状态改变装置的前提下,支持热泵系统的低温启动,减少额外部件的使用,可降低系统的成本及避免对相应装置的维护。同时还支持乘员舱热量存储于电池,并在下次行车时(间隔时间约1-2小时),利用此部分热量加热乘员舱,从而提高能源的利用率。
需要说明的是:上述本发明实施例先后顺序仅仅为了描述,不代表实施例的优劣。且上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种支持汽车低温启动的多回路热泵空调系统,其特征在于,包括冷却液系统、热泵系统和电控系统;
    所述冷却液系统包括冷却液回路,所述冷却液回路包括DC/DC、电机、电池包、冷却液管路以及设于所述冷却液管路中的液压阀和至少一个水泵;
    所述热泵系统包括冷媒回路,所述冷媒回路包括气液分离器、压缩机、电池换热器、液冷冷凝器、冷却液加热器、冷媒管路以及设于所述冷媒管路中的液压阀;所述冷却液加热器用于在环境温度低于预设温度且热泵系统处于非工作状态时加热冷却液;所述压缩机用于在热泵系统启动后做功以加热所述冷媒管路中的冷媒;
    所述电控系统包括通信单元、处理器和切换模块;所述通信单元被配置为接收车外环境温度、乘员舱和电池包的温度调控需求和电池包储热状态;所述处理器被配置为根据所述车外环境温度、所述乘员舱和电池包的温度调控需求以及所述电池包储热状态,生成工作模式切换指令;所述切换模块用于响应于所述工作模式切换指令切换所述冷却液回路和/或所述冷媒回路的连接状态;
    所述通信单元与所述处理器电连接,所述处理器与所述切换模块电连接,所述冷却液回路与所述冷媒回路热连接。
  2. 根据权利要求1所述的多回路热泵空调系统,其特征在于,所述热泵系统还包括HVAC总成和电池电子膨胀阀,所述HVAC总成包括内部冷凝器、鼓风机、风门及风道,所述电控系统还包括空调控制器;
    所述HVAC总成与所述空调控制器电连接,所述空调控制器与所述处理器电连接;
    所述液冷冷凝器的一端通过所述液压阀与所述电机的一端连接,所述液冷冷凝器的另一端通过所述液压阀与所述电池换热器的一端连接,所述电池换热器的另一端通过所述液压阀与所述电池包的一端连接,所述电池 包的另一端通过所述液压阀与所述电机的另一端连接;
    所述内部冷凝器的一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述内部冷凝器的另一端连接。
  3. 根据权利要求2所述的多回路热泵空调系统,其特征在于,所述HVAC总成还包括内部散热器;
    所述液冷冷凝器的另一端与所述内部散热器的一端连接,所述内部散热器的另一端与所述电机的另一端连接。
  4. 根据权利要求3所述的多回路热泵空调系统,其特征在于,
    所述液冷冷凝器的另一端与所述冷却液加热器的一端连接,所述冷却液加热器的另一端与所述内部散热器的一端连接,所述内部散热器的另一端与所述电机的另一端连接。
  5. 根据权利要求2或3或4所述的多回路热泵空调系统,其特征在于,所述HVAC总成还包括内部蒸发器和蒸发器电子膨胀阀;
    所述内部冷凝器的一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接。
  6. 根据权利要求2所述的多回路热泵空调系统,其特征在于,所述HVAC总成还包括内部蒸发器和蒸发器电子膨胀阀;
    所述液冷冷凝器的另一端与所述冷却液加热器的一端连接,所述冷却液加热器的另一端与所述电池包的一端连接;
    所述内部冷凝器的另一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接。
  7. 根据权利要求6所述的多回路热泵空调系统,其特征在于,所述气液分离器的另一端与所述液冷冷凝器的一端连接,所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器连接。
  8. 根据权利要求2所述的多回路热泵空调系统,其特征在于,所述热泵系统还包括散热器;
    所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接
    所述液冷冷凝器的一端与所述气液分离器的另一端连接,所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器连接。
  9. 根据权利要求1所述的多回路热泵空调系统,其特征在于,所述热泵系统还包括HVAC总成,所述HVAC总成包括内部蒸发器和蒸发器电子膨胀阀,所述电控系统还包括空调控制器;
    所述HVAC总成与所述空调控制器电连接,所述空调控制器与所述处理器电连接;
    所述液冷冷凝器的一端通过所述液压阀与所述电机的一端连接,所述液冷冷凝器的另一端通过所述液压阀与所述电池换热器的一端连接,所述电池换热器的另一端通过所述液压阀与所述电池包的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
    所述液冷冷凝器的另一端与所述蒸发器电子膨胀阀的一端连接,所述蒸发器电子膨胀阀的另一端与所述内部蒸发器的一端连接,所述内部蒸发器的另一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述液冷冷凝器的一端连接。
  10. 根据权利要求9所述的多回路热泵空调系统,其特征在于,所述热 泵系统还包括散热器;
    所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接。
  11. 根据权利要求10所述的多回路热泵空调系统,其特征在于,所述液冷冷凝器的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接。
  12. 根据权利要求1所述的多回路热泵空调系统,其特征在于,所述热泵系统还包括电池电子膨胀阀;
    所述液冷冷凝器的一端通过所述液压阀与所述电机的一端连接,所述液冷冷凝器的另一端通过所述液压阀与所述电池换热器的一端连接,所述电池换热器的另一端通过所述液压阀与所述电池包的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
    所述液冷冷凝器的另一端与所述冷却液加热器的一端连接,所述冷却液加热器的另一端与所述电池包的一端连接;
    所述液冷冷凝器的另一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述液冷冷凝器的一端连接。
  13. 根据权利要求1所述的多回路热泵空调系统,其特征在于,所述热泵系统还包括散热器,所述热泵系统还包括HVAC总成和电池电子膨胀阀,所述HVAC总成包括内部冷凝器;
    所述电池包的一端通过所述液压阀与所述电机的一端连接,所述电池包的另一端通过所述液压阀与所述电机的另一端连接;
    所述电池换热器的另一端通过所述液压阀与所述液冷冷凝器的一端连接,所述液冷冷凝器的另一端与所述散热器的一端连接,所述散热器的另一端通过所述液压阀与所述电池换热器的一端连接;
    所述内部冷凝器的一端与所述电池电子膨胀阀的一端连接,所述电池电子膨胀阀的另一端与所述电池换热器的另一端连接,所述电池换热器的一端与所述气液分离器的一端连接,所述气液分离器的另一端与所述压缩机的一端连接,所述压缩机的另一端与所述内部冷凝器的另一端连接。
  14. 一种汽车,其特征在于,所述汽车包括权利要求1-13任一项所述的支持汽车低温启动的多回路热泵空调系统。
PCT/CN2020/124605 2020-10-29 2020-10-29 一种支持汽车低温启动的多回路热泵空调系统及汽车 WO2022087935A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20959098.3A EP4239254A4 (en) 2020-10-29 2020-10-29 MULTI-LOOP HEAT PUMP AIR CONDITIONING SYSTEM FOR SUPPORTING LOW TEMPERATURE START-UP OF A MOTOR VEHICLE AND MOTOR VEHICLE
CN202080102455.8A CN116194312A (zh) 2020-10-29 2020-10-29 一种支持汽车低温启动的多回路热泵空调系统及汽车
PCT/CN2020/124605 WO2022087935A1 (zh) 2020-10-29 2020-10-29 一种支持汽车低温启动的多回路热泵空调系统及汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/124605 WO2022087935A1 (zh) 2020-10-29 2020-10-29 一种支持汽车低温启动的多回路热泵空调系统及汽车

Publications (1)

Publication Number Publication Date
WO2022087935A1 true WO2022087935A1 (zh) 2022-05-05

Family

ID=81383473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124605 WO2022087935A1 (zh) 2020-10-29 2020-10-29 一种支持汽车低温启动的多回路热泵空调系统及汽车

Country Status (3)

Country Link
EP (1) EP4239254A4 (zh)
CN (1) CN116194312A (zh)
WO (1) WO2022087935A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202735A (ja) * 2008-02-27 2009-09-10 Denso Corp 車両用空調装置
CN204493049U (zh) * 2015-03-05 2015-07-22 安徽江淮汽车股份有限公司 一种汽车发动机预热系统
CN206765743U (zh) * 2017-03-07 2017-12-19 上海蔚来汽车有限公司 热泵系统、用于车辆的热泵系统及电动汽车
CN108001153A (zh) * 2017-11-22 2018-05-08 珠海格力电器股份有限公司 电动汽车的热管理系统、控制方法及电动汽车
CN108327482A (zh) * 2018-02-09 2018-07-27 博耐尔汽车电气系统有限公司 一种新能源汽车热管理系统
CN108482064A (zh) * 2018-04-18 2018-09-04 上海加冷松芝汽车空调股份有限公司 新能源车用集成乘员舱空调及电池包热管理热泵系统
CN111422103A (zh) * 2020-04-14 2020-07-17 吉林大学 一种具有废热利用的热泵集成式燃料电池汽车热管理系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3025139B1 (fr) * 2014-08-26 2018-03-23 Psa Automobiles Sa. Procede de pre-conditionnement de l'habitacle au moyen d'une pompe a chaleur
FR3027557A1 (fr) * 2014-10-24 2016-04-29 Renault Sa Dispositif de regulation thermique de l'air de l'habitacle et de composants d'un vehicule automobile propulse totalement ou partiellement par un moteur electrique
DE102018104410A1 (de) * 2018-02-27 2019-08-29 Hanon Systems Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202735A (ja) * 2008-02-27 2009-09-10 Denso Corp 車両用空調装置
CN204493049U (zh) * 2015-03-05 2015-07-22 安徽江淮汽车股份有限公司 一种汽车发动机预热系统
CN206765743U (zh) * 2017-03-07 2017-12-19 上海蔚来汽车有限公司 热泵系统、用于车辆的热泵系统及电动汽车
CN108001153A (zh) * 2017-11-22 2018-05-08 珠海格力电器股份有限公司 电动汽车的热管理系统、控制方法及电动汽车
CN108327482A (zh) * 2018-02-09 2018-07-27 博耐尔汽车电气系统有限公司 一种新能源汽车热管理系统
CN108482064A (zh) * 2018-04-18 2018-09-04 上海加冷松芝汽车空调股份有限公司 新能源车用集成乘员舱空调及电池包热管理热泵系统
CN111422103A (zh) * 2020-04-14 2020-07-17 吉林大学 一种具有废热利用的热泵集成式燃料电池汽车热管理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4239254A4 *

Also Published As

Publication number Publication date
CN116194312A (zh) 2023-05-30
EP4239254A4 (en) 2024-01-24
EP4239254A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
CN111216515B (zh) 一种电动汽车热管理系统
CN110525169B (zh) 纯电动汽车用集成乘员舱热泵空调及三电热管理系统
CN112319181B (zh) 一种新能源汽车整车集成式热管理系统及其工作方法
CN109466277B (zh) 纯电动汽车整车热管理系统
CN108556660B (zh) 一种电动汽车热管理系统
CN213007493U (zh) 电动汽车及其热管理系统
CN110588281A (zh) 一种电动汽车热泵空调系统和电动汽车
CN111186340A (zh) 一种电动汽车热量管理系统及电动汽车
CN210337493U (zh) 一种电动车辆的热管理系统
CN112109518B (zh) 一种电动汽车热管理系统及其控制方法、电动汽车
WO2022087935A1 (zh) 一种支持汽车低温启动的多回路热泵空调系统及汽车
CN214984718U (zh) 一种新能源汽车热量合理化利用系统
CN111391616B (zh) 一种空调系统
CN211617485U (zh) 一种电动汽车热量管理系统及电动汽车
CN111016582B (zh) 一种电动汽车热泵系统及电动汽车
CN108944504B (zh) 一种基于热泵原理的电动汽车整车热管理系统
CN113400892A (zh) 一种电动车辆整车热管理系统及其控制方法
CN219339132U (zh) 汽车热管理管路系统及电动汽车
CN220076132U (zh) 汽车热管理系统及车辆
CN113942370B (zh) 一种汽车空调系统及其工作方法
CN117360174B (zh) 一种燃料电池汽车耦合热管理系统
CN115534620B (zh) 电动汽车热管理系统及其控制方法和电动汽车
CN112046241B (zh) 热管理系统及其控制方法、电动汽车
CN220923757U (zh) 一种用于车辆的热管理系统
CN220842126U (zh) 一种基于五通阀与燃油加热器的新能源热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020959098

Country of ref document: EP

Effective date: 20230530