WO2022086137A1 - Thermo-responsive dna nanogel and pharmaceutical use thereof - Google Patents

Thermo-responsive dna nanogel and pharmaceutical use thereof Download PDF

Info

Publication number
WO2022086137A1
WO2022086137A1 PCT/KR2021/014621 KR2021014621W WO2022086137A1 WO 2022086137 A1 WO2022086137 A1 WO 2022086137A1 KR 2021014621 W KR2021014621 W KR 2021014621W WO 2022086137 A1 WO2022086137 A1 WO 2022086137A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
nanogel
temperature
nucleic acid
sensitive
Prior art date
Application number
PCT/KR2021/014621
Other languages
French (fr)
Korean (ko)
Inventor
노영훈
김영민
김태형
이경신
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2022086137A1 publication Critical patent/WO2022086137A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to temperature-sensitive DNA nanogels and pharmaceutical uses thereof.
  • DNA hydrogel a biomaterial
  • DNA hydrogel is a material attracting attention in the biomedical field due to its high biocompatibility and biodegradability.
  • DNA is combined with pure DNA or organic/inorganic materials, and research is being actively conducted to apply it as a drug carrier based on multifunctionality, self-assembly through molecular recognition ability, and control of size and shape at the nano level.
  • stimuli-sensitive nanogels made of DNA nanostructures can undergo structural transformations such as dissolution, separation, division and reconstitution of DNA using nucleotide sequence-specific properties, thereby inducing the release of loaded drugs.
  • stimuli-sensitive DNA nanogels have various advantages, such as bypassing biological barriers, providing high drug bioavailability, and reducing side effects through controllable drug release.
  • various types of stimulus-sensitive nanogels such as reducing agent (GSH)-reactivity, heat sensitivity, and pH sensitivity have been reported, but development of a platform capable of more effectively delivering combination anticancer drugs is insufficient.
  • GSH reducing agent
  • Another object of the present invention is to provide a pharmaceutical use of the temperature-sensitive DNA nanogel as a drug delivery system or composition for anticancer.
  • the present invention provides a branched DNA unit in which each arm has an adhesive end; a photosensitive unit comprising gold nanoparticles and single-stranded DNA having an adhesive end; And it provides a temperature-sensitive DNA nanogel formed by self-assembly of a linking unit having an adhesive end.
  • the present invention also the temperature-sensitive DNA nanogel; And it provides a drug delivery system comprising a pharmaceutically acceptable carrier.
  • the present invention also provides an anticancer composition comprising the temperature-sensitive DNA nanogel.
  • the present invention also provides a method of treating cancer, comprising administering to a subject in need thereof an effective amount of the temperature-sensitive DNA nanogel.
  • the nanogel of the present invention enables efficient intracellular delivery of a drug by a target component, and exhibits a complex anticancer effect on light induction.
  • FIG. 1 shows a controlled-release schematic diagram of a drug according to the fabrication and structural transformation of the temperature-sensitive DNA nanogel of the present invention.
  • FIG. 3 is a result of the preparation and light sensitivity confirmation of a DNA nanogel composed of a branched unit (BUs) and a photosensitive unit (AUs) of the present invention, (A) three adhesive ends (sticky) binding to AUs using electrophoresis; ends) functionalized BUs production confirmation result, (B) nanogel synthesis confirmation according to the ratio of AUs and BUs using electrophoresis, and (C) AUs-BUs synthesis confirmation and light-responsive decomposition using TEM degradation) is the result of confirmation.
  • A three adhesive ends (sticky) binding to AUs using electrophoresis; ends) functionalized BUs production confirmation result
  • B nanogel synthesis confirmation according to the ratio of AUs and BUs using electrophoresis
  • C AUs-BUs synthesis confirmation and light-responsive decomposition using TEM degradation
  • Figure 4 shows the functional unit characterization results of Dgels, (A) melting curves of BUs-LUs with adjusted length of adhesive ends and (B) circular dichroism of BUs-LUs with 15 bp adhesive ends at various temperatures. Method spectra, (C) flow cytometry analysis of SKOV3 and NIH/3T3 cells treated with DOX-loaded BUs-LU, (D) CLSM images of SKOV3 and NIH/3T3 cells treated with DOX-loaded BUs-LU (scale) bar: 10 ⁇ m).
  • Figure 5 shows the CD spectral results of BUs-LU assembled with adhesive ends of different lengths and incubated at 20, 60 and 90 °C for 15 min.
  • Figure 11 shows the morphology and physicochemical properties of Dgels, (A) absorbance spectra of free AuNPs, BUs-LU and Dgels, (B) SEM images of BUs-LU and Dgels (scale bar: 200 nm), (C) Dgels The particle size and surface charge of , (D) TEM images of Dgels before and after light irradiation (scale bar: 50 nm) are shown.
  • lane 14 is a gel electrophoresis analysis result of Dgel incubated for 30 minutes at each temperature showing the thermal reaction decomposition result of Dgels (lane 1: 25 °C, lane 2: 30 °C, lane 3: 35 °C, lane 4: 40 °C) , lane 5: 45°C, lane 6: 50°C, lane 7: 55°C, lane 8: 60°C).
  • CLSM images (scale bars: 10 ⁇ m) of SKOV3 cells treated with Dgel with or without AS1411 aptamer.
  • Figure 16 shows the potential application of Dgels in cancer treatment,
  • A CLSM images of SKOV3 and NIH/3T3 cells treated with Dgel (scale bar: 10 ⁇ m),
  • the present invention relates to a branched DNA unit, each arm having an adhesive end; a photosensitive unit comprising gold nanoparticles and single-stranded DNA having an adhesive end; and a temperature-sensitive DNA nanogel formed by self-assembly of a linking unit having an adhesive end.
  • the DNA nanogel of the present invention is for targeted delivery and stimulus-responsive release of drugs, and includes a multifunctional branched DNA unit (also referred to as “Branched Unit; BU”) and a photosensitive unit (“Light-sensitive ssDNA-AuNP Unit; AU”).
  • a multifunctional branched DNA unit also referred to as “Branched Unit; BU”
  • a photosensitive unit (“Light-sensitive ssDNA-AuNP Unit; AU”).
  • Linker Unit also referred to as “Linker Unit; LU”
  • LU Linker Unit
  • the units constituting the nanogel can be decomposed to release the loaded drug, and since the nanogel is DNA-based, various combinations of a nucleic acid therapeutic agent and a chemotherapeutic agent can be used as the drug.
  • the nanogel is designed to enable self-assembly through effective hybridization as each DNA unit has a sticky end group of a complementary sequence and to be decomposed when the temperature rises by light irradiation through photosensitive single-stranded DNA.
  • the connection unit is designed so that a nucleic acid drug that can be used as a therapeutic agent can bind, so that the nanogel can deliver various combinations of a nucleic acid drug and a chemotherapeutic agent.
  • the nanogel has the characteristics of being able to control the physicochemical properties by controlling the length of the sequence of the adhesive end and the molar ratio of the nanostructure, and the release of various drug combinations through the stimulus response.
  • DNA unit refers to a nanostructure composed of single-stranded or double-stranded DNA, which is assembled by sequence-specific interaction between complementary nucleic acids.
  • temperature sensitivity means that the structure is switchable and/or its properties are changed according to a specific temperature, and in the present invention, the DNA nanogel is irradiated with light by the elevated temperature. It is characterized in that the nanogel is decomposed.
  • Adhesive ends of complementary sequences are bonded to the ends of single-stranded or double-stranded DNA units constituting the DNA unit, thereby enabling complementary hybridization between DNA units.
  • the length of the adhesive end may consist of a nucleotide sequence of 5 to 30 bp, and when it is out of the above range, nanogel may not be formed or temperature sensitivity may be deteriorated. More specifically, adhesive ends of 10 to 20 bp in length may be used. More specifically, the sequence shown in Table 2 to be described below of about 15 bp may be used.
  • the branched DNA unit serves as the structural framework of the nanogel, and has an adhesive end that can connect between structures through self-assembly, a targeting function to target specific cells, and a low-molecular drug tower through binding to a DNA chain. It can be given multifunctionality such as talent, and can be prepared by hybridization of single-stranded DNA.
  • the branched DNA is designed and synthesized so that each arm of the DNA molecule has complementary adhesive ends. In this case, the branched DNA can adjust the length of the cancer as needed.
  • the branched DNA may be X-type DNA, Y-type DNA or T-type DNA.
  • each single-stranded DNA designated as X1, X2, X3 (including adhesive ends) and X4 (including adhesive ends) for one target is assembled to form an X-type branched form can form DNA.
  • the single-stranded DNA may include an aptamer for targeting.
  • a nucleic acid component for targeting may be bound to the end of each arm of the DNA molecule, and the nucleic acid component may include, for example, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptide (PNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • PNA peptide
  • nucleic acid LNA (morpholino and locked nucleic acid), GNA (glycol nucleic acid), oligonucleotide, plasmid DNA, antisense oligonucleotide, messenger RNA, micro RNA (microRNA), locked nucleic acid, DNA-based enzyme (DNAzyme), small interfering RNA (small interfering RNA), short hairpin RNA, RNA-based enzyme (RNAzyme) and nucleic acid aptamer ) can be used. More specifically, it may be a nucleic acid aptamer.
  • the photosensitive unit is composed of gold nanoparticles and single-stranded DNA bound thereto, and the single-stranded DNA is a polymerized adenosine (polyA) portion that binds to the gold nanoparticles and an adhesive end portion for self-assembly. Consists of.
  • the photosensitive unit serves to increase the temperature in light sensitivity by using the characteristics of the gold nanoparticles. It enables the decomposition of the nanogel through the heat generated by such light irradiation, and single-stranded DNA consisting of an adhesive end and a 5'-polyA tail and a single-stranded DNA consisting of an adhesive end and a 3'-polyA tail.
  • AuNPs gold nanoparticles
  • the polyA tail is strongly adsorbed to the gold surface, and this adsorption is similar to the binding affinity between Au-S.
  • the DNA density on the surface of gold nanoparticles (AuNP) can be controlled by adjusting the length of the polyA tail.
  • a spherical shape having a diameter of 5 to 100 nm or a rod shape having a length of 5 to 70 nm may be used. More specifically, spherical gold nanoparticles having a diameter of about 5 to 13 nm may be used.
  • the linking unit (LU) is a single-stranded DNA or RNA, and has an adhesive end connecting the branched DNA unit and the photosensitive unit, and the middle portion of the structure may contain a nucleic acid drug.
  • 5'-LU and 3'-LU may be prepared for hybridization with 5'-AU and 3'-AU.
  • the nucleic acid drug is DNA (deoxyribonucleic acid), RNA (ribonucleic acid), PNA (peptide nucleic acid), LNA (morpholino and locked nucleic acid), GNA (glycol nucleic acid), oligonucleotide (oliogonucleotide), plasmid DNA (plasmid DNA) ), antisense oligonucleotide, messenger RNA, microRNA, locked nucleic acid, DNA-based enzyme, small interfering RNA, short hairpin It may have a form such as short hairpin RNA (RNA), an RNA-based enzyme (RNAzyme), or a nucleic acid aptamer.
  • the nucleic acid may include a sequence encoding one or more proteins or a non-coding sequence.
  • nucleic acid drug examples include polo-like kinase 1 (PLK1), apoptotic B-cell lymphoma 2 (Bcl-2), brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), neurotrophic factor 3 (NT3), FGF (fibroblast growth factor), TGF (transforming growth factor), PDGF (platelet-derived transforming growth factor), MGF (milk growth factor), EGF (endothelial growth factor), ECDGF (endothelial cell-derived growth factors), NGF ( nerve growth factor), vascular endothelial growth factor (VEGF), 4-1BBR (4-1 BB receptor), TRAIL (TNF-related apoptosis inducing ligand), artemin (GFRalpha3-RET ligand), CXCL13 (B cell-attracting chemokine l ), B lymphocyte chemoattractant (BLC), B cell maturation protein (BCMA), bone-derived growth factor (BDF), megakary
  • the DNA nanogel of the present invention may be loaded with a chemically and pharmaceutical active ingredient.
  • the chemically active pharmaceutical ingredient may be an anticancer agent.
  • Anticancer drugs are drugs that act on various metabolic pathways of cancer cells and exhibit cytotoxic or cytostatic effects on cancer cells. , anticancer antibiotics, hormones, or other drugs.
  • the anticancer agent is oxaliplatin, imatinib, docetaxel, pemetrexed, gefitinib, tegafur, capecitabine, erlotidib, doxyfluridine, paclitaxel, interferon alpha, gemcitabine, fludarabine, irinotecan, carboplatin, cisplatin, taxotere, doxorubicin, epirubicin, 5-fluorouracil, UFT, tamoxifen, goserelin, herceptin, anti-CD20 antibody, leuprolide (Lupron) or flutamide, etc. , but is not limited thereto.
  • the anticancer agent may be loaded onto the nanogel by incubation with the DNA nanogel.
  • the DNA nanogel is synthesized by including the nucleic acid drug in the LU, and the DNA nanogel and the anticancer agent are incubated to simultaneously load the nucleic acid drug and the anticancer agent.
  • the DNA nanogel may first react with BU and LU to assemble a BU-LU complex.
  • the molar ratio of BU and LU may be 2:1 to 1:4.
  • the molar ratio of BU and LU may be 1:2.
  • the gold nanoparticle solution is reacted with a 5'-polyA or 3'-polyA DNA solution to prepare photosensitive AU.
  • nanogels are prepared by mixing the stoichiometric contents of the BU-LU complex, 5'-AU and 3'-AU.
  • the molar ratio of BU:LU:AU may be 1:2:0.25.
  • the nanogel shows spherical nanoparticles, and may have a diameter of approximately 50 nm to 300 nm.
  • the size and shape of the DNA nanogel can be precisely controlled through the molar ratio between nanostructures and the length of the viscous end sequence.
  • the drug loaded on the nanogel is released in a pH- and temperature-dependent manner under conditions of pH 5.0 to 7.4 and 25 to 50 °C. That is, under the above conditions, a high concentration of H+ competes with the cationic drug inserted into the anionic DNA nanostructure to weaken the binding interaction, resulting in drug release.
  • the nucleic acid drug mounted on the linking unit can be released in a temperature-dependent manner by decomposition of the nanogel after light irradiation.
  • the present invention also provides the temperature-sensitive DNA nanogel.
  • a drug delivery system comprising a pharmaceutically acceptable carrier.
  • the temperature-sensitive DNA nanogel of the present invention is manufactured by self-assembly of DNA nanostructures, so that a nucleic acid drug is included in the unit and/or a chemotherapeutic agent such as an anticancer agent is loaded, so that various combinations of a nucleic acid therapeutic agent and a chemotherapeutic agent are used to treat diseases It has the ability to deliver to target cells.
  • the present invention also relates to an anticancer composition comprising the temperature-sensitive DNA nanogel.
  • the DNA nanogel of the present invention contains gold nanoparticles, it can induce the death of cancer cells through heat generated during light irradiation, and thus can be used for photothermal therapy.
  • DNA nanogel of the present invention can be loaded with a nucleic acid drug or a chemical anticancer agent, so that complex cancer treatment is possible through various combinations thereof.
  • nucleic acid drug and the anticancer agent are as described above.
  • composition of the present invention may further include a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers that can be used in the drug delivery system or pharmaceutical composition of the present invention include carriers and vehicles commonly used in the pharmaceutical field, and specifically, ion exchange resins, alumina, aluminum stearate, lecithin, serum proteins (eg , human serum albumin); calcium hydride, sodium chloride and zinc salts), colloidal silica, magnesium trisilicate, polyvinylpyrrolidone, cellulosic matrix, polyethylene glycol, sodium carboxymethylcellulose, polyarylate, wax, polyethylene glycol or wool paper, etc. not limited
  • composition of the present invention may further include a lubricant, a wetting agent, an emulsifier, a suspending agent, or a preservative in addition to the above components.
  • composition of the present invention may be administered orally, rectal, transdermally, intravenously, intramuscularly, intraperitoneally, intramedullary, intrathecally or subcutaneously.
  • Formulations for oral administration may be, but are not limited to, tablets, pills, soft or hard capsules, granules, powders, solutions, or emulsions.
  • Formulations for parenteral administration may be injections, drops, lotions, ointments, gels, creams, suspensions, emulsions, suppositories, patches, or sprays, but is not limited thereto.
  • composition of the present invention may contain additives such as diluents, excipients, lubricants, binders, disintegrants, buffers, dispersants, surfactants, colorants, flavorings or sweeteners, if necessary.
  • additives such as diluents, excipients, lubricants, binders, disintegrants, buffers, dispersants, surfactants, colorants, flavorings or sweeteners, if necessary.
  • the pharmaceutical composition according to one aspect of the present invention may be prepared by a conventional method in the art.
  • the active ingredient of the composition of the present invention will vary depending on the age, sex, weight, pathological condition and severity of the subject to be administered, the route of administration, or the judgment of the prescriber. Determination of the dosage based on these factors is within the level of the skilled artisan, and its daily dose is, for example, from 1 ng/kg/day to 10 mg/kg/day, specifically from 10 ng/kg/day to 1 mg/kg. / day, more specifically 0.1 ⁇ g/kg/day to 100 ⁇ g/kg/day, even more specifically 0.2 ⁇ g/kg/day to 20 ⁇ g/kg/day, but is not limited thereto.
  • the composition of the present invention may be administered 1 to 3 times a day, but is not limited thereto.
  • the present invention also relates to a method of treating cancer comprising administering to a subject in need thereof an effective amount of said temperature-sensitive DNA nanogel.
  • the subject may be a human or non-human animal, for example, a non-human animal such as a cow, a monkey, a bird, a cat, a mouse, a rat, a hamster, a pig, a dog, a rabbit, a sheep, a horse.
  • a non-human animal such as a cow, a monkey, a bird, a cat, a mouse, a rat, a hamster, a pig, a dog, a rabbit, a sheep, a horse.
  • the formulation and administration method of the composition are the same as described above.
  • All DNA oligonucleotides used in the preparation of the temperature-sensitive DNA nanogels of the present invention were purchased from Integrated DNA Technologies (Coralville, Ionia, USA). Lyophilized DNA was resuspended in nuclease-free water and quantified prior to use in experiments.
  • Doxorubicin (DOX) and 5 nm gold nanoparticles (AuNP) were purchased from Sigma Aldrich (St Louis, MO, USA).
  • Magnesium chloride hexahydrate and sodium chloride were purchased from Deoksan Chemical (Ansan, Gyeonggi).
  • Dulbecco's modified Eagle's medium (DMEM), phosphate buffered saline (PBS), fetal bovine serum (FBS) and penicillin-streptomycin solution (P/S) were purchased from Corning, Inc (Armonk, NY, USA).
  • Bovine serum (BCS) and Hoechst-33342 were purchased from Thermo Fisher Scientific (Waltham, MA, USA).
  • MBU multifunctional branched DNA unit
  • 100 ⁇ l of four single-stranded DNAs ssDNA, X1, X2, X3 and X4
  • MgCl 2 50 mM
  • nuclease-free water 50 mM
  • the salt concentration and reaction temperature were optimized for MBU synthesis. using a thermocycler (Bio-Rad Laboratories) [SH Um et al. Nat Protoc 2006, 1, 995] as previously used assembly protocol (Roh et al, 2010, see non-patent literature [6]).
  • the mixed DNA solution was denatured by heating to 95°C, annealed at 65°C, annealed at 60°C, and finally stored at 4°C for subsequent experiments.
  • the synthesized BU and the calculated stoichiometric content of the DNA ligation unit (LU) were mixed in a tube to obtain a final volume of 100 ⁇ l.
  • the LUs solution was heated at 60° C. for 2 min before addition to the solution.
  • the mixed solution was then cooled to 25° C. over 3 hours.
  • the synthesized BUs-LU was stored at 4°C for use in subsequent experiments.
  • DNA was adsorbed to AuNPs in a bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt solution using a modified polyA sequence with adhesive ends [H Pei et al. J Am Chem Soc 2012, 134, 11876]. Adhesive ends were integrated into the 5'- or 3'-ends of the polyA sequence to synthesize 5'-polyA and 3'-polyA strands, respectively.
  • AuNP solution (20 ⁇ L, 94 ⁇ M) was added to 5'-polyA or 3'-polyA DNA solution (480 ⁇ L, 2 ⁇ M) and without light exposure at 25 °C for 16 h. incubated. Then sodium chloride solution (10 ⁇ l, 5 M) was added to give a final concentration of 100 nM; Additional incubation was then followed for 48 hours. After incubation, sodium chloride solution was added back to the solution to a final concentration of 2M. The final solution was centrifuged at 16,000xg for 5 minutes and the pellet was washed twice with nuclease-free water to remove unreacted free DNA and AuNPs.
  • Dgels temperature-sensitive DNA-AuNP nanogels
  • MBU, 5'-AU, 3'-AU and LU synthesized in advance were mixed in a tube to obtain a final volume of 100 ⁇ l.
  • the LU solution was heated at 60° C. for 2 minutes prior to addition to the mixture.
  • the mixed solution was cooled to room temperature over 3 hours.
  • the synthesized Dgels were stored at 4°C for subsequent experiments.
  • the polyA sequence adsorbed to the surface of AuNPs was quantified by dissociation-based fluorescence analysis using a multiplate reader (Victor X5, Perkin Elmer, Waltham, MA, USA).
  • the polyA sequence adsorbed to AU was dissociated from AuNPs by adding KCN solution (1M) to obtain a final concentration of 20 mM. Then, SYBR Green I fluorescent dye for DNA was added to the solution to quantify the free polyA sequence released from the AU. Standard curves were obtained by plotting the fluorescence of free DNA in nuclease-free water at concentrations of 50, 25, 125, 625 and 313 nM.
  • High-resolution digital images of BUs-LU and Dgel were obtained for morphological characterization in a field emission scanning electron microscope (SEM; JEOL-7610F; JEOL, Tokyo, Japan).
  • SEM field emission scanning electron microscope
  • a drop (10 ⁇ l) of the sample solution was placed on a silicon wafer and air-dried at room temperature. Then, the surface of the nanogel was irradiated at a voltage of 5 kV.
  • High-resolution images of Dgels were obtained for morphological characterization at an accelerating voltage of 200 kV in a transmission electron microscope (TEM; JEM-F200; JEOL).
  • TEM transmission electron microscope
  • Dgel samples were diluted 10-fold and droplets (10 ⁇ l) of the diluted samples were air-dried at room temperature on a carbon/formbar coated TEM grid (200 mesh; Electron Microscopy Sciences, Hatfield, PA, USA).
  • the size distribution and zeta ( ⁇ ) potential of BUs-LU and Dgels were measured at 25°C using a particle size and ⁇ -potential analyzer (ELS-2000ZS; Otsuka Electronics Co, Osaka, Japan). For measurement, all nanogel samples were dispersed in nuclease-free water. Data were recorded in triplicate to obtain mean ⁇ SD values.
  • the melting temperature (Tm) of BUs-LU was determined by fluorescence analysis using SYBR Green I dye.
  • SYBR Green I dye 05 ⁇ l, 50x
  • BUs-LU solution 50 ⁇ l, 5 ⁇ M
  • the fluorescence signal was measured from 10°C to 95°C in 0.5°C increments through a real-time PCR detection system (CFX96; Bio-Rad Laboratories Inc, Hercules, CA, USA).
  • the Tm of BUs-LU was determined using the 50% decrease in fluorescence intensity in the graph.
  • the SYBR Green I dye used in this experiment was inserted together with base pairs in the hybridized region of double-stranded DNA. A decrease in fluorescence intensity indicates separation of double-stranded DNA hybridized to ssDNA.
  • BUs-LUs solutions 200 ⁇ L, 8 ⁇ M with various adhesive end lengths were prepared using circular dichroism (J-815; JASCO, Mary's Court Easton, MD, USA) analyzed. Structural changes of BUs-LU incubated at 20, 60, and 90 °C for 10 minutes were observed.
  • an illumination lamp with a wavelength of 365 nm Innocure 5000, Richchen, Gyeonggi-do, Korea
  • a thermal observation device CompactXR; Seek Thermal Inc, CA, USA
  • the temperature of the Dgel solution was measured in real time using a thermal observation device and a thermometer after light irradiation for 0-4 minutes.
  • DOX 5 ⁇ M
  • Sigma Aldrich Sigma Aldrich
  • SKOV3 ovarian cancer cells (Cell Biolabs Inc, San Diego, CA, USA) were cultured at 37° C. in a humidified atmosphere containing 5% CO 2 in DMEM containing 10% FBS and 1% P/S.
  • NIH/3T3 fibroblasts (Korean Cell Line Bank, Seoul, Korea) were cultured at 37° C. under a similar atmosphere in DMEM containing 10% BCS and 1% P/S.
  • SKOV3 and NIH/3T3 cells used in this experiment were plated on T-flasks and cultured to 80% confluency before use.
  • SKOV3 and NIH/3T3 cells (8 ⁇ 10 4 cells per well) were seeded in 6-well plates and incubated at 37°C for 24 hours. Then, the culture medium was removed and the cells were treated with DOX-labeled BU or BUs-LU (300 ⁇ l, 100 nM) in serum-free medium for 3 hours. Cells were then treated with diluted trypsin-EDTA (300 ⁇ l, 0.25 ⁇ ) for 2 min. Finally, cell solutions were collected in tubes for flow cytometry using LSRII (Becton Dickinson, Franklin Lakes, NJ, USA).
  • SKOV3 and NIH/3T3 cells (8 ⁇ 10 4 cells per well) were seeded on cell culture slides and incubated at 37° C. for 24 h for measurement by confocal laser scanning microscopy.
  • the culture medium was then removed and the cells were treated with DOX-loaded BU, BUs-LU or Dgel (300 ⁇ l, 100 nM) in serum-free medium for 2 hours. Thereafter, the cells were washed with PBS and fixed with 4% formaldehyde at room temperature for 15 minutes. Then, the cells were washed with PBS and the cell nuclei were stained with Hoechst-33342 at room temperature for 15 minutes. Finally, cells were washed twice with PBS, mounted and scanned (LSM 700; Carl Zeiss, Thornwood, NY, USA).
  • SKOV3 cells (6 ⁇ 10 3 cells per well) were seeded into each well of a 96-well plate and incubated at 37°C for 24 h. Cells were sequentially treated with Dgel or Dgel/DOX at different AS-ODN concentrations (400, 200, 100 and 50 nM) in serum-free medium for 3 hours upon light irradiation. Cells were then washed with PBS and further incubated for 48 hours in fresh medium containing 10% FBS. Then, MTT solution and DMSO were added according to the manufacturer's instructions.
  • Dgels smart DNA nanogels
  • Dgels were composed of three types of functionalized DNA nanostructures: a multifunctional branched DNA unit (BU), a photosensitive single-stranded DNA (ssDNA)-AuNP unit (AU), and an ssDNA linker unit (LU). .
  • BU multifunctional branched DNA unit
  • ssDNA photosensitive single-stranded DNA
  • AU photosensitive single-stranded DNA
  • LU ssDNA linker unit
  • branched X-type DNA (X-DNA) nanostructures served as structural backbones for decoration with functional moieties.
  • AuNPs adsorbed with oligonucleotides were adopted to enable temperature rise by light irradiation.
  • the linking unit is designed to incorporate a therapeutic oligonucleotide and sequence-dependently programmed degradation. Morphological and physicochemical analyzes of self-assembled Dgels were performed to demonstrate successful synthesis and controllable thermal reactivity. Thereafter, intracellular delivery of Dgels for co-deli
  • This Dgel has the following characteristics. 1) With regard to structural tunability, the nanogel precisely controlled physicochemical properties by adjusting the length of the sequence at the adhesive end and the molar ratio of the nanostructure. 2) Combination therapeutics including nucleic acid drugs were adopted for stimuli-responsive drug release through dual triggers for application in cancer treatment.
  • BU was assembled into four ssDNA oligonucleotide sequences through complementary hybridization, and the ends of the X-shaped branches of BU were anisotropically functionalized with nucleic acid aptamers for cancer-specific targeting and adhesive ends for supramolecular assembly (Table 1). .
  • the programmed BU assembly was confirmed through DNA band shift during gel electrophoresis (Fig. 2A).
  • the BU band (lane 5) migrated slower than the ssDNA band (lane 2) and other partially hybridized units (lanes 3 and 4), demonstrating successful assembly of the designed complementary sequence in high yield.
  • AU was fabricated through sequence-specific adsorption of a polyA tail with an integrated adhesive end to AuNPs for light-induced temperature increase and degradation of Dgel.
  • PolyA was strongly adsorbed on the Au surface, and the adsorption potential was similar to the Au–S binding affinity.
  • the DNA density on the surface of AuNPs can be controlled simply by adjusting the length of the polyA tail. Since the smaller size AuNPs are less toxic, 5 nm AuNPs were adopted for AU assembly. 5'- and 3'-AU were prepared for hybridization to 5' and 3' LU adhesive ends, respectively. Successful AU synthesis was confirmed through gel electrophoresis (Fig. 2B).
  • 3A is an electrophoresis result of synthesizing BUs that directly binds to AUs to synthesize a DNA nanogel composed of AUs and BUs without a linking unit.
  • BUs with one aptamer sequence and three adhesive ends capable of binding to AUs were synthesized using four single-stranded DNAs.
  • nanogels were synthesized using the corresponding BUs by complementary bonding with AUs, nanogels were gradually formed as the ratio of AUs to BUs increased, and was best formed at a ratio of 1.6:1 (FIG. 3B).
  • FIG. 3C When the temperature sensitivity of the formed nanogel was confirmed with a transmission electron microscope, it was confirmed that the formed nanogel was decomposed to a single particle level after light irradiation
  • the LU constructed ssDNA containing adhesive ends and nucleic acid therapeutic regions.
  • the lengths of the adhesive ends connecting different nanostructures to form a complete Dgel were designed to be 10, 15 and 20 bp for precise control of thermal reactivity (Table 2).
  • These three types of nanostructures are assembled in a sequence-specific manner to form multifunctional DNA nanogels.
  • BU and AU promoted aptamer-based cell targeting and light-induced temperature increase through photothermal effects.
  • LU is connected between BU and AU with adhesive ends, facilitating controllable degradation of nanogels through temperature rise. After forming a supramolecular structure through self-assembly, the function of each nanostructure was confirmed.
  • the thermally reactive decomposition of the supramolecular structure was analyzed according to the length of the adhesive end of the LU.
  • the melting curve of hybridized BUs-LU (ratio 1:2) was analyzed via real-time PCR (Fig. 4A).
  • the melting temperatures (Tm) of hybridized BUs-LUs using nanostructures with adhesive end lengths of 10, 15, and 20 bp were 45.0 ⁇ 0.3, 54.2 ⁇ 1.1 and 58.2 ⁇ 0.9 °C, respectively.
  • Circular dichroism (CD) of BUs-LU with 15 bp adhesive ends showed that the ellipticity of the spectrum decreased with increasing temperature, showing a structural change in supramolecular assembly (Fig. 4B and Fig. 5).
  • BUs-LUs with adhesive ends of 10 bp showed a faster decrease in ellipticity, whereas BUs-LUs with adhesive ends of 20 bp were relatively resistant to heat, resulting in ellipticity only at 90 °C. rate change was observed.
  • BU is expected to remain partially hybridized, preventing a decrease in ellipticity similar to that of the ssDNA control.
  • BU was decorated with an AS1411 aptamer that selectively binds to cancer cells overexpressing nucleolins.
  • AS1411 aptamer that selectively binds to cancer cells overexpressing nucleolins.
  • target site expression levels were confirmed by flow cytometry using FAM-labeled AS1411 aptamer (FIG. 6).
  • SKOV3 cells showed significant changes in FAM fluorescence compared to NIH/3T3 cells, indicating nucleolin upregulation.
  • Aptamer-mediated delivery of the BUs-LUs complex was analyzed using confocal laser scanning microscopy (CLSM) and flow cytometry after loading with doxorubicin (DOX), a representative anticancer agent inserted into the DNA duplex.
  • CLSM confocal laser scanning microscopy
  • DOX doxorubicin
  • Dgel was synthesized by adding AU to the BUs-LU complex at a fixed ratio (BU:LU:AU molar ratio 1:2:0.25).
  • the Dgel absorption spectrum showed that the plasmon resonance peak shifted to a longer wavelength compared to that of AuNPs alone (Fig. 11A).
  • SEM images showed monodisperse and spherical Dgel morphology (Fig. 11B).
  • the average Dgel size was 206.2 ⁇ 58.6 nm, which was similar to that of BUs-LUs synthesized with the same BUs:LUs ratio (Fig. 11C).
  • the zeta ( ⁇ ) potential of Dgels (-17.9 ⁇ 0.7 mV) was slightly higher than that of BUs-LU (-11.5 ⁇ 0.2 mV) due to the addition of negatively charged ssDNA-AuNPs (AU). These results show that the physicochemical properties of Dgel did not change significantly when AU was added by successfully integrating AU into Dgel through sequence-assisted self-assembly.
  • Dgels are designed to be dissociated by a light trigger.
  • the AuNPs contained in the Dgels were heated through the photothermal effect. The generated heat was then transferred to adjacent DNA nanostructures. When the temperature reaches a specified threshold, the complementary linkage is disrupted and supramolecular assembly ceases.
  • the photothermal properties of the Dgel were monitored using a thermal observation device and a thermometer (FIG. 12). After 2 minutes of light irradiation, the temperature of the Dgel solution increased by 12°C.
  • the AuNP distribution of the Dgels was monitored via transmission electron microscopy (TEM) to confirm the light-induced degradation of the Dgels (Fig. 11D).
  • AS-ODN antisense oligonucleotides
  • DOX chemical drugs
  • the loading efficiency of DOX was 89.4%.
  • the amount of DOX in Dgels was quantified as 12.5 equivalents per AS-ODN in Dgels. Stimuli-responsive release of drug loaded in Dgels at different pH and temperature was confirmed by monitoring the amount of released DOX.
  • the DOX release behavior of Dgel / DOX in the endosomal environment was evaluated under various pH conditions (5.0, 6.0 and 7.4) (FIG. 13A). Cumulative DOX release from Dgels increased in a pH-dependent manner: 32.3, 38.7 and 41.1% at pH 7.4, 6.0 and 5.0, respectively, within 4 h. High concentrations of H+ compete with cationic DOX incorporated into anionic DNA nanostructures, weakening binding interactions and leading to DOX release.
  • Dgels Potential drug delivery applications were determined by validating the intracellular delivery, anticancer drug efficacy, and cell viability of Dgels.
  • SKOV3 cells were treated with Dgel and cultured for an additional 6 hours, and the internalized Dgel was subjected to differential interference contrast (DIC). visualized. Dgels with aptamer function were observed in SKOV3 cells, whereas Dgels without aptamer were hardly observed in SKOV3 cells (FIG. 15).
  • Dgels did not deliver to NIH/3T3 cells, indicating selective delivery to cancer cells ( FIG. 16A ).
  • pH-induced formation of AU clusters inside the cells was observed.
  • PolyA sequence integrated into AU causes the formation of a pH-dependent AU cluster by forming a parallel duplex in the acidic environment of endosomes, which is expected to induce endosomal escape by gradual AU cluster growth.
  • AU clustering was not observed immediately after treatment of SKOV3 cells with Dgel, and clusters were gradually formed after 3 hours of incubation, and mostly disappeared after 48 hours.
  • clusters were hardly formed in NIH/3T3 cells or SKOV3 cells when Dgel was treated without an aptamer even after 6 hours of incubation ( FIG. 17 ).
  • the present invention provides an intelligent DNA-based nanogel formed from functionalized nanostructures.
  • this platform can selectively deliver drugs to target cancer cells and precisely control the release of loaded drugs through temperature-induced degradation.
  • the use of this DNA nanogel platform therefore offers a promising strategy for precision medicine and cancer treatment by employing diverse combinations of nucleic acid and chemotherapeutic agents.
  • the present invention can be applied to the field of drug delivery or anticancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a thermo-responsive DNA nanogel and a pharmaceutical use thereof. The nanogel of the present invention enables cancer-specific intracellular delivery and treatment by a targeting and/or therapeutic nucleic acid component, and can exhibit an effective anticancer effect when photothermal therapy is used, and thus can be used as a targeted carrier for combined cancer treatment.

Description

온도 감응성 DNA 나노젤 및 이의 약제학적 용도Temperature Sensitive DNA Nanogels and Pharmaceutical Uses Thereof
본 발명은 온도 감응성 DNA 나노젤 및 이의 약제학적 용도에 관한 것이다.The present invention relates to temperature-sensitive DNA nanogels and pharmaceutical uses thereof.
생체재료인 DNA하이드로젤은 높은 생체 적합성 및 생분해성 등으로 생체의학 분야에서 주목받고 있는 소재이다. 또한 DNA는 순수한 DNA 또는 유기/무기 소재와 결합되어 다기능화, 분자 인식 능력을 통한 자가조립, 나노 수준에서의 크기 및 모양의 조절성 등을 바탕으로 약물 전달체로 응용하는 연구가 활발히 진행되고 있다. 특히 DNA 나노구조체로 이루어진 자극 감응성 나노젤은 염기 서열 특이적 성질을 이용하여 DNA의 용해, 분리, 분열 및 재구성 등의 구조적 전환이 가능하며 이를 통해 탑재된 약물의 방출을 유도한다. 이러한 자극 감응성 DNA 나노젤은 생물학적 장벽을 우회하고, 높은 약물 생체 이용률을 제공하고, 제어 가능한 약물 방출을 통해 부작용을 줄이는 등 다양한 장점이 존재한다. 현재까지 환원제(GSH)-반응성, 열 감응성, pH 감응성 등 다양한 형태의 자극 감응성 나노젤이 보고되어 있으나, 보다 효과적으로 복합 항암약물(combinational anticancer drugs)을 전달할 수 있는 플랫폼의 개발은 미비한 실정이다.DNA hydrogel, a biomaterial, is a material attracting attention in the biomedical field due to its high biocompatibility and biodegradability. In addition, DNA is combined with pure DNA or organic/inorganic materials, and research is being actively conducted to apply it as a drug carrier based on multifunctionality, self-assembly through molecular recognition ability, and control of size and shape at the nano level. In particular, stimuli-sensitive nanogels made of DNA nanostructures can undergo structural transformations such as dissolution, separation, division and reconstitution of DNA using nucleotide sequence-specific properties, thereby inducing the release of loaded drugs. These stimuli-sensitive DNA nanogels have various advantages, such as bypassing biological barriers, providing high drug bioavailability, and reducing side effects through controllable drug release. To date, various types of stimulus-sensitive nanogels such as reducing agent (GSH)-reactivity, heat sensitivity, and pH sensitivity have been reported, but development of a platform capable of more effectively delivering combination anticancer drugs is insufficient.
본 발명의 목적은 핵산을 포함한 복합 치료제의 표적 전달을 위한 온도 감응성 DNA 나노젤을 제공하는 것이다.It is an object of the present invention to provide a temperature-sensitive DNA nanogel for targeted delivery of a complex therapeutic agent including a nucleic acid.
본 발명의 다른 목적은 상기 온도 감응성 DNA 나노젤의 약물전달체 또는 항암용 조성물의 약제학적 용도를 제공하는 것이다. Another object of the present invention is to provide a pharmaceutical use of the temperature-sensitive DNA nanogel as a drug delivery system or composition for anticancer.
상기 목적을 달성하기 위해, 본 발명은 각각의 암(arm)이 접착성 말단을 갖는 분지형 DNA 유닛; 금나노입자 및 접착성 말단을 갖는 단일가닥 DNA를 포함하는 감광성 유닛; 및 접착성 말단을 갖는 연결 유닛의 자가조립에 의해 형성된 온도 감응성 DNA 나노젤을 제공한다.In order to achieve the above object, the present invention provides a branched DNA unit in which each arm has an adhesive end; a photosensitive unit comprising gold nanoparticles and single-stranded DNA having an adhesive end; And it provides a temperature-sensitive DNA nanogel formed by self-assembly of a linking unit having an adhesive end.
본 발명은 또한 상기 온도 감응성 DNA 나노젤; 및 약제학적으로 허용 가능한 담체를 포함하는 약물전달체를 제공한다.The present invention also the temperature-sensitive DNA nanogel; And it provides a drug delivery system comprising a pharmaceutically acceptable carrier.
본 발명은 또한 상기 온도 감응성 DNA 나노젤을 포함하는 항암 용 조성물을 제공한다.The present invention also provides an anticancer composition comprising the temperature-sensitive DNA nanogel.
본 발명은 또한 유효량의 상기 온도 감응성 DNA 나노젤을 이를 필요로 하는 대상체에게 투여하는 단계를 포함하는 암의 치료 방법을 제공한다.The present invention also provides a method of treating cancer, comprising administering to a subject in need thereof an effective amount of the temperature-sensitive DNA nanogel.
본 발명의 나노젤은 표적 성분에 의해 약물의 효율적인 세포내 전달이 가능하고, 광 유발에 대한 복합적인 항암 효과를 나타낸다.The nanogel of the present invention enables efficient intracellular delivery of a drug by a target component, and exhibits a complex anticancer effect on light induction.
도 1은 본 발명의 온도 감응성 DNA 나노젤의 제작 및 구조적 전환에 따른 약물 제어-방출 모식도를 나타낸다.1 shows a controlled-release schematic diagram of a drug according to the fabrication and structural transformation of the temperature-sensitive DNA nanogel of the present invention.
도 2는 본 발명의 DNA 나노구조체의 합성을 확인한 결과로, (A) 젤 전기영동을 통해 밝혀진 BUs의 순차 합성 결과(레인 1: DNA 래더; 레인 2: X1; 레인 3: X1 + X2; 레인 4: X1 + X2 + X3; 및 레인 5: BUs), (B) AU 준비의 젤 전기영동 분석 결과(레인 1: 유리 AuNP; 레인 2: 5'-AU; 및 레인 3: 3'-AU), (C) 해리 기반 형광 분석을 사용하여 정량화된 AuNP에 흡착된 올리고뉴클레오티드의 표면 밀도 결과를 나타낸다. 오차 막대는 3회 측정(n = 3)의 표준 편차를 나타낸다.2 is a result of confirming the synthesis of the DNA nanostructure of the present invention, (A) the sequential synthesis result of BUs revealed through gel electrophoresis (lane 1: DNA ladder; lane 2: X1; lane 3: X1 + X2; lane 4: X1 + X2 + X3; and lane 5: BUs), (B) gel electrophoresis analysis of AU preparation (lane 1: free AuNP; lane 2: 5'-AU; and lane 3: 3'-AU) , (C) Shows the surface density results of oligonucleotides adsorbed to AuNPs quantified using dissociation-based fluorescence analysis. Error bars represent standard deviation of three measurements (n = 3).
도 3은 본 발명의 분지형 유닛(BUs)와 감광성 유닛(AUs)으로 이루어진 DNA 나노젤의 제조 및 빛 감응성 확인 결과로, (A) 전기영동을 이용한 AUs와 결합하는 3개의 접착성 말단(sticky ends)으로 기능화된 BUs 제작 확인 결과, (B) 전기영동을 이용한 AUs와 BUs의 비율에 따른 나노젤 합성 확인 결과, 및 (C) TEM을 이용한 AUs-BUs 합성 확인 및 빛 감응성 분해(light-responsive degradation) 확인 결과를 나타낸 것이다.3 is a result of the preparation and light sensitivity confirmation of a DNA nanogel composed of a branched unit (BUs) and a photosensitive unit (AUs) of the present invention, (A) three adhesive ends (sticky) binding to AUs using electrophoresis; ends) functionalized BUs production confirmation result, (B) nanogel synthesis confirmation according to the ratio of AUs and BUs using electrophoresis, and (C) AUs-BUs synthesis confirmation and light-responsive decomposition using TEM degradation) is the result of confirmation.
도 4는 Dgels의 기능 유닛 특성규명 결과로, (A) 접착성 말단의 조정된 길이를 가진 BUs-LU의 용융 곡선 및 (B) 다양한 온도에서 15bp 접착성 말단이 있는 BUs-LU의 원편광 이색법 스펙트럼, (C) DOX-로딩된 BUs-LU로 처리된 SKOV3 및 NIH/3T3 세포의 유세포 분석, (D) DOX-로딩된 BUs-LU로 처리된 SKOV3 및 NIH/3T3 세포의 CLSM 이미지(스케일 바: 10 ㎛)를 나타낸다. Figure 4 shows the functional unit characterization results of Dgels, (A) melting curves of BUs-LUs with adjusted length of adhesive ends and (B) circular dichroism of BUs-LUs with 15 bp adhesive ends at various temperatures. Method spectra, (C) flow cytometry analysis of SKOV3 and NIH/3T3 cells treated with DOX-loaded BUs-LU, (D) CLSM images of SKOV3 and NIH/3T3 cells treated with DOX-loaded BUs-LU (scale) bar: 10 μm).
도 5는 서로 다른 길이의 접착성 말단으로 조립되고 20, 60 및 90℃에서 15분 동안 배양된 BUs-LU의 CD 스펙트럼 결과를 나타낸다. Figure 5 shows the CD spectral results of BUs-LU assembled with adhesive ends of different lengths and incubated at 20, 60 and 90 °C for 15 min.
도 6은 뉴클레올린 발현 수준의 검증을 위한 Apt-FAM 처리된 NIH/3T3 및 SKOV-3의 유세포 분석 결과를 나타낸다. 6 shows the results of flow cytometry analysis of Apt-FAM-treated NIH/3T3 and SKOV-3 for verification of nucleolin expression levels.
도 7은 다양한 기간 동안 DOX가 로딩된 BUs-LU로 처리된 SKOV3 세포의 CLSM 이미지(스케일 바: 10㎛)를 나타낸다.7 shows CLSM images (scale bar: 10 μm) of SKOV3 cells treated with DOX-loaded BUs-LU for various time periods.
도 8은 비율이 다른 BUs-LU의 크기 분포 분석 결과를 나타낸다. 오차 막대는 3회 측정(n = 3)의 표준 편차를 나타낸다. 8 shows the results of size distribution analysis of BUs-LUs having different ratios. Error bars represent standard deviation of three measurements (n = 3).
도 9는 다른 비율로 합성된 BUs-LU의 SEM 이미지(스케일 바: 500nm)를 나타낸다. 9 shows SEM images (scale bar: 500 nm) of BUs-LU synthesized at different ratios.
도 10은 젤 전기영동을 통해 밝혀진 BUs-LU의 순차적 합성 결과를 나타낸다(레인 1: DNA 래더; 레인 2: BU; 레인 3: LU; 레인 4: BUs-LU). 10 shows the results of sequential synthesis of BUs-LU revealed through gel electrophoresis (lane 1: DNA ladder; lane 2: BU; lane 3: LU; lane 4: BUs-LU).
도 11은 Dgels의 형태 및 물리화학적 특성으로서, (A) 유리 AuNP, BUs-LU 및 Dgels의 흡광도 스펙트럼, (B) BUs-LU 및 Dgels의 SEM 이미지(스케일 바: 200 nm), (C) Dgels의 입자 크기 및 표면 전하, (D) 광 조사 전후의 Dgels의 TEM 이미지(스케일 바: 50 nm)를 나타낸다.Figure 11 shows the morphology and physicochemical properties of Dgels, (A) absorbance spectra of free AuNPs, BUs-LU and Dgels, (B) SEM images of BUs-LU and Dgels (scale bar: 200 nm), (C) Dgels The particle size and surface charge of , (D) TEM images of Dgels before and after light irradiation (scale bar: 50 nm) are shown.
도 12는 광 조사 후 Dgel 용액의 온도 변화 열 관찰 장치의 이미지(위)와 온도계 측정(아래)은 광에 의한 온도 상승을 나타낸다.12 is an image (top) and thermometer measurement (bottom) of a thermal observation device for temperature change of a Dgel solution after light irradiation, showing the temperature rise due to light.
도 13은 (A) pH 및 (B) Dgels 오차 막대의 온도 반응성 DOX 방출 결과를 나타낸다. 프로파일은 3회 측정(n = 3)의 표준 편차를 나타낸다. 13 shows the temperature-responsive DOX release results of (A) pH and (B) Dgels error bars. Profiles represent the standard deviation of three measurements (n = 3).
도 14는 Dgels의 열 반응 분해 결과를 나타내는 각 온도에서 30분간 배양된 Dgel의 젤 전기영동 분석 결과이다(레인 1: 25℃, 레인 2: 30℃, 레인 3: 35℃, 레인 4: 40℃, 레인 5: 45℃, 레인 6: 50℃, 레인 7: 55℃, 레인 8: 60℃).14 is a gel electrophoresis analysis result of Dgel incubated for 30 minutes at each temperature showing the thermal reaction decomposition result of Dgels (lane 1: 25 °C, lane 2: 30 °C, lane 3: 35 °C, lane 4: 40 °C) , lane 5: 45°C, lane 6: 50°C, lane 7: 55°C, lane 8: 60°C).
도 15는 AS1411 압타머가 있거나 없는 Dgel로 처리된 SKOV3 세포의 CLSM 이미지(축척 막대: 10㎛)를 나타낸다. 15 shows CLSM images (scale bars: 10 μm) of SKOV3 cells treated with Dgel with or without AS1411 aptamer.
도 16은 암 치료에서 Dgels의 잠재적 적용을 나타낸 것으로, (A) Dgel로 처리된 SKOV3 및 NIH/3T3 세포의 CLSM 이미지(스케일 바: 10 ㎛), (B) MTT 분석을 사용하여 분석한 광 조사 없이 Dgel의 존재에서 세포 생존 결과이다. 데이터는 평균±SD 값으로 표시된다(n = 3).Figure 16 shows the potential application of Dgels in cancer treatment, (A) CLSM images of SKOV3 and NIH/3T3 cells treated with Dgel (scale bar: 10 μm), (B) light irradiation analyzed using MTT assay. Cell viability results in the absence and presence of Dgel. Data are presented as mean±SD values (n = 3).
도 17은 SKOV3 세포에서 시간에 따른 AuNP 제거 분석을 위한 CLSM 이미지(스케일 바: 10 ㎛)를 나타낸다. 17 shows CLSM images (scale bar: 10 μm) for AuNP removal analysis over time in SKOV3 cells.
도 18은 MTT 분석을 통해 분석한 광 조사 2분 후 Bcl-2 AS-ODN 로딩 Dgel로 처리한 SKOV3 세포의 상대적 세포 생존율을 나타낸다. 오차 막대는 3회 측정(n = 3)의 표준 편차를 나타낸다.18 shows the relative cell viability of SKOV3 cells treated with Bcl-2 AS-ODN-loaded Dgel after 2 minutes of light irradiation analyzed by MTT analysis. Error bars represent standard deviation of three measurements (n = 3).
이하, 본 발명의 구성을 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in detail.
본 발명은 각각의 암(arm)이 접착성 말단을 갖는 분지형 DNA 유닛; 금나노입자 및 접착성 말단을 갖는 단일가닥 DNA를 포함하는 감광성 유닛; 및 접착성 말단을 갖는 연결 유닛의 자가조립에 의해 형성된 온도 감응성 DNA 나노젤에 관한 것이다.The present invention relates to a branched DNA unit, each arm having an adhesive end; a photosensitive unit comprising gold nanoparticles and single-stranded DNA having an adhesive end; and a temperature-sensitive DNA nanogel formed by self-assembly of a linking unit having an adhesive end.
본 발명의 DNA 나노젤은 표적 전달 및 약물의 자극 반응성 방출을 위한 것으로, 다기능성 분지형 DNA 유닛("Branched Unit; BU"라고도 함), 감광성 유닛("Light-sensitive ssDNA-AuNP Unit; AU"라고도 함) 및 연결 유닛("Linker Unit; LU"라고도 함)의 DNA 기반 나노구조체들의 자가조립을 통해 형성되며, 표적 세포에 약물을 선택적으로 전달하고, 감광성 유닛을 포함하고 있어서 광 조사 시 온도 상승을 통해 상기 나노젤을 구성하는 유닛들이 분해되어 로딩된 약물을 방출할 수 있고, 상기 나노젤이 DNA 기반이므로 상기 약물로 핵산 치료제와 화학 치료제의 다양한 조합을 사용할 수 있는 특징이 있다. The DNA nanogel of the present invention is for targeted delivery and stimulus-responsive release of drugs, and includes a multifunctional branched DNA unit (also referred to as “Branched Unit; BU”) and a photosensitive unit (“Light-sensitive ssDNA-AuNP Unit; AU”). It is formed through self-assembly of DNA-based nanostructures of a linking unit (also referred to as “Linker Unit; LU”) and selectively delivers a drug to a target cell, and contains a photosensitive unit to increase the temperature when irradiated with light Through this, the units constituting the nanogel can be decomposed to release the loaded drug, and since the nanogel is DNA-based, various combinations of a nucleic acid therapeutic agent and a chemotherapeutic agent can be used as the drug.
상기 나노젤은 각 DNA 유닛들이 상보적 서열의 접착성(sticky) 말단기를 가지고 있어 효과적인 혼성화를 통한 자가조립이 가능하고 감광성 단일가닥 DNA를 통해 광 조사에 의한 온도 상승 시 분해가 가능하도록 설계되며, 연결 유닛은 치료제로 사용할 수 있는 핵산 약물이 결합할 수 있도록 설계되어 나노젤이 핵산 약물과 화학 치료제의 다양한 조합을 전달할 수 있도록 하는 것을 특징으로 한다. 또한, 상기 나노젤은 접착성 말단의 서열 길이 및 나노구조체의 몰비 조절을 통해 물리화학적 특성을 제어할 수 있고, 자극 반응을 통해 다양한 약물 조합의 방출이 가능한 특징을 갖는다.The nanogel is designed to enable self-assembly through effective hybridization as each DNA unit has a sticky end group of a complementary sequence and to be decomposed when the temperature rises by light irradiation through photosensitive single-stranded DNA. , the connection unit is designed so that a nucleic acid drug that can be used as a therapeutic agent can bind, so that the nanogel can deliver various combinations of a nucleic acid drug and a chemotherapeutic agent. In addition, the nanogel has the characteristics of being able to control the physicochemical properties by controlling the length of the sequence of the adhesive end and the molar ratio of the nanostructure, and the release of various drug combinations through the stimulus response.
본 발명에서 언급된 용어 "DNA 유닛"은 단일가닥 또는 이중가닥 DNA로 이루어진 나노구조체로, 상보적인 핵산끼리 서열 특이적인 상호작용을 함으로써 조립된 나노구조체를 의미한다.As used herein, the term “DNA unit” refers to a nanostructure composed of single-stranded or double-stranded DNA, which is assembled by sequence-specific interaction between complementary nucleic acids.
본 발명에서 언급된 용어 “온도 감응성”이라 함은 특정 온도에 따라서 구조 전환(structure switchable) 및/또는 그 성질이 바뀌는 것을 의미하며, 본 발명에서는 DNA 나노젤에 광을 조사하여 상승된 온도에 의해 나노젤이 분해되는 것을 특징으로 한다. The term “temperature sensitivity” as used in the present invention means that the structure is switchable and/or its properties are changed according to a specific temperature, and in the present invention, the DNA nanogel is irradiated with light by the elevated temperature. It is characterized in that the nanogel is decomposed.
상기 DNA 유닛을 구성하는 단일가닥 또는 이중가닥의 말단에는 상보적 서열의 접착성 말단이 결합되어 DNA 유닛 간의 상보적 혼성화가 가능하다. 상기 접착성 말단의 길이는 5 내지 30 bp의 염기 서열로 이루어질 수 있으며, 상기 범위를 벗어날 경우, 나노젤이 형성되지 않거나, 온도 감응성이 떨어 질 수 있다. 더 구체적으로, 10 내지 20 bp 길이의 접착성 말단을 사용할 수 있다. 보다 더 구체적으로, 약 15 bp의 후술하는 표 2에 기재된 서열을 사용할 수 있다.Adhesive ends of complementary sequences are bonded to the ends of single-stranded or double-stranded DNA units constituting the DNA unit, thereby enabling complementary hybridization between DNA units. The length of the adhesive end may consist of a nucleotide sequence of 5 to 30 bp, and when it is out of the above range, nanogel may not be formed or temperature sensitivity may be deteriorated. More specifically, adhesive ends of 10 to 20 bp in length may be used. More specifically, the sequence shown in Table 2 to be described below of about 15 bp may be used.
상기 분지형 DNA 유닛(BU)은 나노젤의 구조적인 뼈대 역할을 하며, 자가조립을 통해 구조체 간 연결할 수 있는 접착성 말단, 특정 세포를 타겟으로 하는 표적 기능, DNA 사슬에 결합을 통한 저분자 약물 탑재능 등 다기능성을 부여할 수 있으며, 단일가닥 DNA를 혼성화(hybridization)하여 제조될 수 있다. 상기 분지형 DNA는 DNA 분자의 각 암(arm)이, 상보적인 접착성 말단을 가지도록 고안되고 합성된다. 이 때, 분지형 DNA는 필요에 따라 암의 길이를 조절할 수 있다. The branched DNA unit (BU) serves as the structural framework of the nanogel, and has an adhesive end that can connect between structures through self-assembly, a targeting function to target specific cells, and a low-molecular drug tower through binding to a DNA chain. It can be given multifunctionality such as talent, and can be prepared by hybridization of single-stranded DNA. The branched DNA is designed and synthesized so that each arm of the DNA molecule has complementary adhesive ends. In this case, the branched DNA can adjust the length of the cancer as needed.
상기 분지형 DNA는 X-형 DNA, Y-형 DNA 또는 T-형 DNA일 수 있다. The branched DNA may be X-type DNA, Y-type DNA or T-type DNA.
본 발명의 일 구체예에 따르면, 하나의 표적에 대해 X1, X2, X3(접착성 말단 포함) 및 X4(접착성 말단 포함)로 명명된 각각의 단일가닥 DNA가 조립되어 X-형의 분지형 DNA를 형성할 수 있다. 이때, 상기 단일가닥 DNA는 표적화를 위한 압타머를 포함할 수 있다.According to one embodiment of the present invention, each single-stranded DNA designated as X1, X2, X3 (including adhesive ends) and X4 (including adhesive ends) for one target is assembled to form an X-type branched form can form DNA. In this case, the single-stranded DNA may include an aptamer for targeting.
또한, 상기 분지형 DNA는 DNA 분자의 각 암(arm)의 말단에 표적화를 위한 핵산 성분이 결합될 수 있으며, 상기 핵산 성분은 예컨대, DNA(deoxyribonucleic acid), RNA(ribonucleic acid), PNA(peptide nucleic acid), LNA(morpholino and locked nucleic acid), GNA(glycol nucleic acid), 올리고뉴클레오티드(oliogonucleotide), 플라스미드 DNA(plasmid DNA), 안티센스 올리고뉴클레오티드(antisense oligonucleotide), 메신저 RNA(messenger RNA), 마이크로 RNA(microRNA), 잠금형 핵산(locked nucleic acid), DNA 기반 효소(DNAzyme), 작은 간섭 RNA(small interfering RNA), 짧은 헤어핀 RNA(short hairpin RNA), RNA 기반 효소(RNAzyme) 및 핵산 압타머(aptamer) 등을 사용할 수 있다. 보다 구체적으로 핵산 압타머일 수 있다. In addition, in the branched DNA, a nucleic acid component for targeting may be bound to the end of each arm of the DNA molecule, and the nucleic acid component may include, for example, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptide (PNA). nucleic acid), LNA (morpholino and locked nucleic acid), GNA (glycol nucleic acid), oligonucleotide, plasmid DNA, antisense oligonucleotide, messenger RNA, micro RNA (microRNA), locked nucleic acid, DNA-based enzyme (DNAzyme), small interfering RNA (small interfering RNA), short hairpin RNA, RNA-based enzyme (RNAzyme) and nucleic acid aptamer ) can be used. More specifically, it may be a nucleic acid aptamer.
상기 감광성 유닛(AU)은 금나노입자와 이에 결합된 단일가닥 DNA로 구성되어 있고, 단일가닥 DNA는 금나노입자와 결합하는 폴리머화된 아데노신(polyA) 부분과 자가조립을 위한 접착성 말단 부분으로 구성되어 있다. 또한 상기 감광성 유닛은 금나노입자의 특성을 이용하여 빛 감응성으로 온도를 증가시키는 역할을 한다. 이러한 광 조사에 의해 발생하는 열을 통해 나노젤의 분해를 가능하게 하며, 접착성 말단과 5'-polyA tail로 이루어진 단일가닥 DNA 및 접착성 말단과 3'-polyA tail로 이루어진 단일가닥 DNA가 상기 금나노입자(AuNP)에 흡착을 통해 형성될 수 있다. 이때 상기 polyA tail은 금 표면에 강하게 흡착되며 이 흡착은 Au-S 간의 결합 친화도와 유사하다. 또한, 금나노입자(AuNP) 표면의 DNA 밀도는 polyA tail의 길이를 조정하여 조절할 수 있다.The photosensitive unit (AU) is composed of gold nanoparticles and single-stranded DNA bound thereto, and the single-stranded DNA is a polymerized adenosine (polyA) portion that binds to the gold nanoparticles and an adhesive end portion for self-assembly. Consists of. In addition, the photosensitive unit serves to increase the temperature in light sensitivity by using the characteristics of the gold nanoparticles. It enables the decomposition of the nanogel through the heat generated by such light irradiation, and single-stranded DNA consisting of an adhesive end and a 5'-polyA tail and a single-stranded DNA consisting of an adhesive end and a 3'-polyA tail. It can be formed through adsorption to gold nanoparticles (AuNPs). At this time, the polyA tail is strongly adsorbed to the gold surface, and this adsorption is similar to the binding affinity between Au-S. In addition, the DNA density on the surface of gold nanoparticles (AuNP) can be controlled by adjusting the length of the polyA tail.
상기 금나노입자는 크기가 작을수록 세포 독성이 적기 때문에 세포 독성을 줄이기 위해 5 내지 100 nm의 직경을 갖는 구형의 형태 또는 5 내지 70 nm의 길이를 갖는 막대의 형태를 사용할 수 있다. 보다 구체적으로 약 5 내지 13 nm의 직경을 갖는 구형의 금나노입자를 사용할 수 있다. The smaller the size of the gold nanoparticles, the less cytotoxicity, so to reduce cytotoxicity, a spherical shape having a diameter of 5 to 100 nm or a rod shape having a length of 5 to 70 nm may be used. More specifically, spherical gold nanoparticles having a diameter of about 5 to 13 nm may be used.
상기 연결 유닛(LU)은 단일가닥 DNA또는 RNA로, 분지형 DNA 유닛 및 감광성 유닛을 연결해 주는 접착성 말단을 가지고 있고, 구조체의 가운데 부분은 핵산 약물을 포함할 수 있다. 구체적으로, 5'-AU 및 3'-AU와의 혼성화를 위해 5'-LU 및 3'-LU를 준비할 수 있다.The linking unit (LU) is a single-stranded DNA or RNA, and has an adhesive end connecting the branched DNA unit and the photosensitive unit, and the middle portion of the structure may contain a nucleic acid drug. Specifically, 5'-LU and 3'-LU may be prepared for hybridization with 5'-AU and 3'-AU.
상기 핵산 약물은 DNA(deoxyribonucleic acid), RNA(ribonucleic acid), PNA(peptide nucleic acid), LNA(morpholino and locked nucleic acid), GNA(glycol nucleic acid), 올리고뉴클레오티드(oliogonucleotide), 플라스미드 DNA(plasmid DNA), 안티센스 올리고뉴클레오티드(antisense oligonucleotide), 메신저 RNA(messenger RNA), 마이크로 RNA(microRNA), 잠금형 핵산(locked nucleic acid), DNA 기반 효소(DNAzyme), 작은 간섭 RNA(small interfering RNA), 짧은 헤어핀 RNA(short hairpin RNA), RNA 기반 효소(RNAzyme) 또는 핵산 압타머(aptamer) 등의 형태를 가질 수 있다. 상기 핵산은 하나 이상의 단백질을 암호화하는 서열 또는 비-암호화 서열(non-coding sequence)을 포함할 수도 있다. The nucleic acid drug is DNA (deoxyribonucleic acid), RNA (ribonucleic acid), PNA (peptide nucleic acid), LNA (morpholino and locked nucleic acid), GNA (glycol nucleic acid), oligonucleotide (oliogonucleotide), plasmid DNA (plasmid DNA) ), antisense oligonucleotide, messenger RNA, microRNA, locked nucleic acid, DNA-based enzyme, small interfering RNA, short hairpin It may have a form such as short hairpin RNA (RNA), an RNA-based enzyme (RNAzyme), or a nucleic acid aptamer. The nucleic acid may include a sequence encoding one or more proteins or a non-coding sequence.
상기 핵산 약물의 예로, PLK1(polo-like kinase 1), Bcl-2(apoptotic B-cell lymphoma 2), BDNF(brain derived neurotrophic factor), GDNF(glial derived neurotrophic factor), NT3(neurotrophic factor 3), FGF(fibroblast growth factor), TGF(transforming growth factor), PDGF(platelet-derived transforming growth factor), MGF(milk growth factor), EGF(endothelial growth factor), ECDGF(endothelial cell-derived growth factors), NGF(nerve growth factor), VEGF(vascular endothelial growth factor), 4-1BBR(4-1 BB receptor), TRAIL(TNF-related apoptosis inducing ligand), artemin(GFRalpha3-RET ligand), CXCL13(B cell-attracting chemokine l), BLC(B lymphocyte chemoattractant), BCMA(B cell maturation protein), BDF(bone-derived growth factor), MGDF(megakaryocyte derived growth factor), KGF(keratinocyte growth factor, thrombopoietin), PGDF(platelet-derived growth factor), MGDF(megakaryocyte derived growth factor), KGF(keratinocyte growth factor), BMP2(bone morphogenetic protein 2), BRAK, C-10, 또는 CT1(Cardiotrophin 1) 등의 코딩 및/또는 비코딩 서열을 포함하는 핵산을 인체에 적용 가능한 다양한 상술한 형태로 도입할 수 있다.Examples of the nucleic acid drug, polo-like kinase 1 (PLK1), apoptotic B-cell lymphoma 2 (Bcl-2), brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), neurotrophic factor 3 (NT3), FGF (fibroblast growth factor), TGF (transforming growth factor), PDGF (platelet-derived transforming growth factor), MGF (milk growth factor), EGF (endothelial growth factor), ECDGF (endothelial cell-derived growth factors), NGF ( nerve growth factor), vascular endothelial growth factor (VEGF), 4-1BBR (4-1 BB receptor), TRAIL (TNF-related apoptosis inducing ligand), artemin (GFRalpha3-RET ligand), CXCL13 (B cell-attracting chemokine l ), B lymphocyte chemoattractant (BLC), B cell maturation protein (BCMA), bone-derived growth factor (BDF), megakaryocyte derived growth factor (MGDF), keratinocyte growth factor (KGF, thrombopoietin), platelet-derived growth factor (PGDF) ), coding for megakaryocyte derived growth factor (MGDF), keratinocyte growth factor (KGF), bone morphogenetic protein 2 (BMP2), BRAK, C-10, or Cardiotrophin 1 (CT1), etc. And/or a nucleic acid comprising a non-coding sequence may be introduced in various above-described forms applicable to the human body.
본 발명의 DNA 나노젤에는 화학적 약제학적 활성성분이 탑재될 수 있다. 상기 화학적 약제학적 활성성분은 바람직하게는 항암제일 수 있다. 항암제는 암세포의 각종 대사경로에 작용하여 암세포에 대하여 세포독성 또는 성장억제효과(cytostatic effect)를 나타내는 약재를 총칭하며, 작용기전과 화학구조에 따라 대사길항제, 식물성 알칼로이드, 토포이소머레이즈 저해제, 알킬화제, 항암성 항생물질, 호르몬제 또는 기타 약제로 분류될 수 있다.The DNA nanogel of the present invention may be loaded with a chemically and pharmaceutical active ingredient. The chemically active pharmaceutical ingredient may be an anticancer agent. Anticancer drugs are drugs that act on various metabolic pathways of cancer cells and exhibit cytotoxic or cytostatic effects on cancer cells. , anticancer antibiotics, hormones, or other drugs.
상기 항암제는 옥살리플라틴, 이마티니브, 도세탁셀, 페메트렉시드, 게피티니브, 테가푸르, 카페시타빈, 엘로티디브, 독시플루리딘, 파클리탁셀, 인터페론 알파, 겜시타빈, 플루다라빈, 이리노테칸, 카르보플라틴, 시스플라틴, 택소티어, 독소루비신, 에피루비신, 5-플루오로우라실, UFT, 타목시펜, 고세렐린, 헤르셉틴, 항-CD20 항체, 루프로리드(루프론) 또는 플루타미드 등일 수 있으나, 이에 제한되는 것은 아니다.The anticancer agent is oxaliplatin, imatinib, docetaxel, pemetrexed, gefitinib, tegafur, capecitabine, erlotidib, doxyfluridine, paclitaxel, interferon alpha, gemcitabine, fludarabine, irinotecan, carboplatin, cisplatin, taxotere, doxorubicin, epirubicin, 5-fluorouracil, UFT, tamoxifen, goserelin, herceptin, anti-CD20 antibody, leuprolide (Lupron) or flutamide, etc. , but is not limited thereto.
상기 항암제는 DNA 나노젤과 인큐베이션하여 나노젤에 로딩될 수 있다. The anticancer agent may be loaded onto the nanogel by incubation with the DNA nanogel.
본 발명의 일 구체예에 따르면, 상기 핵산 약물을 LU에 포함시켜 DNA 나노젤을 합성하고, 상기 DNA 나노젤과 항암제를 인큐베이션하여 핵산 약물과 항암제를 동시에 탑재시킬 수 있다.According to one embodiment of the present invention, the DNA nanogel is synthesized by including the nucleic acid drug in the LU, and the DNA nanogel and the anticancer agent are incubated to simultaneously load the nucleic acid drug and the anticancer agent.
상기 DNA 나노젤은 먼저 BU 및 LU를 반응시켜 BU-LU 복합체를 조립할 수 있다. 상기 BU 및 LU의 몰비는 2:1 내지 1:4일 수 있다. 바람직하게는, BU 및 LU의 몰비는 1:2일 수 있다. 다음으로, AU 제조를 위해, 금나노입자 용액을 5'-polyA 또는 3'-polyA DNA 용액과 반응시켜 감광성 AU를 제조한다. 마지막으로, BU-LU 복합체, 5'-AU 및 3'-AU 의 화학량론적 함량을 혼합하여 나노젤을 제조한다. 상기 BU:LU:AU의 몰비는 1:2:0.25일 수 있다.The DNA nanogel may first react with BU and LU to assemble a BU-LU complex. The molar ratio of BU and LU may be 2:1 to 1:4. Preferably, the molar ratio of BU and LU may be 1:2. Next, for preparing AU, the gold nanoparticle solution is reacted with a 5'-polyA or 3'-polyA DNA solution to prepare photosensitive AU. Finally, nanogels are prepared by mixing the stoichiometric contents of the BU-LU complex, 5'-AU and 3'-AU. The molar ratio of BU:LU:AU may be 1:2:0.25.
상기 나노젤은 구형의 나노입자를 보이며, 대략 50 nm 내지 300 nm의 직경을 가질 수 있다. DNA 나노젤의 크기와 형태는 나노구조체 간의 몰비, 점성의 말단의 서열 길이 등을 통해 정교하게 제어될 수 있다.The nanogel shows spherical nanoparticles, and may have a diameter of approximately 50 nm to 300 nm. The size and shape of the DNA nanogel can be precisely controlled through the molar ratio between nanostructures and the length of the viscous end sequence.
상기 나노젤에 탑재된 약물은 pH 5.0 내지 7.4, 25 내지 50 ℃의 조건에서 pH 및 온도 의존적 방식으로 방출이 일어난다. 즉, 상술한 조건 하에서 고농도의 H+는 음이온성 DNA 나노구조에 삽입된 양이온성 약물과 경쟁하여 결합 상호작용을 약화시키고, 약물의 방출을 초래한다. 본 발명의 일 구체예에 따르면, pH가 낮을수록 약물의 방출이 증가하며, 온도가 증가할수록 약물의 방출이 증가한다. 또한, 연결 유닛에 탑재된 핵산 약물은 광 조사 후 나노젤의 분해에 의해 온도 의존적 방식으로 방출될 수 있다. The drug loaded on the nanogel is released in a pH- and temperature-dependent manner under conditions of pH 5.0 to 7.4 and 25 to 50 °C. That is, under the above conditions, a high concentration of H+ competes with the cationic drug inserted into the anionic DNA nanostructure to weaken the binding interaction, resulting in drug release. According to one embodiment of the present invention, the lower the pH, the higher the drug release, and the higher the temperature, the higher the drug release. In addition, the nucleic acid drug mounted on the linking unit can be released in a temperature-dependent manner by decomposition of the nanogel after light irradiation.
따라서, 본 발명은 또한 상기 온도 감응성 DNA 나노젤; 및Accordingly, the present invention also provides the temperature-sensitive DNA nanogel; and
약제학적으로 허용 가능한 담체를 포함하는 약물전달체를 제공한다.Provided is a drug delivery system comprising a pharmaceutically acceptable carrier.
본 발명의 온도 감응성 DNA 나노젤은 DNA 나노구조체들의 자가조립에 의해 제조됨으로써 상기 유닛에 핵산 약물이 포함되거나 및/또는 항암제와 같은 화학 치료제가 탑재되어 질환 치료 시 핵산 치료제 및 화학 치료제의 다양한 조합을 표적 세포에 전달할 수 있는 특징이 있다.The temperature-sensitive DNA nanogel of the present invention is manufactured by self-assembly of DNA nanostructures, so that a nucleic acid drug is included in the unit and/or a chemotherapeutic agent such as an anticancer agent is loaded, so that various combinations of a nucleic acid therapeutic agent and a chemotherapeutic agent are used to treat diseases It has the ability to deliver to target cells.
본 발명은 또한 상기 온도 감응성 DNA 나노젤을 포함하는 항암용 조성물에 관한 것이다.The present invention also relates to an anticancer composition comprising the temperature-sensitive DNA nanogel.
본 발명의 DNA 나노젤은 금나노입자를 포함하고 있어 광 조사 시 발생하는 열을 통해 암세포의 사멸을 유도할 수 있어 광열요법에 사용할 수 있다.Since the DNA nanogel of the present invention contains gold nanoparticles, it can induce the death of cancer cells through heat generated during light irradiation, and thus can be used for photothermal therapy.
또한, 본 발명의 DNA 나노젤에는 핵산 약물 또는 화학적 항암제 등이 탑재될 수 있어 이들의 다양한 조합을 통한 복합적인 암 치료가 가능하다. In addition, the DNA nanogel of the present invention can be loaded with a nucleic acid drug or a chemical anticancer agent, so that complex cancer treatment is possible through various combinations thereof.
상기 핵산 약물 및 항암제의 종류는 상기 기술된 바와 같다. The types of the nucleic acid drug and the anticancer agent are as described above.
본 발명의 조성물은 약제학적으로 허용 가능한 담체를 더 포함할 수 있다.The composition of the present invention may further include a pharmaceutically acceptable carrier.
본 발명의 약물전달체 또는 약학 조성물에 사용할 수 있는 약제학적으로 허용 가능한 담체는 의약 분야에서 통상 사용되는 담체 및 비히클을 포함하며, 구체적으로 이온 교환 수지, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 각종 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소캄륨, 염화나트륨 및 아연 염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐피롤리돈, 셀룰로즈계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌 글리콜 또는 양모지 등을 포함하나 이에 제한되지 않는다. Pharmaceutically acceptable carriers that can be used in the drug delivery system or pharmaceutical composition of the present invention include carriers and vehicles commonly used in the pharmaceutical field, and specifically, ion exchange resins, alumina, aluminum stearate, lecithin, serum proteins (eg , human serum albumin); calcium hydride, sodium chloride and zinc salts), colloidal silica, magnesium trisilicate, polyvinylpyrrolidone, cellulosic matrix, polyethylene glycol, sodium carboxymethylcellulose, polyarylate, wax, polyethylene glycol or wool paper, etc. not limited
또한, 본 발명의 조성물은 상기 성분들 이외에 윤활제, 습윤제, 유화제, 현탁제, 또는 보존제 등을 추가로 포함할 수 있다.In addition, the composition of the present invention may further include a lubricant, a wetting agent, an emulsifier, a suspending agent, or a preservative in addition to the above components.
본 발명의 조성물은 경구, 직장, 경피, 정맥 내, 근육 내, 복강 내, 골수 내, 경막 내 또는 피하 등으로 투여될 수 있다.The composition of the present invention may be administered orally, rectal, transdermally, intravenously, intramuscularly, intraperitoneally, intramedullary, intrathecally or subcutaneously.
경구 투여를 위한 제형은 정제, 환제, 연질 또는 경질 캅셀제, 과립제, 산제, 액제 또는 유탁제일 수 있으나, 이에 제한되는 것은 아니다. 비경구 투여를 위한 제형은 주사제, 점적제, 로션, 연고, 겔, 크림, 현탁제, 유제, 좌제, 패취 또는 분무제일 수 있으나, 이에 제한되는 것은 아니다.Formulations for oral administration may be, but are not limited to, tablets, pills, soft or hard capsules, granules, powders, solutions, or emulsions. Formulations for parenteral administration may be injections, drops, lotions, ointments, gels, creams, suspensions, emulsions, suppositories, patches, or sprays, but is not limited thereto.
본 발명의 조성물은 필요에 따라 희석제, 부형제, 활택제, 결합제, 붕해제, 완충제, 분산제, 계면 활성제, 착색제, 향료 또는 감미제 등의 첨가제를 포함할 수 있다. 본 발명의 일측면에 따른 약학 조성물은 당업계의 통상적인 방법에 의해 제조될 수 있다.The composition of the present invention may contain additives such as diluents, excipients, lubricants, binders, disintegrants, buffers, dispersants, surfactants, colorants, flavorings or sweeteners, if necessary. The pharmaceutical composition according to one aspect of the present invention may be prepared by a conventional method in the art.
본 발명의 조성물의 유효 성분은 투여 받을 대상의 연령, 성별, 체중, 병리 상태 및 그 심각도, 투여 경로 또는 처방자의 판단에 따라 달라질 것이다. 이러한 인자에 기초한 적용량 결정은 당업자의 수준 내에 있으며, 이의 1일 투여 용량은 예를 들어 1 ng/kg/일 내지 10 mg/kg/일, 구체적으로는 10 ng/kg/일 내지 1 mg/kg/일, 더 구체적으로는 0.1 ㎍/kg/일 내지 100 ㎍/kg/일, 보다 더 구체적으로는 0.2 ㎍/kg/일 내지 20 ㎍/kg/일이 될 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 조성물은 1일 1회 내지 3회 투여될 수 있으나, 이에 제한되는 것은 아니다.The active ingredient of the composition of the present invention will vary depending on the age, sex, weight, pathological condition and severity of the subject to be administered, the route of administration, or the judgment of the prescriber. Determination of the dosage based on these factors is within the level of the skilled artisan, and its daily dose is, for example, from 1 ng/kg/day to 10 mg/kg/day, specifically from 10 ng/kg/day to 1 mg/kg. / day, more specifically 0.1 μg/kg/day to 100 μg/kg/day, even more specifically 0.2 μg/kg/day to 20 μg/kg/day, but is not limited thereto. The composition of the present invention may be administered 1 to 3 times a day, but is not limited thereto.
본 발명은 또한 유효량의 상기 온도 감응성 DNA 나노젤을 이를 필요로 하는 대상체에게 투여하는 단계를 포함하는 암의 치료 방법에 관한 것이다.The present invention also relates to a method of treating cancer comprising administering to a subject in need thereof an effective amount of said temperature-sensitive DNA nanogel.
상기 대상체는 인간 또는 인간 이외의 동물, 예를 들면 소, 원숭이, 새, 고양이, 마우스, 랫트, 햄스터, 돼지, 개, 토끼, 양, 말 등의 비인간 동물일 수 있다. The subject may be a human or non-human animal, for example, a non-human animal such as a cow, a monkey, a bird, a cat, a mouse, a rat, a hamster, a pig, a dog, a rabbit, a sheep, a horse.
본 발명의 치료 방법에서, 상기 조성물의 제형, 투여 방식 등은 상술한 바와 같다.In the treatment method of the present invention, the formulation and administration method of the composition are the same as described above.
이하, 본 발명에 따르는 실시예 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples according to the present invention, but the scope of the present invention is not limited by the Examples presented below.
<실시예 1> 온도 감응성 DNA 나노젤의 제조<Example 1> Preparation of temperature-sensitive DNA nanogel
본 발명의 온도 감응성 DNA 나노젤의 제조에 사용된 모든 DNA 올리고뉴클레오티드는 Integrated DNA Technologies(미국 아이오니아주 코랄빌)에서 구입하였다. 동결 건조된 DNA를 뉴클레아제가 없는 물에 재현탁하고 실험에 사용하기 전에 정량화하였다. 독소루비신(DOX) 및 5nm 금나노입자(AuNP)는 Sigma Aldrich(St Louis, MO, USA)에서 구입하였다. 염화마그네슘 육수화물 및 염화나트륨은 덕산화학(경기 안산)에서 구입하였다. Dulbecco's modified Eagle's medium(DMEM), 인산염 완충 식염수(PBS), 태아 소 혈청(FBS) 및 페니실린-스트렙토마이신 용액(P/S)은 Corning, Inc(Armonk, NY, USA)에서 구입하였다. 소 혈청(BCS) 및 Hoechst-33342는 Thermo Fisher Scientific(Waltham, MA, USA)에서 구입하였다.All DNA oligonucleotides used in the preparation of the temperature-sensitive DNA nanogels of the present invention were purchased from Integrated DNA Technologies (Coralville, Ionia, USA). Lyophilized DNA was resuspended in nuclease-free water and quantified prior to use in experiments. Doxorubicin (DOX) and 5 nm gold nanoparticles (AuNP) were purchased from Sigma Aldrich (St Louis, MO, USA). Magnesium chloride hexahydrate and sodium chloride were purchased from Deoksan Chemical (Ansan, Gyeonggi). Dulbecco's modified Eagle's medium (DMEM), phosphate buffered saline (PBS), fetal bovine serum (FBS) and penicillin-streptomycin solution (P/S) were purchased from Corning, Inc (Armonk, NY, USA). Bovine serum (BCS) and Hoechst-33342 were purchased from Thermo Fisher Scientific (Waltham, MA, USA).
(DNA 나노젤의 합성)(Synthesis of DNA nanogel)
다기능성의 분지형 DNA 유닛(MBU) 조립을 위해 동일한 몰 농도의 4개의 단일가닥 DNA(ssDNA, X1, X2, X3 및 X4)를 MgCl2(50mM) 및 뉴클레아제가 없는 물과 혼합하여 100㎕의 최종 부피를 얻었다. 염 농도와 반응 온도는 MBU 합성에 최적화되었다. 써모사이클러를 이용하여(Bio-Rad Laboratories)[S H Um et al. Nat Protoc 2006, 1, 995] 이전에 사용된 조립 프로토콜이 사용되었다(Roh et al, 2010, 비특허문헌 [6] 참조). 혼합된 DNA 용액을 95℃로 가열하여 변성시키고, 65℃에서 어닐링한 후, 60℃에서 어닐링하고, 후속 실험을 위해 최종적으로 4℃에서 보관하였다. For multifunctional branched DNA unit (MBU) assembly, 100 μl of four single-stranded DNAs (ssDNA, X1, X2, X3 and X4) at equal molar concentrations were mixed with MgCl 2 (50 mM) and nuclease-free water. to obtain the final volume of The salt concentration and reaction temperature were optimized for MBU synthesis. using a thermocycler (Bio-Rad Laboratories) [SH Um et al. Nat Protoc 2006, 1, 995] as previously used assembly protocol (Roh et al, 2010, see non-patent literature [6]). The mixed DNA solution was denatured by heating to 95°C, annealed at 65°C, annealed at 60°C, and finally stored at 4°C for subsequent experiments.
BUs-LU의 조립을 위해, 합성된 BU와 DNA 연결 유닛(LU)의 계산된 화학량론적 함량을 튜브에서 혼합하여 100㎕의 최종 부피를 얻었다. LUs 용액을 용액에 첨가하기 전에 60℃에서 2분 동안 가열하였다. 이어서, 혼합 용액을 3시간에 걸쳐 25℃로 냉각시켰다. 합성된 BUs-LU는 후속 실험에 사용하기 위해 4℃에서 보관하였다.For the assembly of BUs-LU, the synthesized BU and the calculated stoichiometric content of the DNA ligation unit (LU) were mixed in a tube to obtain a final volume of 100 μl. The LUs solution was heated at 60° C. for 2 min before addition to the solution. The mixed solution was then cooled to 25° C. over 3 hours. The synthesized BUs-LU was stored at 4°C for use in subsequent experiments.
접착성 말단이 있는 변형된 polyA 서열을 사용하여 bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium 염 용액에서 AuNP에 DNA를 흡착시켰다[H Pei et al. J Am Chem Soc 2012, 134, 11876]. 접착성 말단을 polyA 서열의 5'- 또는 3'-말단에 통합하여 각각 5'-polyA 및 3'-polyA 가닥을 합성하였다. ssDNA-AuNP 유닛(AUs)를 제조하기 위해 AuNP 용액(20㎕, 94μM)을 5'-polyA 또는 3'-polyA DNA 용액(480㎕, 2μM)에 첨가하고 빛에 노출 없이 25℃에서 16시간 동안 인큐베이션하였다. 그 후, 염화나트륨 용액(10㎕, 5M)을 첨가하여 100nM의 최종 농도를 얻었다; 이후 48시간 동안 추가 인큐베이션이 이어졌다. 인큐베이션 후, 염화나트륨 용액을 용액에 다시 첨가하여 최종 농도가 2M이 되도록 하였다. 최종 용액을 16,000xg에서 5분 동안 원심분리하고 펠렛을 뉴클레아제가 없는 물로 2회 세척하여 미반응 유리 DNA 및 AuNPs를 제거하였다. DNA was adsorbed to AuNPs in a bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt solution using a modified polyA sequence with adhesive ends [H Pei et al. J Am Chem Soc 2012, 134, 11876]. Adhesive ends were integrated into the 5'- or 3'-ends of the polyA sequence to synthesize 5'-polyA and 3'-polyA strands, respectively. To prepare ssDNA-AuNP units (AUs), AuNP solution (20 µL, 94 µM) was added to 5'-polyA or 3'-polyA DNA solution (480 µL, 2 µM) and without light exposure at 25 °C for 16 h. incubated. Then sodium chloride solution (10 μl, 5 M) was added to give a final concentration of 100 nM; Additional incubation was then followed for 48 hours. After incubation, sodium chloride solution was added back to the solution to a final concentration of 2M. The final solution was centrifuged at 16,000xg for 5 minutes and the pellet was washed twice with nuclease-free water to remove unreacted free DNA and AuNPs.
온도 감응성 DNA-AuNP 나노젤(Dgels)의 조립을 위해 미리 합성된 MBU, 5'-AU, 3'-AU 및 LU의 계산된 화학량론적 함량을 튜브에서 혼합하여 최종 부피 100㎕를 얻었다. LU 용액을 혼합물에 첨가하기 전에 60℃에서 2분 동안 가열하였다. 혼합 용액을 3시간에 걸쳐 실온으로 냉각시켰다. 합성된 Dgels는 후속 실험을 위해 4℃에서 보관하였다.For the assembly of temperature-sensitive DNA-AuNP nanogels (Dgels), the calculated stoichiometric contents of MBU, 5'-AU, 3'-AU and LU synthesized in advance were mixed in a tube to obtain a final volume of 100 μl. The LU solution was heated at 60° C. for 2 minutes prior to addition to the mixture. The mixed solution was cooled to room temperature over 3 hours. The synthesized Dgels were stored at 4°C for subsequent experiments.
(나노구조체의 특성화) (characterization of nanostructures)
AuNPs의 표면에 흡착된 polyA 서열은 multiplate reader(Victor X5, Perkin Elmer, Waltham, MA, USA)를 사용한 해리 기반 형광 분석을 통해 정량화되었다. AU에 흡착된 polyA 서열은 20mM의 최종 농도를 얻기 위해 KCN 용액(1M)을 첨가함으로써 AuNP로부터 해리되었다. 그 후, DNA용 SYBR Green I 형광 염료를 용액에 첨가하여 AU로부터 방출된 유리 polyA 서열을 정량화하였다. 50, 25, 125, 625 및 313 nM의 농도로 뉴클레아제가 없는 물에서 유리 DNA의 형광을 플로팅하여 표준 곡선을 얻었다.The polyA sequence adsorbed to the surface of AuNPs was quantified by dissociation-based fluorescence analysis using a multiplate reader (Victor X5, Perkin Elmer, Waltham, MA, USA). The polyA sequence adsorbed to AU was dissociated from AuNPs by adding KCN solution (1M) to obtain a final concentration of 20 mM. Then, SYBR Green I fluorescent dye for DNA was added to the solution to quantify the free polyA sequence released from the AU. Standard curves were obtained by plotting the fluorescence of free DNA in nuclease-free water at concentrations of 50, 25, 125, 625 and 313 nM.
(DNA 나노젤의 형태 및 구조 분석)(Analysis of morphology and structure of DNA nanogels)
전계 방출 주사 전자 현미경(SEM; JEOL-7610F; JEOL, Tokyo, Japan)에서 형태학적 특성화를 위한 BUs-LU 및 Dgel의 고해상도 디지털 이미지를 얻었다. SEM 관찰을 위해 샘플 용액 한 방울(10㎕)을 실리콘 웨이퍼에 놓고 실온에서 공기 건조시켰다. 그런 다음 5kV의 전압에서 나노젤의 표면을 조사하였다. 투과전자현미경(TEM; JEM-F200; JEOL)에서 200kV의 가속 전압에서 형태학적 특성화를 위한 Dgels의 고해상도 이미지를 얻었다. TEM 관찰을 위해 Dgel 샘플을 10배 희석하고 희석된 샘플의 액적(10㎕)을 탄소/폼바 코팅된 TEM 그리드(200메쉬; Electron Microscopy Sciences, Hatfield, PA, USA)에서 실온에서 공기 건조하였다.High-resolution digital images of BUs-LU and Dgel were obtained for morphological characterization in a field emission scanning electron microscope (SEM; JEOL-7610F; JEOL, Tokyo, Japan). For SEM observation, a drop (10 μl) of the sample solution was placed on a silicon wafer and air-dried at room temperature. Then, the surface of the nanogel was irradiated at a voltage of 5 kV. High-resolution images of Dgels were obtained for morphological characterization at an accelerating voltage of 200 kV in a transmission electron microscope (TEM; JEM-F200; JEOL). For TEM observation, Dgel samples were diluted 10-fold and droplets (10 μl) of the diluted samples were air-dried at room temperature on a carbon/formbar coated TEM grid (200 mesh; Electron Microscopy Sciences, Hatfield, PA, USA).
(온도 감응성 DNA 나노젤의 물리화학적 특성)(Physicochemical properties of temperature-sensitive DNA nanogels)
BUs-LU 및 Dgels의 크기 분포 및 제타(ζ) 전위는 입자 크기 및 ζ-전위 분석기(ELS-2000ZS; Otsuka Electronics Co, Osaka, Japan)를 사용하여 25℃에서 측정하였다. 측정을 위해 모든 나노젤 샘플을 뉴클레아제가 없는 물에 분산시켰다. 데이터는 평균±SD 값을 얻기 위해 세 번 기록되었다.The size distribution and zeta (ζ) potential of BUs-LU and Dgels were measured at 25°C using a particle size and ζ-potential analyzer (ELS-2000ZS; Otsuka Electronics Co, Osaka, Japan). For measurement, all nanogel samples were dispersed in nuclease-free water. Data were recorded in triplicate to obtain mean±SD values.
(DNA 나노젤의 용융 온도 측정)(Measurement of melting temperature of DNA nanogel)
BUs-LU의 용융 온도(Tm)는 SYBR Green I 염료를 사용한 형광 분석을 통해 결정되었다. BU와 LU 사이의 접착성 말단의 Tm 값을 결정하기 위해 SYBR Green I 염료(05㎕, 50x)를 BUs-LU 용액(50㎕, 5μM)에 첨가하고 실온에서 1시간 동안 인큐베이션하였다. 인큐베이션 후, 실시간 PCR 검출 시스템(CFX96; Bio-Rad Laboratories Inc, Hercules, CA, USA)을 통해 10℃에서 95℃까지 0.5℃ 단위로 형광 신호를 측정하였다. BUs-LU의 Tm은 그래프에서 형광 강도가 50% 감소한 부분을 사용하여 결정되었다. 본 실험에 사용된 SYBR Green I 염료는 이중가닥 DNA의 혼성화된 영역에서 염기쌍과 함께 삽입되었다. 형광 강도의 감소는 ssDNA에 혼성화된 이중가닥 DNA의 분리를 나타낸다.The melting temperature (Tm) of BUs-LU was determined by fluorescence analysis using SYBR Green I dye. To determine the Tm value of the adhesive end between BU and LU, SYBR Green I dye (05 μl, 50x) was added to the BUs-LU solution (50 μl, 5 μM) and incubated for 1 hour at room temperature. After incubation, the fluorescence signal was measured from 10°C to 95°C in 0.5°C increments through a real-time PCR detection system (CFX96; Bio-Rad Laboratories Inc, Hercules, CA, USA). The Tm of BUs-LU was determined using the 50% decrease in fluorescence intensity in the graph. The SYBR Green I dye used in this experiment was inserted together with base pairs in the hybridized region of double-stranded DNA. A decrease in fluorescence intensity indicates separation of double-stranded DNA hybridized to ssDNA.
(DNA 나노젤의 열 반응성 및 광열 특성)(Thermal Reactivity and Photothermal Characteristics of DNA Nanogels)
열에 의해 유도된 구조적 변화를 특성화하기 위해 다양한 접착성 말단 길이를 갖는 BUs-LUs 용액(200㎕, 8μM)을 원편광 이색법(J-815; JASCO, Mary's Court Easton, MD, USA)을 사용하여 분석하였다. 20, 60, 90℃에서 10분간 배양한 BUs-LU의 구조적 변화를 관찰하였다. Dgels의 광열 특성 조사를 위해 파장 365nm의 조명 램프(Innocure 5000, 경기도 리히첸, 대한민국), 열 관찰 장치(CompactXR; Seek Thermal Inc, CA, USA) 및 온도계 고용되었다. Dgel 용액의 온도는 0-4분 동안 광 조사 후 열 관찰 장치와 온도계를 사용하여 실시간으로 측정되었다.To characterize heat-induced conformational changes, BUs-LUs solutions (200 μL, 8 μM) with various adhesive end lengths were prepared using circular dichroism (J-815; JASCO, Mary's Court Easton, MD, USA) analyzed. Structural changes of BUs-LU incubated at 20, 60, and 90 °C for 10 minutes were observed. To investigate the photothermal properties of Dgels, an illumination lamp with a wavelength of 365 nm (Innocure 5000, Richchen, Gyeonggi-do, Korea), a thermal observation device (CompactXR; Seek Thermal Inc, CA, USA) and a thermometer were employed. The temperature of the Dgel solution was measured in real time using a thermal observation device and a thermometer after light irradiation for 0-4 minutes.
(DNA 나노젤의 약물 로딩)(Drug loading of DNA nanogels)
Dgel 용액(0-400 nM)을 PBS에 분산된 DOX(5μM; Sigma Aldrich)와 함께 실온에서 2시간 동안 인큐베이션하여 100㎕의 최종 부피를 얻었다. 용액을 16,000xg에서 10분 동안 원심분리하여 Dgel/DOX를 침전시켰다. 그런 다음 상등액에서 결합되지 않은 유리 DOX를 멀티플레이트 판독기(Victor X5)를 사용하여 595nm(λex = 480nm)에서 평균 형광 강도를 측정하여 정량화하였다. Dgel에 로딩된 DOX의 양은 첨가된 DOX의 양에서 상등액의 DOX 양을 빼서 계산되었다. 핵산 치료제(Bcl-2 AS-ODN)는 AS-ODN 서열을 LU에 통합함으로써 Dgel에 로딩되었다.Dgel solution (0-400 nM) was incubated with DOX (5 μM; Sigma Aldrich) dispersed in PBS for 2 hours at room temperature to obtain a final volume of 100 μl. The solution was centrifuged at 16,000×g for 10 min to precipitate Dgel/DOX. Unbound free DOX in the supernatant was then quantified by measuring the mean fluorescence intensity at 595 nm (λex = 480 nm) using a multiplate reader (Victor X5). The amount of DOX loaded on the Dgel was calculated by subtracting the amount of DOX in the supernatant from the amount of added DOX. Nucleic acid therapeutics (Bcl-2 AS-ODN) were loaded onto the Dgel by incorporating the AS-ODN sequence into the LU.
초기 Dgel 농도 = 400nM Initial Dgel concentration = 400 nM
초기 DOX 농도 = 5000nM Initial DOX concentration = 5000 nM
원심분리 후 상등액의 DOX 농도 = 532nMDOX concentration of supernatant after centrifugation = 532 nM
Figure PCTKR2021014621-appb-img-000001
Figure PCTKR2021014621-appb-img-000001
(DNA 나노젤에서 로딩된 약물의 시험관 내 방출)(In vitro release of drug loaded on DNA nanogel)
Dgel/DOX에서 DOX의 체외 방출은 다양한 pH 조건에서 분석되었다. pH에 대한 Dgel/DOX의 반응을 조사하기 위해 샘플을 다양한 pH 값(5.0, 6.0 및 7.4)에서 PBS(500㎕)에 분산시키고 37℃에서 인큐베이션하였다. Dgel/DOX 용액을 일정 시간 간격으로 16,000xg에서 5분간 원심분리하고 상등액을 분리하여 96-웰 플레이트의 웰로 옮겼다. 그 후, 매번 유사한 부피의 새로운 PBS를 첨가하여 상등액을 교체하였다. 상등액의 DOX 양은 멀티플레이트 리더(Victor X5)를 사용하여 595 nm(λex = 480 nm)에서 평균 형광 강도를 측정하여 정량화하였다.The in vitro release of DOX from Dgel/DOX was analyzed under various pH conditions. To investigate the response of Dgel/DOX to pH, samples were dispersed in PBS (500 μl) at various pH values (5.0, 6.0 and 7.4) and incubated at 37°C. The Dgel/DOX solution was centrifuged at 16,000xg at regular time intervals for 5 minutes, and the supernatant was separated and transferred to the wells of a 96-well plate. Thereafter, the supernatant was replaced by adding a similar volume of fresh PBS each time. The amount of DOX in the supernatant was quantified by measuring the average fluorescence intensity at 595 nm (λex = 480 nm) using a multi-plate reader (Victor X5).
(세포 배양)(cell culture)
SKOV3 난소암세포(Cell Biolabs Inc, San Diego, CA, USA)를 10% FBS 및 1% P/S를 포함하는 DMEM에서 5% CO2를 포함하는 가습 분위기 하에서 37℃에서 배양하였다. NIH/3T3 섬유아세포(Korean Cell Line Bank, Seoul, Korea)를 10% BCS 및 1% P/S를 포함하는 DMEM에서 유사한 분위기 하에 37℃에서 배양하였다. 본 실험에 사용된 SKOV3 및 NIH/3T3 세포를 T-플라스크에 플레이팅하고 사용 전에 80% 컨플루언시까지 배양하였다.SKOV3 ovarian cancer cells (Cell Biolabs Inc, San Diego, CA, USA) were cultured at 37° C. in a humidified atmosphere containing 5% CO 2 in DMEM containing 10% FBS and 1% P/S. NIH/3T3 fibroblasts (Korean Cell Line Bank, Seoul, Korea) were cultured at 37° C. under a similar atmosphere in DMEM containing 10% BCS and 1% P/S. SKOV3 and NIH/3T3 cells used in this experiment were plated on T-flasks and cultured to 80% confluency before use.
(DNA 나노젤의 세포내 전달)(Intracellular delivery of DNA nanogels)
유세포 분석을 통해 DOX가 로딩된 BUs-LU의 선택적 세포 내 전달을 조사하기 위해 SKOV3 및 NIH/3T3 세포(웰당 8Х104개 세포)를 6웰 플레이트에 접종하고 37℃에서 24시간 동안 인큐베이션하였다. 그런 다음 배양 배지를 제거하고 세포를 무혈청 배지에서 DOX 표지된 BU 또는 BUs-LU(300㎕, 100nM)로 3시간 동안 처리하였다. 그 후, 세포를 희석된 트립신-EDTA(300㎕, 0.25x)로 2분 동안 처리하였다. 마지막으로, LSRII(Becton Dickinson, Franklin Lakes, NJ, USA)를 사용한 유세포 분석을 위해 튜브에 세포 용액을 수집하였다. SKOV3 및 NIH/3T3 세포(웰당 8Х104 세포)를 세포 배양 슬라이드에 접종하고 공초점 레이저 스캐닝 현미경 측정을 위해 37℃에서 24시간 동안 인큐베이션하였다. 그런 다음 배양 배지를 제거하고 세포를 무혈청 배지에서 DOX-로딩된 BU, BUs-LU 또는 Dgel(300㎕, 100nM)로 2시간 동안 처리하였다. 이후 PBS로 세포를 세척하고 4% 포름알데히드로 상온에서 15분간 고정하였다. 그런 다음 세포를 PBS로 세척하고 세포 핵을 Hoechst-33342로 실온에서 15분 동안 염색하였다. 마지막으로, 세포를 PBS로 2회 세척하고, 탑재하고, 스캔하였다(LSM 700; Carl Zeiss, Thornwood, NY, USA).To investigate the selective intracellular delivery of DOX-loaded BUs-LU by flow cytometry, SKOV3 and NIH/3T3 cells (8Х10 4 cells per well) were seeded in 6-well plates and incubated at 37°C for 24 hours. Then, the culture medium was removed and the cells were treated with DOX-labeled BU or BUs-LU (300 μl, 100 nM) in serum-free medium for 3 hours. Cells were then treated with diluted trypsin-EDTA (300 μl, 0.25×) for 2 min. Finally, cell solutions were collected in tubes for flow cytometry using LSRII (Becton Dickinson, Franklin Lakes, NJ, USA). SKOV3 and NIH/3T3 cells (8Х10 4 cells per well) were seeded on cell culture slides and incubated at 37° C. for 24 h for measurement by confocal laser scanning microscopy. The culture medium was then removed and the cells were treated with DOX-loaded BU, BUs-LU or Dgel (300 μl, 100 nM) in serum-free medium for 2 hours. Thereafter, the cells were washed with PBS and fixed with 4% formaldehyde at room temperature for 15 minutes. Then, the cells were washed with PBS and the cell nuclei were stained with Hoechst-33342 at room temperature for 15 minutes. Finally, cells were washed twice with PBS, mounted and scanned (LSM 700; Carl Zeiss, Thornwood, NY, USA).
(시험관내 세포독성 분석)(in vitro cytotoxicity assay)
Dgels 및 Dgel/DOX의 세포독성은 MTT 분석을 사용하여 평가되었다. 간단히 말해서, SKOV3 세포(웰당 6Х103 세포)를 96-웰 플레이트의 각 웰에 접종하고 37℃에서 24시간 동안 인큐베이션하였다. 세포를 순차적으로 광 조사 시 3시간 동안 무혈청 배지에서 상이한 AS-ODN 농도(400, 200, 100 및 50nM)에서 Dgel 또는 Dgel/DOX로 처리하였다. 그 다음 세포를 PBS로 세척하고 10% FBS를 함유하는 새로운 배지에서 48시간 동안 추가로 인큐베이션하였다. 그 후, 제조사의 지시에 따라 MTT 용액과 DMSO를 첨가하였다. 마지막으로 멀티플레이트 리더(Victor X5)를 이용하여 490 nm 파장에서 각 웰의 흡광도를 측정하였다. 광 조사 하에서 Dgels 및 Dgel/DOX의 세포 독성을 조사하기 위해 무혈청 배지에서 Dgels 또는 Dgel/DOX를 다양한 농도(400, 200, 100 및 50nM)로 처리한 후 세포에 3시간 동안 조사하였다. Bcl-2 AS-ODN이 로딩된 Dgel로 처리된 SKOV3 세포의 세포 생존력을 스크램블된 서열이 로딩된 Dgel로 처리한 세포의 생존율과 비교하여 상대적인 세포 생존율을 계산하였다.The cytotoxicity of Dgels and Dgel/DOX was assessed using the MTT assay. Briefly, SKOV3 cells (6Х10 3 cells per well) were seeded into each well of a 96-well plate and incubated at 37°C for 24 h. Cells were sequentially treated with Dgel or Dgel/DOX at different AS-ODN concentrations (400, 200, 100 and 50 nM) in serum-free medium for 3 hours upon light irradiation. Cells were then washed with PBS and further incubated for 48 hours in fresh medium containing 10% FBS. Then, MTT solution and DMSO were added according to the manufacturer's instructions. Finally, the absorbance of each well was measured at a wavelength of 490 nm using a multi-plate reader (Victor X5). To investigate the cytotoxicity of Dgels and Dgel/DOX under light irradiation, cells were irradiated for 3 hours after treatment with Dgels or Dgel/DOX at various concentrations (400, 200, 100 and 50 nM) in serum-free medium. Relative cell viability was calculated by comparing the cell viability of SKOV3 cells treated with Dgel loaded with Bcl-2 AS-ODN with the viability of cells treated with Dgel loaded with scrambled sequences.
(통계 분석)(statistical analysis)
모든 실험 데이터는 평균±SD 값으로 표현하기 위해 3중으로 기록되었다. 데이터의 통계적 분석은 일원 분산 분석을 통해 SPSS 소프트웨어 패키지 버전 240(Armonk, NY, USA)의 Scheff's 테스트를 사용하여 수행되었다. 결과는 통계적으로 *p < 005, **p < 001 또는 ***p < 0005로 표시된다.All experimental data were recorded in triplicate to express mean±SD values. Statistical analysis of the data was performed using Scheff's test of SPSS software package version 240 (Armonk, NY, USA) with one-way ANOVA. Results are statistically expressed as *p < 005, **p < 001 or ***p < 0005.
Figure PCTKR2021014621-appb-img-000002
Figure PCTKR2021014621-appb-img-000002
Figure PCTKR2021014621-appb-img-000003
Figure PCTKR2021014621-appb-img-000003
<실험예 1> 온도 감응성 DNA 나노젤의 합성<Experimental Example 1> Synthesis of temperature-sensitive DNA nanogel
도 1과 같이, 암 치료제의 표적 공동 전달 및 로딩된 약물의 자극 반응성 방출을 위한 스마트 DNA 나노젤(Dgels)을 합성하였다.As shown in FIG. 1, smart DNA nanogels (Dgels) were synthesized for targeted co-delivery of cancer therapeutic agents and stimulatory-responsive release of loaded drugs.
Dgels는 다기능 분지형 DNA 유닛(BU, Branched Unit), 감광성 단일가닥 DNA(ssDNA)-AuNP 유닛(AU) 및 ssDNA 연결 유닛(LU, Linker Unit)의 세 가지 유형의 기능화된 DNA 나노구조체로 구성되었다. 특히, 분지형 X-형 DNA(X-DNA) 나노구조는 기능적 모이어티를 갖는 장식을 위한 구조적 백본 역할을 하였다. 올리고뉴클레오티드가 흡착된 AuNP를 채택하여 광 조사에 의한 온도 상승을 가능하게 하였다. 연결 유닛은 치료용 올리고뉴클레오티드 및 서열-의존적으로 프로그래밍된 분해를 통합하도록 설계되었다. 자가조립된 Dgels의 형태학적 및 물리화학적 분석은 성공적인 합성 및 제어 가능한 열 반응성을 입증하기 위해 수행되었다. 그 후, 표적 세포에 항암제를 함께 전달하기 위한 Dgels의 세포내 전달, 항암제 효능 및 세포 생존 가능성을 잠재적인 치료 적용에 대해 분석하였다. Dgels were composed of three types of functionalized DNA nanostructures: a multifunctional branched DNA unit (BU), a photosensitive single-stranded DNA (ssDNA)-AuNP unit (AU), and an ssDNA linker unit (LU). . In particular, branched X-type DNA (X-DNA) nanostructures served as structural backbones for decoration with functional moieties. AuNPs adsorbed with oligonucleotides were adopted to enable temperature rise by light irradiation. The linking unit is designed to incorporate a therapeutic oligonucleotide and sequence-dependently programmed degradation. Morphological and physicochemical analyzes of self-assembled Dgels were performed to demonstrate successful synthesis and controllable thermal reactivity. Thereafter, intracellular delivery of Dgels for co-delivery of anticancer drugs to target cells, anticancer drug efficacy and cell viability were analyzed for potential therapeutic applications.
이러한 Dgel은 다음과 같은 특징을 가지고 있다. 1) 구조적 조정성과 관련하여, 나노젤은 접착성 말단의 서열 길이 및 나노구조체의 몰비 조정을 통해 물리화학적 특성을 정밀하게 제어하였다. 2) 암 치료에 적용하기 위해 핵산 약물을 포함한 복합 치료제가 이중 트리거를 통한 자극 반응성 약물 방출을 위해 채택되었다.This Dgel has the following characteristics. 1) With regard to structural tunability, the nanogel precisely controlled physicochemical properties by adjusting the length of the sequence at the adhesive end and the molar ratio of the nanostructure. 2) Combination therapeutics including nucleic acid drugs were adopted for stimuli-responsive drug release through dual triggers for application in cancer treatment.
먼저, Dgel의 3가지 기능적 나노구조체의 합성을 확인하였다. BU는 상보적 혼성화를 통해 4개의 ssDNA 올리고뉴클레오티드 서열로 조립되었고 BU의 X자형 가지의 말단은 암 특이적 표적화를 위한 핵산 압타머와 초분자 조립을 위한 접착성 말단으로 이방성으로 기능화되었다(표 1). 프로그래밍된 BU 조립은 젤 전기영동 시 DNA 밴드 이동을 통해 확인되었다(도 2A). BU 밴드(레인 5)는 ssDNA 밴드(레인 2) 및 기타 부분적으로 혼성화된 유닛(레인 3 및 4)보다 느리게 이동하여 높은 수율로 설계된 상보적 서열의 성공적인 조립을 보여준다. 둘째, AU는 Dgel의 광 유발 온도 증가 및 분해를 위해 AuNP에 접착성 말단이 통합된 polyA 꼬리의 시퀀스 특이적 흡착을 통해 제작되었다. PolyA는 Au 표면에 강하게 흡착되었으며, 이 흡착 가능성은 Au-S 결합 친화도와 비슷하였다. 또한 AuNP 표면의 DNA 밀도는 polyA 꼬리의 길이를 조정하여 간단히 조절할 수 있다. 더 작은 크기의 AuNP는 독성이 적기 때문에 5nm AuNP가 AU 조립에 채택되었다. 5'- 및 3'-AU는 각각 5' 및 3' LU 접착성 말단에 대한 혼성화를 위해 준비되었다. 성공적인 AU 합성은 젤 전기영동을 통해 확인되었다(도 2B). 네이키드 AuNP의 밴드(레인 1)와 비교하여 AU(레인 2 및 3)의 밴드는 polyA가 포함된 ssDNA의 흡착으로 인해 느린 이동을 나타냈다. 표면 밀도 정량화 결과 약 3.27 ± 0.15 및 3.60 ± 0.14 DNA 가닥이 각각 5'-AU 및 3'-AU 표면에 흡착된 것으로 나타났다(도 2C).First, the synthesis of three functional nanostructures of Dgel was confirmed. BU was assembled into four ssDNA oligonucleotide sequences through complementary hybridization, and the ends of the X-shaped branches of BU were anisotropically functionalized with nucleic acid aptamers for cancer-specific targeting and adhesive ends for supramolecular assembly (Table 1). . The programmed BU assembly was confirmed through DNA band shift during gel electrophoresis (Fig. 2A). The BU band (lane 5) migrated slower than the ssDNA band (lane 2) and other partially hybridized units (lanes 3 and 4), demonstrating successful assembly of the designed complementary sequence in high yield. Second, AU was fabricated through sequence-specific adsorption of a polyA tail with an integrated adhesive end to AuNPs for light-induced temperature increase and degradation of Dgel. PolyA was strongly adsorbed on the Au surface, and the adsorption potential was similar to the Au–S binding affinity. In addition, the DNA density on the surface of AuNPs can be controlled simply by adjusting the length of the polyA tail. Since the smaller size AuNPs are less toxic, 5 nm AuNPs were adopted for AU assembly. 5'- and 3'-AU were prepared for hybridization to 5' and 3' LU adhesive ends, respectively. Successful AU synthesis was confirmed through gel electrophoresis (Fig. 2B). Compared to the bands of naked AuNPs (lanes 1), the bands of AU (lanes 2 and 3) showed slow migration due to the adsorption of polyA-containing ssDNA. As a result of surface density quantification, it was found that about 3.27 ± 0.15 and 3.60 ± 0.14 DNA strands were adsorbed to the 5'-AU and 3'-AU surfaces, respectively (FIG. 2C).
도 3A는 연결 유닛 없이 AUs와 BUs로 구성된 DNA 나노젤을 합성하기 위해, AUs와 직접적으로 결합하는 BUs를 합성한 전기영동 결과이다. 4개의 단일가닥 DNA를 이용하여 1개의 압타머 서열과 AUs와 결합 할 수 있는 3개의 접착성 말단을 가진 BUs가 합성되었다. 해당 BUs를 이용하여 AUs와 상보결합을 이용하여 나노젤을 합성하였을 때, AUs와 BUs의 비율이 증가함에 따라 나노젤이 점차 형성되었으며, 1.6:1의 비율에서 가장 잘 형성되었다(도 3B). 형성된 나노젤의 온도감응성을 투과전자현미경으로 확인하였을 때, 형성되어 있던 나노젤이 빛 조사 이후 단일 입자 수준으로 분해되는 것을 확인하였다(도 3C).3A is an electrophoresis result of synthesizing BUs that directly binds to AUs to synthesize a DNA nanogel composed of AUs and BUs without a linking unit. BUs with one aptamer sequence and three adhesive ends capable of binding to AUs were synthesized using four single-stranded DNAs. When nanogels were synthesized using the corresponding BUs by complementary bonding with AUs, nanogels were gradually formed as the ratio of AUs to BUs increased, and was best formed at a ratio of 1.6:1 (FIG. 3B). When the temperature sensitivity of the formed nanogel was confirmed with a transmission electron microscope, it was confirmed that the formed nanogel was decomposed to a single particle level after light irradiation (FIG. 3C).
마지막으로, LU는 접착성 말단 및 핵산 치료 영역을 포함하는 ssDNA를 구성하였다. 완전한 Dgel을 형성하기 위해 다른 나노구조체를 연결하는 접착성 말단의 길이는 열 반응성의 정확한 조절을 위해 10, 15 및 20bp로 설계되었다(표 2). 이 세 가지 유형의 나노구조체는 서열 특이적 방식으로 조립되어 다기능 DNA 나노젤을 형성한다. BU 및 AU는 광열 효과를 통해 압타머 기반 세포 표적화 및 광 유도 온도 증가를 촉진하였다. 또한, LU는 접착성 말단으로 BU와 AU 사이에 연결되어 온도 상승을 통해 나노젤의 제어 가능한 분해를 용이하게 한다. 자가조립을 통해 초분자 구조를 형성한 후 각 나노구조체의 기능을 확인하였다. Finally, the LU constructed ssDNA containing adhesive ends and nucleic acid therapeutic regions. The lengths of the adhesive ends connecting different nanostructures to form a complete Dgel were designed to be 10, 15 and 20 bp for precise control of thermal reactivity (Table 2). These three types of nanostructures are assembled in a sequence-specific manner to form multifunctional DNA nanogels. BU and AU promoted aptamer-based cell targeting and light-induced temperature increase through photothermal effects. In addition, LU is connected between BU and AU with adhesive ends, facilitating controllable degradation of nanogels through temperature rise. After forming a supramolecular structure through self-assembly, the function of each nanostructure was confirmed.
먼저, 초분자 구조의 열 반응성 분해를 LU의 접착성 말단의 길이에 따라 분석하였다. 혼성화된 BUs-LU(1:2 비율)의 용융 곡선은 실시간 PCR을 통해 분석되었다(도 4A). 10, 15, 20 bp의 접착성 말단 길이를 갖는 나노구조체를 사용한 혼성화된 BUs-LU의 용융 온도(Tm)는 각각 45.0 ± 0.3, 54.2 ± 1.1 및 58.2 ± 0.9 ℃이었다. 15bp 접착성 말단이 있는 BUs-LU의 원편광 이색법(CD)은 스펙트럼의 타원도가 온도가 증가함에 따라 감소하여 초분자 조립의 구조적 변화를 보여주는 것으로 나타났다(도 4B 및 도 5). Real-Time PCR 결과와 일치하게, 10bp 길이의 접착성 말단을 가진 BUs-LU는 더 빠른 타원율 감소를 보인 반면, 20bp의 접착성 말단을 가진 BUs-LU는 상대적으로 열에 저항력이 있어 90℃에서만 타원률 변화를 보였다. 특히 고온에서 BU는 부분적으로 혼성화된 상태를 유지하여 ssDNA 대조군과 유사한 타원도 감소를 방지할 것으로 예상된다. 이러한 결과는 DNA 서열 간의 적절한 혼성화 상호작용을 설계함으로써 초분자 분해가 정확하게 조절될 수 있음을 나타낸다. 결과적으로 생리학적 온도에서 추가 적용을 위해 15bp 접착성 말단이 선택되었다. First, the thermally reactive decomposition of the supramolecular structure was analyzed according to the length of the adhesive end of the LU. The melting curve of hybridized BUs-LU (ratio 1:2) was analyzed via real-time PCR (Fig. 4A). The melting temperatures (Tm) of hybridized BUs-LUs using nanostructures with adhesive end lengths of 10, 15, and 20 bp were 45.0 ± 0.3, 54.2 ± 1.1 and 58.2 ± 0.9 °C, respectively. Circular dichroism (CD) of BUs-LU with 15 bp adhesive ends showed that the ellipticity of the spectrum decreased with increasing temperature, showing a structural change in supramolecular assembly (Fig. 4B and Fig. 5). Consistent with the real-time PCR results, BUs-LUs with adhesive ends of 10 bp showed a faster decrease in ellipticity, whereas BUs-LUs with adhesive ends of 20 bp were relatively resistant to heat, resulting in ellipticity only at 90 °C. rate change was observed. In particular, at high temperatures, BU is expected to remain partially hybridized, preventing a decrease in ellipticity similar to that of the ssDNA control. These results indicate that supramolecular degradation can be precisely controlled by designing appropriate hybridization interactions between DNA sequences. Consequently, 15 bp adhesive ends were chosen for further application at physiological temperatures.
BUs-LU 복합체의 표적화 가능성과 암 특이적 세포 흡수를 확인하기 위해 BU는 뉴클레올린을 과발현하는 암세포에 선택적으로 결합하는 AS1411 압타머로 장식되었다. BUs-LU의 세포 전달 전에 FAM 표지 AS1411 압타머를 사용하여 유세포 분석을 통해 표적 부위 발현 수준을 확인하였다(도 6). SKOV3 세포는 NIH/3T3 세포와 비교하여 FAM 형광의 현저한 변화를 보여 뉴클레올린 상향 조절을 나타낸다. BUs-LUs 복합체의 압타머 매개 전달은 DNA 이중체 내에 삽입되는 대표적인 항암제인 독소루비신(DOX)을 로딩한 후 공초점 레이저 스캐닝 현미경(CLSM) 및 유세포 분석을 사용하여 분석되었다. DOX의 존재를 나타내는 현저하게 증가된 적색 형광 강도는 유세포 분석을 통해 밝혀진 바와 같이 SKOV3 난소암세포(뉴클레올린 양성)에서 관찰되었지만 NIH/3T3 정상 섬유아세포(뉴클레올린 음성)에서는 관찰되지 않았다(도 4C). CLSM은 BUs-LUs 복합체가 BUs보다 SKOV3 세포에 더 효율적으로 전달되었음을 추가로 밝혔으며, 이는 BUs-LUs 복합체의 입자 크기가 세포 전달에 더 적합했음을 나타낸다(도 4D). 반대로, BU 및 BUs-LU는 NIH/3T3 세포에 거의 전달되지 않았다. BUs-LU의 흡수 행동은 다양한 배양 기간에서 분석되었으며 BUs-LU는 1.5시간 후에 성공적으로 전달되었다(도 7). 이러한 결과는 나노구조체와 그 초분자 구조가 AS1411 압타머의 세포 흡수 메커니즘을 통해 표적 암세포에 선택적으로 전달됨을 입증하였다. 합성된 Dgels의 물리화학적 특성도 분석되었다. AU 통합 이전에 BUs-LUs 복합체는 초분자 구조 조립의 최적 비율을 확인하기 위해 준비되었다. BUs:LUs 몰비 2:1, 1:1, 1:2 및 1:4를 사용하여 얻은 유체역학적 직경은 각각 258.8 ± 57.5, 219.8 ± 59.5, 196.9 ± 33.4 및 287.9 ± 13.9 nm였다(도 8). 주사 전자 현미경 사진(SEM)은 동적 광산란 결과와 일치하는 217.2 ± 44.8, 216.1 ± 65.7, 162.4 ± 35.9 및 252.8 ± 42.1 nm 크기의 모든 몰비에 대해 잘 분산되고 균일한 구형 나노입자를 나타냈다(도 9). 1:2의 BUs-LUs 비율은 관련 나노젤 크기가 효율적인 세포 내 전달 및 연장된 생체 내 혈액 순환을 적절하게 지원하기 때문에 추가 생물학적 적용을 위해 선택되었다. 또한, BUs-LU 복합체의 합성을 확인하기 위한 젤 전기영동 분석은 BUs-LU의 밴드가 BU 및 LU의 밴드보다 느리게 이동하고 더 많은 번짐을 나타내어 성공적인 조립을 나타내는 것으로 나타났다(도 10). To confirm the targeting potential and cancer-specific cellular uptake of the BUs-LU complex, BU was decorated with an AS1411 aptamer that selectively binds to cancer cells overexpressing nucleolins. Prior to cell delivery of BUs-LU, target site expression levels were confirmed by flow cytometry using FAM-labeled AS1411 aptamer (FIG. 6). SKOV3 cells showed significant changes in FAM fluorescence compared to NIH/3T3 cells, indicating nucleolin upregulation. Aptamer-mediated delivery of the BUs-LUs complex was analyzed using confocal laser scanning microscopy (CLSM) and flow cytometry after loading with doxorubicin (DOX), a representative anticancer agent inserted into the DNA duplex. Significantly increased red fluorescence intensity indicative of the presence of DOX was observed in SKOV3 ovarian cancer cells (nucleolin positive) but not in NIH/3T3 normal fibroblasts (nucleolin negative) as revealed by flow cytometry (Fig. 4C). CLSM further revealed that BUs-LUs complexes were more efficiently delivered to SKOV3 cells than BUs, indicating that the particle size of BUs-LUs complexes was more suitable for cell delivery (Fig. 4D). Conversely, BU and BUs-LU were hardly delivered to NIH/3T3 cells. The uptake behavior of BUs-LU was analyzed at various incubation periods and BUs-LU was successfully delivered after 1.5 h (Fig. 7). These results demonstrated that nanostructures and their supramolecular structures were selectively delivered to target cancer cells through the cellular uptake mechanism of AS1411 aptamer. The physicochemical properties of the synthesized Dgels were also analyzed. Prior to AU integration, BUs-LUs complexes were prepared to identify the optimal rate of supramolecular structure assembly. The hydrodynamic diameters obtained using the BUs:LUs molar ratios of 2:1, 1:1, 1:2 and 1:4 were 258.8 ± 57.5, 219.8 ± 59.5, 196.9 ± 33.4 and 287.9 ± 13.9 nm, respectively (Fig. 8). Scanning electron micrographs (SEM) showed well-dispersed and uniform spherical nanoparticles for all molar ratios of sizes 217.2 ± 44.8, 216.1 ± 65.7, 162.4 ± 35.9 and 252.8 ± 42.1 nm, consistent with the dynamic light scattering results (Fig. 9). . The BUs-LUs ratio of 1:2 was chosen for further biological applications as the relevant nanogel size adequately supports efficient intracellular delivery and extended in vivo blood circulation. In addition, gel electrophoresis analysis to confirm the synthesis of the BUs-LU complex showed that the band of BUs-LU moved slower than the bands of BU and LU and showed more smearing, indicating successful assembly (FIG. 10).
이어서, AU를 BUs-LU 복합체에 고정된 비율로 첨가하여 Dgel을 합성하였다(BU:LU:AU 몰비 1:2:0.25). Dgel 흡수 스펙트럼은 플라즈몬 공명 피크가 AuNPs만의 파장에 비해 더 긴 파장으로 이동하는 것을 보여주었다(도 11A). SEM 이미지는 단분산 및 구형 Dgel 형태를 나타냈다(도 11B). 평균 Dgel 크기는 206.2 ± 58.6 nm였으며, 이는 동일한 BUs:LUs 비율로 합성된 BUs-LUs의 것과 유사하였다(도 11C). Dgels(-17.9 ± 0.7 mV)의 제타(ζ) 전위는 음으로 하전된 ssDNA-AuNP(AU)의 추가로 인해 BUs-LU(-11.5 ± 0.2 mV)보다 약간 더 높았다. 이러한 결과는 시퀀스 보조 자가조립을 통해 AU를 Dgel에 성공적으로 통합하여 Dgel의 물리화학적 특성이 AU 추가 시 크게 변하지 않았음을 보여준다. Then, Dgel was synthesized by adding AU to the BUs-LU complex at a fixed ratio (BU:LU:AU molar ratio 1:2:0.25). The Dgel absorption spectrum showed that the plasmon resonance peak shifted to a longer wavelength compared to that of AuNPs alone (Fig. 11A). SEM images showed monodisperse and spherical Dgel morphology (Fig. 11B). The average Dgel size was 206.2 ± 58.6 nm, which was similar to that of BUs-LUs synthesized with the same BUs:LUs ratio (Fig. 11C). The zeta (ζ) potential of Dgels (-17.9 ± 0.7 mV) was slightly higher than that of BUs-LU (-11.5 ± 0.2 mV) due to the addition of negatively charged ssDNA-AuNPs (AU). These results show that the physicochemical properties of Dgel did not change significantly when AU was added by successfully integrating AU into Dgel through sequence-assisted self-assembly.
Dgels는 광 트리거에 의해 분해되도록 설계되었다. Dgels가 빛에 노출되었을 때, Dgels에 포함된 AuNPs는 광열 효과를 통해 가열되었다. 이후, 생성된 열은 인접한 DNA 나노구조체로 전달되었다. 온도가 지정된 임계값에 도달하면 상보적 연결이 중단되어 초분자 조립이 중단된다. 광 조사에 의한 온도 응답성을 확인하기 위해 열 관찰 장치와 온도계를 사용하여 Dgel 광열 특성을 모니터링하였다(도 12). 광 조사 2분 후, Dgel 용액의 온도는 12℃ 증가하였다. Dgels의 AuNP 분포는 Dgels의 광 유도 분해를 확인하기 위해 투과 전자 현미경(TEM)을 통해 모니터링되었다(도 11D). 광 조사 전 Dgels의 TEM 이미지에서 AuNPs는 약 100nm 범위에 인접해 있다. 2분의 광 조사 후, 대부분의 AuNP가 잘 분산되어 있으며, 이는 Dgel의 분해를 의미한다. 이러한 결과는 로딩된 약물의 방출 메커니즘과 밀접한 관련이 있는 성공적인 광 유도 Dgel 분해를 보여준다. Dgels are designed to be dissociated by a light trigger. When the Dgels were exposed to light, the AuNPs contained in the Dgels were heated through the photothermal effect. The generated heat was then transferred to adjacent DNA nanostructures. When the temperature reaches a specified threshold, the complementary linkage is disrupted and supramolecular assembly ceases. In order to confirm the temperature response by light irradiation, the photothermal properties of the Dgel were monitored using a thermal observation device and a thermometer (FIG. 12). After 2 minutes of light irradiation, the temperature of the Dgel solution increased by 12°C. The AuNP distribution of the Dgels was monitored via transmission electron microscopy (TEM) to confirm the light-induced degradation of the Dgels (Fig. 11D). In the TEM image of Dgels before light irradiation, AuNPs are adjacent to the range of about 100 nm. After 2 min of light irradiation, most of the AuNPs are well dispersed, indicating the degradation of the Dgel. These results show successful light-induced Dgel degradation, which is closely related to the release mechanism of the loaded drug.
안티센스 올리고뉴클레오티드(AS-ODN) 및 화학약물(DOX)을 통합하여 복합 약물 로딩 및 자극-반응 약물 방출에 대한 Dgel의 적용 가능성을 조사하였다. 개념 증명으로 암세포에서 자주 과발현되는 항-Bcl-2(apoptotic B-cell lymphoma 2) 계열 단백질을 표적으로 하는 AS-ODN이 선택되었다. Bcl-2 단백질은 DOX 및 세포사멸 조절과 관련된 화학 요법 내성과 관련이 있다. Bcl-2 AS-ODN은 LU에 통합되었고 DOX는 DNA 이중체(duplex)에 삽입되었다. AS-ODN의 로딩 효율은 젤 전기 영동에서 LU가 거의 관찰되지 않았기 때문에 약 100%였다. DOX의 로딩 효율은 89.4%였다. Dgels 내 DOX의 양은 Dgels 내 AS-ODN당 12.5 당량으로 정량화되었다. 다른 pH와 온도에서 Dgels에서 로딩된 약물의 자극 반응성 방출은 방출된 DOX의 양을 모니터링하여 확인되었다. 엔도좀 환경에서 Dgel/DOX의 DOX 방출 거동은 다양한 pH 조건(5.0, 6.0 및 7.4)에서 평가되었다(도 13A). Dgels로부터의 누적 DOX 방출은 pH 의존적 방식으로 증가하였다: 4시간 이내에 pH 7.4, 6.0 및 5.0에서 각각 32.3, 38.7 및 41.1%. 고농도의 H+는 음이온성 DNA 나노구조에 삽입된 양이온성 DOX와 경쟁하여 결합 상호작용을 약화시키고 DOX 방출을 초래한다. DOX의 열 반응성 방출은 다른 온도(25, 37 및 50℃)에서 평가되었다(도 13B). DOX는 온도가 증가함에 따라 더 빠르게 방출되었으며, 약 57%가 인큐베이션 4시간 후에 방출되었다. 특히, DOX가 pH 및 온도 트리거에 의해 완전히 방출되지는 않았지만, 방출되지 않은 DOX는 생리학적 조건에서 효소 분해를 통해 쉽게 접근할 수 있었다. 이러한 결과는 DOX가 pH 및 온도 유발 요인에 의해 세포에서 방출될 수 있음을 의미한다. 또한, Bcl-2는 초분자 구조의 분해에 의해 40℃에서 온도 의존적 방식으로 방출되어 요청 시 올리고뉴클레오티드의 광 트리거 방출을 촉진할 것으로 예상되었다(도 14). The applicability of Dgel for complex drug loading and stimulus-response drug release was investigated by incorporating antisense oligonucleotides (AS-ODN) and chemical drugs (DOX). As a proof-of-concept, AS-ODN was selected, which targets an anti-Bcl-2 (apoptotic B-cell lymphoma 2) family protein that is frequently overexpressed in cancer cells. Bcl-2 protein is implicated in chemotherapy resistance, which is involved in the regulation of DOX and apoptosis. Bcl-2 AS-ODN was incorporated into the LU and DOX was inserted into the DNA duplex. The loading efficiency of AS-ODN was about 100%, as little LU was observed in gel electrophoresis. The loading efficiency of DOX was 89.4%. The amount of DOX in Dgels was quantified as 12.5 equivalents per AS-ODN in Dgels. Stimuli-responsive release of drug loaded in Dgels at different pH and temperature was confirmed by monitoring the amount of released DOX. The DOX release behavior of Dgel / DOX in the endosomal environment was evaluated under various pH conditions (5.0, 6.0 and 7.4) (FIG. 13A). Cumulative DOX release from Dgels increased in a pH-dependent manner: 32.3, 38.7 and 41.1% at pH 7.4, 6.0 and 5.0, respectively, within 4 h. High concentrations of H+ compete with cationic DOX incorporated into anionic DNA nanostructures, weakening binding interactions and leading to DOX release. The thermally responsive release of DOX was evaluated at different temperatures (25, 37 and 50° C.) ( FIG. 13B ). DOX was released more rapidly with increasing temperature, about 57% was released after 4 hours of incubation. In particular, although DOX was not completely released by pH and temperature triggers, the unreleased DOX was readily accessible through enzymatic degradation under physiological conditions. These results suggest that DOX can be released from cells by pH and temperature triggers. In addition, Bcl-2 was expected to be released in a temperature-dependent manner at 40 °C by degradation of the supramolecular structure, facilitating light-triggered release of oligonucleotides on demand (Fig. 14).
Dgels의 세포 내 전달, 항암 약물 효능 및 세포 생존 능력을 검증하여 잠재적 약물 전달 응용 프로그램을 결정하였다. 대상 세포에서 적절한 기능을 확인하기 위해 압타머 매개 세포 내 전달 및 Dgel의 엔도좀 탈출을 분석하기 위해 SKOV3 세포를 Dgel로 처리하고 추가로 6시간 동안 배양하고 내재화된 Dgel을 DIC(differential interference contrast)에서 시각화하였다. 압타머 기능이 있는 Dgels는 SKOV3 세포 내에서 관찰된 반면, 압타머가 없는 Dgels는 SKOV3 세포 내에서 거의 관찰되지 않았다(도 15). 또한, Dgels는 NIH/3T3 세포에 전달되지 않았으며, 이는 암세포에 대한 선택적 전달을 나타낸다(도 16A). 또한, 세포 내부의 AU 클러스터의 pH 유발 형성이 관찰되었다. AU에 통합된 PolyA 서열은 엔도좀의 산성 환경에서 평행 이중체를 형성하여 pH 의존적 AU 클러스터 형성을 유발하며, 이는 점진적인 AU 클러스터 성장에 의해 엔도좀 탈출을 유도할 것으로 예상된다. 특히, SKOV3 세포를 Dgel로 처리한 직후에는 AU 클러스터링이 관찰되지 않았고, 클러스터는 배양 3시간 후에 점차적으로 형성되었고, 대부분 48시간 후에 소멸되었다. 그러나 NIH/3T3 세포나 SKOV3 세포에서는 6시간의 배양 후에도 압타머 없이 Dgel을 처리한 경우 클러스터가 거의 형성되지 않았다(도 17).Potential drug delivery applications were determined by validating the intracellular delivery, anticancer drug efficacy, and cell viability of Dgels. To analyze aptamer-mediated intracellular delivery and endosomal escape of Dgel to confirm proper function in target cells, SKOV3 cells were treated with Dgel and cultured for an additional 6 hours, and the internalized Dgel was subjected to differential interference contrast (DIC). visualized. Dgels with aptamer function were observed in SKOV3 cells, whereas Dgels without aptamer were hardly observed in SKOV3 cells (FIG. 15). In addition, Dgels did not deliver to NIH/3T3 cells, indicating selective delivery to cancer cells ( FIG. 16A ). In addition, pH-induced formation of AU clusters inside the cells was observed. PolyA sequence integrated into AU causes the formation of a pH-dependent AU cluster by forming a parallel duplex in the acidic environment of endosomes, which is expected to induce endosomal escape by gradual AU cluster growth. In particular, AU clustering was not observed immediately after treatment of SKOV3 cells with Dgel, and clusters were gradually formed after 3 hours of incubation, and mostly disappeared after 48 hours. However, clusters were hardly formed in NIH/3T3 cells or SKOV3 cells when Dgel was treated without an aptamer even after 6 hours of incubation ( FIG. 17 ).
로딩된 약물의 치료 효능을 평가하기 위해 다른 농도에서 Dgel과 함께 배양된 SKOV3 세포의 생존력을 분석하였다. 광 조사 후 DOX 없이 Dgel/Bcl-2로 처리된 세포는 농도 의존적 방식으로 증가된 치료 효능을 입증하였다. 상대 세포 생존율은 1μM의 유효 Bcl-2 AS-ODN 농도에서 44.9%였으며, 이는 Bcl-2 조절 세포자멸사에 의해 유발되었다(도 18). Dgels, 즉 Dgel/Bcl-2/DOX를 사용한 Bcl-2 AS-ODN과 DOX의 동시 전달 효과는 이후에 조사되었다. Bcl-2 AS-ODN 또는 광 조사 없이 DOX가 로딩된 Dgel을 사용한 SKOV3 세포 처리는 세포 증식을 변경하지 않았다(도 16B). 특히, Dgel/Bcl-2/DOX 처리는 400nM Bcl-2 AS-ODN과 함께 광 조사 후 상대적 세포 생존율을 51.4%로 상당히 감소시켰으며, 이는 잠재적으로 Dgel/Bcl-2/DOX 시스템의 조합 치료 효능을 입증하였다. 광 유도 Dgel 분해를 통해 세포 내부의 AS-ODN 및 DOX가 성공적으로 방출되고, Dgel에 로드된 공동 약물은 약물이 없는 젤이 SKOV3 세포에 대해 무시할 수 있는 독성을 나타내므로 세포 생존 능력을 현저히 감소시켰다. 이러한 결과는 표적 암세포에 대한 AS-ODN 및 DOX를 함유하는 Dgel의 복합 치료적 효능을 입증한다.To evaluate the therapeutic efficacy of the loaded drug, the viability of SKOV3 cells incubated with Dgel at different concentrations was analyzed. Cells treated with Dgel/Bcl-2 without DOX after light irradiation demonstrated increased therapeutic efficacy in a concentration-dependent manner. The relative cell viability was 44.9% at an effective Bcl-2 AS-ODN concentration of 1 μM, which was induced by Bcl-2 regulated apoptosis ( FIG. 18 ). The effect of simultaneous delivery of Bcl-2 AS-ODN and DOX using Dgels, ie, Dgel/Bcl-2/DOX, was subsequently investigated. Treatment of SKOV3 cells with Dgel loaded with DOX without Bcl-2 AS-ODN or light irradiation did not alter cell proliferation ( FIG. 16B ). In particular, Dgel/Bcl-2/DOX treatment significantly reduced the relative cell viability to 51.4% after light irradiation with 400 nM Bcl-2 AS-ODN, potentially indicating the efficacy of the combination treatment of the Dgel/Bcl-2/DOX system. has been proven. Through light-induced Dgel degradation, AS-ODN and DOX inside cells were successfully released, and co-drugs loaded on Dgel significantly reduced cell viability as the drug-free gel showed negligible toxicity to SKOV3 cells. . These results demonstrate the combined therapeutic efficacy of Dgel containing AS-ODN and DOX against target cancer cells.
결론적으로, 본 발명은 기능화된 나노구조체들로부터 형성되는 지능형 DNA 기반 나노젤을 제공한다. 이 플랫폼은 적절한 시퀀스와 다중 기능을 통합하여 표적 암세포에 약물을 선택적으로 전달하고 온도 유도 분해를 통해 로딩된 약물의 방출을 정밀하게 제어할 수 있다. 따라서 이 DNA 나노젤 플랫폼의 사용은 핵산 치료제와 화학 치료제의 다양한 조합을 채택함으로써 정밀 의학 및 암 치료를 위한 유망한 전략을 제공한다.In conclusion, the present invention provides an intelligent DNA-based nanogel formed from functionalized nanostructures. By integrating appropriate sequences and multiple functions, this platform can selectively deliver drugs to target cancer cells and precisely control the release of loaded drugs through temperature-induced degradation. The use of this DNA nanogel platform therefore offers a promising strategy for precision medicine and cancer treatment by employing diverse combinations of nucleic acid and chemotherapeutic agents.
본 발명은 약물전달체 또는 항암 분야에 적용할 수 있다.The present invention can be applied to the field of drug delivery or anticancer.

Claims (13)

  1. 각각의 암(arm)이 접착성 말단을 갖는 분지형 DNA 유닛;branched DNA units, each arm having an adhesive end;
    금나노입자 및 접착성 말단을 갖는 단일가닥 DNA를 포함하는 감광성 유닛; 및a photosensitive unit comprising gold nanoparticles and single-stranded DNA having an adhesive end; and
    접착성 말단을 갖는 연결 유닛의 자가조립에 의해 형성된 온도 감응성 DNA 나노젤.A temperature-sensitive DNA nanogel formed by self-assembly of linking units with adhesive ends.
  2. 제1항에 있어서,The method of claim 1,
    접착성 말단은 5 내지 30 bp의 염기 서열로 이루어진, 온도 감응성 DNA 나노젤.The adhesive end consists of a nucleotide sequence of 5 to 30 bp, temperature-sensitive DNA nanogel.
  3. 제1항에 있어서,According to claim 1,
    분지형 DNA 유닛은 X-형 DNA, Y-형 DNA 및 T-형 DNA 중에서 선택되는, 온도 감응성 DNA 나노젤.wherein the branched DNA unit is selected from X-type DNA, Y-type DNA and T-type DNA.
  4. 제1항에 있어서,According to claim 1,
    분지형 DNA 유닛은 표적화 핵산 성분을 더 포함하는, 온도 감응성 DNA 나노젤.wherein the branched DNA unit further comprises a targeting nucleic acid component.
  5. 제1항에 있어서,According to claim 1,
    감광성 유닛은 접착성 말단 및 polyA tail을 포함하는 단일가닥 DNA가 금나노입자에 흡착하여 형성되는, 온도 감응성 DNA 나노젤.The photosensitive unit is a temperature-sensitive DNA nanogel formed by adsorbing single-stranded DNA including an adhesive end and a polyA tail to gold nanoparticles.
  6. 제1항에 있어서,According to claim 1,
    금나노입자는 5 내지 100 nm의 직경을 갖는 구형의 형태 또는 5 내지 70 nm의 길이를 갖는 막대의 형태인, 온도 감응성 DNA 나노젤.Gold nanoparticles are in the form of a spherical shape having a diameter of 5 to 100 nm or a rod having a length of 5 to 70 nm, a temperature-sensitive DNA nanogel.
  7. 제1항에 있어서,According to claim 1,
    분지형 DNA 유닛 및 연결 유닛의 몰비는 2:1 내지 1:4인, 온도 감응성 DNA 나노젤.The temperature-sensitive DNA nanogel, wherein the molar ratio of the branched DNA unit and the linking unit is 2:1 to 1:4.
  8. 제1항에 있어서,The method of claim 1,
    연결 유닛은 핵산 약물을 더 포함하는, 온도 감응성 DNA 나노젤.The linking unit further comprises a nucleic acid drug, temperature-sensitive DNA nanogel.
  9. 제8항에 있어서,9. The method of claim 8,
    핵산 약물은 DNA(deoxyribonucleic acid), RNA(ribonucleic acid), PNA(peptide nucleic acid), LNA(morpholino and locked nucleic acid), GNA(glycol nucleic acid), 올리고뉴클레오티드(oliogonucleotide), 플라스미드 DNA(plasmid DNA), 안티센스 올리고뉴클레오티드(antisense oligonucleotide), 메신저 RNA(messenger RNA), 마이크로 RNA(microRNA), 잠금형 핵산(locked nucleic acid), DNA 기반 효소(DNAzyme), 작은 간섭 RNA(small interfering RNA), 짧은 헤어핀 RNA(short hairpin RNA), RNA 기반 효소(RNAzyme) 및 핵산 압타머(aptamer)로 이루어진 군에서 선택된 하나 이상인, 온도 감응성 DNA 나노젤.Nucleic acid drugs are DNA (deoxyribonucleic acid), RNA (ribonucleic acid), PNA (peptide nucleic acid), LNA (morpholino and locked nucleic acid), GNA (glycol nucleic acid), oligonucleotides, plasmid DNA , antisense oligonucleotide, messenger RNA, microRNA, locked nucleic acid, DNA-based enzyme, small interfering RNA, short hairpin RNA (short hairpin RNA), RNA-based enzyme (RNAzyme), and at least one selected from the group consisting of nucleic acid aptamer (aptamer), temperature-sensitive DNA nanogel.
  10. 제1항에 있어서,The method of claim 1,
    온도 감응성 DNA 나노젤은 대사길항제, 식물성 알칼로이드, 토포이소머레이즈 저해제, 알킬화제, 항암성 항생물질 및 호르몬제로 이루어진 군에서 선택된 하나 이상의 항암제를 탑재할 수 있는, 온도 감응성 DNA 나노젤. Temperature-sensitive DNA nanogel is a metabolic antagonist, plant alkaloid, topoisomerase inhibitor, alkylating agent, anticancer antibiotic and one or more anticancer agents selected from the group consisting of hormones, temperature-sensitive DNA nanogels that can be loaded.
  11. 제1항 내지 제10항 중 어느 한 항의 온도 감응성 DNA 나노젤; 및The temperature-sensitive DNA nanogel of any one of claims 1 to 10; and
    약제학적으로 허용 가능한 담체를 포함하는 약물전달체.A drug delivery system comprising a pharmaceutically acceptable carrier.
  12. 제1항 내지 제10항 중 어느 한 항의 온도 감응성 DNA 나노젤을 포함하는 항암용 조성물.An anticancer composition comprising the temperature-sensitive DNA nanogel of any one of claims 1 to 10.
  13. 유효량의 제1항 내지 제10항 중 어느 한 항의 온도 감응성 DNA 나노젤을 이를 필요로 하는 대상체에게 투여하는 단계를 포함하는 암의 치료 방법.A method for treating cancer comprising administering to a subject in need thereof an effective amount of the temperature-sensitive DNA nanogel of any one of claims 1 to 10.
PCT/KR2021/014621 2020-10-19 2021-10-19 Thermo-responsive dna nanogel and pharmaceutical use thereof WO2022086137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0135276 2020-10-19
KR20200135276 2020-10-19

Publications (1)

Publication Number Publication Date
WO2022086137A1 true WO2022086137A1 (en) 2022-04-28

Family

ID=81290013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014621 WO2022086137A1 (en) 2020-10-19 2021-10-19 Thermo-responsive dna nanogel and pharmaceutical use thereof

Country Status (2)

Country Link
KR (1) KR20220051826A (en)
WO (1) WO2022086137A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228520A1 (en) * 2009-08-19 2012-09-13 Weihong Tan Photoregulated Reversible Hydrogels for Delivery and Releasing of Drugs and Other Therapeutical Reagents
KR20140092430A (en) * 2012-12-26 2014-07-24 삼성전자주식회사 Nano particle assembly, preparation thereof, and active material delivering composite comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228520A1 (en) * 2009-08-19 2012-09-13 Weihong Tan Photoregulated Reversible Hydrogels for Delivery and Releasing of Drugs and Other Therapeutical Reagents
KR20140092430A (en) * 2012-12-26 2014-07-24 삼성전자주식회사 Nano particle assembly, preparation thereof, and active material delivering composite comprising the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE KYUNGSENE, TAEHYUNG KIM, YOUNG MIN KIM, KYUNGJIK YANG, INSEOK CHOI, YOUNG HOON ROH: "Multifunctional DNA Nanogels for Aptamer-Based Targeted Delivery and Stimuli-Triggered Release of Cancer Therapeutics", MACROMOL. RAPID. COMMUN., vol. 42, 23 November 2020 (2020-11-23), XP055924520, DOI: 10.1002/marc.202000457 *
LI JUAN, ZHENG CHENG, CANSIZ SENA, WU CUICHEN, XU JIEHUA, CUI CHENG, LIU YUAN, HOU WEIJIA, WANG YANYUE, ZHANG LIQIN, TENG I-TING, : "Self-assembly of DNA Nanohydrogels with Controllable Size and Stimuli-Responsive Property for Targeted Gene Regulation Therapy", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 137, no. 4, 4 February 2015 (2015-02-04), pages 1412 - 1415, XP055785969, ISSN: 0002-7863, DOI: 10.1021/ja512293f *
SONG JAEJUNG, HWANG SEKYU, IM KYUHYUN, HUR JAEHYUN, NAM JUTAEK, HWANG SUNGWOO, AHN G-ONE, KIM SUNGJEE, PARK NOKYOUNG: "Light-responsible DNA hydrogel–gold nanoparticle assembly for synergistic cancer therapy", JOURNAL OF MATERIALS CHEMISTRY. B, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 3, no. 8, 1 January 2015 (2015-01-01), GB , pages 1537 - 1543, XP055924524, ISSN: 2050-750X, DOI: 10.1039/C4TB01519C *

Also Published As

Publication number Publication date
KR20220051826A (en) 2022-04-26

Similar Documents

Publication Publication Date Title
Zhu et al. Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules
US11607391B2 (en) Mineral-coated microspheres
CN102666879B (en) Templated nanometer conjugate
Ma et al. Floxuridine-containing nucleic acid nanogels for anticancer drug delivery
CN112779251B (en) DNA chain for inhibiting targeting ability of aptamer, nano drug delivery system and preparation method
De Luca et al. Simultaneous blockade of different EGF-like growth factors results in efficient growth inhibition of human colon carcinoma xenografts
Houchin-Ray et al. Patterned PLG substrates for localized DNA delivery and directed neurite extension
EP2027266B1 (en) Multimer for immunostimulation
WO2022086137A1 (en) Thermo-responsive dna nanogel and pharmaceutical use thereof
Wang et al. Gint4. T-modified DNA tetrahedrons loaded with doxorubicin inhibits glioma cell proliferation by targeting PDGFRβ
Kimna et al. Engineering an orchestrated release avalanche from hydrogels using DNA-nanotechnology
Luo et al. RNA interference of MBD1 in BxPC-3 human pancreatic cancer cells delivered by PLGA-poloxamer nanoparticles
WO2014003830A1 (en) Particle-nucleic acid conjugates and therapeutic uses related thereto
CA2816121C (en) System and method for delivery of dna-binding chemotherapy drugs using nanoparticles
WO2018175445A1 (en) Poly(lactic-co-glycolic acid) (plga) spherical nucleic acids
WO2023229344A1 (en) Messenger rna carrier based on nanoparticle-oligo t conjugate
Pan et al. Zoledronate combined metal-organic frameworks for bone-targeting and drugs deliveries
WO2019074258A1 (en) Composition for transcatheter arterial chemoembolization, comprising nanoparticle for anticancer therapy and gene therapy
Lee et al. L-DNA linear duplex: An efficient drug delivery carrier with a simple structure
Cho et al. Neurotrophin receptors in the geniculate ganglion
WO2015031580A1 (en) Modified silica shell particles, and methods of making and using the same
Shams et al. In vitro elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143-and 206-loaded folic acid-conjugated PLGA nanoparticles
US20230381322A1 (en) Method for preparing a dna network with controlled crystal structure and a method for injecting drugs using the dna network
WO2019066632A9 (en) Nanostructure which can penetrate deeply into cancer tissue
WO2015066708A1 (en) Quantification and spatio-temporal tracking of a target using a spherical nucleic acid (sna)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21883206

Country of ref document: EP

Kind code of ref document: A1