WO2022085789A1 - Method for recovering carbon dioxide, method for absorbing carbon dioxide, and method for desorbing carbon dioxide - Google Patents

Method for recovering carbon dioxide, method for absorbing carbon dioxide, and method for desorbing carbon dioxide Download PDF

Info

Publication number
WO2022085789A1
WO2022085789A1 PCT/JP2021/039122 JP2021039122W WO2022085789A1 WO 2022085789 A1 WO2022085789 A1 WO 2022085789A1 JP 2021039122 W JP2021039122 W JP 2021039122W WO 2022085789 A1 WO2022085789 A1 WO 2022085789A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
group
integer
substituent
same
Prior art date
Application number
PCT/JP2021/039122
Other languages
French (fr)
Japanese (ja)
Inventor
誠司 山添
大樹 三浦
哲也 宍戸
裕宇 藤木
純 平山
玄 加藤
聡一 吉川
和志 天本
Original Assignee
東京都公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京都公立大学法人 filed Critical 東京都公立大学法人
Priority to JP2022557622A priority Critical patent/JP7441557B2/en
Publication of WO2022085789A1 publication Critical patent/WO2022085789A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a method for recovering carbon dioxide, a method for absorbing carbon dioxide, and a method for releasing carbon dioxide.
  • Carbon dioxide gas is a greenhouse gas, and its concentration in the atmosphere rises, causing global warming. So far, the progress of civilization has continued to consume large amounts of fossil fuels on the earth, and carbon dioxide emissions have continued to increase. In contrast, plants absorb carbon dioxide and release oxygen through photosynthesis. However, logging is progressing on a global scale, large amounts of plants are being lost, and carbon dioxide consumption continues to decline. As a result, the concentration of carbon dioxide in the atmosphere is increasing, and various harmful effects thought to be caused by global warming are recognized on a global scale. against this background, various techniques for absorbing and immobilizing carbon dioxide in the atmosphere have been studied.
  • a carbon dioxide absorber containing 1,3-diaminocyclohexane or a derivative in which 1 to 3 hydrogen atoms in the cyclohexane ring conformation are substituted with an alkyl group having 1 to 4 carbon atoms is disclosed.
  • -NH-C carboxyamino group
  • 1,3-diaminocyclohexane and its derivatives are known to be easily polymerized by themselves, and have a problem that the carbon dioxide absorption capacity is likely to decrease.
  • carbon dioxide is not only used for photosynthesis of plants, but also as a raw material for producing high-performance materials. Therefore, in recent years, the development of carbon dioxide recovery technology that absorbs carbon dioxide and releases the absorbed carbon dioxide has been promoted.
  • An object of the present invention is to provide a carbon dioxide absorbing / releasing agent having sufficient carbon dioxide absorbing / releasing ability and a novel method for recovering carbon dioxide.
  • the present invention adopts the following configuration. [1]. It is a method for recovering carbon dioxide, and the method for recovering carbon dioxide is described in the following general formula (1).
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • a method for recovering carbon dioxide (where m is 0, p 1 is 2, and two amino groups with p 1 are arranged in meta positions with each other. Excluding carbon dioxide recovery methods). [2].
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • a method for recovering carbon dioxide (where m is 0, p 1 is 2, and p 1 is), which comprises a step (B2) of releasing the carbon dioxide from the carbon dioxide absorbing / releasing agent. Except for the method of recovering carbon dioxide when the two attached amino groups are arranged at the meta positions of each other). [4].
  • the compound represented by the general formula (1) is the following general formula (11A), (12A) or (11B).
  • R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively.
  • Carbonyl group formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more.
  • the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other.
  • q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual.
  • the alkyl group may be bonded to to form a ring
  • q 12 may be an integer of 2 or more
  • R 12 of 2 or more may have an amino group as the substituent.
  • the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more.
  • the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent.
  • the two or more R 21s may be bonded to each other to form a ring.
  • the compound represented by the general formula (11A), (12A) or (11B) is the following general formula (111A), (121A), (122A) or (111B).
  • R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent.
  • q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent.
  • the two or more R 111s may be coupled to each other to form a ring
  • q 121 is an integer of 2 or more
  • two or more R 121s are the substituents.
  • the alkyl group which may have an amino group the two or more R 121s may be bonded to each other to form a ring
  • q 122 is an integer of 2 or more.
  • the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring.
  • q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 .
  • the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent.
  • the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents.
  • the alkyl group which may have an amino group the two R 211s may be bonded to each other to form a ring), which is a compound represented by [4].
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • a method for absorbing carbon dioxide having a step (a1) of precipitating in the carbon dioxide absorbing / releasing agent (where m is 0, p 1 is 2 and p 1 is attached to the two amino groups. Except for the method of absorbing carbon dioxide when they are placed in meta positions with each other). [8].
  • a method for releasing carbon dioxide, wherein the method for releasing carbon dioxide is based on the following general formula (1).
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • a carbon dioxide absorbing / releasing agent having sufficient carbon dioxide absorbing / releasing ability and a novel method for recovering carbon dioxide are provided.
  • FIG. 6 is spectral data of weight loss at the time of thermogravimetric analysis-mass spectrometry for the carbon dioxide emitting agent in Example 6.
  • FIG. 6 is spectral data of ionic strength at the time of thermogravimetric analysis-mass spectrometry for the carbon dioxide emitting agent in Example 6. It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas in the 1st carbon dioxide emission experiment in Examples 7-8. It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas in the 2nd carbon dioxide emission experiment in Examples 7-8. It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in the 1st cycle to the 2nd cycle in Example 9. It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in the 1st cycle to the 2nd cycle in Example 9.
  • the carbon dioxide absorbing / releasing agent according to the embodiment of the present invention is a carbon dioxide absorbing / releasing agent that absorbs carbon dioxide and releases the absorbed carbon dioxide, and has the following general formula (1).
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • m is 0, p 1 is 2, and p 1 is attached
  • compound (1) a compound represented by (in the present specification, it may be referred to as “compound (1)”). Except for carbon dioxide absorption and release agents when two amino groups are located at the meta positions of each other).
  • the active ingredient that absorbs carbon dioxide and releases carbon dioxide after absorption is compound (1). That is, the compound (1) has reactivity with carbon dioxide (in other words, absorbable), and the reactant of the compound (1) and carbon dioxide has the property of releasing carbon dioxide.
  • the carbamic acid derivative which is a reaction product of compound (1) and carbon dioxide, releases carbon dioxide from the carboxyamino group in the derivative to form an amino group.
  • the carbamic acid derivative returns to compound (1).
  • the compound (1) can absorb and release carbon dioxide again by the same reaction mechanism. That is, compound (1) can repeatedly absorb and release carbon dioxide.
  • the compound (1) is represented by the general formula (1).
  • m is 0 or 1.
  • m defines the presence or absence of one cyclohexane ring skeleton mediated by a methylene group in compound (1). That is, when m is 0, the compound (1) is a cyclohexane derivative and is represented by the following general formula (1A) (in the present specification, this compound may be referred to as “compound (1A)”). (However, excluding compounds in which p 1 is 2 and two (p 1 ) amino groups with p 1 are arranged at the meta positions of each other).
  • compound (1) is a dicyclohexylmethane derivative and is represented by the following general formula (1B) (in the present specification, this compound may be referred to as “compound (1B)”).
  • the compound having such a substituted structure is referred to as the above-mentioned specific compound. It is referred to as a "derivative" of the compound of.
  • group includes not only an atomic group formed by bonding a plurality of atoms but also one atom, unless otherwise specified.
  • ) -H alkylcarbonyl group (acyl group), alkylthio group, sulfo group (-SO 3H ), alkyloxysulfonyl group, nitro group (-NO 2 ), hydroxyl group (-OH), thiol group (mercapto group, -SH), a cyano (-CN) group or a halogen atom
  • the alkyl group may have a substituent. That is, these groups in R 1 and R 2 may be the same or different from each other.
  • the alkyl group in R 1 and R 2 may be linear, branched or cyclic.
  • the carbon number of the linear or branched alkyl group in R 1 and R 2 is not particularly limited, but is preferably 1 to 20.
  • Examples of such linear or branched alkyl groups include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • n-Pentyl group isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3- Dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethyl Pentyl group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadec
  • the cyclic alkyl group in R 1 and R 2 may be either monocyclic or polycyclic.
  • the number of carbon atoms of the cyclic alkyl group is not particularly limited as long as it is 3 or more, but it is preferably 3 to 20.
  • Examples of the cyclic alkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group and 2-. Examples thereof include an adamantyl group and a tricyclodecyl group.
  • the cyclic alkyl group preferably has 3 to 15 carbon atoms, and may be, for example, any of 3 to 10, 3 to 7, and 3 to 5, or 5 to 15, 5 to 10. , And any of 5 to 7.
  • the alkyl group in R 1 and R 2 may be a mixture of a linear or branched chain structure and a cyclic structure.
  • Examples of the alkyl group in which such a chain structure and a cyclic structure are mixed include the above-mentioned linear or branched chain such as a cyclopentylmethyl group, a 1-cyclopentylethyl group, a cyclohexylmethyl group, and a 1-cyclohexylethyl group.
  • the number of carbon atoms of the alkyl group in which the chain structure and the cyclic structure are mixed is not particularly limited as long as it is 4 or more, but is preferably 4 to 25, and is preferably any of 6 to 15, and 6 to 10, for example. There may be.
  • the alkyl group having only a chain structure and not having a cyclic structure is a chain alkyl group, and the alkyl group having a cyclic structure is cyclic regardless of the presence or absence of the chain structure. It is an alkyl group.
  • the alkyl groups in R 1 and R 2 are independently alkyl groups having 1 to 10 carbon atoms (chain alkyl groups having 1 to 10 carbon atoms and cyclic alkyl groups having 3 to 10 carbon atoms). It is more preferable that the alkyl groups have 1 to 5 carbon atoms (chain alkyl groups having 1 to 5 carbon atoms and cyclic alkyl groups having 3 to 5 carbon atoms) independently of each other.
  • the alkyl group in R 1 and R 2 may have a substituent.
  • the fact that the alkyl group has a substituent means that one or more hydrogen atoms in the alkyl group are substituted with a group other than the hydrogen atom.
  • the substituents may be all the same, all may be different, or only a part thereof may be the same. ..
  • the substitution position of the hydrogen atom is not particularly limited.
  • the substitution position may be a carbon atom at the end of the chain structure or a non-terminal carbon atom.
  • the number of substituents depends on the number of hydrogen atoms that can be substituted, but is usually preferably 1 to 3 or 1 or. It is more preferable that the number is two.
  • substituents examples include an amino group, a cyano group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), a hydroxyl group and the like.
  • alkyl groups having a substituent for example, an aminoalkyl group having an amino group as a substituent is mentioned, and a more preferable one is, for example, a chain (linear or branched).
  • examples thereof include an aminoalkyl group in which an amino group is bonded to a carbon atom at the end of the alkyl group.
  • the alkoxy group in R 1 and R 2 may be linear, branched or cyclic.
  • Examples of the alkoxy group in R 1 and R 2 include a methoxy group (CH 3 -O-), a cyclopropyloxy group (C 3 H 5 -O-), and a cyclopentylmethyl oxy group (C 5 H 9 -CH 2 ). -O-), methylcyclopentyloxy group (CH 3 -C 5 H 8 -O-), etc.
  • the linear, branched or cyclic alkyl groups in R 1 and R 2 described above become oxygen atoms. Examples thereof include monovalent groups having a bonded structure.
  • the linear or branched alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 10, for example, 1 to 7, 1 to 5, and 1 to 3. It may be either.
  • the cyclic alcoholic group preferably has 3 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and may be, for example, any of 3 to 10, 3 to 7, and 3 to 5. It may be any of 5 to 15, 5 to 10, and 5 to 7.
  • the number of carbon atoms of the alkoxy group in which the chain structure and the cyclic structure are mixed is not particularly limited as long as it is 4 or more, but is preferably 4 to 25, and is preferably any of 6 to 15, and 6 to 10, for example. There may be.
  • the alkoxy group having only a chain structure and not having a cyclic structure is a chain alkoxy group
  • the alkoxy group having a cyclic structure is cyclic regardless of the presence or absence of the chain structure. It is an alkoxy group.
  • the alkoxy groups in R 1 and R 2 are independently alkoxy groups having 1 to 10 carbon atoms (chain alkoxy groups having 1 to 10 carbon atoms and cyclic alkoxy groups having 3 to 10 carbon atoms). It is more preferable that the alkoxy groups have 1 to 5 carbon atoms (chain alkoxy groups having 1 to 5 carbon atoms and cyclic alkoxy groups having 3 to 5 carbon atoms) independently of each other.
  • the number of carbon atoms of the alkyloxycarbonyl group is preferably 2 to 21, more preferably 2 to 11, for example, 2 to 8, It may be any of 2 to 6 and 2 to 4.
  • the alkyloxycarbonyl group preferably has 4 to 21 carbon atoms, more preferably 4 to 16 carbon atoms, for example, 4 to 11, 4 to 8 and 4 carbon atoms. It may be any of 6 to 6, 6 to 16, 6 to 11 and 6 to 8.
  • the carbon number of the alkyloxycarbonyl group is not particularly limited as long as it is 5 or more, but is preferably 5 to 26, for example, 7. It may be any of 16 and 7-11.
  • the alkyloxycarbonyl group in R 1 and R 2 is preferably an alkyloxycarbonyl group having 2 to 11 carbon atoms independently, and each independently has an alkyloxycarbonyl group having 2 to 6 carbon atoms. Is more preferable.
  • the number of carbon atoms of the alkylcarbonyl group is preferably 2 to 21, more preferably 2 to 11, for example, 2 to 8 and 2. It may be any of 6 and 2-4.
  • the alkyl group is cyclic, the number of carbon atoms of the alkylcarbonyl group is preferably 4 to 21, more preferably 4 to 16, for example, 4 to 11, 4 to 8, and 4 to 4. It may be any of 6, or 6 to 16, 6 to 11, and 6 to 8.
  • the number of carbon atoms of the alkylcarbonyl group is not particularly limited as long as it is 5 or more, but is preferably 5 to 26, for example, 7 to 26. It may be any of 16 and 7-11.
  • the alkylcarbonyl groups in R 1 and R 2 are preferably independent alkylcarbonyl groups having 2 to 11 carbon atoms, and more preferably independent alkylcarbonyl groups having 2 to 6 carbon atoms. ..
  • the alkylthio group in R 1 and R 2 may be linear, branched or cyclic.
  • Examples of the alkylthio group in R 1 and R 2 include a methyl thio group (CH 3 -S-), a cyclopropyl thio group (C 3 H 5 -S-), and a cyclopentyl methyl thio group (C 5 H 9 -CH 2-
  • the linear, branched or cyclic alkyl group in R1 and R2 described above, such as S-), methylcyclopentylthio group ( CH 3 -C 5 H8-S-) is attached to a sulfur atom. Examples thereof include monovalent groups having the above-mentioned structure.
  • the linear or branched alkylthio group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, for example, 1 to 7, 1 to 5 and 1 to 3 carbon atoms. It may be either.
  • the cyclic alkylthio group preferably has 3 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and may be, for example, any of 3 to 10, 3 to 7, and 3 to 5. It may be any of 5 to 15, 5 to 10, and 5 to 7.
  • the number of carbon atoms of the alkylthio group in which the chain structure and the cyclic structure are mixed is not particularly limited as long as it is 4 or more, but is preferably 4 to 25, and is preferably any of 6 to 15, and 6 to 10, for example. There may be.
  • the alkylthio group having only a chain structure and not having a cyclic structure is a chain alkylthio group, and the alkylthio group having a cyclic structure is cyclic regardless of the presence or absence of the chain structure. It is an alkylthio group.
  • the alkylthio groups in R 1 and R 2 are independently alkyl thio groups having 1 to 10 carbon atoms (chain alkyl thio groups having 1 to 10 carbon atoms and cyclic alkyl thio groups having 3 to 10 carbon atoms). It is more preferable that the alkylthio groups have 1 to 5 carbon atoms (chain alkylthio groups having 1 to 5 carbon atoms and cyclic alkylthio groups having 3 to 5 carbon atoms) independently of each other.
  • alkyloxysulfonyl group in R1 and R2 examples include a methyloxysulfonyl group (methoxysulfonyl group , CH 3 -O-SO 2- ) and a cyclopropyloxysulfonyl group (C3 H5 - O-SO 2 ).
  • - Cyclopentylmethyloxysulfonyl group (C 5 H 9 -CH 2 -O-SO 2- ), methylcyclopentyloxysulfonyl group (CH 3 -C 5 H 8 -O-SO 2- ), etc.
  • the linear, branched or cyclic alkyl group in 1 and R 2 is bonded to an oxygen atom that does not constitute a sulfonyl group (-SO 2- ) in an oxysulfonyl group (-O-SO 2- ).
  • Examples thereof include monovalent groups having the above-mentioned structure.
  • the number of carbon atoms of the alkyloxysulfonyl group is preferably 1 to 20, more preferably 1 to 10, and for example, 1 to 7. It may be any one of 1 to 5 and 1 to 3.
  • the alkyl group is cyclic, the number of carbon atoms of the alkyloxysulfonyl group is preferably 3 to 20, more preferably 3 to 15, for example, 3 to 10, 3 to 7, and 3. It may be any of 5 to 5, 5 to 15, 5 to 10, and 5 to 7.
  • the number of carbon atoms of the alkyloxysulfonyl group is not particularly limited as long as it is 4 or more, but is preferably 4 to 25, for example, 6. It may be any of ⁇ 15, and 6-10.
  • alkyloxysulfonyl groups in R 1 and R 2 are independently alkylcarbonyl groups having 1 to 10 carbon atoms, and each independently is an alkylcarbonyl group having 1 to 5 carbon atoms. preferable.
  • halogen atom in R 1 and R 2 examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • R 1 and R 2 each independently may have an amino group as the substituent, and may have an alkyl group having 1 to 10 carbon atoms (chain alkyl group having 1 to 10 carbon atoms, 3 to 10 carbon atoms). 10 cyclic alkyl group), an alkoxy group having 1 to 10 carbon atoms (chain alkoxy group having 1 to 10 carbon atoms, cyclic alkoxy group having 3 to 10 carbon atoms), a carboxy group, and 2 carbon atoms.
  • Alkyloxycarbonyl groups of ⁇ 11 (alkyloxycarbonyl groups having 2 to 11 carbon atoms when the alkyl group is linear or branched, and alkyloxycarbonyl groups having 4 to 11 carbon atoms when the alkyl group is cyclic) Group), a formyl group, an alkylcarbonyl group having 2 to 11 carbon atoms (an alkylcarbonyl group having 2 to 11 carbon atoms when the alkyl group is linear or branched, and a cyclic group when the alkyl group is cyclic).
  • alkylcarbonyl group having 4 to 11 carbon atoms an alkylthio group having 1 to 10 carbon atoms (chain alkylthiogroup having 1 to 10 carbon atoms, a cyclic alkylthio group having 3 to 10 carbon atoms), a sulfo group, and the like.
  • Alkyloxysulfonyl group having 1 to 10 carbon atoms alkyloxysulfonyl group having 1 to 10 carbon atoms when the alkyl group is linear or branched, and 4 to 11 carbon atoms when the alkyl group is cyclic).
  • R 1 and R 2 each independently may have an amino group as the substituent, and may have an alkyl group having 1 to 5 carbon atoms (chain alkyl group having 1 to 5 carbon atoms, 3 to 3 carbon atoms).
  • An oxycarbonyl group (an alkyloxycarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and an alkyloxycarbonyl group having 4 to 6 carbon atoms when the alkyl group is cyclic) and A formyl group and an alkylcarbonyl group having 2 to 6 carbon atoms (an alkylcarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and 4 to 4 carbon atoms when the alkyl group is cyclic).
  • alkylcarbonyl group an alkylthio group having 1 to 5 carbon atoms (chain alkylthiogroup having 1 to 5 carbon atoms, a cyclic alkylthio group having 3 to 3 carbon atoms), a hydroxyl group, a thiol group, and cyano. More preferably, it is one or more selected from the group consisting of a group and a halogen atom.
  • p1 and p2 are independently 1 or 2 , respectively. That is, p 1 and p 2 may be the same as each other or may be different from each other.
  • p 1 defines the number of amino groups directly bonded to the carbon atom constituting one of the cyclohexane ring skeletons in compound (1).
  • p 2 defines the number of amino groups directly bonded to the carbon atom constituting the other cyclohexane ring skeleton in compound (1).
  • q 1 is an integer of 0 to 11, where p 1 + q 1 is 12 or less.
  • q 1 is an integer of 0 to 10, where p 1 + q 1 is 11 or less.
  • q 1 defines the number of R 1s in compound (1) that are directly bonded to the carbon atoms constituting one of the cyclohexane ring conformations.
  • Two or more R1s may be the same or different from each other. That is, two or more R 1s may be all the same, all may be different, or only a part may be the same.
  • q 2 is an integer of 0 to 10. q 2 defines the number of R 2 directly bonded to the carbon atom constituting the other cyclohexane ring skeleton in compound (1).
  • the two or more R 2s may be the same or different from each other. That is, two or more R 2s may be all the same, all may be different, or only a part may be the same.
  • q 1 is an integer of 2 or more (2 to 11), and 2 or more R 1s are alkyl groups which may have a substituent, and m is. 1 and q 1 is an integer of 2 or more (2 to 10), and 2 or more R 1s are alkyl groups which may have a substituent.
  • the two or more R 1s (alkyl groups which may have substituents) are attached to each other to form a ring together with the groups in the cyclohexane ring skeleton to which these R 1s are attached. May be.
  • the ring formed by bonding two or more R 1s to each other is an aliphatic ring containing only a carbon atom as an atom forming a ring skeleton.
  • the bonding position between two or more R1s is not particularly limited.
  • the bond position may be a carbon atom at the end of the chain structure or a non-terminal carbon atom.
  • the number of binding sites between R1s may be 1 or 2 or more. That is, the ring may be either monocyclic or polycyclic.
  • q 2 is an integer of 2 or more (2 to 10) and two or more R 2s are alkyl groups which may have a substituent
  • the two or more R 2s (substitutions) Alkyl groups (which may have groups) may be attached to each other to form a ring with the groups in the cyclohexane ring skeleton to which these R2s are attached.
  • the mode in which two or more R 2s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring. That is, examples of the ring formed by connecting two or more R 2s to each other include the same ring formed by connecting two or more R 1s to each other as described above.
  • the rings may be the same or different from each other.
  • q 1 and q 2 are preferably 0 to 6, and more preferably 0 to 4.
  • q 1 and q 2 are preferably 0 to 4, and more preferably 0 to 2.
  • the carbon dioxide sink of the present embodiment in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Those containing the above-mentioned compounds are not included. That is, in the carbon dioxide sink of the present embodiment, in the compound (1), when m is 0 and p 1 is 2, two (p 1 ) amino groups are in meta positions with each other. It will not be placed.
  • Compound (1) is the following general formula (11A), (12A) or (11B).
  • R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively.
  • Carbonyl group formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more.
  • the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other.
  • q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual.
  • the alkyl group may be bonded to to form a ring
  • q 12 may be an integer of 2 or more
  • R 12 of 2 or more may have an amino group as the substituent.
  • the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more.
  • the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent.
  • the two or more R 21s may be bonded to each other to form a ring.
  • Compounds represented by in the present specification, they may be referred to as “compound (11A)", “compound (12A)” or “compound (11B)”, respectively, corresponding to the reference numerals attached to them) (However, , In the general formula (12A), the compound in which the two amino groups directly bonded to the carbon atoms constituting the cyclohexane ring skeleton are arranged at the meta positions of each other is excluded).
  • R 11 , R 12 , R 13 and R 21 are independently alkyl groups having 1 to 10 carbon atoms and alkoxy groups having 1 to 10 carbon atoms, respectively.
  • the alkyl groups having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 are linear or branched (that is, chain) alkyl groups having 1 to 10 carbon atoms and 3 to 3 carbon atoms. It may be any of 10 cyclic alkyl groups. Examples of the alkyl group having 1 to 10 carbon atoms include those having 1 to 10 carbon atoms among the alkyl groups in R 1 and R 2 .
  • the alkoxy groups having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 are linear or branched (ie, chain) alkoxy groups having 1 to 10 carbon atoms and 3 to 3 carbon atoms. It may be any of 10 cyclic alkoxy groups. Examples of the alkoxy group having 1 to 10 carbon atoms include alkoxy groups having 1 to 10 carbon atoms among the alkoxy groups in R 1 and R 2 .
  • the alkyl group in the alkyloxycarbonyl group having 2 to 11 carbon atoms in R 11 , R 12 , R 13 and R 21 is a linear or branched (that is, chain) alkyl group having 1 to 10 carbon atoms. And a cyclic alkyl group having 3 to 10 carbon atoms.
  • the alkyloxycarbonyl groups having 2 to 11 carbon atoms in R 11 , R 12 , R 13 and R 21 among the alkyl oxycarbonyl groups in R 1 and R 2 , those having 2 to 11 carbon atoms are used. Can be mentioned.
  • the alkyl groups in the alkylcarbonyl groups having 2 to 11 carbon atoms in R 11 , R 12 , R 13 and R 21 are linear or branched (that is, chain) alkyl groups having 1 to 10 carbon atoms. , A cyclic alkyl group having 3 to 10 carbon atoms, or any of the above.
  • Examples of the alkylcarbonyl group having 2 to 11 carbon atoms in R 11 , R 12 , R 13 and R 21 include those having 2 to 11 carbon atoms among the alkyl carbonyl groups in R 1 and R 2 . ..
  • the alkylthio groups having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 are linear or branched (that is, chain) alkyl thio groups having 1 to 10 carbon atoms and 3 to 3 carbon atoms. It may be any of 10 cyclic alkylthio groups. Examples of the alkylthio group having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 include those having 1 to 10 carbon atoms among the alkyl thio groups in R 1 and R 2 .
  • the alkyl group in the alkyloxysulfonyl group having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 is a linear or branched (that is, chain) alkyl group having 1 to 10 carbon atoms. And a cyclic alkyl group having 3 to 10 carbon atoms.
  • the alkyloxysulfonyl groups having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 among the alkyl oxysulfonyl groups in R 1 and R 2 , those having 1 to 10 carbon atoms are used. Can be mentioned.
  • R 11 , R 12 , R 13 and R 21 each independently may have an amino group as the substituent and have an alkyl group having 1 to 5 carbon atoms (chain alkyl having 1 to 5 carbon atoms).
  • Alkyloxycarbonyl group of number 2 to 6 alkyloxycarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and alkyl having 4 to 6 carbon atoms when the alkyl group is cyclic
  • the oxycarbonyl group), the formyl group, the alkylcarbonyl group having 2 to 6 carbon atoms (the alkylcarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and the alkyl group are cyclic).
  • an alkylthio group having 1 to 5 carbon atoms chain alkylthiogroup having 1 to 5 carbon atoms, a cyclic alkylthio group having 3 to 3 carbon atoms
  • a hydroxyl group preferably one or more selected from the group.
  • both R 13 and R 21 may have an amino group as the substituent, and are alkyl groups having 1 to 5 carbon atoms (chain alkyl groups having 1 to 5 carbon atoms, etc.).
  • an alkoxy group having 1 to 5 carbon atoms chain alkoxy group having 1 to 5 carbon atoms, a cyclic alkoxy group having 3 to 5 carbon atoms
  • 2 carbon atoms and 2 carbon atoms.
  • Alkyloxycarbonyl group of ⁇ 6 (alkyloxycarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and alkyloxycarbonyl group having 4 to 6 carbon atoms when the alkyl group is cyclic) Group), a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms (an alkylcarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and a cyclic group when the alkyl group is cyclic).
  • alkylcarbonyl group having 4 to 6 carbon atoms an alkylthio group having 1 to 5 carbon atoms (a chain alkylthio group having 1 to 5 carbon atoms, a cyclic alkylthio group having 3 to 3 carbon atoms), a hydroxyl group, and a thiol group. It is preferably one or more selected from the group consisting of a group, a cyano group and a halogen atom.
  • q 11 and q 12 are independently integers of 0 to 6, preferably 0 to 4.
  • the two or more R 11s may be the same or different from each other. That is, two or more R 11s may be all the same, all may be different, or only a part may be the same.
  • the two or more R 12s may be the same or different from each other. That is, two or more R 12s may be all the same, all may be different, or only a part may be the same.
  • q 11 is an integer of 2 or more (2 to 6) and two or more R 11s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned.
  • 11 an alkyl group which may have an amino group as a substituent
  • 11 may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 11s are bonded. ..
  • the mode in which two or more R 11s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
  • q 12 is an integer of 2 or more (2 to 6) and two or more R 12s are alkyl groups which may have an amino group as a substituent
  • two or more R 12s are used.
  • Alkyl groups which may have an amino group as a substituent may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 12s are bonded.
  • the mode in which two or more R 12s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
  • q 13 and q 21 are each independently an integer of 0 to 4, preferably 0 to 2.
  • the two or more R 13s may be the same or different from each other. That is, two or more R 13s may be all the same, all may be different, or only a part may be the same.
  • the two or more R 21s may be the same or different from each other. That is, two or more R 21s may be all the same, all may be different, or only a part may be the same.
  • q 13 is an integer of 2 or more (2 to 4) and two or more R 13s are alkyl groups which may have an amino group as a substituent
  • the two or more Rs are mentioned.
  • 13 an alkyl group which may have an amino group as a substituent
  • 13 may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 13s are bonded. ..
  • the embodiment in which two or more R 13s are coupled to each other to form a ring is the same as the above-mentioned embodiment in which two or more R 1s are coupled to each other to form a ring.
  • q 21 is an integer of 2 or more (2 to 4) and two or more R 21s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned.
  • 21 an alkyl group which may have an amino group as a substituent
  • 21 may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 21s are bonded. ..
  • the mode in which two or more R 21s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
  • the compound (11A), the compound (12A) or the compound (11B) is the following general formula (111A), (121A), (122A) or (111B).
  • R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent.
  • q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent.
  • the two or more R 111s may be coupled to each other to form a ring
  • q 121 is an integer of 2 or more
  • two or more R 121s are the substituents.
  • the alkyl group which may have an amino group the two or more R 121s may be bonded to each other to form a ring
  • q 122 is an integer of 2 or more.
  • the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring.
  • q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 .
  • the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent.
  • the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents.
  • the alkyl group which may have an amino group the two R 211s may be bonded to each other to form a ring) (in the present specification).
  • 111A) “ compound (121A) ”, compound“ (122A) ”or compound“ (111B) ” is preferred.
  • R 111 , R 121 , R 122 , R 131 and R 211 each independently have an alkyl group having 1 to 5 carbon atoms and a carbon number of carbon atoms.
  • the alkyl group may have an amino group as the substituent. That is, these groups in R 111 , R 121 , R 122 , R 131 and R 211 may be the same or different from each other.
  • the alkyl groups having 1 to 5 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 are linear or branched (that is, chain) alkyl groups having 1 to 5 carbon atoms and carbon. It may be any of the cyclic alkyl groups of the number 3 to 5. Examples of the alkyl group having 1 to 5 carbon atoms include those having 1 to 5 carbon atoms among the alkyl groups in R 1 and R 2 .
  • the alkoxy groups having 1 to 5 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 are linear or branched (ie, chain) alkoxy groups having 1 to 5 carbon atoms and carbon. It may be any of the cyclic alkoxy groups of the number 3 to 5. Examples of the alkoxy group having 1 to 5 carbon atoms include alkoxy groups having 1 to 5 carbon atoms among the alkoxy groups in R 1 and R 2 .
  • the alkyl groups in the alkyloxycarbonyl groups having 2 to 6 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 are linear or branched chains (that is, chain-like) having 1 to 5 carbon atoms. It may be either an alkyl group of the above or a cyclic alkyl group having 3 to 5 carbon atoms.
  • the alkyloxycarbonyl group having 2 to 6 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 among the alkyloxycarbonyl groups in R 1 and R 2 , the carbon number is 2 to 6. Some are mentioned.
  • the alkyl groups among the alkylcarbonyl groups having 2 to 6 carbon atoms are linear or branched (that is, chain-like) having 1 to 5 carbon atoms. It may be either an alkyl group or a cyclic alkyl group having 3 to 5 carbon atoms.
  • the alkylcarbonyl group having 2 to 6 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 among the alkyl carbonyl groups in R 1 and R 2 , the number of carbon atoms is 2 to 6. Can be mentioned.
  • the alkylthio groups having 1 to 5 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 are linear or branched (that is, chain) alkyl thio groups having 1 to 5 carbon atoms and carbon. It may be any of the cyclic alkylthio groups of the number 3 to 5.
  • the alkylthio groups having 1 to 5 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 include the alkylthio groups having 1 to 5 carbon atoms in R 1 and R 2 . Can be mentioned.
  • q 111 , q 121 and q 122 are each independently an integer of 0 to 4.
  • q 111 is an integer of 2 or more (2 to 4)
  • the two or more R 111s may be the same or different from each other. That is, two or more R 111s may be all the same, all may be different, or only a part may be the same.
  • q 111 is an integer of 2 or more (2 to 4) and two or more R 111s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned.
  • R 111 (an alkyl group which may have an amino group as a substituent) may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 111s are bonded. ..
  • the embodiment in which two or more R 111s are coupled to each other to form a ring is the same as the above-described embodiment in which two or more R 1s are coupled to each other to form a ring.
  • the two or more R 121s may be the same or different from each other. That is, two or more R 121s may be all the same, all may be different, or only a part may be the same.
  • q 121 is an integer of 2 or more (2 to 4) and two or more R 121s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned.
  • 121 an alkyl group which may have an amino group as a substituent
  • the mode in which two or more R 121s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
  • the two or more R 122s may be the same or different from each other. That is, two or more R 122s may be all the same, all may be different, or only a part may be the same.
  • q 122 is an integer of 2 or more (2 to 4) and two or more R 122s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned.
  • 122 an alkyl group which may have an amino group as a substituent
  • the embodiment in which two or more R 122s are coupled to each other to form a ring is the same as the above-mentioned embodiment in which two or more R 1s are coupled to each other to form a ring.
  • q 131 and q 211 are independently integers of 0 to 2.
  • the two R 131s may be the same or different from each other.
  • the two R 131s are alkyl groups which may have an amino group as a substituent
  • the two R 131s (having an amino group as a substituent) Alkyl groups (which may be present) may be attached to each other to form a ring together with the groups in the cyclohexane ring skeleton to which these R 131s are attached.
  • the mode in which two or more R 131s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
  • the two R 211s may be the same or different from each other.
  • the two R 211s are alkyl groups which may have an amino group as a substituent
  • the two R 211s (having an amino group as a substituent) Alkyl groups may be attached to each other to form a ring together with the groups in the cyclohexane ring skeleton to which these R 211s are attached.
  • the embodiment in which two or more R 211s are coupled to each other to form a ring is the same as the above-mentioned embodiment in which two or more R 1s are coupled to each other to form a ring.
  • examples of those belonging to the compound (111A) include those represented by the following formulas (cyclohexylamine, isophoronediamine).
  • an example of the compound belonging to the compound (121A) is a compound (1,2-cyclohexanediamine) represented by the following formula.
  • an example of the compound belonging to the compound (122A) is a compound (1,4-cyclohexanediamine) represented by the following formula.
  • an example of the compound belonging to the compound (111B) is a compound represented by the following formula (4,4'-methylenebis (2-methylcyclohexylamine)).
  • the compound (1) contained in the carbon dioxide absorption / release agent may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and ratio thereof are for the purpose. It can be selected arbitrarily according to the situation. For example, some compounds (1) have steric isomers, but in the present embodiment, the steric isomers are treated as the same type of compound (1).
  • either one or both of R 1 and R 2 may be an alkyl group having an amino group as a substituent. That is, the compound (1) has a group other than the amino group directly bonded to the carbon atom constituting the cyclohexane ring conformation (in this specification, it may be referred to as "first amino group”). In addition, there are those having an amino group (in this specification, sometimes referred to as "second amino group") which is not directly bonded to the carbon atom constituting the cyclohexane ring skeleton. In the compound (1) having such two kinds of amino groups, the first amino group tends to react more easily with carbon dioxide than the second amino group.
  • the carbon dioxide absorption / release agent of the present embodiment contains the compound (1) and may contain only the compound (1) (in other words, it may be composed of the compound (1)). However, the compound (1) and a component other than the compound (1) may be contained.
  • the liquid carbon dioxide absorbing / releasing agent containing the compound (1) and a solvent is preferable in that the absorption and release of carbon dioxide are easier.
  • the solvent is not particularly limited, but is preferably one that dissolves compound (1), and more preferably one that dissolves compound (1) at a temperature of room temperature or lower.
  • the carbon dioxide absorbing / releasing agent in which the compound (1) is dissolved in the solvent can more easily absorb carbon dioxide.
  • normal temperature means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 30 ° C.
  • the solvent may or may not dissolve the reaction product (the carbamic acid derivative) of the compound (1) and carbon dioxide.
  • the carbamic acid derivative that is, the carbon dioxide releasing agent described later is more easily used. Can be taken out.
  • Examples of the solvent include organic solvents, water and the like.
  • Examples of the organic solvent include sulfoxides such as dimethylsulfoxide (DMSO); amides such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc); and lactams such as N-methyl-2-pyrrolidone.
  • DMSO dimethylsulfoxide
  • amides such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc)
  • lactams such as N-methyl-2-pyrrolidone.
  • Cyclic amide (Cyclic amide); alcohols such as methanol, ethanol, 2-propanol (IPA); hydrocarbons such as toluene, o-xylene, m-xylene, p-xylene (aromatic hydrocarbons); tetrahydrofuran (THF), 1, Ethers such as 4-dioxane, tetrahydropyran, dibutyl ether, 1,2-dimethoxyethane (compounds having an ether bond); nitriles such as propionitrile and acetonitrile (compounds having a cyano group); ethyl acetate, butyl acetate and the like. Examples thereof include esters (carboxylic acid esters). Preferred solvents include polar solvents (water, polar organic solvents).
  • the solvent preferably has a high boiling point and a low vapor pressure at room temperature.
  • the boiling point of the solvent is preferably 100 ° C. or higher, and may be, for example, 190 ° C. or higher.
  • the upper limit of the boiling point of the solvent is not particularly limited. For example, a solvent having a boiling point of 200 ° C. or lower is relatively easy to obtain.
  • the solvent contained in the carbon dioxide absorption / release agent may be only one type, may be two or more types, and when two or more types are used, the combination and ratio thereof are arbitrary depending on the purpose. Can be selected.
  • the two or more kinds of solvents may be an aqueous mixed solvent composed of water and one kind or two or more kinds of organic solvents, or a non-aqueous mixed solvent composed of two or more kinds of organic solvents. May be good.
  • the concentration of the carbon dioxide absorbing / releasing agent compound (1) when containing a solvent is not particularly limited, but is preferably 0.05 to 5M, for example, 0.05 to 3.5M, and 0. It may be any of .05 to 2M.
  • the concentration unit "M” represents “mol / L”
  • the concentration unit “mM” represents “mmol / L”.
  • the carbon dioxide absorption / release agent may contain the compound (1), a solvent, and other components that do not fall under any of the above, as long as the effects of the present invention are not impaired.
  • the other components can be arbitrarily selected depending on the intended purpose, and are not particularly limited.
  • the other components contained in the carbon dioxide absorbing / releasing agent may be only one kind, two or more kinds, and when two or more kinds, the combination and ratio thereof are intended. It can be selected arbitrarily according to the situation.
  • the content (parts by mass) of the other components with respect to the total mass (parts by mass) of the carbon dioxide absorbing / releasing agent is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably 1% by mass or less. .. When the ratio is not more than the upper limit value regardless of the presence or absence of the solvent, the ability of the carbon dioxide absorbing / releasing agent to absorb and release carbon dioxide becomes higher.
  • the total content of the compound (1) and the solvent is contained with respect to the total mass (part by mass) of the carbon dioxide absorption / release agent.
  • the ratio of the amount (part by mass) is not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 97% by mass or more, and 99% by mass or more. Is particularly preferable.
  • the carbon dioxide absorption / release agent of the present embodiment has an excellent effect in that carbon dioxide can be easily absorbed and the absorbed carbon dioxide can be easily released.
  • Conventional carbon dioxide sinks for example, can easily absorb carbon dioxide but are difficult to release carbon dioxide, or can easily release carbon dioxide but can absorb carbon dioxide. It was difficult. That is, the conventional carbon dioxide absorption / release agent could not practically achieve both absorption and release of carbon dioxide.
  • the carbon dioxide absorption / release agent of the present embodiment contains a compound (1) having a structure in a specific range as an active ingredient that absorbs carbon dioxide and releases carbon dioxide after absorption. It solves the conventional problems.
  • the carbon dioxide absorption / release agent of the present embodiment containing the compound (1) and other components (solvent or the other component) can be produced by mixing these components.
  • Carbon dioxide recovery method The method for recovering carbon dioxide according to an embodiment of the present invention is described in the following general formula (1).
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • the carbon dioxide absorbing / releasing agent according to the above-described embodiment of the present invention is used. Therefore, in the above recovery method, in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Does not include those using a carbon dioxide absorbing / releasing agent containing. According to the method for recovering carbon dioxide of the present embodiment, by using the carbon dioxide absorbing / releasing agent, carbon dioxide can be easily absorbed and the absorbed carbon dioxide can be easily released, so that carbon dioxide can be easily recovered. ..
  • Step (A) the carbon dioxide absorbing / releasing agent containing the compound (1) absorbs carbon dioxide.
  • the compound (1) in the carbon dioxide absorption / release agent reacts with carbon dioxide at the amino group thereof to become the carbamic acid derivative, so that carbon dioxide is absorbed. ..
  • step (A) for example, carbon dioxide gas may be brought into contact with the carbon dioxide absorbing / releasing agent.
  • the step (A) can be carried out more easily by using a liquid carbon dioxide absorption / release agent containing the compound (1) and the solvent.
  • the liquid carbon dioxide sink is the one described above.
  • the carbon dioxide (gas) may be absorbed by the carbon dioxide absorbing / releasing agent alone, or may be absorbed by the carbon dioxide absorbing / releasing agent in the state of a mixed gas with another gas.
  • the mixed gas for example, the gaseous target substance to be recovered of carbon dioxide may be used as it is, or the target substance may be further mixed with another gas and diluted.
  • air may be used as the mixed gas, and dry air is more suitable as a target for recovering carbon dioxide.
  • the other mixed gas include a mixed gas containing carbon dioxide gas and an inert gas. However, the mixed gas mentioned here is an example.
  • the inert gas examples include nitrogen gas, helium gas, argon gas and the like.
  • nitrogen gas is particularly suitable because it is inexpensive.
  • the concentration of carbon dioxide in the gas containing carbon dioxide to be brought into contact with the carbon dioxide absorbing / releasing agent may be 100% by volume or less, for example, 80% by volume or less, 60% by volume or less, 40% by volume or less, 32 volumes. It may be any of% or less, 25% by volume or less, 15% by volume or less, and 5% by volume or less.
  • the concentration of carbon dioxide in the carbon dioxide-containing gas in contact with the carbon dioxide absorbing / releasing agent may be, for example, 0.04% by volume (400 ppm) or more.
  • the concentration of carbon dioxide in the mixed gas containing carbon dioxide (gas) is not particularly limited, but is preferably 0.04 to 32% by volume, for example, 0.04 to 25% by volume and 0.04 to 15% by volume. It may be any of% by volume and 0.04 to 5% by volume, 5 to 32% by volume, 15 to 32% by volume, and 25 to 32% by volume, 5 It may be up to 25% by volume.
  • concentration is equal to or higher than the lower limit, the amount of carbon dioxide absorbed becomes larger.
  • the concentration is not more than the upper limit value, the absorption leakage of carbon dioxide is further suppressed.
  • the carbon dioxide absorbing / releasing agent not only carbon dioxide can be easily absorbed, but also the mixed gas having a wide carbon dioxide concentration as described above can be used, which is useful. High in sex.
  • the flow rate of carbon dioxide gas when the carbon dioxide is absorbed by the carbon dioxide absorbing / releasing agent can be arbitrarily selected according to the purpose.
  • the flow rate is 0.01 to 20 mol / h per 1 mol of the amount of the compound (1) in the carbon dioxide absorbing / releasing agent, regardless of whether carbon dioxide is used alone or as a mixed gas.
  • the gas is, for example, either 0.01 to 10 mol / h, 0.01 to 5 mol / h, and 0.01 to 1 mol / h, or 0.1 to 20 mol / h, 1 It may be either ⁇ 20 mol / h and 10 to 20 mol / h.
  • the flow rate When the flow rate is equal to or higher than the lower limit, the amount of carbon dioxide absorbed becomes larger. When the flow rate is not more than the upper limit value, absorption leakage of carbon dioxide is further suppressed.
  • the carbon dioxide absorbing / releasing agent by using the carbon dioxide absorbing / releasing agent, not only carbon dioxide can be easily absorbed, but also the flow rate of carbon dioxide gas can be widely set as described above, which is highly useful.
  • the temperature of the carbon dioxide absorbing / releasing agent when the carbon dioxide is absorbed by the carbon dioxide absorbing / releasing agent can be appropriately selected depending on the type of the carbon dioxide absorbing / releasing agent, and is not particularly limited.
  • the temperature is preferably -18 to 30 ° C, and may be, for example, -18 to 25 ° C, -18 to 15 ° C, and -18 to 5 ° C, or -8 to 30 ° C. , 8-30 ° C, and 18-30 ° C, or -8-25 ° C, and 8-15 ° C.
  • the amount of carbon dioxide absorbed becomes larger.
  • the absorption leakage of carbon dioxide is further suppressed.
  • step (A) when a liquid carbon dioxide absorption / release agent is used, carbon dioxide is used as a liquid carbon dioxide absorption / release agent regardless of whether carbon dioxide is used alone or as a mixed gas. It is preferable to bubbling by directly flowing into the inside. By doing so, the absorption efficiency of carbon dioxide can be improved. Further, when carbon dioxide is directly flowed into the liquid carbon dioxide absorption / release agent, the carbon dioxide absorption / release agent may be stirred by a known method. By doing so, it may be possible to improve the absorption efficiency of carbon dioxide.
  • the step (A) may be completed when a part of the compound (1) has not reacted with carbon dioxide, or the whole amount of the compound (1) may be reacted with carbon dioxide.
  • the step (A) may be completed.
  • the ratio of (number of moles) is preferably 20 mol% or less, and may be, for example, 10 mol% or less, 5 mol% or less, 1 mol% or less, or 0 mol%. You may. When the ratio is not more than the upper limit value, the amount of carbon dioxide released in the subsequent step (B) is further increased.
  • the solid reaction product (the carbamic acid derivative) depends on the carbon dioxide absorption conditions such as the type of the solvent contained therein. May or may not precipitate. More specifically, the reaction temperature at the time of reaction between the compound (1) and carbon dioxide is lowered, and the concentration of the compound (1) in the liquid carbon dioxide absorption / release agent is increased (the amount of the solvent used is reduced). One or both of the above and the increase in the amount of the compound (1) used), the solvent having a small solubility of the reaction product, and the compound (1) having a diamine (amino).
  • the reaction product can be easily precipitated in a liquid carbon dioxide absorption / release agent by using (the one having two groups) or the like.
  • the adjustment of conditions is not limited to these.
  • the reaction product precipitates the liquid carbon dioxide absorbing / releasing agent is a suspension
  • the increase in the amount of carbon dioxide absorbed can be visually confirmed by increasing the amount of the precipitate.
  • the subsequent step (B) can be satisfactorily performed regardless of the presence or absence of precipitation of the solid reaction product.
  • reaction product reaction product of the compound (1) and carbon dioxide
  • the reaction product is precipitated in the liquid carbon dioxide absorbing / releasing agent, so that the reaction between the compound (1) and carbon dioxide is further carried out. It is promoted and the absorption of carbon dioxide of the carbon dioxide absorption / release agent is promoted.
  • Step (B) the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide is heat-treated to release the carbon dioxide from the carbon dioxide absorbing / releasing agent.
  • step (B) the carbamic acid derivative produced in the step (A) releases carbon dioxide, and the amino group is regenerated. As a result, the carbamic acid derivative returns to compound (1).
  • the temperature at which the carbon dioxide absorption / release agent after absorbing carbon dioxide is heat-treated is appropriately determined in consideration of, for example, the type of the compound (1), the type when a solvent is used, and the like. Can be adjusted.
  • the temperature at the time of the heat treatment is preferably, for example, lower than the boiling point of the compound (1), and when a solvent is used, it is preferably lower than the boiling point of the solvent. When the temperature at the time of the heat treatment is in such a range, the dissipation of the compound (1) or the solvent can be suppressed.
  • the temperature at the time of the heat treatment is preferably, for example, 100 ° C. or lower, and is any one of 90 ° C. or lower, 80 ° C. or lower, 70 ° C. or lower, 60 ° C. or lower, and 50 ° C. or lower. You may.
  • the lower limit of the temperature at the time of the heat treatment is not particularly limited.
  • the temperature is preferably 30 ° C. or higher in that the release of carbon dioxide proceeds more smoothly.
  • the carbamic acid derivative releases a sufficient amount of carbon dioxide even if the temperature at the time of the heat treatment is lower than that in the case of the conventional method.
  • the recovery method of the present embodiment is highly useful in that the temperature at the time of heat treatment is low.
  • the step (B) may be performed in the coexistence of a base catalyst.
  • the base catalyst may be either a solid or a liquid at room temperature, for example.
  • the base catalyst may or may not be dissolved in the carbon dioxide absorbing / releasing agent, for example, when the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide is in a liquid state. When not dissolved, for example, the base catalyst can be easily separated from the carbon dioxide absorbing / releasing agent after the completion of step (B). From this point of view, the base catalyst is preferably solid at room temperature.
  • the base catalyst may be either an inorganic base or an organic base.
  • examples of the inorganic base include metal oxides, and basic metal oxides or polyvalent anionic metal oxide clusters are preferable.
  • the polyvalent anion metal oxide cluster preferably has a metal species of Group 5 or Group 6 metal.
  • Examples of such a multivalent anion metal oxide cluster include K8 Nb 6 O 19 .
  • Examples of the basic metal oxide include magnesium oxide (MgO), lanthanum oxide (La 2 O 3 ), zirconium oxide (ZrO 2 ), cerium oxide (IV) (CeO 2 ), and aluminum oxide (Al 2 O 3 ). ), Layered Double Hydroxide (LDH) and the like.
  • MgO magnesium oxide
  • La 2 O 3 lanthanum oxide
  • ZrO 2 zirconium oxide
  • Al 2 O 3 aluminum oxide
  • LDH Layered Double Hydroxide
  • examples of the organic base include amines (primary amines, secondary amines, and tertiary amines). More specifically, the amines include, for example, hexylamine (n-hexylamine), dihexylamine (di-n-hexylamine), trihexylamine (tri-n-hexylamine), and heptylamine (n-heptyl).
  • the base catalyst used in the step (B) may be only one type, may be two or more types, and when two or more types are used, the combination and ratio thereof are arbitrarily selected according to the purpose. can.
  • the amount of the base catalyst used is 0.001 to 0.1 times the molar amount of the amount of the carbamic acid derivative which is a reaction product of the compound (1) and carbon dioxide. Is preferable, and the molar amount is more preferably 0.005 to 0.05 times.
  • the amount of the base catalyst used is equal to or greater than the lower limit, the release of carbon dioxide proceeds more smoothly.
  • the amount of the base catalyst used is not more than the upper limit, the overuse of the base catalyst is suppressed.
  • the step (B) may be performed in the coexistence of an acid.
  • the acid may be either an organic acid or an inorganic acid, but is preferably an inorganic acid.
  • the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid and the like.
  • the amount of the acid used is preferably 1 to 3 times the molar amount of the amount of the carbamic acid derivative which is a reaction product of the compound (1) and carbon dioxide.
  • the amount of the acid used is equal to or higher than the lower limit, the release of carbon dioxide proceeds more smoothly.
  • the amount of the acid used is not more than the upper limit, the excessive use of the acid is suppressed.
  • the inert gas is directly flowed into the liquid carbon dioxide absorption / release agent for bubbling.
  • the inert gas is the one described above.
  • the carbon dioxide absorbing / releasing agent may be stirred by a known method. By doing so, it may be possible to improve the efficiency of carbon dioxide collection.
  • the flow rate of the inert gas is the carbamic acid in the liquid carbon dioxide absorbing / releasing agent.
  • the amount is preferably 20 to 100 L / min, more preferably 35 to 85 L / min per 1 mol of the acid derivative.
  • the flow rate of the inert gas is at least the lower limit, the released carbon dioxide can be collected more efficiently.
  • the flow rate of the inert gas is not more than the upper limit, the vaporization of the solvent and the vaporization of the compound (1) can be further suppressed.
  • the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide does not fall under any of the carbamic acid derivative, the solvent, the base catalyst, and the acid, as long as the effects of the present invention are not impaired. May contain the components of.
  • the other components can be arbitrarily selected depending on the intended purpose, and are not particularly limited.
  • the other components contained in the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide may be only one kind, two or more kinds, or a combination thereof when two or more kinds are used. And the ratio can be arbitrarily selected according to the purpose.
  • the content of the other components with respect to the total mass (parts by mass) of the carbon dioxide absorption / release agent is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and 1% by mass or less. Is particularly preferable. When the ratio is not more than the upper limit value regardless of the presence or absence of the solvent, the carbon dioxide absorbing / releasing agent has a higher ability to release carbon dioxide.
  • the carbamate with respect to the total mass (part by mass) of the carbon dioxide absorbing / releasing agent is not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 97% by mass or more. It is preferably 99% by mass or more, and particularly preferably 99% by mass or more.
  • the step (A) and the step (B) may be performed only once or may be repeated twice or more.
  • the carbamic acid derivative which is a reaction product of the compound (1) and carbon dioxide, releases carbon dioxide and returns to the compound (1).
  • the regenerated compound (1) can be used again for absorption and release of carbon dioxide. Therefore, in the recovery method, the step (A) and the step (B) can be repeated twice or more.
  • the step (A) and the step (A) and the step (A) are performed by terminating the step (A) when a part of the compound (1) has not reacted with carbon dioxide.
  • (B) can be performed more smoothly, and the entire process of carbon dioxide recovery may be performed in a shorter time.
  • the "stage in which a part of compound (1) has not reacted with carbon dioxide” is, for example, a stage represented by the ratio (mol%) of the amount (number of moles) of compound (1) described above. Is.
  • Step (C) may be performed.
  • the acid when used in the step (B), the acid is contained in the carbon dioxide absorption / release agent after the carbon dioxide is released.
  • the amino group in the compound (1) forms a salt in the carbon dioxide absorbing / releasing agent. If the compound (1) is left as it is, the carbon dioxide absorbing / releasing agent is difficult to absorb carbon dioxide in the step (A) of the second cycle (the compound (1) is difficult to react with carbon dioxide). Therefore, in this case, the carbon dioxide absorption / release agent is regenerated by adding a base to the carbon dioxide absorption / release agent so that the amino group of compound (1) is in a free state (a state in which no salt is formed). Is preferable.
  • step (C) for example, adding a base to the acid-containing carbon dioxide absorption / release agent after the carbon dioxide is released, which is performed after the step (B) is performed in the coexistence of the acid.
  • the base used in the step (C) may be either an organic base or an inorganic base, but is preferably an inorganic base.
  • the inorganic base include metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the amount of the base used may be any amount as long as it can neutralize the acid in the carbon dioxide absorbing / releasing agent.
  • step (C) When a base is used in the step (C), a salt not involved in the compound (1) is newly produced by neutralization with the acid.
  • the salt (newly generated salt) may be further removed. That is, the step (C) is performed, for example, by adding a base to the acid-containing carbon dioxide absorption / release agent after the carbon dioxide is released, which is performed after the step (B) is performed in the coexistence of the acid. It may be a step of neutralizing the acid and then removing the salt newly generated by the neutralization from the carbon dioxide absorbing / releasing agent after the acid is neutralized.
  • the salt newly generated by neutralization may be removed from the carbon dioxide absorbing / releasing agent by a known method.
  • the salt when the salt is precipitated in the carbon dioxide absorbing / releasing agent after neutralizing the acid, the salt can be removed from the carbon dioxide absorbing / releasing agent by filtration.
  • the recovery method may have other steps that do not fall under any of step (A), step (B), and step (C) as long as the effects of the present invention are not impaired. ..
  • the type and number of the other steps and the timing of performing the other steps can be arbitrarily selected according to the purpose and are not particularly limited.
  • Carbon dioxide recovery method (M1) As an example of the method for recovering carbon dioxide according to the embodiment of the present invention, the following general formula (1)
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • Step (B1) of absorbing the carbon dioxide and releasing the carbon dioxide from the liquid carbon dioxide absorbing / releasing agent by heat-treating the liquid carbon dioxide absorbing / releasing agent after the reactant is precipitated (B1).
  • a method for recovering carbon dioxide (where m is 0, p 1 is 2, and two amino groups with p 1 are arranged in meta positions with each other. (Excluding the method for recovering carbon dioxide) (in the present specification, it may be referred to as "method for recovering carbon dioxide (M1)").
  • the carbon dioxide absorption / release agent is limited to a liquid in the step (A) of the carbon dioxide recovery method described above, and the compound ( This is a step in which the reaction product of 1) and carbon dioxide is limited to those that precipitate in a liquid carbon dioxide absorbing / releasing agent.
  • the step (A) in the carbon dioxide recovery method described above may be carried out reflecting the above-mentioned limitation.
  • the liquid carbon dioxide absorption / release agent preferably contains the compound (1) and a solvent.
  • the above step (A1) is performed to precipitate a reaction product of the compound (1) and carbon dioxide in a liquid carbon dioxide absorption / release agent (liquid carbon dioxide absorption / release).
  • a reaction product of the compound (1) and carbon dioxide in a liquid carbon dioxide absorption / release agent (liquid carbon dioxide absorption / release).
  • the agent as a suspension
  • the reaction between the compound (1) and carbon dioxide is promoted, and the absorption of carbon dioxide by the carbon dioxide absorption / release agent is promoted.
  • the conditions for allowing the liquid carbon dioxide absorbing / releasing agent containing the compound (1) to absorb carbon dioxide are adjusted.
  • the reaction conditions between the compound (1) and carbon dioxide are adjusted.
  • the reaction product of compound (1) and carbon dioxide can be precipitated in a liquid carbon dioxide absorption / release agent.
  • lowering the reaction temperature during the reaction between compound (1) and carbon dioxide increasing the concentration of compound (1) in the liquid carbon dioxide absorption / release agent (reducing the amount of the solvent used, and so on.
  • Increasing the amount of compound (1) used, one or both of them) using a liquid carbon dioxide absorption / release agent having a low solubility of the reaction product, compound (1).
  • a reaction product of compound (1) and carbon dioxide can be easily precipitated in a liquid carbon dioxide absorbing / releasing agent by using a diamine (having two amino groups) or the like.
  • the adjustment of conditions is not limited to these.
  • the compound (1) used in the step (A1) is the following general formula (11A), (12A) or (11B).
  • R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively.
  • Carbonyl group formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more.
  • the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other.
  • q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual.
  • the alkyl group may be bonded to to form a ring
  • q 12 may be an integer of 2 or more
  • R 12 of 2 or more may have an amino group as the substituent.
  • the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more.
  • the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent.
  • the two or more R 21s may be bonded to each other to form a ring.
  • Compound represented by Compound (11A), Compound (12A) or Compound (11B)
  • Compound (12A) two compounds directly bonded to the carbon atom constituting the cyclohexane ring skeleton.
  • the amino groups of the above are (excluding compounds in which the meta-positions of each other are arranged).
  • the compound (11A), compound (12A) or compound (11B) used in the step (A1) is the following general formula (111A), (121A), (122A) or (111B).
  • R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent.
  • q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent.
  • the two or more R 111s may be coupled to each other to form a ring
  • q 121 is an integer of 2 or more
  • two or more R 121s are the substituents.
  • the alkyl group which may have an amino group the two or more R 121s may be bonded to each other to form a ring
  • q 122 is an integer of 2 or more.
  • the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring.
  • q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 .
  • the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent.
  • the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents.
  • the alkyl group which may have an amino group the two R 211s may be bonded to each other to form a ring) (“Compound (111A)”. ) ”,“ Compound (121A) ”, Compound“ (12A) ” 2A) ”or compound“ (111B) ”) is preferred.
  • the step (B1) in the carbon dioxide recovery method (M1) is the carbon dioxide absorption / release after absorbing carbon dioxide, which is the target of the heat treatment in the step (B) of the carbon dioxide recovery method described above. This is a step in which the agent is limited to a liquid and a reaction product of the compound (1) and carbon dioxide is precipitated.
  • the step (B) in the carbon dioxide recovery method described above may be carried out reflecting the above-mentioned limitation.
  • the step (B1) may be performed in the coexistence of the base catalyst.
  • the carbon dioxide recovery method (M1) is the method for recovering carbon dioxide described above, in which the step (A) is limited to the step (A1) and the step (B) is limited to the step (B1). be.
  • the steps (A1) and (B1) may be repeated twice or more, and the steps (A1) and (B1) in this case may be repeated twice or more.
  • the mode of repeating the steps is the same as the mode of repeating the steps (A) and (B) two or more times in the method for recovering carbon dioxide described above.
  • the description of the carbon dioxide recovery method (M1) is the same as the description of the carbon dioxide recovery method (the carbon dioxide recovery method having the steps (A) and (B)) except that the above limitation is applied. Is. Therefore, further detailed description of the carbon dioxide recovery method (M1) will be omitted.
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • Carbon dioxide recovery method (However, carbon dioxide recovery method when m is 0, p 1 is 2, and two amino groups with p 1 are arranged at the meta positions of each other. (Except for) (in this specification, it may be referred to as “carbon dioxide recovery method (M2)").
  • the step (A) in the carbon dioxide recovery method (M2) is the same as the step (A) in the carbon dioxide recovery method described above.
  • the compound (1) used in the step (A) in the carbon dioxide recovery method (M2) is the following general formula (11A), (12A) or (11B).
  • R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively.
  • Carbonyl group formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more.
  • the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other.
  • q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual.
  • the alkyl group may be bonded to to form a ring
  • q 12 may be an integer of 2 or more
  • R 12 of 2 or more may have an amino group as the substituent.
  • the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more.
  • the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent.
  • the two or more R 21s may be bonded to each other to form a ring.
  • Compound represented by Compound (11A), Compound (12A) or Compound (11B)
  • Compound (12A) two compounds directly bonded to the carbon atom constituting the cyclohexane ring skeleton.
  • the amino groups of the above are (excluding compounds in which the meta-positions of each other are arranged).
  • the compound (11A), the compound (12A) or the compound (11B) used in the step (A) in the carbon dioxide recovery method (M2) is described in the following general formulas (111A), (121A) and (122A). Or (111B)
  • R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent.
  • q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent.
  • the two or more R 111s may be coupled to each other to form a ring
  • q 121 is an integer of 2 or more
  • two or more R 121s are the substituents.
  • the alkyl group which may have an amino group the two or more R 121s may be bonded to each other to form a ring
  • q 122 is an integer of 2 or more.
  • the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring.
  • q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 .
  • the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent.
  • the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents.
  • the alkyl group which may have an amino group the two R 211s may be bonded to each other to form a ring) (“Compound (111A)”. ) ”,“ Compound (121A) ”, Compound“ (12A) ” 2A) ”or compound“ (111B) ”) is preferred.
  • step (A) in the carbon dioxide recovery method (M2) will be omitted.
  • the heat treatment of the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide is performed as a base.
  • This process is limited to those performed in the coexistence of a catalyst. That is, in order to carry out the step (B2), the step (B) in the carbon dioxide recovery method described above may be carried out reflecting the above-mentioned limitation.
  • the base catalyst used in the step (B2) is the same as the base catalyst used in the step (B).
  • the carbon dioxide recovery method (M2) in the step (B2), by performing the heat treatment in the coexistence of a base catalyst, the release of carbon dioxide proceeds more smoothly.
  • the carbon dioxide recovery method (M2) is a method for recovering carbon dioxide described above, in which the step (B) is limited to the step (B2).
  • the steps (A) and (B2) may be repeated twice or more, and the steps (A) and (B2) in this case may be repeated twice or more.
  • the mode of repeating the steps is the same as the mode of repeating the steps (A) and (B) two or more times in the method for recovering carbon dioxide described above.
  • the description of the carbon dioxide recovery method (M2) is the same as the description of the carbon dioxide recovery method (the carbon dioxide recovery method having the steps (A) and (B)) except that the above limitation is applied. Is. Therefore, further detailed description of the carbon dioxide recovery method (M2) will be omitted.
  • Carbon dioxide absorption method The method for absorbing carbon dioxide according to an embodiment of the present invention is described in the following general formula (1).
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • the carbon dioxide absorbing / releasing agent containing the compound represented by (that is, the compound (1)) has a step (a) of absorbing carbon dioxide (where m is 0, p 1 is 2 and p. Except for the method of absorbing carbon dioxide when the two amino groups marked with 1 are arranged at the meta positions of each other).
  • step (a) in the present embodiment is the same as the step (A) in the carbon dioxide recovery method according to the above-described embodiment of the present invention. Therefore, the detailed description of the step (a) will be omitted here.
  • the carbon dioxide absorbing / releasing agent according to the above-described embodiment of the present invention is used. Therefore, in the above absorption method, in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Does not include those using a carbon dioxide absorbing / releasing agent containing. According to the method for absorbing carbon dioxide of the present embodiment, carbon dioxide can be easily absorbed by using the carbon dioxide absorbing / releasing agent.
  • the method for absorbing carbon dioxide of the present embodiment may have other steps that do not correspond to step (a) as long as the effects of the present invention are not impaired.
  • the type and number of the other steps and the timing of performing the other steps can be arbitrarily selected according to the purpose and are not particularly limited.
  • Carbon dioxide absorption method ( ⁇ 1) As an example of the method for absorbing carbon dioxide according to the embodiment of the present invention, the following general formula (1)
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • the step (a1) in the carbon dioxide absorption method ( ⁇ 1) is the same as the step (A1) in the carbon dioxide recovery method (M1) described above. Further, in the step (a1), in the step (A) of the carbon dioxide recovery method described above, the carbon dioxide absorbing / releasing agent is limited to a liquid one, and the reaction between the compound (1) and carbon dioxide. This is a process limited to those that precipitate in a liquid carbon dioxide absorbing / releasing agent. Further, in the step (a1), in the step (a) of the carbon dioxide absorption method described above, the carbon dioxide absorption / release agent is limited to a liquid one, and the reaction between the compound (1) and carbon dioxide. This is a process limited to those that precipitate in a liquid carbon dioxide absorbing / releasing agent. Therefore, the detailed description of the step (a1) will be omitted here.
  • the above step (a1) is performed in the same manner as in the case of the carbon dioxide recovery method (M1), and the reaction product of the compound (1) and carbon dioxide is converted into liquid carbon dioxide.
  • Precipitation in the absorption / release agent (using a liquid carbon dioxide absorption / release agent as a suspension) promotes the reaction between the compound (1) and carbon dioxide, and the carbon dioxide absorption / release agent absorbs carbon dioxide. Is promoted.
  • the reaction product After the reaction product is precipitated in the liquid carbon dioxide absorption / release agent by the carbon dioxide absorption method ( ⁇ 1), the reaction product can be easily taken out from the liquid carbon dioxide absorption / release agent. By taking out the reactant in this way, for example, the reactant can be stably stored.
  • the reaction product precipitated in the liquid carbon dioxide absorption / release agent can be taken out from the carbon dioxide absorption / release agent by applying a known solid-liquid separation method such as filtration. After taking out, the reaction product may be washed once or twice or more by a known method, if necessary. The reaction product after being taken out or the reaction product after washing can be dried by a known method.
  • the description of the carbon dioxide absorption method ( ⁇ 1) is the same as the description of the carbon dioxide absorption method (carbon dioxide absorption method having the step (a)) except that it has the above-mentioned limitation. Therefore, further detailed description of the carbon dioxide absorption method ( ⁇ 1) will be omitted.
  • Carbon dioxide release method The method for releasing carbon dioxide according to an embodiment of the present invention is described in the following general formula (1).
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • the reaction product of the above-mentioned compound (1) and carbon dioxide is, for example, the carbon atom constituting the cycloalkyl ring skeleton in the compound (1) as described above.
  • examples thereof include a reaction product of a directly bonded amino group and carbon dioxide.
  • m is 0 as the reactant.
  • the reaction product contained in the carbon dioxide releasing agent has m of 0, p1 of 2 , and 2 (p1) amino groups.
  • R 1 , R 2 , p 1 , p 2 , q 1 , q 2 and m are the same as above;
  • X 1 and X 2 are independently hydrogen atoms or carboxy groups, respectively. If p 1 is 2, the two X 1s may be the same or different from each other, and if p 2 is 2, the two X 2s may be the same or different from each other.
  • m is 0, then one or two X1s are carboxy groups, and if m is 1, then one or two X1s and one or two.
  • X 2 one or more are carboxy groups; when X 1 or X 2 is a carboxy group, the group represented by the formula "-NHCOOH” is of the formula "-". It may be either a group represented by " NHCOO- " or a group represented by the formula "-NH 2 + COO- "). (In the present specification, it may be referred to as "compound (2)").
  • R 1 , R 2 , p 1 , p 2 , q 1 , q 2 and m are R 1 , R 2 , p 1 , p 2 , q 1 and m in the general formula (1). Same as q 2 and m.
  • the two X 1s may be the same or different from each other, and when p 2 is 2, the two X 2s may be the same or different from each other. good.
  • reaction product of the compound (1) and carbon dioxide when m is 0 is represented by, for example, the following general formula (2A) (in the present specification, this compound is referred to as “compound (2A)”. May be referred to).
  • reaction product of the compound (1) and carbon dioxide when m is 1 is represented by the following general formula (2B) (in the present specification, this compound is referred to as “compound (2B)”. There is).
  • R 1 , R 2 , p 1 , p 2, p 2 , q 1 , q 2 , X 1 and X 2 are R 1 , R 2 , p in the general formula (2). Same as 1 , p 2 , q 1 , q 2 , X 1 and X 2 . Therefore, when q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other, and when q 2 is an integer of 2 or more, two or more R 2s may be different from each other. May be the same or different from each other.
  • q 1 is an integer of 2 or more and 2 or more R 1s are the alkyl groups which may have a substituent
  • the two or more R 1s substituted with substituents
  • the alkyl group may be bonded to each other to form a ring
  • q 2 is an integer of 2 or more
  • R 2 of 2 or more has a substituent.
  • the two or more R2 (the above-mentioned alkyl group which may have a substituent) may be bonded to each other to form a ring.
  • the two X 1s may be the same or different from each other, and when p 2 is 2, the two X 2s may be the same or different from each other. You may.
  • one or two X 1s are carboxy groups
  • the general formula (2B) one or two X 1s and one or two X 2s .
  • One or more of the above are carboxy groups.
  • X 1 or X 2 is a carboxy group
  • the group represented by the formula " -NHCOOH " is a group represented by the formula "-NHCOO-” and the formula "-NH 2 + COO- ". It may be any of the groups represented by.
  • reaction product of the compound (11A) described above and carbon dioxide is represented by, for example, the following general formula (21A) (in the present specification, this compound is referred to as “compound (21A)”. There is).
  • the reaction product of the compound (12A) and carbon dioxide described above is represented by, for example, the following general formula (22A) (in the present specification, this compound is referred to as “compound (22A)”. There is).
  • the reaction product of the compound (11B) described above and carbon dioxide is represented by the following general formula (21B). (In the present specification, this compound may be referred to as "compound (21B)").
  • R 11 , R 12 , R 13 , R 21 , q 11 , q 12 , q 13 and q 21 are the general formulas (11A), (12A) or It is the same as R 11 , R 12 , R 13 , R 21 , q 11 , q 12 , q 13 and q 21 in (11B).
  • X 1 and X 2 are the same as X 1 and X 2 in the general formula (2).
  • q 11 is an integer of 2 or more
  • the two or more R 11s may be the same or different from each other
  • q 12 is an integer of 2 or more
  • the two or more R 12s may be the same or different. May be the same or different from each other.
  • q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have a substituent
  • the two or more R 11s substituted.
  • the alkyl group may be bonded to each other to form a ring
  • q 12 is an integer of 2 or more
  • R 12 of 2 or more has a substituent.
  • the two or more R 12s may be bonded to each other to form a ring.
  • q 13 is an integer of 2 or more
  • two or more R 13s may be the same or different from each other
  • q 21 is an integer of 2 or more
  • two or more R 21s may be different from each other. May be the same or different from each other.
  • q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have a substituent, the two or more R 13 (substituents are used).
  • the alkyl group may be bonded to each other to form a ring, q 21 is an integer of 2 or more, and 2 or more R 21 have a substituent.
  • the two or more R 21s (the above-mentioned alkyl group which may have a substituent) may be bonded to each other to form a ring.
  • the reaction product of the compound (111A) and carbon dioxide described above is represented by, for example, the following general formula (211A) (in the present specification, this compound is referred to as “compound (211A)”. There is).
  • the reaction product of the compound (121A) described above and carbon dioxide is represented by, for example, the following general formula (221A) (in the present specification, this compound is referred to as “compound (221A)”. There is).
  • the reaction product of the compound (122A) and carbon dioxide described above is represented by, for example, the following general formula (222A) (in the present specification, this compound is referred to as “compound (222A)”. There is).
  • the reaction product of the compound (111B) and carbon dioxide described above is represented by, for example, the following general formula (211B) (in the present specification, this compound is referred to as “compound (211B)”. There is).
  • R 111 , R 121 , R 122 , R 131 , R 211 , q 111 , q 121 , q 122 , q 131 , q 211 , X 1 and X 2 are the same as above.
  • R 111 , R 121 , R 122 , R 131 , R 211 , q 111 , q 121 , q 122 , q 131 and q 211 are Same as R 111 , R 121 , R 122 , R 131 , R 211 , q 111 , q 121 , q 122 , q 131 and q 211 in the general formulas (111A), (121A), (122A) or (111B). Is.
  • X 1 and X 2 are the same as X 1 and X 2 in the general formula (2). Therefore, when q 111 is an integer of 2 or more, two or more R 111s may be the same or different from each other, and when q 121 is an integer of 2 or more, two or more R 121s may be different from each other. May be the same or different from each other, and when q 122 is an integer of 2 or more, two or more R 122s may be the same or different from each other.
  • q 111 is an integer of 2 or more and the two or more R 111s are the alkyl groups which may have an amino group as the substituent
  • the two or more R 111s may be bonded to each other to form a ring
  • q 121 is an integer of 2 or more
  • R 121 of 2 or more is the said.
  • the alkyl group which may have an amino group as a substituent the two or more R 121s (the alkyl group which may have the substituent) are bonded to each other and have a ring.
  • q 122 is an integer of 2 or more and two or more R 122s are the alkyl groups which may have an amino group as the substituent.
  • Two or more R 122s (the alkyl groups which may have the substituents) may be bonded to each other to form a ring.
  • the two R 131s may be the same or different from each other, and when q 211 is 2, the two R 211s may be the same or different from each other. good.
  • q 131 is 2 and the two R 131s are the alkyl groups which may have an amino group as the substituents, the two R 131s (the substituents are used).
  • the alkyl group (which may have the alkyl group) may be bonded to each other to form a ring, q 211 is 2, and the two R 211s have an amino group as the substituent.
  • the two R 211s (the above-mentioned alkyl group which may have the above-mentioned substituent) may be bonded to each other to form a ring.
  • the carbon dioxide according to the above-described embodiment of the present invention is used, except that the carbon dioxide-releasing agent is used instead of the carbon dioxide-absorbing and releasing agent after absorbing the carbon dioxide. It is the same as the step (B) in the recovery method of.
  • the carbon dioxide emitting agent in the present embodiment has m as 0, p 1 as 2, and two (p 1 ) amino groups as a reaction product of compound (1) and carbon dioxide.
  • the active components that release carbon dioxide are a reaction product of compound (1) and carbon dioxide, m is 0, p 1 is 2, and two (2).
  • the carbon dioxide-releasing agent contains a reaction product of compound (1) and carbon dioxide (the carbamate derivative), and may contain only the reaction product (in other words, the reaction product consists of the reaction product). It may contain the reactants and components other than the reactants.
  • the liquid carbon dioxide emitting agent containing the reaction product and the solvent is preferable in that carbon dioxide is released more easily.
  • liquid carbon dioxide releasing agent examples include the same as the liquid carbon dioxide absorbing / releasing agent after absorbing the carbon dioxide described above. However, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in the above-mentioned release method, in
  • the carbon dioxide emitting agent contains the carbamic acid derivative, the solvent, the base catalyst, and other components that do not correspond to any of the acids, as long as the effects of the present invention are not impaired. good.
  • the other components can be arbitrarily selected depending on the intended purpose, and are not particularly limited.
  • the other components contained in the carbon dioxide emitting agent may be only one kind, two or more kinds, and when two or more kinds, the combination and the ratio thereof depend on the purpose. It can be selected arbitrarily.
  • the ratio of the content (parts by mass) of the other components to the total mass (parts by mass) of the carbon dioxide releasing agent is. Although not particularly limited, it is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably 1% by mass or less. When the ratio is equal to or less than the upper limit value regardless of the presence or absence of the solvent, the carbon dioxide emitting agent has a higher ability to release carbon dioxide.
  • Part is not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 97% by mass or more, and 99% by mass or more. Is particularly preferable.
  • carbon dioxide can be easily released by using the carbon dioxide releasing agent.
  • step (b) in the present embodiment is the same as the step (B) in the carbon dioxide recovery method according to the above-described embodiment of the present invention. Therefore, further detailed description of the step (b) will be omitted here.
  • the carbon dioxide releasing agent can be produced, for example, by causing the carbon dioxide absorbing / releasing agent to absorb carbon dioxide by the method for absorbing carbon dioxide according to the embodiment of the present invention described above. Then, in this case, carbon dioxide containing the compound (1) in the case where m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. A release agent may be used. Further, the carbon dioxide emitting agent can be used, for example, by producing the carbamic acid derivative by another method, and if necessary, using the carbamic acid derivative and other components (solvent or the other component). It can also be manufactured by mixing.
  • the method for releasing carbon dioxide of the present embodiment may have other steps that do not correspond to step (b) as long as the effects of the present invention are not impaired.
  • the type and number of the other steps and the timing of performing the other steps can be arbitrarily selected according to the purpose and are not particularly limited.
  • Carbon dioxide release method ( ⁇ 1) As an example of the method for releasing carbon dioxide according to the embodiment of the present invention, the following general formula (1)
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the two or more R 2s may be bonded to each other to form a ring.
  • the step (b1) in the carbon dioxide release method ( ⁇ 1) is the carbon dioxide release after absorbing carbon dioxide, which is the target of the heat treatment in the step (b) of the carbon dioxide release method described above.
  • This is a step in which the agent is limited to a liquid and a reaction product of the compound (1) and carbon dioxide is precipitated. That is, in order to carry out the step (b1), the step (b) in the carbon dioxide emission method described above may be carried out reflecting the above-mentioned limitation.
  • the liquid carbon dioxide emitting agent in which the reactant is precipitated used in the step (b1) is, for example, the above-mentioned after absorbing carbon dioxide obtained by the above-mentioned carbon dioxide absorption method ( ⁇ 1).
  • the same as the liquid carbon dioxide absorption / release agent in which the reaction product is precipitated can be mentioned.
  • carbon dioxide can be released with higher efficiency by the carbon dioxide releasing method ( ⁇ 1).
  • liquid carbon dioxide-releasing agent in which the reactant is precipitated which is used in the step (b1), for example, by the above-mentioned carbon dioxide absorption method ( ⁇ 1)
  • carbon dioxide is added to the carbon dioxide-absorbing and releasing agent.
  • the reaction product of compound (1) and carbon dioxide is precipitated in the liquid carbon dioxide absorption / release agent, and then the reaction product is taken out from the liquid carbon dioxide absorption / release agent, if necessary.
  • the reaction product after removal was washed once or twice or more, and if necessary, the reaction product after removal or the reaction product after washing was dried and taken out as necessary.
  • Other components and those obtained by mixing with each other can also be mentioned.
  • the conditions of the step (b1) can be adjusted in a wide range by extracting the reaction product from the liquid carbon dioxide absorption / release agent. In addition, carbon dioxide can be released with higher efficiency.
  • the reactant in other words, the carbamic acid derivative
  • the reactant is produced by another method.
  • examples thereof include those obtained by mixing the obtained reaction product (the carbamic acid derivative), the solvent, and, if necessary, components other than these (the other components).
  • the conditions of the step (b1) can be adjusted in a wide range by using the reaction product once taken out.
  • carbon dioxide can be released with higher efficiency.
  • liquid carbon dioxide emitting agent used as the liquid carbon dioxide emitting agent in which the reactant is precipitated
  • m is used in the general formula (1) as the carbon dioxide releasing method ( ⁇ 1).
  • Carbon dioxide containing a reaction product of compound (1) and carbon dioxide when 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Also included is a method using a release agent.
  • the description of the carbon dioxide release method ( ⁇ 1) is the same as the description of the carbon dioxide release method (carbon dioxide release method having the step (b)) except that it has the above-mentioned limitation. Therefore, further detailed description of the carbon dioxide emission method ( ⁇ 1) will be omitted.
  • Carbon dioxide release method ( ⁇ 2) As another example of the method for releasing carbon dioxide according to the embodiment of the present invention, the following general formula (1)
  • R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively.
  • the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more.
  • the carbon dioxide-releasing agent By heat-treating a carbon dioxide-releasing agent containing a reaction product of the compound represented by (that is, compound (1)) and carbon dioxide in the coexistence of a base catalyst, the carbon dioxide-releasing agent can be used as the carbon dioxide. Examples thereof include a method for releasing carbon dioxide (in the present specification, it may be referred to as “method for releasing carbon dioxide ( ⁇ 2)”), which comprises a step of releasing carbon (b2).
  • the step (b2) in the carbon dioxide release method ( ⁇ 2) is a carbon dioxide containing a reaction product of the compound (1) and carbon dioxide in the step (b) of the carbon dioxide release method described above.
  • This step is limited to those in which the heat treatment of the release agent is performed in the coexistence of a base catalyst. That is, in order to carry out the step (b2), the step (b) in the carbon dioxide emission method described above may be carried out reflecting the above-mentioned limitation.
  • the base catalyst used in the step (b2) is the same as the base catalyst used in the step (B).
  • the carbon dioxide emitting agent used in the step (b2) to be used in combination with the base catalyst for example, it can be obtained by the carbon dioxide absorbing method described above (the carbon dioxide absorbing method having the step (a)).
  • the same as the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide can be mentioned.
  • the carbon dioxide emission method ( ⁇ 2) in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Also included is a method using a carbon dioxide emitting agent containing a reaction product of the compound (1) and carbon dioxide in the above case.
  • the carbon dioxide release proceeds more smoothly by performing the heat treatment in the coexistence of a base catalyst in the step (b2).
  • the description of the carbon dioxide release method ( ⁇ 2) is the same as the description of the carbon dioxide release method (carbon dioxide release method having the step (b)) except that it has the above-mentioned limitation. Therefore, further detailed description of the carbon dioxide emission method ( ⁇ 2) will be omitted.
  • a methanol solution (2 mL) of cyclohexylamine obtained above was placed in a test tube, and a three-way cock was attached to the opening of the test tube.
  • a metal thin tube was passed through the inside of the test tube from the gas inlet of the three-way cock, and the end of the thin tube on the inner side of the test tube was placed in the methanol solution.
  • the gas is directly flowed from the outside of the test tube into the methanol solution inside the test tube from the gas inlet of the three-way cock through the thin tube, and the gas in the gas phase part inside the test tube is introduced.
  • the device was assembled so that it could be discharged to the outside of the test tube from the gas outlet of the three-way cock.
  • a mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added to the test tube at a flow rate of 20 mL / min (0.54 mmol / h of carbon dioxide).
  • the gas inside the test tube is flowed into the methanol solution inside the test tube for bubbling (steps (a) and (a1)), and the gas inside the test tube is discharged from the gas outlet of the three-way cock to the test tube. It was discharged to the outside.
  • this exhaust gas was analyzed by a gas chromatography (TCD-GC) method using a thermal conductivity detector (TCD), and carbon dioxide in the exhaust gas was quantified.
  • TCD-GC gas chromatography
  • TCD thermal conductivity detector
  • the methanol solution was considerably cloudy. As is clear from FIG. 1, immediately after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was close to 100%, and the methanol solution absorbed carbon dioxide with high efficiency. Then, with the passage of time, the amount of cyclohexylamine that can react with carbon dioxide decreased, the efficiency of removing carbon dioxide decreased, and about 120 minutes after the start of inflow of carbon dioxide, carbon dioxide was not removed. .. As described above, it was confirmed that the methanol solution has a sufficient ability to absorb carbon dioxide for a gas having a relatively high concentration of carbon dioxide.
  • Example 2 A carbon dioxide absorbing / releasing agent is produced by the same method as in Example 1 except that dry air (containing about 400 ppm of carbon dioxide on a volume basis) is used instead of the mixed gas to absorb carbon dioxide. I let you. The calculation result of the carbon dioxide removal efficiency at this time is shown in FIG.
  • Example 1 As in the case of Example 1, as time passed from the start of the inflow of carbon dioxide, a white solid substance (a reaction product of cyclohexylamine and carbon dioxide) was generated in the methanol solution, and a methanol suspension was formed. .. As is clear from FIG. 3, immediately after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was close to 100%, and the methanol solution absorbed carbon dioxide with high efficiency. Then, with the passage of time, the amount of cyclohexylamine that can react with carbon dioxide decreased, and the efficiency of removing carbon dioxide decreased.
  • a white solid substance a reaction product of cyclohexylamine and carbon dioxide
  • the methanol solution can be selected from a gas having a wide concentration of carbon dioxide as the gas to be applied.
  • a DMSO solution (15 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled. Then, using the above device at room temperature, a mixed gas containing 30% by volume of carbon dioxide and 70% by volume of nitrogen was added at a flow rate of 20 mL / min (16 mmol / h of carbon dioxide) from the outside of the test tube. , Inflow into the DMSO solution inside the test tube and bubbling (step (a), step (a1)), and at the same time, the gas inside the test tube is discharged from the gas outlet of the three-way cock to the outside of the test tube. It was discharged.
  • a toluene solution (3 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled. Then, using the above device at room temperature, a mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added to the test tube at a flow rate of 20 mL / min (0.54 mmol / h of carbon dioxide). Along with bubbling by flowing into the toluene solution inside the test tube from the outside (step (a), step (a1)), the gas inside the test tube is discharged from the gas outlet of the three-way cock to the test tube. It was discharged to the outside.
  • Example 7 Manufacture of carbon dioxide release agent >> Concentration of the isophorone diamine derivative by mixing (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid (hereinafter, may be abbreviated as "isophorone diamine derivative") and dimethyl sulfoxide (DMSO).
  • isophorone diamine derivative 3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid
  • DMSO dimethyl sulfoxide
  • a DMSO suspension (5 mL) of the isophorone diamine derivative obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled. Then, using the device, 60 of the DMSO suspension was blown by flowing nitrogen gas from the outside of the test tube into the DMSO suspension inside the test tube at a flow rate of 50 mL / min. After heat treatment at ° C. (step (b)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, the concentration of carbon dioxide in the exhaust gas was measured using a Fourier transform infrared spectrophotometer (FT-IR) (first time). The results are shown in FIG. In addition, the unit “%" attached to "CO 2 CONCENTRATION" (concentration of carbon dioxide) in the graphs after FIG. 9 means “volume%".
  • FT-IR Fourier transform infrared spectrophotometer
  • the concentration of carbon dioxide in the exhaust gas has increased with the passage of time from the start of the heat treatment, and carbon dioxide from the DMSO suspension (carbon dioxide releasing agent) has increased. Was being released. Approximately 8 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased.
  • the amount of carbon dioxide released 60 minutes after the start of the heat treatment was about 0.85 mmol, which was calculated using this release amount and the amount of the isophorone diamine derivative used.
  • the carbon dioxide emission rate was about 85%.
  • the carbon dioxide release rate from the start of the heat treatment to the maximum concentration of carbon dioxide was 51 ⁇ mol / min in the first release experiment and 49 ⁇ mol / min in the second release experiment. ..
  • the transition of the carbon dioxide concentration is almost the same between the first carbon dioxide release experiment and the second carbon dioxide release experiment, and the carbon dioxide release from the carbon dioxide release agent (step (b)). The reproducibility of was high. In the first and second carbon dioxide emission experiments, it was confirmed by 13 C-NMR analysis that the obtained reaction product was isophorone diamine.
  • Example 8 Manufacture of carbon dioxide release agent, release of carbon dioxide >> By mixing (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamate (the isophorone diamine derivative), K8 Nb 6 O 19 (base catalyst), and dimethyl sulfoxide (DMSO), A DMSO suspension of an isophorone diamine derivative having a concentration of the isophorone diamine derivative of 0.2 M, a concentration of the base catalyst of 0.002 M, and a precipitate of the isophorone diamine derivative was prepared, and this was distilled off. It was used as a carbon release agent. The concentration of carbon dioxide in the exhaust gas was repeatedly measured by the same method as in Example 7 except that the carbon dioxide emitting agent was used. The first measurement result is shown in FIG. 9, and the second measurement result is shown in FIG.
  • the DMSO solution became a DMSO suspension.
  • the concentration of carbon dioxide in the exhaust gas is close to 0% by volume from immediately after the start of the inflow of carbon dioxide to about 230 minutes later, in other words, the efficiency of removing carbon dioxide is high. Nearly 100%, the DMSO solution absorbed carbon dioxide with high efficiency.
  • the amount of isophorone diamine capable of reacting with carbon dioxide decreased, and the concentration of carbon dioxide in the exhaust gas increased (the efficiency of removing carbon dioxide decreased).
  • the concentration of carbon dioxide in the exhaust gas became about 1% by volume, and carbon dioxide was not removed.
  • the amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.27 mmol. Since isophorone diamine has two amino groups in one molecule, the amount of carbon dioxide absorbed by the DMSO solution can be up to 2 mmol in consideration of the amount used. However, here, it was confirmed that in isophoronediamine, it was mainly the amino group directly bonded to the carbon atom constituting the cyclohexyl ring skeleton that reacted with carbon dioxide.
  • the corrected absorption rate of carbon dioxide (first cycle) when the amino group having such a limited arrangement form is used as a reference (in other words, the amino group is limited) is determined. It was judged to be 100%.
  • the absorption rate of carbon dioxide (first cycle) was 64% when the amino group was not limited and the correction was not performed.
  • the amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 1.2 mmol.
  • Amount of carbon dioxide released] / [Amount of carbon dioxide absorbed] x 100 Means what is calculated by.
  • step (step) the mixed gas is again flowed into the carbon dioxide absorbing / releasing agent (DMSO solution) regenerated by the release of carbon dioxide by the same method as in the case of the first cycle described above, and bubbling is performed (step (step).
  • step (step) along with the step (A1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, the concentration of carbon dioxide in this exhaust gas was measured by the same method as in the case of the first cycle (second cycle). The results are shown in FIG. By this step, the DMSO solution became a DMSO suspension.
  • step (A), step (A1)) was high.
  • the inflow of the mixed gas into the DMSO suspension was stopped.
  • the amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.21 mmol.
  • the corrected absorption rate of carbon dioxide (second cycle) when the amino group was limited which was calculated using this absorption amount and the amount of isophorone diamine used, was determined to be 100%.
  • the absorption rate of carbon dioxide (second cycle) was 61% when the amino group was not limited and no correction was performed.
  • step (B), step (B1)) was high.
  • the amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 1.2 mmol.
  • Step (A1) was performed in the same manner as in the case of the first cycle, and the concentration of carbon dioxide in the exhaust gas was measured (first cycle). The results are shown in FIG.
  • the DMSO solution became a DMSO suspension.
  • the concentration of carbon dioxide in the exhaust gas is close to 0% by volume from immediately after the start of the inflow of carbon dioxide to about 15 minutes later, in other words, the efficiency of removing carbon dioxide is high. Nearly 100%, the DMSO solution absorbed carbon dioxide with high efficiency.
  • the amount of isophorone diamine capable of reacting with carbon dioxide decreased, and the concentration of carbon dioxide in the exhaust gas gradually increased (the efficiency of removing carbon dioxide gradually decreased).
  • the amount of carbon dioxide absorbed by the DMSO solution was calculated to be 1.0 mmol from the start of the inflow of carbon dioxide to about 120 minutes later.
  • the corrected absorption rate (1st cycle) of carbon dioxide when the amino group was limited which was calculated by using this absorption amount and the amount of isophorone diamine used, was 100%.
  • the absorption rate of carbon dioxide (first cycle) was 50% when the amino group was not limited and no correction was performed.
  • the amount of carbon dioxide released 120 minutes after the start of the heat treatment was 0.94 mmol. Corrected emission rate of carbon dioxide (1st cycle) when the amino group is limited, which is calculated using this emission amount, and correction, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide, are performed. The carbon dioxide emission rate (1st cycle) in the absence was 94% in each case.
  • step (step) the mixed gas is again flowed into the carbon dioxide absorbing / releasing agent (DMSO solution) regenerated by the release of carbon dioxide by the same method as in the case of the first cycle described above, and bubbling is performed (step (step).
  • step (step) along with the step (A1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, the concentration of carbon dioxide in this exhaust gas was measured by the same method as in the case of the first cycle (second cycle). The results are shown in FIG. By this step, the DMSO solution became a DMSO suspension.
  • step (A), step (A1)) was high.
  • step (B), step (B1)) was high.
  • the amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 0.96 mmol.
  • the carbon dioxide emission rate (second cycle) in the absence was 96% in each case.
  • step (A) the transition of the concentration of carbon dioxide is almost the same, and the absorption of carbon dioxide by the carbon dioxide absorbing / releasing agent (step (A), step.
  • the reproducibility of (A1)) was high.
  • the amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.0 mmol.
  • the corrected absorption rate (third cycle) of carbon dioxide when the amino group was limited which was calculated using this absorption amount and the amount of regenerated isophorone diamine used, was 100%.
  • the absorption rate of carbon dioxide (third cycle) was 50% when the amino group was not limited and no correction was performed.
  • step (B) the transition of the carbon dioxide concentration is almost the same, and the carbon dioxide release by the carbon dioxide absorbing / releasing agent (step (B), step The reproducibility of (B1)) was high.
  • the amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 1.0 mmol.
  • the corrected emission rate of carbon dioxide (third cycle) when the amino group is limited, which is calculated using this emission amount, and the correction, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide, are performed.
  • the carbon dioxide emission rate (third cycle) in the absence was 100% in each case.
  • the white solid was finally disappeared in the DMSO suspension by the heat treatment, and the DMSO solution was regenerated.
  • step (A) the absorption of carbon dioxide by the carbon dioxide absorbing / releasing agent (step (A), step The reproducibility of (A1)) was high.
  • the amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.0 mmol.
  • the absorption rate of carbon dioxide (second cycle) was 50% when the amino group was not limited and no correction was performed.
  • step (B) the transition of the carbon dioxide concentration is almost the same, and the carbon dioxide release by the carbon dioxide absorbing / releasing agent (step (B), step The reproducibility of (B1)) was high.
  • the amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 1.0 mmol.
  • the corrected emission rate of carbon dioxide (4th cycle) when the amino group is limited, which is calculated using this emission amount, and the correction, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide, are performed.
  • the carbon dioxide emission rate (4th cycle) in the absence was 100% in each case.
  • Example 1 Unlike the case of Example 1, a reaction product of cyclohexylamine and carbon dioxide (that is, N-cyclohexylcarbamic acid) is precipitated in the DMF solution even after a lapse of time from the start of inflow of carbon dioxide. There was no.
  • step (B) the DMF solution was heat-treated at 60 ° C. while bubbling by flowing nitrogen gas from the outside of the test tube into the DMF solution inside the test tube at a flow rate of 50 mL / min (step (B)). ), The gas inside the test tube was discharged to the outside of the test tube from the gas outlet of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured.
  • FIG. 15 shows the analysis result (NMR spectrum) of the reaction product after the release of carbon dioxide in heavy water (D2O) by 13 C - NMR. From this analysis result, it was possible to identify that the reaction product after releasing carbon dioxide was cyclohexylamine.
  • Example 12 ⁇ Manufacture of carbon dioxide absorption / release agent >> The carbon dioxide absorption / release agent (4) was used in the same manner as in Example 11 except that the same amount (number of moles) of 4,4'-methylenebis (2-methylcyclohexylamine) was used instead of cyclohexylamine. , 4'-Methylenebis (2-methylcyclohexylamine) DMF solution) was prepared.
  • Step (A) (step (A1)) is performed in the same manner as in Example 11 except that the carbon dioxide absorbing / releasing agent obtained above is used, and the concentration of carbon dioxide in the exhaust gas is measured. bottom. As time passed from the start of the inflow of carbon dioxide, a reaction product of 4,4'-methylenebis (2-methylcyclohexylamine) and carbon dioxide was formed as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
  • the amount of carbon dioxide released after the start of the heat treatment was 1.23 mmol.
  • the carbon dioxide emission rate calculated by using this emission amount and the above-mentioned carbon dioxide absorption amount was 89%. It was confirmed by analysis by 13 C-NMR that the obtained reaction product was 4,4'-methylenebis (2-methylcyclohexylamine).
  • Example 13 ⁇ Manufacture of carbon dioxide absorption / release agent >> Carbon dioxide absorption and release in the same manner as in Example 11 except that the same amount (number of moles) of 1,2-cyclohexanediamine (also known as 1,2-diaminocyclohexane) was used instead of cyclohexylamine. An agent (DMF solution of 1,2-cyclohexanediamine) was produced.
  • 1,2-cyclohexanediamine also known as 1,2-diaminocyclohexane
  • Step (A) (step (A1)) is performed in the same manner as in Example 11 except that the carbon dioxide absorbing / releasing agent obtained above is used, and the concentration of carbon dioxide in the exhaust gas is measured. bottom. As time passed from the start of the inflow of carbon dioxide, a reaction product of 1,2-cyclohexanediamine and carbon dioxide was produced as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
  • FIG. 16 shows the analysis result (NMR spectrum) of the reaction product after the release of carbon dioxide in heavy water (D2O) by 13 C - NMR. From this analysis result, it was possible to identify that the reaction product after releasing carbon dioxide was 1,2-cyclohexanediamine.
  • Example 14 ⁇ Manufacture of carbon dioxide absorption / release agent >> Carbon dioxide absorption and release in the same manner as in Example 11 except that the same amount (number of moles) of 1,4-cyclohexanediamine (also known as 1,4-diaminocyclohexane) was used instead of cyclohexylamine. An agent (DMF solution of 1,4-cyclohexanediamine) was produced.
  • 1,4-cyclohexanediamine also known as 1,4-diaminocyclohexane
  • Step (A) (step (A1)) is performed in the same manner as in Example 11 except that the carbon dioxide absorbing / releasing agent obtained above is used, and the concentration of carbon dioxide in the exhaust gas is measured. bottom. As time passed from the start of the inflow of carbon dioxide, a reaction product of 1,4-cyclohexanediamine and carbon dioxide was produced as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
  • FIG. 17 shows the analysis result (NMR spectrum) of the reaction product after the release of carbon dioxide in heavy water (D2O) by 13 C - NMR. From this analysis result, it was possible to identify that the reaction product after releasing carbon dioxide was 1,4-cyclohexanediamine.
  • Example 15 Manufacture of carbon dioxide absorption / release agent >> By mixing isophorone diamine and water, an aqueous solution of isophorone diamine having a concentration of isophorone diamine of 0.07 M was prepared, and this was used as a carbon dioxide absorption / release agent.
  • Example 1 the reaction product of isophorone diamine and carbon dioxide did not precipitate in the aqueous solution even after a lapse of time from the start of the inflow of carbon dioxide.
  • reaction product was mainly (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
  • the reaction product also contained a part of dicarbamic acid produced by reacting with carbon dioxide together with two amino groups in one molecule of isophorone diamine.
  • step (B) the aqueous solution was heat-treated at 60 ° C. while bubbling by flowing nitrogen gas from the outside of the test tube into the aqueous solution inside the test tube at a flow rate of 75 mL / min (step (B)).
  • the gas inside the test tube was discharged to the outside of the test tube from the gas outlet of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured.
  • FIG. 18 shows the analysis result (NMR spectrum) of the reaction product after the release of carbon dioxide in heavy water (D2O) by 13 C - NMR. From this analysis result, it was possible to identify that the reaction product after releasing carbon dioxide was isophorone diamine.
  • Step (A) was carried out in the same manner as in Example 15 except that the carbon dioxide absorbing / releasing agent obtained above was used, and the concentration of carbon dioxide in the exhaust gas was measured.
  • the reaction product of isophorone diamine and carbon dioxide did not precipitate in the IPA solution even after a lapse of time from the start of the inflow of carbon dioxide.
  • IPA solution was heat-treated at 60 ° C. while bubbling by flowing nitrogen gas from the outside of the test tube into the IPA solution inside the test tube at a flow rate of 75 mL / min (step (B)). ), The gas inside the test tube was discharged to the outside of the test tube from the gas outlet of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured.
  • the amount of carbon dioxide released after the start of the heat treatment was 0.121 mmol.
  • Step (A) (step (A1)) is performed in the same manner as in Example 15 except that the carbon dioxide absorbing / releasing agent obtained above is used, and the concentration of carbon dioxide in the exhaust gas is measured. bottom. As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
  • the amount of carbon dioxide released after the start of the heat treatment was 0.429 mmol.
  • the corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was 43%.
  • the carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 65%.
  • Example 18 Manufacture of carbon dioxide absorption / release agent >> By mixing isophorone diamine and dimethyl sulfoxide (DMSO) in the same manner as in Example 10, a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 0.07 M was prepared, and this was used as carbon dioxide. It was used as an absorption / release agent.
  • DMSO dimethyl sulfoxide
  • Step (A) (step (A1)) was performed in the same manner as in the case of the first cycle of Example 10, and the concentration of carbon dioxide in the exhaust gas was measured.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of the first cycle of Example 10 from the start of the inflow of carbon dioxide to about 120 minutes.
  • the amount of carbon dioxide absorbed by the DMSO solution was calculated to be 1.25 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 63% when the amino group was not limited and the correction was not performed.
  • the DMSO solution became a DMSO suspension.
  • step (B) (step (B1)) was performed in the same manner as in the case of the first cycle of Example 10, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of the first cycle of Example 10. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased.
  • the amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.12 mmol.
  • Example 19 Manufacture of carbon dioxide absorption / release agent >> The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
  • Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of the first cycle of Example 10 from the start of the inflow of carbon dioxide to about 120 minutes. Then, in the time zone after that, which was unconfirmed in Example 10, the concentration of carbon dioxide in the exhaust gas increased significantly, and finally became about 1% by volume, and carbon dioxide was not removed. The above tendency was the same as in Example 18.
  • the amount of carbon dioxide absorbed by the DMSO solution carbon dioxide absorbing / releasing agent
  • step (A1) by adding n-hexylamine (base catalyst) to the DMSO solution after performing step (A) (step (A1)), the concentration of n-hexylamine is 0.7 mM. A turbid liquid was obtained.
  • step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of the first cycle of Example 10 and the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. However, the maximum value of the carbon dioxide concentration was higher in Example 19 than in Example 18, which was presumed to be the effect of using the base catalyst.
  • the amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.12 mmol.
  • Example 20 ⁇ Manufacture of carbon dioxide absorption / release agent >> The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
  • Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18.
  • the concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed.
  • the amount of carbon dioxide absorbed by the DMSO solution was calculated to be 1.23 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%.
  • the absorption rate of carbon dioxide was 62% when the amino group was not limited and the correction was not performed.
  • the DMSO solution became a DMSO suspension.
  • step (A1) by adding di-n-hexylamine (base catalyst) to the DMSO suspension after performing step (A) (step (A1)), the concentration of di-n-hexylamine is 0. A DMSO suspension of 0.7 mM was obtained.
  • step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG. The results of Example 18 are also shown in FIG. 22.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. However, the maximum value of the carbon dioxide concentration was higher in Example 20 than in Example 18, which was presumed to be the effect of using the base catalyst.
  • the amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.20 mmol.
  • Example 21 Manufacture of carbon dioxide absorption / release agent >> The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
  • Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18.
  • the concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed.
  • the amount of carbon dioxide absorbed by the DMSO solution was calculated to be 1.23 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%.
  • the absorption rate of carbon dioxide was 62% when the amino group was not limited and the correction was not performed.
  • the DMSO solution became a DMSO suspension.
  • step (A1) by adding tri-n-hexylamine (base catalyst) to the DMSO suspension after performing step (A) (step (A1)), the concentration of tri-n-hexylamine is 0. A DMSO suspension of 0.7 mM was obtained.
  • step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG. The results of Example 18 are also shown in FIG. 24.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. The maximum value of the carbon dioxide concentration was slightly higher in Example 21 than in Example 18. In addition, the time required for the carbon dioxide concentration to reach 0% by volume was shorter in Example 21 than in Example 18.
  • the amount of carbon dioxide released 120 minutes after the start of the heat treatment was 0.95 mmol.
  • Example 22 ⁇ Manufacture of carbon dioxide absorption / release agent >> The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
  • Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18.
  • the concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed.
  • the amount of carbon dioxide absorbed by the DMSO solution was calculated to be 1.18 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%.
  • the absorption rate of carbon dioxide was 59% when the amino group was not limited and the correction was not performed.
  • the DMSO solution became a DMSO suspension.
  • step (A1) by adding diazabicycloundecene (DBU, base catalyst) to the DMSO suspension after performing step (A) (step (A1)), the concentration of DBU is 0.7 mM. A DMSO suspension was obtained.
  • step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG. The results of Example 18 are also shown in FIG. 26.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. The maximum value of the carbon dioxide concentration was slightly higher in Example 22 than in Example 18. Further, when compared at the same time, the carbon dioxide concentration tends to be higher in Example 22 than in Example 18 until the carbon dioxide concentration becomes maximum, and the carbon dioxide concentration tends to be higher. After reaching the maximum, the concentration of carbon dioxide in Example 22 tended to be lower than that in Example 18.
  • the amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.06 mmol.
  • Example 23 Manufacture of carbon dioxide absorption / release agent >> The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
  • Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18.
  • the concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed.
  • the amount of carbon dioxide absorbed by the DMSO solution was calculated to be 1.27 mmol within about 240 minutes after the start of the inflow of carbon dioxide. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%.
  • the absorption rate of carbon dioxide was 64% when the amino group was not limited and the correction was not performed.
  • the DMSO solution became a DMSO suspension.
  • step (A1) by adding magnesium oxide (base catalyst) to the DMSO suspension after performing step (A) (step (A1)), the concentration of magnesium oxide is 24.8 mM.
  • step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG. The results of Example 18 are also shown in FIG. 28.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. However, the maximum value of the carbon dioxide concentration was higher in Example 23 than in Example 18, which was presumed to be the effect of using the base catalyst.
  • the amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.11 mmol.
  • Example 24 Manufacture of carbon dioxide absorption / release agent >> The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
  • Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18.
  • the concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed.
  • the amount of carbon dioxide absorbed by the DMSO solution was calculated to be 1.25 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%.
  • the absorption rate of carbon dioxide was 63% when the amino group was not limited and the correction was not performed.
  • the DMSO solution became a DMSO suspension.
  • Step (B), Step (B1) the gas inside the test tube was discharged to the outside of the test tube from the gas outlet of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured.
  • the DMSO suspension was heat-treated at 40 ° C. for 90 minutes (step (B), step (B1)), and the concentration of carbon dioxide in the exhaust gas was measured in the same manner.
  • the DMSO suspension was heat-treated at 50 ° C.
  • step (B), step (B1) the concentration of carbon dioxide in the exhaust gas was measured in the same manner.
  • step (B), step (B1) the concentration of carbon dioxide in the exhaust gas was measured in the same manner.
  • the concentration of carbon dioxide in the exhaust gas rapidly increases to the maximum and then decreases after the heat treatment temperature is changed to 30 ° C, 40 ° C, 50 ° C and 60 ° C. bottom. Then, by performing the heat treatment at 60 ° C., the concentration of carbon dioxide finally became 0% by volume. That is, it was shown that the release of carbon dioxide from the carbon dioxide absorption / release agent (the isophorone diamine derivative) was completed by the heat treatment at 60 ° C.
  • the amount of carbon dioxide released after the start of the heat treatment (ie, the carbon dioxide released by the end of all heat treatment at 30-90 ° C.) was 1.40 mmol.
  • the corrected emission rate of carbon dioxide when the amino group is limited which is calculated using this emission amount, and the carbon dioxide when no correction is performed, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide.
  • the release rate of carbon dioxide was determined to be 100%.
  • Example 25 Manufacture of carbon dioxide absorption / release agent >> The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
  • Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
  • the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18.
  • the concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed.
  • the amount of carbon dioxide absorbed by the DMSO solution was calculated to be 1.20 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%.
  • the absorption rate of carbon dioxide was 60% when the amino group was not limited and the correction was not performed.
  • the DMSO solution became a DMSO suspension.
  • steps (B) (step (B1)) were performed in the same manner as in Example 18 except that the temperature of the heat treatment was changed to 100 ° C. instead of 60 ° C., and carbon dioxide in the exhaust gas was used. The concentration of carbon dioxide was measured. The results are shown in FIG.
  • a DMSO solution (15 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled. Then, using the above device at room temperature, a mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added to the test tube at a flow rate of 20 mL / min (0.54 mmol / h of carbon dioxide). From the outside, the gas inside the test tube is flowed into the DMSO solution inside the test tube for bubbling (steps (a) and (a1)), and the gas inside the test tube is discharged from the gas outlet of the three-way cock to the test tube. It was discharged to the outside.
  • Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
  • Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
  • Example 26 Unlike the case of Example 26, no solid substance was formed in the DMSO solution even after a lapse of time from the start of the inflow of carbon dioxide. As is clear from FIG. 34, the efficiency of removing carbon dioxide decreased with the passage of time immediately after the start of the inflow of carbon dioxide, and the carbon dioxide was not removed about 150 minutes after the start of the inflow of carbon dioxide. It was confirmed by analysis by 13 C-NMR that the obtained reaction product was N-cyclohexylcarbamic acid.
  • Step (a) (step (a1)) was performed in the same manner as in Example 29, except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
  • the concentration of the compound (1) in the liquid carbon dioxide absorption / release agent is increased to absorb and release the reaction product of the compound (1) and carbon dioxide. It was confirmed that the carbon dioxide removal efficiency can be significantly improved by precipitating in the agent.
  • Step (a) (step (a1)) was performed in the same manner as in Example 29, except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 35 together with the results of Examples 28 and 31.
  • step (a) the concentration of compound (1) in the liquid carbon dioxide sink was increased, and the reaction product of compound (1) and carbon dioxide was converted to carbon dioxide. It was confirmed that the efficiency of carbon dioxide removal can be improved by precipitating in the absorption / release agent.
  • Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 36 together with the results of Example 28.
  • Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
  • Example 36 Manufacture of carbon dioxide absorption / release agent >> By mixing isophorone diamine and water, an aqueous solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
  • Step (a) (step (a1)) is performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above is used, and the aqueous solution (that is, the carbon dioxide absorption / release agent) is performed. The amount of carbon dioxide absorbed was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 37 together with the results of Example 28.
  • Example 37 ⁇ Manufacture of carbon dioxide absorption / release agent >> By mixing isophorone diamine and DMF, a DMF solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
  • Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMF solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 37.
  • Example 38 ⁇ Manufacture of carbon dioxide absorption / release agent >> By mixing isophorone diamine and toluene, a toluene solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
  • Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the toluene solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 37.
  • Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the methanol solution (that is, the carbon dioxide absorption / release agent) was used. ) was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 37.
  • the time from the start of inflow of carbon dioxide to the start of precipitation of the reaction product (white solid substance) of isophorone diamine and carbon dioxide is 35 minutes (Example). 28), 75 minutes (Example 36), 20 minutes (Example 37), 10 minutes (Example 38), and 130 minutes (Example 39). That is, it was confirmed that the carbon dioxide removal efficiency can be adjusted by adjusting the type of the solvent in the carbon dioxide absorbing / releasing agent.
  • the present invention can be used in all fields of carbon dioxide fixation and carbon dioxide recovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

A method for recovering carbon dioxide, said method comprising: a step (A1) wherein carbon dioxide is absorbed by a carbon dioxide adsorbing/desorbing liquid agent that contains a compound represented by general formula (1), so that a reaction product of the compound and the carbon dioxide is precipitated in the carbon dioxide adsorbing/desorbing liquid agent; and a step (B1) wherein the carbon dioxide is desorbed from the carbon dioxide adsorbing/desorbing liquid agent by subjecting the carbon dioxide adsorbing/desorbing liquid agent after the precipitation of the reaction product to a heat treatment. (Meanwhile, the cases where m is 0, p1 is 2, and two amino groups, to which p1 is attached, are arranged in the meta position to each other are excluded).

Description

二酸化炭素の回収方法、二酸化炭素の吸収方法、及び二酸化炭素の放出方法Carbon dioxide recovery method, carbon dioxide absorption method, and carbon dioxide release method
 本発明は、二酸化炭素の回収方法、二酸化炭素の吸収方法、及び二酸化炭素の放出方法に関する。
 本願は、2020年10月23日に日本に出願された特願2020-178243号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for recovering carbon dioxide, a method for absorbing carbon dioxide, and a method for releasing carbon dioxide.
This application claims priority based on Japanese Patent Application No. 2020-178243 filed in Japan on October 23, 2020, the contents of which are incorporated herein by reference.
 二酸化炭素ガスは、温室効果ガスであり、大気中での濃度が上昇することによって、地球温暖化の原因となる。地球上ではこれまでに、文明の進歩によって化石燃料の大量消費が続き、二酸化炭素の排出量が増大し続けてきた。これに対して、植物は光合成によって二酸化炭素を吸収して酸素を放出する。しかし、世界的規模で森林伐採が進み、植物が大量に失われてきており、二酸化炭素の消費量が減少し続けてきている。その結果、大気中の二酸化炭素の濃度が上昇してきており、温暖化が原因と考えられる様々な弊害が、世界的規模で認められる。このような背景から、大気中の二酸化炭素を吸収して固定化する技術が、種々検討されている。 Carbon dioxide gas is a greenhouse gas, and its concentration in the atmosphere rises, causing global warming. So far, the progress of civilization has continued to consume large amounts of fossil fuels on the earth, and carbon dioxide emissions have continued to increase. In contrast, plants absorb carbon dioxide and release oxygen through photosynthesis. However, logging is progressing on a global scale, large amounts of plants are being lost, and carbon dioxide consumption continues to decline. As a result, the concentration of carbon dioxide in the atmosphere is increasing, and various harmful effects thought to be caused by global warming are recognized on a global scale. Against this background, various techniques for absorbing and immobilizing carbon dioxide in the atmosphere have been studied.
 例えば、1,3-ジアミノシクロヘキサン、又はそのシクロヘキサン環骨格中の1~3個の水素原子が、炭素数1~4のアルキル基で置換された誘導体を含有する、二酸化炭素吸収剤が開示されている(特許文献1参照)。この二酸化炭素吸収剤は、1,3-ジアミノシクロヘキサン及びその前記誘導体が、その中のアミノ基(-NH)において、二酸化炭素と反応し、アミノ基がカルボキシアミノ基(-NH-C(=O)-OH)となったカルバミン酸誘導体となることにより、二酸化炭素を吸収した状態となる。 For example, a carbon dioxide absorber containing 1,3-diaminocyclohexane or a derivative in which 1 to 3 hydrogen atoms in the cyclohexane ring conformation are substituted with an alkyl group having 1 to 4 carbon atoms is disclosed. (See Patent Document 1). In this carbon dioxide absorber, 1,3-diaminocyclohexane and its derivative react with carbon dioxide at the amino group (-NH 2 ) in it, and the amino group is a carboxyamino group (-NH-C (=). By becoming a carbamic acid derivative that has become O) -OH), it is in a state of absorbing carbon dioxide.
特表2019-520201号公報Japanese Patent Publication No. 2019-520201
 しかし、1,3-ジアミノシクロヘキサン及びその誘導体は、それ自体がポリマー化し易いことが知られており、二酸化炭素吸収能が低下し易いという問題点があった。
 一方で、二酸化炭素は、植物の光合成に利用されるだけでなく、高機能材料の製造原料でもある。そこで近年は、二酸化炭素を吸収し、吸収した二酸化炭素を放出する、二酸化炭素の回収技術の開発が進められている。これに対して、特許文献1に記載の1,3-ジアミノシクロヘキサン及びその誘導体は、十分な二酸化炭素放出能を有するか、定かではない。
However, 1,3-diaminocyclohexane and its derivatives are known to be easily polymerized by themselves, and have a problem that the carbon dioxide absorption capacity is likely to decrease.
On the other hand, carbon dioxide is not only used for photosynthesis of plants, but also as a raw material for producing high-performance materials. Therefore, in recent years, the development of carbon dioxide recovery technology that absorbs carbon dioxide and releases the absorbed carbon dioxide has been promoted. On the other hand, it is uncertain whether 1,3-diaminocyclohexane and its derivatives described in Patent Document 1 have sufficient carbon dioxide emitting ability.
 本発明は、十分な二酸化炭素の吸収能及び放出能を有する二酸化炭素吸収放出剤と、新規の二酸化炭素の回収方法を提供することを課題とする。 An object of the present invention is to provide a carbon dioxide absorbing / releasing agent having sufficient carbon dioxide absorbing / releasing ability and a novel method for recovering carbon dioxide.
 本発明は、以下の構成を採用する。
 [1].二酸化炭素の回収方法であって、前記二酸化炭素の回収方法は、下記一般式(1)
The present invention adopts the following configuration.
[1]. It is a method for recovering carbon dioxide, and the method for recovering carbon dioxide is described in the following general formula (1).
Figure JPOXMLDOC01-appb-C000008
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物を含有する液状の二酸化炭素吸収放出剤に、二酸化炭素を吸収させることで、前記一般式(1)で表される化合物と、前記二酸化炭素と、の反応物を、前記液状の二酸化炭素吸収放出剤中で析出させる工程(A1)と、
 前記二酸化炭素を吸収し、前記反応物が析出した後の前記液状の二酸化炭素吸収放出剤を、加熱処理することにより、前記液状の二酸化炭素吸収放出剤から前記二酸化炭素を放出させる工程(B1)と、を有する、二酸化炭素の回収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)。
 [2].塩基触媒の共存下で前記工程(B1)を行う、[1]に記載の二酸化炭素の回収方法。
 [3].二酸化炭素の回収方法であって、前記二酸化炭素の回収方法は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000008
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
By allowing a liquid carbon dioxide absorbing / releasing agent containing the compound represented by the above to absorb carbon dioxide, the reaction product of the compound represented by the general formula (1) and the carbon dioxide is formed into the liquid. Step (A1) of precipitating in the carbon dioxide absorption / release agent of
Step (B1) of absorbing the carbon dioxide and releasing the carbon dioxide from the liquid carbon dioxide absorbing / releasing agent by heat-treating the liquid carbon dioxide absorbing / releasing agent after the reactant is precipitated (B1). A method for recovering carbon dioxide (where m is 0, p 1 is 2, and two amino groups with p 1 are arranged in meta positions with each other. Excluding carbon dioxide recovery methods).
[2]. The method for recovering carbon dioxide according to [1], wherein the step (B1) is performed in the coexistence of a base catalyst.
[3]. It is a method for recovering carbon dioxide, and the method for recovering carbon dioxide is described in the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物を含有する二酸化炭素吸収放出剤に、二酸化炭素を吸収させる工程(A)と、塩基触媒の共存下で、前記二酸化炭素を吸収後の前記二酸化炭素吸収放出剤を、加熱処理することにより、前記二酸化炭素吸収放出剤から前記二酸化炭素を放出させる工程(B2)と、を有する、二酸化炭素の回収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)。
 [4].前記一般式(1)で表される化合物が、下記一般式(11A)、(12A)又は(11B)
Figure JPOXMLDOC01-appb-C000009
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is 12 or less, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
In the step (A) of absorbing carbon dioxide into a carbon dioxide absorbing / releasing agent containing the compound represented by the above, and in the coexistence of a base catalyst, the carbon dioxide absorbing / releasing agent after absorbing the carbon dioxide is heat-treated. A method for recovering carbon dioxide (where m is 0, p 1 is 2, and p 1 is), which comprises a step (B2) of releasing the carbon dioxide from the carbon dioxide absorbing / releasing agent. Except for the method of recovering carbon dioxide when the two attached amino groups are arranged at the meta positions of each other).
[4]. The compound represented by the general formula (1) is the following general formula (11A), (12A) or (11B).
Figure JPOXMLDOC01-appb-C000010
 (式中、R11、R12、R13及びR21は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、カルボキシ基、炭素数2~11のアルキルオキシカルボニル基、ホルミル基、炭素数2~11のアルキルカルボニル基、炭素数1~10のアルキルチオ基、スルホ基、炭素数1~10のアルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q11及びq12は、それぞれ独立に、0~6の整数であり、q11が2以上の整数である場合には、2個以上のR11は互いに同一でも異なっていてもよく、q12が2以上の整数である場合には、2個以上のR12は互いに同一でも異なっていてもよく、q11が2以上の整数であり、かつ、2個以上のR11が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR11は相互に結合して環を形成していてもよく、q12が2以上の整数であり、かつ、2個以上のR12が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR12は相互に結合して環を形成していてもよく;q13及びq21は、それぞれ独立に、0~4の整数であり、q13が2以上の整数である場合には、2個以上のR13は互いに同一でも異なっていてもよく、q21が2以上の整数である場合には、2個以上のR21は互いに同一でも異なっていてもよく、q13が2以上の整数であり、かつ、2個以上のR13が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR13は相互に結合して環を形成していてもよく、q21が2以上の整数であり、かつ、2個以上のR21が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR21は相互に結合して環を形成していてもよい。)
で表される化合物である、[1]~[3]のいずれか一項に記載の二酸化炭素の回収方法(ただし、前記一般式(12A)において、シクロヘキサン環骨格を構成している炭素原子に直接結合している2個のアミノ基が、互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)。
 [5].前記一般式(11A)、(12A)又は(11B)で表される化合物が、下記一般式(111A)、(121A)、(122A)又は(111B)
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively. Carbonyl group, formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more. In some cases, the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other. When q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual. The alkyl group may be bonded to to form a ring, q 12 may be an integer of 2 or more, and R 12 of 2 or more may have an amino group as the substituent. In some cases, the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more. If the integers of, the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent. When it is a group, the two or more R 21s may be bonded to each other to form a ring.)
The method for recovering carbon dioxide according to any one of [1] to [3], which is a compound represented by (However, in the above general formula (12A), the carbon atom constituting the cyclohexane ring skeleton is used. Except for the method of carbon dioxide recovery when two directly bonded amino groups are located at the meta positions of each other).
[5]. The compound represented by the general formula (11A), (12A) or (11B) is the following general formula (111A), (121A), (122A) or (111B).
Figure JPOXMLDOC01-appb-C000011
 (式中、R111、R121、R122、R131及びR211は、それぞれ独立に、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~6のアルキルオキシカルボニル基、ホルミル基、炭素数2~6のアルキルカルボニル基、炭素数1~5のアルキルチオ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q111、q121及びq122は、それぞれ独立に、0~4の整数であり、q111が2以上の整数である場合には、2個以上のR111は互いに同一でも異なっていてもよく、q121が2以上の整数である場合には、2個以上のR121は互いに同一でも異なっていてもよく、q122が2以上の整数である場合には、2個以上のR122は互いに同一でも異なっていてもよく、q111が2以上の整数であり、かつ、2個以上のR111が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR111は相互に結合して環を形成していてもよく、q121が2以上の整数であり、かつ、2個以上のR121が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR121は相互に結合して環を形成していてもよく、q122が2以上の整数であり、かつ、2個以上のR122が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR122は相互に結合して環を形成していてもよく;q131及びq211は、それぞれ独立に、0~2の整数であり、q131が2である場合には、2個のR131は互いに同一でも異なっていてもよく、q211が2である場合には、2個のR211は互いに同一でも異なっていてもよく、q131が2であり、かつ、2個のR131が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR131は相互に結合して環を形成していてもよく、q211が2であり、かつ、2個のR211が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR211は相互に結合して環を形成していてもよい。)で表される化合物である、[4]に記載の二酸化炭素の回収方法。
 [6].前記工程(A1)及び工程(B1)、又は前記工程(A)及び工程(B2)を2回以上繰り返して行う、[1]~[5]のいずれか一項に記載の二酸化炭素の回収方法。
 [7].二酸化炭素の吸収方法であって、前記二酸化炭素の吸収方法は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent. Independently, q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent. When is, the two or more R 111s may be coupled to each other to form a ring, q 121 is an integer of 2 or more, and two or more R 121s are the substituents. In the case of the alkyl group which may have an amino group, the two or more R 121s may be bonded to each other to form a ring, and q 122 is an integer of 2 or more. In addition, when the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring. May; q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 . When is 2, the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent. In the case of a good alkyl group, the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents. In the case of the alkyl group which may have an amino group, the two R 211s may be bonded to each other to form a ring), which is a compound represented by [4]. ] The method for recovering carbon dioxide described in.
[6]. The method for recovering carbon dioxide according to any one of [1] to [5], wherein the step (A1) and the step (B1), or the step (A) and the step (B2) are repeated two or more times. ..
[7]. It is a method of absorbing carbon dioxide, and the method of absorbing carbon dioxide is described in the following general formula (1).
Figure JPOXMLDOC01-appb-C000012
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物を含有する液状の二酸化炭素吸収放出剤に、二酸化炭素を吸収させることで、前記一般式(1)で表される化合物と、前記二酸化炭素と、の反応物を、前記液状の二酸化炭素吸収放出剤中で析出させる工程(a1)を有する、二酸化炭素の吸収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の吸収方法を除く)。
 [8].二酸化炭素の放出方法であって、前記二酸化炭素の放出方法は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000012
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is 12 or less, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
By allowing a liquid carbon dioxide absorbing / releasing agent containing the compound represented by the above to absorb carbon dioxide, the reaction product of the compound represented by the general formula (1) and the carbon dioxide is formed into the liquid. A method for absorbing carbon dioxide having a step (a1) of precipitating in the carbon dioxide absorbing / releasing agent (where m is 0, p 1 is 2 and p 1 is attached to the two amino groups. Except for the method of absorbing carbon dioxide when they are placed in meta positions with each other).
[8]. A method for releasing carbon dioxide, wherein the method for releasing carbon dioxide is based on the following general formula (1).
Figure JPOXMLDOC01-appb-C000013
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物と、二酸化炭素と、の反応物を含有し、前記反応物が析出している液状の二酸化炭素放出剤を、加熱処理することにより、前記液状の二酸化炭素放出剤から前記二酸化炭素を放出させる工程(b1)を有する、二酸化炭素の放出方法。
 [9].二酸化炭素の放出方法であって、前記二酸化炭素の放出方法は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000013
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
By heat-treating a liquid carbon dioxide-releasing agent containing a reaction product of a compound represented by A method for releasing carbon dioxide, which comprises a step (b1) of releasing carbon dioxide.
[9]. It is a method of releasing carbon dioxide, and the method of releasing carbon dioxide is described in the following general formula (1).
Figure JPOXMLDOC01-appb-C000014
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物と、二酸化炭素と、の反応物を含有する二酸化炭素放出剤を、塩基触媒の共存下で加熱処理することにより、前記二酸化炭素放出剤から前記二酸化炭素を放出させる工程(b2)を有する、二酸化炭素の放出方法。
Figure JPOXMLDOC01-appb-C000014
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
A step of releasing the carbon dioxide from the carbon dioxide releasing agent by heat-treating the carbon dioxide releasing agent containing a reaction product of the compound represented by (b2) and carbon dioxide in the coexistence of a base catalyst (b2). ), A method of releasing carbon dioxide.
 本発明によれば、十分な二酸化炭素の吸収能及び放出能を有する二酸化炭素吸収放出剤と、新規の二酸化炭素の回収方法が提供される。 According to the present invention, a carbon dioxide absorbing / releasing agent having sufficient carbon dioxide absorbing / releasing ability and a novel method for recovering carbon dioxide are provided.
実施例1における二酸化炭素の除去効率を、二酸化炭素吸収放出剤の撮像データとともに示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Example 1 together with the imaging data of the carbon dioxide absorption and release agent. 二酸化炭素が流入しているときの二酸化炭素吸収放出剤中の成分と、シクロヘキシルアミンの標品と、N-シクロヘキシルカルバミン酸の標品と、の13C-NMRスペクトルである。It is a 13 C-NMR spectrum of a component in a carbon dioxide sink when carbon dioxide is flowing in, a standard of cyclohexylamine, and a standard of N-cyclohexylcarbamic acid. 実施例2における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Example 2. FIG. 実施例3における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Example 3. FIG. 実施例4における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Example 4. FIG. 実施例5における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Example 5. 実施例6における、二酸化炭素放出剤についての、熱重量測定-質量分析時の、重量減少のスペクトルデータである。FIG. 6 is spectral data of weight loss at the time of thermogravimetric analysis-mass spectrometry for the carbon dioxide emitting agent in Example 6. 実施例6における、二酸化炭素放出剤についての、熱重量測定-質量分析時の、イオン強度のスペクトルデータである。FIG. 6 is spectral data of ionic strength at the time of thermogravimetric analysis-mass spectrometry for the carbon dioxide emitting agent in Example 6. 実施例7~8における、1回目の二酸化炭素の放出実験における、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas in the 1st carbon dioxide emission experiment in Examples 7-8. 実施例7~8における、2回目の二酸化炭素の放出実験における、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas in the 2nd carbon dioxide emission experiment in Examples 7-8. 実施例9における、1サイクル目~2サイクル目の二酸化炭素の吸収時における、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in the 1st cycle to the 2nd cycle in Example 9. 実施例9における、1サイクル目~2サイクル目の二酸化炭素の放出時における、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in the 1st cycle to the 2nd cycle in Example 9. 実施例10における、1サイクル目~4サイクル目の二酸化炭素の吸収時における、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in the 1st cycle to the 4th cycle in Example 10. 実施例10における、1サイクル目~4サイクル目の二酸化炭素の放出時における、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in the 1st cycle to the 4th cycle in Example 10. 実施例11において得られたN-シクロヘキシルカルバミン酸と、再生されたシクロヘキシルアミンと、の13C-NMRスペクトルである。 13 C-NMR spectra of N-cyclohexylcarbamic acid obtained in Example 11 and regenerated cyclohexylamine. 実施例13において得られた(2-アミノシクロヘキシル)カルバミン酸と、再生された1,2-シクロヘキサンジアミンと、の13C-NMRスペクトルである。 13 C-NMR spectra of the (2-aminocyclohexyl) carbamic acid obtained in Example 13 and the regenerated 1,2-cyclohexanediamine. 実施例14において得られた(4-アミノシクロヘキシル)カルバミン酸と、再生された1,4-シクロヘキサンジアミンと、の13C-NMRスペクトルである。 13 C-NMR spectra of the (4-aminocyclohexyl) carbamic acid obtained in Example 14 and the regenerated 1,4-cyclohexanediamine. 実施例15において得られた(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸と、再生されたイソホロンジアミンと、の13C-NMRスペクトルである。 13 C-NMR spectra of the (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid obtained in Example 15 and the regenerated isophorone diamine. 実施例18~19における、二酸化炭素の放出時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in Examples 18-19. 実施例19における、二酸化炭素の吸収時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in Example 19. 実施例20における、二酸化炭素の吸収時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in Example 20. 実施例18及び20における、二酸化炭素の放出時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in Examples 18 and 20. 実施例21における、二酸化炭素の吸収時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in Example 21. 実施例18及び21における、二酸化炭素の放出時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in Examples 18 and 21. 実施例22における、二酸化炭素の吸収時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in Example 22. 実施例18及び22における、二酸化炭素の放出時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in Examples 18 and 22. 実施例23における、二酸化炭素の吸収時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in Example 23. 実施例18及び23における、二酸化炭素の放出時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in Examples 18 and 23. 実施例24における、二酸化炭素の吸収時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in Example 24. 実施例24における、二酸化炭素の放出時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in Example 24. 実施例25における、二酸化炭素の吸収時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of absorption of carbon dioxide in Example 25. 実施例25における、二酸化炭素の放出時の、排出ガス中の二酸化炭素の濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the concentration of carbon dioxide in the exhaust gas at the time of the release of carbon dioxide in Example 25. 実施例26~28における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Examples 26-28. 実施例29~32における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Examples 29-32. 実施例28、31及び33における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Examples 28, 31 and 33. 実施例28、34~35における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Examples 28, 34-35. 実施例28、36~39における二酸化炭素の除去効率を示すグラフである。It is a graph which shows the carbon dioxide removal efficiency in Examples 28, 36-39.
<<二酸化炭素吸収放出剤>>
 本発明の一実施形態に係る二酸化炭素吸収放出剤は、二酸化炭素を吸収し、吸収後の前記二酸化炭素を放出する、二酸化炭素吸収放出剤であって、下記一般式(1)
<< Carbon dioxide absorption and release agent >>
The carbon dioxide absorbing / releasing agent according to the embodiment of the present invention is a carbon dioxide absorbing / releasing agent that absorbs carbon dioxide and releases the absorbed carbon dioxide, and has the following general formula (1).
Figure JPOXMLDOC01-appb-C000015
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物(本明細書においては、「化合物(1)」と称することがある)を含有する(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素吸収放出剤を除く)。
Figure JPOXMLDOC01-appb-C000015
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
(However, m is 0, p 1 is 2, and p 1 is attached) containing a compound represented by (in the present specification, it may be referred to as “compound (1)”). Except for carbon dioxide absorption and release agents when two amino groups are located at the meta positions of each other).
 本実施形態の二酸化炭素吸収放出剤において、二酸化炭素を吸収し、吸収後の二酸化炭素を放出する活性成分は、化合物(1)である。すなわち、化合物(1)は二酸化炭素との反応性(換言すると吸収性)を有し、化合物(1)と二酸化炭素との反応物は、二酸化炭素の放出性を有する。 In the carbon dioxide absorption / release agent of the present embodiment, the active ingredient that absorbs carbon dioxide and releases carbon dioxide after absorption is compound (1). That is, the compound (1) has reactivity with carbon dioxide (in other words, absorbable), and the reactant of the compound (1) and carbon dioxide has the property of releasing carbon dioxide.
 より具体的には、化合物(1)は、その中のアミノ基(-NH)において、二酸化炭素と反応し、アミノ基がカルボキシアミノ基(-NH-C(=O)-OH)となったカルバミン酸誘導体となることにより、二酸化炭素を吸収した状態となる。このとき、カルバミン酸誘導体が置かれた条件によっては、前記カルボキシアミノ基は式「-NH-C(=O)-O」で表される基、又は式「-NH -C(=O)-O」で表される基となることもある。さらに、化合物(1)と二酸化炭素との反応物である前記カルバミン酸誘導体は、その中のカルボキシアミノ基から二酸化炭素を放出し、アミノ基を形成する。その結果、前記カルバミン酸誘導体は、化合物(1)に戻る。
 この二酸化炭素を吸収し、放出した後の化合物(1)は、再度、同様の反応機構によって、二酸化炭素を吸収し、放出することが可能である。すなわち、化合物(1)は、二酸化炭素の吸収及び放出を繰り返すことが可能である。
More specifically, the compound (1) reacts with carbon dioxide at the amino group (-NH 2 ) in the compound (1), and the amino group becomes a carboxyamino group (-NH-C (= O) -OH). By becoming a carbamic acid derivative, carbon dioxide is absorbed. At this time, depending on the conditions under which the carbamic acid derivative is placed, the carboxyamino group may be a group represented by the formula "-NH-C (= O) -O- " or the formula "-NH 2 + -C (=). It may be the basis represented by "O) -O- ". Further, the carbamic acid derivative, which is a reaction product of compound (1) and carbon dioxide, releases carbon dioxide from the carboxyamino group in the derivative to form an amino group. As a result, the carbamic acid derivative returns to compound (1).
After absorbing and releasing this carbon dioxide, the compound (1) can absorb and release carbon dioxide again by the same reaction mechanism. That is, compound (1) can repeatedly absorb and release carbon dioxide.
<化合物(1)>
 化合物(1)は、前記一般式(1)で表される。
 一般式(1)中、mは0又は1である。
 mは、化合物(1)中の、メチレン基を介した、一方のシクロヘキサン環骨格の有無を規定している。
 すなわち、mが0の場合、化合物(1)はシクロヘキサン誘導体であり、下記一般式(1A)で表される(本明細書においては、この化合物を「化合物(1A)」と称することがある)(ただし、pが2であり、pが付されている2個(p個)のアミノ基が互いにメタ位に配置されている化合物を除く)。
 mが1の場合、化合物(1)はジシクロヘキシルメタン誘導体であり、下記一般式(1B)で表される(本明細書においては、この化合物を「化合物(1B)」と称することがある)。
<Compound (1)>
The compound (1) is represented by the general formula (1).
In the general formula (1), m is 0 or 1.
m defines the presence or absence of one cyclohexane ring skeleton mediated by a methylene group in compound (1).
That is, when m is 0, the compound (1) is a cyclohexane derivative and is represented by the following general formula (1A) (in the present specification, this compound may be referred to as “compound (1A)”). (However, excluding compounds in which p 1 is 2 and two (p 1 ) amino groups with p 1 are arranged at the meta positions of each other).
When m is 1, compound (1) is a dicyclohexylmethane derivative and is represented by the following general formula (1B) (in the present specification, this compound may be referred to as “compound (1B)”).
Figure JPOXMLDOC01-appb-C000016
 (式中、R、R、p、p、q及びqは、上記と同じである。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 1 , R 2 , p 1 , p 2 , q 1 and q 2 are the same as above.)
 本明細書においては、ある特定の化合物において、1個以上の水素原子が水素原子以外の基で置換された構造が想定される場合、このような置換された構造を有する化合物を、上述の特定の化合物の「誘導体」と称する。
 本明細書において、「基」とは、特に断りのない限り、複数個の原子が結合してなる原子団だけでなく、1個の原子も包含するものとする。
In the present specification, when a structure in which one or more hydrogen atoms are substituted with a group other than a hydrogen atom is assumed in a specific compound, the compound having such a substituted structure is referred to as the above-mentioned specific compound. It is referred to as a "derivative" of the compound of.
As used herein, the term "group" includes not only an atomic group formed by bonding a plurality of atoms but also one atom, unless otherwise specified.
 一般式(1)中、R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基(-C(=O)-OH)、アルキルオキシカルボニル基、ホルミル基(-C(=O)-H)、アルキルカルボニル基(アシル基)、アルキルチオ基、スルホ基(-SOH)、アルキルオキシスルホニル基、ニトロ基(-NO)、水酸基(-OH)、チオール基(メルカプト基、-SH)、シアノ(-CN)基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよい。すなわち、R及びRにおけるこれら基は、互いに同一であってもよいし、異なっていてもよい。 In the general formula (1), R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group (-C (= O) -OH), an alkyloxycarbonyl group, and a formyl group (-C (= O), respectively. ) -H), alkylcarbonyl group (acyl group), alkylthio group, sulfo group (-SO 3H ), alkyloxysulfonyl group, nitro group (-NO 2 ), hydroxyl group (-OH), thiol group (mercapto group, -SH), a cyano (-CN) group or a halogen atom, and the alkyl group may have a substituent. That is, these groups in R 1 and R 2 may be the same or different from each other.
 R及びRにおける前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。 The alkyl group in R 1 and R 2 may be linear, branched or cyclic.
 R及びRにおける、直鎖状又は分岐鎖状の前記アルキル基の炭素数は、特に限定されないが、1~20であることが好ましい。
 このような直鎖状又は分岐鎖状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。
 直鎖状又は分岐鎖状のアルキル基の炭素数は、1~10であることがより好ましく、例えば、1~7、1~5、及び1~3のいずれかであってもよい。
The carbon number of the linear or branched alkyl group in R 1 and R 2 is not particularly limited, but is preferably 1 to 20.
Examples of such linear or branched alkyl groups include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. n-Pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3- Dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethyl Pentyl group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group , Heptadecyl group, octadecyl group, nonadecil group, icosyl group and the like.
The number of carbon atoms of the linear or branched alkyl group is more preferably 1 to 10, and may be, for example, any of 1 to 7, 1 to 5, and 1 to 3.
 R及びRにおける、環状の前記アルキル基は、単環状及び多環状のいずれであってもよい。
 環状の前記アルキル基の炭素数は、3以上であれば特に限定されないが、3~20であることが好ましい。
 環状の前記アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等が挙げられる。
 環状のアルキル基の炭素数は、3~15であることがより好ましく、例えば、3~10、3~7、及び3~5のいずれかであってもよいし、5~15、5~10、及び5~7のいずれかであってもよい。
The cyclic alkyl group in R 1 and R 2 may be either monocyclic or polycyclic.
The number of carbon atoms of the cyclic alkyl group is not particularly limited as long as it is 3 or more, but it is preferably 3 to 20.
Examples of the cyclic alkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group and 2-. Examples thereof include an adamantyl group and a tricyclodecyl group.
The cyclic alkyl group preferably has 3 to 15 carbon atoms, and may be, for example, any of 3 to 10, 3 to 7, and 3 to 5, or 5 to 15, 5 to 10. , And any of 5 to 7.
 R及びRにおける前記アルキル基は、直鎖状又は分岐鎖状の鎖状構造と、環状構造と、が混在したものであってもよい。
 このような鎖状構造と環状構造が混在した前記アルキル基としては、例えば、シクロペンチルメチル基、1-シクロペンチルエチル基、シクロヘキシルメチル基、1-シクロヘキシルエチル基等の、上述の直鎖状又は分岐鎖状のアルキル基における1個又は2個以上の水素原子が、上述の環状のアルキル基で置換された構造を有する1価の基;メチルシクロペンチル基、エチルシクロペンチル基、メチルシクロヘキシル基、エチルシクロヘキシル基、ジメチルシクロヘキシル基等の、上述の環状のアルキル基における1個又は2個以上の水素原子が、上述の直鎖状又は分岐鎖状のアルキル基で置換された構造を有する1価の基等が挙げられる。
 鎖状構造と環状構造が混在した前記アルキル基の炭素数は、4以上であれば特に限定されないが、4~25であることが好ましく、例えば、6~15、及び6~10のいずれかであってもよい。
The alkyl group in R 1 and R 2 may be a mixture of a linear or branched chain structure and a cyclic structure.
Examples of the alkyl group in which such a chain structure and a cyclic structure are mixed include the above-mentioned linear or branched chain such as a cyclopentylmethyl group, a 1-cyclopentylethyl group, a cyclohexylmethyl group, and a 1-cyclohexylethyl group. A monovalent group having a structure in which one or more hydrogen atoms in the alkyl group in the form are substituted with the cyclic alkyl group described above; a methylcyclopentyl group, an ethylcyclopentyl group, a methylcyclohexyl group, an ethylcyclohexyl group, Examples thereof include a monovalent group having a structure in which one or more hydrogen atoms in the above-mentioned cyclic alkyl group, such as a dimethylcyclohexyl group, are substituted with the above-mentioned linear or branched alkyl group. Be done.
The number of carbon atoms of the alkyl group in which the chain structure and the cyclic structure are mixed is not particularly limited as long as it is 4 or more, but is preferably 4 to 25, and is preferably any of 6 to 15, and 6 to 10, for example. There may be.
 本明細書においては、鎖状構造のみを有し、環状構造を有しないアルキル基は、鎖状のアルキル基であり、鎖状構造の有無に関わらず、環状構造を有するアルキル基は、環状のアルキル基である。 In the present specification, the alkyl group having only a chain structure and not having a cyclic structure is a chain alkyl group, and the alkyl group having a cyclic structure is cyclic regardless of the presence or absence of the chain structure. It is an alkyl group.
 R及びRにおける前記アルキル基は、それぞれ独立に、炭素数1~10のアルキル基(炭素数1~10の鎖状のアルキル基、炭素数3~10の環状のアルキル基)であることが好ましく、それぞれ独立に、炭素数1~5のアルキル基(炭素数1~5の鎖状のアルキル基、炭素数3~5の環状のアルキル基)であることがより好ましい。 The alkyl groups in R 1 and R 2 are independently alkyl groups having 1 to 10 carbon atoms (chain alkyl groups having 1 to 10 carbon atoms and cyclic alkyl groups having 3 to 10 carbon atoms). It is more preferable that the alkyl groups have 1 to 5 carbon atoms (chain alkyl groups having 1 to 5 carbon atoms and cyclic alkyl groups having 3 to 5 carbon atoms) independently of each other.
 R及びRにおける前記アルキル基は、置換基を有していてもよい。
 前記アルキル基が置換基を有するとは、前記アルキル基中の1個又は2個以上の水素原子が、水素原子以外の基で置換されていることを意味する。
The alkyl group in R 1 and R 2 may have a substituent.
The fact that the alkyl group has a substituent means that one or more hydrogen atoms in the alkyl group are substituted with a group other than the hydrogen atom.
 前記アルキル基において、置換されている水素原子が2個以上である場合、その置換基は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。 When the number of hydrogen atoms substituted in the alkyl group is two or more, the substituents may be all the same, all may be different, or only a part thereof may be the same. ..
 前記アルキル基において、水素原子の置換位置は、特に限定されない。
 例えば、前記アルキル基中の1個の炭素原子に、置換基で置換される得る水素原子が2個以上結合している場合には、そのうちの1個のみが置換基で置換されていてもよいし、2個以上が置換基で置換されていてもよい。
 例えば、前記アルキル基が鎖状構造を有する場合には、前記置換位置は、前記鎖状構造の末端の炭素原子であってもよいし、非末端の炭素原子であってもよい。
In the alkyl group, the substitution position of the hydrogen atom is not particularly limited.
For example, when two or more hydrogen atoms that can be substituted with a substituent are bonded to one carbon atom in the alkyl group, only one of them may be substituted with the substituent. However, two or more may be substituted with a substituent.
For example, when the alkyl group has a chain structure, the substitution position may be a carbon atom at the end of the chain structure or a non-terminal carbon atom.
 R及びRにおける前記アルキル基が、置換基を有する場合、置換基の数は、置換され得る水素原子の数に依存するが、通常は、1~3個であることが好ましく、1又は2個であることがより好ましい。 When the alkyl group in R 1 and R 2 has a substituent, the number of substituents depends on the number of hydrogen atoms that can be substituted, but is usually preferably 1 to 3 or 1 or. It is more preferable that the number is two.
 前記置換基としては、例えば、アミノ基、シアノ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、水酸基等が挙げられる。 Examples of the substituent include an amino group, a cyano group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), a hydroxyl group and the like.
 置換基を有する前記アルキル基で、好ましいものとしては、例えば、置換基としてアミノ基を有するアミノアルキル基が挙げられ、より好ましいものとしては、例えば、鎖状(直鎖状又は分岐鎖状)のアルキル基の末端の炭素原子にアミノ基が結合しているアミノアルキル基が挙げられる。 Among the alkyl groups having a substituent, for example, an aminoalkyl group having an amino group as a substituent is mentioned, and a more preferable one is, for example, a chain (linear or branched). Examples thereof include an aminoalkyl group in which an amino group is bonded to a carbon atom at the end of the alkyl group.
 R及びRにおける前記アルコキシ基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。
 R及びRにおける前記アルコキシ基としては、例えば、メトキシ基(CH-O-)、シクロプロピルオキシ基(C-O-)、シクロペンチルメチルオキシ基(C-CH-O-)、メチルシクロペンチルオキシ基(CH-C-O-)等の、上述のR及びRにおける直鎖状、分岐鎖状又は環状の前記アルキル基が、酸素原子に結合した構造を有する1価の基が挙げられる。
The alkoxy group in R 1 and R 2 may be linear, branched or cyclic.
Examples of the alkoxy group in R 1 and R 2 include a methoxy group (CH 3 -O-), a cyclopropyloxy group (C 3 H 5 -O-), and a cyclopentylmethyl oxy group (C 5 H 9 -CH 2 ). -O-), methylcyclopentyloxy group (CH 3 -C 5 H 8 -O-), etc., the linear, branched or cyclic alkyl groups in R 1 and R 2 described above become oxygen atoms. Examples thereof include monovalent groups having a bonded structure.
 直鎖状又は分岐鎖状の前記アルコキシ基の炭素数は、1~20であることが好ましく、1~10であることがより好ましく、例えば、1~7、1~5、及び1~3のいずれかであってもよい。
 環状の前記アルコキシ基の炭素数は、3~20であることが好ましく、3~15であることがより好ましく、例えば、3~10、3~7、及び3~5のいずれかであってもよいし、5~15、5~10、及び5~7のいずれかであってもよい。
 鎖状構造と環状構造が混在した前記アルコキシ基の炭素数は、4以上であれば特に限定されないが、4~25であることが好ましく、例えば、6~15、及び6~10のいずれかであってもよい。
The linear or branched alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 10, for example, 1 to 7, 1 to 5, and 1 to 3. It may be either.
The cyclic alcoholic group preferably has 3 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and may be, for example, any of 3 to 10, 3 to 7, and 3 to 5. It may be any of 5 to 15, 5 to 10, and 5 to 7.
The number of carbon atoms of the alkoxy group in which the chain structure and the cyclic structure are mixed is not particularly limited as long as it is 4 or more, but is preferably 4 to 25, and is preferably any of 6 to 15, and 6 to 10, for example. There may be.
 本明細書においては、鎖状構造のみを有し、環状構造を有しないアルコキシ基は、鎖状のアルコキシ基であり、鎖状構造の有無に関わらず、環状構造を有するアルコキシ基は、環状のアルコキシ基である。 In the present specification, the alkoxy group having only a chain structure and not having a cyclic structure is a chain alkoxy group, and the alkoxy group having a cyclic structure is cyclic regardless of the presence or absence of the chain structure. It is an alkoxy group.
 R及びRにおける前記アルコキシ基は、それぞれ独立に、炭素数1~10のアルコキシ基(炭素数1~10の鎖状のアルコキシ基、炭素数3~10の環状のアルコキシ基)であることが好ましく、それぞれ独立に、炭素数1~5のアルコキシ基(炭素数1~5の鎖状のアルコキシ基、炭素数3~5の環状のアルコキシ基)であることがより好ましい。 The alkoxy groups in R 1 and R 2 are independently alkoxy groups having 1 to 10 carbon atoms (chain alkoxy groups having 1 to 10 carbon atoms and cyclic alkoxy groups having 3 to 10 carbon atoms). It is more preferable that the alkoxy groups have 1 to 5 carbon atoms (chain alkoxy groups having 1 to 5 carbon atoms and cyclic alkoxy groups having 3 to 5 carbon atoms) independently of each other.
 R及びRにおける前記アルキルオキシカルボニル基としては、例えば、メトキシカルボニル基(CH-O-C(=O)-)、シクロプロピルオキシカルボニル基(C-O-C(=O)-)、シクロペンチルメチルオキシカルボニル基(C-CH-O-C(=O)-)、メチルシクロペンチルオキシカルボニル基(CH-C-O-C(=O)-)等の、上述のR及びRにおける直鎖状、分岐鎖状又は環状の前記アルキル基が、オキシカルボニル基(-O-C(=O)-)中のカルボニル基(-C(=O)-)を構成していない酸素原子に結合した構造を有する1価の基が挙げられる。 Examples of the alkyloxycarbonyl group in R 1 and R 2 include a methoxycarbonyl group (CH 3 -OC (= O)-) and a cyclopropyloxycarbonyl group (C 3 H5-OC ( = O)). )-), Cyclopentylmethyloxycarbonyl group (C 5 H 9 -CH 2 -OC (= O)-), Methylcyclopentyl oxycarbonyl group (CH 3 -C 5 H 8 -OC (= O)-) ), Etc., the linear, branched or cyclic alkyl group in R 1 and R 2 described above is a carbonyl group (-C (=) in an oxycarbonyl group (-OC (= O)-). Examples thereof include monovalent groups having a structure bonded to oxygen atoms that do not constitute O)-).
 前記アルキル基が直鎖状又は分岐鎖状である場合の前記アルキルオキシカルボニル基の炭素数は、2~21であることが好ましく、2~11であることがより好ましく、例えば、2~8、2~6、及び2~4のいずれかであってもよい。
 前記アルキル基が環状である場合の前記アルキルオキシカルボニル基の炭素数は、4~21であることが好ましく、4~16であることがより好ましく、例えば、4~11、4~8、及び4~6のいずれかであってもよいし、6~16、6~11、及び6~8のいずれかであってもよい。
 前記アルキル基が鎖状構造と環状構造が混在したものである場合の前記アルキルオキシカルボニル基の炭素数は、5以上であれば特に限定されないが、5~26であることが好ましく、例えば、7~16、及び7~11のいずれかであってもよい。
When the alkyl group is linear or branched, the number of carbon atoms of the alkyloxycarbonyl group is preferably 2 to 21, more preferably 2 to 11, for example, 2 to 8, It may be any of 2 to 6 and 2 to 4.
When the alkyl group is cyclic, the alkyloxycarbonyl group preferably has 4 to 21 carbon atoms, more preferably 4 to 16 carbon atoms, for example, 4 to 11, 4 to 8 and 4 carbon atoms. It may be any of 6 to 6, 6 to 16, 6 to 11 and 6 to 8.
When the alkyl group is a mixture of a chain structure and a cyclic structure, the carbon number of the alkyloxycarbonyl group is not particularly limited as long as it is 5 or more, but is preferably 5 to 26, for example, 7. It may be any of 16 and 7-11.
 R及びRにおける前記アルキルオキシカルボニル基は、それぞれ独立に、炭素数2~11のアルキルオキシカルボニル基であることが好ましく、それぞれ独立に、炭素数2~6のアルキルオキシカルボニル基であることがより好ましい。 The alkyloxycarbonyl group in R 1 and R 2 is preferably an alkyloxycarbonyl group having 2 to 11 carbon atoms independently, and each independently has an alkyloxycarbonyl group having 2 to 6 carbon atoms. Is more preferable.
 R及びRにおける前記アルキルカルボニル基としては、例えば、メチルカルボニル基(アセチル基、CH-C(=O)-)、シクロプロピルカルボニル基(C-C(=O)-)、シクロペンチルメチルカルボニル基(C-CH-C(=O)-)、メチルシクロペンチルカルボニル基(CH-C-C(=O)-)等の、上述のR及びRにおける直鎖状、分岐鎖状又は環状の前記アルキル基が、カルボニル基(-C(=O)-)中の炭素原子に結合した構造を有する1価の基が挙げられる。 Examples of the alkylcarbonyl group in R 1 and R 2 include a methylcarbonyl group (acetyl group, CH 3 - C (= O)-) and a cyclopropylcarbonyl group (C3 H5 -C (= O)-). , Cyclopentylmethylcarbonyl group (C 5 H 9 -CH 2 -C (= O)-), methylcyclopentylcarbonyl group (CH 3 - C 5 H 8 -C (= O)-), etc. Examples thereof include a monovalent group having a structure in which the linear, branched or cyclic alkyl group in R2 is bonded to a carbon atom in a carbonyl group (-C (= O)-).
 前記アルキル基が直鎖状又は分岐鎖状である場合の前記アルキルカルボニル基の炭素数は、2~21であることが好ましく、2~11であることがより好ましく、例えば、2~8、2~6、及び2~4のいずれかであってもよい。
 前記アルキル基が環状である場合の前記アルキルカルボニル基の炭素数は、4~21であることが好ましく、4~16であることがより好ましく、例えば、4~11、4~8、及び4~6のいずれかであってもよいし、6~16、6~11、及び6~8のいずれかであってもよい。
 前記アルキル基が鎖状構造と環状構造が混在したものである場合の前記アルキルカルボニル基の炭素数は、5以上であれば特に限定されないが、5~26であることが好ましく、例えば、7~16、及び7~11のいずれかであってもよい。
When the alkyl group is linear or branched, the number of carbon atoms of the alkylcarbonyl group is preferably 2 to 21, more preferably 2 to 11, for example, 2 to 8 and 2. It may be any of 6 and 2-4.
When the alkyl group is cyclic, the number of carbon atoms of the alkylcarbonyl group is preferably 4 to 21, more preferably 4 to 16, for example, 4 to 11, 4 to 8, and 4 to 4. It may be any of 6, or 6 to 16, 6 to 11, and 6 to 8.
When the alkyl group is a mixture of a chain structure and a cyclic structure, the number of carbon atoms of the alkylcarbonyl group is not particularly limited as long as it is 5 or more, but is preferably 5 to 26, for example, 7 to 26. It may be any of 16 and 7-11.
 R及びRにおける前記アルキルカルボニル基は、それぞれ独立に、炭素数2~11のアルキルカルボニル基であることが好ましく、それぞれ独立に、炭素数2~6のアルキルカルボニル基であることがより好ましい。 The alkylcarbonyl groups in R 1 and R 2 are preferably independent alkylcarbonyl groups having 2 to 11 carbon atoms, and more preferably independent alkylcarbonyl groups having 2 to 6 carbon atoms. ..
 R及びRにおける前記アルキルチオ基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。
 R及びRにおける前記アルキルチオ基としては、例えば、メチルチオ基(CH-S-)、シクロプロピルチオ基(C-S-)、シクロペンチルメチルチオ基(C-CH-S-)、メチルシクロペンチルチオ基(CH-C-S-)等の、上述のR及びRにおける直鎖状、分岐鎖状又は環状の前記アルキル基が、硫黄原子に結合した構造を有する1価の基が挙げられる。
 直鎖状又は分岐鎖状の前記アルキルチオ基の炭素数は、1~20であることが好ましく、1~10であることがより好ましく、例えば、1~7、1~5、及び1~3のいずれかであってもよい。
 環状の前記アルキルチオ基の炭素数は、3~20であることが好ましく、3~15であることがより好ましく、例えば、3~10、3~7、及び3~5のいずれかであってもよいし、5~15、5~10、及び5~7のいずれかであってもよい。
 鎖状構造と環状構造が混在した前記アルキルチオ基の炭素数は、4以上であれば特に限定されないが、4~25であることが好ましく、例えば、6~15、及び6~10のいずれかであってもよい。
The alkylthio group in R 1 and R 2 may be linear, branched or cyclic.
Examples of the alkylthio group in R 1 and R 2 include a methyl thio group (CH 3 -S-), a cyclopropyl thio group (C 3 H 5 -S-), and a cyclopentyl methyl thio group (C 5 H 9 -CH 2- The linear, branched or cyclic alkyl group in R1 and R2 described above, such as S-), methylcyclopentylthio group ( CH 3 -C 5 H8-S-), is attached to a sulfur atom. Examples thereof include monovalent groups having the above-mentioned structure.
The linear or branched alkylthio group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, for example, 1 to 7, 1 to 5 and 1 to 3 carbon atoms. It may be either.
The cyclic alkylthio group preferably has 3 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and may be, for example, any of 3 to 10, 3 to 7, and 3 to 5. It may be any of 5 to 15, 5 to 10, and 5 to 7.
The number of carbon atoms of the alkylthio group in which the chain structure and the cyclic structure are mixed is not particularly limited as long as it is 4 or more, but is preferably 4 to 25, and is preferably any of 6 to 15, and 6 to 10, for example. There may be.
 本明細書においては、鎖状構造のみを有し、環状構造を有しないアルキルチオ基は、鎖状のアルキルチオ基であり、鎖状構造の有無に関わらず、環状構造を有するアルキルチオ基は、環状のアルキルチオ基である。 In the present specification, the alkylthio group having only a chain structure and not having a cyclic structure is a chain alkylthio group, and the alkylthio group having a cyclic structure is cyclic regardless of the presence or absence of the chain structure. It is an alkylthio group.
 R及びRにおける前記アルキルチオ基は、それぞれ独立に、炭素数1~10のアルキルチオ基(炭素数1~10の鎖状のアルキルチオ基、炭素数3~10の環状のアルキルチオ基)であることが好ましく、それぞれ独立に、炭素数1~5のアルキルチオ基(炭素数1~5の鎖状のアルキルチオ基、炭素数3~5の環状のアルキルチオ基)であることがより好ましい。 The alkylthio groups in R 1 and R 2 are independently alkyl thio groups having 1 to 10 carbon atoms (chain alkyl thio groups having 1 to 10 carbon atoms and cyclic alkyl thio groups having 3 to 10 carbon atoms). It is more preferable that the alkylthio groups have 1 to 5 carbon atoms (chain alkylthio groups having 1 to 5 carbon atoms and cyclic alkylthio groups having 3 to 5 carbon atoms) independently of each other.
 R及びRにおける前記アルキルオキシスルホニル基としては、例えば、メチルオキシスルホニル基(メトキシスルホニル基、CH-O-SO-)、シクロプロピルオキシスルホニル基(C-O-SO-)、シクロペンチルメチルオキシスルホニル基(C-CH-O-SO-)、メチルシクロペンチルオキシスルホニル基(CH-C-O-SO-)等の、上述のR及びRにおける直鎖状、分岐鎖状又は環状の前記アルキル基が、オキシスルホニル基(-O-SO-)中のスルホニル基(-SO-)を構成していない酸素原子に結合した構造を有する1価の基が挙げられる。 Examples of the alkyloxysulfonyl group in R1 and R2 include a methyloxysulfonyl group (methoxysulfonyl group , CH 3 -O-SO 2- ) and a cyclopropyloxysulfonyl group (C3 H5 - O-SO 2 ). -), Cyclopentylmethyloxysulfonyl group (C 5 H 9 -CH 2 -O-SO 2- ), methylcyclopentyloxysulfonyl group (CH 3 -C 5 H 8 -O-SO 2- ), etc. The linear, branched or cyclic alkyl group in 1 and R 2 is bonded to an oxygen atom that does not constitute a sulfonyl group (-SO 2- ) in an oxysulfonyl group (-O-SO 2- ). Examples thereof include monovalent groups having the above-mentioned structure.
 前記アルキル基が直鎖状又は分岐鎖状である場合の前記アルキルオキシスルホニル基の炭素数は、1~20であることが好ましく、1~10であることがより好ましく、例えば、1~7、1~5、及び1~3のいずれかであってもよい。
 前記アルキル基が環状である場合の前記アルキルオキシスルホニル基の炭素数は、3~20であることが好ましく、3~15であることがより好ましく、例えば、3~10、3~7、及び3~5のいずれかであってもよいし、5~15、5~10、及び5~7のいずれかであってもよい。
 前記アルキル基が鎖状構造と環状構造が混在したものである場合の前記アルキルオキシスルホニル基の炭素数は、4以上であれば特に限定されないが、4~25であることが好ましく、例えば、6~15、及び6~10のいずれかであってもよい。
When the alkyl group is linear or branched, the number of carbon atoms of the alkyloxysulfonyl group is preferably 1 to 20, more preferably 1 to 10, and for example, 1 to 7. It may be any one of 1 to 5 and 1 to 3.
When the alkyl group is cyclic, the number of carbon atoms of the alkyloxysulfonyl group is preferably 3 to 20, more preferably 3 to 15, for example, 3 to 10, 3 to 7, and 3. It may be any of 5 to 5, 5 to 15, 5 to 10, and 5 to 7.
When the alkyl group is a mixture of a chain structure and a cyclic structure, the number of carbon atoms of the alkyloxysulfonyl group is not particularly limited as long as it is 4 or more, but is preferably 4 to 25, for example, 6. It may be any of ~ 15, and 6-10.
 R及びRにおける前記アルキルオキシスルホニル基は、それぞれ独立に、炭素数1~10のアルキルカルボニル基であることが好ましく、それぞれ独立に、炭素数1~5のアルキルカルボニル基であることがより好ましい。 It is preferable that the alkyloxysulfonyl groups in R 1 and R 2 are independently alkylcarbonyl groups having 1 to 10 carbon atoms, and each independently is an alkylcarbonyl group having 1 to 5 carbon atoms. preferable.
 R及びRにおける前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom in R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
 R及びRは、それぞれ独立に、前記置換基としてアミノ基を有していてもよい、炭素数1~10のアルキル基(炭素数1~10の鎖状のアルキル基、炭素数3~10の環状のアルキル基)と、炭素数1~10のアルコキシ基(炭素数1~10の鎖状のアルコキシ基、炭素数3~10の環状のアルコキシ基)と、カルボキシ基と、炭素数2~11のアルキルオキシカルボニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数2~11のアルキルオキシカルボニル基、アルキル基が環状である場合の炭素数4~11のアルキルオキシカルボニル基)と、ホルミル基と、炭素数2~11のアルキルカルボニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数2~11のアルキルカルボニル基、アルキル基が環状である場合の炭素数4~11のアルキルカルボニル基)と、炭素数1~10のアルキルチオ基(炭素数1~10の鎖状のアルキルチオ基、炭素数3~10の環状のアルキルチオ基)と、スルホ基と、炭素数1~10のアルキルオキシスルホニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数1~10のアルキルオキシスルホニル基、アルキル基が環状である場合の炭素数4~11のアルキルオキシスルホニル基)と、ニトロ基と、水酸基と、チオール基と、シアノ基と、ハロゲン原子と、からなる群より選択される1種又は2種以上であることが好ましい。
 R及びRは、それぞれ独立に、前記置換基としてアミノ基を有していてもよい、炭素数1~5のアルキル基(炭素数1~5の鎖状のアルキル基、炭素数3~5の環状のアルキル基)と、炭素数1~5のアルコキシ基(炭素数1~5の鎖状のアルコキシ基、炭素数3~5の環状のアルコキシ基)と、炭素数2~6のアルキルオキシカルボニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数2~6のアルキルオキシカルボニル基、アルキル基が環状である場合の炭素数4~6のアルキルオキシカルボニル基)と、ホルミル基と、炭素数2~6のアルキルカルボニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数2~6のアルキルカルボニル基、アルキル基が環状である場合の炭素数4~6のアルキルカルボニル基)と、炭素数1~5のアルキルチオ基(炭素数1~5の鎖状のアルキルチオ基、炭素数3~3の環状のアルキルチオ基)と、水酸基と、チオール基と、シアノ基と、ハロゲン原子と、からなる群より選択される1種又は2種以上であることがより好ましい。
R 1 and R 2 each independently may have an amino group as the substituent, and may have an alkyl group having 1 to 10 carbon atoms (chain alkyl group having 1 to 10 carbon atoms, 3 to 10 carbon atoms). 10 cyclic alkyl group), an alkoxy group having 1 to 10 carbon atoms (chain alkoxy group having 1 to 10 carbon atoms, cyclic alkoxy group having 3 to 10 carbon atoms), a carboxy group, and 2 carbon atoms. Alkyloxycarbonyl groups of ~ 11 (alkyloxycarbonyl groups having 2 to 11 carbon atoms when the alkyl group is linear or branched, and alkyloxycarbonyl groups having 4 to 11 carbon atoms when the alkyl group is cyclic) Group), a formyl group, an alkylcarbonyl group having 2 to 11 carbon atoms (an alkylcarbonyl group having 2 to 11 carbon atoms when the alkyl group is linear or branched, and a cyclic group when the alkyl group is cyclic). An alkylcarbonyl group having 4 to 11 carbon atoms), an alkylthio group having 1 to 10 carbon atoms (chain alkylthiogroup having 1 to 10 carbon atoms, a cyclic alkylthio group having 3 to 10 carbon atoms), a sulfo group, and the like. Alkyloxysulfonyl group having 1 to 10 carbon atoms (alkyloxysulfonyl group having 1 to 10 carbon atoms when the alkyl group is linear or branched, and 4 to 11 carbon atoms when the alkyl group is cyclic). It is preferably one or more selected from the group consisting of an alkyloxysulfonyl group), a nitro group, a hydroxyl group, a thiol group, a cyano group, and a halogen atom.
R 1 and R 2 each independently may have an amino group as the substituent, and may have an alkyl group having 1 to 5 carbon atoms (chain alkyl group having 1 to 5 carbon atoms, 3 to 3 carbon atoms). A cyclic alkyl group having 5 carbon atoms), an alkoxy group having 1 to 5 carbon atoms (chain alkoxy group having 1 to 5 carbon atoms, a cyclic alkoxy group having 3 to 5 carbon atoms), and an alkyl having 2 to 6 carbon atoms. An oxycarbonyl group (an alkyloxycarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and an alkyloxycarbonyl group having 4 to 6 carbon atoms when the alkyl group is cyclic) and A formyl group and an alkylcarbonyl group having 2 to 6 carbon atoms (an alkylcarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and 4 to 4 carbon atoms when the alkyl group is cyclic). 6 alkylcarbonyl group), an alkylthio group having 1 to 5 carbon atoms (chain alkylthiogroup having 1 to 5 carbon atoms, a cyclic alkylthio group having 3 to 3 carbon atoms), a hydroxyl group, a thiol group, and cyano. More preferably, it is one or more selected from the group consisting of a group and a halogen atom.
 一般式(1)中、p及びpは、それぞれ独立に、1又は2である。すなわち、p及びpは、互いに同一であってもよいし、異なっていてもよい。
 pは、化合物(1)中の、一方のシクロヘキサン環骨格を構成している炭素原子に直接結合しているアミノ基の個数を規定している。
 pは、化合物(1)中の、他方のシクロヘキサン環骨格を構成している炭素原子に直接結合しているアミノ基の個数を規定している。
In the general formula ( 1 ), p1 and p2 are independently 1 or 2 , respectively. That is, p 1 and p 2 may be the same as each other or may be different from each other.
p 1 defines the number of amino groups directly bonded to the carbon atom constituting one of the cyclohexane ring skeletons in compound (1).
p 2 defines the number of amino groups directly bonded to the carbon atom constituting the other cyclohexane ring skeleton in compound (1).
 一般式(1)中、mが0である場合、qは0~11の整数であり、ただし、p+qは12以下である。一方、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下である。
 qは、化合物(1)中の、一方のシクロヘキサン環骨格を構成している炭素原子に直接結合しているRの個数を規定している。
In the general formula (1), when m is 0, q 1 is an integer of 0 to 11, where p 1 + q 1 is 12 or less. On the other hand, when m is 1, q 1 is an integer of 0 to 10, where p 1 + q 1 is 11 or less.
q 1 defines the number of R 1s in compound (1) that are directly bonded to the carbon atoms constituting one of the cyclohexane ring conformations.
 mが0であり、qが2以上(2~11)の整数である場合と、mが1であり、qが2以上(2~10)の整数である場合と、のいずれにおいても、2個以上のRは互いに同一でも異なっていてもよい。すなわち、2個以上のRは、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。 In both cases where m is 0 and q 1 is an integer of 2 or more (2 to 11), or m is 1 and q 1 is an integer of 2 or more (2 to 10). Two or more R1s may be the same or different from each other. That is, two or more R 1s may be all the same, all may be different, or only a part may be the same.
 一般式(1)中、qは0~10の整数である。
 qは、化合物(1)中の、他方のシクロヘキサン環骨格を構成している炭素原子に直接結合しているRの個数を規定している。
In the general formula (1), q 2 is an integer of 0 to 10.
q 2 defines the number of R 2 directly bonded to the carbon atom constituting the other cyclohexane ring skeleton in compound (1).
 qが2以上(2~10)の整数である場合には、2個以上のRは互いに同一でも異なっていてもよい。すなわち、2個以上のRは、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。 When q 2 is an integer of 2 or more (2 to 10), the two or more R 2s may be the same or different from each other. That is, two or more R 2s may be all the same, all may be different, or only a part may be the same.
 mが0であり、かつ、qが2以上(2~11)の整数であり、かつ、2個以上のRが置換基を有していてもよいアルキル基である場合と、mが1であり、かつ、qが2以上(2~10)の整数であり、かつ、2個以上のRが置換基を有していてもよいアルキル基である場合と、のいずれにおいても、前記2個以上のR(置換基を有していてもよいアルキル基)は相互に結合して、これらRが結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のRが相互に結合して形成している前記環は、環骨格を形成している原子として炭素原子のみを含む脂肪族環である。
 前記環を形成している場合の、2個以上のR同士の結合位置は、特に限定されない。例えば、Rが鎖状構造を有する場合には、前記結合位置は、前記鎖状構造の末端の炭素原子であってもよいし、非末端の炭素原子であってもよい。
 前記環を形成している場合の、R同士の結合部位の数は、1であってもよいし、2以上であってもよい。すなわち、前記環は、単環状及び多環状のいずれであってもよい。
When m is 0, q 1 is an integer of 2 or more (2 to 11), and 2 or more R 1s are alkyl groups which may have a substituent, and m is. 1 and q 1 is an integer of 2 or more (2 to 10), and 2 or more R 1s are alkyl groups which may have a substituent. , The two or more R 1s (alkyl groups which may have substituents) are attached to each other to form a ring together with the groups in the cyclohexane ring skeleton to which these R 1s are attached. May be.
The ring formed by bonding two or more R 1s to each other is an aliphatic ring containing only a carbon atom as an atom forming a ring skeleton.
When the ring is formed, the bonding position between two or more R1s is not particularly limited. For example, when R 1 has a chain structure, the bond position may be a carbon atom at the end of the chain structure or a non-terminal carbon atom.
When the ring is formed, the number of binding sites between R1s may be 1 or 2 or more. That is, the ring may be either monocyclic or polycyclic.
 qが2以上(2~10)の整数であり、かつ、2個以上のRが置換基を有していてもよいアルキル基である場合には、前記2個以上のR(置換基を有していてもよいアルキル基)は相互に結合して、これらRが結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のRが相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。すなわち、2個以上のRが相互に結合して形成している環としては、上述の、2個以上のRが相互に結合して形成している環と同じものが挙げられ、これら環は互いに同一であってもよいし、異なっていてもよい。
When q 2 is an integer of 2 or more (2 to 10) and two or more R 2s are alkyl groups which may have a substituent, the two or more R 2s (substitutions) Alkyl groups (which may have groups) may be attached to each other to form a ring with the groups in the cyclohexane ring skeleton to which these R2s are attached.
The mode in which two or more R 2s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring. That is, examples of the ring formed by connecting two or more R 2s to each other include the same ring formed by connecting two or more R 1s to each other as described above. The rings may be the same or different from each other.
 q及びqは、例えば、mが0である場合には、0~6であることが好ましく、0~4であることがより好ましい。
 q及びqは、例えば、mが1である場合には、0~4であることが好ましく、0~2であることがより好ましい。
For example, when m is 0, q 1 and q 2 are preferably 0 to 6, and more preferably 0 to 4.
For example, when m is 1, the q 1 and q 2 are preferably 0 to 4, and more preferably 0 to 2.
 ただし、本実施形態の二酸化炭素吸収放出剤には、一般式(1)中、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている化合物を含有するものは、含まれない。
 すなわち、本実施形態の二酸化炭素吸収放出剤では、化合物(1)においては、mが0であり、pが2である場合に、2個(p個)のアミノ基が互いにメタ位に配置されることはない。
However, in the carbon dioxide sink of the present embodiment, in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Those containing the above-mentioned compounds are not included.
That is, in the carbon dioxide sink of the present embodiment, in the compound (1), when m is 0 and p 1 is 2, two (p 1 ) amino groups are in meta positions with each other. It will not be placed.
 化合物(1)は、下記一般式(11A)、(12A)又は(11B) Compound (1) is the following general formula (11A), (12A) or (11B).
Figure JPOXMLDOC01-appb-C000017
 (式中、R11、R12、R13及びR21は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、カルボキシ基、炭素数2~11のアルキルオキシカルボニル基、ホルミル基、炭素数2~11のアルキルカルボニル基、炭素数1~10のアルキルチオ基、スルホ基、炭素数1~10のアルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q11及びq12は、それぞれ独立に、0~6の整数であり、q11が2以上の整数である場合には、2個以上のR11は互いに同一でも異なっていてもよく、q12が2以上の整数である場合には、2個以上のR12は互いに同一でも異なっていてもよく、q11が2以上の整数であり、かつ、2個以上のR11が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR11は相互に結合して環を形成していてもよく、q12が2以上の整数であり、かつ、2個以上のR12が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR12は相互に結合して環を形成していてもよく;q13及びq21は、それぞれ独立に、0~4の整数であり、q13が2以上の整数である場合には、2個以上のR13は互いに同一でも異なっていてもよく、q21が2以上の整数である場合には、2個以上のR21は互いに同一でも異なっていてもよく、q13が2以上の整数であり、かつ、2個以上のR13が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR13は相互に結合して環を形成していてもよく、q21が2以上の整数であり、かつ、2個以上のR21が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR21は相互に結合して環を形成していてもよい。)
で表される化合物(本明細書においては、それぞれ、付された符号に対応して「化合物(11A)」、「化合物(12A)」又は「化合物(11B)」と称することがある)(ただし、前記一般式(12A)において、シクロヘキサン環骨格を構成している炭素原子に直接結合している2個のアミノ基が、互いにメタ位に配置されている化合物を除く)であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
(In the formula, R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively. Carbonyl group, formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more. In some cases, the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other. When q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual. The alkyl group may be bonded to to form a ring, q 12 may be an integer of 2 or more, and R 12 of 2 or more may have an amino group as the substituent. In some cases, the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more. If the integers of, the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent. When it is a group, the two or more R 21s may be bonded to each other to form a ring.)
Compounds represented by (in the present specification, they may be referred to as "compound (11A)", "compound (12A)" or "compound (11B)", respectively, corresponding to the reference numerals attached to them) (However, , In the general formula (12A), the compound in which the two amino groups directly bonded to the carbon atoms constituting the cyclohexane ring skeleton are arranged at the meta positions of each other is excluded).
 一般式(11A)、(12A)又は(11B)中、R11、R12、R13及びR21は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、カルボキシ基、炭素数2~11のアルキルオキシカルボニル基、ホルミル基、炭素数2~11のアルキルカルボニル基、炭素数1~10のアルキルチオ基、スルホ基、炭素数1~10のアルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよい。すなわち、R11、R12、R13及びR21におけるこれら基は、互いに同一であってもよいし、異なっていてもよい。 In the general formula (11A), (12A) or (11B), R 11 , R 12 , R 13 and R 21 are independently alkyl groups having 1 to 10 carbon atoms and alkoxy groups having 1 to 10 carbon atoms, respectively. Carboxy group, alkyloxycarbonyl group with 2 to 11 carbon atoms, formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, It is a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have an amino group as the substituent. That is, these groups in R 11 , R 12 , R 13 and R 21 may be the same or different from each other.
 R11、R12、R13及びR21における、炭素数1~10のアルキル基は、炭素数1~10の直鎖状又は分岐鎖状(すなわち鎖状)のアルキル基と、炭素数3~10の環状のアルキル基と、のいずれであってもよい。
 炭素数1~10の前記アルキル基としては、R及びRにおけるアルキル基のうち、その炭素数が1~10であるものが挙げられる。
The alkyl groups having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 are linear or branched (that is, chain) alkyl groups having 1 to 10 carbon atoms and 3 to 3 carbon atoms. It may be any of 10 cyclic alkyl groups.
Examples of the alkyl group having 1 to 10 carbon atoms include those having 1 to 10 carbon atoms among the alkyl groups in R 1 and R 2 .
 R11、R12、R13又はR21におけるアルキル基が置換基を有する場合の、置換基を有する態様は、R及びRにおけるアルキル基が置換基を有する場合と同じである。 When the alkyl group in R 11 , R 12 , R 13 or R 21 has a substituent, the embodiment having a substituent is the same as the case where the alkyl group in R 1 and R 2 has a substituent.
 R11、R12、R13及びR21における、炭素数1~10のアルコキシ基は、炭素数1~10の直鎖状又は分岐鎖状(すなわち鎖状)のアルコキシ基と、炭素数3~10の環状のアルコキシ基と、のいずれであってもよい。
 炭素数1~10の前記アルコキシ基としては、R及びRにおけるアルコキシ基のうち、その炭素数が1~10であるものが挙げられる。
The alkoxy groups having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 are linear or branched (ie, chain) alkoxy groups having 1 to 10 carbon atoms and 3 to 3 carbon atoms. It may be any of 10 cyclic alkoxy groups.
Examples of the alkoxy group having 1 to 10 carbon atoms include alkoxy groups having 1 to 10 carbon atoms among the alkoxy groups in R 1 and R 2 .
 R11、R12、R13及びR21における、炭素数2~11のアルキルオキシカルボニル基中のアルキル基は、炭素数1~10の直鎖状又は分岐鎖状(すなわち鎖状)のアルキル基と、炭素数3~10の環状のアルキル基と、のいずれであってもよい。
 R11、R12、R13及びR21における、炭素数2~11のアルキルオキシカルボニル基としては、R及びRにおけるアルキルオキシカルボニル基のうち、その炭素数が2~11であるものが挙げられる。
The alkyl group in the alkyloxycarbonyl group having 2 to 11 carbon atoms in R 11 , R 12 , R 13 and R 21 is a linear or branched (that is, chain) alkyl group having 1 to 10 carbon atoms. And a cyclic alkyl group having 3 to 10 carbon atoms.
As the alkyloxycarbonyl groups having 2 to 11 carbon atoms in R 11 , R 12 , R 13 and R 21 , among the alkyl oxycarbonyl groups in R 1 and R 2 , those having 2 to 11 carbon atoms are used. Can be mentioned.
 R11、R12、R13及びR21における、炭素数2~11のアルキルカルボニル基中のアルキル基は、炭素数1~10の直鎖状又は分岐鎖状(すなわち鎖状)のアルキル基と、炭素数3~10の環状のアルキル基と、のいずれであってもよい。
 R11、R12、R13及びR21における、炭素数2~11のアルキルカルボニル基としては、R及びRにおけるアルキルカルボニル基のうち、その炭素数が2~11であるものが挙げられる。
The alkyl groups in the alkylcarbonyl groups having 2 to 11 carbon atoms in R 11 , R 12 , R 13 and R 21 are linear or branched (that is, chain) alkyl groups having 1 to 10 carbon atoms. , A cyclic alkyl group having 3 to 10 carbon atoms, or any of the above.
Examples of the alkylcarbonyl group having 2 to 11 carbon atoms in R 11 , R 12 , R 13 and R 21 include those having 2 to 11 carbon atoms among the alkyl carbonyl groups in R 1 and R 2 . ..
 R11、R12、R13及びR21における、炭素数1~10のアルキルチオ基は、炭素数1~10の直鎖状又は分岐鎖状(すなわち鎖状)のアルキルチオ基と、炭素数3~10の環状のアルキルチオ基と、のいずれであってもよい。
 R11、R12、R13及びR21における、炭素数1~10の前記アルキルチオ基としては、R及びRにおけるアルキルチオ基のうち、その炭素数が1~10であるものが挙げられる。
The alkylthio groups having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 are linear or branched (that is, chain) alkyl thio groups having 1 to 10 carbon atoms and 3 to 3 carbon atoms. It may be any of 10 cyclic alkylthio groups.
Examples of the alkylthio group having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 include those having 1 to 10 carbon atoms among the alkyl thio groups in R 1 and R 2 .
 R11、R12、R13及びR21における、炭素数1~10のアルキルオキシスルホニル基中のアルキル基は、炭素数1~10の直鎖状又は分岐鎖状(すなわち鎖状)のアルキル基と、炭素数3~10の環状のアルキル基と、のいずれであってもよい。
 R11、R12、R13及びR21における、炭素数1~10のアルキルオキシスルホニル基としては、R及びRにおけるアルキルオキシスルホニル基のうち、その炭素数が1~10であるものが挙げられる。
The alkyl group in the alkyloxysulfonyl group having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 is a linear or branched (that is, chain) alkyl group having 1 to 10 carbon atoms. And a cyclic alkyl group having 3 to 10 carbon atoms.
As the alkyloxysulfonyl groups having 1 to 10 carbon atoms in R 11 , R 12 , R 13 and R 21 , among the alkyl oxysulfonyl groups in R 1 and R 2 , those having 1 to 10 carbon atoms are used. Can be mentioned.
 R11、R12、R13及びR21は、それぞれ独立に、前記置換基としてアミノ基を有していてもよい、炭素数1~5のアルキル基(炭素数1~5の鎖状のアルキル基、炭素数3~5の環状のアルキル基)と、炭素数1~5のアルコキシ基(炭素数1~5の鎖状のアルコキシ基、炭素数3~5の環状のアルコキシ基)と、炭素数2~6のアルキルオキシカルボニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数2~6のアルキルオキシカルボニル基、アルキル基が環状である場合の炭素数4~6のアルキルオキシカルボニル基)と、ホルミル基と、炭素数2~6のアルキルカルボニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数2~6のアルキルカルボニル基、アルキル基が環状である場合の炭素数4~6のアルキルカルボニル基)と、炭素数1~5のアルキルチオ基(炭素数1~5の鎖状のアルキルチオ基、炭素数3~3の環状のアルキルチオ基)と、水酸基と、チオール基と、シアノ基と、ハロゲン原子と、からなる群より選択される1種又は2種以上であることが好ましい。 R 11 , R 12 , R 13 and R 21 each independently may have an amino group as the substituent and have an alkyl group having 1 to 5 carbon atoms (chain alkyl having 1 to 5 carbon atoms). A group, a cyclic alkyl group having 3 to 5 carbon atoms), an alkoxy group having 1 to 5 carbon atoms (chain alkoxy group having 1 to 5 carbon atoms, a cyclic alkoxy group having 3 to 5 carbon atoms), and carbon. Alkyloxycarbonyl group of number 2 to 6 (alkyloxycarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and alkyl having 4 to 6 carbon atoms when the alkyl group is cyclic The oxycarbonyl group), the formyl group, the alkylcarbonyl group having 2 to 6 carbon atoms (the alkylcarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and the alkyl group are cyclic). In the case of an alkylcarbonyl group having 4 to 6 carbon atoms), an alkylthio group having 1 to 5 carbon atoms (chain alkylthiogroup having 1 to 5 carbon atoms, a cyclic alkylthio group having 3 to 3 carbon atoms), and a hydroxyl group. , A thiol group, a cyano group, and a halogen atom, preferably one or more selected from the group.
 化合物(11B)においては、R13及びR21がともに、前記置換基としてアミノ基を有していてもよい、炭素数1~5のアルキル基(炭素数1~5の鎖状のアルキル基、炭素数3~5の環状のアルキル基)と、炭素数1~5のアルコキシ基(炭素数1~5の鎖状のアルコキシ基、炭素数3~5の環状のアルコキシ基)と、炭素数2~6のアルキルオキシカルボニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数2~6のアルキルオキシカルボニル基、アルキル基が環状である場合の炭素数4~6のアルキルオキシカルボニル基)と、ホルミル基と、炭素数2~6のアルキルカルボニル基(アルキル基が直鎖状又は分岐鎖状である場合の炭素数2~6のアルキルカルボニル基、アルキル基が環状である場合の炭素数4~6のアルキルカルボニル基)と、炭素数1~5のアルキルチオ基(炭素数1~5の鎖状のアルキルチオ基、炭素数3~3の環状のアルキルチオ基)と、水酸基と、チオール基と、シアノ基と、ハロゲン原子と、からなる群より選択される1種又は2種以上であることが好ましい。 In the compound (11B), both R 13 and R 21 may have an amino group as the substituent, and are alkyl groups having 1 to 5 carbon atoms (chain alkyl groups having 1 to 5 carbon atoms, etc.). A cyclic alkyl group having 3 to 5 carbon atoms), an alkoxy group having 1 to 5 carbon atoms (chain alkoxy group having 1 to 5 carbon atoms, a cyclic alkoxy group having 3 to 5 carbon atoms), and 2 carbon atoms. Alkyloxycarbonyl group of ~ 6 (alkyloxycarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and alkyloxycarbonyl group having 4 to 6 carbon atoms when the alkyl group is cyclic) Group), a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms (an alkylcarbonyl group having 2 to 6 carbon atoms when the alkyl group is linear or branched, and a cyclic group when the alkyl group is cyclic). An alkylcarbonyl group having 4 to 6 carbon atoms), an alkylthio group having 1 to 5 carbon atoms (a chain alkylthio group having 1 to 5 carbon atoms, a cyclic alkylthio group having 3 to 3 carbon atoms), a hydroxyl group, and a thiol group. It is preferably one or more selected from the group consisting of a group, a cyano group and a halogen atom.
 一般式(11A)又は(12A)中、q11及びq12は、それぞれ独立に、0~6の整数であり、0~4であることが好ましい。 In the general formula (11A) or (12A), q 11 and q 12 are independently integers of 0 to 6, preferably 0 to 4.
 q11が2以上(2~6)の整数である場合には、2個以上のR11は互いに同一でも異なっていてもよい。すなわち、2個以上のR11は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。 When q 11 is an integer of 2 or more (2 to 6), the two or more R 11s may be the same or different from each other. That is, two or more R 11s may be all the same, all may be different, or only a part may be the same.
 q12が2以上(2~6)の整数である場合には、2個以上のR12は互いに同一でも異なっていてもよい。すなわち、2個以上のR12は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。 When q 12 is an integer of 2 or more (2 to 6), the two or more R 12s may be the same or different from each other. That is, two or more R 12s may be all the same, all may be different, or only a part may be the same.
 q11が2以上(2~6)の整数であり、かつ、2個以上のR11が置換基としてアミノ基を有していてもよいアルキル基である場合には、前記2個以上のR11(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR11が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR11が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
When q 11 is an integer of 2 or more (2 to 6) and two or more R 11s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned. 11 (an alkyl group which may have an amino group as a substituent) may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 11s are bonded. ..
The mode in which two or more R 11s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
 q12が2以上(2~6)の整数であり、かつ、2個以上のR12が置換基としてアミノ基を有していてもよいアルキル基である場合には、2個以上のR12(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR12が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR12が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
When q 12 is an integer of 2 or more (2 to 6) and two or more R 12s are alkyl groups which may have an amino group as a substituent, two or more R 12s are used. (Alkyl groups which may have an amino group as a substituent) may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 12s are bonded.
The mode in which two or more R 12s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
 一般式(11B)中、q13及びq21は、それぞれ独立に、0~4の整数であり、0~2であることが好ましい。 In the general formula (11B), q 13 and q 21 are each independently an integer of 0 to 4, preferably 0 to 2.
 q13が2以上(2~4)の整数である場合には、2個以上のR13は互いに同一でも異なっていてもよい。すなわち、2個以上のR13は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。 When q 13 is an integer of 2 or more (2 to 4), the two or more R 13s may be the same or different from each other. That is, two or more R 13s may be all the same, all may be different, or only a part may be the same.
 q21が2以上(2~4)の整数である場合には、2個以上のR21は互いに同一でも異なっていてもよい。すなわち、2個以上のR21は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。 When q 21 is an integer of 2 or more (2 to 4), the two or more R 21s may be the same or different from each other. That is, two or more R 21s may be all the same, all may be different, or only a part may be the same.
 q13が2以上(2~4)の整数であり、かつ、2個以上のR13が置換基としてアミノ基を有していてもよいアルキル基である場合には、前記2個以上のR13(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR13が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR13が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
When q 13 is an integer of 2 or more (2 to 4) and two or more R 13s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned. 13 (an alkyl group which may have an amino group as a substituent) may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 13s are bonded. ..
The embodiment in which two or more R 13s are coupled to each other to form a ring is the same as the above-mentioned embodiment in which two or more R 1s are coupled to each other to form a ring.
 q21が2以上(2~4)の整数であり、かつ、2個以上のR21が置換基としてアミノ基を有していてもよいアルキル基である場合には、前記2個以上のR21(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR21が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR21が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
When q 21 is an integer of 2 or more (2 to 4) and two or more R 21s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned. 21 (an alkyl group which may have an amino group as a substituent) may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 21s are bonded. ..
The mode in which two or more R 21s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
 ただし、本実施形態の二酸化炭素吸収放出剤には、一般式(12A)において、シクロヘキサン環骨格を構成している炭素原子に直接結合している2個のアミノ基が、互いにメタ位に配置されている化合物を含有するものは、含まれない。
 すなわち、化合物(12A)においては、シクロヘキサン環骨格を構成している炭素原子に直接結合している2個のアミノ基が、互いにメタ位に配置されることはない。
However, in the carbon dioxide absorption / release agent of the present embodiment, in the general formula (12A), two amino groups directly bonded to the carbon atoms constituting the cyclohexane ring skeleton are arranged at the meta positions of each other. Those containing the compound are not included.
That is, in compound (12A), the two amino groups directly bonded to the carbon atoms constituting the cyclohexane ring skeleton are not arranged at the meta positions of each other.
 化合物(11A)、化合物(12A)又は化合物(11B)は、下記一般式(111A)、(121A)、(122A)又は(111B) The compound (11A), the compound (12A) or the compound (11B) is the following general formula (111A), (121A), (122A) or (111B).
Figure JPOXMLDOC01-appb-C000018
 (式中、R111、R121、R122、R131及びR211は、それぞれ独立に、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~6のアルキルオキシカルボニル基、ホルミル基、炭素数2~6のアルキルカルボニル基、炭素数1~5のアルキルチオ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q111、q121及びq122は、それぞれ独立に、0~4の整数であり、q111が2以上の整数である場合には、2個以上のR111は互いに同一でも異なっていてもよく、q121が2以上の整数である場合には、2個以上のR121は互いに同一でも異なっていてもよく、q122が2以上の整数である場合には、2個以上のR122は互いに同一でも異なっていてもよく、q111が2以上の整数であり、かつ、2個以上のR111が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR111は相互に結合して環を形成していてもよく、q121が2以上の整数であり、かつ、2個以上のR121が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR121は相互に結合して環を形成していてもよく、q122が2以上の整数であり、かつ、2個以上のR122が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR122は相互に結合して環を形成していてもよく;q131及びq211は、それぞれ独立に、0~2の整数であり、q131が2である場合には、2個のR131は互いに同一でも異なっていてもよく、q211が2である場合には、2個のR211は互いに同一でも異なっていてもよく、q131が2であり、かつ、2個のR131が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR131は相互に結合して環を形成していてもよく、q211が2であり、かつ、2個のR211が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR211は相互に結合して環を形成していてもよい。)で表される化合物(本明細書においては、それぞれ、付された符号に対応して「化合物(111A)」、「化合物(121A)」、化合物「(122A)」又は化合物「(111B)」と称することがある)であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
(In the formula, R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent. Independently, q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent. When is, the two or more R 111s may be coupled to each other to form a ring, q 121 is an integer of 2 or more, and two or more R 121s are the substituents. In the case of the alkyl group which may have an amino group, the two or more R 121s may be bonded to each other to form a ring, and q 122 is an integer of 2 or more. In addition, when the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring. May; q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 . When is 2, the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent. In the case of a good alkyl group, the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents. In the case of the alkyl group which may have an amino group, the two R 211s may be bonded to each other to form a ring) (in the present specification). Corresponds to the assigned reference numerals, respectively. 111A) ”,“ compound (121A) ”, compound“ (122A) ”or compound“ (111B) ”) is preferred.
 一般式(111A)、(121A)、(122A)又は(111B)中、R111、R121、R122、R131及びR211は、それぞれ独立に、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~6のアルキルオキシカルボニル基、ホルミル基、炭素数2~6のアルキルカルボニル基、炭素数1~5のアルキルチオ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよい。すなわち、R111、R121、R122、R131及びR211におけるこれら基は、互いに同一であってもよいし、異なっていてもよい。 In the general formula (111A), (121A), (122A) or (111B), R 111 , R 121 , R 122 , R 131 and R 211 each independently have an alkyl group having 1 to 5 carbon atoms and a carbon number of carbon atoms. An alkoxy group of 1 to 5, an alkyloxycarbonyl group of 2 to 6 carbons, a formyl group, an alkylcarbonyl group of 2 to 6 carbons, an alkylthio group of 1 to 5 carbons, a hydroxyl group, a thiol group, a cyano group or a halogen atom. The alkyl group may have an amino group as the substituent. That is, these groups in R 111 , R 121 , R 122 , R 131 and R 211 may be the same or different from each other.
 R111、R121、R122、R131及びR211における、炭素数1~5のアルキル基は、炭素数1~5の直鎖状又は分岐鎖状(すなわち鎖状)のアルキル基と、炭素数3~5の環状のアルキル基と、のいずれであってもよい。
 炭素数1~5の前記アルキル基としては、R及びRにおけるアルキル基のうち、その炭素数が1~5であるものが挙げられる。
The alkyl groups having 1 to 5 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 are linear or branched (that is, chain) alkyl groups having 1 to 5 carbon atoms and carbon. It may be any of the cyclic alkyl groups of the number 3 to 5.
Examples of the alkyl group having 1 to 5 carbon atoms include those having 1 to 5 carbon atoms among the alkyl groups in R 1 and R 2 .
 R111、R121、R122、R131又はR211におけるアルキル基が置換基を有する場合の、置換基を有する態様は、R及びRにおけるアルキル基が置換基を有する場合と同じである。 When the alkyl group in R 111 , R 121 , R 122 , R 131 or R 211 has a substituent, the embodiment having a substituent is the same as when the alkyl group in R 1 and R 2 has a substituent. ..
 R111、R121、R122、R131及びR211における、炭素数1~5のアルコキシ基は、炭素数1~5の直鎖状又は分岐鎖状(すなわち鎖状)のアルコキシ基と、炭素数3~5の環状のアルコキシ基と、のいずれであってもよい。
 炭素数1~5の前記アルコキシ基としては、R及びRにおけるアルコキシ基のうち、その炭素数が1~5であるものが挙げられる。
The alkoxy groups having 1 to 5 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 are linear or branched (ie, chain) alkoxy groups having 1 to 5 carbon atoms and carbon. It may be any of the cyclic alkoxy groups of the number 3 to 5.
Examples of the alkoxy group having 1 to 5 carbon atoms include alkoxy groups having 1 to 5 carbon atoms among the alkoxy groups in R 1 and R 2 .
 R111、R121、R122、R131及びR211における、炭素数2~6のアルキルオキシカルボニル基中のアルキル基は、炭素数1~5の直鎖状又は分岐鎖状(すなわち鎖状)のアルキル基と、炭素数3~5の環状のアルキル基と、のいずれであってもよい。
 R111、R121、R122、R131及びR211における、炭素数2~6のアルキルオキシカルボニル基としては、R及びRにおけるアルキルオキシカルボニル基のうち、その炭素数が2~6であるものが挙げられる。
The alkyl groups in the alkyloxycarbonyl groups having 2 to 6 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 are linear or branched chains (that is, chain-like) having 1 to 5 carbon atoms. It may be either an alkyl group of the above or a cyclic alkyl group having 3 to 5 carbon atoms.
As the alkyloxycarbonyl group having 2 to 6 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 , among the alkyloxycarbonyl groups in R 1 and R 2 , the carbon number is 2 to 6. Some are mentioned.
 R111、R121、R122、R131及びR211における、炭素数2~6のアルキルカルボニル基中のアルキル基は、炭素数1~5の直鎖状又は分岐鎖状(すなわち鎖状)のアルキル基と、炭素数3~5の環状のアルキル基と、のいずれであってもよい。
 R111、R121、R122、R131及びR211における、炭素数2~6のアルキルカルボニル基としては、R及びRにおけるアルキルカルボニル基のうち、その炭素数が2~6であるものが挙げられる。
In R 111 , R 121 , R 122 , R 131 and R 211 , the alkyl groups among the alkylcarbonyl groups having 2 to 6 carbon atoms are linear or branched (that is, chain-like) having 1 to 5 carbon atoms. It may be either an alkyl group or a cyclic alkyl group having 3 to 5 carbon atoms.
As the alkylcarbonyl group having 2 to 6 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 , among the alkyl carbonyl groups in R 1 and R 2 , the number of carbon atoms is 2 to 6. Can be mentioned.
 R111、R121、R122、R131及びR211における、炭素数1~5のアルキルチオ基は、炭素数1~5の直鎖状又は分岐鎖状(すなわち鎖状)のアルキルチオ基と、炭素数3~5の環状のアルキルチオ基と、のいずれであってもよい。
 R111、R121、R122、R131及びR211における、炭素数1~5の前記アルキルチオ基としては、R及びRにおけるアルキルチオ基のうち、その炭素数が1~5であるものが挙げられる。
The alkylthio groups having 1 to 5 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 are linear or branched (that is, chain) alkyl thio groups having 1 to 5 carbon atoms and carbon. It may be any of the cyclic alkylthio groups of the number 3 to 5.
The alkylthio groups having 1 to 5 carbon atoms in R 111 , R 121 , R 122 , R 131 and R 211 include the alkylthio groups having 1 to 5 carbon atoms in R 1 and R 2 . Can be mentioned.
 一般式(111A)、(121A)又は(122A)中、q111、q121及びq122は、それぞれ独立に、0~4の整数である。
 q111が2以上(2~4)の整数である場合には、2個以上のR111は互いに同一でも異なっていてもよい。すなわち、2個以上のR111は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。
 q111が2以上(2~4)の整数であり、かつ、2個以上のR111が置換基としてアミノ基を有していてもよいアルキル基である場合には、前記2個以上のR111(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR111が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR111が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
In the general formula (111A), (121A) or (122A), q 111 , q 121 and q 122 are each independently an integer of 0 to 4.
When q 111 is an integer of 2 or more (2 to 4), the two or more R 111s may be the same or different from each other. That is, two or more R 111s may be all the same, all may be different, or only a part may be the same.
When q 111 is an integer of 2 or more (2 to 4) and two or more R 111s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned. 111 (an alkyl group which may have an amino group as a substituent) may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 111s are bonded. ..
The embodiment in which two or more R 111s are coupled to each other to form a ring is the same as the above-described embodiment in which two or more R 1s are coupled to each other to form a ring.
 q121が2以上(2~4)の整数である場合には、2個以上のR121は互いに同一でも異なっていてもよい。すなわち、2個以上のR121は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。
 q121が2以上(2~4)の整数であり、かつ、2個以上のR121が置換基としてアミノ基を有していてもよいアルキル基である場合には、前記2個以上のR121(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR121が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR121が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
When q 121 is an integer of 2 or more (2 to 4), the two or more R 121s may be the same or different from each other. That is, two or more R 121s may be all the same, all may be different, or only a part may be the same.
When q 121 is an integer of 2 or more (2 to 4) and two or more R 121s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned. 121 (an alkyl group which may have an amino group as a substituent) may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 121s are bonded. ..
The mode in which two or more R 121s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
 q122が2以上(2~4)の整数である場合には、2個以上のR122は互いに同一でも異なっていてもよい。すなわち、2個以上のR122は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。
 q122が2以上(2~4)の整数であり、かつ、2個以上のR122が置換基としてアミノ基を有していてもよいアルキル基である場合には、前記2個以上のR122(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR122が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR122が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
When q 122 is an integer of 2 or more (2 to 4), the two or more R 122s may be the same or different from each other. That is, two or more R 122s may be all the same, all may be different, or only a part may be the same.
When q 122 is an integer of 2 or more (2 to 4) and two or more R 122s are alkyl groups which may have an amino group as a substituent, the two or more Rs are mentioned. 122 (an alkyl group which may have an amino group as a substituent) may be bonded to each other to form a ring together with the group in the cyclohexane ring skeleton to which these R 122s are bonded. ..
The embodiment in which two or more R 122s are coupled to each other to form a ring is the same as the above-mentioned embodiment in which two or more R 1s are coupled to each other to form a ring.
 一般式(111B)中、q131及びq211は、それぞれ独立に、0~2の整数である。
 q131が2である場合には、2個のR131は互いに同一でも異なっていてもよい。
 q131が2であり、かつ、2個のR131が置換基としてアミノ基を有していてもよいアルキル基である場合には、前記2個のR131(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR131が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR131が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
In the general formula (111B), q 131 and q 211 are independently integers of 0 to 2.
When q 131 is 2, the two R 131s may be the same or different from each other.
When q 131 is 2 and the two R 131s are alkyl groups which may have an amino group as a substituent, the two R 131s (having an amino group as a substituent) Alkyl groups (which may be present) may be attached to each other to form a ring together with the groups in the cyclohexane ring skeleton to which these R 131s are attached.
The mode in which two or more R 131s are bonded to each other to form a ring is the same as the above-mentioned mode in which two or more R 1s are bonded to each other to form a ring.
 q211が2である場合には、2個のR211は互いに同一でも異なっていてもよい。
 q211が2であり、かつ、2個のR211が置換基としてアミノ基を有していてもよいアルキル基である場合には、前記2個のR211(置換基としてアミノ基を有していてもよいアルキル基)は相互に結合して、これらR211が結合している、前記シクロヘキサン環骨格中の基とともに、環を形成していてもよい。
 2個以上のR211が相互に結合して環を形成する態様は、上述の、2個以上のRが相互に結合して環を形成する態様と同じである。
When q 211 is 2, the two R 211s may be the same or different from each other.
When q 211 is 2 and the two R 211s are alkyl groups which may have an amino group as a substituent, the two R 211s (having an amino group as a substituent) Alkyl groups (which may be present) may be attached to each other to form a ring together with the groups in the cyclohexane ring skeleton to which these R 211s are attached.
The embodiment in which two or more R 211s are coupled to each other to form a ring is the same as the above-mentioned embodiment in which two or more R 1s are coupled to each other to form a ring.
 化合物(1)のうち、化合物(111A)に属するものの一例としては、下記式で表されるもの(シクロヘキシルアミン、イソホロンジアミン)が挙げられる。 Among the compounds (1), examples of those belonging to the compound (111A) include those represented by the following formulas (cyclohexylamine, isophoronediamine).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物(1)のうち、化合物(121A)に属するものの一例としては、下記式で表される化合物(1,2-シクロヘキサンジアミン)が挙げられる。 Among the compounds (1), an example of the compound belonging to the compound (121A) is a compound (1,2-cyclohexanediamine) represented by the following formula.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物(1)のうち、化合物(122A)に属するものの一例としては、下記式で表される化合物(1,4-シクロヘキサンジアミン)が挙げられる。 Among the compounds (1), an example of the compound belonging to the compound (122A) is a compound (1,4-cyclohexanediamine) represented by the following formula.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 化合物(1)のうち、化合物(111B)に属するものの一例としては、下記式で表される化合物(4,4’-メチレンビス(2-メチルシクロヘキシルアミン))が挙げられる。 Among the compounds (1), an example of the compound belonging to the compound (111B) is a compound represented by the following formula (4,4'-methylenebis (2-methylcyclohexylamine)).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 前記二酸化炭素吸収放出剤が含有する化合物(1)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。
 例えば、化合物(1)には、立体異性体の存在するものがあるが、本実施形態においては、立体異性体は同一種の化合物(1)として取り扱う。
The compound (1) contained in the carbon dioxide absorption / release agent may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and ratio thereof are for the purpose. It can be selected arbitrarily according to the situation.
For example, some compounds (1) have steric isomers, but in the present embodiment, the steric isomers are treated as the same type of compound (1).
 化合物(1)においては、R及びRのいずれか一方又は両方が、置換基としてアミノ基を有するアルキル基となる場合がある。すなわち、化合物(1)には、その中のシクロヘキサン環骨格を構成している炭素原子に直接結合しているアミノ基(本明細書においては、「第1アミノ基」と称することがある)以外に、シクロヘキサン環骨格を構成している炭素原子に直接結合していないアミノ基(本明細書においては、「第2アミノ基」と称することがある)を有するものが、存在する。このような2種のアミノ基を有する化合物(1)では、前記第2アミノ基よりも、前記第1アミノ基において、二酸化炭素と反応し易い傾向にある。 In compound (1), either one or both of R 1 and R 2 may be an alkyl group having an amino group as a substituent. That is, the compound (1) has a group other than the amino group directly bonded to the carbon atom constituting the cyclohexane ring conformation (in this specification, it may be referred to as "first amino group"). In addition, there are those having an amino group (in this specification, sometimes referred to as "second amino group") which is not directly bonded to the carbon atom constituting the cyclohexane ring skeleton. In the compound (1) having such two kinds of amino groups, the first amino group tends to react more easily with carbon dioxide than the second amino group.
 本実施形態の二酸化炭素吸収放出剤は、化合物(1)を含有しており、化合物(1)のみを含有していてもよい(換言すると、化合物(1)からなるものであってもよい)し、化合物(1)と、化合物(1)以外の成分と、を含有していてもよい。
 例えば、化合物(1)と溶媒を含有する液状の前記二酸化炭素吸収放出剤は、二酸化炭素の吸収及び放出がより容易である点で好ましい。
The carbon dioxide absorption / release agent of the present embodiment contains the compound (1) and may contain only the compound (1) (in other words, it may be composed of the compound (1)). However, the compound (1) and a component other than the compound (1) may be contained.
For example, the liquid carbon dioxide absorbing / releasing agent containing the compound (1) and a solvent is preferable in that the absorption and release of carbon dioxide are easier.
<溶媒>
 前記溶媒は、特に限定されないが、化合物(1)を溶解させるものが好ましく、常温以下の温度で化合物(1)を溶解させるものがより好ましい。このように、化合物(1)が溶媒に溶解している二酸化炭素吸収放出剤は、二酸化炭素をより容易に吸収できる。
<Solvent>
The solvent is not particularly limited, but is preferably one that dissolves compound (1), and more preferably one that dissolves compound (1) at a temperature of room temperature or lower. As described above, the carbon dioxide absorbing / releasing agent in which the compound (1) is dissolved in the solvent can more easily absorb carbon dioxide.
 本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~30℃の温度等が挙げられる。 In the present specification, "normal temperature" means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 30 ° C.
 前記溶媒は、化合物(1)と二酸化炭素との反応物(前記カルバミン酸誘導体)を、溶解させるものであってもよいし、溶解させないものであってもよい。例えば、前記カルバミン酸誘導体及び溶媒を含有する組成物において、いずれかの温度条件下で、前記カルバミン酸誘導体が溶解しない場合、前記カルバミン酸誘導体、すなわち、後述する二酸化炭素放出剤を、より容易に取り出すことができる。 The solvent may or may not dissolve the reaction product (the carbamic acid derivative) of the compound (1) and carbon dioxide. For example, in a composition containing the carbamic acid derivative and a solvent, when the carbamic acid derivative is not dissolved under any of the temperature conditions, the carbamic acid derivative, that is, the carbon dioxide releasing agent described later is more easily used. Can be taken out.
 前記溶媒としては、例えば、有機溶媒、水等が挙げられる。
 前記有機溶媒としては、例えば、ジメチルスルホキシド(DMSO)等のスルホキシド;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)等のアミド;N-メチル-2-ピロリドン等のラクタム(環状アミド);メタノール、エタノール、2-プロパノール(IPA)等のアルコール;トルエン、o-キシレン、m-キシレン、p-キシレン等の炭化水素(芳香族炭化水素);テトラヒドロフラン(THF)、1,4-ジオキサン、テトラヒドロピラン、ジブチルエーテル、1,2-ジメトキシエタン等のエーテル(エーテル結合を有する化合物);プロピオニトリル、アセトニトリル等のニトリル(シアノ基を有する化合物);酢酸エチル、酢酸ブチル等のエステル(カルボン酸エステル)等が挙げられる。
 好ましい溶媒としては、極性溶媒(水、極性有機溶媒)が挙げられる。
Examples of the solvent include organic solvents, water and the like.
Examples of the organic solvent include sulfoxides such as dimethylsulfoxide (DMSO); amides such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc); and lactams such as N-methyl-2-pyrrolidone. (Cyclic amide); alcohols such as methanol, ethanol, 2-propanol (IPA); hydrocarbons such as toluene, o-xylene, m-xylene, p-xylene (aromatic hydrocarbons); tetrahydrofuran (THF), 1, Ethers such as 4-dioxane, tetrahydropyran, dibutyl ether, 1,2-dimethoxyethane (compounds having an ether bond); nitriles such as propionitrile and acetonitrile (compounds having a cyano group); ethyl acetate, butyl acetate and the like. Examples thereof include esters (carboxylic acid esters).
Preferred solvents include polar solvents (water, polar organic solvents).
 前記溶媒は、高沸点で、かつ、常温での蒸気圧が低いものが好ましい。このような溶媒を用いることによって、後述する工程(A)、工程(B)、工程(a)及び工程(b)において、溶媒の気化を抑制でき、これらの工程をより安定して行うことができる。
 このような観点から、溶媒の沸点は、100℃以上であることが好ましく、例えば、190℃以上であってもよい。
 溶媒の沸点の上限値は、特に限定されない。例えば、沸点が200℃以下である溶媒は、入手が比較的容易である。
The solvent preferably has a high boiling point and a low vapor pressure at room temperature. By using such a solvent, the vaporization of the solvent can be suppressed in the steps (A), (B), (a) and (b) described later, and these steps can be performed more stably. can.
From such a viewpoint, the boiling point of the solvent is preferably 100 ° C. or higher, and may be, for example, 190 ° C. or higher.
The upper limit of the boiling point of the solvent is not particularly limited. For example, a solvent having a boiling point of 200 ° C. or lower is relatively easy to obtain.
 前記二酸化炭素吸収放出剤が含有する溶媒は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。
 例えば、2種以上の溶媒は、水と、1種又は2種以上の有機溶媒と、からなる水系混合溶媒であってもよいし、2種以上の有機溶媒からなる非水系混合溶媒であってもよい。
The solvent contained in the carbon dioxide absorption / release agent may be only one type, may be two or more types, and when two or more types are used, the combination and ratio thereof are arbitrary depending on the purpose. Can be selected.
For example, the two or more kinds of solvents may be an aqueous mixed solvent composed of water and one kind or two or more kinds of organic solvents, or a non-aqueous mixed solvent composed of two or more kinds of organic solvents. May be good.
 溶媒を含有する場合の、前記二酸化炭素吸収放出剤の化合物(1)の濃度は、特に限定されないが、0.05~5Mであることが好ましく、例えば、0.05~3.5M、及び0.05~2Mのいずれかであってもよい。 The concentration of the carbon dioxide absorbing / releasing agent compound (1) when containing a solvent is not particularly limited, but is preferably 0.05 to 5M, for example, 0.05 to 3.5M, and 0. It may be any of .05 to 2M.
 本明細書において、濃度単位「M」は「mol/L」を表し、濃度単位「mM」は「mmol/L」を表す。 In the present specification, the concentration unit "M" represents "mol / L", and the concentration unit "mM" represents "mmol / L".
 前記二酸化炭素吸収放出剤は、本発明の効果を損なわない範囲で、化合物(1)と、溶媒と、のいずれにも該当しない他の成分を含有していてもよい。
 前記他の成分は、目的に応じ任意に選択でき、特に限定されない。
The carbon dioxide absorption / release agent may contain the compound (1), a solvent, and other components that do not fall under any of the above, as long as the effects of the present invention are not impaired.
The other components can be arbitrarily selected depending on the intended purpose, and are not particularly limited.
 前記二酸化炭素吸収放出剤が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。 The other components contained in the carbon dioxide absorbing / releasing agent may be only one kind, two or more kinds, and when two or more kinds, the combination and ratio thereof are intended. It can be selected arbitrarily according to the situation.
 前記二酸化炭素吸収放出剤(二酸化炭素の吸収を開始する前の二酸化炭素吸収放出剤)において、二酸化炭素吸収放出剤の総質量(質量部)に対する、前記他の成分の含有量(質量部)の割合は、特に限定されないが、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。溶媒の含有の有無によらず、前記割合が前記上限値以下であることで、二酸化炭素吸収放出剤が二酸化炭素を吸収及び放出する能力が、より高くなる。
 換言すると、前記二酸化炭素吸収放出剤(二酸化炭素の吸収を開始する前の二酸化炭素吸収放出剤)において、二酸化炭素吸収放出剤の総質量(質量部)に対する、化合物(1)及び溶媒の合計含有量(質量部)の割合は、特に限定されないが、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、99質量%以上であることが特に好ましい。
In the carbon dioxide absorbing / releasing agent (carbon dioxide absorbing / releasing agent before starting absorption of carbon dioxide), the content (parts by mass) of the other components with respect to the total mass (parts by mass) of the carbon dioxide absorbing / releasing agent. The ratio is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably 1% by mass or less. .. When the ratio is not more than the upper limit value regardless of the presence or absence of the solvent, the ability of the carbon dioxide absorbing / releasing agent to absorb and release carbon dioxide becomes higher.
In other words, in the carbon dioxide absorption / release agent (carbon dioxide absorption / release agent before starting absorption of carbon dioxide), the total content of the compound (1) and the solvent is contained with respect to the total mass (part by mass) of the carbon dioxide absorption / release agent. The ratio of the amount (part by mass) is not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 97% by mass or more, and 99% by mass or more. Is particularly preferable.
 本実施形態の二酸化炭素吸収放出剤は、二酸化炭素を容易に吸収でき、しかも、吸収した二酸化炭素を容易に放出できる点で、優れた効果を奏する。
 従来の二酸化炭素吸収放出剤は、例えば、二酸化炭素を容易に吸収できる反面、二酸化炭素を放出することが困難であるか、又は、二酸化炭素を容易に放出できる反面、二酸化炭素を吸収することが困難であった。すなわち、従来の二酸化炭素吸収放出剤は、二酸化炭素の吸収及び放出を実用的に両立できなかった。
 これに対して、本実施形態の二酸化炭素吸収放出剤は、二酸化炭素を吸収し、吸収後の二酸化炭素を放出する活性成分として、特定範囲の構造を有する化合物(1)を含有することで、従来の問題点を解決している。
The carbon dioxide absorption / release agent of the present embodiment has an excellent effect in that carbon dioxide can be easily absorbed and the absorbed carbon dioxide can be easily released.
Conventional carbon dioxide sinks, for example, can easily absorb carbon dioxide but are difficult to release carbon dioxide, or can easily release carbon dioxide but can absorb carbon dioxide. It was difficult. That is, the conventional carbon dioxide absorption / release agent could not practically achieve both absorption and release of carbon dioxide.
On the other hand, the carbon dioxide absorption / release agent of the present embodiment contains a compound (1) having a structure in a specific range as an active ingredient that absorbs carbon dioxide and releases carbon dioxide after absorption. It solves the conventional problems.
 化合物(1)と、それ以外の成分(溶媒又は前記他の成分)と、を含有する、本実施形態の二酸化炭素吸収放出剤は、これらの成分を混合することで、製造できる。 The carbon dioxide absorption / release agent of the present embodiment containing the compound (1) and other components (solvent or the other component) can be produced by mixing these components.
<<二酸化炭素の回収方法>>
 本発明の一実施形態に係る二酸化炭素の回収方法は、下記一般式(1)
<< Carbon dioxide recovery method >>
The method for recovering carbon dioxide according to an embodiment of the present invention is described in the following general formula (1).
Figure JPOXMLDOC01-appb-C000023
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物(すなわち化合物(1))を含有する二酸化炭素吸収放出剤に、二酸化炭素を吸収させる工程(A)と、
 前記二酸化炭素を吸収後の前記二酸化炭素吸収放出剤を、加熱処理することにより、前記二酸化炭素吸収放出剤から前記二酸化炭素を放出させる工程(B)と、を有する(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)。
Figure JPOXMLDOC01-appb-C000023
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
In the step (A) of causing a carbon dioxide absorbing / releasing agent containing a compound represented by (that is, compound (1)) to absorb carbon dioxide,
It has a step (B) of releasing the carbon dioxide from the carbon dioxide absorbing / releasing agent by heat-treating the carbon dioxide absorbing / releasing agent after absorbing the carbon dioxide (however, m is 0). , Except for the method of recovering carbon dioxide when p 1 is 2 and the two amino groups with p 1 are arranged at the meta positions of each other).
 本実施形態の二酸化炭素の回収方法では、上述の本発明の一実施形態に係る二酸化炭素吸収放出剤を用いる。したがって、前記回収方法には、一般式(1)において、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物を含有する二酸化炭素吸収放出剤を用いるものは含まれない。
 本実施形態の二酸化炭素の回収方法によれば、前記二酸化炭素吸収放出剤を用いることで、二酸化炭素を容易に吸収でき、吸収した二酸化炭素を容易に放出できるため、二酸化炭素を容易に回収できる。
In the method for recovering carbon dioxide of the present embodiment, the carbon dioxide absorbing / releasing agent according to the above-described embodiment of the present invention is used. Therefore, in the above recovery method, in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Does not include those using a carbon dioxide absorbing / releasing agent containing.
According to the method for recovering carbon dioxide of the present embodiment, by using the carbon dioxide absorbing / releasing agent, carbon dioxide can be easily absorbed and the absorbed carbon dioxide can be easily released, so that carbon dioxide can be easily recovered. ..
<工程(A)>
 前記工程(A)においては、化合物(1)を含有する前記二酸化炭素吸収放出剤に、二酸化炭素を吸収させる。工程(A)においては、二酸化炭素吸収放出剤中の化合物(1)が、その中のアミノ基において二酸化炭素と反応し、前記カルバミン酸誘導体となることにより、二酸化炭素が吸収された状態となる。
<Process (A)>
In the step (A), the carbon dioxide absorbing / releasing agent containing the compound (1) absorbs carbon dioxide. In the step (A), the compound (1) in the carbon dioxide absorption / release agent reacts with carbon dioxide at the amino group thereof to become the carbamic acid derivative, so that carbon dioxide is absorbed. ..
 前記工程(A)においては、例えば、二酸化炭素ガスを二酸化炭素吸収放出剤と接触させればよい。なかでも、化合物(1)及び溶媒を含有する液状の二酸化炭素吸収放出剤を用いることで、工程(A)をより容易に行うことができる。液状の二酸化炭素吸収放出剤は、先に説明したものである。 In the step (A), for example, carbon dioxide gas may be brought into contact with the carbon dioxide absorbing / releasing agent. Above all, the step (A) can be carried out more easily by using a liquid carbon dioxide absorption / release agent containing the compound (1) and the solvent. The liquid carbon dioxide sink is the one described above.
 二酸化炭素(ガス)は、単独で二酸化炭素吸収放出剤に吸収させてもよいし、他のガスとの混合ガスの状態で二酸化炭素吸収放出剤に吸収させてもよい。
 前記混合ガスとしては、例えば、二酸化炭素の回収対象であるガス状の目的物を、そのまま用いてもよいし、前記目的物をさらに他のガスと混合して希釈して用いてもよい。前記混合ガスとしては、例えば、空気を用いてもよく、乾燥空気は、二酸化炭素の回収対象として、より好適である。他の前記混合ガスとしては、例えば、二酸化炭素ガス及び不活性ガスを含む混合ガスが挙げられる。ただし、ここで挙げた混合ガスは一例である。
The carbon dioxide (gas) may be absorbed by the carbon dioxide absorbing / releasing agent alone, or may be absorbed by the carbon dioxide absorbing / releasing agent in the state of a mixed gas with another gas.
As the mixed gas, for example, the gaseous target substance to be recovered of carbon dioxide may be used as it is, or the target substance may be further mixed with another gas and diluted. For example, air may be used as the mixed gas, and dry air is more suitable as a target for recovering carbon dioxide. Examples of the other mixed gas include a mixed gas containing carbon dioxide gas and an inert gas. However, the mixed gas mentioned here is an example.
 前記不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。これらの中でも、窒素ガスは、安価であるため特に好適である。 Examples of the inert gas include nitrogen gas, helium gas, argon gas and the like. Among these, nitrogen gas is particularly suitable because it is inexpensive.
 二酸化炭素吸収放出剤と接触させる、二酸化炭素を含むガスの、二酸化炭素の濃度は、100体積%以下であればよく、例えば、80体積%以下、60体積%以下、40体積%以下、32体積%以下、25体積%以下、15体積%以下、及び5体積%以下のいずれかであってもよい。
 二酸化炭素吸収放出剤と接触させる、二酸化炭素を含むガスの、二酸化炭素の濃度は、例えば、0.04体積%(400ppm)以上であってもよい。
 本実施形態の回収方法においては、前記二酸化炭素吸収放出剤を用いることで、二酸化炭素を容易に吸収できるだけでなく、二酸化炭素の濃度が上記のように幅広いガスを用いることができ、有用性が高い。
The concentration of carbon dioxide in the gas containing carbon dioxide to be brought into contact with the carbon dioxide absorbing / releasing agent may be 100% by volume or less, for example, 80% by volume or less, 60% by volume or less, 40% by volume or less, 32 volumes. It may be any of% or less, 25% by volume or less, 15% by volume or less, and 5% by volume or less.
The concentration of carbon dioxide in the carbon dioxide-containing gas in contact with the carbon dioxide absorbing / releasing agent may be, for example, 0.04% by volume (400 ppm) or more.
In the recovery method of the present embodiment, by using the carbon dioxide absorbing / releasing agent, not only carbon dioxide can be easily absorbed, but also a gas having a wide range of carbon dioxide concentration can be used as described above, which is useful. expensive.
 二酸化炭素(ガス)を含む前記混合ガスの二酸化炭素の濃度は、特に限定されないが、0.04~32体積%であることが好ましく、例えば、0.04~25体積%、0.04~15体積%、及び0.04~5体積%のいずれかであってもよいし、5~32体積%、15~32体積%、及び25~32体積%のいずれかであってもよいし、5~25体積%であってもよい。前記濃度が前記下限値以上であることで、二酸化炭素の吸収量がより多くなる。前記濃度が前記上限値以下であることで、二酸化炭素の吸収漏れがより抑制される。
 本実施形態の回収方法においては、前記二酸化炭素吸収放出剤を用いることで、二酸化炭素を容易に吸収できるだけでなく、二酸化炭素の濃度が上記のように幅広い前記混合ガスを用いることができ、有用性が高い。
The concentration of carbon dioxide in the mixed gas containing carbon dioxide (gas) is not particularly limited, but is preferably 0.04 to 32% by volume, for example, 0.04 to 25% by volume and 0.04 to 15% by volume. It may be any of% by volume and 0.04 to 5% by volume, 5 to 32% by volume, 15 to 32% by volume, and 25 to 32% by volume, 5 It may be up to 25% by volume. When the concentration is equal to or higher than the lower limit, the amount of carbon dioxide absorbed becomes larger. When the concentration is not more than the upper limit value, the absorption leakage of carbon dioxide is further suppressed.
In the recovery method of the present embodiment, by using the carbon dioxide absorbing / releasing agent, not only carbon dioxide can be easily absorbed, but also the mixed gas having a wide carbon dioxide concentration as described above can be used, which is useful. High in sex.
 二酸化炭素を二酸化炭素吸収放出剤に吸収させるときの、二酸化炭素ガスの流量は、目的に応じて任意に選択できる。
 前記流量は、二酸化炭素を単独で用いるか、又は混合ガスとして用いるか、の使用形態によらず、二酸化炭素吸収放出剤中の化合物(1)の量1molあたり、0.01~20mol/hであることが好ましく、例えば、0.01~10mol/h、0.01~5mol/h、及び0.01~1mol/hのいずれかであってもよいし、0.1~20mol/h、1~20mol/h、及び10~20mol/hのいずれかであってもよい。前記流量が前記下限値以上であることで、二酸化炭素の吸収量がより多くなる。前記流量が前記上限値以下であることで、二酸化炭素の吸収漏れがより抑制される。
 本実施形態の回収方法においては、前記二酸化炭素吸収放出剤を用いることで、二酸化炭素を容易に吸収できるだけでなく、二酸化炭素ガスの流量を上記のように幅広く設定でき、有用性が高い。
The flow rate of carbon dioxide gas when the carbon dioxide is absorbed by the carbon dioxide absorbing / releasing agent can be arbitrarily selected according to the purpose.
The flow rate is 0.01 to 20 mol / h per 1 mol of the amount of the compound (1) in the carbon dioxide absorbing / releasing agent, regardless of whether carbon dioxide is used alone or as a mixed gas. It is preferable that the gas is, for example, either 0.01 to 10 mol / h, 0.01 to 5 mol / h, and 0.01 to 1 mol / h, or 0.1 to 20 mol / h, 1 It may be either ~ 20 mol / h and 10 to 20 mol / h. When the flow rate is equal to or higher than the lower limit, the amount of carbon dioxide absorbed becomes larger. When the flow rate is not more than the upper limit value, absorption leakage of carbon dioxide is further suppressed.
In the recovery method of the present embodiment, by using the carbon dioxide absorbing / releasing agent, not only carbon dioxide can be easily absorbed, but also the flow rate of carbon dioxide gas can be widely set as described above, which is highly useful.
 二酸化炭素を二酸化炭素吸収放出剤に吸収させるときの、二酸化炭素吸収放出剤の温度は、二酸化炭素吸収放出剤の種類に応じて適宜選択でき、特に限定されない。
 前記温度は、-18~30℃であることが好ましく、例えば、-18~25℃、-18~15℃、及び-18~5℃のいずれかであってもよいし、-8~30℃、8~30℃、及び18~30℃のいずれかであってもよいし、-8~25℃、及び8~15℃のいずれかであってもよい。前記温度が前記下限値以上であることで、二酸化炭素の吸収量がより多くなる。前記温度が前記上限値以下であることで、二酸化炭素の吸収漏れがより抑制される。
The temperature of the carbon dioxide absorbing / releasing agent when the carbon dioxide is absorbed by the carbon dioxide absorbing / releasing agent can be appropriately selected depending on the type of the carbon dioxide absorbing / releasing agent, and is not particularly limited.
The temperature is preferably -18 to 30 ° C, and may be, for example, -18 to 25 ° C, -18 to 15 ° C, and -18 to 5 ° C, or -8 to 30 ° C. , 8-30 ° C, and 18-30 ° C, or -8-25 ° C, and 8-15 ° C. When the temperature is equal to or higher than the lower limit, the amount of carbon dioxide absorbed becomes larger. When the temperature is not more than the upper limit value, the absorption leakage of carbon dioxide is further suppressed.
 工程(A)においては、液状の二酸化炭素吸収放出剤を用いる場合、二酸化炭素を単独で用いるか、又は混合ガスとして用いるか、の使用形態によらず、二酸化炭素を液状の二酸化炭素吸収放出剤中に直接流入させて、バブリングすることが好ましい。このようにすることで、二酸化炭素の吸収効率を向上させることができる。
 また、二酸化炭素を液状の二酸化炭素吸収放出剤中に直接流入させる場合には、二酸化炭素吸収放出剤を公知の手法によって、撹拌してもよい。このようにすることで、二酸化炭素の吸収効率の向上が可能な場合がある。
In the step (A), when a liquid carbon dioxide absorption / release agent is used, carbon dioxide is used as a liquid carbon dioxide absorption / release agent regardless of whether carbon dioxide is used alone or as a mixed gas. It is preferable to bubbling by directly flowing into the inside. By doing so, the absorption efficiency of carbon dioxide can be improved.
Further, when carbon dioxide is directly flowed into the liquid carbon dioxide absorption / release agent, the carbon dioxide absorption / release agent may be stirred by a known method. By doing so, it may be possible to improve the absorption efficiency of carbon dioxide.
 本実施形態においては、化合物(1)の一部が二酸化炭素と未反応の段階で、工程(A)を終了してもよいし、化合物(1)の全量を二酸化炭素と反応させてから、工程(A)を終了してもよい。
 工程(A)を開始したときの二酸化炭素吸収放出剤中の化合物(1)の量(モル数)に対する、工程(A)を終了するときの二酸化炭素吸収放出剤中の化合物(1)の量(モル数)の割合は、20モル%以下であることが好ましく、例えば、10モル%以下、5モル%以下、及び1モル%以下のいずれかであってもよいし、0モル%であってもよい。前記割合が前記上限値以下であることで、続く工程(B)における、二酸化炭素の放出量がより増大する。
In the present embodiment, the step (A) may be completed when a part of the compound (1) has not reacted with carbon dioxide, or the whole amount of the compound (1) may be reacted with carbon dioxide. The step (A) may be completed.
The amount of the compound (1) in the carbon dioxide absorption / release agent at the end of the step (A) with respect to the amount (number of moles) of the compound (1) in the carbon dioxide absorption / release agent at the start of the step (A). The ratio of (number of moles) is preferably 20 mol% or less, and may be, for example, 10 mol% or less, 5 mol% or less, 1 mol% or less, or 0 mol%. You may. When the ratio is not more than the upper limit value, the amount of carbon dioxide released in the subsequent step (B) is further increased.
 工程(A)においては、液状の二酸化炭素吸収放出剤を用いた場合、これが含有している溶媒の種類等の、二酸化炭素の吸収条件に応じて、固体の前記反応物(前記カルバミン酸誘導体)が析出する場合と、析出しない場合がある。
 より具体的には、化合物(1)と二酸化炭素との反応時の反応温度を低下させること、液状の二酸化炭素吸収放出剤における化合物(1)の濃度を増大させること(溶媒の使用量を低減することと、化合物(1)の使用量を増大させることと、のいずれか一方又は両方)、溶媒として前記反応物の溶解度が小さいのものを使用すること、化合物(1)として、ジアミン(アミノ基を2個有するもの)を用いること、等によって、前記反応物を液状の二酸化炭素吸収放出剤中で、容易に析出させることができる。ただし、条件の調節は、これらに限定されない。
 前記反応物が析出する(液状の二酸化炭素吸収放出剤が懸濁液である)場合には、析出物の量の増大によって、二酸化炭素の吸収量の増大を視覚的に確認できる。
 本実施形態においては、固体の前記反応物の析出の有無によらず、続く工程(B)を良好に行うことができる。
In the step (A), when a liquid carbon dioxide absorbing / releasing agent is used, the solid reaction product (the carbamic acid derivative) depends on the carbon dioxide absorption conditions such as the type of the solvent contained therein. May or may not precipitate.
More specifically, the reaction temperature at the time of reaction between the compound (1) and carbon dioxide is lowered, and the concentration of the compound (1) in the liquid carbon dioxide absorption / release agent is increased (the amount of the solvent used is reduced). One or both of the above and the increase in the amount of the compound (1) used), the solvent having a small solubility of the reaction product, and the compound (1) having a diamine (amino). The reaction product can be easily precipitated in a liquid carbon dioxide absorption / release agent by using (the one having two groups) or the like. However, the adjustment of conditions is not limited to these.
When the reaction product precipitates (the liquid carbon dioxide absorbing / releasing agent is a suspension), the increase in the amount of carbon dioxide absorbed can be visually confirmed by increasing the amount of the precipitate.
In the present embodiment, the subsequent step (B) can be satisfactorily performed regardless of the presence or absence of precipitation of the solid reaction product.
 工程(A)においては、液状の二酸化炭素吸収放出剤中で前記反応物(化合物(1)と二酸化炭素との反応物)が析出することにより、さらなる化合物(1)と二酸化炭素との反応が促進され、二酸化炭素吸収放出剤の二酸化炭素の吸収が促進される。 In the step (A), the reaction product (reaction product of the compound (1) and carbon dioxide) is precipitated in the liquid carbon dioxide absorbing / releasing agent, so that the reaction between the compound (1) and carbon dioxide is further carried out. It is promoted and the absorption of carbon dioxide of the carbon dioxide absorption / release agent is promoted.
<工程(B)>
 前記工程(B)においては、二酸化炭素を吸収後の二酸化炭素吸収放出剤を、加熱処理することにより、前記二酸化炭素吸収放出剤から前記二酸化炭素を放出させる。工程(B)においては、工程(A)で生じた前記カルバミン酸誘導体が二酸化炭素を放出し、アミノ基が再生される。その結果、前記カルバミン酸誘導体は、化合物(1)に戻る。
<Process (B)>
In the step (B), the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide is heat-treated to release the carbon dioxide from the carbon dioxide absorbing / releasing agent. In the step (B), the carbamic acid derivative produced in the step (A) releases carbon dioxide, and the amino group is regenerated. As a result, the carbamic acid derivative returns to compound (1).
 工程(B)において、二酸化炭素を吸収後の二酸化炭素吸収放出剤を加熱処理するときの温度は、例えば、化合物(1)の種類、溶媒を用いる場合にはその種類等を考慮して、適宜調節できる。前記加熱処理時の温度は、例えば、化合物(1)の沸点未満であることが好ましく、溶媒を用いる場合には溶媒の沸点未満であることが好ましい。前記加熱処理時の温度がこのような範囲であることで、化合物(1)又は溶媒の散逸を抑制できる。 In the step (B), the temperature at which the carbon dioxide absorption / release agent after absorbing carbon dioxide is heat-treated is appropriately determined in consideration of, for example, the type of the compound (1), the type when a solvent is used, and the like. Can be adjusted. The temperature at the time of the heat treatment is preferably, for example, lower than the boiling point of the compound (1), and when a solvent is used, it is preferably lower than the boiling point of the solvent. When the temperature at the time of the heat treatment is in such a range, the dissipation of the compound (1) or the solvent can be suppressed.
 前記加熱処理時の温度は、より具体的には、例えば、100℃以下であることが好ましく、90℃以下、80℃以下、70℃以下、60℃以下、及び50℃以下のいずれかであってもよい。前記温度が前記上限値以下であることで、より少ないエネルギー量で、かつ、より短時間で、二酸化炭素を放出できる。
 前記加熱処理時の温度の下限値は、特に限定されない。二酸化炭素の放出がより円滑に進行する点では、前記温度は、30℃以上であることが好ましい。
 前記加熱処理時の温度が、従来の方法の場合よりも低めの温度であっても、工程(B)においては、前記カルバミン酸誘導体が十分な量の二酸化炭素を放出する。このように、加熱処理時の温度が低めである点で、本実施形態の回収方法は、有用性が高い。
More specifically, the temperature at the time of the heat treatment is preferably, for example, 100 ° C. or lower, and is any one of 90 ° C. or lower, 80 ° C. or lower, 70 ° C. or lower, 60 ° C. or lower, and 50 ° C. or lower. You may. When the temperature is not more than the upper limit value, carbon dioxide can be released with a smaller amount of energy and in a shorter time.
The lower limit of the temperature at the time of the heat treatment is not particularly limited. The temperature is preferably 30 ° C. or higher in that the release of carbon dioxide proceeds more smoothly.
In the step (B), the carbamic acid derivative releases a sufficient amount of carbon dioxide even if the temperature at the time of the heat treatment is lower than that in the case of the conventional method. As described above, the recovery method of the present embodiment is highly useful in that the temperature at the time of heat treatment is low.
 本実施形態においては、塩基触媒の共存下で工程(B)を行ってもよい。前記加熱処理を、塩基触媒の共存下で行うことによって、二酸化炭素の放出がより円滑に進行する。 In the present embodiment, the step (B) may be performed in the coexistence of a base catalyst. By performing the heat treatment in the coexistence of a base catalyst, the release of carbon dioxide proceeds more smoothly.
 前記塩基触媒は、例えば、常温下で、固体及び液体のいずれであってもよい。
 前記塩基触媒は、例えば、二酸化炭素を吸収後の前記二酸化炭素吸収放出剤が液状である場合、前記二酸化炭素吸収放出剤に溶解していてもよいし、溶解していなくてもよい。溶解していない場合、例えば、工程(B)の終了後に、前記二酸化炭素吸収放出剤から、前記塩基触媒を容易に分離できる。このような観点では、前記塩基触媒は、常温下で、固体であることが好ましい。
The base catalyst may be either a solid or a liquid at room temperature, for example.
The base catalyst may or may not be dissolved in the carbon dioxide absorbing / releasing agent, for example, when the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide is in a liquid state. When not dissolved, for example, the base catalyst can be easily separated from the carbon dioxide absorbing / releasing agent after the completion of step (B). From this point of view, the base catalyst is preferably solid at room temperature.
 前記塩基触媒は、無機塩基及び有機塩基のいずれであってもよい。 The base catalyst may be either an inorganic base or an organic base.
 前記塩基触媒のうち、前記無機塩基としては、例えば、金属酸化物が挙げられ、塩基性金属酸化物又は多価アニオン金属酸化物クラスター(polyanion metal oxide clusters)が好ましい。 Among the base catalysts, examples of the inorganic base include metal oxides, and basic metal oxides or polyvalent anionic metal oxide clusters are preferable.
 前記多価アニオン金属酸化物クラスターは、金属種が5族又は6族金属であるものが好ましい。
 このような多価アニオン金属酸化物クラスターとしては、例えば、KNb19等が挙げられる。
The polyvalent anion metal oxide cluster preferably has a metal species of Group 5 or Group 6 metal.
Examples of such a multivalent anion metal oxide cluster include K8 Nb 6 O 19 .
 前記塩基性金属酸化物としては、例えば、酸化マグネシウム(MgO)、酸化ランタン(La)、酸化ジルコニウム(ZrO)、酸化セリウム(IV)(CeO)、酸化アルミニウム(Al)、層状複水酸化物(Layered Double Hydroxide:LDH)等が挙げられる。 Examples of the basic metal oxide include magnesium oxide (MgO), lanthanum oxide (La 2 O 3 ), zirconium oxide (ZrO 2 ), cerium oxide (IV) (CeO 2 ), and aluminum oxide (Al 2 O 3 ). ), Layered Double Hydroxide (LDH) and the like.
 前記塩基触媒のうち、前記有機塩基としては、例えば、アミン(第一級アミン、第二級アミン、第三級アミン)が挙げられる。
 前記アミンとして、より具体的には、例えば、ヘキシルアミン(n-ヘキシルアミン)、ジヘキシルアミン(ジ-n-ヘキシルアミン)、トリヘキシルアミン(トリ-n-ヘキシルアミン)、ヘプチルアミン(n-ヘプチルアミン)、ジヘプチルアミン(ジ-n-ヘプチルアミン)、トリヘプチルアミン(トリ-n-ヘプチルアミン)、オクチルアミン(n-オクチルアミン)、ジオクチルアミン(ジ-n-オクチルアミン)、トリオクチルアミン(トリ-n-オクチルアミン)、2-エチルヘキシルアミン、N,N-ジイソプロピルエチルアミン等の脂肪族第一級~第三級アミン;アニリン(別名:フェニルアミン)、ジフェニルアミン、トリフェニルアミン等の(芳香族第一級~第三級アミン);ジアザビシクロウンデセン(別名:1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、略称:DBU)、ジアザビシクロノネン(別名:1,5-ジアザビシクロ[4.3.0]-5-ノネン、略称:DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(略称:DABCO)等の含窒素縮合環式化合物等が挙げられる。
Among the base catalysts, examples of the organic base include amines (primary amines, secondary amines, and tertiary amines).
More specifically, the amines include, for example, hexylamine (n-hexylamine), dihexylamine (di-n-hexylamine), trihexylamine (tri-n-hexylamine), and heptylamine (n-heptyl). Amine), diheptylamine (di-n-heptylamine), triheptylamine (tri-n-heptylamine), octylamine (n-octylamine), dioctylamine (di-n-octylamine), trioctylamine (Tri-n-octylamine), 2-ethylhexylamine, N, N-diisopropylethylamine and other aliphatic primary to tertiary amines; aniline (also known as phenylamine), diphenylamine, triphenylamine and the like (fragrance) Group primary to tertiary amines); diazabicycloundecene (also known as 1,8-diazabicyclo [5.4.0] -7-undecene, abbreviated as DBU), diazabicyclononen (also known as 1, Examples thereof include nitrogen-containing fused ring compounds such as 5-diazabicyclo [4.3.0] -5-nonen, abbreviated as DBN) and 1,4-diazabicyclo [2.2.2] octane (abbreviation: DABCO). ..
 工程(B)で用いる塩基触媒は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。 The base catalyst used in the step (B) may be only one type, may be two or more types, and when two or more types are used, the combination and ratio thereof are arbitrarily selected according to the purpose. can.
 工程(B)において、塩基触媒の使用量は、化合物(1)と二酸化炭素との反応物である前記カルバミン酸誘導体の使用量に対して、0.001~0.1倍モル量であることが好ましく、0.005~0.05倍モル量であることがより好ましい。塩基触媒の前記使用量が前記下限値以上であることで、二酸化炭素の放出がより円滑に進行する。塩基触媒の前記使用量が前記上限値以下であることで、塩基触媒の過剰使用が抑制される。 In the step (B), the amount of the base catalyst used is 0.001 to 0.1 times the molar amount of the amount of the carbamic acid derivative which is a reaction product of the compound (1) and carbon dioxide. Is preferable, and the molar amount is more preferably 0.005 to 0.05 times. When the amount of the base catalyst used is equal to or greater than the lower limit, the release of carbon dioxide proceeds more smoothly. When the amount of the base catalyst used is not more than the upper limit, the overuse of the base catalyst is suppressed.
 本実施形態においては、酸の共存下で工程(B)を行ってもよい。前記加熱処理を、酸の共存下で行うことによって、二酸化炭素の放出がより円滑に進行する。 In the present embodiment, the step (B) may be performed in the coexistence of an acid. By performing the heat treatment in the coexistence of an acid, the release of carbon dioxide proceeds more smoothly.
 前記酸は、有機酸及び無機酸のいずれであってもよいが、無機酸であることが好ましい。
 前記無機酸としては、例えば、塩酸、硫酸、硝酸等が挙げられる。
The acid may be either an organic acid or an inorganic acid, but is preferably an inorganic acid.
Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid and the like.
 工程(B)において、酸の使用量は、化合物(1)と二酸化炭素との反応物である前記カルバミン酸誘導体の使用量に対して、1~3倍モル量であることが好ましい。酸の前記使用量が前記下限値以上であることで、二酸化炭素の放出がより円滑に進行する。酸の前記使用量が前記上限値以下であることで、酸の過剰使用が抑制される。 In the step (B), the amount of the acid used is preferably 1 to 3 times the molar amount of the amount of the carbamic acid derivative which is a reaction product of the compound (1) and carbon dioxide. When the amount of the acid used is equal to or higher than the lower limit, the release of carbon dioxide proceeds more smoothly. When the amount of the acid used is not more than the upper limit, the excessive use of the acid is suppressed.
 工程(B)においては、二酸化炭素を吸収後の液状の二酸化炭素吸収放出剤を用いる場合、不活性ガスを前記液状の二酸化炭素吸収放出剤中に直接流入させて、バブリングすることが好ましい。バブリングせずに加熱処理しても、十分な量の二酸化炭素を流出させることができるが、このようにバブリングしながら加熱処理することにより、放出された二酸化炭素を、不活性ガスとともに流出させることで、効率的に捕集できる。ここで、不活性ガスとは、先に説明したものである。
 また、不活性ガスを前記液状の二酸化炭素吸収放出剤中に直接流入させる場合には、二酸化炭素吸収放出剤を公知の手法によって、撹拌してもよい。このようにすることで、二酸化炭素の捕集効率の向上が可能な場合がある。
In the step (B), when the liquid carbon dioxide absorption / release agent after absorbing carbon dioxide is used, it is preferable that the inert gas is directly flowed into the liquid carbon dioxide absorption / release agent for bubbling. Although a sufficient amount of carbon dioxide can be discharged by heat treatment without bubbling, the released carbon dioxide can be discharged together with the inert gas by heat treatment while bubbling in this way. It can be collected efficiently. Here, the inert gas is the one described above.
Further, when the inert gas is directly flowed into the liquid carbon dioxide absorbing / releasing agent, the carbon dioxide absorbing / releasing agent may be stirred by a known method. By doing so, it may be possible to improve the efficiency of carbon dioxide collection.
 工程(B)において、不活性ガスを前記液状の二酸化炭素吸収放出剤中に直接流入させて、バブリングする場合には、不活性ガスの流量は、前記液状の二酸化炭素吸収放出剤中の前記カルバミン酸誘導体の量1molあたり、20~100L/minであることが好ましく、35~85L/minであることがより好ましい。前記不活性ガスの流量が前記下限値以上であることで、放出された二酸化炭素をより効率的に捕集できる。前記不活性ガスの流量が前記上限値以下であることで、溶媒の気化及び化合物(1)の気化をより抑制できる。 In the step (B), when the inert gas is directly flowed into the liquid carbon dioxide absorbing / releasing agent and bubbling, the flow rate of the inert gas is the carbamic acid in the liquid carbon dioxide absorbing / releasing agent. The amount is preferably 20 to 100 L / min, more preferably 35 to 85 L / min per 1 mol of the acid derivative. When the flow rate of the inert gas is at least the lower limit, the released carbon dioxide can be collected more efficiently. When the flow rate of the inert gas is not more than the upper limit, the vaporization of the solvent and the vaporization of the compound (1) can be further suppressed.
 二酸化炭素を吸収後の前記二酸化炭素吸収放出剤は、本発明の効果を損なわない範囲で、前記カルバミン酸誘導体と、前記溶媒と、前記塩基触媒と、前記酸と、のいずれにも該当しない他の成分を含有していてもよい。
 前記他の成分は、目的に応じ任意に選択でき、特に限定されない。
The carbon dioxide absorbing / releasing agent after absorbing carbon dioxide does not fall under any of the carbamic acid derivative, the solvent, the base catalyst, and the acid, as long as the effects of the present invention are not impaired. May contain the components of.
The other components can be arbitrarily selected depending on the intended purpose, and are not particularly limited.
 二酸化炭素を吸収後の前記二酸化炭素吸収放出剤が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。 The other components contained in the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide may be only one kind, two or more kinds, or a combination thereof when two or more kinds are used. And the ratio can be arbitrarily selected according to the purpose.
 二酸化炭素を吸収後の前記二酸化炭素吸収放出剤(二酸化炭素の放出を開始する前の二酸化炭素吸収放出剤)において、二酸化炭素吸収放出剤の総質量(質量部)に対する、前記他の成分の含有量(質量部)の割合は、特に限定されないが、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。溶媒の含有の有無によらず、前記割合が前記上限値以下であることで、二酸化炭素吸収放出剤が二酸化炭素を放出する能力が、より高くなる。
 換言すると、二酸化炭素を吸収後の前記二酸化炭素吸収放出剤(二酸化炭素の放出を開始する前の二酸化炭素吸収放出剤)において、二酸化炭素吸収放出剤の総質量(質量部)に対する、前記カルバミン酸誘導体及び溶媒の合計含有量(質量部)の割合は、特に限定されないが、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、99質量%以上であることが特に好ましい。
In the carbon dioxide absorption / release agent after absorbing carbon dioxide (carbon dioxide absorption / release agent before starting the emission of carbon dioxide), the content of the other components with respect to the total mass (parts by mass) of the carbon dioxide absorption / release agent. The ratio of the amount (part by mass) is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and 1% by mass or less. Is particularly preferable. When the ratio is not more than the upper limit value regardless of the presence or absence of the solvent, the carbon dioxide absorbing / releasing agent has a higher ability to release carbon dioxide.
In other words, in the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide (the carbon dioxide absorbing / releasing agent before starting the emission of carbon dioxide), the carbamate with respect to the total mass (part by mass) of the carbon dioxide absorbing / releasing agent. The ratio of the total content (parts by mass) of the derivative and the solvent is not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 97% by mass or more. It is preferably 99% by mass or more, and particularly preferably 99% by mass or more.
 前記回収方法においては、工程(A)及び工程(B)を、1回のみ行ってもよいし、2回以上繰り返して行ってもよい。
 先の説明のとおり、工程(B)を行うことによって、化合物(1)と二酸化炭素との反応物である前記カルバミン酸誘導体は、二酸化炭素を放出して化合物(1)に戻る。この再生された化合物(1)は、再度、二酸化炭素の吸収及び放出に利用できる。したがって、前記回収方法においては、工程(A)及び工程(B)を2回以上繰り返して行うことが可能である。
In the recovery method, the step (A) and the step (B) may be performed only once or may be repeated twice or more.
As described above, by performing the step (B), the carbamic acid derivative, which is a reaction product of the compound (1) and carbon dioxide, releases carbon dioxide and returns to the compound (1). The regenerated compound (1) can be used again for absorption and release of carbon dioxide. Therefore, in the recovery method, the step (A) and the step (B) can be repeated twice or more.
 工程(A)及び工程(B)を繰り返して行う場合には、化合物(1)の一部が二酸化炭素と未反応の段階で、工程(A)を終了することによって、工程(A)及び工程(B)をより円滑に行うことができ、二酸化炭素の回収の全工程をより短時間で行うことが可能となることがある。ここで、「化合物(1)の一部が二酸化炭素と未反応の段階」とは、例えば、先に説明した化合物(1)の量(モル数)の割合(モル%)で表される段階である。 When the step (A) and the step (B) are repeated, the step (A) and the step (A) and the step (A) are performed by terminating the step (A) when a part of the compound (1) has not reacted with carbon dioxide. (B) can be performed more smoothly, and the entire process of carbon dioxide recovery may be performed in a shorter time. Here, the "stage in which a part of compound (1) has not reacted with carbon dioxide" is, for example, a stage represented by the ratio (mol%) of the amount (number of moles) of compound (1) described above. Is.
 工程(A)及び工程(B)を繰り返して行う場合には、1サイクル目の工程(B)の終了後に、必要に応じて、工程(A)及び工程(B)のいずれにも該当しない、工程(C)を行ってもよい。 When the step (A) and the step (B) are repeated, neither the step (A) nor the step (B) is applicable after the completion of the step (B) of the first cycle, if necessary. Step (C) may be performed.
 例えば、工程(B)において、前記酸を用いた場合には、二酸化炭素を放出後の二酸化炭素吸収放出剤中には、酸が含まれる。このような場合、二酸化炭素吸収放出剤中で、化合物(1)中のアミノ基は塩を形成している。そして、化合物(1)がそのままでは、2サイクル目の工程(A)において、二酸化炭素吸収放出剤は二酸化炭素を吸収し難い(化合物(1)は二酸化炭素と反応し難い)。そのため、この場合には、二酸化炭素吸収放出剤に塩基を加えることで、化合物(1)のアミノ基をフリーの状態(塩を形成していない状態)として、二酸化炭素吸収放出剤を再生することが好ましい。したがって、工程(C)としては、例えば、酸の共存下で工程(B)を行った後に行う、二酸化炭素を放出後の、酸を含有する二酸化炭素吸収放出剤に対して、塩基を加えることにより、酸を中和する工程、が挙げられる。 For example, when the acid is used in the step (B), the acid is contained in the carbon dioxide absorption / release agent after the carbon dioxide is released. In such a case, the amino group in the compound (1) forms a salt in the carbon dioxide absorbing / releasing agent. If the compound (1) is left as it is, the carbon dioxide absorbing / releasing agent is difficult to absorb carbon dioxide in the step (A) of the second cycle (the compound (1) is difficult to react with carbon dioxide). Therefore, in this case, the carbon dioxide absorption / release agent is regenerated by adding a base to the carbon dioxide absorption / release agent so that the amino group of compound (1) is in a free state (a state in which no salt is formed). Is preferable. Therefore, as the step (C), for example, adding a base to the acid-containing carbon dioxide absorption / release agent after the carbon dioxide is released, which is performed after the step (B) is performed in the coexistence of the acid. This includes a step of neutralizing the acid.
 前記工程(C)で用いる前記塩基は、有機塩基及び無機塩基のいずれであってもよいが、無機塩基であることが好ましい。
 前記無機塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の金属水酸化物等が挙げられる。
The base used in the step (C) may be either an organic base or an inorganic base, but is preferably an inorganic base.
Examples of the inorganic base include metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide.
 工程(C)において、塩基の使用量は、二酸化炭素吸収放出剤中の酸を中和できる量であればよい。 In the step (C), the amount of the base used may be any amount as long as it can neutralize the acid in the carbon dioxide absorbing / releasing agent.
 工程(C)において、塩基を用いた場合、酸との中和によって、化合物(1)が関わらない塩が新たに生成する。工程(C)においては、さらに、前記塩(新たに生成した塩)を除去してもよい。すなわち、工程(C)は、例えば、酸の共存下で工程(B)を行った後に行う、二酸化炭素を放出後の、酸を含有する二酸化炭素吸収放出剤に対して、塩基を加えることにより、酸を中和し、次いで、中和によって新たに生じた塩を、酸を中和後の二酸化炭素吸収放出剤から除去する工程、であってもよい。 When a base is used in the step (C), a salt not involved in the compound (1) is newly produced by neutralization with the acid. In the step (C), the salt (newly generated salt) may be further removed. That is, the step (C) is performed, for example, by adding a base to the acid-containing carbon dioxide absorption / release agent after the carbon dioxide is released, which is performed after the step (B) is performed in the coexistence of the acid. It may be a step of neutralizing the acid and then removing the salt newly generated by the neutralization from the carbon dioxide absorbing / releasing agent after the acid is neutralized.
 中和によって新たに生じた塩は、公知の方法で、二酸化炭素吸収放出剤から除去すればよい。例えば、酸を中和後の二酸化炭素吸収放出剤中で、前記塩が析出している場合には、ろ過によって、前記塩を二酸化炭素吸収放出剤から除去できる。 The salt newly generated by neutralization may be removed from the carbon dioxide absorbing / releasing agent by a known method. For example, when the salt is precipitated in the carbon dioxide absorbing / releasing agent after neutralizing the acid, the salt can be removed from the carbon dioxide absorbing / releasing agent by filtration.
 前記回収方法は、本発明の効果を損なわない範囲で、工程(A)と、工程(B)と、工程(C)と、のいずれにも該当しない、他の工程を有していてもよい。
 前記他の工程の種類及び数と、前記他の工程を行うタイミングは、目的に応じて任意に選択でき、特に限定されない。
The recovery method may have other steps that do not fall under any of step (A), step (B), and step (C) as long as the effects of the present invention are not impaired. ..
The type and number of the other steps and the timing of performing the other steps can be arbitrarily selected according to the purpose and are not particularly limited.
<<二酸化炭素の回収方法(M1)>>
 本発明の一実施形態に係る二酸化炭素の回収方法の一例としては、下記一般式(1)
<< Carbon dioxide recovery method (M1) >>
As an example of the method for recovering carbon dioxide according to the embodiment of the present invention, the following general formula (1)
Figure JPOXMLDOC01-appb-C000024
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物を含有する液状の二酸化炭素吸収放出剤に、二酸化炭素を吸収させることで、前記一般式(1)で表される化合物(すなわち化合物(1))と、前記二酸化炭素と、の反応物を、前記液状の二酸化炭素吸収放出剤中で析出させる工程(A1)と、
 前記二酸化炭素を吸収し、前記反応物が析出した後の前記液状の二酸化炭素吸収放出剤を、加熱処理することにより、前記液状の二酸化炭素吸収放出剤から前記二酸化炭素を放出させる工程(B1)と、を有する、二酸化炭素の回収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)(本明細書においては、「二酸化炭素の回収方法(M1)」と称することがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000024
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
By allowing a liquid carbon dioxide absorbing / releasing agent containing the compound represented by the above to absorb carbon dioxide, the compound represented by the general formula (1) (that is, the compound (1)), the carbon dioxide, and the carbon dioxide can be obtained. In the step (A1) of precipitating the reaction product of the above in the liquid carbon dioxide absorption / release agent,
Step (B1) of absorbing the carbon dioxide and releasing the carbon dioxide from the liquid carbon dioxide absorbing / releasing agent by heat-treating the liquid carbon dioxide absorbing / releasing agent after the reactant is precipitated (B1). A method for recovering carbon dioxide (where m is 0, p 1 is 2, and two amino groups with p 1 are arranged in meta positions with each other. (Excluding the method for recovering carbon dioxide) (in the present specification, it may be referred to as "method for recovering carbon dioxide (M1)").
 前記二酸化炭素の回収方法(M1)における前記工程(A1)は、先に説明した二酸化炭素の回収方法の前記工程(A)において、二酸化炭素吸収放出剤を液状であるものに限定し、化合物(1)と二酸化炭素との反応物を、液状の二酸化炭素吸収放出剤中で析出するものに限定した工程である。 In the step (A1) of the carbon dioxide recovery method (M1), the carbon dioxide absorption / release agent is limited to a liquid in the step (A) of the carbon dioxide recovery method described above, and the compound ( This is a step in which the reaction product of 1) and carbon dioxide is limited to those that precipitate in a liquid carbon dioxide absorbing / releasing agent.
 工程(A1)を行うためには、先に説明した二酸化炭素の回収方法における前記工程(A)を、上述の限定を反映させて行えばよい。
 例えば、工程(A1)においては、液状の二酸化炭素吸収放出剤は、化合物(1)と溶媒を含有していることが好ましい。
In order to carry out the step (A1), the step (A) in the carbon dioxide recovery method described above may be carried out reflecting the above-mentioned limitation.
For example, in the step (A1), the liquid carbon dioxide absorption / release agent preferably contains the compound (1) and a solvent.
 二酸化炭素の回収方法(M1)においては、前記工程(A1)を行い、化合物(1)と二酸化炭素との反応物を、液状の二酸化炭素吸収放出剤中で析出させる(液状の二酸化炭素吸収放出剤を懸濁液とする)ことにより、さらなる化合物(1)と二酸化炭素との反応が促進され、二酸化炭素吸収放出剤の二酸化炭素の吸収が促進される。 In the carbon dioxide recovery method (M1), the above step (A1) is performed to precipitate a reaction product of the compound (1) and carbon dioxide in a liquid carbon dioxide absorption / release agent (liquid carbon dioxide absorption / release). By using the agent as a suspension), the reaction between the compound (1) and carbon dioxide is promoted, and the absorption of carbon dioxide by the carbon dioxide absorption / release agent is promoted.
 前記工程(A1)においては、例えば、化合物(1)を含有する液状の二酸化炭素吸収放出剤に、二酸化炭素を吸収させる条件(換言すると、化合物(1)と二酸化炭素との反応条件)を調節することで、化合物(1)と二酸化炭素との反応物を、液状の二酸化炭素吸収放出剤中で析出させることができる。例えば、化合物(1)と二酸化炭素との反応時の反応温度を低下させること、液状の二酸化炭素吸収放出剤における化合物(1)の濃度を増大させること(溶媒の使用量を低減することと、化合物(1)の使用量を増大させることと、のいずれか一方又は両方)、液状の二酸化炭素吸収放出剤における溶媒として、前記反応物の溶解度が小さいのものを使用すること、化合物(1)として、ジアミン(アミノ基を2個有するもの)を用いること、等によって、化合物(1)と二酸化炭素との反応物を、液状の二酸化炭素吸収放出剤中で、容易に析出させることができる。ただし、条件の調節は、これらに限定されない。 In the step (A1), for example, the conditions for allowing the liquid carbon dioxide absorbing / releasing agent containing the compound (1) to absorb carbon dioxide (in other words, the reaction conditions between the compound (1) and carbon dioxide) are adjusted. By doing so, the reaction product of compound (1) and carbon dioxide can be precipitated in a liquid carbon dioxide absorption / release agent. For example, lowering the reaction temperature during the reaction between compound (1) and carbon dioxide, increasing the concentration of compound (1) in the liquid carbon dioxide absorption / release agent (reducing the amount of the solvent used, and so on. Increasing the amount of compound (1) used, one or both of them), using a liquid carbon dioxide absorption / release agent having a low solubility of the reaction product, compound (1). As a result, a reaction product of compound (1) and carbon dioxide can be easily precipitated in a liquid carbon dioxide absorbing / releasing agent by using a diamine (having two amino groups) or the like. However, the adjustment of conditions is not limited to these.
 工程(A1)で用いる化合物(1)は、下記一般式(11A)、(12A)又は(11B) The compound (1) used in the step (A1) is the following general formula (11A), (12A) or (11B).
Figure JPOXMLDOC01-appb-C000025
 (式中、R11、R12、R13及びR21は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、カルボキシ基、炭素数2~11のアルキルオキシカルボニル基、ホルミル基、炭素数2~11のアルキルカルボニル基、炭素数1~10のアルキルチオ基、スルホ基、炭素数1~10のアルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q11及びq12は、それぞれ独立に、0~6の整数であり、q11が2以上の整数である場合には、2個以上のR11は互いに同一でも異なっていてもよく、q12が2以上の整数である場合には、2個以上のR12は互いに同一でも異なっていてもよく、q11が2以上の整数であり、かつ、2個以上のR11が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR11は相互に結合して環を形成していてもよく、q12が2以上の整数であり、かつ、2個以上のR12が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR12は相互に結合して環を形成していてもよく;q13及びq21は、それぞれ独立に、0~4の整数であり、q13が2以上の整数である場合には、2個以上のR13は互いに同一でも異なっていてもよく、q21が2以上の整数である場合には、2個以上のR21は互いに同一でも異なっていてもよく、q13が2以上の整数であり、かつ、2個以上のR13が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR13は相互に結合して環を形成していてもよく、q21が2以上の整数であり、かつ、2個以上のR21が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR21は相互に結合して環を形成していてもよい。)
で表される化合物(化合物(11A)、化合物(12A)又は化合物(11B))(ただし、前記一般式(12A)において、シクロヘキサン環骨格を構成している炭素原子に直接結合している2個のアミノ基が、互いにメタ位に配置されている化合物を除く)であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
(In the formula, R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively. Carbonyl group, formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more. In some cases, the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other. When q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual. The alkyl group may be bonded to to form a ring, q 12 may be an integer of 2 or more, and R 12 of 2 or more may have an amino group as the substituent. In some cases, the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more. If the integers of, the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent. When it is a group, the two or more R 21s may be bonded to each other to form a ring.)
Compound represented by (Compound (11A), Compound (12A) or Compound (11B)) (However, in the above general formula (12A), two compounds directly bonded to the carbon atom constituting the cyclohexane ring skeleton. It is preferable that the amino groups of the above are (excluding compounds in which the meta-positions of each other are arranged).
 工程(A1)で用いる化合物(11A)、化合物(12A)又は化合物(11B)は、下記一般式(111A)、(121A)、(122A)又は(111B) The compound (11A), compound (12A) or compound (11B) used in the step (A1) is the following general formula (111A), (121A), (122A) or (111B).
Figure JPOXMLDOC01-appb-C000026
 (式中、R111、R121、R122、R131及びR211は、それぞれ独立に、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~6のアルキルオキシカルボニル基、ホルミル基、炭素数2~6のアルキルカルボニル基、炭素数1~5のアルキルチオ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q111、q121及びq122は、それぞれ独立に、0~4の整数であり、q111が2以上の整数である場合には、2個以上のR111は互いに同一でも異なっていてもよく、q121が2以上の整数である場合には、2個以上のR121は互いに同一でも異なっていてもよく、q122が2以上の整数である場合には、2個以上のR122は互いに同一でも異なっていてもよく、q111が2以上の整数であり、かつ、2個以上のR111が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR111は相互に結合して環を形成していてもよく、q121が2以上の整数であり、かつ、2個以上のR121が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR121は相互に結合して環を形成していてもよく、q122が2以上の整数であり、かつ、2個以上のR122が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR122は相互に結合して環を形成していてもよく;q131及びq211は、それぞれ独立に、0~2の整数であり、q131が2である場合には、2個のR131は互いに同一でも異なっていてもよく、q211が2である場合には、2個のR211は互いに同一でも異なっていてもよく、q131が2であり、かつ、2個のR131が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR131は相互に結合して環を形成していてもよく、q211が2であり、かつ、2個のR211が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR211は相互に結合して環を形成していてもよい。)で表される化合物(「化合物(111A)」、「化合物(121A)」、化合物「(122A)」又は化合物「(111B)」)であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
(In the formula, R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent. Independently, q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent. When is, the two or more R 111s may be coupled to each other to form a ring, q 121 is an integer of 2 or more, and two or more R 121s are the substituents. In the case of the alkyl group which may have an amino group, the two or more R 121s may be bonded to each other to form a ring, and q 122 is an integer of 2 or more. In addition, when the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring. May; q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 . When is 2, the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent. In the case of a good alkyl group, the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents. In the case of the alkyl group which may have an amino group, the two R 211s may be bonded to each other to form a ring) (“Compound (111A)”. ) ”,“ Compound (121A) ”, Compound“ (12A) ” 2A) ”or compound“ (111B) ”) is preferred.
 二酸化炭素の回収方法(M1)における前記工程(B1)は、先に説明した二酸化炭素の回収方法の前記工程(B)において、加熱処理の対象である、二酸化炭素を吸収後の二酸化炭素吸収放出剤を、液状であり、かつ、化合物(1)と二酸化炭素との反応物が析出しているものに限定した工程である。 The step (B1) in the carbon dioxide recovery method (M1) is the carbon dioxide absorption / release after absorbing carbon dioxide, which is the target of the heat treatment in the step (B) of the carbon dioxide recovery method described above. This is a step in which the agent is limited to a liquid and a reaction product of the compound (1) and carbon dioxide is precipitated.
 前記工程(B1)を行うためには、先に説明した二酸化炭素の回収方法における前記工程(B)を、上述の限定を反映させて行えばよい。
 例えば、工程(B1)は、前記塩基触媒の共存下で行ってもよい。
In order to carry out the step (B1), the step (B) in the carbon dioxide recovery method described above may be carried out reflecting the above-mentioned limitation.
For example, the step (B1) may be performed in the coexistence of the base catalyst.
 二酸化炭素の回収方法(M1)は、先に説明した二酸化炭素の回収方法において、前記工程(A)を工程(A1)に限定し、前記工程(B)を工程(B1)に限定したものである。
 例えば、二酸化炭素の回収方法(M1)においては、前記工程(A1)及び工程(B1)を2回以上繰り返して行ってもよく、この場合の工程(A1)及び工程(B1)を2回以上繰り返して行う態様は、先に説明した二酸化炭素の回収方法において、前記工程(A)及び工程(B)を2回以上繰り返して行う態様と同じである。
The carbon dioxide recovery method (M1) is the method for recovering carbon dioxide described above, in which the step (A) is limited to the step (A1) and the step (B) is limited to the step (B1). be.
For example, in the carbon dioxide recovery method (M1), the steps (A1) and (B1) may be repeated twice or more, and the steps (A1) and (B1) in this case may be repeated twice or more. The mode of repeating the steps is the same as the mode of repeating the steps (A) and (B) two or more times in the method for recovering carbon dioxide described above.
 二酸化炭素の回収方法(M1)の説明は、上述の限定を有する点以外は、前記二酸化炭素の回収方法(前記工程(A)及び工程(B)を有する二酸化炭素の回収方法)の説明と同じである。したがって、二酸化炭素の回収方法(M1)については、これ以上の詳細な説明を省略する。 The description of the carbon dioxide recovery method (M1) is the same as the description of the carbon dioxide recovery method (the carbon dioxide recovery method having the steps (A) and (B)) except that the above limitation is applied. Is. Therefore, further detailed description of the carbon dioxide recovery method (M1) will be omitted.
<<二酸化炭素の回収方法(M2)>>
 本発明の一実施形態に係る二酸化炭素の回収方法の他の例としては、下記一般式(1)
<< Carbon dioxide recovery method (M2) >>
As another example of the method for recovering carbon dioxide according to the embodiment of the present invention, the following general formula (1)
Figure JPOXMLDOC01-appb-C000027
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物(すなわち化合物(1))を含有する二酸化炭素吸収放出剤に、二酸化炭素を吸収させる工程(A)と、
 塩基触媒の共存下で、前記二酸化炭素を吸収後の前記二酸化炭素吸収放出剤を、加熱処理することにより、前記二酸化炭素吸収放出剤から前記二酸化炭素を放出させる工程(B2)と、を有する、二酸化炭素の回収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)(本明細書においては、「二酸化炭素の回収方法(M2)」と称することがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000027
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
In the step (A) of causing a carbon dioxide absorbing / releasing agent containing a compound represented by (that is, compound (1)) to absorb carbon dioxide,
It comprises a step (B2) of releasing the carbon dioxide from the carbon dioxide absorbing / releasing agent by heat-treating the carbon dioxide absorbing / releasing agent after absorbing the carbon dioxide in the coexistence of a base catalyst. Carbon dioxide recovery method (However, carbon dioxide recovery method when m is 0, p 1 is 2, and two amino groups with p 1 are arranged at the meta positions of each other. (Except for) (in this specification, it may be referred to as "carbon dioxide recovery method (M2)").
 前記二酸化炭素の回収方法(M2)における工程(A)は、先に説明した二酸化炭素の回収方法における工程(A)と同じである。 The step (A) in the carbon dioxide recovery method (M2) is the same as the step (A) in the carbon dioxide recovery method described above.
 一例を挙げると、二酸化炭素の回収方法(M2)における工程(A)で用いる化合物(1)は、下記一般式(11A)、(12A)又は(11B) As an example, the compound (1) used in the step (A) in the carbon dioxide recovery method (M2) is the following general formula (11A), (12A) or (11B).
Figure JPOXMLDOC01-appb-C000028
 (式中、R11、R12、R13及びR21は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、カルボキシ基、炭素数2~11のアルキルオキシカルボニル基、ホルミル基、炭素数2~11のアルキルカルボニル基、炭素数1~10のアルキルチオ基、スルホ基、炭素数1~10のアルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q11及びq12は、それぞれ独立に、0~6の整数であり、q11が2以上の整数である場合には、2個以上のR11は互いに同一でも異なっていてもよく、q12が2以上の整数である場合には、2個以上のR12は互いに同一でも異なっていてもよく、q11が2以上の整数であり、かつ、2個以上のR11が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR11は相互に結合して環を形成していてもよく、q12が2以上の整数であり、かつ、2個以上のR12が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR12は相互に結合して環を形成していてもよく;q13及びq21は、それぞれ独立に、0~4の整数であり、q13が2以上の整数である場合には、2個以上のR13は互いに同一でも異なっていてもよく、q21が2以上の整数である場合には、2個以上のR21は互いに同一でも異なっていてもよく、q13が2以上の整数であり、かつ、2個以上のR13が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR13は相互に結合して環を形成していてもよく、q21が2以上の整数であり、かつ、2個以上のR21が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR21は相互に結合して環を形成していてもよい。)
で表される化合物(化合物(11A)、化合物(12A)又は化合物(11B))(ただし、前記一般式(12A)において、シクロヘキサン環骨格を構成している炭素原子に直接結合している2個のアミノ基が、互いにメタ位に配置されている化合物を除く)であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
(In the formula, R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively. Carbonyl group, formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more. In some cases, the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other. When q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual. The alkyl group may be bonded to to form a ring, q 12 may be an integer of 2 or more, and R 12 of 2 or more may have an amino group as the substituent. In some cases, the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more. If the integers of, the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent. When it is a group, the two or more R 21s may be bonded to each other to form a ring.)
Compound represented by (Compound (11A), Compound (12A) or Compound (11B)) (However, in the above general formula (12A), two compounds directly bonded to the carbon atom constituting the cyclohexane ring skeleton. It is preferable that the amino groups of the above are (excluding compounds in which the meta-positions of each other are arranged).
 一例を挙げると、二酸化炭素の回収方法(M2)における工程(A)で用いる化合物(11A)、化合物(12A)又は化合物(11B)は、下記一般式(111A)、(121A)、(122A)又は(111B) As an example, the compound (11A), the compound (12A) or the compound (11B) used in the step (A) in the carbon dioxide recovery method (M2) is described in the following general formulas (111A), (121A) and (122A). Or (111B)
Figure JPOXMLDOC01-appb-C000029
 (式中、R111、R121、R122、R131及びR211は、それぞれ独立に、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~6のアルキルオキシカルボニル基、ホルミル基、炭素数2~6のアルキルカルボニル基、炭素数1~5のアルキルチオ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q111、q121及びq122は、それぞれ独立に、0~4の整数であり、q111が2以上の整数である場合には、2個以上のR111は互いに同一でも異なっていてもよく、q121が2以上の整数である場合には、2個以上のR121は互いに同一でも異なっていてもよく、q122が2以上の整数である場合には、2個以上のR122は互いに同一でも異なっていてもよく、q111が2以上の整数であり、かつ、2個以上のR111が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR111は相互に結合して環を形成していてもよく、q121が2以上の整数であり、かつ、2個以上のR121が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR121は相互に結合して環を形成していてもよく、q122が2以上の整数であり、かつ、2個以上のR122が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR122は相互に結合して環を形成していてもよく;q131及びq211は、それぞれ独立に、0~2の整数であり、q131が2である場合には、2個のR131は互いに同一でも異なっていてもよく、q211が2である場合には、2個のR211は互いに同一でも異なっていてもよく、q131が2であり、かつ、2個のR131が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR131は相互に結合して環を形成していてもよく、q211が2であり、かつ、2個のR211が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR211は相互に結合して環を形成していてもよい。)で表される化合物(「化合物(111A)」、「化合物(121A)」、化合物「(122A)」又は化合物「(111B)」)であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
(In the formula, R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent. Independently, q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent. When is, the two or more R 111s may be coupled to each other to form a ring, q 121 is an integer of 2 or more, and two or more R 121s are the substituents. In the case of the alkyl group which may have an amino group, the two or more R 121s may be bonded to each other to form a ring, and q 122 is an integer of 2 or more. In addition, when the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring. May; q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 . When is 2, the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent. In the case of a good alkyl group, the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents. In the case of the alkyl group which may have an amino group, the two R 211s may be bonded to each other to form a ring) (“Compound (111A)”. ) ”,“ Compound (121A) ”, Compound“ (12A) ” 2A) ”or compound“ (111B) ”) is preferred.
 二酸化炭素の回収方法(M2)における工程(A)については、これ以上の詳細な説明は省略する。 Further detailed description of the step (A) in the carbon dioxide recovery method (M2) will be omitted.
 二酸化炭素の回収方法(M2)における前記工程(B2)は、先に説明した二酸化炭素の回収方法の前記工程(B)において、二酸化炭素を吸収後の二酸化炭素吸収放出剤の加熱処理を、塩基触媒の共存下で行うものに限定した工程である。すなわち、工程(B2)を行うためには、先に説明した二酸化炭素の回収方法における前記工程(B)を、上述の限定を反映させて行えばよい。
 例えば、工程(B2)で用いる塩基触媒は、前記工程(B)で用いる塩基触媒と同じである。
In the step (B2) of the carbon dioxide recovery method (M2), in the step (B) of the carbon dioxide recovery method described above, the heat treatment of the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide is performed as a base. This process is limited to those performed in the coexistence of a catalyst. That is, in order to carry out the step (B2), the step (B) in the carbon dioxide recovery method described above may be carried out reflecting the above-mentioned limitation.
For example, the base catalyst used in the step (B2) is the same as the base catalyst used in the step (B).
 二酸化炭素の回収方法(M2)によれば、前記工程(B2)において、前記加熱処理を塩基触媒の共存下で行うことによって、二酸化炭素の放出がより円滑に進行する。 According to the carbon dioxide recovery method (M2), in the step (B2), by performing the heat treatment in the coexistence of a base catalyst, the release of carbon dioxide proceeds more smoothly.
 二酸化炭素の回収方法(M2)は、先に説明した二酸化炭素の回収方法において、前記工程(B)を工程(B2)に限定したものである。
 例えば、二酸化炭素の回収方法(M2)においては、前記工程(A)及び工程(B2)を2回以上繰り返して行ってもよく、この場合の工程(A)及び工程(B2)を2回以上繰り返して行う態様は、先に説明した二酸化炭素の回収方法において、前記工程(A)及び工程(B)を2回以上繰り返して行う態様と同じである。
The carbon dioxide recovery method (M2) is a method for recovering carbon dioxide described above, in which the step (B) is limited to the step (B2).
For example, in the carbon dioxide recovery method (M2), the steps (A) and (B2) may be repeated twice or more, and the steps (A) and (B2) in this case may be repeated twice or more. The mode of repeating the steps is the same as the mode of repeating the steps (A) and (B) two or more times in the method for recovering carbon dioxide described above.
 二酸化炭素の回収方法(M2)の説明は、上述の限定を有する点以外は、前記二酸化炭素の回収方法(前記工程(A)及び工程(B)を有する二酸化炭素の回収方法)の説明と同じである。したがって、二酸化炭素の回収方法(M2)については、これ以上の詳細な説明を省略する。 The description of the carbon dioxide recovery method (M2) is the same as the description of the carbon dioxide recovery method (the carbon dioxide recovery method having the steps (A) and (B)) except that the above limitation is applied. Is. Therefore, further detailed description of the carbon dioxide recovery method (M2) will be omitted.
<<二酸化炭素の吸収方法>>
 本発明の一実施形態に係る二酸化炭素の吸収方法は、下記一般式(1)
<< Carbon dioxide absorption method >>
The method for absorbing carbon dioxide according to an embodiment of the present invention is described in the following general formula (1).
Figure JPOXMLDOC01-appb-C000030
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物(すなわち化合物(1))を含有する二酸化炭素吸収放出剤に、二酸化炭素を吸収させる工程(a)を有する(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の吸収方法を除く)。
Figure JPOXMLDOC01-appb-C000030
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
The carbon dioxide absorbing / releasing agent containing the compound represented by (that is, the compound (1)) has a step (a) of absorbing carbon dioxide (where m is 0, p 1 is 2 and p. Except for the method of absorbing carbon dioxide when the two amino groups marked with 1 are arranged at the meta positions of each other).
 本実施形態における工程(a)は、上述の本発明の一実施形態に係る二酸化炭素の回収方法における工程(A)と同じである。したがって、ここでは、工程(a)の詳細な説明を省略する。 The step (a) in the present embodiment is the same as the step (A) in the carbon dioxide recovery method according to the above-described embodiment of the present invention. Therefore, the detailed description of the step (a) will be omitted here.
 本実施形態の二酸化炭素の吸収方法でも、上述の本発明の一実施形態に係る二酸化炭素吸収放出剤を用いる。したがって、前記吸収方法には、一般式(1)において、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物を含有する二酸化炭素吸収放出剤を用いるものは含まれない。
 本実施形態の二酸化炭素の吸収方法によれば、前記二酸化炭素吸収放出剤を用いることで、二酸化炭素を容易に吸収できる。
Also in the method for absorbing carbon dioxide of the present embodiment, the carbon dioxide absorbing / releasing agent according to the above-described embodiment of the present invention is used. Therefore, in the above absorption method, in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Does not include those using a carbon dioxide absorbing / releasing agent containing.
According to the method for absorbing carbon dioxide of the present embodiment, carbon dioxide can be easily absorbed by using the carbon dioxide absorbing / releasing agent.
 本実施形態の二酸化炭素の吸収方法は、本発明の効果を損なわない範囲で、工程(a)に該当しない、他の工程を有していてもよい。
 前記他の工程の種類及び数と、前記他の工程を行うタイミングは、目的に応じて任意に選択でき、特に限定されない。
The method for absorbing carbon dioxide of the present embodiment may have other steps that do not correspond to step (a) as long as the effects of the present invention are not impaired.
The type and number of the other steps and the timing of performing the other steps can be arbitrarily selected according to the purpose and are not particularly limited.
<<二酸化炭素の吸収方法(α1)>>
 本発明の一実施形態に係る二酸化炭素の吸収方法の一例としては、下記一般式(1)
<< Carbon dioxide absorption method (α1) >>
As an example of the method for absorbing carbon dioxide according to the embodiment of the present invention, the following general formula (1)
Figure JPOXMLDOC01-appb-C000031
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物(すなわち化合物(1))を含有する液状の二酸化炭素吸収放出剤に、二酸化炭素を吸収させることで、前記一般式(1)で表される化合物と、前記二酸化炭素と、の反応物を、前記液状の二酸化炭素吸収放出剤中で析出させる工程(a1)を有する、二酸化炭素の吸収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の吸収方法を除く)(本明細書においては、「二酸化炭素の吸収方法(α1)」と称することがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000031
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
By allowing a liquid carbon dioxide absorbing / releasing agent containing the compound represented by (that is, compound (1)) to absorb carbon dioxide, the compound represented by the general formula (1), the carbon dioxide, and the carbon dioxide A method for absorbing carbon dioxide (where m is 0, p 1 is 2 and p 1 is attached), which comprises a step (a1) of precipitating the reaction product of the above in the liquid carbon dioxide absorbing / releasing agent. Except for the method of absorbing carbon dioxide when the two amino groups are arranged at the meta positions of each other) (in the present specification, it may be referred to as "method of absorbing carbon dioxide (α1)"). Can be mentioned.
 二酸化炭素の吸収方法(α1)における工程(a1)は、先に説明した二酸化炭素の回収方法(M1)における工程(A1)と同じである。
 また、前記工程(a1)は、先に説明した二酸化炭素の回収方法の前記工程(A)において、二酸化炭素吸収放出剤を液状であるものに限定し、化合物(1)と二酸化炭素との反応物を、液状の二酸化炭素吸収放出剤中で析出するものに限定した工程である。
 また、前記工程(a1)は、先に説明した二酸化炭素の吸収方法の前記工程(a)において、二酸化炭素吸収放出剤を液状であるものに限定し、化合物(1)と二酸化炭素との反応物を、液状の二酸化炭素吸収放出剤中で析出するものに限定した工程である。
 したがって、ここでは、工程(a1)の詳細な説明を省略する。
The step (a1) in the carbon dioxide absorption method (α1) is the same as the step (A1) in the carbon dioxide recovery method (M1) described above.
Further, in the step (a1), in the step (A) of the carbon dioxide recovery method described above, the carbon dioxide absorbing / releasing agent is limited to a liquid one, and the reaction between the compound (1) and carbon dioxide. This is a process limited to those that precipitate in a liquid carbon dioxide absorbing / releasing agent.
Further, in the step (a1), in the step (a) of the carbon dioxide absorption method described above, the carbon dioxide absorption / release agent is limited to a liquid one, and the reaction between the compound (1) and carbon dioxide. This is a process limited to those that precipitate in a liquid carbon dioxide absorbing / releasing agent.
Therefore, the detailed description of the step (a1) will be omitted here.
 二酸化炭素の吸収方法(α1)においては、二酸化炭素の回収方法(M1)の場合と同様に、前記工程(a1)を行い、化合物(1)と二酸化炭素との反応物を、液状の二酸化炭素吸収放出剤中で析出させる(液状の二酸化炭素吸収放出剤を懸濁液とする)ことにより、さらなる化合物(1)と二酸化炭素との反応が促進され、二酸化炭素吸収放出剤の二酸化炭素の吸収が促進される。 In the carbon dioxide absorption method (α1), the above step (a1) is performed in the same manner as in the case of the carbon dioxide recovery method (M1), and the reaction product of the compound (1) and carbon dioxide is converted into liquid carbon dioxide. Precipitation in the absorption / release agent (using a liquid carbon dioxide absorption / release agent as a suspension) promotes the reaction between the compound (1) and carbon dioxide, and the carbon dioxide absorption / release agent absorbs carbon dioxide. Is promoted.
 二酸化炭素の吸収方法(α1)により、前記反応物を前記液状の二酸化炭素吸収放出剤中で析出させた後は、前記液状の二酸化炭素吸収放出剤から前記反応物を容易に取り出すことができる。このように前記反応物を取り出すことで、例えば、前記反応物を安定して保管できる。 After the reaction product is precipitated in the liquid carbon dioxide absorption / release agent by the carbon dioxide absorption method (α1), the reaction product can be easily taken out from the liquid carbon dioxide absorption / release agent. By taking out the reactant in this way, for example, the reactant can be stably stored.
 液状の二酸化炭素吸収放出剤中で析出している前記反応物は、ろ過等の公知の固液分離方法を適用することで、二酸化炭素吸収放出剤から取り出せる。
 取り出した後の前記反応物は、必要に応じて、公知の方法で、1回又は2回以上洗浄してもよい。
 取り出した後の前記反応物、又は洗浄後の前記反応物は、公知の方法で乾燥させることができる。
The reaction product precipitated in the liquid carbon dioxide absorption / release agent can be taken out from the carbon dioxide absorption / release agent by applying a known solid-liquid separation method such as filtration.
After taking out, the reaction product may be washed once or twice or more by a known method, if necessary.
The reaction product after being taken out or the reaction product after washing can be dried by a known method.
 二酸化炭素の吸収方法(α1)の説明は、上述の限定を有する点以外は、前記二酸化炭素の吸収方法(前記工程(a)を有する二酸化炭素の吸収方法)の説明と同じである。したがって、二酸化炭素の吸収方法(α1)については、これ以上の詳細な説明を省略する。 The description of the carbon dioxide absorption method (α1) is the same as the description of the carbon dioxide absorption method (carbon dioxide absorption method having the step (a)) except that it has the above-mentioned limitation. Therefore, further detailed description of the carbon dioxide absorption method (α1) will be omitted.
<<二酸化炭素の放出方法>>
 本発明の一実施形態に係る二酸化炭素の放出方法は、下記一般式(1)
<< Carbon dioxide release method >>
The method for releasing carbon dioxide according to an embodiment of the present invention is described in the following general formula (1).
Figure JPOXMLDOC01-appb-C000032
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物(すなわち化合物(1))と、二酸化炭素と、の反応物を含有する二酸化炭素放出剤を、加熱処理することにより、前記二酸化炭素放出剤から前記二酸化炭素を放出させる工程(b)を有する。
Figure JPOXMLDOC01-appb-C000032
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
A step of releasing the carbon dioxide from the carbon dioxide emitting agent by heat-treating the carbon dioxide releasing agent containing a reaction product of the compound represented by (that is, the compound (1)) and carbon dioxide (that is, the compound (1)). b).
 本実施形態において、上述の化合物(1)と、二酸化炭素と、の反応物としては、先の説明のとおり、例えば、化合物(1)中の、シクロアルキル環骨格を構成している炭素原子に直接結合しているアミノ基と、二酸化炭素と、の反応物が挙げられる。ただし、上述の二酸化炭素吸収放出剤、二酸化炭素の回収方法、及び二酸化炭素の吸収方法の場合とは異なり、本実施形態の二酸化炭素の放出方法では、前記反応物として、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物(1)を用いるものは排除されない。すなわち、本実施形態の二酸化炭素の放出方法において、前記二酸化炭素放出剤が含有する前記反応物には、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物(1)と、二酸化炭素と、の反応物が含まれ得る。
 より具体的には、前記反応物としては、例えば、下記一般式(2)
In the present embodiment, the reaction product of the above-mentioned compound (1) and carbon dioxide is, for example, the carbon atom constituting the cycloalkyl ring skeleton in the compound (1) as described above. Examples thereof include a reaction product of a directly bonded amino group and carbon dioxide. However, unlike the above-mentioned carbon dioxide absorption / release agent, carbon dioxide recovery method, and carbon dioxide absorption method, in the carbon dioxide release method of the present embodiment, m is 0 as the reactant. Those using compound (1) in the case where p 1 is 2 and two (p 1 ) amino groups are arranged at the meta positions of each other are not excluded. That is, in the method for releasing carbon dioxide of the present embodiment, the reaction product contained in the carbon dioxide releasing agent has m of 0, p1 of 2 , and 2 (p1) amino groups. Can include a reactant of compound (1) and carbon dioxide when they are located in meta positions with each other.
More specifically, the reactants include, for example, the following general formula (2).
Figure JPOXMLDOC01-appb-C000033
 (式中、R、R、p、p、q、q及びmは、上記と同じであり;X及びXは、それぞれ独立に、水素原子又はカルボキシ基であり、pが2である場合には、2個のXは、互いに同一でも異なっていてもよく、pが2である場合には、2個のXは、互いに同一でも異なっていてもよく、ただし、mが0である場合には、1個又は2個のXは、カルボキシ基であり、mが1である場合には、1個又は2個のX及び1個又は2個のXのうちの、1個又は2個以上は、カルボキシ基であり;X又はXがカルボキシ基である場合には、式「-NHCOOH」で表される基は、式「-NHCOO」で表される基、及び式「-NH COO」で表される基のいずれかであってもよい。)
で表される化合物(本明細書においては、「化合物(2)」と称することがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000033
(In the formula, R 1 , R 2 , p 1 , p 2 , q 1 , q 2 and m are the same as above; X 1 and X 2 are independently hydrogen atoms or carboxy groups, respectively. If p 1 is 2, the two X 1s may be the same or different from each other, and if p 2 is 2, the two X 2s may be the same or different from each other. Well, however, if m is 0, then one or two X1s are carboxy groups, and if m is 1, then one or two X1s and one or two. Of the X 2 , one or more are carboxy groups; when X 1 or X 2 is a carboxy group, the group represented by the formula "-NHCOOH" is of the formula "-". It may be either a group represented by " NHCOO- " or a group represented by the formula "-NH 2 + COO- ").
(In the present specification, it may be referred to as "compound (2)").
 一般式(2)中、R、R、p、p、q、q及びmは、一般式(1)中のR、R、p、p、q、q及びmと同じである。
 pが2である場合には、2個のXは、互いに同一でも異なっていてもよく、pが2である場合には、2個のXは、互いに同一でも異なっていてもよい。
In the general formula (2), R 1 , R 2 , p 1 , p 2 , q 1 , q 2 and m are R 1 , R 2 , p 1 , p 2 , q 1 and m in the general formula (1). Same as q 2 and m.
When p 1 is 2, the two X 1s may be the same or different from each other, and when p 2 is 2, the two X 2s may be the same or different from each other. good.
 一般式(2)中、X及びXは、それぞれ独立に、水素原子又はカルボキシ基(-C(=O)-OH)である。すなわち、X及びXは、互いに同一であってもよいし、異なっていてもよい。 In the general formula (2), X 1 and X 2 are independently hydrogen atoms or carboxy groups (-C (= O) -OH). That is, X 1 and X 2 may be the same as each other or may be different from each other.
 Xがカルボキシ基である場合には、式「-NHX」すなわち式「-NHCOOH」で表される基は、式「-NHCOO」で表される基であってもよいし、式「-NH COO」で表される基であってもよい。
 同様に、Xがカルボキシ基である場合には、式「-NHX」すなわち式「-NHCOOH」で表される基は、式「-NHCOO」で表される基であってもよいし、式「-NH COO」で表される基であってもよい。
When X 1 is a carboxy group, the group represented by the formula "-NHX 1 ", that is, the formula " -NHCOOH " may be a group represented by the formula "-NHCOO-" or the formula "-NHCOO-". -It may be a group represented by "NH 2 + COO- ".
Similarly, when X 2 is a carboxy group, the group represented by the formula "-NHX 2 ", that is, the formula " -NHCOOH " may be the group represented by the formula "-NHCOO-". , May be a group represented by the formula "-NH 2 + COO- ".
 ただし、化合物(2)は、シクロヘキサン環骨格を構成している炭素原子に直接結合しているカルボキシアミノ基(-NHCOOH)、式「-NHCOO」で表される基、又は式「-NH COO」で表される基を、1個又は2個以上有する。
 より具体的には、一般式(2)中、mが0である場合には、1個又は2個のXは、カルボキシ基(-C(=O)-OH)又はカルボキシラートアニオン(-C(=O)-O)である。mが1である場合には、符号pが付されている(すなわち1個又は2個の)Xと、符号pが付されている(すなわち1個又は2個の)Xと、の合計で2~4個のX又はXのうち、1個又は2個以上は、カルボキシ基又はカルボキシラートアニオンである。
However, the compound (2) is a carboxyamino group (-NHCOOH) directly bonded to the carbon atom constituting the cyclohexane ring skeleton, a group represented by the formula "-NHCOO-" , or a group represented by the formula "-NH 2 ". It has one or two or more groups represented by " + COO- ".
More specifically, in the general formula (2), when m is 0, one or two X1s are a carboxy group (-C (= O) -OH) or a carboxylate anion (-). C (= O) -O- ). When m is 1, X 1 with the code p 1 (ie, one or two) and X 2 with the code p 2 (ie, one or two). Of the total of 2 to 4 X 1s or X 2s , one or more are carboxy groups or carboxylate anions.
 mが0の場合の化合物(1)と、二酸化炭素と、の反応物は、例えば、下記一般式(2A)で表される(本明細書においては、この化合物を「化合物(2A)」と称することがある)。
 mが1の場合の化合物(1)と、二酸化炭素と、の反応物は、下記一般式(2B)で表される(本明細書においては、この化合物を「化合物(2B)」と称することがある)。
The reaction product of the compound (1) and carbon dioxide when m is 0 is represented by, for example, the following general formula (2A) (in the present specification, this compound is referred to as “compound (2A)”. May be referred to).
The reaction product of the compound (1) and carbon dioxide when m is 1 is represented by the following general formula (2B) (in the present specification, this compound is referred to as “compound (2B)”. There is).
Figure JPOXMLDOC01-appb-C000034
 (式中、R、R、p、p、q、q、X及びXは、上記と同じである。)
Figure JPOXMLDOC01-appb-C000034
(In the formula, R 1 , R 2 , p 1 , p 2 , q 1 , q 2 , X 1 and X 2 are the same as above.)
 一般式(2A)又は(2B)中、R、R、p、p、q、q、X及びXは、一般式(2)中のR、R、p、p、q、q、X及びXと同じである。
 したがって、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよい。また、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のR(置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のR(置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよい。また、pが2である場合には、2個のXは、互いに同一でも異なっていてもよく、pが2である場合には、2個のXは、互いに同一でも異なっていてもよい。そして、一般式(2A)中、1個又は2個のXは、カルボキシ基であり、一般式(2B)中、1個又は2個のX及び1個又は2個のXのうちの、1個又は2個以上は、カルボキシ基である。そして、X又はXがカルボキシ基である場合には、式「-NHCOOH」で表される基は、式「-NHCOO」で表される基、及び式「-NH COO」で表される基のいずれかであってもよい。
In the general formula (2A) or (2B), R 1 , R 2 , p 1 , p 2, p 2 , q 1 , q 2 , X 1 and X 2 are R 1 , R 2 , p in the general formula (2). Same as 1 , p 2 , q 1 , q 2 , X 1 and X 2 .
Therefore, when q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other, and when q 2 is an integer of 2 or more, two or more R 2s may be different from each other. May be the same or different from each other. Further, when q 1 is an integer of 2 or more and 2 or more R 1s are the alkyl groups which may have a substituent, the two or more R 1s (substituents are used). The alkyl group) may be bonded to each other to form a ring, q 2 is an integer of 2 or more, and R 2 of 2 or more has a substituent. In the case of the above-mentioned alkyl group, the two or more R2 (the above-mentioned alkyl group which may have a substituent) may be bonded to each other to form a ring. Further, when p 1 is 2, the two X 1s may be the same or different from each other, and when p 2 is 2, the two X 2s may be the same or different from each other. You may. Then, in the general formula (2A), one or two X 1s are carboxy groups, and in the general formula (2B), one or two X 1s and one or two X 2s . One or more of the above are carboxy groups. When X 1 or X 2 is a carboxy group, the group represented by the formula " -NHCOOH " is a group represented by the formula "-NHCOO-" and the formula "-NH 2 + COO- ". It may be any of the groups represented by.
 先に説明した化合物(11A)と、二酸化炭素と、の反応物は、例えば、下記一般式(21A)で表される(本明細書においては、この化合物を「化合物(21A)」と称することがある)。
 先に説明した化合物(12A)と、二酸化炭素と、の反応物は、例えば、下記一般式(22A)で表される(本明細書においては、この化合物を「化合物(22A)」と称することがある)。
 先に説明した化合物(11B)と、二酸化炭素と、の反応物は、下記一般式(21B)で表される。(本明細書においては、この化合物を「化合物(21B)」と称することがある)。
The reaction product of the compound (11A) described above and carbon dioxide is represented by, for example, the following general formula (21A) (in the present specification, this compound is referred to as "compound (21A)". There is).
The reaction product of the compound (12A) and carbon dioxide described above is represented by, for example, the following general formula (22A) (in the present specification, this compound is referred to as “compound (22A)”. There is).
The reaction product of the compound (11B) described above and carbon dioxide is represented by the following general formula (21B). (In the present specification, this compound may be referred to as "compound (21B)").
Figure JPOXMLDOC01-appb-C000035
 (式中、R11、R12、R13、R21、q11、q12、q13、q21、X及びXは、上記と同じである。)
Figure JPOXMLDOC01-appb-C000035
(In the formula, R 11 , R 12 , R 13 , R 21 , q 11 , q 12 , q 13 , q 21 , X 1 and X 2 are the same as above.)
 一般式(21A)、(22A)又は(21B)中、R11、R12、R13、R21、q11、q12、q13及びq21は、一般式(11A)、(12A)又は(11B)中のR11、R12、R13、R21、q11、q12、q13及びq21と同じである。
 一般式(21A)、(22A)又は(21B)中、X及びXは、一般式(2)中のX及びXと同じである。
 したがって、q11が2以上の整数である場合には、2個以上のR11は互いに同一でも異なっていてもよく、q12が2以上の整数である場合には、2個以上のR12は互いに同一でも異なっていてもよい。また、q11が2以上の整数であり、かつ、2個以上のR11が置換基を有していてもよい前記アルキル基である場合には、前記2個以上のR11(置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよく、q12が2以上の整数であり、かつ、2個以上のR12が置換基を有していてもよい前記アルキル基である場合には、前記2個以上のR12(置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよい。また、q13が2以上の整数である場合には、2個以上のR13は互いに同一でも異なっていてもよく、q21が2以上の整数である場合には、2個以上のR21は互いに同一でも異なっていてもよい。また、q13が2以上の整数であり、かつ、2個以上のR13が置換基を有していてもよい前記アルキル基である場合には、前記2個以上のR13(置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよく、q21が2以上の整数であり、かつ、2個以上のR21が置換基を有していてもよい前記アルキル基である場合には、前記2個以上のR21(置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよい。
In the general formula (21A), (22A) or (21B), R 11 , R 12 , R 13 , R 21 , q 11 , q 12 , q 13 and q 21 are the general formulas (11A), (12A) or It is the same as R 11 , R 12 , R 13 , R 21 , q 11 , q 12 , q 13 and q 21 in (11B).
In the general formula (21A), (22A) or (21B), X 1 and X 2 are the same as X 1 and X 2 in the general formula (2).
Therefore, if q 11 is an integer of 2 or more, the two or more R 11s may be the same or different from each other, and if q 12 is an integer of 2 or more, the two or more R 12s may be the same or different. May be the same or different from each other. Further, when q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have a substituent, the two or more R 11s (substituents are used). The alkyl group) may be bonded to each other to form a ring, q 12 is an integer of 2 or more, and R 12 of 2 or more has a substituent. In the case of the above-mentioned alkyl group, the two or more R 12s (the above-mentioned alkyl group which may have a substituent) may be bonded to each other to form a ring. Further, when q 13 is an integer of 2 or more, two or more R 13s may be the same or different from each other, and when q 21 is an integer of 2 or more, two or more R 21s may be different from each other. May be the same or different from each other. Further, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have a substituent, the two or more R 13 (substituents are used). The alkyl group) may be bonded to each other to form a ring, q 21 is an integer of 2 or more, and 2 or more R 21 have a substituent. In the case of the above-mentioned alkyl group, the two or more R 21s (the above-mentioned alkyl group which may have a substituent) may be bonded to each other to form a ring.
 先に説明した化合物(111A)と、二酸化炭素と、の反応物は、例えば、下記一般式(211A)で表される(本明細書においては、この化合物を「化合物(211A)」と称することがある)。
 先に説明した化合物(121A)と、二酸化炭素と、の反応物は、例えば、下記一般式(221A)で表される(本明細書においては、この化合物を「化合物(221A)」と称することがある)。
 先に説明した化合物(122A)と、二酸化炭素と、の反応物は、例えば、下記一般式(222A)で表される(本明細書においては、この化合物を「化合物(222A)」と称することがある)。
 先に説明した化合物(111B)と、二酸化炭素と、の反応物は、例えば、下記一般式(211B)で表される(本明細書においては、この化合物を「化合物(211B)」と称することがある)。
The reaction product of the compound (111A) and carbon dioxide described above is represented by, for example, the following general formula (211A) (in the present specification, this compound is referred to as “compound (211A)”. There is).
The reaction product of the compound (121A) described above and carbon dioxide is represented by, for example, the following general formula (221A) (in the present specification, this compound is referred to as “compound (221A)”. There is).
The reaction product of the compound (122A) and carbon dioxide described above is represented by, for example, the following general formula (222A) (in the present specification, this compound is referred to as “compound (222A)”. There is).
The reaction product of the compound (111B) and carbon dioxide described above is represented by, for example, the following general formula (211B) (in the present specification, this compound is referred to as “compound (211B)”. There is).
Figure JPOXMLDOC01-appb-C000036
 (式中、R111、R121、R122、R131、R211、q111、q121、q122、q131、q211、X及びXは、上記と同じである。)
Figure JPOXMLDOC01-appb-C000036
(In the formula, R 111 , R 121 , R 122 , R 131 , R 211 , q 111 , q 121 , q 122 , q 131 , q 211 , X 1 and X 2 are the same as above.)
 一般式(211A)、(221A)、(222A)又は(211B)中、R111、R121、R122、R131、R211、q111、q121、q122、q131及びq211は、一般式(111A)、(121A)、(122A)又は(111B)中のR111、R121、R122、R131、R211、q111、q121、q122、q131及びq211と同じである。
 一般式(211A)、(221A)、(222A)又は(211B)中、X及びXは、一般式(2)中のX及びXと同じである。
 したがって、q111が2以上の整数である場合には、2個以上のR111は互いに同一でも異なっていてもよく、q121が2以上の整数である場合には、2個以上のR121は互いに同一でも異なっていてもよく、q122が2以上の整数である場合には、2個以上のR122は互いに同一でも異なっていてもよい。また、q111が2以上の整数であり、かつ、2個以上のR111が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR111(前記置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよく、q121が2以上の整数であり、かつ、2個以上のR121が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR121(前記置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよく、q122が2以上の整数であり、かつ、2個以上のR122が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR122(前記置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよい。また、q131が2である場合には、2個のR131は互いに同一でも異なっていてもよく、q211が2である場合には、2個のR211は互いに同一でも異なっていてもよい。また、q131が2であり、かつ、2個のR131が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR131(前記置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよく、q211が2であり、かつ、2個のR211が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR211(前記置換基を有していてもよい前記アルキル基)は相互に結合して環を形成していてもよい。
In the general formulas (211A), (221A), (222A) or (211B), R 111 , R 121 , R 122 , R 131 , R 211 , q 111 , q 121 , q 122 , q 131 and q 211 are Same as R 111 , R 121 , R 122 , R 131 , R 211 , q 111 , q 121 , q 122 , q 131 and q 211 in the general formulas (111A), (121A), (122A) or (111B). Is.
In the general formula (211A), (221A), (222A) or (211B), X 1 and X 2 are the same as X 1 and X 2 in the general formula (2).
Therefore, when q 111 is an integer of 2 or more, two or more R 111s may be the same or different from each other, and when q 121 is an integer of 2 or more, two or more R 121s may be different from each other. May be the same or different from each other, and when q 122 is an integer of 2 or more, two or more R 122s may be the same or different from each other. Further, when q 111 is an integer of 2 or more and the two or more R 111s are the alkyl groups which may have an amino group as the substituent, the two or more R 111s . (The alkyl group which may have the substituent) may be bonded to each other to form a ring, q 121 is an integer of 2 or more, and R 121 of 2 or more is the said. In the case of the alkyl group which may have an amino group as a substituent, the two or more R 121s (the alkyl group which may have the substituent) are bonded to each other and have a ring. In the case where q 122 is an integer of 2 or more and two or more R 122s are the alkyl groups which may have an amino group as the substituent. Two or more R 122s (the alkyl groups which may have the substituents) may be bonded to each other to form a ring. Further, when q 131 is 2, the two R 131s may be the same or different from each other, and when q 211 is 2, the two R 211s may be the same or different from each other. good. Further, when q 131 is 2 and the two R 131s are the alkyl groups which may have an amino group as the substituents, the two R 131s (the substituents are used). The alkyl group (which may have the alkyl group) may be bonded to each other to form a ring, q 211 is 2, and the two R 211s have an amino group as the substituent. In the case of the above-mentioned alkyl group, the two R 211s (the above-mentioned alkyl group which may have the above-mentioned substituent) may be bonded to each other to form a ring.
 本実施形態における工程(b)は、上述の二酸化炭素を吸収後の二酸化炭素吸収放出剤に代えて、前記二酸化炭素放出剤を用いる点以外は、上述の本発明の一実施形態に係る二酸化炭素の回収方法における工程(B)と同じである。そして、本実施形態における二酸化炭素放出剤は、化合物(1)と二酸化炭素との反応物として、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物(1)と、二酸化炭素と、の反応物を含有する可能性がある点以外は、上述の工程(B)における、二酸化炭素を吸収後の二酸化炭素吸収放出剤と同じである。 In the step (b) of the present embodiment, the carbon dioxide according to the above-described embodiment of the present invention is used, except that the carbon dioxide-releasing agent is used instead of the carbon dioxide-absorbing and releasing agent after absorbing the carbon dioxide. It is the same as the step (B) in the recovery method of. The carbon dioxide emitting agent in the present embodiment has m as 0, p 1 as 2, and two (p 1 ) amino groups as a reaction product of compound (1) and carbon dioxide. Carbon dioxide absorption after absorption of carbon dioxide in the above step (B), except that it may contain a reactant of compound (1) and carbon dioxide when it is arranged at the meta position. Same as release agent.
 本実施形態での二酸化炭素放出剤において、二酸化炭素を放出する活性成分は、化合物(1)と二酸化炭素との反応物であり、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物(1)と、二酸化炭素と、の反応物である可能性がある点以外は、上述の工程(B)における、化合物(1)と二酸化炭素との反応物(前記カルバミン酸誘導体)と同じである。 In the carbon dioxide emitting agent of the present embodiment, the active components that release carbon dioxide are a reaction product of compound (1) and carbon dioxide, m is 0, p 1 is 2, and two (2). The compound in the above-mentioned step (B) except that it may be a reaction product of the compound ( 1 ) in the case where the amino groups of p1) are arranged at the meta positions of each other and carbon dioxide. It is the same as the reaction product (the above-mentioned carbamic acid derivative) of (1) and carbon dioxide.
<二酸化炭素放出剤>
 前記二酸化炭素放出剤は、化合物(1)と二酸化炭素との反応物(前記カルバミン酸誘導体)を含有しており、前記反応物のみを含有していてもよい(換言すると、前記反応物からなるものであってもよい)し、前記反応物と、前記反応物以外の成分と、を含有していてもよい。
 例えば、前記反応物と溶媒を含有する液状の前記二酸化炭素放出剤は、二酸化炭素の放出がより容易である点で好ましい。
<Carbon dioxide release agent>
The carbon dioxide-releasing agent contains a reaction product of compound (1) and carbon dioxide (the carbamate derivative), and may contain only the reaction product (in other words, the reaction product consists of the reaction product). It may contain the reactants and components other than the reactants.
For example, the liquid carbon dioxide emitting agent containing the reaction product and the solvent is preferable in that carbon dioxide is released more easily.
 液状の前記二酸化炭素放出剤としては、例えば、上述の二酸化炭素を吸収後の液状の前記二酸化炭素吸収放出剤と同じものが挙げられる。ただし、前記放出方法には、一般式(1)において、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物を含有する二酸化炭素放出剤を用いるものも含まれる。 Examples of the liquid carbon dioxide releasing agent include the same as the liquid carbon dioxide absorbing / releasing agent after absorbing the carbon dioxide described above. However, in the above-mentioned release method, in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Also included are those using a carbon dioxide emitting agent containing.
 二酸化炭素放出剤は、本発明の効果を損なわない範囲で、前記カルバミン酸誘導体と、前記溶媒と、前記塩基触媒と、前記酸と、のいずれにも該当しない他の成分を含有していてもよい。
 前記他の成分は、目的に応じ任意に選択でき、特に限定されない。
Even if the carbon dioxide emitting agent contains the carbamic acid derivative, the solvent, the base catalyst, and other components that do not correspond to any of the acids, as long as the effects of the present invention are not impaired. good.
The other components can be arbitrarily selected depending on the intended purpose, and are not particularly limited.
 二酸化炭素放出剤が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。 The other components contained in the carbon dioxide emitting agent may be only one kind, two or more kinds, and when two or more kinds, the combination and the ratio thereof depend on the purpose. It can be selected arbitrarily.
 前記二酸化炭素放出剤(二酸化炭素の放出を開始する前の二酸化炭素放出剤)において、二酸化炭素放出剤の総質量(質量部)に対する、前記他の成分の含有量(質量部)の割合は、特に限定されないが、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。溶媒の含有の有無によらず、前記割合が前記上限値以下であることで、二酸化炭素放出剤が二酸化炭素を放出する能力が、より高くなる。
 換言すると、前記二酸化炭素放出剤(二酸化炭素の放出を開始する前の二酸化炭素放出剤)において、二酸化炭素放出剤の総質量(質量部)に対する、前記カルバミン酸誘導体及び溶媒の合計含有量(質量部)の割合は、特に限定されないが、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、99質量%以上であることが特に好ましい。
In the carbon dioxide releasing agent (carbon dioxide releasing agent before starting the emission of carbon dioxide), the ratio of the content (parts by mass) of the other components to the total mass (parts by mass) of the carbon dioxide releasing agent is. Although not particularly limited, it is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably 1% by mass or less. When the ratio is equal to or less than the upper limit value regardless of the presence or absence of the solvent, the carbon dioxide emitting agent has a higher ability to release carbon dioxide.
In other words, in the carbon dioxide releasing agent (carbon dioxide releasing agent before starting the emission of carbon dioxide), the total content (mass) of the carbamate derivative and the solvent with respect to the total mass (parts by mass) of the carbon dioxide releasing agent. Part) is not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 97% by mass or more, and 99% by mass or more. Is particularly preferable.
 本実施形態の二酸化炭素の放出方法によれば、前記二酸化炭素放出剤を用いることで、二酸化炭素を容易に放出できる。 According to the method for releasing carbon dioxide of the present embodiment, carbon dioxide can be easily released by using the carbon dioxide releasing agent.
 ここまでに説明した点を除けば、本実施形態における工程(b)は、上述の本発明の一実施形態に係る二酸化炭素の回収方法における工程(B)と同じである。したがって、ここでは、これ以上の工程(b)の詳細な説明を省略する。 Except for the points described so far, the step (b) in the present embodiment is the same as the step (B) in the carbon dioxide recovery method according to the above-described embodiment of the present invention. Therefore, further detailed description of the step (b) will be omitted here.
 前記二酸化炭素放出剤は、例えば、上述の本発明の一実施形態に係る二酸化炭素の吸収方法によって、二酸化炭素吸収放出剤に、二酸化炭素を吸収させることで、製造できる。そして、この場合には、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物(1)を含有する二酸化炭素放出剤を用いてもよい。
 また、前記二酸化炭素放出剤は、例えば、前記カルバミン酸誘導体を、別の方法で製造し、必要に応じて、前記カルバミン酸誘導体と、それ以外の成分(溶媒又は前記他の成分)と、を混合することでも、製造できる。
The carbon dioxide releasing agent can be produced, for example, by causing the carbon dioxide absorbing / releasing agent to absorb carbon dioxide by the method for absorbing carbon dioxide according to the embodiment of the present invention described above. Then, in this case, carbon dioxide containing the compound (1) in the case where m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. A release agent may be used.
Further, the carbon dioxide emitting agent can be used, for example, by producing the carbamic acid derivative by another method, and if necessary, using the carbamic acid derivative and other components (solvent or the other component). It can also be manufactured by mixing.
 本実施形態の二酸化炭素の放出方法は、本発明の効果を損なわない範囲で、工程(b)に該当しない、他の工程を有していてもよい。
 前記他の工程の種類及び数と、前記他の工程を行うタイミングは、目的に応じて任意に選択でき、特に限定されない。
The method for releasing carbon dioxide of the present embodiment may have other steps that do not correspond to step (b) as long as the effects of the present invention are not impaired.
The type and number of the other steps and the timing of performing the other steps can be arbitrarily selected according to the purpose and are not particularly limited.
<<二酸化炭素の放出方法(β1)>>
 本発明の一実施形態に係る二酸化炭素の放出方法の一例としては、下記一般式(1)
<< Carbon dioxide release method (β1) >>
As an example of the method for releasing carbon dioxide according to the embodiment of the present invention, the following general formula (1)
Figure JPOXMLDOC01-appb-C000037
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物(すなわち化合物(1))と、二酸化炭素と、の反応物を含有し、前記反応物が析出している液状の二酸化炭素放出剤を、加熱処理することにより、前記液状の二酸化炭素放出剤から前記二酸化炭素を放出させる工程(b1)を有する、二酸化炭素の放出方法(本明細書においては、「二酸化炭素の放出方法(β1)」と称することがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000037
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
By heat-treating a liquid carbon dioxide-releasing agent containing a reaction product of the compound represented by (that is, compound (1)) and carbon dioxide and in which the reaction product is precipitated, the liquid carbon dioxide release agent is formed. Examples thereof include a method for releasing carbon dioxide (in the present specification, it may be referred to as “method for releasing carbon dioxide (β1)”), which comprises a step (b1) for releasing the carbon dioxide from the carbon dioxide emitting agent.
 前記二酸化炭素の放出方法(β1)における前記工程(b1)は、先に説明した二酸化炭素の放出方法の前記工程(b)において、加熱処理の対象である、二酸化炭素を吸収後の二酸化炭素放出剤を、液状であり、かつ、化合物(1)と二酸化炭素との反応物が析出しているものに限定した工程である。すなわち、工程(b1)を行うためには、先に説明した二酸化炭素の放出方法における前記工程(b)を、上述の限定を反映させて行えばよい。 The step (b1) in the carbon dioxide release method (β1) is the carbon dioxide release after absorbing carbon dioxide, which is the target of the heat treatment in the step (b) of the carbon dioxide release method described above. This is a step in which the agent is limited to a liquid and a reaction product of the compound (1) and carbon dioxide is precipitated. That is, in order to carry out the step (b1), the step (b) in the carbon dioxide emission method described above may be carried out reflecting the above-mentioned limitation.
 前記工程(b1)で用いる、前記反応物が析出している液状の二酸化炭素放出剤としては、例えば、上述の二酸化炭素の吸収方法(α1)によって得られた、二酸化炭素を吸収後の、前記反応物が析出している液状の二酸化炭素吸収放出剤と同じものが挙げられる。
 このような二酸化炭素放出剤を用いた場合には、前記二酸化炭素の放出方法(β1)によって、より高い効率で、二酸化炭素を放出させることができる。
The liquid carbon dioxide emitting agent in which the reactant is precipitated used in the step (b1) is, for example, the above-mentioned after absorbing carbon dioxide obtained by the above-mentioned carbon dioxide absorption method (α1). The same as the liquid carbon dioxide absorption / release agent in which the reaction product is precipitated can be mentioned.
When such a carbon dioxide emitting agent is used, carbon dioxide can be released with higher efficiency by the carbon dioxide releasing method (β1).
 また、前記工程(b1)で用いる、前記反応物が析出している液状の二酸化炭素放出剤としては、例えば、上述の二酸化炭素の吸収方法(α1)によって、二酸化炭素吸収放出剤に、二酸化炭素を吸収させることで、化合物(1)と二酸化炭素との反応物を、液状の二酸化炭素吸収放出剤中で析出させた後、液状の二酸化炭素吸収放出剤から前記反応物を取り出し、必要に応じて、取り出した後の前記反応物を1回又は2回以上洗浄し、必要に応じて、取り出した後の前記反応物、又は洗浄後の前記反応物を乾燥させ、必要に応じて、取り出した後の前記反応物、洗浄後の前記反応物、又は乾燥後の前記反応物を保管した後、前記反応物(前記カルバミン酸誘導体)と、前記溶媒と、必要に応じてこれら以外の成分(前記他の成分)と、を混合することで得られたものも挙げられる。
 このような二酸化炭素放出剤を用いた場合には、液状の二酸化炭素吸収放出剤から前記反応物を取り出していることにより、工程(b1)の条件を幅広い範囲で調節できる。さらに、より高い効率で、二酸化炭素を放出させることができる。
Further, as the liquid carbon dioxide-releasing agent in which the reactant is precipitated, which is used in the step (b1), for example, by the above-mentioned carbon dioxide absorption method (α1), carbon dioxide is added to the carbon dioxide-absorbing and releasing agent. By absorbing the above, the reaction product of compound (1) and carbon dioxide is precipitated in the liquid carbon dioxide absorption / release agent, and then the reaction product is taken out from the liquid carbon dioxide absorption / release agent, if necessary. The reaction product after removal was washed once or twice or more, and if necessary, the reaction product after removal or the reaction product after washing was dried and taken out as necessary. After storing the later reaction product, the washed reaction product, or the dried reaction product, the reaction product (the carbamate derivative), the solvent, and, if necessary, other components (the above-mentioned). Other components) and those obtained by mixing with each other can also be mentioned.
When such a carbon dioxide release agent is used, the conditions of the step (b1) can be adjusted in a wide range by extracting the reaction product from the liquid carbon dioxide absorption / release agent. In addition, carbon dioxide can be released with higher efficiency.
 また、前記工程(b1)で用いる、前記反応物が析出している液状の二酸化炭素放出剤としては、例えば、前記反応物(換言すると、前記カルバミン酸誘導体)を、別の方法で製造し、得られた前記反応物(前記カルバミン酸誘導体)と、前記溶媒と、必要に応じてこれら以外の成分(前記他の成分)と、を混合することで得られたものも挙げられる。
 このような二酸化炭素放出剤を用いた場合にも、一度取り出した前記反応物を用いることにより、工程(b1)の条件を幅広い範囲で調節できる。さらに、より高い効率で、二酸化炭素を放出させることができる。
Further, as the liquid carbon dioxide release agent in which the reactant is precipitated, which is used in the step (b1), for example, the reactant (in other words, the carbamic acid derivative) is produced by another method. Examples thereof include those obtained by mixing the obtained reaction product (the carbamic acid derivative), the solvent, and, if necessary, components other than these (the other components).
Even when such a carbon dioxide emitting agent is used, the conditions of the step (b1) can be adjusted in a wide range by using the reaction product once taken out. In addition, carbon dioxide can be released with higher efficiency.
 ただし、前記反応物が析出している液状の二酸化炭素放出剤として、どのようなものを用いる場合であっても、二酸化炭素の放出方法(β1)には、一般式(1)において、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物(1)と、二酸化炭素と、の反応物を含有する二酸化炭素放出剤を用いる方法も含まれる。 However, no matter what kind of liquid carbon dioxide emitting agent is used as the liquid carbon dioxide emitting agent in which the reactant is precipitated, m is used in the general formula (1) as the carbon dioxide releasing method (β1). Carbon dioxide containing a reaction product of compound (1) and carbon dioxide when 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Also included is a method using a release agent.
 二酸化炭素の放出方法(β1)の説明は、上述の限定を有する点以外は、前記二酸化炭素の放出方法(前記工程(b)を有する二酸化炭素の放出方法)の説明と同じである。したがって、二酸化炭素の放出方法(β1)については、これ以上の詳細な説明を省略する。 The description of the carbon dioxide release method (β1) is the same as the description of the carbon dioxide release method (carbon dioxide release method having the step (b)) except that it has the above-mentioned limitation. Therefore, further detailed description of the carbon dioxide emission method (β1) will be omitted.
<<二酸化炭素の放出方法(β2)>>
 本発明の一実施形態に係る二酸化炭素の放出方法の他の例としては、下記一般式(1)
<< Carbon dioxide release method (β2) >>
As another example of the method for releasing carbon dioxide according to the embodiment of the present invention, the following general formula (1)
Figure JPOXMLDOC01-appb-C000038
 (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
で表される化合物(すなわち化合物(1))と、二酸化炭素と、の反応物を含有する二酸化炭素放出剤を、塩基触媒の共存下で加熱処理することにより、前記二酸化炭素放出剤から前記二酸化炭素を放出させる工程(b2)を有する、二酸化炭素の放出方法(本明細書においては、「二酸化炭素の放出方法(β2)」と称することがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000038
(In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
By heat-treating a carbon dioxide-releasing agent containing a reaction product of the compound represented by (that is, compound (1)) and carbon dioxide in the coexistence of a base catalyst, the carbon dioxide-releasing agent can be used as the carbon dioxide. Examples thereof include a method for releasing carbon dioxide (in the present specification, it may be referred to as “method for releasing carbon dioxide (β2)”), which comprises a step of releasing carbon (b2).
 前記二酸化炭素の放出方法(β2)における前記工程(b2)は、先に説明した二酸化炭素の放出方法の前記工程(b)において、化合物(1)と二酸化炭素との反応物を含有する二酸化炭素放出剤の加熱処理を、塩基触媒の共存下で行うものに限定した工程である。すなわち、工程(b2)を行うためには、先に説明した二酸化炭素の放出方法における前記工程(b)を、上述の限定を反映させて行えばよい。
 例えば、工程(b2)で用いる塩基触媒は、前記工程(B)で用いる塩基触媒と同じである。
The step (b2) in the carbon dioxide release method (β2) is a carbon dioxide containing a reaction product of the compound (1) and carbon dioxide in the step (b) of the carbon dioxide release method described above. This step is limited to those in which the heat treatment of the release agent is performed in the coexistence of a base catalyst. That is, in order to carry out the step (b2), the step (b) in the carbon dioxide emission method described above may be carried out reflecting the above-mentioned limitation.
For example, the base catalyst used in the step (b2) is the same as the base catalyst used in the step (B).
 前記工程(b2)で用いる、前記塩基触媒の併用対象となる二酸化炭素放出剤としては、例えば、先に説明した二酸化炭素の吸収方法(前記工程(a)を有する二酸化炭素の吸収方法)によって得られた、二酸化炭素を吸収後の二酸化炭素吸収放出剤と同じものが挙げられる。ただし、二酸化炭素の放出方法(β2)には、一般式(1)において、mが0であり、pが2であり、2個(p個)のアミノ基が互いにメタ位に配置されている場合の化合物(1)と、二酸化炭素と、の反応物を含有する二酸化炭素放出剤を用いる方法も含まれる。 As the carbon dioxide emitting agent used in the step (b2) to be used in combination with the base catalyst, for example, it can be obtained by the carbon dioxide absorbing method described above (the carbon dioxide absorbing method having the step (a)). The same as the carbon dioxide absorbing / releasing agent after absorbing carbon dioxide can be mentioned. However, in the carbon dioxide emission method (β2), in the general formula (1), m is 0, p 1 is 2, and two (p 1 ) amino groups are arranged at the meta positions of each other. Also included is a method using a carbon dioxide emitting agent containing a reaction product of the compound (1) and carbon dioxide in the above case.
 二酸化炭素の放出方法(β2)によれば、前記工程(b2)において、前記加熱処理を塩基触媒の共存下で行うことによって、二酸化炭素の放出がより円滑に進行する。 According to the carbon dioxide release method (β2), the carbon dioxide release proceeds more smoothly by performing the heat treatment in the coexistence of a base catalyst in the step (b2).
 二酸化炭素の放出方法(β2)の説明は、上述の限定を有する点以外は、前記二酸化炭素の放出方法(前記工程(b)を有する二酸化炭素の放出方法)の説明と同じである。したがって、二酸化炭素の放出方法(β2)については、これ以上の詳細な説明を省略する。 The description of the carbon dioxide release method (β2) is the same as the description of the carbon dioxide release method (carbon dioxide release method having the step (b)) except that it has the above-mentioned limitation. Therefore, further detailed description of the carbon dioxide emission method (β2) will be omitted.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples shown below.
[実施例1]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンとメタノールを混合することにより、シクロヘキシルアミンの濃度が0.5Mである、シクロヘキシルアミンのメタノール溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 1]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing cyclohexylamine and methanol, a methanol solution of cyclohexylamine having a concentration of cyclohexylamine of 0.5 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 試験管中に、上記で得られたシクロヘキシルアミンのメタノール溶液(2mL)を入れ、試験管の開口部に三方コックを装着した。前記三方コックのガスの流入口から、金属製の細管を試験管の内部に通し、前記細管の、試験管の内部側の端部を、前記メタノール溶液中に配置した。以上により、三方コックのガスの流入口から、前記細管を通して、試験管の内部の前記メタノール溶液中に、試験管の外部からガスを直接流入させるとともに、試験管の内部の気相部分のガスを、三方コックのガスの排出口から、試験管の外部に排出できるように、装置を組み立てた。
<< Absorption of carbon dioxide >>
A methanol solution (2 mL) of cyclohexylamine obtained above was placed in a test tube, and a three-way cock was attached to the opening of the test tube. A metal thin tube was passed through the inside of the test tube from the gas inlet of the three-way cock, and the end of the thin tube on the inner side of the test tube was placed in the methanol solution. As described above, the gas is directly flowed from the outside of the test tube into the methanol solution inside the test tube from the gas inlet of the three-way cock through the thin tube, and the gas in the gas phase part inside the test tube is introduced. , The device was assembled so that it could be discharged to the outside of the test tube from the gas outlet of the three-way cock.
 次いで、室温下で前記装置を用いて、二酸化炭素を1体積%、窒素を99体積%でそれぞれ含む混合ガスを、20mL/min(二酸化炭素が0.54mmol/h)の流量で、試験管の外部から、試験管の内部の前記メタノール溶液中に流入させてバブリングする(工程(a)、工程(a1))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、この排出ガスを、熱伝導度検出器(TCD)を用いたガスクロマトグラフィー(TCD-GC)法により分析し、排出ガス中の二酸化炭素を定量した。そして、二酸化炭素の流入量と排出量から、前記メタノール溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、下記式
 [二酸化炭素の除去効率(%)]=[二酸化炭素の吸収量]/[二酸化炭素の流入量]×100
により、二酸化炭素の除去効率(吸収効率)を算出した。結果を図1に示す。図1には、二酸化炭素の除去効率とともに、二酸化炭素の流入開始時(流入開始から0分後)と、流入開始から60分後の段階での、前記メタノール溶液の撮像データも示している。
Then, using the above device at room temperature, a mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added to the test tube at a flow rate of 20 mL / min (0.54 mmol / h of carbon dioxide). From the outside, the gas inside the test tube is flowed into the methanol solution inside the test tube for bubbling (steps (a) and (a1)), and the gas inside the test tube is discharged from the gas outlet of the three-way cock to the test tube. It was discharged to the outside. Then, this exhaust gas was analyzed by a gas chromatography (TCD-GC) method using a thermal conductivity detector (TCD), and carbon dioxide in the exhaust gas was quantified. Then, the amount of carbon dioxide absorbed by the methanol solution (that is, the carbon dioxide absorbing / releasing agent) is calculated from the amount of carbon dioxide inflow and emission, and the following formula [carbon dioxide removal efficiency (%)] = [carbon dioxide Absorption amount] / [Carbon dioxide inflow amount] x 100
The carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. FIG. 1 shows not only the efficiency of removing carbon dioxide, but also the imaging data of the methanol solution at the start of inflow of carbon dioxide (0 minutes after the start of inflow) and at the stage of 60 minutes after the start of inflow.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 二酸化炭素の流入開始から時間が経過するとともに、前記メタノール溶液中に白色固形物が生じた。このように、前記メタノール溶液は、メタノール懸濁液となった。この白色固形物は、シクロヘキシルアミンと二酸化炭素との反応物(すなわち、N-シクロヘキシルカルバミン酸)であった。二酸化炭素が流入しているときの前記メタノール溶液中の成分と、シクロヘキシルアミンの標品と、前記反応物と、N-シクロヘキシルカルバミン酸の標品と、の重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図2に示す。これらの分析結果から、前記反応物がN-シクロヘキシルカルバミン酸であると同定できた。 As time passed from the start of the inflow of carbon dioxide, a white solid substance was formed in the methanol solution. As described above, the methanol solution became a methanol suspension. This white solid was a reaction product of cyclohexylamine and carbon dioxide (that is, N-cyclohexylcarbamic acid). 13 in heavy water ( D2O) of the components in the methanol solution when carbon dioxide is flowing in, the cyclohexylamine standard, the reactant, and the N-cyclohexylcarbamic acid standard. The analysis result (NMR spectrum) by C-NMR is shown in FIG. From these analysis results, it was possible to identify that the reaction product was N-cyclohexylcarbamic acid.
 二酸化炭素の流入開始から60分後の段階では、前記メタノール溶液はかなり白濁していた。
 図1から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は100%に近く、前記メタノール溶液は高効率で二酸化炭素を吸収していた。そして、時間経過とともに、二酸化炭素と反応可能なシクロヘキシルアミンの量が減少し、二酸化炭素の除去効率が低下していき、二酸化炭素の流入開始から約120分後には、二酸化炭素が除去されなくなった。
 このように、前記メタノール溶液は、二酸化炭素の濃度が比較的高いガスに対して十分な二酸化炭素の吸収能を有することが確認された。
At the stage 60 minutes after the start of the inflow of carbon dioxide, the methanol solution was considerably cloudy.
As is clear from FIG. 1, immediately after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was close to 100%, and the methanol solution absorbed carbon dioxide with high efficiency. Then, with the passage of time, the amount of cyclohexylamine that can react with carbon dioxide decreased, the efficiency of removing carbon dioxide decreased, and about 120 minutes after the start of inflow of carbon dioxide, carbon dioxide was not removed. ..
As described above, it was confirmed that the methanol solution has a sufficient ability to absorb carbon dioxide for a gas having a relatively high concentration of carbon dioxide.
<<二酸化炭素吸収放出剤の製造、二酸化炭素の吸収>>
[実施例2]
 前記混合ガスに代えて、乾燥空気(二酸化炭素を体積基準で約400ppm含む)を用いた点以外は、実施例1の場合と同じ方法で、二酸化炭素吸収放出剤を製造し、二酸化炭素を吸収させた。このときの二酸化炭素の除去効率の算出結果を図3に示す。
<< Manufacturing of carbon dioxide absorption / release agent, absorption of carbon dioxide >>
[Example 2]
A carbon dioxide absorbing / releasing agent is produced by the same method as in Example 1 except that dry air (containing about 400 ppm of carbon dioxide on a volume basis) is used instead of the mixed gas to absorb carbon dioxide. I let you. The calculation result of the carbon dioxide removal efficiency at this time is shown in FIG.
 実施例1の場合と同様に、二酸化炭素の流入開始から時間が経過するとともに、前記メタノール溶液中に白色固形物(シクロヘキシルアミンと二酸化炭素との反応物)が生じ、メタノール懸濁液となった。
 図3から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は100%に近く、前記メタノール溶液は高効率で二酸化炭素を吸収していた。そして、時間経過とともに、二酸化炭素と反応可能なシクロヘキシルアミンの量が減少し、二酸化炭素の除去効率が低下していった。ただし、乾燥空気中の二酸化炭素の濃度が低いため、実施例1の場合よりも、二酸化炭素と反応可能なシクロヘキシルアミンの量の減少速度が遅く、二酸化炭素の除去効率の低下は緩やかであった。
 このように、前記メタノール溶液は、空気に対して十分な二酸化炭素の吸収能を有することが確認された。
 得られた反応物がN-シクロヘキシルカルバミン酸であることは、13C-NMRによる分析で確認した。
As in the case of Example 1, as time passed from the start of the inflow of carbon dioxide, a white solid substance (a reaction product of cyclohexylamine and carbon dioxide) was generated in the methanol solution, and a methanol suspension was formed. ..
As is clear from FIG. 3, immediately after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was close to 100%, and the methanol solution absorbed carbon dioxide with high efficiency. Then, with the passage of time, the amount of cyclohexylamine that can react with carbon dioxide decreased, and the efficiency of removing carbon dioxide decreased. However, since the concentration of carbon dioxide in the dry air was low, the rate of decrease in the amount of cyclohexylamine capable of reacting with carbon dioxide was slower than in the case of Example 1, and the decrease in carbon dioxide removal efficiency was gradual. ..
As described above, it was confirmed that the methanol solution has a sufficient ability to absorb carbon dioxide with respect to air.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was N-cyclohexylcarbamic acid.
 また、実施例1~2の結果から、前記メタノール溶液は、その適用対象のガスとして、二酸化炭素の濃度が幅広いものを選択できることを確認できた。 Further, from the results of Examples 1 and 2, it was confirmed that the methanol solution can be selected from a gas having a wide concentration of carbon dioxide as the gas to be applied.
[実施例3]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとジメチルスルホキシド(DMSO)を混合することにより、イソホロンジアミンの濃度が1Mである、イソホロンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 3]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and dimethyl sulfoxide (DMSO), a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 1 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 試験管中に、上記で得られたイソホロンジアミンのDMSO溶液(15mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、室温下で前記装置を用いて、二酸化炭素を30体積%、窒素を70体積%でそれぞれ含む混合ガスを、20mL/min(二酸化炭素が16mmol/h)の流量で、試験管の外部から、試験管の内部の前記DMSO溶液中に流入させてバブリングする(工程(a)、工程(a1))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、実施例1の場合と同じ方法で、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図4に示す。
<< Absorption of carbon dioxide >>
A DMSO solution (15 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, using the above device at room temperature, a mixed gas containing 30% by volume of carbon dioxide and 70% by volume of nitrogen was added at a flow rate of 20 mL / min (16 mmol / h of carbon dioxide) from the outside of the test tube. , Inflow into the DMSO solution inside the test tube and bubbling (step (a), step (a1)), and at the same time, the gas inside the test tube is discharged from the gas outlet of the three-way cock to the outside of the test tube. It was discharged. Then, the amount of carbon dioxide absorbed by the DMSO solution (that is, the carbon dioxide absorption / release agent) was calculated by the same method as in the case of Example 1, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物(すなわち、(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸)が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図4から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は100%に近く、前記DMSO溶液は高効率で二酸化炭素を吸収していた。二酸化炭素の流入開始から約35分後に、二酸化炭素の除去効率の急激な低下が始まり、二酸化炭素の流入開始から約50分後に、二酸化炭素の除去効率の低下は緩やかとなり、二酸化炭素の流入開始から約100分後には、二酸化炭素が除去されなくなった。
 得られた反応物が(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passes from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide (that is, (3-aminomethyl-3,5,5-trimethylcyclohexyl)) is added to the DMSO solution as a white solid. Carbamic acid) was produced. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 4, immediately after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was close to 100%, and the DMSO solution absorbed carbon dioxide with high efficiency. Approximately 35 minutes after the start of inflow of carbon dioxide, a sharp decrease in carbon dioxide removal efficiency begins, and about 50 minutes after the start of inflow of carbon dioxide, the decrease in carbon dioxide removal efficiency becomes gradual and the inflow of carbon dioxide starts. About 100 minutes after that, carbon dioxide was not removed.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
[実施例4]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとトルエンを混合することにより、イソホロンジアミンの濃度が0.18Mである、イソホロンジアミンのトルエン溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 4]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and toluene, a toluene solution of isophorone diamine having a concentration of isophorone diamine of 0.18 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 試験管中に、上記で得られたイソホロンジアミンのトルエン溶液(3mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、室温下で前記装置を用いて、二酸化炭素を1体積%、窒素を99体積%でそれぞれ含む混合ガスを、20mL/min(二酸化炭素が0.54mmol/h)の流量で、試験管の外部から、試験管の内部の前記トルエン溶液中に流入させてバブリングする(工程(a)、工程(a1))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、実施例1の場合と同じ方法で、前記トルエン溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図5に示す。
<< Absorption of carbon dioxide >>
A toluene solution (3 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, using the above device at room temperature, a mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added to the test tube at a flow rate of 20 mL / min (0.54 mmol / h of carbon dioxide). Along with bubbling by flowing into the toluene solution inside the test tube from the outside (step (a), step (a1)), the gas inside the test tube is discharged from the gas outlet of the three-way cock to the test tube. It was discharged to the outside. Then, the amount of carbon dioxide absorbed by the toluene solution (that is, the carbon dioxide absorption / release agent) was calculated by the same method as in the case of Example 1, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記トルエン溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記トルエン溶液は、トルエン懸濁液となった。
 図5から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は100%に近く、前記トルエン溶液は高効率で二酸化炭素を吸収していた。二酸化炭素の流入開始から約60分後に、二酸化炭素の除去効率の急激な低下が始まり、二酸化炭素の流入開始から約85分後に、二酸化炭素の除去効率の低下は緩やかとなり、二酸化炭素の流入開始から約120分後には、二酸化炭素が除去されなくなった。
 得られた反応物が(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the toluene solution. As described above, the toluene solution became a toluene suspension.
As is clear from FIG. 5, immediately after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was close to 100%, and the toluene solution absorbed carbon dioxide with high efficiency. Approximately 60 minutes after the start of inflow of carbon dioxide, a sharp decrease in carbon dioxide removal efficiency begins, and about 85 minutes after the start of inflow of carbon dioxide, the decrease in carbon dioxide removal efficiency becomes gradual and the inflow of carbon dioxide starts. About 120 minutes after that, carbon dioxide was not removed.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
[実施例5]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとジメチルスルホキシド(DMSO)を混合することにより、イソホロンジアミンの濃度が1Mである、イソホロンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 5]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and dimethyl sulfoxide (DMSO), a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 1 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 試験管中に、上記で得られたイソホロンジアミンのDMSO溶液(1mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、室温下で前記装置を用いて、乾燥空気(二酸化炭素を体積基準で約400ppm含む)を、20mL/min(二酸化炭素が22μmol/h)の流量で、試験管の外部から、試験管の内部の前記DMSO溶液中に流入させてバブリングする(工程(a)、工程(a1))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、実施例1の場合と同じ方法で、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図6に示す。
<< Absorption of carbon dioxide >>
The DMSO solution (1 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, at room temperature, using the above device, dry air (containing about 400 ppm of carbon dioxide by volume) was introduced from the outside of the test tube at a flow rate of 20 mL / min (carbon dioxide is 22 μmol / h). Along with bubbling by flowing into the DMSO solution inside (steps (a) and (a1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, the amount of carbon dioxide absorbed by the DMSO solution (that is, the carbon dioxide absorption / release agent) was calculated by the same method as in the case of Example 1, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図6から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は100%に近く、前記DMSO溶液は高効率で二酸化炭素を吸収していた。そして、二酸化炭素の流入開始から50時間後まで、この状態が維持された。
 得られた反応物が(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the DMSO solution. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 6, immediately after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was close to 100%, and the DMSO solution absorbed carbon dioxide with high efficiency. Then, this state was maintained until 50 hours after the start of the inflow of carbon dioxide.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
<<二酸化炭素の放出>>
[実施例6]
 熱重量測定-質量分析装置(TG-MS)を用いて、窒素ガスを流しながら、昇温速度10℃/minで、固体の(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸(二酸化炭素放出剤)を加熱処理する(工程(b))ことにより、熱重量測定と質量分析を同時に行った。結果を図7~図8に示す。図7は重量減少のスペクトルデータであり、図8はイオン強度のスペクトルデータである。
 なお、本明細書においては、単なる「窒素ガス」との記載は、純度が100%の窒素ガスを意味する。
<< Release of carbon dioxide >>
[Example 6]
Solid (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid at a heating rate of 10 ° C./min while flowing nitrogen gas using a thermogravimetric analysis-mass spectrometer (TG-MS). By heat-treating (carbon dioxide emitting agent) (step (b)), thermogravimetric measurement and mass spectrometry were performed at the same time. The results are shown in FIGS. 7 to 8. FIG. 7 is the spectral data of weight loss, and FIG. 8 is the spectral data of ionic strength.
In addition, in this specification, a simple description of "nitrogen gas" means nitrogen gas having a purity of 100%.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 これらの結果から明らかなように、約60℃を超えてから二酸化炭素放出剤の重量減少が始まり、二酸化炭素に相当するピーク(m/z=44)が検出されたのに続き、イソホロンジアミンに相当するピーク(m/z=138)が検出された。
 得られた反応物がイソホロンジアミンであることは、13C-NMRによる分析でも確認した。
As is clear from these results, the weight of the carbon dioxide emitting agent started to decrease after about 60 ° C., and the peak corresponding to carbon dioxide (m / z = 44) was detected, followed by isophorone diamine. A corresponding peak (m / z = 138) was detected.
It was also confirmed by analysis by 13 C-NMR that the obtained reaction product was isophorone diamine.
[実施例7]
<<二酸化炭素放出剤の製造>>
 (3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸(以下、「イソホロンジアミン誘導体」と略記することがある)とジメチルスルホキシド(DMSO)を混合することにより、前記イソホロンジアミン誘導体の濃度が0.2Mである、イソホロンジアミン誘導体のDMSO懸濁液を調製し、これを二酸化炭素放出剤とした。
[Example 7]
<< Manufacture of carbon dioxide release agent >>
Concentration of the isophorone diamine derivative by mixing (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid (hereinafter, may be abbreviated as "isophorone diamine derivative") and dimethyl sulfoxide (DMSO). A DMSO suspension of an isophorone diamine derivative having a value of 0.2 M was prepared and used as a carbon dioxide releasing agent.
<<二酸化炭素の放出>>
 試験管中に、上記で得られたイソホロンジアミン誘導体のDMSO懸濁液(5mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、前記装置を用いて、窒素ガスを50mL/minの流量で、試験管の外部から、試験管の内部の前記DMSO懸濁液中に流入させてバブリングしながら、前記DMSO懸濁液を60℃で加熱処理し(工程(b))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、フーリエ変換赤外分光光度計(FT-IR)を用いて、排出ガス中の二酸化炭素の濃度を測定した(1回目)。結果を図9に示す。
 なお、図9以降のグラフ中の「CO CONCENTRATION」(二酸化炭素の濃度)に付された単位「%」は、「体積%」を意味する。
<< Release of carbon dioxide >>
A DMSO suspension (5 mL) of the isophorone diamine derivative obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, using the device, 60 of the DMSO suspension was blown by flowing nitrogen gas from the outside of the test tube into the DMSO suspension inside the test tube at a flow rate of 50 mL / min. After heat treatment at ° C. (step (b)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, the concentration of carbon dioxide in the exhaust gas was measured using a Fourier transform infrared spectrophotometer (FT-IR) (first time). The results are shown in FIG.
In addition, the unit "%" attached to "CO 2 CONCENTRATION" (concentration of carbon dioxide) in the graphs after FIG. 9 means "volume%".
 さらに、上記と同様の操作を繰り返し行い、再度、排出ガス中の二酸化炭素の濃度を測定し(2回目)、再現性を確認した。結果を図10に示す。 Furthermore, the same operation as above was repeated, and the concentration of carbon dioxide in the exhaust gas was measured again (second time) to confirm the reproducibility. The results are shown in FIG.
 図9~図10から明らかなように、加熱処理の開始から時間が経過するとともに、排出ガス中の二酸化炭素の濃度が上昇しており、前記DMSO懸濁液(二酸化炭素放出剤)から二酸化炭素が放出されていた。加熱処理の開始から約8分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。 As is clear from FIGS. 9 to 10, the concentration of carbon dioxide in the exhaust gas has increased with the passage of time from the start of the heat treatment, and carbon dioxide from the DMSO suspension (carbon dioxide releasing agent) has increased. Was being released. Approximately 8 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased.
 1回目の二酸化炭素の放出実験において、加熱処理の開始から60分後までに放出された二酸化炭素の量は、約0.85mmolであり、この放出量とイソホロンジアミン誘導体の使用量を用いて算出される、二酸化炭素の放出率は、約85%であった。
 加熱処理の開始から前記二酸化炭素の濃度が最大となるまでの間における、二酸化炭素の放出速度は、1回目の放出実験では51μmol/minであり、2回目の放出実験では49μmol/minであった。
In the first carbon dioxide release experiment, the amount of carbon dioxide released 60 minutes after the start of the heat treatment was about 0.85 mmol, which was calculated using this release amount and the amount of the isophorone diamine derivative used. The carbon dioxide emission rate was about 85%.
The carbon dioxide release rate from the start of the heat treatment to the maximum concentration of carbon dioxide was 51 μmol / min in the first release experiment and 49 μmol / min in the second release experiment. ..
 1回目の二酸化炭素の放出実験と、2回目の二酸化炭素の放出実験とで、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素放出剤からの二酸化炭素の放出(工程(b))の再現性が高かった。
 1回目と2回目の二酸化炭素の放出実験において、得られた反応物がイソホロンジアミンであることは、13C-NMRによる分析で確認した。
The transition of the carbon dioxide concentration is almost the same between the first carbon dioxide release experiment and the second carbon dioxide release experiment, and the carbon dioxide release from the carbon dioxide release agent (step (b)). The reproducibility of was high.
In the first and second carbon dioxide emission experiments, it was confirmed by 13 C-NMR analysis that the obtained reaction product was isophorone diamine.
[実施例8]
<<二酸化炭素放出剤の製造、二酸化炭素の放出>>
 (3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸(前記イソホロンジアミン誘導体)と、KNb19(塩基触媒)と、ジメチルスルホキシド(DMSO)と、を混合することにより、前記イソホロンジアミン誘導体の濃度が0.2Mであり、前記塩基触媒の濃度が0.002Mであり、前記イソホロンジアミン誘導体が析出している、イソホロンジアミン誘導体のDMSO懸濁液を調製し、これを二酸化炭素放出剤とした。
 この二酸化炭素放出剤を用いた点以外は、実施例7の場合と同じ方法で、排出ガス中の二酸化炭素の濃度を繰り返し測定した。1回目の測定結果を図9に示し、2回目の測定結果を図10に示す。
[Example 8]
<< Manufacture of carbon dioxide release agent, release of carbon dioxide >>
By mixing (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamate (the isophorone diamine derivative), K8 Nb 6 O 19 (base catalyst), and dimethyl sulfoxide (DMSO), A DMSO suspension of an isophorone diamine derivative having a concentration of the isophorone diamine derivative of 0.2 M, a concentration of the base catalyst of 0.002 M, and a precipitate of the isophorone diamine derivative was prepared, and this was distilled off. It was used as a carbon release agent.
The concentration of carbon dioxide in the exhaust gas was repeatedly measured by the same method as in Example 7 except that the carbon dioxide emitting agent was used. The first measurement result is shown in FIG. 9, and the second measurement result is shown in FIG.
 図9~図10から明らかなように、排出ガス中の二酸化炭素の濃度の推移は、実施例7の場合とほぼ同じであり、塩基触媒を使用しても、二酸化炭素放出剤からの二酸化炭素の放出(工程(b)、工程(b2))の再現性が高かった。ただし、前記二酸化炭素の濃度の最大値は、実施例8の方が実施例7よりも高く、これは、塩基触媒の使用効果であると推測された。
 加熱処理の開始から前記二酸化炭素の濃度が最大となるまでの間における、二酸化炭素の放出速度は、1回目の放出実験では56μmol/minであり、2回目の放出実験では54μmol/minであった。
 1回目と2回目の二酸化炭素の放出実験において、得られた反応物がイソホロンジアミンであることは、13C-NMRによる分析で確認した。
As is clear from FIGS. 9 to 10, the transition of the concentration of carbon dioxide in the exhaust gas is almost the same as in the case of Example 7, and even if a base catalyst is used, carbon dioxide from the carbon dioxide emitting agent is used. The reproducibility of the release (step (b), step (b2)) was high. However, the maximum value of the carbon dioxide concentration was higher in Example 8 than in Example 7, which was presumed to be the effect of using the base catalyst.
The carbon dioxide release rate from the start of the heat treatment to the maximum concentration of carbon dioxide was 56 μmol / min in the first release experiment and 54 μmol / min in the second release experiment. ..
In the first and second carbon dioxide emission experiments, it was confirmed by 13 C-NMR analysis that the obtained reaction product was isophorone diamine.
[実施例9]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとジメチルスルホキシド(DMSO)を混合することにより、イソホロンジアミンの濃度が0.2Mである、イソホロンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 9]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and dimethyl sulfoxide (DMSO), a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の回収>>
<二酸化炭素の吸収(1サイクル目)>
 試験管中に、上記で得られたイソホロンジアミンのDMSO溶液(5mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、室温下で前記装置を用いて、二酸化炭素を1体積%、窒素を99体積%でそれぞれ含む混合ガスを、10mL/min(二酸化炭素が0.27mmol/h)の流量で、試験管の外部から、試験管の内部の前記DMSO溶液中に流入させてバブリングする(工程(A)、工程(A1))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、この排出ガス中の二酸化炭素の濃度を測定した(1サイクル目)。結果を図11に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide (1st cycle)>
A DMSO solution (5 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, using the above device at room temperature, a mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added to the test tube at a flow rate of 10 mL / min (0.27 mmol / h of carbon dioxide). Along with bubbling by flowing into the DMSO solution inside the test tube from the outside (step (A), step (A1)), the gas inside the test tube is discharged from the gas outlet of the three-way cock to the test tube. It was discharged to the outside. Then, using FT-IR, the concentration of carbon dioxide in this exhaust gas was measured (first cycle). The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に白色固形物が生じた。これは前記イソホロンジアミン誘導体であった。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図11から明らかなように、二酸化炭素の流入開始直後を起点として、約230分後までの間、排出ガス中の二酸化炭素の濃度は0体積%に近く、換言すると、二酸化炭素の除去効率は100%に近く、前記DMSO溶液は高効率で二酸化炭素を吸収していた。そして、その後、時間経過とともに、二酸化炭素と反応可能なイソホロンジアミンの量が減少し、排出ガス中の二酸化炭素の濃度が増大(二酸化炭素の除去効率が低下)していった。二酸化炭素の流入開始から約360分後には、排出ガス中の二酸化炭素の濃度が約1体積%となり、二酸化炭素が除去されなくなった。
As time passed from the start of the inflow of carbon dioxide, a white solid substance was formed in the DMSO solution. This was the isophorone diamine derivative. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 11, the concentration of carbon dioxide in the exhaust gas is close to 0% by volume from immediately after the start of the inflow of carbon dioxide to about 230 minutes later, in other words, the efficiency of removing carbon dioxide is high. Nearly 100%, the DMSO solution absorbed carbon dioxide with high efficiency. After that, with the passage of time, the amount of isophorone diamine capable of reacting with carbon dioxide decreased, and the concentration of carbon dioxide in the exhaust gas increased (the efficiency of removing carbon dioxide decreased). Approximately 360 minutes after the start of inflow of carbon dioxide, the concentration of carbon dioxide in the exhaust gas became about 1% by volume, and carbon dioxide was not removed.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記DMSO懸濁液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.27mmolであった。イソホロンジアミンは、その1分子中に2個のアミノ基を有しているため、その使用量を考慮すると、前記DMSO溶液による二酸化炭素の吸収量は、最大で2mmolとなり得る。しかし、ここで、イソホロンジアミンにおいて、二酸化炭素と反応していたのは、主に、シクロヘキシル環骨格を構成している炭素原子に直接結合しているアミノ基であることを確認した。すなわち、イソホロンジアミンにおいては、一部のアミノ基は、二酸化炭素との反応に関与していなかった。先の説明のとおり、このような限定的な配置形態となっているアミノ基を基準にした(換言すると、アミノ基を限定した)場合の、二酸化炭素の補正吸収率(1サイクル目)は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率(1サイクル目)は、64%であった。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the DMSO suspension was stopped.
The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.27 mmol. Since isophorone diamine has two amino groups in one molecule, the amount of carbon dioxide absorbed by the DMSO solution can be up to 2 mmol in consideration of the amount used. However, here, it was confirmed that in isophoronediamine, it was mainly the amino group directly bonded to the carbon atom constituting the cyclohexyl ring skeleton that reacted with carbon dioxide. That is, in isophorone diamine, some amino groups were not involved in the reaction with carbon dioxide. As explained above, the corrected absorption rate of carbon dioxide (first cycle) when the amino group having such a limited arrangement form is used as a reference (in other words, the amino group is limited) is determined. It was judged to be 100%. The absorption rate of carbon dioxide (first cycle) was 64% when the amino group was not limited and the correction was not performed.
<二酸化炭素の放出(1サイクル目)>
 次いで、窒素ガスを50mL/minの流量で、試験管の外部から、試験管の内部の前記DMSO懸濁液中に流入させてバブリングしながら、前記DMSO懸濁液を60℃で加熱処理し(工程(B)、工程(B1))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した(1サイクル目)。結果を図12に示す。
<Carbon dioxide release (1st cycle)>
Next, the DMSO suspension was heat-treated at 60 ° C. by flowing nitrogen gas from the outside of the test tube into the DMSO suspension inside the test tube at a flow rate of 50 mL / min and bubbling. Step (B), Step (B1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, the concentration of carbon dioxide in the exhaust gas was measured using FT-IR (first cycle). The results are shown in FIG.
 図12から明らかなように、加熱処理の開始から時間が経過するとともに、排出ガス中の二酸化炭素の濃度が上昇しており、前記DMSO懸濁液(二酸化炭素吸収放出剤)から二酸化炭素が放出されていた。加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。 As is clear from FIG. 12, as time has passed from the start of the heat treatment, the concentration of carbon dioxide in the exhaust gas has increased, and carbon dioxide is released from the DMSO suspension (carbon dioxide absorbing / releasing agent). It had been. Approximately 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased.
 加熱処理の開始から200分後までに放出された二酸化炭素の量は、1.2mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率(1サイクル目)は、100%であると判断された。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率(1サイクル目)は、94%であった。
 本明細書において、二酸化炭素の吸収量と放出量を用いて算出される「二酸化炭素の放出率」とは、特に断りのない限り、下記式
 [二酸化炭素の放出率(%)]=[二酸化炭素の放出量]/[二酸化炭素の吸収量]×100
により算出されるものを意味する。
 加熱処理により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 1.2 mmol. The corrected emission rate (1st cycle) of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was determined to be 100%. The carbon dioxide emission rate (first cycle) without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 94%.
In the present specification, the "carbon dioxide release rate" calculated using the amount of carbon dioxide absorbed and released is the following formula [carbon dioxide release rate (%)] = [carbon dioxide] unless otherwise specified. Amount of carbon dioxide released] / [Amount of carbon dioxide absorbed] x 100
Means what is calculated by.
By the heat treatment, the white solid was finally lost in the DMSO suspension, and the DMSO solution was regenerated.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
<二酸化炭素の吸収(2サイクル目)>
 次いで、上記の二酸化炭素の放出により再生した二酸化炭素吸収放出剤(前記DMSO溶液)中に、上述の1サイクル目の場合と同じ方法で、再度、前記混合ガスを流入させてバブリングする(工程(A)、工程(A1))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、1サイクル目の場合と同じ方法で、この排出ガス中の二酸化炭素の濃度を測定した(2サイクル目)。結果を図11に示す。本工程により、前記DMSO溶液はDMSO懸濁液となった。
<Absorption of carbon dioxide (2nd cycle)>
Next, the mixed gas is again flowed into the carbon dioxide absorbing / releasing agent (DMSO solution) regenerated by the release of carbon dioxide by the same method as in the case of the first cycle described above, and bubbling is performed (step (step). A), along with the step (A1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, the concentration of carbon dioxide in this exhaust gas was measured by the same method as in the case of the first cycle (second cycle). The results are shown in FIG. By this step, the DMSO solution became a DMSO suspension.
 図11から明らかなように、1サイクル目の二酸化炭素の吸収と、2サイクル目の二酸化炭素の吸収とでは、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素吸収放出剤による二酸化炭素の吸収(工程(A)、工程(A1))の再現性が高かった。 As is clear from FIG. 11, the transition of the carbon dioxide concentration is almost the same between the absorption of carbon dioxide in the first cycle and the absorption of carbon dioxide in the second cycle, and the carbon dioxide produced by the carbon dioxide absorbing / releasing agent is used. The reproducibility of absorption (step (A), step (A1)) was high.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記DMSO懸濁液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.21mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率(2サイクル目)は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率(2サイクル目)は、61%であった。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the DMSO suspension was stopped.
The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.21 mmol. The corrected absorption rate of carbon dioxide (second cycle) when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was determined to be 100%. The absorption rate of carbon dioxide (second cycle) was 61% when the amino group was not limited and no correction was performed.
<二酸化炭素の放出(2サイクル目)>
 次いで、前記混合ガスの流入を停止させた後の前記DMSO懸濁液中に、上述の1サイクル目の場合と同様に、再度、窒素ガスを流入させてバブリングしながら、前記DMSO懸濁液を60℃で加熱処理し(工程(B)、工程(B1))、前記排出ガス中の二酸化炭素の濃度を測定した(2サイクル目)。結果を図12に示す。
<Carbon dioxide release (2nd cycle)>
Then, as in the case of the first cycle described above, the DMSO suspension is mixed with the DMSO suspension after the inflow of the mixed gas is stopped, while the nitrogen gas is flowed in again and bubbling. Heat treatment was performed at 60 ° C. (step (B), step (B1)), and the concentration of carbon dioxide in the exhaust gas was measured (second cycle). The results are shown in FIG.
 図12から明らかなように、1サイクル目の二酸化炭素の放出と、2サイクル目の二酸化炭素の放出とでは、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素吸収放出剤による二酸化炭素の放出(工程(B)、工程(B1))の再現性が高かった。 As is clear from FIG. 12, the transition of the carbon dioxide concentration is almost the same between the release of carbon dioxide in the first cycle and the release of carbon dioxide in the second cycle, and the carbon dioxide produced by the carbon dioxide absorbing / releasing agent is used. The reproducibility of the release of carbon dioxide (step (B), step (B1)) was high.
 加熱処理の開始から200分後までに放出された二酸化炭素の量は、1.2mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率(2サイクル目)は、100%であると判断された。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率(2サイクル目)は、99%であった。
 加熱処理により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 1.2 mmol. The corrected emission rate (second cycle) of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was determined to be 100%. The carbon dioxide emission rate (second cycle) without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 99%.
By the heat treatment, the white solid was finally lost in the DMSO suspension, and the DMSO solution was regenerated.
 1~2サイクル目の二酸化炭素の吸収時に得られた反応物が、(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
 1~2サイクル目の二酸化炭素の放出時に得られた反応物が、イソホロンジアミンであることは、13C-NMRによる分析で確認した。
It was confirmed by 13 C-NMR analysis that the reaction product obtained during the absorption of carbon dioxide in the first and second cycles was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
It was confirmed by 13 C-NMR analysis that the reaction product obtained during the release of carbon dioxide in the first and second cycles was isophorone diamine.
[実施例10]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとジメチルスルホキシド(DMSO)を混合することにより、イソホロンジアミンの濃度が0.07Mである、イソホロンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 10]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and dimethyl sulfoxide (DMSO), a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 0.07 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の回収>>
<二酸化炭素の吸収(1サイクル目)>
 試験管中に、上記で得られたイソホロンジアミンのDMSO溶液(15mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、前記混合ガスの流量を10mL/minに代えて20mL/minとした(二酸化炭素の流量を0.27mmol/hに代えて0.54mmol/hとした)点以外は、実施例9の1サイクル目の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した(1サイクル目)。結果を図13に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide (1st cycle)>
A DMSO solution (15 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Next, except that the flow rate of the mixed gas was changed to 20 mL / min instead of 10 mL / min (the flow rate of carbon dioxide was changed to 0.54 mmol / h instead of 0.27 mmol / h), 1 of Example 9 Step (A) (step (A1)) was performed in the same manner as in the case of the first cycle, and the concentration of carbon dioxide in the exhaust gas was measured (first cycle). The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に白色固形物が生じた。これは前記イソホロンジアミン誘導体であった。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図13から明らかなように、二酸化炭素の流入開始直後を起点として、約15分後までの間、排出ガス中の二酸化炭素の濃度は0体積%に近く、換言すると、二酸化炭素の除去効率は100%に近く、前記DMSO溶液は高効率で二酸化炭素を吸収していた。そして、その後、時間経過とともに、二酸化炭素と反応可能なイソホロンジアミンの量が減少し、排出ガス中の二酸化炭素の濃度が緩やかに増大(二酸化炭素の除去効率が緩やかに低下)していった。二酸化炭素の流入開始から約120分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.0mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率(1サイクル目)は、100%であった。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率(1サイクル目)は、50%であった。
As time passed from the start of the inflow of carbon dioxide, a white solid substance was formed in the DMSO solution. This was the isophorone diamine derivative. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 13, the concentration of carbon dioxide in the exhaust gas is close to 0% by volume from immediately after the start of the inflow of carbon dioxide to about 15 minutes later, in other words, the efficiency of removing carbon dioxide is high. Nearly 100%, the DMSO solution absorbed carbon dioxide with high efficiency. After that, with the passage of time, the amount of isophorone diamine capable of reacting with carbon dioxide decreased, and the concentration of carbon dioxide in the exhaust gas gradually increased (the efficiency of removing carbon dioxide gradually decreased). The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.0 mmol from the start of the inflow of carbon dioxide to about 120 minutes later. The corrected absorption rate (1st cycle) of carbon dioxide when the amino group was limited, which was calculated by using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide (first cycle) was 50% when the amino group was not limited and no correction was performed.
<二酸化炭素の放出(1サイクル目)>
 次いで、実施例9の1サイクル目の場合と同様に、試験管の外部から、試験管の内部の前記DMSO懸濁液中に、窒素ガスを流入させてバブリングしながら、前記DMSO懸濁液を60℃で加熱処理し(工程(B)、工程(B1))、前記排出ガス中の二酸化炭素の濃度を測定した(1サイクル目)。結果を図14に示す。
<Carbon dioxide release (1st cycle)>
Then, as in the case of the first cycle of Example 9, the DMSO suspension was bubbling by flowing nitrogen gas into the DMSO suspension inside the test tube from the outside of the test tube. Heat treatment was performed at 60 ° C. (step (B), step (B1)), and the concentration of carbon dioxide in the exhaust gas was measured (first cycle). The results are shown in FIG.
 図14から明らかなように、加熱処理の開始から時間が経過するとともに、排出ガス中の二酸化炭素の濃度が上昇しており、前記DMSO懸濁液(二酸化炭素吸収放出剤)から二酸化炭素が放出されていた。加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。 As is clear from FIG. 14, as time has passed from the start of the heat treatment, the concentration of carbon dioxide in the exhaust gas has increased, and carbon dioxide is released from the DMSO suspension (carbon dioxide absorbing / releasing agent). It had been. Approximately 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased.
 加熱処理の開始から120分後までに放出された二酸化炭素の量は、0.94mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率(1サイクル目)と、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率(1サイクル目)は、いずれも94%であった。
 加熱処理により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released 120 minutes after the start of the heat treatment was 0.94 mmol. Corrected emission rate of carbon dioxide (1st cycle) when the amino group is limited, which is calculated using this emission amount, and correction, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide, are performed. The carbon dioxide emission rate (1st cycle) in the absence was 94% in each case.
By the heat treatment, the white solid was finally lost in the DMSO suspension, and the DMSO solution was regenerated.
<二酸化炭素の吸収(2サイクル目)>
 次いで、上記の二酸化炭素の放出により再生した二酸化炭素吸収放出剤(前記DMSO溶液)中に、上述の1サイクル目の場合と同じ方法で、再度、前記混合ガスを流入させてバブリングする(工程(A)、工程(A1))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、1サイクル目の場合と同じ方法で、この排出ガス中の二酸化炭素の濃度を測定した(2サイクル目)。結果を図13に示す。本工程により、前記DMSO溶液はDMSO懸濁液となった。
<Absorption of carbon dioxide (2nd cycle)>
Next, the mixed gas is again flowed into the carbon dioxide absorbing / releasing agent (DMSO solution) regenerated by the release of carbon dioxide by the same method as in the case of the first cycle described above, and bubbling is performed (step (step). A), along with the step (A1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, the concentration of carbon dioxide in this exhaust gas was measured by the same method as in the case of the first cycle (second cycle). The results are shown in FIG. By this step, the DMSO solution became a DMSO suspension.
 図13から明らかなように、1サイクル目の二酸化炭素の吸収と、2サイクル目の二酸化炭素の吸収とでは、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素吸収放出剤による二酸化炭素の吸収(工程(A)、工程(A1))の再現性が高かった。 As is clear from FIG. 13, the transition of the carbon dioxide concentration is almost the same between the absorption of carbon dioxide in the first cycle and the absorption of carbon dioxide in the second cycle. The reproducibility of absorption (step (A), step (A1)) was high.
 二酸化炭素の流入開始から約120分後に、前記混合ガスの前記DMSO懸濁液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.0mmolであった。この吸収量と、再生させたイソホロンジアミンの使用量と、を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率(2サイクル目)は、100%であった。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率(2サイクル目)は、50%であった。
Approximately 120 minutes after the start of the inflow of carbon dioxide, the inflow of the mixed gas into the DMSO suspension was stopped.
The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.0 mmol. The corrected absorption rate (second cycle) of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of regenerated isophorone diamine used, was 100%. The absorption rate of carbon dioxide (second cycle) was 50% when the amino group was not limited and the correction was not performed.
<二酸化炭素の放出(2サイクル目)>
 次いで、前記混合ガスの流入を停止させた後の前記DMSO懸濁液中に、上述の1サイクル目の場合と同様に、再度、窒素ガスを流入させてバブリングしながら、前記DMSO懸濁液を60℃で加熱処理し(工程(B)、工程(B1))、前記排出ガス中の二酸化炭素の濃度を測定した(2サイクル目)。結果を図14に示す。
<Carbon dioxide release (2nd cycle)>
Then, as in the case of the first cycle described above, the DMSO suspension is mixed with the DMSO suspension after the inflow of the mixed gas is stopped, while the nitrogen gas is flowed in again and bubbling. Heat treatment was performed at 60 ° C. (step (B), step (B1)), and the concentration of carbon dioxide in the exhaust gas was measured (second cycle). The results are shown in FIG.
 図14から明らかなように、1サイクル目の二酸化炭素の放出と、2サイクル目の二酸化炭素の放出とでは、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素吸収放出剤による二酸化炭素の放出(工程(B)、工程(B1))の再現性が高かった。 As is clear from FIG. 14, the transition of the carbon dioxide concentration is almost the same between the release of carbon dioxide in the first cycle and the release of carbon dioxide in the second cycle, and the carbon dioxide produced by the carbon dioxide absorbing / releasing agent is used. The reproducibility of the release of carbon dioxide (step (B), step (B1)) was high.
 加熱処理の開始から200分後までに放出された二酸化炭素の量は、0.96mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率(2サイクル目)と、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率(2サイクル目)は、いずれも96%であった。
 加熱処理により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 0.96 mmol. The corrected emission rate of carbon dioxide (second cycle) when the amino group is limited, which is calculated using this emission amount, and the correction, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide, are performed. The carbon dioxide emission rate (second cycle) in the absence was 96% in each case.
By the heat treatment, the white solid was finally lost in the DMSO suspension, and the DMSO solution was regenerated.
<二酸化炭素の吸収(3サイクル目)、二酸化炭素の放出(3サイクル目)>
 次いで、この再生された二酸化炭素吸収放出剤(前記DMSO溶液)を用い、上述の2サイクル目の場合と同じ方法で、再度、二酸化炭素の吸収(3サイクル目)及び二酸化炭素の放出(3サイクル目)を順次行った。
<Absorption of carbon dioxide (3rd cycle), release of carbon dioxide (3rd cycle)>
Then, using this regenerated carbon dioxide absorption / release agent (DMSO solution), carbon dioxide absorption (third cycle) and carbon dioxide release (three cycles) are performed again in the same manner as in the case of the second cycle described above. Eyes) were performed in sequence.
 図13から明らかなように、1~3サイクル目の二酸化炭素の吸収では、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素吸収放出剤による二酸化炭素の吸収(工程(A)、工程(A1))の再現性が高かった。
 二酸化炭素の流入開始から停止までの、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.0mmolであった。この吸収量と、再生させたイソホロンジアミンの使用量と、を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率(3サイクル目)は、100%であった。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率(3サイクル目)は、50%であった。
As is clear from FIG. 13, in the absorption of carbon dioxide in the first to third cycles, the transition of the concentration of carbon dioxide is almost the same, and the absorption of carbon dioxide by the carbon dioxide absorbing / releasing agent (step (A), step. The reproducibility of (A1)) was high.
The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.0 mmol. The corrected absorption rate (third cycle) of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of regenerated isophorone diamine used, was 100%. The absorption rate of carbon dioxide (third cycle) was 50% when the amino group was not limited and no correction was performed.
 図14から明らかなように、1~3サイクル目の二酸化炭素の放出では、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素吸収放出剤による二酸化炭素の放出(工程(B)、工程(B1))の再現性が高かった。
 加熱処理の開始から200分後までに放出された二酸化炭素の量は、1.0mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率(3サイクル目)と、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率(3サイクル目)は、いずれも100%であった。
 3サイクル目においても、 加熱処理により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
As is clear from FIG. 14, in the carbon dioxide release in the first to third cycles, the transition of the carbon dioxide concentration is almost the same, and the carbon dioxide release by the carbon dioxide absorbing / releasing agent (step (B), step The reproducibility of (B1)) was high.
The amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 1.0 mmol. The corrected emission rate of carbon dioxide (third cycle) when the amino group is limited, which is calculated using this emission amount, and the correction, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide, are performed. The carbon dioxide emission rate (third cycle) in the absence was 100% in each case.
Also in the third cycle, the white solid was finally disappeared in the DMSO suspension by the heat treatment, and the DMSO solution was regenerated.
<二酸化炭素の吸収(4サイクル目)、二酸化炭素の放出(4サイクル目)>
 次いで、この再生された二酸化炭素吸収放出剤(前記DMSO溶液)を用い、上述の2サイクル目の場合と同じ方法で、再度、二酸化炭素の吸収(4サイクル目)及び二酸化炭素の放出(4サイクル目)を順次行った。
 4サイクル目においても、工程(A)(工程(A1))により、前記DMSO溶液はDMSO懸濁液となり、工程(B)(工程(B1))により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
<Absorption of carbon dioxide (4th cycle), release of carbon dioxide (4th cycle)>
Then, using this regenerated carbon dioxide absorbing / releasing agent (DMSO solution), the absorption of carbon dioxide (4th cycle) and the release of carbon dioxide (4 cycles) are performed again in the same manner as in the case of the 2nd cycle described above. Eyes) were performed in sequence.
Also in the fourth cycle, the DMSO solution becomes a DMSO suspension by the step (A) (step (A1)), and the final DMSO suspension is obtained by the step (B) (step (B1)). The white solid had disappeared and the DMSO solution had been regenerated.
 図13から明らかなように、1~4サイクル目の二酸化炭素の吸収では、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素吸収放出剤による二酸化炭素の吸収(工程(A)、工程(A1))の再現性が高かった。
 二酸化炭素の流入開始から停止までの、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.0mmolであった。この吸収量と、再生させたイソホロンジアミンの使用量と、を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率(2サイクル目)は、100%であった。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率(2サイクル目)は、50%であった。
As is clear from FIG. 13, in the absorption of carbon dioxide in the 1st to 4th cycles, the transition of the concentration of carbon dioxide is almost the same, and the absorption of carbon dioxide by the carbon dioxide absorbing / releasing agent (step (A), step The reproducibility of (A1)) was high.
The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.0 mmol. The corrected absorption rate (second cycle) of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of regenerated isophorone diamine used, was 100%. The absorption rate of carbon dioxide (second cycle) was 50% when the amino group was not limited and no correction was performed.
 図14から明らかなように、1~4サイクル目の二酸化炭素の放出では、前記二酸化炭素の濃度の推移はほぼ同じであり、二酸化炭素吸収放出剤による二酸化炭素の放出(工程(B)、工程(B1))の再現性が高かった。
 加熱処理の開始から200分後までに放出された二酸化炭素の量は、1.0mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率(4サイクル目)と、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率(4サイクル目)は、いずれも100%であった。
As is clear from FIG. 14, in the carbon dioxide release in the 1st to 4th cycles, the transition of the carbon dioxide concentration is almost the same, and the carbon dioxide release by the carbon dioxide absorbing / releasing agent (step (B), step The reproducibility of (B1)) was high.
The amount of carbon dioxide released from the start of the heat treatment to 200 minutes later was 1.0 mmol. The corrected emission rate of carbon dioxide (4th cycle) when the amino group is limited, which is calculated using this emission amount, and the correction, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide, are performed. The carbon dioxide emission rate (4th cycle) in the absence was 100% in each case.
 1~4サイクル目の二酸化炭素の吸収時に得られた反応物が、(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
 1~4サイクル目の二酸化炭素の放出時に得られた反応物が、イソホロンジアミンであることは、13C-NMRによる分析で確認した。
It was confirmed by 13 C-NMR analysis that the reaction product obtained during the absorption of carbon dioxide in the 1st to 4th cycles was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
It was confirmed by 13 C-NMR analysis that the reaction product obtained at the time of carbon dioxide release in the 1st to 4th cycles was isophorone diamine.
[実施例11]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンとN,N-ジメチルホルムアミド(DMF)を混合することにより、シクロヘキシルアミンの濃度が0.07Mである、シクロヘキシルアミンのDMF溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 11]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing cyclohexylamine and N, N-dimethylformamide (DMF), a DMF solution of cyclohexylamine having a concentration of cyclohexylamine of 0.07 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 試験管中に、上記で得られたシクロヘキシルアミンのDMF溶液(15mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、-15℃の温度条件下で、前記装置を用いて、二酸化炭素を1体積%、窒素を99体積%でそれぞれ含む混合ガスを、20mL/min(二酸化炭素が0.54mmol/h)の流量で、試験管の外部から、試験管の内部の前記DMF溶液中に流入させてバブリングする(工程(A))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、この排出ガス中の二酸化炭素の濃度を測定した。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
The DMF solution (15 mL) of cyclohexylamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, under the temperature condition of -15 ° C., using the above-mentioned device, 20 mL / min (0.54 mmol / h of carbon dioxide) of the mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added. At a flow rate, the gas inside the test tube is bubbling by flowing into the DMF solution inside the test tube from the outside of the test tube (step (A)), and the gas inside the test tube is discharged from the gas outlet of the three-way cock to the test tube. It was discharged to the outside of. Then, using FT-IR, the concentration of carbon dioxide in this exhaust gas was measured.
 実施例1の場合とは異なり、二酸化炭素の流入開始から時間が経過しても、前記DMF溶液中に、シクロヘキシルアミンと二酸化炭素との反応物(すなわち、N-シクロヘキシルカルバミン酸)が析出することはなかった。 Unlike the case of Example 1, a reaction product of cyclohexylamine and carbon dioxide (that is, N-cyclohexylcarbamic acid) is precipitated in the DMF solution even after a lapse of time from the start of inflow of carbon dioxide. There was no.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記DMF溶液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記DMF溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、0.841mmolであった。この吸収量とシクロヘキシルアミンの使用量を用いて算出される、二酸化炭素の吸収率は、84.1%であった。
 得られた反応物の重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図15に示す。この分析結果から、前記反応物がN-シクロヘキシルカルバミン酸であると同定できた。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the DMF solution was stopped.
The amount of carbon dioxide absorbed by the DMF solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 0.841 mmol. The absorption rate of carbon dioxide calculated by using this absorption amount and the amount of cyclohexylamine used was 84.1%.
The analysis result (NMR spectrum) by 13 C - NMR in heavy water (D2O) of the obtained reaction product is shown in FIG. From this analysis result, it was possible to identify that the reaction product was N-cyclohexylcarbamic acid.
<二酸化炭素の放出>
 次いで、窒素ガスを50mL/minの流量で、試験管の外部から、試験管の内部の前記DMF溶液中に流入させてバブリングしながら、前記DMF溶液を60℃で加熱処理し(工程(B))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した。
<Carbon dioxide release>
Next, the DMF solution was heat-treated at 60 ° C. while bubbling by flowing nitrogen gas from the outside of the test tube into the DMF solution inside the test tube at a flow rate of 50 mL / min (step (B)). ), The gas inside the test tube was discharged to the outside of the test tube from the gas outlet of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured.
 加熱処理の開始以降に放出された二酸化炭素の量は、0.453mmolであった。この放出量と、上述の二酸化炭素の吸収量と、を用いて算出される、二酸化炭素の放出率は、54%であった。
 二酸化炭素を放出後の前記反応物の、重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図15に示す。この分析結果から、二酸化炭素を放出後の前記反応物がシクロヘキシルアミンであると同定できた。
The amount of carbon dioxide released after the start of the heat treatment was 0.453 mmol. The carbon dioxide emission rate calculated by using this emission amount and the above-mentioned carbon dioxide absorption amount was 54%.
FIG. 15 shows the analysis result (NMR spectrum) of the reaction product after the release of carbon dioxide in heavy water (D2O) by 13 C - NMR. From this analysis result, it was possible to identify that the reaction product after releasing carbon dioxide was cyclohexylamine.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[実施例12]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンに代えて、同量(モル数)の4,4’-メチレンビス(2-メチルシクロヘキシルアミン)を用いた点以外は、実施例11の場合と同じ方法で、二酸化炭素吸収放出剤(4,4’-メチレンビス(2-メチルシクロヘキシルアミン)のDMF溶液)を製造した。
[Example 12]
<< Manufacture of carbon dioxide absorption / release agent >>
The carbon dioxide absorption / release agent (4) was used in the same manner as in Example 11 except that the same amount (number of moles) of 4,4'-methylenebis (2-methylcyclohexylamine) was used instead of cyclohexylamine. , 4'-Methylenebis (2-methylcyclohexylamine) DMF solution) was prepared.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例11の場合と同じ方法で、工程(A)(工程(A1))を行い、排出ガス中の二酸化炭素の濃度を測定した。
 二酸化炭素の流入開始から時間が経過するとともに、前記DMF溶液中に白色固形物として、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)と二酸化炭素との反応物が生じた。このように、前記DMF溶液は、DMF懸濁液となった。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) is performed in the same manner as in Example 11 except that the carbon dioxide absorbing / releasing agent obtained above is used, and the concentration of carbon dioxide in the exhaust gas is measured. bottom.
As time passed from the start of the inflow of carbon dioxide, a reaction product of 4,4'-methylenebis (2-methylcyclohexylamine) and carbon dioxide was formed as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記DMF懸濁液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記DMF溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.38mmolであった。4,4’-メチレンビス(2-メチルシクロヘキシルアミン)は、その1分子中に2個のアミノ基を有しているため、その使用量を考慮すると、前記DMF溶液による二酸化炭素の吸収量は、最大で2mmolとなることから、二酸化炭素の吸収率は69%であった。すなわち、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)においては、一部のアミノ基は、二酸化炭素との反応に関与していなかった。
 得られた反応物がおもに(4-(4-アミノ-3-メチルシクロヘキシル)メチル-2-メチル)カルバミン酸であることは、13C-NMRによる分析で確認した。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the DMF suspension was stopped.
The amount of carbon dioxide absorbed by the DMF solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.38 mmol. Since 4,4'-methylenebis (2-methylcyclohexylamine) has two amino groups in one molecule, the amount of carbon dioxide absorbed by the DMF solution is determined in consideration of the amount used. Since the maximum amount was 2 mmol, the absorption rate of carbon dioxide was 69%. That is, in 4,4'-methylenebis (2-methylcyclohexylamine), some amino groups were not involved in the reaction with carbon dioxide.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was mainly (4- (4-amino-3-methylcyclohexyl) methyl-2-methyl) carbamic acid.
<二酸化炭素の放出>
 次いで、窒素ガスを75mL/minの流量で、試験管の外部から、試験管の内部の前記DMF懸濁液中に流入させてバブリングしながら、前記DMF懸濁液を60℃で加熱処理し(工程(B)、工程(B1))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した。この間、前記DMF懸濁液中の前記白色固形物は、時間の経過とともにその量が減少し、最終的に消失し、DMF溶液が再生されていた。
<Carbon dioxide release>
Next, the DMF suspension was heat-treated at 60 ° C. while flowing nitrogen gas from the outside of the test tube into the DMF suspension inside the test tube at a flow rate of 75 mL / min and bubbling. Step (B), Step (B1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured. During this time, the amount of the white solid in the DMF suspension decreased with the passage of time and finally disappeared, and the DMF solution was regenerated.
 加熱処理の開始以降に放出された二酸化炭素の量は、1.23mmolであった。この放出量と、上述の二酸化炭素の吸収量と、を用いて算出される、二酸化炭素の放出率は、89%であった。
 得られた反応物が4,4’-メチレンビス(2-メチルシクロヘキシルアミン)であることは、13C-NMRによる分析で確認した。
The amount of carbon dioxide released after the start of the heat treatment was 1.23 mmol. The carbon dioxide emission rate calculated by using this emission amount and the above-mentioned carbon dioxide absorption amount was 89%.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was 4,4'-methylenebis (2-methylcyclohexylamine).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[実施例13]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンに代えて、同量(モル数)の1,2-シクロヘキサンジアミン(別名:1,2-ジアミノシクロヘキサン)を用いた点以外は、実施例11の場合と同じ方法で、二酸化炭素吸収放出剤(1,2-シクロヘキサンジアミンのDMF溶液)を製造した。
[Example 13]
<< Manufacture of carbon dioxide absorption / release agent >>
Carbon dioxide absorption and release in the same manner as in Example 11 except that the same amount (number of moles) of 1,2-cyclohexanediamine (also known as 1,2-diaminocyclohexane) was used instead of cyclohexylamine. An agent (DMF solution of 1,2-cyclohexanediamine) was produced.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例11の場合と同じ方法で、工程(A)(工程(A1))を行い、排出ガス中の二酸化炭素の濃度を測定した。
 二酸化炭素の流入開始から時間が経過するとともに、前記DMF溶液中に白色固形物として、1,2-シクロヘキサンジアミンと二酸化炭素との反応物が生じた。このように、前記DMF溶液は、DMF懸濁液となった。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) is performed in the same manner as in Example 11 except that the carbon dioxide absorbing / releasing agent obtained above is used, and the concentration of carbon dioxide in the exhaust gas is measured. bottom.
As time passed from the start of the inflow of carbon dioxide, a reaction product of 1,2-cyclohexanediamine and carbon dioxide was produced as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記DMF懸濁液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記DMF溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.22mmolであった。1,2-シクロヘキサンジアミンは、その1分子中に2個のアミノ基を有しているため、その使用量を考慮すると、前記DMF溶液による二酸化炭素の吸収量は、最大で2mmolとなることから、二酸化炭素の吸収率は61%であった。すなわち、1,2-シクロヘキサンジアミンにおいては、一部のアミノ基は、二酸化炭素との反応に関与していなかった。
 得られた反応物の重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図16に示す。この分析結果から、前記反応物がおもに(2-アミノシクロヘキシル)カルバミン酸であると同定できた。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the DMF suspension was stopped.
The amount of carbon dioxide absorbed by the DMF solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.22 mmol. Since 1,2-cyclohexanediamine has two amino groups in one molecule, the maximum amount of carbon dioxide absorbed by the DMF solution is 2 mmol in consideration of the amount used. The absorption rate of carbon dioxide was 61%. That is, in 1,2-cyclohexanediamine, some amino groups were not involved in the reaction with carbon dioxide.
The analysis result (NMR spectrum) by 13 C - NMR in heavy water (D2O) of the obtained reaction product is shown in FIG. From this analysis result, it was possible to identify that the reaction product was mainly (2-aminocyclohexyl) carbamic acid.
<二酸化炭素の放出>
 次いで、窒素ガスを75mL/minの流量で、試験管の外部から、試験管の内部の前記DMF懸濁液中に流入させてバブリングしながら、前記DMF懸濁液を60℃で加熱処理し(工程(B)、工程(B1))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した。この間、前記DMF懸濁液中の前記白色固形物は、時間の経過とともにその量が減少し、最終的に消失し、DMF溶液が再生されていた。
<Carbon dioxide release>
Next, the DMF suspension was heat-treated at 60 ° C. while flowing nitrogen gas from the outside of the test tube into the DMF suspension inside the test tube at a flow rate of 75 mL / min and bubbling. Step (B), Step (B1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured. During this time, the amount of the white solid in the DMF suspension decreased with the passage of time and finally disappeared, and the DMF solution was regenerated.
 加熱処理の開始以降に放出された二酸化炭素の量は、1.26mmolであった。この放出量と、上述の二酸化炭素の吸収量と、を用いて算出される、二酸化炭素の放出率は、100%であると判断された。
 二酸化炭素を放出後の前記反応物の、重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図16に示す。この分析結果から、二酸化炭素を放出後の前記反応物が1,2-シクロヘキサンジアミンであると同定できた。
The amount of carbon dioxide released after the start of the heat treatment was 1.26 mmol. The carbon dioxide emission rate calculated by using this emission amount and the above-mentioned carbon dioxide absorption amount was determined to be 100%.
FIG. 16 shows the analysis result (NMR spectrum) of the reaction product after the release of carbon dioxide in heavy water (D2O) by 13 C - NMR. From this analysis result, it was possible to identify that the reaction product after releasing carbon dioxide was 1,2-cyclohexanediamine.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[実施例14]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンに代えて、同量(モル数)の1,4-シクロヘキサンジアミン(別名:1,4-ジアミノシクロヘキサン)を用いた点以外は、実施例11の場合と同じ方法で、二酸化炭素吸収放出剤(1,4-シクロヘキサンジアミンのDMF溶液)を製造した。
[Example 14]
<< Manufacture of carbon dioxide absorption / release agent >>
Carbon dioxide absorption and release in the same manner as in Example 11 except that the same amount (number of moles) of 1,4-cyclohexanediamine (also known as 1,4-diaminocyclohexane) was used instead of cyclohexylamine. An agent (DMF solution of 1,4-cyclohexanediamine) was produced.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例11の場合と同じ方法で、工程(A)(工程(A1))を行い、排出ガス中の二酸化炭素の濃度を測定した。
 二酸化炭素の流入開始から時間が経過するとともに、前記DMF溶液中に白色固形物として、1,4-シクロヘキサンジアミンと二酸化炭素との反応物が生じた。このように、前記DMF溶液は、DMF懸濁液となった。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) is performed in the same manner as in Example 11 except that the carbon dioxide absorbing / releasing agent obtained above is used, and the concentration of carbon dioxide in the exhaust gas is measured. bottom.
As time passed from the start of the inflow of carbon dioxide, a reaction product of 1,4-cyclohexanediamine and carbon dioxide was produced as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記DMF懸濁液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記DMF溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.16mmolであった。1,4-シクロヘキサンジアミンは、その1分子中に2個のアミノ基を有しているため、その使用量を考慮すると、前記DMF溶液による二酸化炭素の吸収量は、最大で2mmolとなることから、二酸化炭素の吸収率は58%であった。すなわち、1,4-シクロヘキサンジアミンにおいては、一部のアミノ基は、二酸化炭素との反応に関与していなかった。
 得られた反応物の重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図17に示す。この分析結果から、前記反応物がおもに(4-アミノシクロヘキシル)カルバミン酸であると同定できた。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the DMF suspension was stopped.
The amount of carbon dioxide absorbed by the DMF solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.16 mmol. Since 1,4-cyclohexanediamine has two amino groups in one molecule, the maximum amount of carbon dioxide absorbed by the DMF solution is 2 mmol in consideration of the amount used. The absorption rate of carbon dioxide was 58%. That is, in 1,4-cyclohexanediamine, some amino groups were not involved in the reaction with carbon dioxide.
The analysis result (NMR spectrum) by 13 C - NMR in heavy water (D2O) of the obtained reaction product is shown in FIG. From this analysis result, it was possible to identify that the reaction product was mainly (4-aminocyclohexyl) carbamic acid.
<二酸化炭素の放出>
 次いで、窒素ガスを75mL/minの流量で、試験管の外部から、試験管の内部の前記DMF懸濁液中に流入させてバブリングしながら、前記DMF懸濁液を60℃で加熱処理し(工程(B)、工程(B1))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した。この間、前記DMF懸濁液中の前記白色固形物は、時間の経過とともにその量が減少し、最終的に消失し、DMF溶液が再生されていた。
<Carbon dioxide release>
Next, the DMF suspension was heat-treated at 60 ° C. while flowing nitrogen gas from the outside of the test tube into the DMF suspension inside the test tube at a flow rate of 75 mL / min and bubbling. Step (B), Step (B1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured. During this time, the amount of the white solid in the DMF suspension decreased with the passage of time and finally disappeared, and the DMF solution was regenerated.
 加熱処理の開始以降に放出された二酸化炭素の量は、1.02mmolであった。この放出量と、上述の二酸化炭素の吸収量と、を用いて算出される、二酸化炭素の放出率は、88%であった。
 二酸化炭素を放出後の前記反応物の、重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図17に示す。この分析結果から、二酸化炭素を放出後の前記反応物が1,4-シクロヘキサンジアミンであると同定できた。
The amount of carbon dioxide released after the start of the heat treatment was 1.02 mmol. The carbon dioxide emission rate calculated by using this emission amount and the above-mentioned carbon dioxide absorption amount was 88%.
FIG. 17 shows the analysis result (NMR spectrum) of the reaction product after the release of carbon dioxide in heavy water (D2O) by 13 C - NMR. From this analysis result, it was possible to identify that the reaction product after releasing carbon dioxide was 1,4-cyclohexanediamine.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
[実施例15]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンと水を混合することにより、イソホロンジアミンの濃度が0.07Mである、イソホロンジアミンの水溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 15]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and water, an aqueous solution of isophorone diamine having a concentration of isophorone diamine of 0.07 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 試験管中に、上記で得られたイソホロンジアミンの水溶液(15mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、室温の温度条件下で、前記装置を用いて、二酸化炭素を1体積%、窒素を99体積%でそれぞれ含む混合ガスを、20mL/min(二酸化炭素が0.54mmol/h)の流量で、試験管の外部から、試験管の内部の前記水溶液中に流入させてバブリングする(工程(A))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、この排出ガス中の二酸化炭素の濃度を測定した。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
An aqueous solution (15 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, under the temperature condition of room temperature, the mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added at a flow rate of 20 mL / min (0.54 mmol / h of carbon dioxide) using the above device. , From the outside of the test tube, flow into the aqueous solution inside the test tube for bubbling (step (A)), and at the same time, let the gas inside the test tube flow from the gas outlet of the three-way cock to the outside of the test tube. It was discharged. Then, using FT-IR, the concentration of carbon dioxide in this exhaust gas was measured.
 実施例1の場合とは異なり、二酸化炭素の流入開始から時間が経過しても、前記水溶液中に、イソホロンジアミンと二酸化炭素との反応物が析出することはなかった。 Unlike the case of Example 1, the reaction product of isophorone diamine and carbon dioxide did not precipitate in the aqueous solution even after a lapse of time from the start of the inflow of carbon dioxide.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記水溶液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記水溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.17mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、59%であった。
 得られた反応物の重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図18に示す。この分析結果から、前記反応物が主に(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であると同定できた。そして、前記反応物には、イソホロンジアミン1分子中の2個のアミノ基がともに、二酸化炭素と反応して生成したジカルバミン酸も、一部含まれていた。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the aqueous solution was stopped.
The amount of carbon dioxide absorbed by the aqueous solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 1.17 mmol. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 59% when the amino group was not limited and the correction was not performed.
The analysis result (NMR spectrum) by 13 C - NMR in heavy water (D2O) of the obtained reaction product is shown in FIG. From this analysis result, it was possible to identify that the reaction product was mainly (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid. The reaction product also contained a part of dicarbamic acid produced by reacting with carbon dioxide together with two amino groups in one molecule of isophorone diamine.
<二酸化炭素の放出>
 次いで、窒素ガスを75mL/minの流量で、試験管の外部から、試験管の内部の前記水溶液中に流入させてバブリングしながら、前記水溶液を60℃で加熱処理し(工程(B))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した。
<Carbon dioxide release>
Next, the aqueous solution was heat-treated at 60 ° C. while bubbling by flowing nitrogen gas from the outside of the test tube into the aqueous solution inside the test tube at a flow rate of 75 mL / min (step (B)). The gas inside the test tube was discharged to the outside of the test tube from the gas outlet of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured.
 加熱処理の開始以降に放出された二酸化炭素の量は、1.02mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、100%であると判断された。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、87%であった。
 二酸化炭素を放出後の前記反応物の、重水(DO)中での13C-NMRによる分析結果(NMRスペクトル)を図18に示す。この分析結果から、二酸化炭素を放出後の前記反応物がイソホロンジアミンであると同定できた。
The amount of carbon dioxide released after the start of the heat treatment was 1.02 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was determined to be 100%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 87%.
FIG. 18 shows the analysis result (NMR spectrum) of the reaction product after the release of carbon dioxide in heavy water (D2O) by 13 C - NMR. From this analysis result, it was possible to identify that the reaction product after releasing carbon dioxide was isophorone diamine.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
[実施例16]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンと2-プロパノール(IPA)を混合することにより、イソホロンジアミンの濃度が0.07Mである、イソホロンジアミンのIPA溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 16]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and 2-propanol (IPA), an IPA solution of isophorone diamine having a concentration of isophorone diamine of 0.07 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例15の場合と同じ方法で、工程(A)を行い、排出ガス中の二酸化炭素の濃度を測定した。
 実施例15の場合と同様に、二酸化炭素の流入開始から時間が経過しても、前記IPA溶液中に、イソホロンジアミンと二酸化炭素との反応物が析出することはなかった。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) was carried out in the same manner as in Example 15 except that the carbon dioxide absorbing / releasing agent obtained above was used, and the concentration of carbon dioxide in the exhaust gas was measured.
As in the case of Example 15, the reaction product of isophorone diamine and carbon dioxide did not precipitate in the IPA solution even after a lapse of time from the start of the inflow of carbon dioxide.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記IPA溶液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記IPA溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、0.33mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、33%であった。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、17%であった。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the IPA solution was stopped.
The amount of carbon dioxide absorbed by the IPA solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 0.33 mmol. The corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated by using this absorption amount and the amount of isophorone diamine used, was 33%. The absorption rate of carbon dioxide was 17% when the amino group was not limited and the correction was not performed.
<二酸化炭素の放出>
 次いで、窒素ガスを75mL/minの流量で、試験管の外部から、試験管の内部の前記IPA溶液中に流入させてバブリングしながら、前記IPA溶液を60℃で加熱処理し(工程(B))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した。
<Carbon dioxide release>
Next, the IPA solution was heat-treated at 60 ° C. while bubbling by flowing nitrogen gas from the outside of the test tube into the IPA solution inside the test tube at a flow rate of 75 mL / min (step (B)). ), The gas inside the test tube was discharged to the outside of the test tube from the gas outlet of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured.
 加熱処理の開始以降に放出された二酸化炭素の量は、0.121mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、12%であった。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、37%であった。 The amount of carbon dioxide released after the start of the heat treatment was 0.121 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was 12%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 37%.
[実施例17]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとDMFを混合することにより、イソホロンジアミンの濃度が0.07Mである、イソホロンジアミンのDMF溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 17]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and DMF, a DMF solution of isophorone diamine having a concentration of isophorone diamine of 0.07 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例15の場合と同じ方法で、工程(A)(工程(A1))を行い、排出ガス中の二酸化炭素の濃度を測定した。
 二酸化炭素の流入開始から時間が経過するとともに、前記DMF溶液中に白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記DMF溶液は、DMF懸濁液となった。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) is performed in the same manner as in Example 15 except that the carbon dioxide absorbing / releasing agent obtained above is used, and the concentration of carbon dioxide in the exhaust gas is measured. bottom.
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
 二酸化炭素が除去されなくなったことを確認した後、前記混合ガスの前記DMF懸濁液中への流入を停止させた。
 二酸化炭素の流入開始から停止までの、前記DMF溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、0.661mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、66%であった。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、33%であった。
After confirming that carbon dioxide was no longer removed, the inflow of the mixed gas into the DMF suspension was stopped.
The amount of carbon dioxide absorbed by the DMF solution (carbon dioxide absorbing / releasing agent) from the start to the stop of the inflow of carbon dioxide was calculated to be 0.661 mmol. The corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated by using this absorption amount and the amount of isophorone diamine used, was 66%. The absorption rate of carbon dioxide was 33% when the amino group was not limited and the correction was not performed.
<二酸化炭素の放出>
 次いで、窒素ガスを75mL/minの流量で、試験管の外部から、試験管の内部の前記DMF懸濁液中に流入させてバブリングしながら、前記DMF懸濁液を60℃で加熱処理し(工程(B)、工程(B1))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した。この間、前記DMF懸濁液中の前記白色固形物は、時間の経過とともにその量が減少し、最終的に消失し、DMF溶液が再生されていた。
<Carbon dioxide release>
Next, the DMF suspension was heat-treated at 60 ° C. while flowing nitrogen gas from the outside of the test tube into the DMF suspension inside the test tube at a flow rate of 75 mL / min and bubbling. Step (B), Step (B1)), the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured. During this time, the amount of the white solid in the DMF suspension decreased with the passage of time and finally disappeared, and the DMF solution was regenerated.
 加熱処理の開始以降に放出された二酸化炭素の量は、0.429mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、43%であった。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、65%であった。 The amount of carbon dioxide released after the start of the heat treatment was 0.429 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was 43%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 65%.
[実施例18]
<<二酸化炭素吸収放出剤の製造>>
 実施例10の場合と同じ方法で、すなわち、イソホロンジアミンとジメチルスルホキシド(DMSO)を混合することにより、イソホロンジアミンの濃度が0.07Mである、イソホロンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 18]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and dimethyl sulfoxide (DMSO) in the same manner as in Example 10, a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 0.07 M was prepared, and this was used as carbon dioxide. It was used as an absorption / release agent.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 実施例10の1サイクル目の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) was performed in the same manner as in the case of the first cycle of Example 10, and the concentration of carbon dioxide in the exhaust gas was measured.
 その結果、排出ガス中の二酸化炭素の濃度は、二酸化炭素の流入開始から120分程度まで、実施例10の1サイクル目の場合と同様の傾向を示した。二酸化炭素の流入開始から約240分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.25mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、63%であった。
 本工程により、前記DMSO溶液はDMSO懸濁液となった。
As a result, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of the first cycle of Example 10 from the start of the inflow of carbon dioxide to about 120 minutes. The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.25 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 63% when the amino group was not limited and the correction was not performed.
By this step, the DMSO solution became a DMSO suspension.
<二酸化炭素の放出>
 次いで、実施例10の1サイクル目の場合と同じ方法で、工程(B)(工程(B1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図19に示す。
<Carbon dioxide release>
Then, step (B) (step (B1)) was performed in the same manner as in the case of the first cycle of Example 10, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
 図19から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例10の1サイクル目の場合と同様の傾向を示した。例えば、加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。 As is clear from FIG. 19, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of the first cycle of Example 10. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased.
 加熱処理の開始から120分後までに放出された二酸化炭素の量は、1.12mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、100%であると判断された。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、90%であった。
 本工程により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.12 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was determined to be 100%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 90%.
By this step, in the DMSO suspension, the white solid was finally disappeared, and the DMSO solution was regenerated.
[実施例19]
<<二酸化炭素吸収放出剤の製造>>
 実施例18の場合と同じ方法で、二酸化炭素吸収放出剤を製造した。
[Example 19]
<< Manufacture of carbon dioxide absorption / release agent >>
The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 実施例18の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図20に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
 図20から明らかなように、排出ガス中の二酸化炭素の濃度は、二酸化炭素の流入開始から120分程度まで、実施例10の1サイクル目の場合と同様の傾向を示した。そして、実施例10では未確認であった、それ以降の時間帯では、排出ガス中の二酸化炭素の濃度は大きく増加し、最終的には約1体積%となり、二酸化炭素は除去されなくなった。以上の傾向は、実施例18と同様であった。二酸化炭素の流入開始から約240分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.25mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、63%であった。
 本工程により、前記DMSO溶液はDMSO懸濁液となった。
As is clear from FIG. 20, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of the first cycle of Example 10 from the start of the inflow of carbon dioxide to about 120 minutes. Then, in the time zone after that, which was unconfirmed in Example 10, the concentration of carbon dioxide in the exhaust gas increased significantly, and finally became about 1% by volume, and carbon dioxide was not removed. The above tendency was the same as in Example 18. The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.25 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 63% when the amino group was not limited and the correction was not performed.
By this step, the DMSO solution became a DMSO suspension.
<二酸化炭素の放出>
 次いで、工程(A)(工程(A1))を行った後の前記DMSO溶液に、n-ヘキシルアミン(塩基触媒)を添加することにより、n-ヘキシルアミンの濃度が0.7mMであるDMSO懸濁液を得た。
 次いで、このDMSO懸濁液を用いた点以外は、実施例18の場合と同じ方法で、工程(B)(工程(B1)及び工程(B2)の両方に相当)を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図19に示す。
<Carbon dioxide release>
Then, by adding n-hexylamine (base catalyst) to the DMSO solution after performing step (A) (step (A1)), the concentration of n-hexylamine is 0.7 mM. A turbid liquid was obtained.
Next, step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG.
 図19から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例10の1サイクル目の場合、及び、実施例18の場合と同様の傾向を示した。例えば、加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。ただし、前記二酸化炭素の濃度の最大値は、実施例19の方が実施例18よりも高く、これは、塩基触媒の使用効果であると推測された。 As is clear from FIG. 19, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of the first cycle of Example 10 and the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. However, the maximum value of the carbon dioxide concentration was higher in Example 19 than in Example 18, which was presumed to be the effect of using the base catalyst.
 加熱処理の開始から120分後までに放出された二酸化炭素の量は、1.12mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、100%であると判断された。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、90%であった。
 本工程により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.12 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was determined to be 100%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 90%.
By this step, in the DMSO suspension, the white solid was finally disappeared, and the DMSO solution was regenerated.
[実施例20]
<<二酸化炭素吸収放出剤の製造>>
 実施例18の場合と同じ方法で、二酸化炭素吸収放出剤を製造した。
[Example 20]
<< Manufacture of carbon dioxide absorption / release agent >>
The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 実施例18の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図21に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
 図21から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。排出ガス中の二酸化炭素の濃度は、最終的には約1体積%となり、二酸化炭素は除去されなくなった。二酸化炭素の流入開始から約240分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.23mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、62%であった。
 本工程により、前記DMSO溶液はDMSO懸濁液となった。
As is clear from FIG. 21, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. The concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed. The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.23 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 62% when the amino group was not limited and the correction was not performed.
By this step, the DMSO solution became a DMSO suspension.
<二酸化炭素の放出>
 次いで、工程(A)(工程(A1))を行った後の前記DMSO懸濁液に、ジ-n-ヘキシルアミン(塩基触媒)を添加することにより、ジ-n-ヘキシルアミンの濃度が0.7mMであるDMSO懸濁液を得た。
 次いで、このDMSO懸濁液を用いた点以外は、実施例18の場合と同じ方法で、工程(B)(工程(B1)及び工程(B2)の両方に相当)を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図22に示す。図22中には、実施例18の結果もあわせて示している。
<Carbon dioxide release>
Then, by adding di-n-hexylamine (base catalyst) to the DMSO suspension after performing step (A) (step (A1)), the concentration of di-n-hexylamine is 0. A DMSO suspension of 0.7 mM was obtained.
Next, step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG. The results of Example 18 are also shown in FIG. 22.
 図22から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。例えば、加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。ただし、前記二酸化炭素の濃度の最大値は、実施例20の方が実施例18よりも高く、これは、塩基触媒の使用効果であると推測された。 As is clear from FIG. 22, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. However, the maximum value of the carbon dioxide concentration was higher in Example 20 than in Example 18, which was presumed to be the effect of using the base catalyst.
 加熱処理の開始から120分後までに放出された二酸化炭素の量は、1.20mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、100%であると判断された。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、98%であった。
 本工程により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.20 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was determined to be 100%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 98%.
By this step, in the DMSO suspension, the white solid was finally disappeared, and the DMSO solution was regenerated.
[実施例21]
<<二酸化炭素吸収放出剤の製造>>
 実施例18の場合と同じ方法で、二酸化炭素吸収放出剤を製造した。
[Example 21]
<< Manufacture of carbon dioxide absorption / release agent >>
The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 実施例18の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図23に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
 図23から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。排出ガス中の二酸化炭素の濃度は、最終的には約1体積%となり、二酸化炭素は除去されなくなった。二酸化炭素の流入開始から約240分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.23mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、62%であった。
 本工程により、前記DMSO溶液はDMSO懸濁液となった。
As is clear from FIG. 23, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. The concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed. The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.23 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 62% when the amino group was not limited and the correction was not performed.
By this step, the DMSO solution became a DMSO suspension.
<二酸化炭素の放出>
 次いで、工程(A)(工程(A1))を行った後の前記DMSO懸濁液に、トリ-n-ヘキシルアミン(塩基触媒)を添加することにより、トリ-n-ヘキシルアミンの濃度が0.7mMであるDMSO懸濁液を得た。
 次いで、このDMSO懸濁液を用いた点以外は、実施例18の場合と同じ方法で、工程(B)(工程(B1)及び工程(B2)の両方に相当)を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図24に示す。図24中には、実施例18の結果もあわせて示している。
<Carbon dioxide release>
Then, by adding tri-n-hexylamine (base catalyst) to the DMSO suspension after performing step (A) (step (A1)), the concentration of tri-n-hexylamine is 0. A DMSO suspension of 0.7 mM was obtained.
Next, step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG. The results of Example 18 are also shown in FIG. 24.
 図24から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。例えば、加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。前記二酸化炭素の濃度の最大値は、実施例21の方が実施例18よりもやや高かった。また、実施例21の方が実施例18よりも、前記二酸化炭素の濃度が0体積%になるまでの時間が短かった。 As is clear from FIG. 24, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. The maximum value of the carbon dioxide concentration was slightly higher in Example 21 than in Example 18. In addition, the time required for the carbon dioxide concentration to reach 0% by volume was shorter in Example 21 than in Example 18.
 加熱処理の開始から120分後までに放出された二酸化炭素の量は、0.95mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、95%であった。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、77%であった。
 本工程により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released 120 minutes after the start of the heat treatment was 0.95 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was 95%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 77%.
By this step, in the DMSO suspension, the white solid was finally disappeared, and the DMSO solution was regenerated.
[実施例22]
<<二酸化炭素吸収放出剤の製造>>
 実施例18の場合と同じ方法で、二酸化炭素吸収放出剤を製造した。
[Example 22]
<< Manufacture of carbon dioxide absorption / release agent >>
The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 実施例18の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図25に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
 図25から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。排出ガス中の二酸化炭素の濃度は、最終的には約1体積%となり、二酸化炭素は除去されなくなった。二酸化炭素の流入開始から約240分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.18mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、59%であった。
 本工程により、前記DMSO溶液はDMSO懸濁液となった。
As is clear from FIG. 25, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. The concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed. The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.18 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 59% when the amino group was not limited and the correction was not performed.
By this step, the DMSO solution became a DMSO suspension.
<二酸化炭素の放出>
 次いで、工程(A)(工程(A1))を行った後の前記DMSO懸濁液に、ジアザビシクロウンデセン(DBU、塩基触媒)を添加することにより、DBUの濃度が0.7mMであるDMSO懸濁液を得た。
 次いで、このDMSO懸濁液を用いた点以外は、実施例18の場合と同じ方法で、工程(B)(工程(B1)及び工程(B2)の両方に相当)を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図26に示す。図26中には、実施例18の結果もあわせて示している。
<Carbon dioxide release>
Next, by adding diazabicycloundecene (DBU, base catalyst) to the DMSO suspension after performing step (A) (step (A1)), the concentration of DBU is 0.7 mM. A DMSO suspension was obtained.
Next, step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG. The results of Example 18 are also shown in FIG. 26.
 図26から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。例えば、加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。前記二酸化炭素の濃度の最大値は、実施例22の方が実施例18よりもやや高かった。また、同じ時間で比較した場合、前記二酸化炭素の濃度が最大となるまでは、実施例22の方が実施例18よりも、前記二酸化炭素の濃度が高い傾向にあり、前記二酸化炭素の濃度が最大となった後は、実施例22の方が実施例18よりも、前記二酸化炭素の濃度が低い傾向にあった。 As is clear from FIG. 26, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. The maximum value of the carbon dioxide concentration was slightly higher in Example 22 than in Example 18. Further, when compared at the same time, the carbon dioxide concentration tends to be higher in Example 22 than in Example 18 until the carbon dioxide concentration becomes maximum, and the carbon dioxide concentration tends to be higher. After reaching the maximum, the concentration of carbon dioxide in Example 22 tended to be lower than that in Example 18.
 加熱処理の開始から120分後までに放出された二酸化炭素の量は、1.06mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、100%であると判断された。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、90%であった。
 本工程により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.06 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was determined to be 100%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 90%.
By this step, in the DMSO suspension, the white solid was finally disappeared, and the DMSO solution was regenerated.
[実施例23]
<<二酸化炭素吸収放出剤の製造>>
 実施例18の場合と同じ方法で、二酸化炭素吸収放出剤を製造した。
[Example 23]
<< Manufacture of carbon dioxide absorption / release agent >>
The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 実施例18の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図27に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
 図27から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。排出ガス中の二酸化炭素の濃度は、最終的には約1体積%となり、二酸化炭素は除去されなくなった。二酸化炭素の流入開始から約240分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.27mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、64%であった。
 本工程により、前記DMSO溶液はDMSO懸濁液となった。
As is clear from FIG. 27, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. The concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed. The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.27 mmol within about 240 minutes after the start of the inflow of carbon dioxide. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 64% when the amino group was not limited and the correction was not performed.
By this step, the DMSO solution became a DMSO suspension.
<二酸化炭素の放出>
 次いで、工程(A)(工程(A1))を行った後の前記DMSO懸濁液に、酸化マグネシウム(塩基触媒)を添加することにより、酸化マグネシウムの濃度が24.8mMであるDMSO懸濁液を得た。
 次いで、このDMSO懸濁液を用いた点以外は、実施例18の場合と同じ方法で、工程(B)(工程(B1)及び工程(B2)の両方に相当)を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図28に示す。図28中には、実施例18の結果もあわせて示している。
<Carbon dioxide release>
Next, by adding magnesium oxide (base catalyst) to the DMSO suspension after performing step (A) (step (A1)), the concentration of magnesium oxide is 24.8 mM. Got
Next, step (B) (corresponding to both step (B1) and step (B2)) was performed in the same manner as in Example 18 except that this DMSO suspension was used, and the exhaust gas was discharged. The concentration of carbon dioxide was measured. The results are shown in FIG. The results of Example 18 are also shown in FIG. 28.
 図28から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。例えば、加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は減少した。ただし、前記二酸化炭素の濃度の最大値は、実施例23の方が実施例18よりも高く、これは、塩基触媒の使用効果であると推測された。 As is clear from FIG. 28, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. For example, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide became maximum, and then the concentration of the carbon dioxide decreased. However, the maximum value of the carbon dioxide concentration was higher in Example 23 than in Example 18, which was presumed to be the effect of using the base catalyst.
 加熱処理の開始から120分後までに放出された二酸化炭素の量は、1.11mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率は、100%であると判断された。そして、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、87%であった。
 本工程により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released 120 minutes after the start of the heat treatment was 1.11 mmol. The corrected emission rate of carbon dioxide when the amino group was limited, which was calculated using this emission amount, was determined to be 100%. The carbon dioxide emission rate without correction, which was calculated using the above-mentioned carbon dioxide absorption amount and emission amount, was 87%.
By this step, in the DMSO suspension, the white solid was finally disappeared, and the DMSO solution was regenerated.
[実施例24]
<<二酸化炭素吸収放出剤の製造>>
 実施例18の場合と同じ方法で、二酸化炭素吸収放出剤を製造した。
[Example 24]
<< Manufacture of carbon dioxide absorption / release agent >>
The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 実施例18の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図29に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
 図29から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。排出ガス中の二酸化炭素の濃度は、最終的には約1体積%となり、二酸化炭素は除去されなくなった。二酸化炭素の流入開始から約240分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.25mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、63%であった。
 本工程により、前記DMSO溶液はDMSO懸濁液となった。
As is clear from FIG. 29, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. The concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed. The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.25 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 63% when the amino group was not limited and the correction was not performed.
By this step, the DMSO solution became a DMSO suspension.
<二酸化炭素の放出>
 次いで、窒素ガスを50mL/minの流量で、試験管の外部から、試験管の内部の前記DMSO懸濁液中に流入させてバブリングしながら、前記DMSO懸濁液を30℃で90分間加熱処理し(工程(B)、工程(B1))、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、FT-IRを用いて、排出ガス中の二酸化炭素の濃度を測定した。
 次いで、前記DMSO懸濁液を40℃で90分間加熱処理し(工程(B)、工程(B1))、同様に排出ガス中の二酸化炭素の濃度を測定した。
 次いで、前記DMSO懸濁液を50℃で90分間加熱処理し(工程(B)、工程(B1))、同様に排出ガス中の二酸化炭素の濃度を測定した。
 次いで、前記DMSO懸濁液を60℃で90分間加熱処理し(工程(B)、工程(B1))、同様に排出ガス中の二酸化炭素の濃度を測定した。
 以上の結果を図30に示す。
<Carbon dioxide release>
Next, the DMSO suspension was heat-treated at 30 ° C. for 90 minutes while flowing nitrogen gas from the outside of the test tube into the DMSO suspension inside the test tube at a flow rate of 50 mL / min and bubbling. (Step (B), Step (B1)), the gas inside the test tube was discharged to the outside of the test tube from the gas outlet of the three-way cock. Then, using FT-IR, the concentration of carbon dioxide in the exhaust gas was measured.
Next, the DMSO suspension was heat-treated at 40 ° C. for 90 minutes (step (B), step (B1)), and the concentration of carbon dioxide in the exhaust gas was measured in the same manner.
Next, the DMSO suspension was heat-treated at 50 ° C. for 90 minutes (step (B), step (B1)), and the concentration of carbon dioxide in the exhaust gas was measured in the same manner.
Next, the DMSO suspension was heat-treated at 60 ° C. for 90 minutes (step (B), step (B1)), and the concentration of carbon dioxide in the exhaust gas was measured in the same manner.
The above results are shown in FIG.
 図30から明らかなように、排出ガス中の二酸化炭素の濃度は、加熱処理の温度が30℃、40℃、50℃及び60℃に変更された後、速やかに増大して最大となり、その後減少した。そして、60℃での加熱処理を行うことで、二酸化炭素の濃度は最終的に0体積%となった。すなわち、二酸化炭素吸収放出剤(前記イソホロンジアミン誘導体)からの二酸化炭素の放出は、60℃での加熱処理により完了したことを示していた。 As is clear from FIG. 30, the concentration of carbon dioxide in the exhaust gas rapidly increases to the maximum and then decreases after the heat treatment temperature is changed to 30 ° C, 40 ° C, 50 ° C and 60 ° C. bottom. Then, by performing the heat treatment at 60 ° C., the concentration of carbon dioxide finally became 0% by volume. That is, it was shown that the release of carbon dioxide from the carbon dioxide absorption / release agent (the isophorone diamine derivative) was completed by the heat treatment at 60 ° C.
 加熱処理の開始以降に放出された二酸化炭素(すなわち、30~90℃でのすべての加熱処理が終了するまでに放出された二酸化炭素)の量は、1.40mmolであった。この放出量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正放出率と、上述の二酸化炭素の吸収量と放出量を用いて算出される、補正を行わない場合の二酸化炭素の放出率は、いずれも100%であると判断された。
 本工程により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
The amount of carbon dioxide released after the start of the heat treatment (ie, the carbon dioxide released by the end of all heat treatment at 30-90 ° C.) was 1.40 mmol. The corrected emission rate of carbon dioxide when the amino group is limited, which is calculated using this emission amount, and the carbon dioxide when no correction is performed, which is calculated using the above-mentioned absorption amount and emission amount of carbon dioxide. The release rate of carbon dioxide was determined to be 100%.
By this step, in the DMSO suspension, the white solid was finally disappeared, and the DMSO solution was regenerated.
[実施例25]
<<二酸化炭素吸収放出剤の製造>>
 実施例18の場合と同じ方法で、二酸化炭素吸収放出剤を製造した。
[Example 25]
<< Manufacture of carbon dioxide absorption / release agent >>
The carbon dioxide absorbing / releasing agent was produced in the same manner as in Example 18.
<<二酸化炭素の回収>>
<二酸化炭素の吸収>
 実施例18の場合と同じ方法で、工程(A)(工程(A1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図31に示す。
<< Recovery of carbon dioxide >>
<Absorption of carbon dioxide>
Step (A) (step (A1)) was carried out in the same manner as in the case of Example 18, and the concentration of carbon dioxide in the exhaust gas was measured. The results are shown in FIG.
 図31から明らかなように、排出ガス中の二酸化炭素の濃度は、実施例18の場合と同様の傾向を示した。排出ガス中の二酸化炭素の濃度は、最終的には約1体積%となり、二酸化炭素は除去されなくなった。二酸化炭素の流入開始から約240分後までに、前記DMSO溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、1.20mmolであった。この吸収量とイソホロンジアミンの使用量を用いて算出される、アミノ基を限定した場合の二酸化炭素の補正吸収率は、100%であると判断された。そして、アミノ基を限定せず、補正を行わない場合の二酸化炭素の吸収率は、60%であった。
 本工程により、前記DMSO溶液はDMSO懸濁液となった。
As is clear from FIG. 31, the concentration of carbon dioxide in the exhaust gas showed the same tendency as in the case of Example 18. The concentration of carbon dioxide in the exhaust gas eventually became about 1% by volume, and carbon dioxide was not removed. The amount of carbon dioxide absorbed by the DMSO solution (carbon dioxide absorbing / releasing agent) was calculated to be 1.20 mmol from the start of the inflow of carbon dioxide to about 240 minutes later. It was determined that the corrected absorption rate of carbon dioxide when the amino group was limited, which was calculated using this absorption amount and the amount of isophorone diamine used, was 100%. The absorption rate of carbon dioxide was 60% when the amino group was not limited and the correction was not performed.
By this step, the DMSO solution became a DMSO suspension.
<二酸化炭素の放出>
 次いで、加熱処理の温度を60℃に代えて100℃とした点以外は、実施例18の場合と同じ方法で、工程(B)(工程(B1))を行い、前記排出ガス中の二酸化炭素の濃度を測定した。結果を図32に示す。
<Carbon dioxide release>
Next, steps (B) (step (B1)) were performed in the same manner as in Example 18 except that the temperature of the heat treatment was changed to 100 ° C. instead of 60 ° C., and carbon dioxide in the exhaust gas was used. The concentration of carbon dioxide was measured. The results are shown in FIG.
 図32から明らかなように、加熱処理の開始から約10分後に、前記二酸化炭素の濃度が最大となり、その後、前記二酸化炭素の濃度は急激に減少して、加熱処理の開始から約19分後には、前記二酸化炭素の濃度はほぼ0体積%となった。そして、前記二酸化炭素の濃度は、最大で、検出の上限値である6体積%を超えていた。これらの結果から、本実施例では、実施例18の場合(加熱処理の温度が60℃の場合)よりも、前記DMSO懸濁液(二酸化炭素吸収放出剤)から二酸化炭素が急激に放出されたことを確認できた。
 本工程により、前記DMSO懸濁液においては、最終的に前記白色固形物が消失しており、DMSO溶液が再生されていた。
As is clear from FIG. 32, about 10 minutes after the start of the heat treatment, the concentration of the carbon dioxide becomes maximum, and then the concentration of the carbon dioxide decreases sharply, and about 19 minutes after the start of the heat treatment. The concentration of carbon dioxide was almost 0% by volume. The concentration of carbon dioxide at the maximum exceeded the upper limit of detection, 6% by volume. From these results, in this example, carbon dioxide was released more rapidly from the DMSO suspension (carbon dioxide absorbing / releasing agent) than in the case of Example 18 (when the temperature of the heat treatment was 60 ° C.). I was able to confirm that.
By this step, in the DMSO suspension, the white solid was finally disappeared, and the DMSO solution was regenerated.
[実施例26]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとジメチルスルホキシド(DMSO)を混合することにより、イソホロンジアミンの濃度が0.07Mである、イソホロンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 26]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and dimethyl sulfoxide (DMSO), a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 0.07 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 試験管中に、上記で得られたイソホロンジアミンのDMSO溶液(15mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、室温下で前記装置を用いて、二酸化炭素を1体積%、窒素を99体積%でそれぞれ含む混合ガスを、20mL/min(二酸化炭素が0.54mmol/h)の流量で、試験管の外部から、試験管の内部の前記DMSO溶液中に流入させてバブリングする(工程(a)、工程(a1))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、実施例1の場合と同じ方法で、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図33に示す。
<< Absorption of carbon dioxide >>
A DMSO solution (15 mL) of the isophorone diamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, using the above device at room temperature, a mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added to the test tube at a flow rate of 20 mL / min (0.54 mmol / h of carbon dioxide). From the outside, the gas inside the test tube is flowed into the DMSO solution inside the test tube for bubbling (steps (a) and (a1)), and the gas inside the test tube is discharged from the gas outlet of the three-way cock to the test tube. It was discharged to the outside. Then, the amount of carbon dioxide absorbed by the DMSO solution (that is, the carbon dioxide absorption / release agent) was calculated by the same method as in the case of Example 1, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図33から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は緩やかに低下し、二酸化炭素の流入開始から約120分後に二酸化炭素の除去効率の低下がより大きくなり、二酸化炭素の流入開始から約200分後には、二酸化炭素が除去されなくなった。
 得られた反応物が(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the DMSO solution. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 33, the carbon dioxide removal efficiency gradually decreases immediately after the start of the inflow of carbon dioxide, and the decrease in the carbon dioxide removal efficiency becomes larger about 120 minutes after the start of the inflow of carbon dioxide. Approximately 200 minutes after the start of carbon inflow, carbon dioxide was no longer removed.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
[実施例27]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとジメチルスルホキシド(DMSO)を混合することにより、イソホロンジアミンの濃度が0.1Mである、イソホロンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 27]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and dimethyl sulfoxide (DMSO), a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 0.1 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例26の場合と同じ方法で、工程(a)(工程(a1))を行い、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図33に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図33から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は緩やかに低下し、二酸化炭素の流入開始から約100分後に二酸化炭素の除去効率の低下がより大きくなり、二酸化炭素の流入開始から約180分後には、二酸化炭素が除去されなくなった。ただし、二酸化炭素の流入開始から約140分後まで、特に約40分後から約140分後までは、本実施例の方が実施例26の場合よりも、二酸化炭素の除去効率が明らかに高かった。
 得られた反応物が(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the DMSO solution. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 33, the carbon dioxide removal efficiency gradually decreases immediately after the start of the inflow of carbon dioxide, and the decrease in the carbon dioxide removal efficiency becomes larger about 100 minutes after the start of the inflow of carbon dioxide. Approximately 180 minutes after the start of carbon inflow, carbon dioxide was no longer removed. However, from about 140 minutes after the start of inflow of carbon dioxide, especially from about 40 minutes to about 140 minutes, the efficiency of removing carbon dioxide was clearly higher in this example than in the case of Example 26. rice field.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
[実施例28]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとジメチルスルホキシド(DMSO)を混合することにより、イソホロンジアミンの濃度が0.2Mである、イソホロンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 28]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and dimethyl sulfoxide (DMSO), a DMSO solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例26の場合と同じ方法で、工程(a)(工程(a1))を行い、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図33に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図33から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は100%に近く、前記DMSO溶液は高効率で二酸化炭素を吸収していた。二酸化炭素の流入開始から約120分後に、二酸化炭素の除去効率の急激な低下が始まり、二酸化炭素の流入開始から約85分後に、二酸化炭素の除去効率の低下は緩やかとなり、二酸化炭素の流入開始から約175分後には、二酸化炭素が除去されなくなった。二酸化炭素の流入開始から約135分後まで、特に約40分後から約135分後までは、本実施例の方が実施例26及び実施例27の場合よりも、二酸化炭素の除去効率が明らかに高かった。
 得られた反応物が(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the DMSO solution. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 33, immediately after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was close to 100%, and the DMSO solution absorbed carbon dioxide with high efficiency. Approximately 120 minutes after the start of inflow of carbon dioxide, a sharp decrease in carbon dioxide removal efficiency begins, and about 85 minutes after the start of inflow of carbon dioxide, the decrease in carbon dioxide removal efficiency becomes gradual and the inflow of carbon dioxide starts. After about 175 minutes, carbon dioxide was no longer removed. From about 135 minutes after the start of inflow of carbon dioxide, especially from about 40 minutes to about 135 minutes, the carbon dioxide removal efficiency of this example is clearer than that of Examples 26 and 27. It was expensive.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
[実施例29]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンとジメチルスルホキシド(DMSO)を混合することにより、シクロヘキシルアミンの濃度が0.07Mである、シクロヘキシルアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 29]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing cyclohexylamine and dimethyl sulfoxide (DMSO), a DMSO solution of cyclohexylamine having a concentration of cyclohexylamine of 0.07 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 試験管中に、上記で得られたシクロヘキシルアミンのDMSO溶液(15mL)を入れ、実施例1の場合と同じ装置を組み立てた。
 次いで、室温下で前記装置を用いて、二酸化炭素を1体積%、窒素を99体積%でそれぞれ含む混合ガスを、20mL/min(二酸化炭素が0.54mmol/h)の流量で、試験管の外部から、試験管の内部の前記DMSO溶液中に流入させてバブリングする(工程(a))とともに、試験管の内部のガスを三方コックのガスの排出口から、試験管の外部に排出させた。そして、実施例1の場合と同じ方法で、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図34に示す。
<< Absorption of carbon dioxide >>
The DMSO solution (15 mL) of cyclohexylamine obtained above was placed in a test tube, and the same apparatus as in Example 1 was assembled.
Then, using the above device at room temperature, a mixed gas containing 1% by volume of carbon dioxide and 99% by volume of nitrogen was added to the test tube at a flow rate of 20 mL / min (0.54 mmol / h of carbon dioxide). From the outside, the gas inside the test tube was flowed into the DMSO solution inside the test tube for bubbling (step (a)), and the gas inside the test tube was discharged to the outside of the test tube from the gas discharge port of the three-way cock. .. Then, the amount of carbon dioxide absorbed by the DMSO solution (that is, the carbon dioxide absorption / release agent) was calculated by the same method as in the case of Example 1, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 実施例26の場合とは異なり、二酸化炭素の流入開始から時間が経過しても、前記DMSO溶液中に固形物は生じなかった。
 図34から明らかなように、二酸化炭素の流入開始直後から、時間の経過とともに二酸化炭素の除去効率が低下し、二酸化炭素の流入開始から約150分後には、二酸化炭素が除去されなくなった。
 得られた反応物がN-シクロヘキシルカルバミン酸であることは、13C-NMRによる分析で確認した。
Unlike the case of Example 26, no solid substance was formed in the DMSO solution even after a lapse of time from the start of the inflow of carbon dioxide.
As is clear from FIG. 34, the efficiency of removing carbon dioxide decreased with the passage of time immediately after the start of the inflow of carbon dioxide, and the carbon dioxide was not removed about 150 minutes after the start of the inflow of carbon dioxide.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was N-cyclohexylcarbamic acid.
[実施例30]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンとジメチルスルホキシド(DMSO)を混合することにより、シクロヘキシルアミンの濃度が0.1Mである、シクロヘキシルアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 30]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing cyclohexylamine and dimethyl sulfoxide (DMSO), a DMSO solution of cyclohexylamine having a concentration of cyclohexylamine of 0.1 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例29の場合と同じ方法で、工程(a)を行い、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図34に示す。
<< Absorption of carbon dioxide >>
Except for the fact that the carbon dioxide absorbing / releasing agent obtained above was used, the step (a) was carried out in the same manner as in Example 29, and the carbon dioxide was absorbed by the DMSO solution (that is, the carbon dioxide absorbing / releasing agent). The amount was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 実施例29の場合と同様に、二酸化炭素の流入開始から時間が経過しても、前記DMSO溶液中に固形物は生じなかった。
 図34から明らかなように、二酸化炭素の流入開始直後から、時間の経過とともに二酸化炭素の除去効率が低下し、二酸化炭素の流入開始から約170分後には、二酸化炭素が除去されなくなった。本実施例では、二酸化炭素の流入開始時以降は、二酸化炭素の除去効率が実施例29の場合と同程度であった。
 得られた反応物がN-シクロヘキシルカルバミン酸であることは、13C-NMRによる分析で確認した。
As in the case of Example 29, no solid substance was formed in the DMSO solution even after a lapse of time from the start of the inflow of carbon dioxide.
As is clear from FIG. 34, the efficiency of removing carbon dioxide decreased with the passage of time immediately after the start of the inflow of carbon dioxide, and the carbon dioxide was not removed about 170 minutes after the start of the inflow of carbon dioxide. In this example, after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was about the same as in the case of Example 29.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was N-cyclohexylcarbamic acid.
[実施例31]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンとジメチルスルホキシド(DMSO)を混合することにより、シクロヘキシルアミンの濃度が0.2Mである、シクロヘキシルアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 31]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing cyclohexylamine and dimethyl sulfoxide (DMSO), a DMSO solution of cyclohexylamine having a cyclohexylamine concentration of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例29の場合と同じ方法で、工程(a)を行い、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図34に示す。
<< Absorption of carbon dioxide >>
Except for the fact that the carbon dioxide absorbing / releasing agent obtained above was used, the step (a) was carried out in the same manner as in Example 29, and the carbon dioxide was absorbed by the DMSO solution (that is, the carbon dioxide absorbing / releasing agent). The amount was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 実施例29の場合と同様に、二酸化炭素の流入開始から時間が経過しても、前記DMSO溶液中に固形物は生じなかった。
 図34から明らかなように、二酸化炭素の流入開始直後から、時間の経過とともに二酸化炭素の除去効率が低下し、二酸化炭素の流入開始から約170分後には、二酸化炭素が除去されなくなった。本実施例では、二酸化炭素の流入開始時以降は、二酸化炭素の除去効率が実施例29~30の場合と同程度であった。
 得られた反応物がN-シクロヘキシルカルバミン酸であることは、13C-NMRによる分析で確認した。
As in the case of Example 29, no solid substance was formed in the DMSO solution even after a lapse of time from the start of the inflow of carbon dioxide.
As is clear from FIG. 34, the efficiency of removing carbon dioxide decreased with the passage of time immediately after the start of the inflow of carbon dioxide, and the carbon dioxide was not removed about 170 minutes after the start of the inflow of carbon dioxide. In this example, after the start of the inflow of carbon dioxide, the carbon dioxide removal efficiency was about the same as in the cases of Examples 29 to 30.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was N-cyclohexylcarbamic acid.
[実施例32]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンとジメチルスルホキシド(DMSO)を混合することにより、シクロヘキシルアミンの濃度が1Mである、シクロヘキシルアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 32]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing cyclohexylamine and dimethyl sulfoxide (DMSO), a DMSO solution of cyclohexylamine having a concentration of cyclohexylamine of 1 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例29の場合と同じ方法で、工程(a)(工程(a1))を行い、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図34に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 29, except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 本実施例では、実施例29~31の場合とは異なり、二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、シクロヘキシルアミンと二酸化炭素との反応物が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図34から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は緩やかに低下し、二酸化炭素の流入開始から約45分後に二酸化炭素の除去効率の低下がより大きくなり、二酸化炭素の流入開始から約100分後には、二酸化炭素が除去されなくなった。ただし、二酸化炭素の流入開始から約50分後までは、本実施例の方が実施例29~31の場合よりも、二酸化炭素の除去効率が明らかに高かった。本実施例では、実施例29~31の場合よりも、二酸化炭素の除去の際の化合物(1)の消費速度が速かった。
 得られた反応物がN-シクロヘキシルカルバミン酸であることは、13C-NMRによる分析で確認した。
In this example, unlike the cases of Examples 29 to 31, a reaction product of cyclohexylamine and carbon dioxide is generated as a white solid in the DMSO solution as time elapses from the start of inflow of carbon dioxide. rice field. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 34, the carbon dioxide removal efficiency gradually decreases immediately after the start of the inflow of carbon dioxide, and the decrease in the carbon dioxide removal efficiency becomes larger about 45 minutes after the start of the inflow of carbon dioxide. Approximately 100 minutes after the start of carbon inflow, carbon dioxide was no longer removed. However, from the start of the inflow of carbon dioxide to about 50 minutes later, the efficiency of removing carbon dioxide was clearly higher in this example than in the cases of Examples 29 to 31. In this example, the consumption rate of the compound (1) at the time of removing carbon dioxide was faster than that in the cases of Examples 29 to 31.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was N-cyclohexylcarbamic acid.
 実施例29~32の結果から、工程(a)において、液状の二酸化炭素吸収放出剤における化合物(1)の濃度を高くして、化合物(1)と二酸化炭素との反応物を二酸化炭素吸収放出剤中で析出させることにより、二酸化炭素の除去効率の大幅な向上が可能であることを確認できた。 From the results of Examples 29 to 32, in the step (a), the concentration of the compound (1) in the liquid carbon dioxide absorption / release agent is increased to absorb and release the reaction product of the compound (1) and carbon dioxide. It was confirmed that the carbon dioxide removal efficiency can be significantly improved by precipitating in the agent.
[実施例33]
<<二酸化炭素吸収放出剤の製造>>
 シクロヘキシルアミンとジメチルスルホキシド(DMSO)を混合することにより、シクロヘキシルアミンの濃度が0.4Mである、シクロヘキシルアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 33]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing cyclohexylamine and dimethyl sulfoxide (DMSO), a DMSO solution of cyclohexylamine having a cyclohexylamine concentration of 0.4 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例29の場合と同じ方法で、工程(a)(工程(a1))を行い、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。その結果を、実施例28及び31の結果とともに、図35に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 29, except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 35 together with the results of Examples 28 and 31.
 本実施例では、実施例31の場合とは異なり、二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、シクロヘキシルアミンと二酸化炭素との反応物が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図35から明らかなように、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は緩やかに低下し、二酸化炭素の流入開始から約100分後に二酸化炭素の除去効率の低下がより大きくなり、二酸化炭素の流入開始から約220分後には、二酸化炭素が除去されなくなった。ただし、二酸化炭素の流入開始時以降、特に約20分以降は、本実施例の方が実施例31の場合よりも、二酸化炭素の除去効率が明らかに高かった。
 得られた反応物がN-シクロヘキシルカルバミン酸であることは、13C-NMRによる分析で確認した。
In this example, unlike the case of Example 31, a reaction product of cyclohexylamine and carbon dioxide was generated as a white solid in the DMSO solution as time passed from the start of inflow of carbon dioxide. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 35, the carbon dioxide removal efficiency gradually decreases immediately after the start of the inflow of carbon dioxide, and the decrease in the carbon dioxide removal efficiency becomes larger about 100 minutes after the start of the inflow of carbon dioxide. Approximately 220 minutes after the start of carbon inflow, carbon dioxide was no longer removed. However, after the start of the inflow of carbon dioxide, especially after about 20 minutes, the efficiency of removing carbon dioxide was clearly higher in this example than in the case of Example 31.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was N-cyclohexylcarbamic acid.
 実施例31と実施例33の結果から、工程(a)において、液状の二酸化炭素吸収放出剤における化合物(1)の濃度を高くして、化合物(1)と二酸化炭素との反応物を二酸化炭素吸収放出剤中で析出させることにより、二酸化炭素の除去効率の向上が可能であることを確認できた。 From the results of Examples 31 and 33, in step (a), the concentration of compound (1) in the liquid carbon dioxide sink was increased, and the reaction product of compound (1) and carbon dioxide was converted to carbon dioxide. It was confirmed that the efficiency of carbon dioxide removal can be improved by precipitating in the absorption / release agent.
[実施例34]
<<二酸化炭素吸収放出剤の製造>>
 1,4-シクロヘキサンジアミンとジメチルスルホキシド(DMSO)を混合することにより、1,4-シクロヘキサンジアミンの濃度が0.2Mである、1,4-シクロヘキサンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 34]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing 1,4-cyclohexanediamine and dimethyl sulfoxide (DMSO), a DMSO solution of 1,4-cyclohexanediamine having a concentration of 1,4-cyclohexanediamine of 0.2 M was prepared, and this was used as carbon dioxide. It was used as an absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例26の場合と同じ方法で、工程(a)(工程(a1))を行い、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。その結果を、実施例28の結果とともに、図36に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 36 together with the results of Example 28.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、1,4-シクロヘキサンジアミンと二酸化炭素との反応物が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図36から明らかなように、本実施例では、実施例28の場合とは異なり、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は緩やかに低下し、二酸化炭素の流入開始から約120分後に二酸化炭素の除去効率の低下がより大きくなり、二酸化炭素の流入開始から200分後過ぎには、二酸化炭素が除去されなくなった。
 得られた反応物がおもに(4-アミノシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of 1,4-cyclohexanediamine and carbon dioxide was generated as a white solid in the DMSO solution. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 36, in this example, unlike the case of Example 28, the carbon dioxide removal efficiency gradually decreases immediately after the start of the inflow of carbon dioxide, and about 120 minutes from the start of the inflow of carbon dioxide. Later, the decrease in carbon dioxide removal efficiency became larger, and carbon dioxide was not removed 200 minutes after the start of carbon dioxide inflow.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was mainly (4-aminocyclohexyl) carbamic acid.
[実施例35]
<<二酸化炭素吸収放出剤の製造>>
 1,2-シクロヘキサンジアミンとジメチルスルホキシド(DMSO)を混合することにより、1,2-シクロヘキサンジアミンの濃度が0.2Mである、1,2-シクロヘキサンジアミンのDMSO溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 35]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing 1,2-cyclohexanediamine and dimethyl sulfoxide (DMSO), a DMSO solution of 1,2-cyclohexanediamine having a concentration of 1,2-cyclohexanediamine of 0.2 M was prepared, and this was used as carbon dioxide. It was used as an absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例26の場合と同じ方法で、工程(a)(工程(a1))を行い、前記DMSO溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図36に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMSO solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMSO溶液中に、白色固形物として、1,2-シクロヘキサンジアミンと二酸化炭素との反応物が生じた。このように、前記DMSO溶液は、DMSO懸濁液となった。
 図36から明らかなように、本実施例では、実施例34の場合と同様に、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は緩やかに低下し、二酸化炭素の流入開始から約100分後に二酸化炭素の除去効率の低下がより大きくなり、二酸化炭素の流入開始から200分後過ぎには、二酸化炭素が除去されなくなった。
 得られた反応物がおもに(2-アミノシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of 1,2-cyclohexanediamine and carbon dioxide was generated as a white solid in the DMSO solution. As described above, the DMSO solution became a DMSO suspension.
As is clear from FIG. 36, in this example, as in the case of Example 34, the carbon dioxide removal efficiency gradually decreases immediately after the start of the inflow of carbon dioxide, and about 100 minutes from the start of the inflow of carbon dioxide. Later, the decrease in carbon dioxide removal efficiency became larger, and carbon dioxide was not removed 200 minutes after the start of carbon dioxide inflow.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was mainly (2-aminocyclohexyl) carbamic acid.
 実施例33と、実施例35~36と、の比較から、工程(a)においては、化合物(1)1分子中のアミノ基の数が多い方が、化合物(1)と二酸化炭素との反応物が析出し易いことを確認できた。 From the comparison between Examples 33 and Examples 35 to 36, in the step (a), the reaction between the compound (1) and carbon dioxide when the number of amino groups in one molecule of the compound (1) is large. It was confirmed that the substance was easily deposited.
[実施例36]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンと水を混合することにより、イソホロンジアミンの濃度が0.2Mである、イソホロンジアミンの水溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 36]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and water, an aqueous solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例26の場合と同じ方法で、工程(a)(工程(a1))を行い、前記水溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。その結果を、実施例28の結果とともに、図37に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) is performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above is used, and the aqueous solution (that is, the carbon dioxide absorption / release agent) is performed. The amount of carbon dioxide absorbed was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 37 together with the results of Example 28.
 二酸化炭素の流入開始から時間が経過するとともに、前記水溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記水溶液は、水懸濁液となった。
 図37から明らかなように、本実施例では、実施例28の場合と同様に、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は100%に近く、前記水溶液は高効率で二酸化炭素を吸収していた。二酸化炭素の流入開始から約140分後に、二酸化炭素の除去効率の急激な低下が始まり、二酸化炭素の流入開始から約250分後には、二酸化炭素が除去されなくなった。ここまでの間の、前記水溶液(二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出したところ、イソホロンジアミン1molあたり、1.3molであり、目的とする反応物((3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸)が得られており、さらに、イソホロンジアミン1分子中の2個のアミノ基がともに、二酸化炭素と反応して生成したジカルバミン酸も、一部得られた。
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the aqueous solution. As described above, the aqueous solution became an aqueous suspension.
As is clear from FIG. 37, in this example, as in the case of Example 28, the carbon dioxide removal efficiency is close to 100% immediately after the start of the inflow of carbon dioxide, and the aqueous solution is highly efficient in producing carbon dioxide. I was absorbing. Approximately 140 minutes after the start of the inflow of carbon dioxide, the efficiency of removing carbon dioxide began to drop sharply, and about 250 minutes after the start of the inflow of carbon dioxide, carbon dioxide was not removed. When the amount of carbon dioxide absorbed by the aqueous solution (carbon dioxide absorbing / releasing agent) up to this point was calculated, it was 1.3 mol per 1 mol of isophorone diamine, which was the target reactant ((3-aminomethyl-3). , 5,5-trimethylcyclohexyl) carbamic acid) was obtained, and a part of dicarbamic acid produced by reacting with carbon dioxide with two amino groups in one molecule of isophoronediamine was also obtained. ..
[実施例37]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとDMFを混合することにより、イソホロンジアミンの濃度が0.2Mである、イソホロンジアミンのDMF溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 37]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and DMF, a DMF solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例26の場合と同じ方法で、工程(a)(工程(a1))を行い、前記DMF溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図37に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the DMF solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 37.
 二酸化炭素の流入開始から時間が経過するとともに、前記DMF溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記DMF溶液は、DMF懸濁液となった。
 図37から明らかなように、本実施例では、実施例28及び36の場合とは異なり、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は緩やかに低下し、二酸化炭素の流入開始から約150分後に二酸化炭素の除去効率の低下がより大きくなり、二酸化炭素の流入開始から約210分後には、二酸化炭素が除去されなくなった。
 得られた反応物が(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the DMF solution. As described above, the DMF solution became a DMF suspension.
As is clear from FIG. 37, in this example, unlike the cases of Examples 28 and 36, the carbon dioxide removal efficiency gradually decreases immediately after the start of the inflow of carbon dioxide, and about from the start of the inflow of carbon dioxide. After 150 minutes, the decrease in carbon dioxide removal efficiency became larger, and about 210 minutes after the start of the inflow of carbon dioxide, carbon dioxide was not removed.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
[実施例38]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとトルエンを混合することにより、イソホロンジアミンの濃度が0.2Mである、イソホロンジアミンのトルエン溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 38]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and toluene, a toluene solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例26の場合と同じ方法で、工程(a)(工程(a1))を行い、前記トルエン溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図37に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the toluene solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 37.
 二酸化炭素の流入開始から時間が経過するとともに、前記トルエン溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記トルエン溶液は、トルエン懸濁液となった。
 図37から明らかなように、本実施例では、実施例37の場合と同様に、二酸化炭素の流入開始直後から、二酸化炭素の除去効率は緩やかに低下し、二酸化炭素の流入開始から約100分後に二酸化炭素の除去効率の低下がより大きくなり、二酸化炭素の流入開始から約200分後には、二酸化炭素が除去されなくなった。
 得られた反応物が(3-アミノメチル-3,5,5-トリメチルシクロヘキシル)カルバミン酸であることは、13C-NMRによる分析で確認した。
As time passed from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was generated as a white solid in the toluene solution. As described above, the toluene solution became a toluene suspension.
As is clear from FIG. 37, in this example, as in the case of Example 37, the carbon dioxide removal efficiency gradually decreases immediately after the start of the inflow of carbon dioxide, and about 100 minutes from the start of the inflow of carbon dioxide. Later, the decrease in carbon dioxide removal efficiency became larger, and about 200 minutes after the start of the inflow of carbon dioxide, carbon dioxide was not removed.
It was confirmed by analysis by 13 C-NMR that the obtained reaction product was (3-aminomethyl-3,5,5-trimethylcyclohexyl) carbamic acid.
[実施例39]
<<二酸化炭素吸収放出剤の製造>>
 イソホロンジアミンとメタノールを混合することにより、イソホロンジアミンの濃度が0.2Mである、イソホロンジアミンのメタノール溶液を調製し、これを二酸化炭素吸収放出剤とした。
[Example 39]
<< Manufacture of carbon dioxide absorption / release agent >>
By mixing isophorone diamine and methanol, a methanol solution of isophorone diamine having a concentration of isophorone diamine of 0.2 M was prepared, and this was used as a carbon dioxide absorption / release agent.
<<二酸化炭素の吸収>>
 上記で得られた二酸化炭素吸収放出剤を用いた点以外は、実施例26の場合と同じ方法で、工程(a)(工程(a1))を行い、前記メタノール溶液(すなわち二酸化炭素吸収放出剤)による二酸化炭素の吸収量を算出し、二酸化炭素の除去効率(吸収効率)を算出した。結果を図37に示す。
<< Absorption of carbon dioxide >>
Step (a) (step (a1)) was performed in the same manner as in Example 26 except that the carbon dioxide absorption / release agent obtained above was used, and the methanol solution (that is, the carbon dioxide absorption / release agent) was used. ) Was calculated, and the carbon dioxide removal efficiency (absorption efficiency) was calculated. The results are shown in FIG. 37.
 二酸化炭素の流入開始からしばらく時間が経過した後に、前記メタノール溶液中に、白色固形物として、イソホロンジアミンと二酸化炭素との反応物が生じた。このように、前記メタノール溶液は、メタノール懸濁液となった。
 図37から明らかなように、本実施例では、実施例28、36~38の場合とは異なり、二酸化炭素の流入開始直後からほぼ一貫して、これら実施例よりも二酸化炭素の除去効率が低く、二酸化炭素の流入開始から約160分後には、二酸化炭素が除去されなくなった。
After a while from the start of the inflow of carbon dioxide, a reaction product of isophorone diamine and carbon dioxide was formed as a white solid in the methanol solution. As described above, the methanol solution became a methanol suspension.
As is clear from FIG. 37, in this example, unlike the cases of Examples 28 and 36 to 38, the carbon dioxide removal efficiency is almost consistently lower than that of these Examples immediately after the start of the inflow of carbon dioxide. About 160 minutes after the start of the inflow of carbon dioxide, carbon dioxide was not removed.
 実施例28、36~39の工程(a)において、二酸化炭素の流入開始から、イソホロンジアミンと二酸化炭素との反応物(白色固形物)の析出が始まるまでの時間は、それぞれ35分(実施例28)、75分(実施例36)、20分(実施例37)、10分(実施例38)、及び130分(実施例39)であった。すなわち、二酸化炭素吸収放出剤中の溶媒の種類を調節することで、二酸化炭素の除去効率を調節できることが確認された。 In the steps (a) of Examples 28 and 36 to 39, the time from the start of inflow of carbon dioxide to the start of precipitation of the reaction product (white solid substance) of isophorone diamine and carbon dioxide is 35 minutes (Example). 28), 75 minutes (Example 36), 20 minutes (Example 37), 10 minutes (Example 38), and 130 minutes (Example 39). That is, it was confirmed that the carbon dioxide removal efficiency can be adjusted by adjusting the type of the solvent in the carbon dioxide absorbing / releasing agent.
 本発明は、二酸化炭素の固定、及び二酸化炭素の回収の分野全般で利用可能である。 The present invention can be used in all fields of carbon dioxide fixation and carbon dioxide recovery.

Claims (9)

  1.  二酸化炭素の回収方法であって、
     前記二酸化炭素の回収方法は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
     (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
    で表される化合物を含有する液状の二酸化炭素吸収放出剤に、二酸化炭素を吸収させることで、前記一般式(1)で表される化合物と、前記二酸化炭素と、の反応物を、前記液状の二酸化炭素吸収放出剤中で析出させる工程(A1)と、
     前記二酸化炭素を吸収し、前記反応物が析出した後の前記液状の二酸化炭素吸収放出剤を、加熱処理することにより、前記液状の二酸化炭素吸収放出剤から前記二酸化炭素を放出させる工程(B1)と、を有する、二酸化炭素の回収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)。
    It ’s a method of recovering carbon dioxide.
    The method for recovering carbon dioxide is the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is less than or equal to 12, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
    By allowing a liquid carbon dioxide absorbing / releasing agent containing the compound represented by the above to absorb carbon dioxide, the reaction product of the compound represented by the general formula (1) and the carbon dioxide is formed into the liquid. Step (A1) of precipitating in the carbon dioxide absorption / release agent of
    Step (B1) of absorbing the carbon dioxide and releasing the carbon dioxide from the liquid carbon dioxide absorbing / releasing agent by heat-treating the liquid carbon dioxide absorbing / releasing agent after the reactant is precipitated (B1). A method for recovering carbon dioxide (where m is 0, p 1 is 2, and two amino groups with p 1 are arranged in meta positions with each other. Excluding carbon dioxide recovery methods).
  2.  塩基触媒の共存下で前記工程(B1)を行う、請求項1に記載の二酸化炭素の回収方法。 The method for recovering carbon dioxide according to claim 1, wherein the step (B1) is performed in the coexistence of a base catalyst.
  3.  二酸化炭素の回収方法であって、
     前記二酸化炭素の回収方法は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000002
     (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
    で表される化合物を含有する二酸化炭素吸収放出剤に、二酸化炭素を吸収させる工程(A)と、
     塩基触媒の共存下で、前記二酸化炭素を吸収後の前記二酸化炭素吸収放出剤を、加熱処理することにより、前記二酸化炭素吸収放出剤から前記二酸化炭素を放出させる工程(B2)と、を有する、二酸化炭素の回収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)。
    It ’s a method of recovering carbon dioxide.
    The method for recovering carbon dioxide is the following general formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is 12 or less, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
    The step (A) of allowing a carbon dioxide absorbing / releasing agent containing the compound represented by the above to absorb carbon dioxide, and
    It comprises a step (B2) of releasing the carbon dioxide from the carbon dioxide absorbing / releasing agent by heat-treating the carbon dioxide absorbing / releasing agent after absorbing the carbon dioxide in the coexistence of a base catalyst. Carbon dioxide recovery method (However, carbon dioxide recovery method when m is 0, p 1 is 2, and two amino groups with p 1 are arranged at the meta positions of each other. except for).
  4.  前記一般式(1)で表される化合物が、下記一般式(11A)、(12A)又は(11B)
    Figure JPOXMLDOC01-appb-C000003
     (式中、R11、R12、R13及びR21は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、カルボキシ基、炭素数2~11のアルキルオキシカルボニル基、ホルミル基、炭素数2~11のアルキルカルボニル基、炭素数1~10のアルキルチオ基、スルホ基、炭素数1~10のアルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q11及びq12は、それぞれ独立に、0~6の整数であり、q11が2以上の整数である場合には、2個以上のR11は互いに同一でも異なっていてもよく、q12が2以上の整数である場合には、2個以上のR12は互いに同一でも異なっていてもよく、q11が2以上の整数であり、かつ、2個以上のR11が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR11は相互に結合して環を形成していてもよく、q12が2以上の整数であり、かつ、2個以上のR12が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR12は相互に結合して環を形成していてもよく;q13及びq21は、それぞれ独立に、0~4の整数であり、q13が2以上の整数である場合には、2個以上のR13は互いに同一でも異なっていてもよく、q21が2以上の整数である場合には、2個以上のR21は互いに同一でも異なっていてもよく、q13が2以上の整数であり、かつ、2個以上のR13が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR13は相互に結合して環を形成していてもよく、q21が2以上の整数であり、かつ、2個以上のR21が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR21は相互に結合して環を形成していてもよい。)
    で表される化合物である、請求項1~3のいずれか一項に記載の二酸化炭素の回収方法(ただし、前記一般式(12A)において、シクロヘキサン環骨格を構成している炭素原子に直接結合している2個のアミノ基が、互いにメタ位に配置されている場合の、二酸化炭素の回収方法を除く)。
    The compound represented by the general formula (1) is the following general formula (11A), (12A) or (11B).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 11 , R 12 , R 13 and R 21 are independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a carboxy group and an alkyloxy having 2 to 11 carbon atoms, respectively. Carbonyl group, formyl group, alkylcarbonyl group with 2 to 11 carbon atoms, alkylthio group with 1 to 10 carbon atoms, sulfo group, alkyloxysulfonyl group with 1 to 10 carbon atoms, nitro group, hydroxyl group, thiol group, cyano group or It is a halogen atom and the alkyl group may have an amino group as the substituent; q 11 and q 12 are independently integers of 0 to 6 and q 11 is an integer of 2 or more. In some cases, the two or more R 11s may be the same or different from each other, and if q 12 is an integer of two or more, the two or more R 12s may be the same or different from each other. When q 11 is an integer of 2 or more and 2 or more R 11s are the alkyl groups which may have an amino group as the substituent, the two or more R 11s are mutual. The alkyl group may be bonded to to form a ring, q 12 may be an integer of 2 or more, and R 12 of 2 or more may have an amino group as the substituent. In some cases, the two or more R 12s may be coupled to each other to form a ring; q 13 and q 21 are independently integers from 0 to 4, and q 13 is 2 or more. If the integers of, the two or more R 13s may be the same or different from each other, and if q 21 is an integer of two or more, the two or more R 21s may be the same or different from each other. Also, when q 13 is an integer of 2 or more and 2 or more R 13 are the alkyl groups which may have an amino group as the substituent, the two or more Rs may be used. 13 may be bonded to each other to form a ring, q 21 may be an integer of 2 or more, and 2 or more R 21 may have an amino group as the substituent. When it is a group, the two or more R 21s may be bonded to each other to form a ring.)
    The method for recovering carbon dioxide according to any one of claims 1 to 3, which is a compound represented by (however, in the above general formula (12A), it is directly bonded to the carbon atom constituting the cyclohexane ring skeleton. Except for the method of recovering carbon dioxide when the two amino groups are located at the meta positions of each other).
  5.  前記一般式(11A)、(12A)又は(11B)で表される化合物が、下記一般式(111A)、(121A)、(122A)又は(111B)
    Figure JPOXMLDOC01-appb-C000004
     (式中、R111、R121、R122、R131及びR211は、それぞれ独立に、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数2~6のアルキルオキシカルボニル基、ホルミル基、炭素数2~6のアルキルカルボニル基、炭素数1~5のアルキルチオ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は前記置換基としてアミノ基を有していてもよく;q111、q121及びq122は、それぞれ独立に、0~4の整数であり、q111が2以上の整数である場合には、2個以上のR111は互いに同一でも異なっていてもよく、q121が2以上の整数である場合には、2個以上のR121は互いに同一でも異なっていてもよく、q122が2以上の整数である場合には、2個以上のR122は互いに同一でも異なっていてもよく、q111が2以上の整数であり、かつ、2個以上のR111が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR111は相互に結合して環を形成していてもよく、q121が2以上の整数であり、かつ、2個以上のR121が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR121は相互に結合して環を形成していてもよく、q122が2以上の整数であり、かつ、2個以上のR122が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個以上のR122は相互に結合して環を形成していてもよく;q131及びq211は、それぞれ独立に、0~2の整数であり、q131が2である場合には、2個のR131は互いに同一でも異なっていてもよく、q211が2である場合には、2個のR211は互いに同一でも異なっていてもよく、q131が2であり、かつ、2個のR131が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR131は相互に結合して環を形成していてもよく、q211が2であり、かつ、2個のR211が前記置換基としてアミノ基を有していてもよい前記アルキル基である場合には、前記2個のR211は相互に結合して環を形成していてもよい。)で表される化合物である、請求項4に記載の二酸化炭素の回収方法。
    The compound represented by the general formula (11A), (12A) or (11B) is the following general formula (111A), (121A), (122A) or (111B).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 111 , R 121 , R 122 , R 131 and R 211 are independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms and an alkyloxy group having 2 to 6 carbon atoms, respectively. It is a carbonyl group, a formyl group, an alkylcarbonyl group having 2 to 6 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group has an amino group as the substituent. Independently, q 111 , q 121 and q 122 are integers of 0 to 4, and when q 111 is an integer of 2 or more, the two or more R 111s are the same as each other. However, if q 121 is an integer of 2 or more, the two or more R 121s may be the same or different from each other, and if q 122 is an integer of 2 or more, 2 or more. The number of R 122s may be the same or different from each other, q 111 may be an integer of 2 or more, and two or more R 111s may have an amino group as the substituent. When is, the two or more R 111s may be coupled to each other to form a ring, q 121 is an integer of 2 or more, and two or more R 121s are the substituents. In the case of the alkyl group which may have an amino group, the two or more R 121s may be bonded to each other to form a ring, and q 122 is an integer of 2 or more. In addition, when the two or more R 122s are the alkyl groups which may have an amino group as the substituent, the two or more R 122s are bonded to each other to form a ring. May; q 131 and q 211 are independently integers of 0 to 2, and if q 131 is 2, the two R 131s may be the same or different from each other, q 211 . When is 2, the two R 211s may be the same or different from each other, even if q 131 is 2 and the two R 131s have an amino group as the substituent. In the case of a good alkyl group, the two R 131s may be bonded to each other to form a ring, q 211 is 2, and the two R 211s are the substituents. The compound represented by the above-mentioned alkyl group which may have an amino group, the two R 211s may be bonded to each other to form a ring). 4. The method for recovering carbon dioxide according to 4.
  6.  前記工程(A1)及び工程(B1)、又は前記工程(A)及び工程(B2)を2回以上繰り返して行う、請求項1~5のいずれか一項に記載の二酸化炭素の回収方法。 The method for recovering carbon dioxide according to any one of claims 1 to 5, wherein the steps (A1) and (B1), or the steps (A) and (B2) are repeated two or more times.
  7.  二酸化炭素の吸収方法であって、
     前記二酸化炭素の吸収方法は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000005
     (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
    で表される化合物を含有する液状の二酸化炭素吸収放出剤に、二酸化炭素を吸収させることで、前記一般式(1)で表される化合物と、前記二酸化炭素と、の反応物を、前記液状の二酸化炭素吸収放出剤中で析出させる工程(a1)を有する、二酸化炭素の吸収方法(ただし、mが0であり、pが2であり、pが付されている2個のアミノ基が互いにメタ位に配置されている場合の、二酸化炭素の吸収方法を除く)。
    It ’s a method of absorbing carbon dioxide.
    The method for absorbing carbon dioxide is the following general formula (1).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is 12 or less, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
    By allowing a liquid carbon dioxide absorbing / releasing agent containing the compound represented by the above to absorb carbon dioxide, the reaction product of the compound represented by the general formula (1) and the carbon dioxide is formed into the liquid. A method for absorbing carbon dioxide having a step (a1) of precipitating in the carbon dioxide absorbing / releasing agent (where m is 0, p 1 is 2 and p 1 is attached to the two amino groups. Except for the method of absorbing carbon dioxide when they are placed in meta positions with each other).
  8.  二酸化炭素の放出方法であって、
     前記二酸化炭素の放出方法は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000006
     (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
    で表される化合物と、二酸化炭素と、の反応物を含有し、前記反応物が析出している液状の二酸化炭素放出剤を、加熱処理することにより、前記液状の二酸化炭素放出剤から前記二酸化炭素を放出させる工程(b1)を有する、二酸化炭素の放出方法。
    It ’s a method of releasing carbon dioxide.
    The method for releasing carbon dioxide is the following general formula (1).
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is 12 or less, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
    By heat-treating a liquid carbon dioxide-releasing agent containing a reaction product of a compound represented by A method for releasing carbon dioxide, which comprises a step (b1) of releasing carbon dioxide.
  9.  二酸化炭素の放出方法であって、
     前記二酸化炭素の放出方法は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000007
     (式中、mは0又は1であり;R及びRは、それぞれ独立に、アルキル基、アルコキシ基、カルボキシ基、アルキルオキシカルボニル基、ホルミル基、アルキルカルボニル基、アルキルチオ基、スルホ基、アルキルオキシスルホニル基、ニトロ基、水酸基、チオール基、シアノ基又はハロゲン原子であり、前記アルキル基は置換基を有していてもよく;p及びpは、それぞれ独立に、1又は2であり;mが0である場合、qは0~11の整数であり、ただし、p+qは12以下であり、mが1である場合、qは0~10の整数であり、ただし、p+qは11以下であり、qは0~10の整数であり、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数である場合には、2個以上のRは互いに同一でも異なっていてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよく、qが2以上の整数であり、かつ、2個以上のRが置換基を有していてもよい前記アルキル基である場合には、前記2個以上のRは相互に結合して環を形成していてもよい。)
    で表される化合物と、二酸化炭素と、の反応物を含有する二酸化炭素放出剤を、塩基触媒の共存下で加熱処理することにより、前記二酸化炭素放出剤から前記二酸化炭素を放出させる工程(b2)を有する、二酸化炭素の放出方法。
    It ’s a method of releasing carbon dioxide.
    The method for releasing carbon dioxide is the following general formula (1).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, m is 0 or 1; R 1 and R 2 are independently an alkyl group, an alkoxy group, a carboxy group, an alkyloxycarbonyl group, a formyl group, an alkylcarbonyl group, an alkylthio group and a sulfo group, respectively. It is an alkyloxysulfonyl group, a nitro group, a hydroxyl group, a thiol group, a cyano group or a halogen atom, and the alkyl group may have a substituent; p 1 and p 2 are independently 1 or 2, respectively. Yes; if m is 0, q 1 is an integer from 0 to 11, where p 1 + q 1 is 12 or less, and if m is 1, q 1 is an integer from 0 to 10. However, when p 1 + q 1 is 11 or less, q 2 is an integer of 0 to 10, and q 1 is an integer of 2 or more, two or more R 1s may be the same or different from each other. Well, when q 2 is an integer of 2 or more, two or more R 2s may be the same or different from each other, q 1 is an integer of 2 or more, and two or more R 1s are. In the case of the alkyl group which may have a substituent, the two or more R 1s may be bonded to each other to form a ring, and q 2 is an integer of 2 or more. Moreover, when two or more R 2s are the alkyl groups which may have a substituent, the two or more R 2s may be bonded to each other to form a ring.)
    A step of releasing the carbon dioxide from the carbon dioxide releasing agent by heat-treating the carbon dioxide releasing agent containing a reaction product of the compound represented by (b2) and carbon dioxide in the coexistence of a base catalyst (b2). ), A method of releasing carbon dioxide.
PCT/JP2021/039122 2020-10-23 2021-10-22 Method for recovering carbon dioxide, method for absorbing carbon dioxide, and method for desorbing carbon dioxide WO2022085789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022557622A JP7441557B2 (en) 2020-10-23 2021-10-22 Carbon dioxide capture method, carbon dioxide absorption method, and carbon dioxide release method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178243 2020-10-23
JP2020-178243 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085789A1 true WO2022085789A1 (en) 2022-04-28

Family

ID=81290652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039122 WO2022085789A1 (en) 2020-10-23 2021-10-22 Method for recovering carbon dioxide, method for absorbing carbon dioxide, and method for desorbing carbon dioxide

Country Status (2)

Country Link
JP (1) JP7441557B2 (en)
WO (1) WO2022085789A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262307A (en) * 1975-11-17 1977-05-23 Chiyoda Chem Eng & Constr Co Ltd Removing of acidic gas from mixed gas
JPS62114943A (en) * 1985-11-13 1987-05-26 Daicel Chem Ind Ltd Method of purifying isophorone diamine
JP2008238073A (en) * 2007-03-28 2008-10-09 Nippon Steel Chem Co Ltd Carbon dioxide absorbent and carbon dioxide adsorbing method
WO2013075697A1 (en) * 2011-11-25 2013-05-30 Buettner Hermann Use of cyclic amines for reversible absorption of co2
JP2015027647A (en) * 2013-07-30 2015-02-12 株式会社東芝 Acid gas absorbent, acid gas removal method and acid gas removal device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262307A (en) * 1975-11-17 1977-05-23 Chiyoda Chem Eng & Constr Co Ltd Removing of acidic gas from mixed gas
JPS62114943A (en) * 1985-11-13 1987-05-26 Daicel Chem Ind Ltd Method of purifying isophorone diamine
JP2008238073A (en) * 2007-03-28 2008-10-09 Nippon Steel Chem Co Ltd Carbon dioxide absorbent and carbon dioxide adsorbing method
WO2013075697A1 (en) * 2011-11-25 2013-05-30 Buettner Hermann Use of cyclic amines for reversible absorption of co2
JP2015027647A (en) * 2013-07-30 2015-02-12 株式会社東芝 Acid gas absorbent, acid gas removal method and acid gas removal device

Also Published As

Publication number Publication date
JP7441557B2 (en) 2024-03-01
JPWO2022085789A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2022085789A1 (en) Method for recovering carbon dioxide, method for absorbing carbon dioxide, and method for desorbing carbon dioxide
WO2020244225A1 (en) Preparation method for triphenylchloromethane
CN114044743B (en) Preparation method of ethyl 2-cyanopropionate
CA2608553A1 (en) Process of preparation of substituted tetrafluorobenzylaniline compound and its pharmaceutically approved salts
CN101735023B (en) Method for preparing 3-bromo-5-chlorophenol
US20160251316A1 (en) Process for the preparation of enzalutamide
KR102065710B1 (en) Azide-type Crosslinking Agent Having Many Crosslinking Functional Groups
CN101337895B (en) Method for preparing 2,2&#39;-di(trifluoromethyl)-4,4&#39;-benzidine
CN105452228B (en) Prepare the novel method of Febuxostat
KR20040099279A (en) Method for preparing benzisoxazole methane sulfonyl chloride and its amidation to form zonisamide
JP4629322B2 (en) Production method of cilostazol
CN107383418B (en) A kind of uvioresistant plastic additive and preparation method thereof
CN111470980A (en) Method for purifying TATB
JP2008507578A (en) Process for producing 4- [2- (dimethylamino) ethoxy] benzylamine as itopride hydrochloride intermediate
WO2022116463A1 (en) Polythiocarbamate compound, preparation method therefor and application thereof
JP6414655B2 (en) Diamine compound and method for producing the same
ES2538090T3 (en) Process for the production of a carbodiimide
JP2015017069A (en) Diamine compound and method of producing the same
US8188317B2 (en) Integrated process for the preparation of polybenzimidazole precursors
JP6395069B2 (en) Diamine compound and method for producing the same
JP6183645B2 (en) Diamine compound and method for producing the same
CN108530375B (en) 4-oxa-7-azaspiro [2.5] octane or its salt intermediate and preparation method
JP2015020976A (en) Diamine compound and method for producing the same
JP2015007000A (en) Method for producing crystal of montelukast free acid
CN110551064A (en) Preparation method of isavuconazole sulfate and intermediate thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882928

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022557622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882928

Country of ref document: EP

Kind code of ref document: A1