WO2022087756A1 - Iniciador electrónico programable no explosivo para tronadura de roca, y proceso de testeo y reacción exotérmica del iniciador - Google Patents

Iniciador electrónico programable no explosivo para tronadura de roca, y proceso de testeo y reacción exotérmica del iniciador Download PDF

Info

Publication number
WO2022087756A1
WO2022087756A1 PCT/CL2020/050144 CL2020050144W WO2022087756A1 WO 2022087756 A1 WO2022087756 A1 WO 2022087756A1 CL 2020050144 W CL2020050144 W CL 2020050144W WO 2022087756 A1 WO2022087756 A1 WO 2022087756A1
Authority
WO
WIPO (PCT)
Prior art keywords
microprocessor
explosive
capacitor
initiator
electronic initiator
Prior art date
Application number
PCT/CL2020/050144
Other languages
English (en)
French (fr)
Inventor
Eduardo Alfredo ABARCA VARGAS
Original Assignee
Comercializadora Exoblast Chile Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comercializadora Exoblast Chile Spa filed Critical Comercializadora Exoblast Chile Spa
Priority to US18/251,225 priority Critical patent/US20230408230A1/en
Priority to CA3196525A priority patent/CA3196525A1/en
Priority to AU2020474620A priority patent/AU2020474620A1/en
Priority to PCT/CL2020/050144 priority patent/WO2022087756A1/es
Priority to EP20958925.8A priority patent/EP4239278A1/en
Publication of WO2022087756A1 publication Critical patent/WO2022087756A1/es
Priority to CL2023001058A priority patent/CL2023001058A1/es
Priority to CONC2023/0004958A priority patent/CO2023004958A2/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/121Initiators with incorporated integrated circuit
    • F42B3/122Programmable electronic delay initiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/11Initiators therefor characterised by the material used, e.g. for initiator case or electric leads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/02Arranging blasting cartridges to form an assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay

Definitions

  • the purpose of this development is to provide a non-explosive (explosive) programmable electronic initiator for a rapidly expanding metallic mixture (such as plasma and/or explosives of different categories), which seeks to provide a solution to the following technical problems existing in the rock fragmentation; reach the high temperature necessary to activate a rapidly expanding metallic mixture with a very low voltage requirement; improve the rates of non-activated loads (shots left) with an effective test system; provide work continuity, increase productivity and safety in processes related to rock fragmentation with a programmed delay system in each initiator.
  • a non-explosive (explosive) programmable electronic initiator for a rapidly expanding metallic mixture (such as plasma and/or explosives of different categories), which seeks to provide a solution to the following technical problems existing in the rock fragmentation; reach the high temperature necessary to activate a rapidly expanding metallic mixture with a very low voltage requirement; improve the rates of non-activated loads (shots left) with an effective test system; provide work continuity, increase productivity and safety in processes related to rock fragmentation with a programme
  • Another initiation system is the safety fuse or slow fuse. This consists of black powder wrapped in textile threads, with a braider, later it was waterproofed with a layer of asphalt covered in turn, with a new textile or wax layer. From 1936 to date, detonating cord is used, which is a flexible and waterproof rope that houses an explosive inside, originally trinitrotoluene (TNT) and penthrite.
  • TNT trinitrotoluene
  • the massive application of explosives in the more than 140 years of history of the industry, has been due to its low cost and accessibility.
  • the explosive technology used consists of the use of a blasting agent, "Anfo" (from the English Ammonium Nitrate - Fuel Oil), a mixture of ammonium nitrate and oil suitable for not producing toxic gases and has adequate power depending on the type. of rock to fragment.
  • a technical problem with rock blasting is its effect on nearby rock, as it can lead to intense fragmentation and disruption of the surrounding rock integrity if the blasting or drilling systems are incorrect. The damage would be greater if the blast energy was transmitted to a more remote area, destabilizing the mine structures.
  • the results of a blast depend on factors such as: the type of rock, the stress regime, the structural geology and the presence of water.
  • appropriate measures to minimize the damage caused by a blast are: an appropriate choice of explosive, the use of perimeter blasting techniques, such as pre-division blasting (parallel and very close holes that define the perimeter of the excavation), decoupling charges (the diameter of the explosive is smaller than that of the blasthole), retardation time and stop holes.
  • Some references regarding developments of electronic detonators can be the European patent DE 102005052578.4 where a method and a system for assigning a delay time to an electronic delay detonator are described, where the detonator includes an information register (24), in which the desired delay time value is written, supplied by the controller, where later, during a predetermined period of time (t), the content of the information register (24) is repetitively added to a counter register (26), where the content is accumulated, where after a division of the content of the counter register through the calibration time, the content of the counter register (26) is subsequently counted backwards using the same oscillator (18) that has controlled the accumulation process.
  • the present invention allows the value of the delay time supplied by the controller to be adhered exactly, using a low precision oscillator (18) and without feedback from the detonator (12) to the controller.
  • a detonator that includes a high voltage switch, an initiator and an initiation pellet, where the detonator also includes a low voltage detonation group to high voltage connected to the switch and the primer in such a way that the detonator includes a high voltage power source and a primer in an integrated package.
  • the trigger can also include power and communications, a microprocessor, tracking and/or location technologies, such as rfid, gps, etc. and a starting pellet of an explosive or a combination of explosives.
  • the combination explosive pellet has a first explosive having a first impact energy and a secondary high explosive in the starting pellet having a second impact energy greater than the impact energy of the first explosive.
  • patents EP1105693 / WO0009967 can be mentioned where a method and an apparatus are presented to establish a blasting arrangement by loading at least one detonator in each one of a plurality of blast holes, placing explosive material in each blast hole, connecting to a trunk line to a control unit having a power source incapable of firing the detonators, sequentially connecting the detonators, by means of the respective bypass lines, to the trunk line and leaving each detonator connected to the trunk line.
  • the apparatus includes means for receiving and storing in memory means identity data of each detonator, means for generating a signal to test the integrity of the detonator/trunk line connection and the functionality of the detonator, and being able to assign a delay of predetermined time for each detonator to be stored in memory.
  • an explosive detonating system is presented to detonate an explosive charge with which it is, during use, arranged in a detonating relationship
  • the detonating system comprising a detonator, including a detonator capsule: a detonation circuit within the detonator capsule, the detonation circuit comprising a conductive path: an initiator head within the detonator capsule, the initiator head comprising at least two spatially separated conductive electrodes and a resistive bridge that bridges the space between the electrodes, the initiator head being integrated with the detonation circuit in such a way that the conductive path passes along both the electrodes and the resistive bridge; a chargeable voltage source discharged within the detonator capsule, the chargeable voltage source being integrated with the detonation circuit and being electrically responsive to a charge property which is included in a charge signal which is, in use, communicated
  • patent US6173651 B1 where a detonators control method equipped with an electronic ignition module is presented.
  • Each module is associated with specific parameters including at least one identification parameter and burst delay time, and includes a trigger capacitor and a rudimentary internal clock.
  • the modules are capable of establishing a dialogue with a trip control unit equipped with a reference time base.
  • the identification parameters are stored in the modules by means of a programming unit; specific parameters are stored in the shot control unit; for each successive module, its internal clock is calibrated by the trigger control unit and the associated delay time is sent to the module; the modules are commanded to charge the firing capacitors and a firing command is sent to the modules by the firing control unit, triggering an eventual reset of the internal clocks as well as a firing sequence.
  • a second US patent, US4674047 A1 discloses a detonation system for use with electrical power supply having a user operable firing console for selectively transmitting unit identification information, firing delay time information and selections from a set of commands including Exit, Delay, Trip (Time), Abort, Power On (Arm), Entry, and Store.
  • the console displays the responses or digested information of the electrical delay detonators' responses to commands.
  • Detonators have an explosive, a capacitor to store energy from the supply to activate the explosive, a circuit to charge the capacitor from the supply and transfer the energy from the capacitor to the explosive in response to the first and second signals generated in response to the commands.
  • Each detonator can be programmed with a unique identification number and delay time. The time base of each detonator can be compensated in such a way as to avoid errors in the time base to achieve the correct delay.
  • the security code circuits and software are described in such a way that each detonator can only be activated by authorized users.
  • the fast-expanding metallic mixture corresponds to a chemical mixture composed of metal salts and powders, available in multiple formulas on the market, according to the following examples:
  • thermochemical reaction A formula, like the one identified in Formula 1 above, subjected to temperatures of 1,500°C (Note that the ignition temperature varies according to the mixture ratios of metal salt and powder in each Formula), triggers the following thermochemical reaction of its components:
  • the metal salt allows the oxidation of metal powder, the heat generated in the oxidation process of extremely high temperatures (3,000°C - 30,000°C) is generated instantly, releasing a large amount of thermal energy, converting iron products (Fe) and manganese oxide (Mn 3 O 4 ) in rapidly expanding vaporized gases; the vaporized expanded product it changes to the solid state and thus the expansion reaction stops.
  • the release of expansive energy is what finally allows the rock to fracture due to the high pressures reached (5,000 - 20,000 Atm).
  • metal nitrates are the most preferable, however, a rapidly expanding metal mixture can also be composed of other metal salts such as: metal oxides, metal hydroxides, metal carbonates, sulfates and perchlorates metallic. Said metal salt can be used alone or in combinations thereof.
  • the metal nitrates can be additionally added with at least one metal salt selected from metal oxides, metal hydroxides, metal sulphates and perchlorates, to control the temperature required for the initiation of oxidation and the period of time required for oxidation.
  • the metal powder is preferably selected from the group consisting of aluminum powder (Al), sodium powder (Na), potassium powder (K), lithium powder (Li), magnesium (Mg) powder, calcium (Ca) powder, Manganese (Mn) powder, Bath Powder (Ba), Chromium (Cr) powder, Silicon (Si) powder, and combinations thereof.
  • the proportions used to compose the mixture of metal salts and the metal powder are defined according to the ratio of the amounts of oxygen generated by the metal salts and the amounts of oxygen required for the oxidation of the metal powder. This ratio of generation versus requirement provides a ratio based on molecular weights calculated from chemical formulas.
  • composition, function and preparation process of a rapidly expanding metallic mixture is not the object of this document, however, there are different documents or patents, in the public domain with the information.
  • the high temperature condition required to trigger the oxidation reaction of a rapidly expanding metal mixture can be achieved by various methods.
  • one of the most widely used methods currently consists of the one described in patent EP 1 306 642 B1, in which a capsule structure is provided for a rapidly expanding metallic mixture, in which the heat of arc discharge high voltage (which generates temperatures of thousands of degrees), is used as a heat source.
  • the capsule for a rapidly expanding metallic mixture comprises an external casing made of an insulating material, with the rapidly expanding mixture contained in the external casing, and two supply bars of energy coming out from both ends of the outer casing.
  • Two main firing electrodes are provided to induce arc discharge at the inner ends of the two power supply bars.
  • the two main firing electrodes induce an arc discharge between them when high voltage is applied to them.
  • a high voltage of 2 kV or more is applied to the two power bars, an arc discharge is induced between two drive electrodes, instantly generating a high temperature of about 2,000°C or more at the positions around the drive electrodes.
  • positive and negative activation The voltage requirement varies depending on the distance of the electrodes, i.e.
  • the disadvantages of this method lie mainly in the high voltage requirement necessary to achieve the high temperature that triggers the chemical reaction and the lack of a testing system that allows reducing or eliminating the existence of non-activated capsules.
  • patent EP 1 306 642 B1 could be reduced in projects that require a large volume of non-explosive fragmentation, because the high voltage required for the activation of the necessary chemical reaction would be a limitation for the number of capsules in the field. .
  • the high voltage required for the activation of the necessary chemical reaction would be a limitation for the number of capsules in the field.
  • the present development is related to a non-explosive programmable electronic initiator, whose purpose is to activate the chemical reaction of a rapidly expanding metallic mixture with a temperature greater than 1,000 °C; whose main characteristics are: a low voltage requirement (less than 35 V), which allows a large number of capsules in the mesh to be fragmented (greater than 400 capsules); a delay system (from 1 to 64,000 milliseconds), which allows greater precision and fragmentation control; a testing system that allows validating the circuit prior to ignition, which eliminates the existence of non-activated capsules.
  • fast-expanding metallic mixtures unlike other analogous products, do not have any explosive component.
  • its use allows obtaining similar results and with important advantages such as, reduction significant risk of handling and transport, due to the great stability of the chemical mixture against shocks, friction, pressure and high temperatures significant reduction in risks of occupational accidents; operational continuity due to the fact that the evacuation of people and equipment is minimal in a radius close to the blasting area; lower environmental impact due to minimal levels of vibration, noise, shrapnel and no toxic gases.
  • a particular problem with rock blasting is its effect on nearby rock, as it can lead to intense fragmentation and disruption of the surrounding rock integrity if the blasting or drilling systems are incorrect.
  • One of the measures used to minimize the environmental impact generated by high vibrations and improve the safety of field work is the delay time in blasting.
  • each initiator has a programmable delay system, which allows the required delay period to be programmed in advance and individually according to the blasting schedule.
  • Each Non-Explosive Programmable Electronic Initiator [07] can be programmed with a delay time in a range between 1 millisecond and 64,000 milliseconds.
  • Some electronic initiators for explosives have a programmable delay time, such is the case of patent US 6 173 651 (14,000 milliseconds, being patent EP 1105693 B1, WO 0009967 A1 (according to patent 3,000 milliseconds, without However, according to the data sheet 30,000 milliseconds) whose initiators have the longest delay time known to date.
  • a fundamental characteristic of the present development consists in delivering the necessary voltage for the activation of one (or more) Non-Explosive Programmable Electronic Initiator [07] for a rapidly expanding metallic mixture.
  • a voltage between 24V and 35V is required.
  • the same voltage is required: 24V and 35V.
  • the voltage requirement does not vary either by distance between activation electrodes, or by electronic initiator units arranged on the line. This is because the connection of each Non-Explosive Programmable Electronic Initiator [07] to the line is in parallel.
  • each initiator requires 2,000V or more.
  • this patent indicates different voltage requirements depending on the distance between the activation electrodes; when the activation electrodes are separated by 200mm or more, the voltage requirement for activation is between 6,000V and 7,000V; when the activation electrodes are separated by 100mm or more, the voltage requirement for activation is between 3,000V and 4,000V. Because the connection of the initiators to the line is in sign, the applied voltage is divided into the number of initiators that the line has, so the voltage requirement of each initiator arranged in a blast increases the total voltage requirement. .
  • the required high temperature (1,000 °C or more) is reached through the controlled discharge of Capacitor C7 [21] in the filament [30], which produces its incandescence for the necessary period, reaching the temperature required for the activation of the first rapidly expanding metallic mixture [13], which fulfills the role of non-explosive tallow.
  • the necessary temperature is reached (1,200 °C or more) for the activation of the second fast-expanding metallic mixture [15].
  • the process requires, among other things, the presence of a supervisor throughout the operation, ensuring the clearance of the compromised area, removing workers and equipment not related to the operation, and using the minimum necessary personnel for this activity, thus reducing the number exposed to highly critical conditions.
  • the frequency change verification is essential to ensure the correct state prior to the activation of the "sleep" functionality of Microprocessor IC1 [07], which is directly related to the low voltage requirement and the reach of the maximum delay time of 64,000 milliseconds.
  • Delay The concept of delay or delay time in the present development refers to the assignment of a countdown delay period measured in milliseconds (ms) that determine the ignition sequence in a blast. Each trigger is assigned a predefined period of time (between 1 and 64,000 milliseconds).
  • Missed shots The concept of missed shots for the present development refers to the complete or partial ignition failure of one (or more) capsule included in the ignition sequence in a blast. It is an undesirable consequence of high risk, in which remains of the product that can be activated by any mechanical effect during the excavation, milling or crushing stages of the mining process.
  • Microprocessor The concept of microprocessor used for this development refers to the set of integrated electronic circuits that carry out the instructions and tasks involved in information processing.
  • the present development requires a Microprocessor that has the following characteristics: serial communication, low power consumption (preferably but not restricted to 20 nA in sleep mode), internal precision oscillator (preferably but not restricted to 31 KHz at 32 MHz), feasibility of integrating an external low-frequency oscillator (preferably but not restricted to 32 KHz), memory capacity (preferably but not restricted to EEPROM 256 bytes, SRAM 256 bytes) and sufficient input and output ports to perform the functions that are required (at least 8).
  • the Microchip PIC16LF1824/1828 model has been defined as a feasible Microprocessor of uses for the execution of the commands and programs required in the present development.
  • Communication protocol it is a system of rules that allow two or more entities of a communication system to communicate with each other to transmit information. For the present development, it refers to the form of bidirectional communication between the Command Team [01] and the Non-Explosive Electronic Initiator(s) [07] that maintains the transmission of information and the necessary voltage for the operation of the Electronic Initiator(s). NO Explosives [07] and that can occur under the language of transmission of bits per second through voltage pulses.
  • Eilamento For the present development it refers to a filament of a thickness, length and materiality that achieves a balance between capacitance and resistance of the filament to have a point between not being cut and reaching the necessary temperature, by way of example and without restricting the scope of this term, a tungsten filament with a purity that varies between 99.90% and 99.99%, preferably 99.93%, 99.95% and 99.97%, in a spiral format with a length that varies between 1 and 3 mm, preferably 2 mm, 2.2 mm, 2.5 mm, with a diameter in the range between 0.01 mm and 0.1 mm, preferably 0.01 mm, 0.02 mm , 0.03 mm and with a resistance between 2.5 and 4.5 ohms, preferably 3 ohms, 3.2 ohms, 3.5 ohms, 3.6 ohms, 3.7 ohms, 3.8 ohms and 3.9 ohms.
  • Plasma for the present development, plasma is considered as a mixture of rapidly expanding metal salts that, when initiated, produces an exothermic reaction of high temperature, in a confined space. It is a very stable substance, as it does not react to high temperatures, shocks, friction and high pressures. The reaction starts at high temperatures, over 1,000°C.
  • a Command Unit (Console or Master) [01] is required, with the ability to convert serial communication into a communication protocol based on Voltage Modulation [03] through a Line of Communication and Power (parallel lines) [02A and 02B], a connector [04] that connects said parallel lines with the (or) Non-Explosive Programmable Electronic Initiator [07] ( Figure 1 A and 1 B) and a Reader device.
  • RFID card (Logger) [06].
  • Command Unit [01] Other general requirements for the operation of the Command Unit [01] consist of, but are not limited to: external power source (preferably 24V to 36V battery), microprocessor, Micro SD card, Bluetooth system, RFID Reader [06], wireless transmission and screen with keypad.
  • external power source preferably 24V to 36V battery
  • microprocessor preferably 24V to 36V battery
  • Micro SD card preferably 24V to 36V battery
  • Bluetooth system preferably 24V to 36V battery
  • RFID Reader [06] wireless transmission and screen with keypad.
  • a Communication and Power Line [02A and 02B] is required, made up of two parallel copper cables, each of them with a diameter greater than 0.5 millimeters in diameter, whose resistance is less than 36 ohms per kilometer.
  • These cables fulfill an essential role, and when used in accordance with the instructions in table I, they allow to ensure both the reliability in the transmission of Voltage Modulation [03] and communication protocol ( Figure 2), as well as the power received by each Non-Explosive Programmable Electronic Initiator [07], Table I: Electrical Conductor Resistance
  • Formula 1 2Fe(NO 3 ) 2 +12Mn ; Patent N° 10-0213577 Formula 2: Fe(NO 3 ) 2 +3CuO+6AI ; Patent No. 10-0213577
  • the present development consists of a Non-Explosive Programmable Electronic Initiator [07], composed of a capsule with two types of fast-expanding metallic mixture [13] and [15] that allows it to be attached to a container tube or sleeve [16]. and a seal plug [17] (Figure 3); and that, once it receives the Voltage Modulation [03] and the communication protocol ( Figure 2), by means of commands, the functions that allow reaching the high temperatures required to start the chemical reaction are activated, using a low voltage requirement. (less than 35V), with a delay system (from 1 ms to 64,000 ms), and with a testing system that allows validating the circuit prior to ignition.
  • Each Non-Explosive Programmable Electronic Initiator [07] has a unique and unrepeatable identification (ID), which is recorded at the factory and coincides with the internal code of the external RFID card [05].
  • ID unique and unrepeatable identification
  • the Command Unit [01] captures said ID through the serial port via bluetooth through the RFID reader unit (Logger) [06] ( Figure 1) and stores it on the MicroSD card belonging to the Command Unit [01 ]. The data remains available for later use in certain processes.
  • the Non-Explosive Programmable Electronic Initiator [07] has a Microprocessor IC1 [28] ( Figure 4), with an Internal Oscillator and a non-volatile EEPROM memory [35] ( Figure 5).
  • the Voltage Modulation [03] ( Figure 2) sent consists of a constant square wave with an amplitude defined between 24V and 35V ( Figure 2A) and a period of 4.0 ms. The high bit of 4 milliseconds and the low bit of 0.2 milliseconds allow a constant voltage to be maintained ( Figure 2A).
  • the data is sent at a communication speed equivalent to 2400 bauds from the Command Unit [01] through the Communication and Power Line [02A and 02B] and are received by the Non-Explosive Programmable Electronic Initiator [07] ( Figure 2C).
  • the data is sent through the Communication and Power Line [02A and 02B] from the Non-Explosive Programmable Electronic Initiator [07] and is received by the Command Unit [01] ( Figure 2B).
  • the sending of data from the Non-Explosive Programmable Electronic Initiator [07] to the Command Unit [01] is determined by a bit of 25 us (microseconds), equivalent to 40,000 bauds; data transmission (one byte) is done on the low bit of the communication line.
  • the input of the Non-Explosive Programmable Electronic Initiator [07], comprises a diode D1 and a Voltage Rectifier D2 [18] ( Figure 4), which are connected to the Communication and Power Line [02A and 02B].
  • Diode D1 suppresses transient currents and prevents current leakage.
  • the D2 Voltage Rectifier with voltage inputs between 24V and 35V, transforms alternating current (AC) into direct current (DC) ( Figure 4).
  • a Voltage Regulator IC2 [20] receives the voltage from 24V to 35V and the rectified current (DC). This Voltage Regulator IC2 regulates the initial voltage to 5V ( Figure 4).
  • two voltage dividing resistors R1 and R2 [24] are connected to the system input of the Programmable Electronic Non-Explosive Initiator [07]. , which lower the voltage from 24V-35V to 5V, thus adjusting to the operating level of Microprocessor IC1 [28].
  • R1 operates with a resistance between 90 and 170 Kohm, preferably 110 Kohm, preferably 120 Kohm and preferably 130 Kohm
  • R2 operates with a resistance between 15 Kohm and 25 Kohm, preferably 110 Kohm, preferably 120 Kohm and preferably 130 Kohm
  • the square wave with the data is then transmitted from the Command Unit [01] to the INT/IO PORT input pin [41] ( Figure 7) of the Microprocessor IC1 [28], being converted into bytes using an algorithm.
  • the Microprocessor IC1 [28] through the transmission block EUSART [28E] ( Figure 4) pin TX [43] ( Figure 9) transmits the output data.
  • the output data is inserted through a transistor T1 and two resistors R3 and R4 [23] in the Communication and Power Line [02A and 02B],
  • the response data is then sent to the Command Unit [01] for its processing ( Figure 2B).
  • diodes D4 and D5 [19] are connected to the 5V voltage input. In this stage of the circuit, the 5V input voltage is reduced to 3.6V, necessary for the operation of the Microprocessor IC1 [28]. Diodes D4 and D5 [19] suppress transient currents and prevent current leakage.
  • Capacitor C4 [19] is an energy reservoir that is kept continuously charged. It is essential to point out that this device will be the power source for Microprocessor IC1 [28] and will keep it active for up to 64,000 milliseconds, once the Communication and Power Line [02A and 02B] is interrupted. The discharge time of this capacitor must be greater than the programmed delay time; This point is addressed in greater depth when the operation of the External Oscillator [25] ( Figure 4) and OSC [36] ( Figure 6) are described.
  • the Filament [30] is a Tungsten spiral with a length that varies between 1 and 3 mm, preferably 2 mm, 2.2 mm, 2.5 mm, with a diameter ranging between 0.01 mm and 0.1 mm.
  • mm preferably 0.01 mm, 0.02 mm, 0.03 mm and with a resistance ranging from 2.5 to 4.5 ohms, preferably 3 ohms, 3.2 ohms, 3.5 ohms, 3 .6 ohm, 3.7 ohm, 3.8 ohm and 3.9 ohm.
  • a transistor T4 [22] (figure 4) connected to a series resistor R12 (current limiter), which in turn is connected to ground (Vss or GND), maintains the Filament [30] and the Capacitor C7 [21] with a voltage lower than 1 V.
  • the Transistor T4 [22] through a command (Command 5), is deactivated so that it is start the charging process of Capacitor C7 [21], prior to the trip.
  • this Transistor T4 [22] discharges Capacitor C7 [21] to ground (Vss or GND), reducing the voltage of Capacitor C7 [21] to a value lower than 1 V and preventing the Filament [30] from having the necessary voltage to ignite and activate the rapidly expanding metallic mixture.
  • the Filament [30] is connected to a Capacitor C7 [21] (initial charge 0V) and to the transistor T2 [27].
  • the Trigger Command (Command 7) is activated, the I/O PORT C5 pin [28B] ( Figure 4) activates the transistor T2 [27] for the discharge of the Capacitor C7 [21] in the Filament [30], causing its incandescence.
  • Resistor R9 [21] limits the input current to a value that ranges between 2 and 3 milliamperes, this allows a slow charge of Capacitor C7 [21 ] and a minimum current consumption. Diode D3 [21] prevents current leakage from Capacitor C7 [21],
  • the Test System is fed by the data from the sensor configured on the ADC/AN pin [42] ( Figure 8). The data obtained are analyzed by internal algorithm of the Microprocessor IC1 [28].
  • the Operation Test System is activated in Command 3 (described later) and is made up of the following tests:
  • Capacitor C7 [21] Initial Status Verification: o
  • a transistor T4 [22] Figure 4
  • a resistor R12 [22] is activated to connect the positive output of capacitor C7 [21] to ground ( Vss or GND) and keeps the capacitor charge at a voltage lower than 1V.
  • the verification of the initial state of the capacitor C7 [21] consists in measuring the voltage of the capacitor C7 through the sensor [28C].
  • the sensor reads the data regarding the voltage of the Capacitor C7 [21] and stores it in a variable of 10 bits in the Microprocessor IC1 [28] equivalent to a certain amount of 1024 parts.
  • the initial voltage is in a range between 24V and 35V, one part is equivalent to a range between 0.023V and 0.034V; then a range between 30 and 43 parts is equivalent to a voltage of less than 1V.
  • the reading after this milestone must be less than 1 V.
  • a reading greater than this value means defective Capacitor C7 [21] or defective Transistor T4 [22].
  • Capacitor C7 Voltage [21] ⁇ 800 parts implies the Unused Initiator.
  • Programmed Delay Verification o
  • Data regarding the programmed delay is sent from the Command Unit [01] to the Programmable Non-Explosive Electronic Initiator [07] and stored in the EEPROM memory.
  • the Non-Explosive Programmable Electronic Initiator [07] through an algorithm, verifies that the data sent by the Command Unit [01] is equal to the data received by the Microprocessor IC1 [28].
  • the Microprocessor IC1 [28] sends a response to the Command Unit [01].
  • the programmed response time is 150 milliseconds.
  • Scheduled Response Time > 150 milliseconds implies a Communication Error.
  • the response data referring to the delay is identical to the data sent by the Command Unit [01], it receives an acknowledgment code (ACK).
  • ACK acknowledgment code
  • External Oscillator Status Verification [25] and Frequency Change for sleep mode o
  • the External Oscillator [25] is activated and the emitted beats per second are read. These pulsations must coincide with the frequency of 32 KHz.
  • the Command Unit [01] receives an error code.
  • Microprocessor IC1 [28] which has an internal oscillator preferably of 16 MHz [28A] ( Figure 4) although it does not exclude alternatives with higher frequency, has an approximate power consumption of 2 mA (milliamps).
  • Figure 6 is a detailed representation of the dynamics that is generated in the Clock Source Block [28A] belonging to Figure 4.
  • the present development contemplates a 32 kHz External Oscillator Q1 [25] ( Figure 4) connected to Microprocessor IC1 [28], whose objective is to reduce energy consumption, lowering the system frequency from 16 MHz to 32 KHz.
  • the Filament [30] ( Figure 4) is made up of Tungsten wire in the shape of a spiral with a length that varies between 1 and 3 mm, preferably 2 mm, 2.2 mm, 2.5 mm, with a diameter of a range between 0.01 mm and 0.1 mm, preferably 0.01, 0.02, 0.03 and with a resistance ranging between 2.5 and 4.5 ohms, preferably 3 ohms, 3.2 ohm, 3.5 ohm, 3.6 ohm, 3.7 ohm, 3.8 ohm and 3.9 ohm.
  • the TIMER1 [37] ( Figure 6) of the Microprocessor IC1 [28] can read the pulsations emitted by it and associate by means of a algorithm its equivalence in time.
  • the delay time is defined in the field and before the execution of the shot (Fire).
  • the defined delay time is programmed in the Non-Explosive Programmable Electronic Initiator [07] through the Control Unit [01 ].
  • the data related to the programmed delay time is stored in the non-volatile EEPROM memory of the Microprocessor IC1 [28] of each Non-Explosive Programmable Electronic Initiator [07],
  • the delay time of each Non-Explosive Programmable Electronic Initiator [07] is limited by three characteristics associated with different functionalities.
  • the capacitor C4 [19] ( Figure 4) fulfills the role of external battery of the Microprocessor IC1 [28] after the line cut; the charge autonomy of Capacitor C4 [19], is decisive for the maximum period of operation of Microprocessor IC1 [28] once the “Fire” command (Command 7) is activated and the Communication and Power Line is cut [ 02A and 02B],
  • the 32 kHz External Oscillator Q1 [25] emits 32,000 pulses per second, these are counted by TIMER1 [37] ( Figure 6) of Microprocessor IC1 [28]. It is these pulsations that, by means of an algorithm, their equivalence in time allows a countdown to reach the programmed delay time.
  • Microprocessor IC1 [28] has a sleep mode function “sleep”, which is activated by an instruction.
  • sleep mode function “sleep”, which is activated by an instruction.
  • the TIMER1 oscillator of Microprocessor IC1 [37] is not affected and the peripherals that operate from it can continue to work in sleep ( Figure 6); the existence of an External Oscillator Q1 [25], allows to use the “sleep” function of Microprocessor IC1 [28] and substantially lower its energy consumption; Note that the “sleep” function, although it is true that it could be activated with the internal oscillator of Microprocessor IC1 [28], the energy consumption associated with this form would be 600 nA. Using the External Oscillator Q1 [25] and having activated the “sleep” functionality, this consumption is 20nA.
  • each Non-Explosive Programmable Electronic Initiator [07] is limited to a range between 1 and 64,000 milliseconds.
  • the activation of Fire causes the following actions: a) All the interruptions of the Microprocessor IC1 [28] are disconnected to avoid an early awakening of the dormant function “sleep”. b) The load of Capacitor C7 [21] is disconnected, so that it maintains its maximum load while Microprocessor IC1 [28] is in "sleep" mode and TIMER1 counts down. c) Information related to the delay time stored in the non-volatile EEPROM memory of Microprocessor IC1 [28] is retrieved and the programmed delay time is loaded into the TIMER1 counter (Command 2). d) The “sleep” function of Microprocessor IC1 [28] is enabled and only TIMER1 functions to start the countdown of the delay time. e) The delay time countdown starts.
  • Capacitor C7 [21] is enabled, at that moment Transistor T2 (NPN) [27] with its Resistor R8 [27] is enabled to discharge all the energy accumulated in Capacitor C7 [ 21] on the Filament [30] ( Figure 4).
  • Non-Explosive Programmable Electronic Initiator [07] carries out the processes described below:
  • Process 1 The input voltage (24V to 35V) of the Non-Explosive Programmable Electronic Initiator [07] is rectified by means of two capacitors, C1 and C2 [18], a diode D1 and a rectifier bridge D2 [18].
  • Capacitor C3 keeps the input voltage stable (24V and 35V).
  • the Voltage Regulator IC2 lowers the input voltage (24V and 35V) to 5V, input voltage for diodes D4 and D5 [19].
  • Process 3 The data enters the Non-Explosive Programmable Electronic Initiator [07] through resistors R1 and R2 [24] ( Figure 04). These resistors filter (separate) the byte frame associated with the incoming data and reduce its input voltage (between 24V and 35V) to the level required by Microprocessor IC1 [28] (between 3.3V and 5.0V).
  • Process 4 Two diodes D4 and D5 [19] are placed on the voltage input line to the Microprocessor IC1 [28], these components regulate the voltage to the voltage required by the Microprocessor IC1 [28] (3.6V) and stop current loss. Also in the voltage input line to Microprocessor IC1 [28], a 470 uF Capacitor C4 [19] is placed, which keeps the input voltage stable (3.6V). Capacitor C4 [19] also fulfills the role of energy accumulator.
  • Process 5 Microprocessor IC1 [28] has a PIN configured as a sensor. The sensor is connected to two resistors R6 and R7 [26], which fulfill the role of voltage divider, between Capacitor C7 [21], Filament [30] and ground (VSS).
  • the sensor [28C] ( Figure 4) reads the data resulting from the verification regarding the continuity of the Filament [30] (Command 3).
  • the resistance value is expected to be between 2.5 and 4.5 ohms.
  • the sensor of the Microprocessor IC1 [28] reads the state of the initial charge of the Capacitor C7 [21].
  • the first sample taken is expected to be of a value less than 1 V (Command 3).
  • Microprocessor IC1 [28] deactivates Transistor T4 [22], activates the PIN connected to Transistor T3 [29] through Resistors R10 and R5 [29], This allows to start charging Capacitor C7 [21], The charging process of Capacitor C7 [21] is programmed for 30 seconds.
  • Process 7 The Microprocessor sensor IC1 [28] records charging voltage data every 30 milliseconds during the 30 seconds of charging of Capacitor C7 [28]. The generated data is stored in a non-volatile EEPROM memory of the Microprocessor IC1 [28]. The data will be processed via Command 3, indicated later.
  • Process 8 Capacitor C7 [21] is connected to the rectified power line (Process 1). Resistor R9 [21] and diode D3 [21] limit the system load. A slow charge of Capacitor C7 [21 ] (30 sec) and a current consumption between 2 and 3 milliamps is generated.
  • Process 9 Connected to Microprocessor IC1 [28], External Oscillator Q1 [25] and Capacitors C5 and C6 [25] keep the 32 Khz oscillation stable.
  • Process 11 The Microprocessor IC1 [28] activates the transistor T2 [27] through the Resistor R8 [27], the discharge of the Capacitor C7 [21] occurs through the Filament [30], producing incandescence in the Filament [30].
  • Process 13 The exothermic reaction of the activation of the Rapid Expansion Metallic Mix [13] allows reaching the temperature of 1,200 C and activates the Rapid Expansion Metallic Mix [15].
  • Command 1 Records in the non-volatile EEPROM memory of Microprocessor IC1 [28] the ID, RFID identification code [05], uniquely and unrepeatablely identifying a Non-Explosive Programmable Electronic Initiator [07].
  • Command 2 Records in the non-volatile EEPROM memory of Microprocessor IC1 [28] the programmed delay time, which varies between 1 millisecond and 64,000 milliseconds.
  • Command 3 Query ID. It diagnoses the current functionality, excluding Command 7 (Trip).
  • Diagnosis 1 Through an algorithm, the response time of the Programmable Non-Explosive Electronic Initiator [07] is checked. In the event that said response time exceeds a programmed time limit (100 milliseconds), it responds with an error code.
  • Diagnosis 3 Using a sensor, it is verified that the Filament [30] has continuity between 2.5 and 4.5 ohms. In the case of failure, it responds with an error code. In case of error, transistor T4 [22] is activated and forces the discharge to ground (Vss or GND) of capacitor C7 [21],
  • Diagnosis 4 Through an algorithm, the data associated with the programmed delay stored in the non-volatile EEPROM memory of Microprocessor IC1 [28] is retrieved. It is verified that this data coincides with the data related to the programmed delay time sent by the Command Unit [01]. In the case of failure, it responds with an error code.
  • Diagnosis 5 Through an algorithm, the data associated with the frequency of the External Oscillator [25], stored in the non-volatile EEPROM memory of the Microprocessor IC1 [28] at system startup, is recovered. In the event that the register indicates an error, the transistor T4 [22] is activated and forces the discharge to ground (Vss or GND) of the capacitor C7 [21],
  • Command 4 Allows changing the location of one (or more) Non-Explosive Programmable Electronic Initiator [07], Allows modifying the delay assignment of one (or more) Non-Explosive Programmable Electronic Initiator [07], Allows manual reprogramming of one (or more) Non-Explosive Programmable Electronic Initiator [07],
  • Command 5 Preparation before the shot. Disables Transistor T4 [22] to exit ground state. Enables Transistor T3 [29] to proceed with the charge of Capacitor C7 [21] in a period of time of 30 seconds; reads and stores the charging data of Capacitor C7 [21] every 30 milliseconds during the 30 seconds of charging. Stored data is available for reading in a variable of the Microprocessor IC1 [28]. It disables the internal oscillator (16 Mhz) of Microprocessor IC1 [28] and enables the External Oscillator [25] (32 KHz).
  • Command 6 Safety measure in case of any failure. In the case of failure in Command 5, it responds with an error code, Transistor T4 [22] is activated, connecting Capacitor C7 [21] to ground and proceeding to its discharge.
  • Command 7 Fire. Disables external Microprocessor interrupts [28]. It disables the charge of Capacitor C7 [21 ], TIMER1 is loaded with the data related to the delay time. Activates “sleep” function of Microprocessor IC1 [21], Enables countdown of the assigned delay time of the Programmable Non-Explosive Electronic Initiator [07], Once the countdown assigned to the programmed delay time has finished, activates Capacitor C7 [21 ]. Activates output I/O PORT C5 [40] ( Figure 7) of Microprocessor IC1 [28] and Transistor T2 [27],
  • I/O port input via interrupt (INT), for data processing (28D Figure 4)
  • FIG. 1A shows the disposition of the elements of the present system using a single parallel Communication and Power line [02A and 02B] for a single Non-Explosive Programmable Electronic Initiator [ 07] and an RFID reader that reads the unique ID code of the Non-Explosive Programmable Electronic Initiator [07].
  • Scheme B or figure B shows the present system using a single parallel Communication and Power line [02A and 02B] for four or more Non-Explosive Programmable Electronic Initiators [07],
  • This figure represents three schemes A, B and C, which represent voltage waves, where figure 2A, upper, shows the beginning of the bidirectional communication, where the Voltage Modulation [03] sent, consists of a constant square wave with a amplitude defined between 24V and 35V and a period of 4.0 ms. The high bit of 4 milliseconds and the low bit of 0.2 milliseconds allow a constant voltage to be maintained.
  • Figures 2B and 2C show diagrams showing the details of a bidirectional communication protocol with a transmission speed of 2,400 bits per second that is used in the Communication and Power Line [02A and 02B],
  • FIG. 7 shows a scheme of how the square wave with the data is transmitted from the Command Unit [01] to the INT/IO PORT input pin [41] and IO output ports [28B] (for charging Capacitor C7 [38 ], for discharge of Capacitor C7 [39], for firing and discharge of Capacitor C7 in Filament [30] [40]) ( Figure 4) of Microprocessor IC1 [28], converting it into bytes using an algorithm.
  • figure 7 refers to the PINS CO, C3, C5 of the microcontroller IC1 of figure 4.
  • Figure 8 :
  • This figure presents a schematic of the analog information received by the Microprocessor IC1 [28] through the ADC/AN pin [42] ( Figure 4) [28C] where it is converted to digital for sensor reading.
  • FIG. 4 presents a schematic of how the Microprocessor IC1 [28], through the USART pin TX transmission block [43] ( Figure 4) [28E], transmits the output data, where the output data is inserted through a transistor T1 and two resistors R3 and R4 [23] in the Communication and Power Line [02A and 02B],
  • ⁇ (T) ⁇ or (1 + ⁇ ( ⁇ T)) (Equation No.1)
  • ⁇ (T) Resistivity of a metal as a function of a temperature differential.
  • ⁇ o Initial resistivity of the metal.
  • Temperature Coefficient per degree centigrade of the metal.
  • ⁇ T Temperature differential ( Final T - Initial T).
  • R(T) Resistance of the metal to a temperature variation
  • T F Temperature variation with respect to the initial
  • T F ((R F / RO) - 1 )/ ⁇ + T O (Equation No.4)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Earth Drilling (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

El presente desarrollo comprende un iniciador electrónico programadle y no explosivo, y un proceso de testeo y reacción exotérmica del iniciador, cuyo objetivo es iniciar la tronadura de roca de manera controlada y segura. Su aplicación es principalmente para el área de la minería y obras civiles. Este sistema resuelve un tema sensible en la industria, como es, la no activación de los dispositivos en el momento de la tronadura (tiros quedados) y disminuir los riesgos de operación en las labores de fragmentación dando continuidad a las faenas en terreno. Lo anterior se fundamenta en que este iniciador permite tiempos precisos de operación para el control de vibraciones, a través de retardos definidos previamente, identifica en forma inmediata los iniciadores que no están operativos por fallas de línea o en conexiones, al no tener componentes explosivos, se pueden programar en forma remota si el usuario lo requiere, y finalmente cada iniciador es programado como único e irrepetible.

Description

INICIADOR ELECTRÓNICO PROGRAMABLE NO EXPLOSIVO PARA TRONADURA DE
ROCA, Y PROCESO DE TESTEO Y REACCION EXOTERMICA DEL INICIADOR
CAMPO TÉCNICO DEL DESARROLLO
El presente desarrollo tiene por objeto proporcionar un iniciador electrónico programable no explosivo (deflagrante) para una mezcla metálica de rápida expansión (tal como el plasma y/o explosivos de diferente categoría), que busca entregar una solución a los siguientes problemas técnicos existentes en la fragmentación de rocas; alcanzar la alta temperatura necesaria para activar una mezcla metálica de rápida expansión con un muy bajo requerimiento de voltaje; mejorar los índices de cargas no activadas (tiros quedados) con un sistema de test efectivo; proporcionar continuidad de faena, aumentar la productividad y la seguridad en los procesos relacionados con la fragmentación de rocas con un sistema de retardo programado en cada iniciador.
DESCRIPCIÓN DEL ESTADO DEL ARTE
A partir de la invención de la dinamita, los explosivos ya no detonan con la aplicación de una llama, sino mediante la percusión, con la detonación previa de un explosivo de gran potencia (onda de choque). Estos métodos, previamente mencionados, son los llamados sistemas de iniciación.
En 1863 Alfred Nobel patentó su primer iniciador, constituido por un trozo de madera relleno de pólvora negra. Posteriormente, inventó dispositivo con sistema de cápsula de cobre en cuyo interior albergaba fulminato de mercurio. Posteriormente, se desarrolló una amplia gama de detonadores cuyas características vahaban en función de las circunstancias en que fueran a ser aplicados (minería, canteras, construcción) y del tipo de dinamita con que fueran a ser utilizados.
Otro sistema de iniciación es la mecha de seguridad o mecha lenta. Esta consiste en pólvora negra envuelta en hilados textiles, con una trenzadora, posteriormente se impermeabilizaba con una capa de asfalto a su vez cubierta, con una nueva capa textil o de cera. Desde el año 1936 hasta la fecha, se utiliza el cordón detonante, que es una cuerda flexible e impermeable que alberga explosivo en su interior, originalmente trinitrotolueno (TNT) y pentrita.
La aplicación masiva de los explosivos, en los más de 140 años de historia de la industria, se ha debido a su bajo costo y accesibilidad. Ha habido avances tecnológicos en la mezcla y en detonadores. Actualmente la tecnología de explosivo utilizada consiste en el uso de un agente de tronadura, “Anfo” (del inglés Ammonium Nitrate - Fuel Oil), mezcla de nitrato de amonio y petróleo adecuados para no producir gases tóxicos y tiene un poder adecuado según el tipo de roca a fragmentar.
Un problema técnico de la voladura de rocas es su efecto sobre la roca de las proximidades, ya que puede producir una intensa fragmentación y disrupción de la integridad de la roca de la zona circundante si la voladura o los sistemas de perforación son incorrectos. El daño sería mayor si la energía de la voladura se transmitiese a una zona más remota, lo que desestabilizaría las estructuras de la mina.
Los resultados de una voladura dependen de factores como: el tipo de roca, el régimen de tensión, la geología estructural y la presencia de agua. Entre las medidas adecuadas para minimizar el daño producido por una voladura se encuentran: una elección adecuada del explosivo, el uso de técnicas de voladura perimétrica, como la voladura de predivisión (barrenos paralelos y muy juntos que definen el perímetro de la excavación), las cargas de desacople (el diámetro del explosivo es menor que el del barreno de voladura), tiempo de retardo y taladros de tope. Algunas referencias con respecto a desarrollos de detonadores electrónicos pueden ser la patente europea DE 102005052578.4 donde se describen un método y un sistema para asignar un tiempo de retardo a un detonador electrónico de retardo, donde el detonador incluye un registro de información (24), en el cual se escribe el valor de tiempo de retardo deseado, suministrador por el controlador, donde posteriormente, durante un periodo de tiempo predeterminado (t), el contenido del registro de información (24) es agregado repetitivamente a un registro contador (26), en donde el contenido es acumulado, donde después de una división del contenido del registro del contador a través del tiempo de calibración, el contenido del registro del contador (26) es posteriormente contado al revés usando el mismo oscilador (18) que ha controlado el proceso de acumulación. Donde la presente invención permite que el valor del tiempo de retardo suministrado por el controlador se adhiera con exactitud, usando un oscilador (18) de baja precisión y sin retroalimentación desde el detonador (12) al controlador.
Otro desarrollo con respecto a detonadores electrónicos hace referencia a la patente americana US 61/108.277 donde se describe un detonador que incluye un conmutador de alta tensión, un iniciador y una pelotilla de iniciación, donde el detonador también incluye un grupo de detonación de baja tensión a alta tensión conectado al conmutador y al iniciador de manera tal que el detonador incluya una fuente de energía de alta tensión y un iniciador en un paquete integrado. Donde el detonador también puede incluir alimentación y comunicaciones, un microprocesador, tecnologías de rastreo y/o localización, tales como rfid, gps, etc. y una pelotilla de salida de un explosivo o de una combinación de explosivos. Donde la pelotilla de combinación de explosivos tiene un primer explosivo que tiene una energía de primer impacto y un explosivo secundario de alta potencia en la pelotilla de salida que tiene una segunda energía de impacto mayor que la energía de impacto del primer explosivo. Donde también se proveen sistemas para facilitar el despliegue rápido y fácil de uno o más detonadores en el campo.
Dentro del gran universo de patentes sobre detonadores electrónicos, se puede mencionar las patentes EP1105693 / WO0009967 donde se presenta un método y un aparato para establecer un arreglo de voladura cargando al menos un detonador en cada uno de una pluralidad de orificios de voladura, colocando material explosivo en cada orificio de voladura, conectando a una línea troncal a una unidad de control que tiene una fuente de energía incapaz de disparar los detonadores, conectando secuencialmente los detonadores, por medio de las respectivas líneas de derivación, a la línea troncal y dejando cada detonador conectado a la línea troncal. Además, el aparato incluye significa para recibir y almacenar en la memoria significa datos de identidad de cada detonador, significa para generar una señal para probar la integridad del detonador/conexión de línea troncal y la funcionalidad del detonador, y el poder asignar un retraso de tiempo predeterminado a cada detonador para ser almacenado en la memoria.
También, se pueden mencionar las patentes E12706936 / EP2678633 / ES2540573T3, donde se presenta un sistema detonador de explosivos para detonar una carga de explosivo con la cual está, durante el uso, dispuesto en una relación de detonación, comprendiendo el sistema detonador un detonador, que incluye una cápsula dei detonador: un circuito de detonación dentro de la cápsula del detonador, comprendiendo el circuito de detonación un camino conductor: una cabeza iniciadora dentro de la cápsula del detonador, comprendiendo la cabeza iniciadora al menos dos electrodos conductores separados espacialmente y un puente resistivo que salva el espacio entre los electrodos, estando integrada la cabeza iniciadora con el circuito de detonación de tal forma que el camino conductor pasa a lo largo tanto de los electrodos corno dei puente resistivo; una fuente de tensión cargable descargada dentro de la cápsula del detonador, estando integrada la fuente de tensión cargable con el circuito de detonación y siendo eléctricamente sensible a una propiedad de carga la cual está incluida en una señal de carga que es, durante el uso, comunicada al detonador, de tal forma que la exposición a la propiedad de carga la fuente de tensión volviendo por tanto a la fuente de tensión capaz de generar una diferencia de potencial entre los electrodos al menos para igualar la tensión de ruptura del puente resistivo; y un tubo de choque que está provisto, durante el uso, en proximidad de iniciación al detonador y es capaz de proporcionar una señal de choque como al menos parte de la señal de carga, comprendiendo el tubo de choque un cuerpo alargado hueco, dentro del cual está provisto un explosivo de tubo de choque, la detonación del cual proporciona la señal de choque, caracterizado por que la propiedad de carga está incluyendo al menos un pulso de luz de carga y, opcionalmente, una temperatura de carga, una presión de carga y/o una radiofrecuencia de carga de la señal de carga y la fuente de tensión cargadle es por lo tanto sensible al pulso de luz de carga y, opcionalmente, a uno cualquiera o más de la temperatura de carga, la presión de carga y la radiofrecuencia de carga; y dentro del cuerpo alargado hueco está provisto un producto químico fotoluminiscente que proporciona el pulso de luz de carga.
Por otro lado, se presenta la patente US6173651 B1 donde se presenta un método de control de detonadores equipado con un módulo de ignición electrónica. Cada módulo está asociado a parámetros específicos que incluyen al menos un parámetro de identificación y un tiempo de retardo de la explosión, e incluye un condensador de disparo y un rudimentario reloj interno. Los módulos son capaces de establecer un diálogo con una unidad de control de disparo equipada con una base de tiempo de referencia. Los parámetros de identificación se almacenan en los módulos mediante una unidad de programación; los parámetros específicos se almacenan en la unidad de control del disparo; para cada módulo sucesivo, su reloj interno se calibra mediante la unidad de control del disparo y el tiempo de retardo asociado se envía al módulo; se ordena a los módulos que carguen los condensadores de disparo y se envía una orden de disparo a los módulos mediante la unidad de control del disparo, lo que desencadena un eventual reajuste de los relojes internos, así como una secuencia de disparo.
Una segunda patente norteamericana, la US4674047 A1 presenta un sistema de detonación para uso con suministro de energía eléctrica que tiene una consola de disparo operable por el usuario para transmitir selectivamente la información de identificación de la unidad, información sobre el tiempo de retardo de disparo y selecciones de un conjunto de comandos que incluyen Salida, Retraso, Disparo (Tiempo), Abortar, Encender (Armar), Entrada y Almacenar. La consola muestra las respuestas o la información digerida de las respuestas de los detonadores de retardo eléctrico a los comandos. Los detonadores tienen un explosivo, un condensador para almacenar energía del suministro para activar el explosivo, un circuito para cargar el condensador del suministro y transferir la energía del condensador al explosivo en respuesta a las primeras y segundas señales generadas en respuesta a los comandos. Cada detonador puede programarse con un número de identificación y un tiempo de retardo únicos. La base de tiempo de cada detonador puede compensarse de manera que se eviten los errores en la base de tiempo para lograr el retardo correcto. Los circuitos de código de seguridad y el software se describen de manera que cada detonador sólo puede ser activado por usuarios autorizados.
Ahora bien, su uso no ha estado exento de dificultades, la vibración generada con el uso de los explosivos restringe su uso en zonas urbanas y daña el entorno, lo que implica riesgo de socavación y obliga a incurrir en gastos de reparación de la geología circundante. Por otro lado, en las operaciones de minería comerciales, el método de fragmentación explosiva convencional tiene como resultado una mezcla revuelta de material inerte con el mineral, la cual debe retirarse de la mina, triturarse y procesarse; esto sumado al agotamiento y baja de las leyes de los yacimientos a nivel mundial ha implicado un aumento de remoción de estéril, ante lo cual es clave la forma en que éste es tratado, donde etapas como la fragmentación pueden afectar la productividad y rentabilidad de una compañía. De esto se desprende la importancia que tiene el concepto de fragmentación controlada en la minería.
La utilización de mezclas metálicas de rápida expansión alternativas, que no contienen dinamita data después de la segunda guerra mundial, y los avances tecnológicos están representados principalmente por la patente coreana No. 10-0213577, consistente en una mezcla metálica de rápida expansión con puntos de ignición hasta los 700°C, con aplicaciones en la industria minera y de obras civiles y cuya principal característica es una fuerza de expansión mayor y más corta (tiempo) cuando comparada con la dinamita. La mezcla metálica de rápida expansión corresponde a una mezcla química compuesta de sales y polvos metálicos, disponible en múltiples fórmulas en el mercado, según los siguientes ejemplos:
Fórmula 1 : 2Fe(NO3)2 +12Mn ; Patente N° 10-0213577
Fórmula 2: Fe(NO3)2 +3CuO+6AI ; Patente N° 10-0213577
Fórmula 3: 3Ca(NO3)2 +Fe3O4+12AI ; Patente N° 10-0213577
Fórmula 4: Fe2O3+4Na2O+BaCO3+4Mg ; Patente N° 10-0213577
Fórmula 5: Fe2O3+NaSO4+4AI ; Patente N° 10-0213577
Fórmula 6: 2Na2Ü+ Fe2O3+3CuO+2AI ; Patente N° 10-0213577
Fórmula 7: 2NaCIO4 +2CuO+2AI ; Patente N° 10-0213577
Una fórmula, como la identificada en la Fórmula 1 anteriormente, sometida a temperaturas de 1.500°C, (Notar que la temperatura de ignición varía según las relaciones de mezcla de sal y polvo metálicos en cada Fórmula), desencadena la siguiente reacción termoquímica de sus componentes:
2Fe (NO3)3 + 12Mn →2Fe=> 2FeO + 4Mn3O4 + 3N2
La sal metálica permite la oxidación del polvo metálico, el calor generado en el proceso de oxidación de temperaturas extremadamente altas (3.000°C - 30.000°C) se genera de forma instantánea, liberando una gran cantidad de energía térmica, convirtiendo los productos de hierro (Fe) y óxido de manganeso (Mn3O4) en gases vaporizados que se expanden rápidamente; el producto expandido por vaporización se cambia al estado sólido y, por lo tanto, se detiene la reacción de expansión. Cuando el desenlace ocurre en un espacio confinado, la liberación de energía expansiva es lo que permite finalmente fracturar la roca por las altas presiones alcanzadas (5.000 - 20.000 Atm).
Como en la fórmula señalada anteriormente (Fórmula 1 ), los nitratos metálicos son los más preferibles, sin embargo, una mezcla metálica de rápida expansión puede estar además compuesta por otras sales metálicas como: óxidos metálicos, hidróxidos metálicos, carbonatos metálicos, sulfatos y percloratos metálicos. Dicha sal metálica se puede usar sola o en combinaciones de estas. En particular, los nitratos metálicos pueden agregarse adicionalmente con al menos una sal metálica seleccionada entre óxidos metálicos, hidróxidos metálicos, sulfatos y percloratos metálicos, para controlar la temperatura requerida para el inicio de la oxidación y el período de tiempo requerido para la oxidación.
Como en la fórmula señalada anteriormente (Fórmula 1 ), el polvo metálico se selecciona preferiblemente del grupo que consiste en polvo de aluminio (Al), polvo de sodio (Na), polvo de potasio (K), polvo de litio (Li), polvo de magnesio (Mg), polvo de calcio (Ca), polvo de Manganeso (Mn), Polvo de Baño (Ba), polvo de Cromo (Cr), polvo de silicio (Si) y combinaciones de los mismos.
Las proporciones utilizadas para componer la mezcla de sales metálicas y el metal en polvo se definen según la relación de cantidades de oxígeno generadas por las sales metálicas y las cantidades de oxígeno requeridas para la oxidación del polvo metálico. Esta relación de generación versus requerimiento entrega una proporción en función de pesos moleculares calculados a partir de fórmulas químicas.
La composición, función y proceso de preparación de una mezcla metálica de rápida expansión no es objeto de este documento, sin embargo, existen diferentes documentos o patentes, de dominio público con la información. La condición de alta temperatura requerida para desencadenar la reacción de oxidación de una mezcla metálica de rápida expansión puede conseguirse mediante diversos métodos. Sin embargo, uno de los métodos más utilizado actualmente consiste en el descrito en la patente EP 1 306 642 B1 , en el cual se proporciona una estructura de cápsula para una mezcla metálica en rápida expansión, en la que el calor de descarga de arco de alto voltaje (que genera temperaturas de miles de grados), es usado como fuente de calor.
Según lo descrito en la patente EP 1 306 642 B1 , la cápsula para una mezcla metálica que se expande rápidamente comprende una carcasa externa hecha de un material aislante, con la mezcla de expansión rápida contenida en la carcasa externa, y dos barras de suministro de energía que salen hacia afuera desde ambos extremos de la carcasa exterior. Se proporcionan dos electrodos de disparo principales para inducir la descarga del arco en los extremos internos de las dos barras de suministro de energía. Los dos electrodos de disparo principales inducen una descarga de arco entre ellos cuando se aplica alto voltaje a los mismos. Cuando se aplica un alto voltaje de 2 kV o más a las dos barras de alimentación, se induce una descarga de arco entre dos electrodos de activación, generando instantáneamente una temperatura alta de aproximadamente 2.000°C o más en las posiciones alrededor de los electrodos de activación positivos y negativos. El requerimiento de voltaje varía según la distancia de los electrodos, a saber, cuando los electrodos de disparo están separados a intervalos de 200 mm o más, es necesario aplicar un voltaje de 6-7 kV o más a los electrodos de activación para inducir una descarga de arco efectiva entre los electrodos. Sin embargo, en el caso de activar electrodos de disparo espaciados a intervalos de 100 mm o menos, una descarga de arco igualmente efectiva entre los electrodos es inducida incluso con el uso de un voltaje de 3-4 kV. Se entiende que el nivel de voltaje tiene una variación leve dependiendo de otras condiciones, como tipo de cables de resistencia, así como tipos y concentraciones de electrolitos.
Las desventajas que presenta este método residen principalmente en el alto requerimiento de voltaje necesario para lograr la alta temperatura que desencadena la reacción química y la falta de un sistema de testeo que permita disminuir o eliminar la existencia de cápsulas no activadas.
La utilización de la patente EP 1 306 642 B1 podría verse reducida en proyectos que requieren un gran volumen de fragmentación no explosiva, debido a que el alto voltaje requerido para la activación de la reacción química necesaria sería una limitante para la cantidad de cápsulas en terreno. Por ejemplo, si en un proyecto determinado se requieren 10 perforaciones, al utilizar el sistema de la patente EP 1 306 642 B1 , sería necesario conectar en serie 10 iniciadores; dado que el requerimiento de voltaje para activar la reacción química es de 2 kV por cápsula, el equipo generador deberá alimentar al sistema con 20 kV.
El presente desarrollo está relacionado con un iniciador electrónico programable no explosivo, cuyo objeto es activar la reacción química de una mezcla metálica de rápida expansión con una temperatura superior a 1.000 °C; cuyas características principales son: un bajo requerimiento de voltaje (menor a 35 V), lo que permite una gran cantidad de cápsulas en la malla a fragmentar (superior a 400 cápsulas); un sistema de retardo (de 1 a 64.000 milisegundos), que permite mayor precisión y control de la fragmentación; un sistema de testeo que permite validar el circuito previo a la ignición, que elimina la existencia de cápsulas no activadas.
Estas características diferenciadoras mejoran individual y conjuntamente la aplicabilidad industrial de una mezcla metálica de rápida expansión en la fragmentación de rocas con método no explosivo, incrementando significativamente la producción (m3 fragmentados), seguridad y control con un requerimiento mínimo de energía.
A modo de resumen los problemas técnicos que pretende resolver el presente desarrollo se basan en el retardo, el voltaje, la temperatura y el multi-testeo.
En general, las mezclas metálicas de rápida expansión, a diferencia de otros productos análogos, no poseen ningún componente explosivo. No obstante su utilización permite obtener resultados similares y con ventajas importantes tales como, disminución significativa de riesgos de manipulación y transporte, debido a la gran estabilidad de la mezcla química contra golpes, fricción, presión y altas temperaturas disminución significativa de riesgos de accidentes laborales; continuidad operativa debido a que la evacuación de personas y equipos es mínima en un radio cercano al área de tronadura; menor impacto ambiental debido a los mínimos niveles de vibración, ruido, esquirlas y nulos gases tóxicos.
Sin embargo, su uso se ha visto limitado por algunas características de las actuales patentes disponibles en el mercado, las cuales se señalan a continuación: a. Retardo
Un problema especial de la voladura de rocas es su efecto sobre la roca de las proximidades, ya que puede producir una intensa fragmentación y disrupción de la integridad de la roca de la zona circundante si la voladura o los sistemas de perforación son incorrectos. Una de las medidas utilizadas para minimizar el impacto ambiental generado por las altas vibraciones y mejorar la seguridad del trabajo en terreno se encuentra el tiempo de retardo en las tronaduras.
En el presente desarrollo, cada iniciador cuenta con un sistema de retardo programable, lo que permite programar anticipadamente e individualmente el período de retardo requerido según la programación de la tronadura. Cada Iniciador Electrónico Programable NO Explosivo [07] puede ser programado con un tiempo de retardo en un rango entre 1 milisegundo y 64.000 milisegundos.
En el caso de la patente EP 1 306 642 B1 , otro iniciador de mezclas metálicas de rápida expansión, se observa la carencia de tiempo de retardo.
Algunos iniciadores electrónicos para explosivos cuentan con tiempo de retardo programable, tal es el caso de la patente US 6 173 651 (14.000 milisegundos, siendo la patente EP 1105693 B1 , WO 0009967 A1 (según patente 3.000 milisegundos, sin embargo, según ficha técnica 30.000 milisegundos) cuyos iniciadores cuentan con el tiempo de retardo más prolongado conocido a la fecha.
Otra característica que se desprende de un tiempo de retardo más largo sería el aumento en la productividad, esto debido a que se podría realizar un mayor número de perforaciones para una tronadura más extensiva, manteniendo un nivel seguro respecto a las vibraciones y sin requerir habilitar nuevamente el área de faena y disminuyendo la exposición al riesgo de los trabajadores. b. Voltaje
De acuerdo a lo establecido en el Reglamento de Instalaciones Eléctricas de Corrientes Fuertes, en Chile, las instalaciones eléctricas de corrientes fuertes de alta tensión consideran sistemas o instalaciones con tensiones nominales superiores a 1 .000V con un máximo de 220.000V y obligan a una serie de medidas de seguridad, por otro lado, las instalaciones de baja tensión consideran sistemas o instalaciones con tensiones nominales de entre 100V y 1 .000V. Entiéndase el efecto directo de este punto sobre la seguridad laboral y el potencial efecto de cualquier accidente relacionado con la vida y salud de los trabajadores involucrados.
Una característica fundamental del presente desarrollo consiste en entregar el voltaje necesario para la activación de un (o más) Iniciador Electrónico Programable NO Explosivo [07] para una mezcla metálica de rápida expansión. Para la activación de un Iniciador Electrónico Programable NO Explosivo [07] se requiere un voltaje entre 24V y 35V. Para la activación de cien (100) unidades o más de Iniciador(es) Electrónico(s) Programable(s) NO Explosivo [07] se requiere el mismo voltaje: 24V y 35V. El requerimiento de voltaje no varía ni por distancia entre electrodos de activación, ni por unidades de iniciadores electrónicos dispuestos en la línea. Esto se debe a que la conexión de cada Iniciador Electrónico Programable NO Explosivo [07] a la línea es en paralelo. En la patente EP 1 306 642 B1 , que considera un iniciador para la activación de una mezcla metálica de rápida expansión, cada iniciador requiere 2.000V o más. Asimismo, esta patente señala diferentes requerimientos de voltaje según la distancia existente entre los electrodos de activación; cuando los electrodos de activación están separados en 200 mm o más, el requerimiento de voltaje para la activación es de entre 6.000V y 7.000V; cuando los electrodos de activación están separados en 100 mm o más, el requerimiento de voltaje para la activación es de entre 3.000V y 4.000V. Debido a que la conexión de los iniciadores a la línea es en señe, el voltaje aplicado se divide en la cantidad de iniciadores que tenga la línea, por lo que el requerimiento de voltaje de cada iniciador dispuesto en una tronadura incrementa el requerimiento de voltaje total.
En un ejemplo concreto, si se requiriera la utilización de 100 iniciadores en una faena, para hacer efectiva la activación de todos los iniciadores, se estima que se requerirían 200.000V (o más) para iniciadores del tipo propuesto en la patente EP 1 306 642 B1 . Este requerimiento es impracticable tanto en la industria minera como en obras civiles. Si en la misma faena fueran utilizados los Iniciadores Electrónicos Programables NO Explosivos [07] propuestos en el presente desarrollo, el requerimiento total de voltaje sería entre 24V a 35V.
En otros casos, la utilización de gotas pirotécnicas o sebo explosivo ha sido una solución para evitar el alto requerimiento de voltaje, aunque esto signifique perder varias de las cualidades de la mezcla metálica de rápida expansión, tales como: disminución de riesgos de manipulación y transporte, disminución de riesgo de accidentes laborales y continuidad operativa.
Otros iniciadores tales como, US 5 171 935 A, CA 2 339 167 C, US 8 746 144 B2, utilizan un bajo voltaje, sin embargo, no buscan alcanzar una alta temperatura, requisito básico para la activación de la mezcla metálica de rápida expansión. c. Temperatura El factor voltaje está relacionado además con la condición de alta temperatura requerida para desencadenar la reacción de oxidación de una mezcla metálica de rápida expansión, ya que esta puede conseguirse mediante diversos métodos. En la patente EP 1 306 642 B1 , las altas temperaturas requeridas (700 °C o más) para la activación de la mezcla metálica de rápida expansión se logra mediante las altas temperaturas (miles de grados) generadas por el arco voltaico producido por la alta descarga voltaica, prescindiendo en algunas instancias del filamento existente, tal es la dimensión de la descarga.
En el presente desarrollo, la alta temperatura requerida (1.000 °C o más) se alcanza a través de la descarga controlada del Capacitor C7 [21] en el filamento [30], lo que produce la incandescencia de éste por el período necesario, alcanzando la temperatura requerida para la activación de la primera mezcla metálica de rápida expansión [13], la cual cumple con el rol de sebo no explosivo. Una vez activada la mezcla metálica de rápida expansión [13], se alcanza la temperatura necesaria (1 .200 °C o más) para la activación de la segunda mezcla metálica de rápida expansión [15].
El requerimiento de una mayor temperatura (1 .000 °C) para la activación de una mezcla metálica de rápida expansión [13] en los Iniciadores Electrónicos Programables NO Explosivos [07] tiene un impacto positivo directo en términos de seguridad, tanto respecto a la manipulación, como respecto al transporte de estos. d. Sistema de multi-Test
Ha de señalarse también que uno de los cuidados claves que se deben tener en las tronaduras, una vez efectuado el disparo, es examinar el área intervenida para detectar la presencia de iniciadores no activados (tiros quedados o missfire). El peligro de una explosión no controlada podría poner en seño riesgo la integridad de los trabajadores, por lo cual un equipo dispuesto para ello debe resguardar el lugar y eliminar estos tiros, siguiendo las instrucciones establecidas en los procedimientos de trabajo específicos de la faena. Tal es la gravedad de los iniciadores no activados (tiros quedados o missfire) que en algunos países éstos están normados por ley.
El proceso exige, entre otras cosas, la presencia de un supervisor durante toda la operación, asegurando el despeje del área comprometida, retirando a trabajadores y equipos no relacionados con la operación, y utilizando para esta actividad el personal mínimo necesario, disminuyendo así el número de expuestos a condiciones de alta criticidad.
En el presente desarrollo, un sistema de Test que permite evitar la existencia de iniciadores no activados (tiros quedados o missfire) una vez terminada la tronadura, disminuyendo el riesgo laboral en terreno, permitiendo una ejecución en forma segura y mejorando el cumplimiento de la programación de voladura.
Mediante múltiples diagnósticos internos, los Iniciadores Electrónicos Programables NO Explosivos [07] del presente desarrollo, advierten de errores concretos:
• Falla de comunicación entre Equipo de Comando [01] y el (o los) Iniciador Electrónico Programable NO Explosivo [07],
• Falla en la carga inicial del Capacitor C7 [21],
• Falla en la carga final del Capacitor C7 [21],
• Falla en la continuidad del Filamento [30].
• Falla en el valor de tiempo de retardo programado en la memoria EEPROM del Microprocesador IC1 [07],
• Falla en el cambio de frecuencia del sistema.
Con los diagnósticos respectivos, mediante software, se obtiene información necesaria y se asegura el correcto funcionamiento del (o los) Iniciador Electrónico Programable NO Explosivo [07], En el caso de la patente EP 1 306 642 B1 , otro iniciador de mezclas metálicas de rápida expansión, se observa la carencia de un sistema de test.
Otras patentes tales como WO 0009967 podrían contar con un sistema de test enfocado en sus necesidades particulares, sin embargo, dichos sistemas carecen de una verificación del cambio de frecuencia del sistema.
La verificación de cambio de frecuencia se hace imprescindible para asegurar el estado correcto previo la activación de la funcionalidad “sleep” del Microprocesador IC1 [07], el cual está directamente relacionado con el bajo requerimiento de voltaje y el alcance del tiempo de retardo máximo de 64.000 milisegundos.
Con todo lo anteriormente expuesto, el presente desarrollo propone avances que permitirían la utilización extensiva de la mezcla metálica de rápida expansión de forma segura y productiva.
ANTECEDENTES DEL DESARROLLO
REQUERIMIENTOS PARA FUNCIONAMIENTO DEL DESARROLLO
Debe entenderse que el presente desarrollo no está limitado a la metodología particular, compuestos, materiales, técnicas de manufactura, usos y aplicaciones aquí descritas, pues éstas pueden vahar. También debe entenderse que la terminología empleada aquí es usada con el solo propósito de describir una representación particular, y no intenta limitar la perspectiva y el potencial del presente desarrollo.
Debe notarse que el uso y método, aquí, en el pliego de reivindicaciones y en todo el texto que el singular no excluye el plural, salvo que en el contexto claramente lo implique. Entonces, por ejemplo, la referencia a un “uso o método”, es una referencia a uno o más usos o métodos e incluye equivalentes conocidos por quienes conocen de la materia (el arte). Similarmente, como otro ejemplo, la referencia a “un paso”, “una etapa” o a “un modo”, es una referencia a uno o más pasos, etapas o modos y que puede incluir sub-pasos, etapas o modos, implícitos y/o sobrevinientes.
Todas las conjunciones usadas han de entenderse en su sentido menos restrictivo y más inclusivo posible. Así, por ejemplo, la conjunción “o” debe entenderse en su sentido lógico ortodoxo, y no como un “o excluyente”, salvo que el contexto o el texto expresamente lo necesite o indique. Las estructuras, materiales y/o elementos descritos han de entenderse que también se refieren a aquellos equivalentes funcionalmente y así evitar enumeraciones taxativas interminables.
Las expresiones usadas para indicar aproximaciones o conceptualizaciones deben entenderse así, salvo que el contexto mande una interpretación distinta.
Todos los nombres y términos técnicos y/o científicos aquí empleados tienen el significado común que le otorga una persona común, calificada en estas materias, salvo indicación expresa, distinta.
Los métodos, técnicas, elementos, compuestos y composiciones son descritos, aunque métodos, técnicas, compuestos y composiciones similares y/o equivalentes a los descritos pueden ser usados o preferidos en la práctica y/o pruebas de la presente invención.
Se incorporan todas las patentes y otras publicaciones como referencias, con el propósito de describir y/o informar, por ejemplo, las metodologías descritas en dichas publicaciones, que puedan resultar útiles en relación con el presente desarrollo.
Se incluyen estas publicaciones sólo por su información previa a la fecha de registro de la presente solicitud de patente.
A este respecto nada debe considerarse como una admisión o aceptación, rechazo o exclusión, de que los autores y/o inventores no estén legitimados de serlo, o de estar ante-fechadas dichas publicaciones en virtud de otras anteriores, o por cualquier otra razón.
Para aportar claridad al presente desarrollo se definirán los siguientes conceptos:
Retardo: El concepto de retardo o tiempo de retardo en el presente desarrollo se refiere a la asignación de un periodo de retraso en cuenta regresiva medidos en milisegundos (ms) que determinan la secuencia de encendido en una tronadura. A cada detonador se le asigna un período de tiempo definido previamente (entre 1 y 64.000 milisegundos).
Tiros quedados: El concepto de tiros quedados para el presente desarrollo se refiere a la falla de encendido completa o parcial de una (o más) cápsula comprendida en la secuencia de encendido en una tronadura. Es una consecuencia no deseada de alto riesgo, en la cual restos del producto que pueden ser activados por cualquier efecto mecánico durante las etapas de excavación, molienda o trituración del proceso minero.
Microprocesador: El concepto de microprocesador utilizado para el presente desarrollo se refiere al conjunto de circuitos electrónicos integrados que realizan las instrucciones y tareas involucradas en el procesamiento de la información. El presente desarrollo requiere de un Microprocesador que tenga las siguientes características: comunicación serial, bajo consuma de energía (preferentemente pero no restringido a 20 nA en modo de sueño (sleep made)), oscilador interno de precisión (preferentemente pero no restringido a 31 KHz a 32 MHz), factibilidad de integrar un oscilador externo de baja frecuencia (preferentemente pero no restringido a 32 KHz), capacidad de memoria (preferentemente pero no restringida a EEPROM 256 bytes, SRAM 256 bytes) y puertas de entrada y salida suficientes para realizar las funciones que se requieren (al menos 8). Se ha definida el modelo Microchip PIC16LF1824/1828 como un Microprocesador factible de usa para la ejecución de los comandas y programas requeridas en el presente desarrollo.
Protocolo de comunicación: es un sistema de reglas que permiten que dos o más entidades de un sistema de comunicación se comuniquen entre ellas para transmitir información. Para el presente desarrollo se refiere a la forma de comunicación bidireccianal entre el Equipo de Comando [01] y el o los Iniciadores Electrónicos NO Explosivos [07] que mantiene la transmisión de información y el voltaje necesario para el funcionamiento de él o los Iniciadores Electrónicas NO Explosivas [07] y que puede darse bajo el lenguaje de transmisión de bits por segundo a través de pulsos de voltaje.
Eilamento: Para el presente desarrolla se refiere a un filamento de un grosor, largo y materialidad que logre un equilibrio entre capacitancia y resistencia del filamento para tener un punto entre que no se corte y alcance la temperatura necesaria, a modo de ejemplo y sin restringir el alcance de este término, un filamento de tungsteno de una pureza que varía entre 99,90% y 99,99%, de preferencia 99,93%, 99,95% y 99,97%, de formato en espiral can longitud que varía entre 1 y 3 mm, de preferencia 2 mm, 2,2 mm , 2,5 mm , con un diámetro de un rango entre 0,01 mm y 0,1 mm, de preferencia 0,01 mm, 0,02 mm, 0,03 mm y con una resistencia que oscila entre 2,5 y 4,5 ohm, de preferencia 3 ohm, 3,2 ohm, 3,5 ohm, 3,6 ohm, 3,7 ohm, 3,8 ohm y 3,9 ohm.
Seguridad: Para el presente desarrollo se refiere a las precauciones que se deben tener con los diferentes dispositivos descritos en el presente desarrollo, en base a su manipulación y el cómo poder mantener la inactivación del iniciador a través de comandos especiales creados para ese propósito. Reacción exotérmica: Para el presente desarrollo se refiere a cualquier reacción química que desprenda energía, ya sea como luz o calor, o lo que es lo mismo: con una variación negativa de la entalpia.
Plasma: para el presente desarrollo el plasma se considera como una mezcla de sales metálicas de rápida expansión que al iniciarse produce una reacción exotérmica de alta temperatura, en un espacio confinado. Es una sustancia muy estable, al no reaccionar a temperaturas elevadas, golpes, fricción y altas presiones. La reacción se inicia en altas temperaturas, sobre 1 .000°C.
Para que el presente desarrollo opere, se requiere un Equipo de Comando (Consola o Master) [01], con la capacidad de convertir la comunicación serial en un protocolo de comunicación basada en la Modulación de Voltaje [03] a través de una Línea de Comunicación y Poder (líneas paralelas) [02A y 02B] , un conector [04] que conectan dichas líneas paralelas con el (o los) Iniciador Electrónico Programable No Explosivo [07] (Figura 1 A y 1 B) y un equipo Lector de tarjeta (Logger) RFID [06].
Otros requisitos generales para el funcionamiento del Equipo de Comando [01] consisten en, pero no limitados a: fuente de poder externa (de preferencia batería de 24V a 36V), microprocesador, tarjeta Micro SD, sistema Bluetooth, Lector RFID [06], transmisión inalámbrica y pantalla con keypad.
También para el funcionamiento del desarrollo se requiere una Línea de Comunicación y Poder [02A y 02B] compuesta por dos cables de cobre paralelos, siendo cada uno de ellos de un diámetro superior a 0,5 milímetros de diámetro, cuya resistencia es inferior a 36 ohm por kilómetro. Dichos cables cumplen con un rol esencial, y usándose de acuerdo con las instrucciones en la tabla I, permiten asegurar tanto la confiabilidad en la transmisión de Modulación de Voltaje [03] y protocolo de comunicación (Figura 2), como la potencia recibida por cada Iniciador Electrónico Programable NO Explosivo [07], Tabla I: Resistencia Conductor Eléctrico
Figure imgf000023_0001
Para que el presente desarrollo tenga un uso práctico (en terreno), se debe considerar la utilización de una porción de dos mezclas metálicas de rápida expansión [13] y [15] (PLASMA) con una formulación similar a las señaladas anteriormente, tales como:
Fórmula 1 : 2Fe(NO3)2 +12Mn ; Patente N° 10-0213577 Fórmula 2: Fe(NO3)2 +3CuO+6AI ; Patente N° 10-0213577
Fórmula 3: 3Ca(NO3)2 +Fe3O4+12AI ; Patente N° 10-0213577
Fórmula 4: Fe2O3+4Na2O+BaCO3+4Mg ; Patente N° 10-0213577
Fórmula 5: Fe2O3+NaSO4+4AI ; Patente N° 10-0213577
Fórmula 6: 2Na2O+ Fe2O3+3CuO+2AI ; Patente N° 10-0213577 Fórmula 7: 2NaCIO4 +2CuO+2AI ; Patente N° 10-0213577
Se debe entender que, para la utilización del presente desarrollo, se activarán las mezclas metálicas de rápida expansión [13] y [15] y se desencadenará la reacción exotérmica esperada.
DESCRIPCIÓN DEL DESARROLLO
El presente desarrollo consiste en un Iniciador Electrónico Programable No Explosivo [07], compuesto de una cápsula con dos tipos de mezcla metálica de rápida expansión [13] y [15] que permite acoplarse a un tubo o manga contenedor(a) [16] y un tapón de sello [17] (Figura 3); y que, una vez que recibe la Modulación de Voltaje [03] y el protocolo de comunicación (Figura 2), mediante comandos, se activan las funciones que permiten alcanzar las altas temperaturas requeridas para iniciar la reacción química, utilizando un bajo requerimiento de voltaje (menor a 35V), con un sistema de retardo (de 1 ms a 64.000 ms), y con un sistema de testeo que permite validar el circuito previo a la ignición.
Un algoritmo se programa y se graba en el Microprocesador IC1 [28] con el objeto de dar funcionalidad al sistema. Mediante funciones y comandos, este algoritmo reconoce de la señal de entrada, lee datos de entrada referente a la frecuencia del oscilador (Figura 4) [28A], lee datos de los sensores de filamento y capacitor (Figura 4) [28C], activa los puertos (Figura 4) [28B] de carga de capacitor, disparo, descarga de capacitor, activación del puerto de comunicación señal (Figura 4) [28E], para el envío de datos mediante la Línea de Comunicación y Poder [02A y 02B] hacia el Equipo de Comando [01] , recepción de los datos mediante Interrupción (Figura 4) [28D], y la CPU unidad de procesamiento central (Figura 4) [28F], que cumple la tarea de procesamiento de todas las funciones así como también de almacenamiento de la información. Cada Iniciador Electrónico Programable No Explosivo [07] cuenta con una identificación única e irrepetible (ID), la cual es grabada en fábrica y coincide con el código interno de la tarjeta externa RFID [05]. Mediante algoritmo, el Equipo de Comando [01] captura dicho ID a través del puerto serial mediante bluetooth a través del equipo lector RFID (Logger) [06] (Figura 1 ) y lo almacena en la tarjeta MicroSD perteneciente al Equipo de Comando [01]. Los datos quedan disponibles para uso posterior en determinados procesos.
El Iniciador Electrónico Programable NO Explosivo [07], cuenta con un Microprocesador IC1 [28] (Figura 4), con un Oscilador Interno y una memoria EEPROM no volátil [35] (Figura 5).
Con el Equipo de Comando [01] activado, y todos los requisitos para el funcionamiento en orden, se activa la Línea de Comunicación y Poder [02A y 02B], iniciando la Modulación de Voltaje [03] y el protocolo de comunicación (Figura 2) proveniente del Equipo de Comando [01]. Al comienzo de la comunicación bidirecciónal, la Modulación de Voltaje [03] (Figura 2) enviada consiste en una onda cuadrada constante con una amplitud definida entre 24V y 35V (Figura 2A) y un periodo de 4,0 ms. El bit alto de 4 milisegundos y el bit bajo de 0,2 milisegundos permiten mantener un voltaje constante (Figura 2A).
Entiéndase que la Modulación de Voltaje [03] (Figura 2) definida anteriormente, es la que permite hacer compatible el envío de datos y la energía necesaria para la posterior activación de uno (o más) Iniciador Electrónico Programable NO Explosivo [07],
Un protocolo de comunicación bidirecciónal (Figura 2B y 2C) con una velocidad de transmisión de 2.400 bits por segundo es utilizado en la Línea de Comunicación y Poder [02A y 02B],
Los datos son enviados a una velocidad de comunicación equivalente a 2400 baudios desde el Equipo de Comando [01] a través de la Línea de Comunicación y Poder [02A y 02B] y son recibidos por el (o los) Iniciador Electrónico Programable NO Explosivo [07] (Figura 2C).
Los datos son enviados a través de la Línea de Comunicación y Poder [02A y 02B] desde el (o los) Iniciador Electrónico Programable NO Explosivo [07] y son recibidos por el Equipo de Comando [01] (Figura 2B). El envío de los datos desde el Iniciador Electrónico Programable NO Explosivo [07] al Equipo de Comando [01] está determinado por un bit de 25 us (microsegundos), equivalente a 40.000 baudios; la transmisión de datos (un byte) se realiza en el bit bajo de la línea de comunicación.
La entrada del Iniciador Electrónico Programable NO Explosivo [07], comprende un diodo D1 y un Rectificador de Voltaje D2 [18] (Figura 4), que están conectados a la Línea de Comunicación y Poder [02A y 02B], El diodo D1 suprime corrientes transitorias e impide la fuga de corriente. El Rectificador de Voltaje D2, con entradas de voltaje entre 24V y 35V, transforma la corriente alterna (AC) en corriente continua (DC) (Figura 4).
Un Regulador de Voltaje IC2 [20] recibe el voltaje de 24V a 35V y la corriente rectificada (DC). Este Regulador de Voltaje IC2 regula el voltaje inicial a 5V (Figura 4).
Para la comunicación bidirecciónal entre Equipo de Comando [01] y el Iniciador Electrónico Programable NO Explosivo [07], en la entrada del sistema del Iniciador Electrónico Programable NO Explosivo [07], se conectan dos resistencias divisoras de voltaje R1 y R2 [24], las cuales bajan el voltaje de 24V-35V a 5V ajustándose así al nivel de funcionamiento del Microprocesador IC1 [28]. Además, R1 opera con resistencia entre 90 y 170 Kohm, de preferencia 110 Kohm, de preferencia 120 Kohm y de preferencia 130 Kohm y R2 opera con resistencia entre 15 Kohm y 25 Kohm, de preferencia 110 Kohm, de preferencia 120 Kohm y de preferencia 130 Kohm Se transmite entonces la onda cuadrada con los datos desde el Equipo de Comando [01] al pin de entrada INT/IO PORT [41] (Figura 7) del Microprocesador IC1 [28], siendo ésta convertida en bytes utilizando un algoritmo. En respuesta, el Microprocesador IC1 [28] a través del bloque de transmisión EUSART [28E] (Figura 4) pin TX [43] (Figura 9), transmite los datos de salida. Los datos de salida son insertados a través de un transistor T1 y dos resistencias R3 y R4 [23] en la Línea de Comunicación y Poder [02A y 02B], El dato de respuesta es entonces enviado al Equipo de Comando [01] para su procesamiento (Figura 2B).
A la entrada de voltaje de 5V se conectan dos diodos D4 y D5 [19]. En esta etapa del circuito, el voltaje de entrada 5V es reducido a 3,6V, necesario para el funcionamiento del Microprocesador IC1 [28]. Los diodos D4 y D5 [19] suprimen corrientes transitorias e impiden fuga de corriente.
Un Capacitor C4 [19] de 6,3V y 470 uF, conectado a los diodos D4 y D5 [19] y a la entrada de voltaje del Microprocesador IC1 [28], mantiene estable el voltaje de entrada de 3,6V. El Capacitor C4 [19] es un depósito de energía que se mantiene cargado continuamente. Es esencial señalar que este dispositivo será la fuente de energía del Microprocesador IC1 [28] y lo mantendrá activo por hasta 64.000 milisegundos, una vez que la Línea de Comunicación y Poder [02A y 02B] es interrumpida. El tiempo de descarga de este capacitor debe ser mayor que el tiempo de retardo programado; este punto se aborda con mayor profundidad cuando se describe el funcionamiento del Oscilador Externo [25] (Figura 4) y OSC [36] (Figura 6).
Dos resistencias R6 y R7 [26] dividen la tensión entre Tierra (GND), el Filamento [30] y el Capacitor C7 [08] (Figura 3 y 4) de 35V. El Filamento [30] es un espiral de Tungsteno con longitud que varía entre 1 y 3 mm, de preferencia 2 mm, 2,2 mm, 2,5 mm, con un diámetro de un rango entre 0,01 mm y 0,1 mm, de preferencia 0,01 mm, 0,02 mm, 0,03 mm y con una resistencia que oscila entre 2,5 y 4,5 ohm, de preferencia 3 ohm, 3,2 ohm, 3,5 ohm, 3,6 ohm, 3,7 ohm, 3,8 ohm y 3,9 ohm.
Como medida de seguridad, un transistor T4 [22] (figura 4) conectado a una resistencia en serie R12 (limitador de corriente), la cual a su vez está conectada a tierra (Vss o GND), mantiene el Filamento [30] y el Capacitor C7 [21] con un voltaje inferior a 1 V. El Transistor T4 [22], mediante comando (Comando 5), es desactivado para que se inicie el proceso de carga del Capacitor C7 [21], previo al disparo. Una vez que estén todos los elementos del circuito activados, ante cualquier falla detectada, mediante comando (Comando 6), este Transistor T4 [22] descarga a tierra (Vss o GND) el Capacitor C7 [21], reduciendo el voltaje del Capacitor C7 [21] a un valor inferior a 1 V e impidiendo que el Filamento [30] tenga el voltaje necesario para incandecer y activar la mezcla metálica de rápida expansión.
El Filamento [30] está conectado a un Capacitor C7 [21 ] (carga inicial 0V) y al transistor T2 [27], Una vez activado el Comando de Disparo (Comando 7), el pin I/O PORT C5 [28B] (Figura 4) activa el transistor T2 [27] para la descarga del Capacitor C7 [21] en el Filamento [30], provocando su incandescencia.
La Resistencia R9 [21] limita la corriente de entrada a un valor que oscila entre 2 y 3 miliamperes, esto permite una carga lenta del Capacitor C7 [21 ] y un consumo mínimo de corriente. El Diodo D3 [21] impide la fuga de corriente del Capacitor C7 [21],
La tensión analógica resultante entre las resistencias R6 y R7 [26] (DC) entra al pin ADC/AN [28C] (Figura 4). La información analógica recibida por el Microprocesador IC1 [28] a través del pin ADC/AN [42] (Figura 8) es convertida a digital para la lectura del sensor.
La disposición de los elementos antes mencionados, en conjunto con los procesos y comandos activados mediante algoritmo son los que permiten establecer un Sistema de Testeo con base cierta en los valores arrojados por el sensor configurado en pin ADC/AN [42] (Figura 8) perteneciente al Microprocesador IC1 [28] (Figura 4).
El Sistema de Testeo es alimentado por los datos del sensor configurado en el pin ADC/AN [42] (Figura 8). Los datos obtenidos son analizados mediante algoritmo interno del Microprocesador IC1 [28]. El Sistema de Testeo de Funcionamiento se activa en el Comando 3 (descrito más adelante) y se compone de las siguientes pruebas:
• Verificación Comunicación: o Mediante un algoritmo, se envía una trama de datos a cada ID (único) y se espera la respuesta. El tiempo máximo de espera es de 150 milisegundos.
Tiempo de Respuesta > 150 milisegundos implican Error de Comunicación.
• Verificación Filamento o Mediante algoritmo, un cálculo sobre el voltaje arroja un resultado determinado en unidad absoluta. El sensor, al tener una lectura con un valor absoluto de 0 (cero), significa que el Filamento [30] está cortado.
Valor Absoluto = 0 implica Iniciador Inutilizado
• Verificación Estado Inicial Capacitor C7 [21]: o Al iniciarse el sistema, un transistor T4 [22] (Figura 4) conectado a una resistencia R12 [22] es activado para conectar la salida positiva del capacitor C7 [21] a tierra (Vss o GND) y mantiene la carga del capacitor en un voltaje inferior a 1V. La verificación del estado inicial del capacitor C7 [21] consiste en medir el voltaje del capacitor C7 a través del sensor [28C]. El sensor lee los datos respecto al voltaje del Capacitor C7 [21] y los almacena en una variable de 10 bits en el Microprocesador IC1 [28] equivalentes a una cantidad determinada de 1024 partes. Considerando que el voltaje inicial está en un rango entre 24V y 35V, una parte equivale a un rango entre 0,023V y 0,034V; entonces un rango de entre 30 y 43 partes equivalen a un voltaje menor a 1V. La lectura posterior a este hito debe ser menor 1 V. Una lectura mayor a este valor significa Capacitor C7 [21] defectuoso o bien Transistor T4 [22] defectuoso.
Voltaje Capacitor C7 [21] > 1 V implica el Iniciador Inutilizado.
• Verificación Estado de Carga Capacitor C7 [31]: o El Transistor T4 [22] conectado a la resistencia R12 [22] es desactivado y sale del estado conexión a tierra. El Transistor T3 [29] se activa y a través de las resistencias R5 y R10 [29] iniciando la carga del Capacitor C7 [21 ], El sensor lee y almacena los datos referentes al estado de carga del Capacitor C7 [21] cada 30 milisegundos durante los 30 segundos de la carga programada. Los datos son almacenados en una variable de 10 bits en el Microprocesador IC1 [21] equivalentes a una cantidad determinada de 1024 partes. Terminado el período de carga (30 s), la lectura del Capacitor C7 [21] debe ser mayor o igual a 800 partes, fracción que indica voltaje suficiente para generar incandescencia requerida en el Filamento [30].
Voltaje Capacitor C7 [21] < a 800 partes implica el Iniciador Inutilizado. • Verificación Retardo Programado: o Mediante un algoritmo y a través de un comando (Comando 3), un dato referente al retardo programado es enviado desde el Equipo de Comando [01] al Iniciador Electrónico Programable NO Explosivo [07] y almacenado en la memoria EEPROM no volátil del Microprocesador IC1 [28]. El Iniciador Electrónico Programable NO Explosivo [07] a través de un algoritmo verifica que el dato enviado por el Equipo de Comando [01] es igual al dato recibido por el Microprocesador IC1 [28]. El Microprocesador IC1 [28] envía respuesta al Equipo de Comando [01].
El tiempo de respuesta programado es de 150 milisegundos.
Tiempo Respuesta Programado > 150 milisegundos implican un Error de Comunicación.
Si el dato de respuesta referente al retardo es idéntico al dato enviado por el Equipo de Comando [01], recibe un código de reconocimiento (ACK).
Si el dato de respuesta referente al retardo es distinto al dato enviado por el Equipo de Comando [01], recibe un código de error.
• Verificación Estado Oscilador Externo [25] y Cambio de Frecuencia para modo durmiente “sleep”: o Ai inicio del sistema, se activa el Oscilador Extemo [25] y se leen las pulsaciones por segundo emitidas. Dichas pulsaciones deben ser coincidentes con la frecuencia de 32 KHz. Una vez registrado el dato relacionado en la memoria EEPROM no volátil del Microprocesador IC1 [28] se desactiva el Oscilador Externo [25],
Pulsaciones registradas del Oscilador Externo [25] = 32.000 por segundo
Si el dato de respuesta referente a las pulsaciones es diferente a 32.000 el Equipo de Comando [01], recibe un código de error.
El Microprocesador IC1 [28], que cuenta con un oscilador interno preferiblemente de 16 MHz [28A] (Figura 4) aunque no excluye alternativas con mayor frecuencia, tiene un consumo de energía aproximada de 2 mA (miliamperes). La Figura 6 es una representación detallada de la dinámica que se genera en Bloque Fuente de Reloj [28A] perteneciente a la Figura 4.
El presente desarrollo contempla un Oscilador Externo Q1 [25] (Figura 4) de 32 kHz conectado al Microprocesador IC1 [28], cuyo objetivo es reducir el consumo de energía, bajando la frecuencia del sistema de 16 MHz a 32 KHz.
El Filamento [30] (Figura 4) está constituido por hilo de Tungsteno con forma de espiral con una con longitud que varía entre 1 y 3 mm, de preferencia 2 mm, 2,2 mm, 2,5 mm, con un diámetro de un rango entre 0,01 mm y 0,1 mm, de preferencia 0,01 , 0,02, 0,03 y con una resistencia que oscila entre 2,5 y 4,5 ohm, de preferencia 3 ohm, 3,2 ohm, 3,5 ohm, 3,6 ohm, 3,7 ohm, 3,8 ohm y 3,9 ohm.
En la Figura 3, la descripción de la Placa de Circuito Impreso (PCB) [10], el Filamento [12] (el mismo señalado como Filamento [30] en la Figura 4, circuito esquemático) está sustentado en una base sólida [11], cubierto con una Mezcla Metálica de Rápida Expansión [13], ambos insertos en una Funda Retráctil [14], Es la Funda Retráctil [14] la que mantiene unido el Filamento [12] a la Mezcla Metálica de Rápida Expansión [13]. La Funda Retráctil [14] está contenida por un recipiente Cápsula [16] que a su vez contiene otra cantidad de una Mezcla Metálica de Rápida Expansión [15], sellada con un tapón [17],
Un Oscilador Externo Q1 [25] de menor frecuencia que el oscilador interno del Microprocesador IC1 [28], emite pulsaciones que son leídas por el TIMER1 [37] (Figura 6). El conteo de estas pulsaciones, realizado por el TIMER1 es almacenado y queda disponible para su lectura mediante un algoritmo.
Mediante un algoritmo, se habilita el funcionamiento del Oscilador Externo Q1 [25] automáticamente una vez deshabilitado el oscilador interno del Microprocesador IC1 [28].
Cuando se apaga el oscilador interno del Microprocesador IC1 [28] y empieza a funcionar el Oscilador Externo Q1 [25], el TIMER1 [37] (Figura 6) del Microprocesador IC1 [28] puede leer las pulsaciones emitidas por éste y asociar mediante un algoritmo su equivalencia en tiempo.
El tiempo de retardo es definido en terreno y antes de la ejecución del disparo (Fire). El tiempo de retardo definido es programado en el (o los) Iniciador Electrónico Programable NO Explosivo [07] a través del Equipo de Comando [01 ]. El dato relacionado con el tiempo de retardo programado es almacenado en la memoria EEPROM no volátil propia del Microprocesador IC1 [28] de cada Iniciador Electrónico Programable NO Explosivo [07],
El tiempo de retardo de cada Iniciador Electrónico Programable NO Explosivo [07] está limitada por tres características asociadas con diferentes funcionalidades.
El capacitor C4 [19] (Figura 4) cumple con el rol de batería externa del Microprocesador IC1 [28] después del corte de línea; la autonomía de carga del Capacitor C4 [19], es determinante para el período máximo de funcionamiento del Microprocesador IC1 [28] una vez activado el comando “Fire” (Comando 7) y se produzca el corte en la Línea de Comunicación y Poder [02A y 02B], El Oscilador Externo Q1 [25] de 32 kHz emite 32.000 pulsaciones por segundo, éstas son contabilizadas por el TIMER1 [37] (Figura 6) del Microprocesador IC1 [28]. Son estas pulsaciones que, mediante un algoritmo, su equivalencia en tiempo permite una cuenta regresiva para alcanzar el tiempo programado de retardo.
El Microprocesador IC1 [28] cuenta con una función modo durmiente “sleep”, que se activa mediante una instrucción. Al ingresar al modo de suspensión, el oscilador del TIMER1 del Microprocesador IC1 [37] no se ve afectado y los periféricos que operan desde él pueden continuar funcionando en suspensión (Figura 6); la existencia de un Oscilador Externo Q1 [25], permite utilizar la función “sleep” del Microprocesador IC1 [28] y bajar sustancialmente su consumo de energía; nótese que la función “sleep”, si bien es cierto podría ser activada con el oscilador interno del Microprocesador IC1 [28], el consumo de energía asociado a esta forma sería de 600 nA. Utilizando el Oscilador Externo Q1 [25] y habiéndose activado la funcionalidad “sleep”, este consumo es de 20nA.
Debido al bajo consumo de energía logrado con la activación del Oscilador Externo Q1 [25], la activación de la función “sleep” del Microprocesador IC1 [28] y la autonomía del Capacitor C4 [19], se logra un estado de dormancia superior a 64.000 milisegundos.
Con todo, el tiempo de retardo programable de cada Iniciador Electrónico Programable NO Explosivo [07] está limitado a un rango entre 1 y 64.000 milisegundos.
Al cumplirse el tiempo de retardo programado (Comando 2), se produce una interrupción interna del Microprocesador IC1 [28], desactivando el modo “sleep”, y activándose las demás funciones requeridas para concretar el disparo final.
La activación de Fire (Comando 6), provoca las siguientes acciones: a) Se desconectan todas las interrupciones del Microprocesador IC1 [28] para evitar un despertar anticipado de la función durmiente “sleep”. b) Se desconecta la carga del Capacitor C7 [21], para que mantenga su carga al máximo mientras el Microprocesador IC1 [28] esté en modo “sleep” y el TIMER1 lleve la cuenta regresiva. c) Se rescata información relacionada al tiempo de retardo almacenada en memoria EEPROM no volátil del Microprocesador IC1 [28] y se carga en el contador del TIMER1 el tiempo programado de retardo (Comando 2). d) Se habilita la función “sleep” del Microprocesador IC1 [28] y se mantiene el funcionamiento únicamente del TIMER1 para iniciar la cuenta regresiva del tiempo de retardo. e) Se inicia la cuenta regresiva del tiempo de retardo.
Una vez cumplido el tiempo de retardo, se habilita el Capacitor C7 [21], en ese instante se habilita el Transistor T2 (NPN) [27] con su Resistencia R8 [27] para la descarga de toda la energía acumulada en Capacitor C7 [21] sobre el Filamento [30] (Figura 4).
Se produce entonces una incandescencia del Filamento [30], la cual genera una temperatura superior a 1 .200 °C originada por la capacidad del Capacitor C7 [21 ] de entre 24V y 35 V y una corriente aproximada de 0,250 A que activa la Mezcla Metálica de Rápida Expansión [13] (Figura 3). Esta reacción exotérmica alcanza una temperatura mayor a 1 .200 °C, lo que activa la Mezcla Metálica de Rápida Expansión [15]. PROCESOS
El Iniciador Electrónico Programable NO Explosivo [07] realiza los procesos descritos a continuación:
Proceso 1 : Se rectifica el voltaje de entrada (24V a 35V) del Iniciador Electrónico Programable NO Explosivo [07] por medio de dos capacitores, C1 y C2 [18], un diodo D1 y un puente rectificador D2 [18].
Proceso 2: El Capacitor C3 [20] mantiene estable el voltaje de entrada (24V y 35V). El Regulador de Voltaje IC2 [20], bajan el voltaje de entrada (24V y 35V) a 5V, voltaje de entrada para diodos D4 y D5 [19].
Proceso 3: El dato ingresa al Iniciador Electrónico Programable NO Explosivo [07] a través de las resistencias R1 y R2 [24] (Figura 04). Dichas resistencias filtran (separan) la trama de bytes asociada al dato entrante y reducen su voltaje de entrada (entre 24V y 35V) al nivel requerido por el Microprocesador IC1 [28] (entre 3,3V y 5,0V).
Proceso 4: En la línea de entrada de voltaje al Microprocesador IC1 [28] se colocan dos diodos D4 y D5 [19], estos componentes regulan el voltaje a la tensión requerida por el Microprocesador IC1 [28] (3,6V) y detienen la pérdida de corriente. También en la línea de entrada de voltaje al Microprocesador IC1 [28] se coloca un Capacitor C4 [19] de 470 uF, el que mantiene estable el voltaje de entrada (3,6V). El Capacitor C4 [19] cumple además con el rol de acumulador de energía. Proceso 5: El Microprocesador IC1 [28] cuenta con un PIN configurado como sensor. El sensor está conectado a dos resistencias R6 y R7 [26], que cumplen el rol de divisor de voltaje, entre el Capacitor C7 [21], Filamento [30] y tierra (VSS).
El sensor [28C] (Figura 4) lee los datos resultantes de la verificación respecto a la continuidad del Filamento [30] (Comando 3). Se espera que el valor de la resistencia esté entre 2,5 y 4,5 ohm.
Mediante un algoritmo, el sensor del Microprocesador IC1 [28] lee el estado de la carga inicial del Capacitor C7 [21], Se espera que la primera toma de muestra sea de un valor inferior a 1 V (Comando 3).
Proceso 6: El Microprocesador IC1 [28] desactiva el Transistor T4 [22], activa el PIN conectado al Transistor T3 [29] a través de Resistencias R10 y R5 [29], Esto permite iniciar la carga del Capacitor C7 [21], El proceso de carga del Capacitor C7 [21] está programado para 30 segundos.
Proceso 7: El sensor del Microprocesador IC1 [28] registra datos de voltaje de carga cada 30 milisegundos durante los 30 segundos de la carga del Capacitor C7 [28]. Los datos generados son almacenados en una memoria EEPROM no volátil del Microprocesador IC1 [28]. Los datos serán procesados vía Comando 3, señalado más adelante.
Proceso 8: El Capacitor C7 [21] está conectado a la línea de poder rectificada (Proceso 1 ). La resistencia R9 [21] y el diodo D3 [21] limitan la carga del sistema. Se genera una carga lenta del Capacitor C7 [21 ] (30 seg) y un consumo de corriente entre 2 y 3 miliamperes. Proceso 9: Conectado al Microprocesador IC1 [28], el Oscilador Externo Q1 [25] y los Capacitores C5 y C6 [25] mantienen estable la oscilación de 32 Khz.
Proceso 10: El Transistor T1 [23] de salida y las Resistencias R3 y R4 [23] envían la trama de respuesta una vez procesados los comandos (indicados más adelante) a través del protocolo de comunicación bidirecciónal (Figura 2).
Proceso 11 : El Microprocesador IC1 [28] activa el transistor T2 [27] a través de la Resistencia R8 [27], Se produce la descarga del Capacitor C7 [21] a través del Filamento [30], produciéndose la incandescencia en el Filamento [30].
Proceso 12: El Filamento [30] incandescente alcanza la temperatura superior a 1 .000 °C y activa la Mezcla Metálica de Rápida Expansión [13] (Figura 3).
Proceso 13: La reacción exotérmica de la activación de la Mezcla Metálica de Rápida Expansión [13] permite alcanzar la temperatura de 1.200 C y activa Mezcla Metálica de Rápida Expansión [15].
COMANDOS
Comando 1 : Graba en la memoria EEPROM no volátil del Microprocesador IC1 [28] el ID, código identificador del RFID [05], identificando de forma única e irrepetible a un Iniciador Electrónico Programable NO Explosivo [07]. Comando 2: Graba en la memoria EEPROM no volátil del Microprocesador IC1 [28] el tiempo de retardo programado, que varía entre 1 milisegundo y 64.000 milisegundos.
Comando 3: Consulta ID. Hace diagnóstico de la funcionalidad del momento, excluyendo el Comando 7 (Disparo).
• Diagnóstico 1 : Mediante un algoritmo, se comprueba tiempo de respuesta del Iniciador Electrónico Programable NO Explosivo [07], En el caso que dicho tiempo de respuesta supere un tiempo límite programado (100 milisegundos), responde con un código de error.
• Diagnóstico 2: Mediante sensor, se comprueba que el Capacitor C7 [21] de 470 uF a 2.200 uF tiene carga inferior a 1 V (Volt). En el caso de falla, responde con un código de error. En caso de error, se activa el transistor T4 [22] y obliga la descarga a tierra (Vss o GND) del capacitor C7 [21],
• Diagnóstico 3: Mediante sensor, se verifica que el Filamento [30] tenga continuidad entre 2,5 y 4,5 ohm. En el caso de falla, responde con un código de error. En caso de error, se activa el transistor T4 [22] y obliga la descarga a tierra (Vss o GND) del capacitor C7 [21],
• Diagnóstico 4: Mediante un algoritmo, se rescata el dato asociado al retardo programado almacenado en la memoria EEPROM no volátil del Microprocesador IC1 [28]. Se verifica que este dato coincide con el dato relacionado al tiempo de retardo programado enviado por el Equipo de Comando [01]. En el caso de falla, responde con un código de error. • Diagnostico 5: Mediante un algoritmo, se recupera el dato asociado a la frecuencia el Oscilador Externo [25], almacenado en la memoria EEPROM no volátil del Microprocesador IC1 [28] al inicio del sistema. En caso de que el registro indique error, se activa el transistor T4 [22] y obliga la descarga a tierra (Vss o GND) del capacitor C7 [21],
Comando 4: Permite cambio de ubicación de un (o más) Iniciador Electrónico Programable NO Explosivo [07], Permite modificar la asignación de retardo de un (o más) Iniciador Electrónico Programable NO Explosivo [07], Permite reprogramación manual de un (o más) Iniciador Electrónico Programable NO Explosivo [07],
Comando 5: Preparación antes del disparo. Deshabilita Transistor T4 [22] para salir del estado conexión a tierra. Habilita Transistor T3 [29] para proceder con la carga del Capacitor C7 [21] en un período de tiempo de 30 segundos; lee y almacena el dato de carga del Capacitor C7 [21] cada 30 milisegundos durante los 30 segundos de la carga. Dato almacenado queda disponible para lectura en una variable del Microprocesador IC1 [28]. Deshabilita el oscilador interno (16 Mhz) del Microprocesador IC1 [28] y habilita el Oscilador Externo [25] (32 KHz).
En este momento, el usuario debe repetir el Comando 3 para verificar nuevamente que el sistema esté operativo incluyendo el cambio de estado del Capacitor C7 [21],
Comando 6: Medida de seguridad en caso de cualquier falla. En el caso de falla en Comando 5, responde con un código de error, se activa el Transistor T4 [22], conectando el Capacitor C7 [21] a tierra y procediendo a su descarga. Comando 7: Disparo. Deshabilita interrupciones externas del Microprocesador [28]. Deshabilita la carga del Capacitor C7 [21 ], Se carga el TIMER1 con el dato relacionado al tiempo de retardo. Activa función “sleep” del Microprocesador IC1 [21], Habilita cuenta regresiva del tiempo de retardo asignado del Iniciador Electrónico Programable NO Explosivo [07], Terminada la cuenta regresiva asignada al tiempo de retardo programado, activa el Capacitor C7 [21 ]. Activa salida I/O PORT C5 [40] (Figura 7) del Microprocesador IC1 [28] y el Transistor T2 [27],
DESCRIPCIÓN DE FIGURAS
Para mejor describir las figuras presentadas se realizará un listado de todos los ítems señalados en las mismas:
[01] Equipo de Comando (Consola o Master)
[02A] Línea de Comunicación y Poder
[02B] Línea de Comunicación y Poder (VSS o GND)
[03] Modulación de Voltaje
[04] Conector
[05] Tarjeta externa RFID
[06] Logger, Lector RFID
[07] Iniciador Electrónico Programable No Explosivo
[08] Capacitor C7
[09] Circuito Impreso PCB
[10]Tarjeta de Circuito Impreso PCB [1 1]Base sólida de filamento
[12] Filamento (Figura 4) [30]
[13] Primera Mezcla metálica
[14]Funda Retráctil
[15] Segunda Mezcla metálica
[16] Cápsula contenedora
[17] Tapón de cápsula contenedora
[18] Bloque Rectificador de Voltaje D2, C1 , C2, D1
[19]Bloque entrada Voltaje al Microcontrolador IC1 , D4, D5, C4
[20] Bloque Regulador de Voltaje, IC2, C3
[21]Bloque carga y descarga Capacitor C7, D3, R9
[22] Bloque para descarga Capacitor C7, R11 , R12
[23] Bloque Transmisor de datos a línea de comunicación, T1 , R3, R4
[24] Bloque divisor de tensión con datos al bloque 28D (INT), R1 , R2
[25] Bloque Oscilador externo. Q1 , C5, C6
[26] Bloque divisor de voltaje al sensor del bloque ADC 28C, R6, R7
[27]Bloque de disparo con T2, R8
[28] Bloque Microcontrolador IC1
[28A] Fuente de Reloj
[28B] Puertos de entrada y salida I/O
[28C] Entrada para el sensor (ADC Análogo a Digital)
[28D] Interrupción al entrar datos por el puerto [28E] Salida datos serie transmisión TX (UART)
[28F] CPU Procesador de funciones y almacenamiento de datos
[29] Bloque activación carga Capacitor C7, T3, R10, R5
[30] Filamento (Figura 3) [12]
[31] Enchufe de Programación para el Microcontrolador IC1
[32] Memoria Flash de programación del Microcontrolador IC1
[33] CPU con sus periféricos internos conectados
[34] Bloque de conexión del Oscilador Externo y el generador de tiempo a la CPU
[35] Bus de periféricos conectados a la CPU
[36] Fuente de reloj del microcontrolador IC1 , OSC (Oscilador externo)
[37] Fuente de pulsos para el contador del TIMER1 desde el OSC Q1 .
[38] Salida Puerto I/O para carga del Capacitor C7 (28B Figura 4)
[39] Salida Puerto I/O para descarga del Capacitor C7(28B Figura 4)
[40] Salida Puerto I/O para disparo, descarga del Capacitor C7 en el Filamento [30] (28B Figura 4)
[41] Entrada Puerto I/O mediante interrupción (INT), para procesamiento de datos (28D Figura 4)
[42] Entrada al módulo ADC, para el Sensor de voltaje. (28C Figura 4)
[43] Salida de transmisión serial PIN TX (UART) (28E Figura 4) Figura 1 :
Esta figura presenta dos esquemas A y B, donde el esquema de la izquierda o figura 1A muestra la disposición de los elementos del presente sistema utilizando una sola línea paralela de Comunicación y Poder [02A y 02B] para un solo Iniciador Electrónico Programable No Explosivo [07] y un lector RFID que lee código de identificador único ID del Iniciador Electrónico Programable No Explosivo [07], El esquema B o figura B, muestra el presente sistema utilizando una sola línea paralela de Comunicación y Poder [02A y 02B] para cuatro o más Iniciadores Electrónicos Programables No Explosivos [07],
Figura 2:
Esta figura representa tres esquemas A, B y C, que representan ondas de voltaje, donde la figura 2A, superior, muestra el comienzo de la comunicación bidireccional, donde la Modulación de Voltaje [03] enviada, consiste en una onda cuadrada constante con una amplitud definida entre 24V y 35V y un periodo de 4,0 ms. El bit alto de 4 milisegundos y el bit bajo de 0,2 milisegundos permiten mantener un voltaje constante.
Las figuras 2B y 2C, presentan esquemas donde se ve el detalle de un protocolo de comunicación bidireccional con una velocidad de transmisión de 2.400 bits por segundo que es utilizado en la Línea de Comunicación y Poder [02A y 02B],
Figura 3:
Esta figura presenta tres esquemas A, B y C, donde los dos primeros presentan una descripción esquemática de la Placa de Circuito Impreso (PCB). El esquema C presenta un detalle de la interacción entre el Filamento [12] cubierto con una Mezcla Metálica de Rápida Expansión [13], insertos en una Funda Retráctil [14], donde la Funda Retráctil [14] mantiene unido el Filamento [12] a la Mezcla Metálica de Rápida Expansión [13], y donde la Funda Retráctil [14] está contenida por un recipiente Cápsula [16] que a su vez contiene otra cantidad de una Mezcla Metálica de Rápida Expansión [15].
Figura 4:
Esta figura presenta un circuito esquemático del Iniciador Electrónico Programable NO Explosivo [07],
Figura 5:
Esta figura presenta una especificación de la programación y retroalimentación de la CPU [28F] descrita en el circuito esquemático del Iniciador Electrónico Programable NO Explosivo [07],
Figura 6:
Esta figura es una representación detallada de la dinámica que se genera en Bloque Fuente de Reloj [28A],
Figura 7:
Esta figura presenta un esquema de cómo se transmite la onda cuadrada con los datos desde el Equipo de Comando [01] al pin de entrada INT/IO PORT [41] y puertos de salida IO [28B] (para carga del Capacitor C7 [38], para descarga del Capacitor C7 [39], para disparo y descarga del Capacitor C7 en el Filamento [30] [40]) (Figura 4) del Microprocesador IC1 [28], convirtiéndola en bytes al utilizar un algoritmo. Por otra parte, la figura 7 hace referencia a los PINES CO, C3, C5 del microcontrolador IC1 de la figura 4. Figura 8:
Esta figura presenta un esquema de la información analógica recibida por el Microprocesador IC1 [28] a través del pin ADC/AN [42] (Figura 4) [28C] donde es convertida a digital para la lectura del sensor.
Figura 9:
Esta figura presenta un esquema de como el Microprocesador IC1 [28], a través del bloque de transmisión USART pin TX [43] (Figura 4) [28E], transmite los datos de salida, donde los datos de salida son insertados a través de un transistor T1 y dos resistencias R3 y R4 [23] en la Línea de Comunicación y Poder [02A y 02B],
EJEMPLO DE APLICACIÓN
Para poder calcular la temperatura de ignición de la mezcla metálica primaria, se utilizó la siguiente mezcla Al + Fe2O3 + NaNO3 (Aluminio + Oxido de Hierro + Nitrato se Sodio), haciendo uso de las siguientes ecuaciones:
La resistividad de un metal (p) aumenta al aumentarle su temperatura, dicha relación está dada por la siguiente ecuación: ρ(T) = ρo (1 + α (ΔT)) (Ecuación No.1 ) Donde: ρ(T) = Resistividad de un metal en función de un diferencial de temperatura. ρo= Resistividad inicial del metal. α = Coeficiente de Temperatura por grado centígrado del metal. ΔT = Diferencial de temperatura (TFinal- Tinicial).
A su vez, la resistividad de un metal es directamente proporcional a la resistencia del metal, la relación entre ambos está dada por:
R = p*L / A (Ecuación No.2)
Donde:
R = Resistencia del metal ρ= Resistividad del metal
L = Longitud alambre de metal
A = Superficie del alambre
Conociendo los valores a una temperatura ambiente de To = 20°C y Ro a dicha temperatura igual a 10,5 Ω, el coeficiente de temperatura (a) del tungsteno a=0,0045 y calculando experimentalmente la resistencia RF del tungsteno obteniendo como resultado que al aplicar un voltaje de V=24 V (volts), 20V calculado por la caída de tensión y una corriente eléctrica 1=0,100 A (amperes) y sustituyendo la resistividad (p) de la ecuación No. 2 en la ecuación No. 1 . ρ= R*A/L (Ecuación No.2)
(R*A (T))/L = (R0*A (1 + a (TF - To)))/L (Ecuación No.1 )
Multiplicando ambos miembros por L / A
(R*A (T) * L)*(L/A) = (R0*A (1 + a (TF - T0)))*(L/A)
R(T) = Ro (1 + a (TF - TO)) (Ecuación No.3)
Donde:
R(T) = Resistencia del metal a una variación de temperatura
Ro = Resistencia del metal a To a = Coeficiente de Temperatura por grado centígrado del metal
TF = Variación de temperatura respecto a la inicial
To = Temperatura inicial del metal
Despejando de la ecuación No.3 la variable TF: TF = ((RF / RO) - 1 )/α + TO (Ecuación No.4)
Calculando en forma experimental con la descarga del capacitor C7 nos arroja una resistencia final por diferencia de temperatura de 90 ohm, sustituyendo estos valores en la ecuación No.4:
TF = ((90Ω / 10,5Ω) - 1 )/0, 0045 + 20°C
TF = 1 .702 °C
En base a los resultados obtenidos, se concluye que a una temperatura ambiente de 20°C, la temperatura del filamento es de aproximadamente 1 .702 °C, para la ignición de la primera mezcla metálica de rápida expansión [13].
Considerando que el punto de fusión del metal tungsteno es de 3.422 °C, se concluye que el filamento no se rompe antes de activar la primera mezcla metálica de rápida expansión [13].
El tiempo límite de la incandescencia del filamento [30], al estar en un ambiente expuesto al oxigeno (sin vacío) su consumo es inevitable. Una vez activada la descarga del capacitor C7 [31 a], el período promedio mínimo de incandescencia del filamento [30] es mayor a 100 milisegundos, tiempo suficiente para que la incandescencia del filamento [30] active la primera mezcla metálica de rápida expansión [13].

Claims

REIVINDICACIONES
1 Un iniciador electrónico programable no explosivo [07] para una mezcla metálica de rápida expansión y/o plasma, CARACTERIZADO porque comprende una cápsula, que contiene adheridos dos tipos de mezcla metálica de rápida expansión [13] y [15] con temperaturas de activación por sobre los 1000°C ; donde la cápsula corresponde a un tubo o manga contenedor [16] que se cierra con un tapón de sello [17]; que recibe el protocolo de comunicación basado en la modulación de voltaje [03], por medio de una línea de comunicación y poder [02a y 02b] mediante un algoritmo bidireccional en serie desde un equipo de comando [01 ] externo; un capacitor C7 [8][21], con un requerimiento de voltaje bajo los 35v, que por medio de una descarga controlada en el filamento [12][30] produce la incandescencia de éste, donde este filamento [12][30] está sustentado en una base sólida [1 1 ], cubierto con la mezcla metálica de rápida expansión [13] que se activa por sobre los 1000°C, donde ambos están insertos en una funda retráctil [14] que los mantiene unidos, donde la funda retráctil [14] está contenida dentro del recipiente cápsula [16] que a su vez contiene la otra cantidad de la mezcla metálica de rápida expansión [15] que se activa por sobre los 1200°C; una targeta de circuito impreso PCB [10] con un circuito impreso PCB [9] para el control de la descarga, su retardo entre 1 ms a 64.000 ms y su testeo permitiendo validar el circuito previo a la ignición.
2.- El iniciador electrónico, según la reivindicación 1 , CARACTERIZADO porque el circuito impreso PCB [9] comprende un microprocesador IC1 [28], con un código de identificación único e irrepetible (ID), que recibe la comunicación bidireccional proveniente del equipo de comando [01] externo y procesa los diferentes comandos para activar el iniciador electrónico programable no explosivo [07], donde el microprocesador IC1 [28] comprende además una memoria EEPROM no volátil, que almacena el código de identificación único e irrepetible (ID), los parámetros del retardo y un oscilador interno, donde un PIN del Microprocesador IC1 [28] opera como entrada para el procesamiento de señales funcionando como sensor de carga inicial y final del Capacitor C7 [8][21 ] y sensando la continuidad del Filamento [30], un microcontrolador flash, una unidad de programación [28F] de memoria RAM [44] perteneciente al Microprocesador IC1 [28]; un Capacitor C4 [19] que mantiene la estabilidad y la autonomía del voltaje de entrada al Microprocesador ICI [28] una vez recibido el comando de disparo; un Oscilador Externo Q1 [25] conectado al Microprocesador IC1 [28] de menor frecuencia de oscilación que el oscilador interno de éste para entregar los pulsos a un TIMER [28A] del Microprocesador IC1 [28].
3.- El Iniciador Electrónico, según la reivindicación 1 , CARACTERIZADO porque un PIN I/O PORT CO en el Microprocesador IC1 [28], que está conectado a dos resistencias R5 y R10, activa el transistor T3 produciendo la carga del Capacitor C7 [8][21 ],
4.- El iniciador electrónico, según la reivindicación 1 , CARACTERIZADO porque el Capacitor C4 [19] es de alta capacitancia con rangos superiores a los 300 pF, de preferencia 470 pF de tantalum, manteniendo la estabilidad del voltaje de entrada al Microprocesador IC1 [28] así como el depósito de energía para permitir la autonomía del Microprocesador IC1 [28] por el período de retardo programado una vez que se activa el disparo y la Línea de Comunicación y Poder [02A y 02B] es interrumpida.
5.- El iniciador electrónico, según la reivindicación 1 , CARACTERIZADO porque el Oscilador Externo Q1 [25] posee una frecuencia de 32.000 Hertz, frecuencia menor que el oscilador interno del Microprocesador IC1 [28], conectado al Microprocesador IC1 [28], donde un comando desactiva el oscilador interno del Microprocesador IC1 [28] y activa el Oscilador Externo Q1 [25] de baja frecuencia, donde la activación del Oscilador Externo Q1 [25] reduce entre 250 y 500 veces menos la frecuencia y el consumo de energía del Microprocesador IC1 [28], donde el Oscilador Externo Q1 [25] en combinación con la activación de función “sleep” del Microprocesador IC1 [28], hacen que la reducción del consumo de energía sea del orden de mA a nA, logrando así alcanzar el máximo de tiempo de retardo programable de 64.000 milisegundos.
6.- El iniciador electrónico, según la reivindicación 5, CARACTERIZADO porque el Oscilador Externo Q1 [25] es el agente emisor de pulsaciones para que el TIMER1 cuente dichas pulsaciones y calcule el tiempo, esta información es almacenada y queda disponible para su lectura mediante Software, donde 32 pulsaciones emitidas por Oscilador Externo Q1 [25] y leídas por el TIMER1 equivalen a 1 milisegundo.
7.- El Iniciador Electrónico, según las Reivindicaciones 1 , 5 y 6, CARACTERIZADO porque debido al bajo consumo de energía logrado con la activación del Oscilador Externo Q1 [25], la activación de la función “sleep” del Microprocesador IC1 [28] y la autonomía del Capacitor C4 [19], se logra un estado de dormancia superior a 64.000 milisegundos, donde el tiempo de retardo es programable de cada Iniciador Electrónico Programable NO Explosivo [07] y está limitado a un rango entre 1 y 64.000 milisegundos.
8.- El Iniciador Electrónico, según la reivindicaciones 1 , CARACTERIZADO porque el Filamento [30], comprende una configuración en espiral, cuya incandescencia es capaz de alcanzar una alta temperatura que activa una Mezcla Metálica de Rápida Expansión [13] adherida a éste, a través de la descarga completa del Capacitor C7 [21 ]-
9.- El Iniciador Electrónico, según la reivindicación 1 , CARACTERIZADO porque el Iniciador Electrónico Programable NO Explosivo [07], la línea de comunicación y poder [02a y 02b] y el equipo de comando [01 ] se comunican a través de una trama de onda cuadrada, manteniendo en sincronía temporal el (o los) Iniciador Electrónico Programable NO Explosivo [07],
10.- El Iniciador Electrónico, según la reivindicación 2, CARACTERIZADO porque el capacitor C7 [21 ] de 35V y con una Resistencia R9 [21 ] conectada en serie con dicho Capacitor C7 [21 ], permite una carga lenta del Capacitor C7 [21 ], implicando un bajo consumo de corriente por cada Iniciador Electrónico Programable NO Explosivo [07] en forma independiente.
1 1.- El Iniciador Electrónico, según la reivindicación 1 , CARACTERIZADO porque la cantidad de unidades conectadas en paralelo del (o de los) Iniciador Electrónico Programable NO Explosivo [07] estaría limitada al consumo de corriente de cada Iniciador Electrónico Programable NO Explosivo [07] multiplicada por la cantidad de Iniciadores Electrónicos Programables NO Explosivos [07] conectados a la Línea de Comunicación y Poder [02A y 02B], donde este valor no es mayor a la capacidad de corriente que entrega el Equipo de Comando [01 ], donde la cantidad máxima de unidades conectadas en paralelo es directamente proporcional al consumo de cada Iniciador(es) Electrónico(s) Programable(s) NO Explosivo [07] que va entre 10 a 30 milíAmperes por unidad, donde la activación de la cantidad máxima de unidades del Iniciador(es) Electrónico(s) Programable(s) NO Explosivo [07], conectadas en paralelo, requiere entre 24V y 35 V.
12.- Un proceso de testeo y reacción exotérmica del Iniciador Electrónico Programable NO Explosivo [07], como el descrito en la Reivindicación 1 , CARACTERIZADO porque comprende las etapas de: i) comprobar la comunicación entre Equipo de Comando [01] y el (o los) Iniciador Electrónico Programable NO Explosivo [07]; ii) comprobar la carga inicial del Capacitor C7 [8] [21 ], donde se comprueba la carga final del Capacitor C7 [8][21], donde en caso de error, se activa el transistor T4 [22] y se obliga a la descarga a tierra (Vss o GND) del capacitor C7 [21 ]; iii) comprobar la continuidad del Filamento [30], donde, en caso de error, se activa el transistor T4 [22] y obliga la descarga a tierra (Vss o GND) del capacitor C7 [21 ]; iv) comprobar el valor de tiempo de retardo programado en la memoria EEPROM del Microprocesador IC1 [28]; v) Comprobadas las etapas i, ii, iii y iv, mediante un comando [6] se suceden: vi) Desconexión de todas las interrupciones del Microprocesador IC1 [28] para evitar un despertar anticipado de la función durmiente “sleep”; vii) Desconexión de la carga del Capacitor C7 [21 ], para que mantenga su carga al máximo mientras el Microprocesador IC1 [28] esté en modo “sleep” y el TIMER1 lleve la cuenta regresiva; viii) Rescate de la información relacionada al tiempo de retardo almacenada en memoria EEPROM no volátil del Microprocesador IC1 [28] y se carga en el contador del TIMER1 el tiempo programado de retardo (Comando 2); ix) Habilitación de la función “sleep” del Microprocesador IC1 [28] y se mantiene el funcionamiento únicamente del TIMER1 para iniciar la cuenta regresiva del tiempo de retardo; x) Inicio de la cuenta regresiva del tiempo de retardo; xi) Una vez llegada la cuenta regresiva a 0, se levanta el IO PORT C5 activando por medio de la resistencia R8 el transistor T2 el cual a través de la energía almacenada del capacitor C7, descarga toda su energía a tierra pasando por el filamento (30) generando su incandescencia; xii) Activación de la primera mezcla metálica de rápida expansión [13] mediante el filamento comprimido con esta por medio de la Funda Retráctil [14], con un aumento de temperatura suficiente para activar la segunda mezcla metálica de rápida expansión [15]; y xiii) Reacción exotérmica entre el Iniciador Electrónico Programable NO Explosivo [07] y la mezcla metálica de rápida expansión y/o plasma.
PCT/CL2020/050144 2020-10-29 2020-10-29 Iniciador electrónico programable no explosivo para tronadura de roca, y proceso de testeo y reacción exotérmica del iniciador WO2022087756A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US18/251,225 US20230408230A1 (en) 2020-10-29 2020-10-29 Non-explosive programmable electronic initiation system for rock blasting
CA3196525A CA3196525A1 (en) 2020-10-29 2020-10-29 Programmable non-explosive electronic initiator for rock blasting, and exothermic reaction and testing process of the initiator
AU2020474620A AU2020474620A1 (en) 2020-10-29 2020-10-29 Non-explosive programmable electronic initiation system for rock blasting
PCT/CL2020/050144 WO2022087756A1 (es) 2020-10-29 2020-10-29 Iniciador electrónico programable no explosivo para tronadura de roca, y proceso de testeo y reacción exotérmica del iniciador
EP20958925.8A EP4239278A1 (en) 2020-10-29 2020-10-29 Programmable non-explosive electronic initiator for rock blasting, and exothermic reaction and testing process of the initiator
CL2023001058A CL2023001058A1 (es) 2020-10-29 2023-04-12 Sistema de iniciación electrónico programable no explosivo para tronadura de roca
CONC2023/0004958A CO2023004958A2 (es) 2020-10-29 2023-04-20 Iniciador electrónico programable no explosivo para tronadura de roca, y proceso de testeo y reacción exotérmica del iniciador

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050144 WO2022087756A1 (es) 2020-10-29 2020-10-29 Iniciador electrónico programable no explosivo para tronadura de roca, y proceso de testeo y reacción exotérmica del iniciador

Publications (1)

Publication Number Publication Date
WO2022087756A1 true WO2022087756A1 (es) 2022-05-05

Family

ID=81381564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050144 WO2022087756A1 (es) 2020-10-29 2020-10-29 Iniciador electrónico programable no explosivo para tronadura de roca, y proceso de testeo y reacción exotérmica del iniciador

Country Status (7)

Country Link
US (1) US20230408230A1 (es)
EP (1) EP4239278A1 (es)
AU (1) AU2020474620A1 (es)
CA (1) CA3196525A1 (es)
CL (1) CL2023001058A1 (es)
CO (1) CO2023004958A2 (es)
WO (1) WO2022087756A1 (es)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674047A (en) 1984-01-31 1987-06-16 The Curators Of The University Of Missouri Integrated detonator delay circuits and firing console
US5171935A (en) 1992-11-05 1992-12-15 The Ensign-Bickford Company Low-energy blasting initiation system method and surface connection thereof
KR100213577B1 (ko) 1997-06-10 1999-08-02 김창선 급팽창 금속 혼합물
WO2000009967A1 (en) 1998-08-13 2000-02-24 Expert Explosives (Proprietary) Limited Blasting arrangement
US6173651B1 (en) 1996-05-24 2001-01-16 Davey Bickford Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation
US20050034624A1 (en) * 2003-07-15 2005-02-17 Special Devices, Inc. Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator
EP1306642B1 (en) 2001-10-23 2006-03-08 Chang Sun Kim Blasting cartridge for a rapidly expanding metallic mixture
EP2678633A1 (en) 2011-02-21 2014-01-01 Ael Mining Services Limited Detonation of explosives
US8746144B2 (en) 2008-10-24 2014-06-10 Battelle Memorial Institute Electronic detonator system
CA2802888C (en) * 2010-06-18 2018-08-21 Battelle Memorial Institute Non-energetics based detonator
US20180371859A1 (en) * 2015-12-09 2018-12-27 Interwell P&A As Ignitor, system and method of electrical ignition of exothermic mixture

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674047A (en) 1984-01-31 1987-06-16 The Curators Of The University Of Missouri Integrated detonator delay circuits and firing console
US5171935A (en) 1992-11-05 1992-12-15 The Ensign-Bickford Company Low-energy blasting initiation system method and surface connection thereof
US6173651B1 (en) 1996-05-24 2001-01-16 Davey Bickford Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation
KR100213577B1 (ko) 1997-06-10 1999-08-02 김창선 급팽창 금속 혼합물
EP1105693B1 (en) 1998-08-13 2007-07-11 Orica Explosives Technology Pty Ltd Blasting arrangement
EP1105693A1 (en) 1998-08-13 2001-06-13 Expert Explosives (Proprietary) Limited Blasting arrangement
WO2000009967A1 (en) 1998-08-13 2000-02-24 Expert Explosives (Proprietary) Limited Blasting arrangement
CA2339167C (en) 1998-08-13 2008-01-22 Expert Explosives (Proprietary) Limited Blasting arrangement
EP1306642B1 (en) 2001-10-23 2006-03-08 Chang Sun Kim Blasting cartridge for a rapidly expanding metallic mixture
US20050034624A1 (en) * 2003-07-15 2005-02-17 Special Devices, Inc. Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator
US8746144B2 (en) 2008-10-24 2014-06-10 Battelle Memorial Institute Electronic detonator system
EP3051248B1 (en) * 2008-10-24 2018-02-28 Battelle Memorial Institute Electronic detonator system
CA2802888C (en) * 2010-06-18 2018-08-21 Battelle Memorial Institute Non-energetics based detonator
EP2678633A1 (en) 2011-02-21 2014-01-01 Ael Mining Services Limited Detonation of explosives
ES2540573T3 (es) 2011-02-21 2015-07-10 Ael Mining Services Limited Detonación de explosivos
US20180371859A1 (en) * 2015-12-09 2018-12-27 Interwell P&A As Ignitor, system and method of electrical ignition of exothermic mixture

Also Published As

Publication number Publication date
CA3196525A1 (en) 2022-05-05
AU2020474620A1 (en) 2023-06-15
CO2023004958A2 (es) 2023-05-08
US20230408230A1 (en) 2023-12-21
CL2023001058A1 (es) 2023-08-04
EP4239278A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
JP3962396B2 (ja) 電子遅延式点火装置に用いる点火薬
CN102261872B (zh) 数码延期电子雷管
EP3051248B1 (en) Electronic detonator system
US5435248A (en) Extended range digital delay detonator
KR101143389B1 (ko) 전자식 지연 뇌관 장치 및 전자식 뇌관 발파 시스템
CN105066802B (zh) 遥控起爆系统
KR101815512B1 (ko) 터널 발파용 비전기식 뇌관의 기폭장치
EP2649405B1 (en) Detonation of explosives
EP2912403B1 (en) Remote initiator receiver
DK2651855T3 (en) Stone and betonnedbrydnings- (demolition - nedbrækning - splitting) system
WO2022087756A1 (es) Iniciador electrónico programable no explosivo para tronadura de roca, y proceso de testeo y reacción exotérmica del iniciador
CN110186330A (zh) 一种电子点火延期雷管
EP2122294A1 (en) Detonator ignition protection circuit
CN110487135A (zh) 煤矿许用型电子雷管
KR20180104816A (ko) 터널 발파용 비전기식 뇌관의 기폭장치
CN114858016B (zh) 电子雷管系统及其工作方法
Jadhav et al. Mechanism of Electronic Delay Device for Detonator
Barglowski Advanced Ordnance Initiation-System Development for a Unique Set of Requirements
Pande DETONATOR‖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3196525

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020958925

Country of ref document: EP

Effective date: 20230530

ENP Entry into the national phase

Ref document number: 2020474620

Country of ref document: AU

Date of ref document: 20201029

Kind code of ref document: A