WO2022087769A1 - 确定机械部件的低周疲劳的方法、装置及存储介质 - Google Patents

确定机械部件的低周疲劳的方法、装置及存储介质 Download PDF

Info

Publication number
WO2022087769A1
WO2022087769A1 PCT/CN2020/123564 CN2020123564W WO2022087769A1 WO 2022087769 A1 WO2022087769 A1 WO 2022087769A1 CN 2020123564 W CN2020123564 W CN 2020123564W WO 2022087769 A1 WO2022087769 A1 WO 2022087769A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
operating conditions
mechanical component
cycles
weibull
Prior art date
Application number
PCT/CN2020/123564
Other languages
English (en)
French (fr)
Inventor
蒋子贤
Original Assignee
西门子燃气与电力股份有限公司
西门子能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子燃气与电力股份有限公司, 西门子能源有限公司 filed Critical 西门子燃气与电力股份有限公司
Priority to CN202080104958.9A priority Critical patent/CN116171444A/zh
Priority to PCT/CN2020/123564 priority patent/WO2022087769A1/zh
Priority to US18/032,996 priority patent/US20230401354A1/en
Priority to EP20958935.7A priority patent/EP4231192A1/en
Publication of WO2022087769A1 publication Critical patent/WO2022087769A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing

Definitions

  • the present disclosure relates to the field of computers, and in particular, to a method, apparatus, and storage medium for determining low-cycle fatigue of mechanical components.
  • Low-cycle fatigue assessment is a method for mechanical integrity analysis of gas turbine components.
  • LCF assessments of gas turbine components have been based on deterministic crack initiation or LCF calculation models with standard operating cycles. In fact, crack initiation is a random phenomenon and actual operating conditions vary from cycle to cycle.
  • a method of determining low cycle fatigue of a mechanical component comprising: obtaining a plurality of cycle operating conditions of the mechanical component in a plurality of operating cycles; for the plurality of operating cycles For each of the plurality of cycle operating conditions, a Weibull proportional parameter is calculated based on a corresponding one-cycle operating condition in the plurality of cycle operating conditions; for each of the plurality of operating cycles, the Weibull proportional parameter is calculated based on the a hazard rate of a mechanical component; and determining a low cycle fatigue of the mechanical component based on each of the hazard rates in the plurality of operating cycles; wherein the Weibull scale parameter is used to describe the geometry of the mechanical component and the expected effect of the stress-strain state on the low-cycle fatigue life of the mechanical component; wherein the hazard ratio is the probability that crack initiation occurs at the predetermined period without crack initiation until the preceding cycle of the predetermined period, wherein , the predetermined
  • acquiring a plurality of cycle operating conditions of the mechanical component in the plurality of operating cycles includes: acquiring a plurality of historical cycle operating conditions of the mechanical component itself in the plurality of operating cycles, and use it as the plurality of cycle operating conditions; or obtain the respective probability distribution estimates of the plurality of cycle operating conditions of the mechanical component as the plurality of cycle operating conditions, wherein the probability distribution estimates are based on reference to the obtained from the statistical results of the operating conditions of the plurality of cycles in the plurality of operating cycles of other components that are the same as the mechanical component but distributed in different geographical locations, or are predetermined to satisfy all the mechanical components’ operating conditions. Probability distribution of operating conditions over a number of cycles.
  • the low-cycle fatigue risk assessment be performed based on a fixed value such as the historical cycle operating conditions, but also the low-cycle fatigue risk assessment can be performed based on the probability distribution estimation of the cycle operating conditions.
  • calculating a Weibull proportional parameter based on a corresponding one-cycle operating condition among the plurality of cyclic operating conditions includes: a cyclic strain state at the surface location; based on the cyclic strain state and the surface location, calculating a pointwise deterministic low cycle fatigue life for the surface location; and based on the pointwise deterministic low cycle fatigue life,
  • the Weibull scale parameter is calculated for the entire surface area of the mechanical component.
  • calculating the Weibull proportional parameter based on a corresponding one-cycle operating condition in the plurality of periodic operating conditions includes: the plurality of periodic operating conditions are each of the plurality of periodic operating conditions In the case of estimating the probability distribution of , the Weibull scale parameter is calculated based on each of the corresponding probability distributions in the respective probability distributions of the plurality of cycle operating conditions.
  • the cycle operating condition is the probability distribution estimation
  • the Weibull proportional parameter is accurately calculated for each situation in each probability distribution, thereby providing the possibility to improve the accuracy of the low cycle fatigue risk assessment.
  • calculating the hazard rate of the mechanical component based on the Weibull proportional parameter includes: in the case that the plurality of cycle operating conditions are the plurality of historical cycle operating conditions, based on the calculating the hazard rate with a Weibull scale parameter and a Weibull shape parameter independent of the strain state; and in the case where the plurality of cyclic operating conditions are estimates of respective probability distributions of the plurality of cyclic operating conditions, based on the complex number
  • the hazard rate is calculated from the probability distribution of each cycle operating condition, the Weibull scale parameter corresponding to each condition in the probability distribution, and the Weibull shape parameter independent of the strain state.
  • an enhanced probabilistic LCF model is used, which takes into account the variability or uncertainty in the operating cycle, thereby providing a more accurate quantitative method for the assessment of the LCF of mechanical components, which in turn can optimize the risk assessment and help To reduce product development or service costs.
  • determining the low cycle fatigue of the mechanical component includes: in the case where the plurality of cycle operating conditions are the plurality of historical cycle operating conditions, based on the plurality of operating cycles For each of the hazard rates, the risk probability of occurrence of the low-cycle fatigue is calculated to determine the low-cycle fatigue of the mechanical component; in the plurality of cycle operating conditions, the probability distribution of each of the plurality of cycle operating conditions is estimated In this case, a probability distribution of the low cycle fatigue life satisfaction of the mechanical component is evaluated based on each of the hazard rates in the plurality of operating cycles to predict the low cycle fatigue of the mechanical component.
  • the method further includes calculating a survival function based on each of the hazard rates of the plurality of operating cycles, wherein the The survival function is the probability that the mechanical component will not have crack initiation for a predetermined period.
  • calculating the survival function includes: multiplying the hazard rate of each of the plurality of operation cycles by a difference of 1 to obtain the survival function.
  • the survival function can be accurately calculated to determine the probability that there is no crack initiation.
  • the method further includes: calculating a low-cycle fatigue life satisfaction rate based on each of the hazard rates of the plurality of operating cycles.
  • a probability distribution function wherein the probability distribution function is a cumulative distribution function or a probability mass function, wherein the cumulative distribution function is the probability of crack initiation in the mechanical component from the initial cycle to the end of the predetermined cycle, the probability The quality function is the degree to which the mechanical component has a higher probability of crack initiation in the stage from the initial cycle to the end of the predetermined cycle than in the stage from the initial cycle to the end of the previous cycle of the predetermined cycle.
  • the probability of crack initiation in the mechanical component from the initial period to the end of the predetermined period can be calculated, and the probability of crack initiation in the period from the initial period to the end of the predetermined period is higher than that from the initial period to the predetermined period.
  • the degree of high probability of crack initiation in the stage at the end of the previous cycle so that the risk assessment of low cycle fatigue can be quantitatively carried out from various angles to help reduce product development or service costs.
  • a storage medium on which a program is stored, and when the program is executed by a computer, executes any of the above-mentioned methods.
  • the above-mentioned medium solves the problem of inaccuracy of low-cycle fatigue determined due to fixed cycle operating conditions in the related art, and has the effect of improving the accuracy of low-cycle fatigue risk assessment.
  • an apparatus for determining low cycle fatigue of a mechanical component comprising: an acquisition module configured to acquire a plurality of cycle operating conditions of the mechanical component in a plurality of operating cycles; parameter calculation a module configured to, for each of the plurality of operating cycles, calculate a Weibull proportional parameter based on a corresponding one-cycle operating condition of the plurality of cycle operating conditions; a hazard rate calculation module configured to for each of the plurality of operating cycles, calculating a hazard rate of the mechanical component based on the Weibull scale parameter; and a determination module configured to determine the hazard rate based on each of the plurality of operating cycles Low-cycle fatigue of described mechanical components.
  • FIG. 1 is a flowchart of a method of determining low cycle fatigue of a mechanical component according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of another method of determining low cycle fatigue of a mechanical component according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of an apparatus for determining low cycle fatigue of a mechanical component according to an embodiment of the present disclosure.
  • ⁇ (B, ⁇ ) ⁇ B ⁇ (n, ⁇ (x; ⁇ ))dAdn..
  • m is a Weibull shape parameter independent of the strain state, is the point-wise deterministic low-cycle fatigue life at a given surface location x with a cyclic strain state ⁇ (x; ⁇ ) with a given operating condition ⁇ .
  • the Weibull scale parameter is set to:
  • CDF cumulative distribution function
  • PDF probability distribution function
  • hazard rate function is defined as the instantaneous probability of crack initiation when there has been no crack initiation until now (hereinafter, the hazard rate function would be especially useful):
  • a new probabilistic LCF evaluation method takes into account the stochastic nature of crack initiation and the variability or uncertainty of operating conditions.
  • an enhanced probabilistic LCF model is employed, which takes into account variable periodic operating conditions.
  • the periodic operating condition is the historical periodic operating condition.
  • the cycle operation condition is a probability distribution described below
  • the crisis rate, survival function, probability distribution function, cumulative distribution function and probability mass function are also called conditional crisis rate, conditional survival function.
  • Conditional Probability Distribution Function, Conditional Cumulative Distribution Function and Conditional Probability Mass Function are also called conditional crisis rate, conditional survival function.
  • the random LCF lifetime can take the set of positive real numbers any value in .
  • N i the random variable
  • variable is an integer number of cycles, and is the real-valued (LCF lifetime) time.
  • the Poisson point process model of crack initiation in space-time naturally expresses the fundamental assumption that among multiple disjoint sets of times and surface locations The random crack counts between are performed independently, i.e., not related to each other.
  • the reason why this can be assumed is that the LCF cracks are too small to change the macroscopic strain state of the part, so crack initiation at one time and surface location has no effect on crack initiation at other times and locations. This assumption can be naturally extended to the case where the cyclic operating conditions and the resulting strain state change in different cycles.
  • the cyclic operating condition ⁇ is constant in all cycles. However, from now on, the value of theta will be different every cycle.
  • a series of cyclic operating conditions for gas turbine components are assumed to be It can be easily observed that within each cycle, the number of cracks still follows a Poisson random process. given a period number k and a set of times and locations The number of cracks follows a Poisson distribution:
  • conditional survival function depends only on the running cycles of the first n cycles, i.e.:
  • conditional survival function with a given series of cyclic operating conditions can be written as the product of the crack-free probabilities for each cycle time period:
  • conditional probability mass function (PMF) of , then obviously, And, for n ⁇ 1, the conditional probability mass function PMF is:
  • conditional hazard rate function Given a series of cycle operating conditions, is defined as the probability of crack initiation in a certain cycle, given that no crack initiation is known until the previous cycle. It is expressed by the following mathematical formula:
  • Equation (6) shows that the conditional hazard rate function at a certain number of cycles depends only on the cycle operating conditions for that cycle, i.e. With this property, the conditional survival function, conditional cumulative distribution function CDF, and conditional probability mass function PMF in equations (3) to (5) can be rewritten in terms of the conditional hazard function:
  • Periodic operating conditions can be modeled as random variables if the exact series of cyclic operating conditions is unknown, but there is an estimate of the probability distribution of the cyclic operating conditions.
  • the cycle operating conditions for the nth cycle can be determined by following the distribution function , in space A continuous random variable ⁇ n on .
  • the case with discrete random variables is similar and can be easily derived from the continuous case.
  • the distribution function Varies from cycle to cycle. Then according to the definition of marginal probability, the following hazard function, survival function, CDF and PMF for random LCF lifetime numbers can be derived from equations (6) to (9):
  • FIG. 1 is a flowchart of a method of determining low cycle fatigue of a mechanical component in accordance with an embodiment of the present disclosure.
  • an algorithm for determining low cycle fatigue is generated, which can estimate the LCF life cycle under a given series of cyclic operating conditions probability distribution of numbers, i.e. determining the probability of low cycle fatigue of mechanical components.
  • the flow of the determination method is shown in Figure 1, and includes the following steps:
  • the Weibull scale parameter ⁇ ( ⁇ k ) for each cycle is calculated by the existing ProbLCF tool using equation (1).
  • a Weibull distribution scale parameter is calculated based on each possible situation in the corresponding probability distribution for a corresponding one-cycle operating condition of the plurality of cycle operating conditions
  • conditional survival function conditional CDF and conditional PMF are obtained by equations (7) to (9).
  • This method is particularly useful in estimating the LCF crack risk or remaining LCF life of gas turbine components at the product life stage. Since the operating history is known, the conditional survival function of the mechanical component and the conditional CDF of the LCF life can be accurately calculated. These features provide a quantified LCF crack initiation risk at the time of assessment and aid in service decision making. For example, if the calculated conditional CDF value at the time of evaluation is close to 1, the risk of LCF crack initiation is relatively high, which may, based on further engineering judgment and decision, recommend component repair or replacement. Conversely, if the calculated conditional CDF value is well below 1, the mechanical part can still be used safely.
  • Equation (1), (6) and (11)–(14) can then be calculated for random LCF lifetimes.
  • 2 is a flowchart of another method of determining low cycle fatigue of a mechanical component in accordance with an embodiment of the present disclosure. As shown in Figure 2, the method includes:
  • the Weibull scale parameter ⁇ ( ⁇ n ) is calculated by the existing ProbLCF tool using equation (1) for each cycle and each sampled cycle operating condition.
  • Probability distribution estimates for future operating cycles can be obtained by performing statistics on existing fleet data or by engineering judgment.
  • the present disclosure also provides an apparatus for determining low cycle fatigue of a mechanical component.
  • 3 is a schematic structural diagram of an apparatus for determining low cycle fatigue of a mechanical component according to an embodiment of the present disclosure.
  • the apparatus 300 for determining low cycle fatigue of a mechanical component includes an acquisition module 32 , a parameter calculation module 34 , a hazard rate calculation module 36 and a determination Module 38.
  • the obtaining module 32 is configured to obtain a plurality of cycle operating conditions of the mechanical component in the plurality of operating cycles; the parameter calculating module 34 is configured to, for each of the plurality of operating cycles, based on the corresponding one of the plurality of cycle operating conditions.
  • a cycle of operating conditions a Weibull proportional parameter is calculated;
  • the hazard rate calculation module 36 is configured to calculate, for each of the plurality of operating cycles, a conditional hazard rate based on the Weibull proportional parameter; and the determination module 38 is configured to be based on the complex number
  • the hazard rate for each condition in each operating cycle determines whether a mechanical component is in low cycle fatigue.
  • an enhanced probabilistic LCF model is used to account for variability or uncertainty in the operating cycle.
  • This embodiment provides a more accurate quantitative method for evaluating the LCF of mechanical components, which can optimize risk assessment and help reduce product development or service costs.
  • the present disclosure technically improves product design and service methods, with enhancements to account for varying/random operational cycles. This can improve and reduce the cost of product design, evaluation, and optimize product service models.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种确定机械部件的低周疲劳的方法、装置及存储介质,该方法包括获取机械部件在复数个运行周期中的复数个周期运行条件;针对复数个运行周期中的每一个,基于复数个周期运行条件中的相应的一周期运行条件,计算威布尔比例参数;针对复数个运行周期中的每一个,基于威布尔比例参数计算机械部件的危险率;以及基于复数个运行周期中的各个危险率,确定机械部件的低周疲劳;其中,威布尔比例参数用于描述机械部件的几何形状和应力应变状态。该方法和装置解决了由于周期运行条件固定导致所确定的低周疲劳不精确的问题,能提高低周疲劳风险评估精确度。

Description

确定机械部件的低周疲劳的方法、装置及存储介质 技术领域
本公开涉及计算机领域,具体而言,涉及确定机械部件的低周疲劳的方法、装置及存储介质。
背景技术
燃气轮机部件的几何形状和结构形式比较复杂,并且处于高温、高转速的恶劣条件下工作,容易出现各种失效破坏。其中,低周疲劳(Low-cycle fatigue,LCF)破坏是影响和限制燃气轮机的部件安全使用的最主要因素,
低周疲劳评估是对燃气轮机的部件进行机械完整性分析的一种方法。传统上,对燃气轮机部件的LCF评估是基于确定性裂纹萌生或具有标准运行周期的LCF计算模型。实际上,裂纹萌生是一种随机现象,实际的运行条件因周期而异。
考虑到裂纹萌生的随机性,已经开发出了概率论LCF模型和工具。该方法考虑了模型中的材料属性不确定性(材料属性分散性),还考虑了部件上的不均匀应变力以及裂纹萌生的尺寸影响。但是这种方法没有考虑运行条件的可变性或不确定性。
换句话说,相关技术中,虽然在机械部件完整性分析中,应用了确定性LCF评估方法和概率论LCF评估方法,但是,在这两种方法中,机械部件的运行周期和相应的边界条件均由标准运行周期和机械部件设计人员定义的几个特定运行周期给出。因此,这两种方法都没有考虑可变和随机的运行条件。
如何将传统的具有固定(标准)的周期运行条件的概率论LCF模型扩展到周期运行条件因周期而异的情况,是亟待解决的问题。
发明内容
根据本公开实施方式的一个方面,提供了确定机械部件的低周疲劳的方法,该方法包括:获取所述机械部件在复数个运行周期中的复数个周期运行条件;针对所述复数个运行周期中的每一个,基于所述复数个周期运行条件中的相应的一周期运行条件,计算威布尔比例参数;针对所述复数个运行周期中的每一个,基于所述威布尔比例参数计算所述机械部件的危险率;以及基于所述复数个运行周期中的各个所述危险率,确定所述机械部件的低周疲劳;其中,所述威布尔比例参数用于描述所述机械部件的几何形状和 应力应变状态对所述机械部件的低周疲劳寿命的预期的影响;其中,所述危险率为直到预定周期的前一个周期都没有裂纹萌生而在所述预定周期发生裂纹萌生的概率,其中,所述预定周期为所述复数个运行周期中的、与所述危险率相对应的运行周期。
通过上述方法,解决了相关技术中由于周期运行条件固定导致所确定的低周疲劳不精确的问题,具有提高低周疲劳风险评估精确度的效果。
在本公开的一个实施方式中,获取所述机械部件在复数个运行周期中的复数个周期运行条件包括:获取所述机械部件自身在所述复数个运行周期中的复数个历史周期运行条件,并作为所述复数个周期运行条件;或者获取所述机械部件的所述复数个周期运行条件各自的概率分布估计,作为所述复数个周期运行条件,其中,所述概率分布估计是参照与所述机械部件相同的、但分布在不同地理位置处的其他部件在所述复数个运行周期中的所述复数个周期运行条件的统计结果而获得的,或者是预定的满足所述机械部件的所述复数个周期运行条件的概率分布。
通过上述方法,不仅可以根据历史周期运行条件这样固定的值来进行低周疲劳风险评估,而且还可以基于周期运行条件的概率分布估计来进行低周疲劳风险评估。
在本公开的一个实施方式中,基于所述复数个周期运行条件中的相应的一周期运行条件,计算威布尔比例参数包括:基于所述周期运行条件和所述机械部件的表面位置,计算所述表面位置的周期性应变状态;基于所述周期性应变状态和所述表面位置,计算所述表面位置的逐点确定性低周疲劳寿命;以及基于所述逐点确定性低周疲劳寿命,计算针对所述机械部件的整个表面积的所述威布尔比例参数。
通过上述计算威布尔比例参数的方法,可以更精确地计算出机械部件整体的几何形状和应力应变状态对低周疲劳寿命的预期的影响。
在本公开的一个实施方式中,基于所述复数个周期运行条件中的相应的一周期运行条件,计算威布尔比例参数包括:在所述复数个周期运行条件为所述复数个周期运行条件各自的概率分布估计的情况下,基于所述复数个周期运行条件各自的概率分布中的相应的一概率分布中的每种情况,计算威布尔比例参数。
通过上述方法,在周期运行条件为概率分布估计的情况下,针对每一个概率分布中的每一种情况,精确地计算出威布尔比例参数,从而为提高低周疲劳风险评估精确度提供了可能。
在本公开的一个实施方式中,基于所述威布尔比例参数计算所述机械部件的危险率包括:在所述复数个周期运行条件为所述复数个历史周期运行条件的情况下,基于所述 威布尔比例参数和与应变状态无关的威布尔形状参数计算所述危险率;以及在所述复数个周期运行条件为所述复数个周期运行条件各自的概率分布估计的情况下,基于所述复数个周期运行条件各自的概率分布和所述概率分布中每种情况所对应的威布尔比例参数以及与应变状态无关的威布尔形状参数计算所述危险率。
通过上述方法,使用了增强的概率LCF模型,考虑了运行周期中的可变性或不确定性,从而为机械部件LCF的评估提供了一种更准确的定量方法,进而可以优化风险评估并有助于降低产品的开发或服务成本。
在本公开的一个实施方式中,确定所述机械部件的低周疲劳包括:在所述复数个周期运行条件为所述复数个历史周期运行条件的情况下,基于所述复数个运行周期中的各个所述危险率,计算发生所述低周疲劳的风险概率,以确定所述机械部件的低周疲劳;在所述复数个周期运行条件为所述复数个周期运行条件各自的概率分布估计的情况下,基于所述复数个运行周期中的各个所述危险率评估所述机械部件的低周疲劳寿命满足的概率分布,以预测所述机械部件的低周疲劳。
通过上述方法,具有考虑变化/随机的运行周期的增强功能。这可以提高产品设计、评估的成本并降低其成本,还可以优化产品服务模型。
在本公开的一个实施方式中,基于所述威布尔比例参数计算一危险率之后,所述方法还包括,基于所述复数个运行周期的各个所述危险率,计算生存函数,其中,所述生存函数是所述机械部件在预定周期不存在裂纹萌生的概率。
通过上述方法,可以精确地确定机械部件在某个周期不存在裂纹萌生的概率。
在本公开的一个实施方式中,计算所述生存函数包括:将所述复数个运行周期中的每个运行周期的所述危险率与1的差值相乘,以得到所述生存函数。
通过上述方法,可以精确地计算出生存函数,以确定不存在裂纹萌生的概率。
在本公开的一个实施方式中,在基于所述威布尔比例参数计算一危险率之后,所述方法还包括:基于所述复数个运行周期的各个所述危险率,计算低周疲劳寿命满足的概率分布函数,其中,所述概率分布函数为累积分布函数或概率质量函数,其中,所述累积分布函数是所述机械部件从初始周期直到预定周期结束的阶段中萌生裂纹的概率,所述概率质量函数是所述机械部件从初始周期到预定周期结束的阶段中萌生裂纹的概率比从初始周期到所述预定周期的前一个周期结束的阶段中萌生裂纹的概率高的程度。
通过上述方法,可以计算出所述机械部件从初始周期直到预定周期结束的阶段中萌生裂纹的概率,以及从初始周期到预定周期结束的阶段中萌生裂纹的概率比从初始周期 到所述预定周期的前一个周期结束的阶段中萌生裂纹的概率高的程度,从而从各个角度定量的对低周疲劳进行风险评估,以有助于降低产品的开发或服务成本。
根据本公开实施方式的另一个方面,提供了存储介质,其上存储有程序,所述程序在被计算机执行时,执行上述任一方法。
通过上述介质,解决了相关技术中由于周期运行条件固定导致所确定的低周疲劳不精确的问题,具有提高低周疲劳风险评估精确度的效果。
根据本公开实施方式的又一个方面,提供了确定机械部件的低周疲劳的装置,包括:获取模块,被配置为获取所述机械部件在复数个运行周期中的复数个周期运行条件;参数计算模块,被配置为针对所述复数个运行周期中的每一个,基于所述复数个周期运行条件中的相应的一周期运行条件,计算威布尔比例参数;危险率计算模块,被配置为针对所述复数个运行周期中的每一个,基于所述威布尔比例参数计算所述机械部件的危险率;以及确定模块,被配置为基于所述复数个运行周期中的各个所述危险率,确定所述机械部件的低周疲劳。
通过上述装置,解决了相关技术中由于周期运行条件固定导致所确定的低周疲劳不精确的问题,具有提高低周疲劳风险评估精确度的效果。
附图说明
构成本申请的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施方式及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施方式的确定机械部件的低周疲劳的方法的流程图;
图2是根据本公开实施方式的确定机械部件的低周疲劳的另一方法的流程图;以及
图3是根据本公开实施方式的确定机械部件的低周疲劳的装置的结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本公开。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本公开中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的; 同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本公开。
首先,将描述在没有考虑周期运行条件的可变性的情况下的确定LCF的方法。
对于给定的具有表面
Figure PCTCN2020123564-appb-000001
和给定的一组周期运行条件θ的部件Ω,在取决于表面位置x和周期运行条件θ的应变状态∈=∈(x;θ)下,在一组表面位置和时间
Figure PCTCN2020123564-appb-000002
中的裂纹计数N(B,∈)是泊松点过程(Poisson Point Process):
N(B,∈(·;θ))~Po(λ(B,∈(·;θ))),
其中,泊松参数λ(B,∈)可以通过裂纹形成密度函数ρ=ρ(n,∈)(单位表面积和单位时间内的平均裂纹萌生次数)来建模:
λ(B,∈)=∫ Bρ(n,∈(x;θ))dAdn.。
在威布尔(Weibull)方法中,
Figure PCTCN2020123564-appb-000003
其中,m是与应变状态无关的威布尔形状参数,
Figure PCTCN2020123564-appb-000004
是在具有周期性应变状态∈(x;θ)的给定的表面位置x处的逐点确定性低周疲劳寿命,其中,应变状态∈(x;θ)具有给定的运行条件θ。现在考虑整个部件的表面积。威布尔比例参数被设置为:
Figure PCTCN2020123564-appb-000005
这里θ是常数,为了便于和下文进行区别,这里写为η=η(θ)。然后,在时间段(n 1,n 2]内在整个表面积上的泊松点过程的强度参数变为:
Figure PCTCN2020123564-appb-000006
由于裂纹萌生是通过泊松点过程进行建模的,因此可以得出条件生存函数,作为直到时间n在部件表面
Figure PCTCN2020123564-appb-000007
上都没有裂纹萌生的概率:
Figure PCTCN2020123564-appb-000008
然后,根据基于条件生存函数所计算出的生存概率得出随机裂纹萌生时间(即LCF寿命)的累积分布函数(CDF):
Figure PCTCN2020123564-appb-000009
接着,根据累计分布函数CDF得到概率分布函数(PDF),其中,概率分布函数PDF是累积分布函数CDF的导数:
Figure PCTCN2020123564-appb-000010
最后,基于上述得到的概率分布函数PDF和条件生存函数,得到危险率函数,其中,危险率函数被定义为直到现在尚没有裂纹萌生的情况下,产生裂纹萌生的瞬时概率(在下文中,危险率函数将特别有用):
Figure PCTCN2020123564-appb-000011
下面,将着重描述考虑了材料不确定性和可变周期运行条件的增强概率LCF模型。
在本公开的实施方式中,提出了一种新的考虑了裂纹萌生的随机性质和运行条件的可变性或不确定性的概率论LCF评估方法。在该概率论LCF评估方法中,采用了增强的概率论LCF模型,该模型考虑了可变的周期运行条件。
首先将描述在周期运行条件为历史周期运行条件的情况。为与下文中描述的周期运行条件为概率分布的情况相区别,在这种情况下,危机率、生存函数、概率分布函数、累积分布函数和概率质量函数也称为条件危机率、条件生存函数、条件概率分布函数、条件累积分布函数和条件概率质量函数。
在没有考虑周期运行条件的可变性的概率论LCF模型的建模方法中,随机LCF寿命可以取正实数集
Figure PCTCN2020123564-appb-000012
中的任何值。在下文中,考虑仅在每个周期结束时才可以观察到裂纹是否萌生的情况。这意味着要描述的不是随机变量N i,而是其上限整数(ceiling integer):
Figure PCTCN2020123564-appb-000013
简单地说,在下文中,变量
Figure PCTCN2020123564-appb-000014
是整数周期数,而
Figure PCTCN2020123564-appb-000015
是实数值(LCF寿命)时间。
当周期运行条件和隐含应变状态在整个周期中都是恒定的时,时空上的裂纹萌生的泊松点过程模型自然表明了这样一个基本假设:在不相交的多个时间和表面位置组之间的随机裂纹计数是独立进行的,即,彼此之间没有关系。之所以可以这样假设的原因是:LCF裂纹太小而无法改变部件的宏观应变状态,因此,在某个时间和表面位置上萌生的裂纹对其他时间和位置的裂纹萌生没有影响。该假设可以自然地扩展到周期运行条件和所产生的应变状态在不同周期中发生变化的情况。实际上,仅假设部件的宏观应变状态仅因周期运行条件的变化而变化,而不因任何裂纹萌生而发生变化,并且,裂纹萌生仍 然仅受时间和局部应变状态影响,但不受其他时间和表面位置的裂纹萌生的影响。在下文中,将该假设称为随机裂纹数的周期间独立的假设。
在没有考虑周期运行条件的可变性的概率论LCF模型的建模方法中,周期运行条件θ在所有周期中都是恒定的。但是,从现在开始,每个周期的θ值都会不同。假设燃气轮机部件的一系列周期运行条件为
Figure PCTCN2020123564-appb-000016
可以很容易地观察到,在每个周期内,裂纹数仍遵循泊松随机过程。给定一个周期数k以及一组时间和位置
Figure PCTCN2020123564-appb-000017
裂纹数遵循泊松分布:
N(B,∈(·;θ k))~Po(λ(B,∈(·;θ k))).
Figure PCTCN2020123564-appb-000018
对于用于评估的、给定的一系列运行条件
Figure PCTCN2020123564-appb-000019
和给定的周期数n,条件生存函数仅取决于前n个周期的运行周期,即:
Figure PCTCN2020123564-appb-000020
通过上文提出的随机裂纹计数的周期间独立性假说,可以将具有给定的一系列周期运行条件的条件生存函数写为每个周期时间段内无裂纹萌生概率的乘积:
Figure PCTCN2020123564-appb-000021
其中,最后一个等式使用等式(2)中的结果。因此,离散随机LCF寿命周期数
Figure PCTCN2020123564-appb-000022
的条件累积分布函数CDF写为:
Figure PCTCN2020123564-appb-000023
Figure PCTCN2020123564-appb-000024
表示
Figure PCTCN2020123564-appb-000025
的条件概率质量函数(PMF),然后显然地,
Figure PCTCN2020123564-appb-000026
并且,对于n≥1,条件概率质量函数PMF为:
Figure PCTCN2020123564-appb-000027
条件危险率函数将有助于更好地理解该模型。在离散情况下,将给定一系列周期运 行条件的条件危险率函数定义为已知直到前一个周期都没有裂纹萌生的情况下,某个周期内裂纹萌生的概率。其通过以下数学公式表达:
Figure PCTCN2020123564-appb-000028
等式(6)表明,在特定周期数下的条件危险率函数仅取决于该周期的周期运行条件,即
Figure PCTCN2020123564-appb-000029
借助此属性,可以根据条件危险率函数重写公式(3)至(5)中的条件生存函数、条件累积分布函数CDF和条件概率质量函数PMF:
Figure PCTCN2020123564-appb-000030
Figure PCTCN2020123564-appb-000031
Figure PCTCN2020123564-appb-000032
接下来将描述周期运行条件为概率分布估计的情况。
到目前为止,所涉及的都是在给定的一系列周期运行条件下。如果确切的一系列周期运行条件未知,但具有周期运行条件的概率分布估计,则可以将周期运行条件建模为随机变量。通常,可以假设第n个周期的周期运行条件可以由遵循分布函数
Figure PCTCN2020123564-appb-000033
的、在空间
Figure PCTCN2020123564-appb-000034
上的连续随机变量Θ n表示。具有离散随机变量的情况是相似的,可以容易地从连续情况得出。注意到,分布函数
Figure PCTCN2020123564-appb-000035
随周期的不同而不同。然后根据边际概率的定义中,可以从等式(6)至(9)得出以下随机LCF生命周期数的危险率函数、生存函数、CDF和PMF:
Figure PCTCN2020123564-appb-000036
Figure PCTCN2020123564-appb-000037
Figure PCTCN2020123564-appb-000038
Figure PCTCN2020123564-appb-000039
在所有随机变量
Figure PCTCN2020123564-appb-000040
都满足相同分布并且此时它们都可以用代表变量Θ来表示的特殊情况下(在相同空间X Θ上遵循相同的分布f Θ(·)),可以得到类似的计算结果,只需要对等式(11)做微小的修改(即用Θ代替Θ n,用θ代替θ n)。
下面将描述具有变化和/或随机运行周期的LCF寿命的计算算法。图1是根据本公开实施方式的确定机械部件的低周疲劳的方法的流程图。在增强的概率论LCF模型中,基于等式(1),(6)–(9)产生了一种确定低周疲劳的算法,可以在给定的一系列周期性运行条件下估算LCF生命周期数的概率分布,即确定机械部件的低周疲劳的概率。该确定方法的流程如图1所示,包括以下步骤:
S102,获取一系列循环操作条件
Figure PCTCN2020123564-appb-000041
S104,计算每个运行周期的威布尔比例参数。
固定威布尔形状参数m,通过现有的ProbLCF工具,使用等式(1)计算每个周期的威布尔比例参数η(θ k)。针对所述复数个运行周期中的每一个,基于与所述复数个周期运行条件中相应的一周期运行条件在对应概率分布中的每一种可能情况,计算一威布尔分布比例参数
S106,计算每个运行周期的危险率函数。
使用等式(6)计算每个周期的条件危险率函数。
S108,计算条件生存函数、条件CDF和条件PMF。
通过等式(7)至(9)获得条件生存函数、条件CDF和条件PMF。
该方法在估算产品使用阶段的燃气轮机部件的LCF裂纹风险或剩余LCF寿命时特别有用。由于已知运行历史,就可以准确计算出机械部件的条件生存函数和LCF寿命的条件CDF。这些功能可在评估时提供量化的LCF裂纹萌生风险,并有助于服务决策的制定。例如,如果在评估时计算出的条件CDF值接近1,则LCF裂纹萌生的风险相对较高,这可能会根据进一步的工程判断和决策,建议对部件进行维修或更换。相反,如果计算出的条件CDF值远低于1,则仍可以安全地采用该机械部件。
如果未知一系列的周期运行条件,但是具有随机的一系列周期运行条件的概率分布估计,则无论周期运行条件是否相同,在增强的概率LCF模型中,采用等式(1),(6)和(11)–(14)便可以针对随机LCF寿命进行计算。图2是根据本公开实施方式的确定机械部件的低周疲劳的另一方法的流程图。如图2所示,该方法包括:
S202,采样周期运行条件。
对于每个周期n,在
Figure PCTCN2020123564-appb-000042
之后的空间
Figure PCTCN2020123564-appb-000043
中采样周期运行条件θ n
S204,计算威布尔比例参数。
固定威布尔形状参数m,通过现有的ProbLCF工具使用等式(1)针对每个周期和每个采样的周期运行条件,计算威布尔比例参数η(θ n)。
S206,计算危险率。
针对每个周期和每个采样的周期运行条件,使用(6)计算条件危险率函数。
S208,计算危险率函数、生存函数、CDF和PMF
通过等式(11)至(14)获得危险率函数,生存函数,CDF和PMF。
该方法在机械部件的设计阶段特别有用。可以通过对现有机群数据(fleet data)进行统计或通过工程判断来获得未来运行周期的概率分布估计。
本公开还提供了确定机械部件的低周疲劳的装置。图3是根据本公开实施方式的确定机械部件的低周疲劳的装置的结构示意图,该确定机械部件的低周疲劳的装置300包括获取模块32、参数计算模块34、危险率计算模块36和确定模块38。
获取模块32被配置为获取机械部件在复数个运行周期中的复数个周期运行条件;参数计算模块34被配置为针对复数个运行周期中的每一个,基于与复数个周期运行条件中的相应的一周期运行条件,计算一威布尔比例参数;危险率计算模块36被配置为针对复数个运行周期中的每一个,基于威布尔比例参数计算一条件危险率;以及确定模块38被配置为基于复数个运行周期中的各个条件危险率确定机械部件是否处于低周疲劳。
在本公开中,使用了增强的概率LCF模型,从而考虑了运行周期中的可变性或不确定性。通过本实施方式,为机械部件LCF的评估提供了一种更准确的定量方法,可以优化风险评估并有助于降低产品的开发或服务成本。
本公开在技术上改进了产品设计和服务方法,具有考虑变化/随机的运行周期的增强功能。这可以提高产品设计、评估的成本并降低其成本,还可以优化产品服务模型。
显然,上述所描述的实施方式仅仅是本公开一部分的实施方式,而不是全部的实施方式。基于本公开中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都应当属于本公开保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、部件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本公开的优选实施方式而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 确定机械部件的低周疲劳的方法,其特征在于,包括:
    获取所述机械部件在复数个运行周期中的复数个周期运行条件;
    针对所述复数个运行周期中的每一个,基于所述复数个周期运行条件中的相应的一周期运行条件,计算威布尔比例参数;
    针对所述复数个运行周期中的每一个,基于所述威布尔比例参数计算所述机械部件的危险率;以及
    基于所述复数个运行周期中的各个所述危险率,确定所述机械部件的低周疲劳;
    其中,所述威布尔比例参数用于描述所述机械部件的几何形状和应力应变状态对所述机械部件低周疲劳寿命预期的影响;
    其中,所述危险率为直到预定周期的前一个周期都没有裂纹萌生而在所述预定周期发生裂纹萌生的概率,其中,所述预定周期为所述复数个运行周期中的、与所述危险率相对应的运行周期。
  2. 根据权利要求1所述的方法,其特征在于,获取所述机械部件在复数个运行周期中的复数个周期运行条件包括:
    获取所述机械部件自身在所述复数个运行周期中的复数个历史周期运行条件,并作为所述复数个周期运行条件;或者
    获取所述机械部件的所述复数个周期运行条件各自的概率分布估计,作为所述复数个周期运行条件,其中,所述概率分布估计是参照与所述机械部件相同的、但分布在不同地理位置处的其他部件在所述复数个运行周期中的所述复数个周期运行条件的统计结果而获得的,或者是预定的满足所述机械部件的所述复数个周期运行条件的概率分布。
  3. 根据权利要求2所述的方法,其特征在于,基于所述复数个周期运行条件中的相应的一周期运行条件,计算威布尔比例参数包括:
    基于所述周期运行条件和所述机械部件的表面位置,计算所述表面位置的周期性应变状态;
    基于所述周期性应变状态和所述表面位置,计算所述表面位置的逐点确定性低周疲劳寿命;以及
    基于所述逐点确定性低周疲劳寿命,计算针对所述机械部件的整个表面积的所述威布尔比例参数。
  4. 根据权利要求:2所述的方法,其特征在于,基于所述复数个周期运行条件中的相 应的一周期运行条件,计算威布尔比例参数包括:在所述复数个周期运行条件为所述复数个周期运行条件各自的概率分布估计的情况下,基于所述复数个周期运行条件各自的概率分布中的相应的一概率分布中的每种情况,计算威布尔比例参数。
  5. 根据权利要求2所述的方法,其特征在于,基于所述威布尔比例参数计算所述机械部件的危险率包括:
    在所述复数个周期运行条件为所述复数个历史周期运行条件的情况下,基于所述威布尔比例参数和与应变状态无关的威布尔形状参数计算所述危险率;以及
    在所述复数个周期运行条件为所述复数个周期运行条件各自的概率分布估计的情况下,基于所述复数个周期运行条件各自的概率分布和所述概率分布中每种情况所对应的威布尔比例参数以及与应变状态无关的威布尔形状参数计算所述危险率。
  6. 根据权利要求2所述的方法,其特征在于,确定所述机械部件的低周疲劳包括:
    在所述复数个周期运行条件为所述复数个历史周期运行条件的情况下,基于所述复数个运行周期中的各个所述危险率,计算发生所述低周疲劳的风险概率,以确定所述机械部件的低周疲劳;
    在所述复数个周期运行条件为所述复数个周期运行条件各自的概率分布估计的情况下,基于所述复数个运行周期中的各个所述危险率评估所述机械部件的低周疲劳寿命满足的概率分布,以预测所述机械部件的低周疲劳。
  7. 根据权利要求1所述的方法,其特征在于,基于所述威布尔比例参数计算一危险率之后,所述方法还包括,基于所述复数个运行周期的各个所述危险率,计算生存函数,其中,所述生存函数是所述机械部件在预定周期不存在裂纹萌生的概率。
  8. 根据权利要求7所述的方法,其特征在于,计算所述生存函数包括:将所述复数个运行周期中的每个运行周期的所述危险率与1的差值相乘,以得到所述生存函数。
  9. 根据权利要求1所述的方法,其特征在于,在基于所述威布尔比例参数计算一危险率之后,所述方法还包括:基于所述复数个运行周期的各个所述危险率,计算低周疲劳寿命满足的概率分布函数,其中,所述概率分布函数为累积分布函数或概率质量函数,其中,所述累积分布函数是所述机械部件从初始周期直到预定周期结束的阶段中萌生裂纹的概率,所述概率质量函数是所述机械部件从初始周期到预定周期结束的阶段中萌生裂纹的概率比从初始周期到所述预定周期的前一个周期结束的阶段中萌生裂纹的概率高的程度。
  10. 存储介质,其上存储有程序,其特征在于,所述程序在被计算机执行时,执行权 利要求1至9中任一项所述的方法。
  11. 确定机械部件的低周疲劳的装置,其特征在于,包括:
    获取模块,被配置为获取所述机械部件在复数个运行周期中的复数个周期运行条件;
    参数计算模块,被配置为针对所述复数个运行周期中的每一个,基于所述复数个周期运行条件中的相应的一周期运行条件,计算威布尔比例参数;
    危险率计算模块,被配置为针对所述复数个运行周期中的每一个,基于所述威布尔比例参数计算所述机械部件的危险率;以及
    确定模块,被配置为基于所述复数个运行周期中的各个所述危险率,确定所述机械部件的低周疲劳。
PCT/CN2020/123564 2020-10-26 2020-10-26 确定机械部件的低周疲劳的方法、装置及存储介质 WO2022087769A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080104958.9A CN116171444A (zh) 2020-10-26 2020-10-26 确定机械部件的低周疲劳的方法、装置及存储介质
PCT/CN2020/123564 WO2022087769A1 (zh) 2020-10-26 2020-10-26 确定机械部件的低周疲劳的方法、装置及存储介质
US18/032,996 US20230401354A1 (en) 2020-10-26 2020-10-26 Method and apparatus for determining low-cycle fatigue of mechanical component, and storage medium
EP20958935.7A EP4231192A1 (en) 2020-10-26 2020-10-26 Method and apparatus for determining low-cycle fatigue of mechanical component, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123564 WO2022087769A1 (zh) 2020-10-26 2020-10-26 确定机械部件的低周疲劳的方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022087769A1 true WO2022087769A1 (zh) 2022-05-05

Family

ID=81381621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123564 WO2022087769A1 (zh) 2020-10-26 2020-10-26 确定机械部件的低周疲劳的方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20230401354A1 (zh)
EP (1) EP4231192A1 (zh)
CN (1) CN116171444A (zh)
WO (1) WO2022087769A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764882A (en) * 1983-04-19 1988-08-16 Kraftwerk Union Aktiengesellschaft Method of monitoring fatigue of structural component parts, for example, in nuclear power plants
US20070295098A1 (en) * 2006-06-22 2007-12-27 Balestra Chester L System and method for determining fatigue life expenditure of a component
CN103605329A (zh) * 2013-10-21 2014-02-26 上海发电设备成套设计研究院 火力发电机组部件累积低周疲劳寿命损耗监控方法
CN104823191A (zh) * 2012-10-16 2015-08-05 西门子公司 用于概率性疲劳裂纹寿命估计的方法和系统
CN106153311A (zh) * 2015-04-22 2016-11-23 中航商用航空发动机有限责任公司 机械零部件的疲劳寿命评估方法
CN106596301A (zh) * 2016-11-30 2017-04-26 中国直升机设计研究所 一种直升机金属结构缺陷检查周期确定方法
CN107784178A (zh) * 2017-11-09 2018-03-09 中国兵器科学研究院 一种基于多故障机理耦合的机械结构可靠性分析方法
CN108170905A (zh) * 2017-12-08 2018-06-15 南昌航空大学 一种用于镍基高温合金叶片热机械疲劳载荷下的寿命预测方法
CN108256192A (zh) * 2018-01-10 2018-07-06 中国科学院金属研究所 一种金属材料基于低周疲劳的热机械疲劳寿命预测方法
CN109598079A (zh) * 2018-12-12 2019-04-09 中国北方发动机研究所(天津) 一种气缸盖分区疲劳寿命预估方法
CN110879912A (zh) * 2018-09-05 2020-03-13 西门子股份公司 疲劳分析方法与装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764882A (en) * 1983-04-19 1988-08-16 Kraftwerk Union Aktiengesellschaft Method of monitoring fatigue of structural component parts, for example, in nuclear power plants
US20070295098A1 (en) * 2006-06-22 2007-12-27 Balestra Chester L System and method for determining fatigue life expenditure of a component
CN104823191A (zh) * 2012-10-16 2015-08-05 西门子公司 用于概率性疲劳裂纹寿命估计的方法和系统
CN103605329A (zh) * 2013-10-21 2014-02-26 上海发电设备成套设计研究院 火力发电机组部件累积低周疲劳寿命损耗监控方法
CN106153311A (zh) * 2015-04-22 2016-11-23 中航商用航空发动机有限责任公司 机械零部件的疲劳寿命评估方法
CN106596301A (zh) * 2016-11-30 2017-04-26 中国直升机设计研究所 一种直升机金属结构缺陷检查周期确定方法
CN107784178A (zh) * 2017-11-09 2018-03-09 中国兵器科学研究院 一种基于多故障机理耦合的机械结构可靠性分析方法
CN108170905A (zh) * 2017-12-08 2018-06-15 南昌航空大学 一种用于镍基高温合金叶片热机械疲劳载荷下的寿命预测方法
CN108256192A (zh) * 2018-01-10 2018-07-06 中国科学院金属研究所 一种金属材料基于低周疲劳的热机械疲劳寿命预测方法
CN110879912A (zh) * 2018-09-05 2020-03-13 西门子股份公司 疲劳分析方法与装置
CN109598079A (zh) * 2018-12-12 2019-04-09 中国北方发动机研究所(天津) 一种气缸盖分区疲劳寿命预估方法

Also Published As

Publication number Publication date
US20230401354A1 (en) 2023-12-14
CN116171444A (zh) 2023-05-26
EP4231192A1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
Salonitis et al. Reliability assessment of cutting tool life based on surrogate approximation methods
KR101975436B1 (ko) 머신러닝 기법을 이용한 천이 유동 영역의 셰일가스정에 대한 생산성 예측 장치 및 방법
Xu et al. Discrete time–cost–environment trade-off problem for large-scale construction systems with multiple modes under fuzzy uncertainty and its application to Jinping-II Hydroelectric Project
EP1982046B1 (en) Methods, systems, and computer-readable media for real-time oil and gas field production optimization using a proxy simulator
Wen et al. Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction
KR101358673B1 (ko) 스마트폰을 이용한 시설상태평가 방법 및 시스템
Gamse et al. Hydrostatic-season-time model updating using Bayesian model class selection
CN105452598B (zh) 选择和优化用于产量平台的油田控制的方法
CN110096805A (zh) 一种有限观测数据下基于改进自助法的结构参数不确定性量化及传递方法
CN106295869A (zh) 一种基于改进无偏灰色模型的建筑物沉降预测方法
WO2022087769A1 (zh) 确定机械部件的低周疲劳的方法、装置及存储介质
JP2016177676A (ja) 診断装置、診断方法、診断システムおよび診断プログラム
CN110852610A (zh) 基于马尔科夫模型的路桥隧健康状态与养护费用测算方法
CN114184211B (zh) 一种惯导可靠性试验中性能变化机理一致性判定方法
WO2022038840A1 (ja) き裂進展評価装置、及びき裂進展評価プログラム
Peleš et al. Uncertainty quantification in energy efficient building performance simulations
Domański Non-Gaussian assessment of the benefits from improved control
KR101530127B1 (ko) 가우시안 프로세스 에뮬레이터를 이용한 건물 운영의 확률적 제어 방법
TWI624679B (zh) 建築物樓層之地震即時分析方法、系統、記錄媒體及電腦程式產品
Dwight et al. Reducing uncertainty in aeroelastic flutter boundaries using experimental data
CN117253568B (zh) 一种制备氧化钇坩埚的涂层工艺优化方法及系统
Eck et al. Scenario generation for network optimization with uncertain demands
CN117146382B (zh) 一种智能化调适系统优化方法
CN117494510A (zh) 基于集成模型的防洪堤变形监控方法
Inyim et al. Application of Monte Carlo simulation and optimization to multi-objective analysis of sustainable building designs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020958935

Country of ref document: EP

Effective date: 20230519

NENP Non-entry into the national phase

Ref country code: DE