WO2022085735A1 - Hard coating film, method for producing same, and image display device - Google Patents

Hard coating film, method for producing same, and image display device Download PDF

Info

Publication number
WO2022085735A1
WO2022085735A1 PCT/JP2021/038815 JP2021038815W WO2022085735A1 WO 2022085735 A1 WO2022085735 A1 WO 2022085735A1 JP 2021038815 W JP2021038815 W JP 2021038815W WO 2022085735 A1 WO2022085735 A1 WO 2022085735A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
film
polyimide
bis
ultraviolet absorber
Prior art date
Application number
PCT/JP2021/038815
Other languages
French (fr)
Japanese (ja)
Inventor
紘平 小川
敬介 片山
裕之 後
文康 石黒
智史 杉山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR1020237014945A priority Critical patent/KR20230092933A/en
Priority to JP2022557588A priority patent/JPWO2022085735A1/ja
Priority to CN202180072077.8A priority patent/CN116419848A/en
Publication of WO2022085735A1 publication Critical patent/WO2022085735A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a hard coat film having a hard coat layer on at least one surface of the transparent polyimide film, a method for manufacturing the same, and an image display device provided with the hard coat film.
  • Patent Document 1 discloses that a hard coat layer is formed by using a photocurable resin composition containing a reactive urethane acrylate, a photoradical polymerization initiator and an ultraviolet absorber.
  • the surface protective material of the display device is located in the outermost layer, it is easily exposed to external light. Therefore, the hard coat film used as a surface protective material is required to have high light resistance with little change in optical characteristics and mechanical strength even when exposed to ultraviolet rays or the like.
  • One aspect of the present invention is a hard-coated film in which a hard-coat layer is provided on at least one surface of the base film.
  • the base film is a polyimide film containing a polyimide resin, and the hard coat layer is made of a cured product of a photocurable resin composition.
  • Each of the hardcoat layer and the polyimide film contains an ultraviolet absorber.
  • the ultraviolet absorber contained in the polyimide film and the hard coat layer a benzotriazole compound or a triazine compound is preferable.
  • the content of the ultraviolet absorber in the polyimide film is preferably 0.1 to 4.5% by weight.
  • the content of the ultraviolet absorber in the hard coat layer is preferably 0.1 to 4.5% by weight.
  • the thickness of the hard coat layer is, for example, 0.5 to 100 ⁇ m.
  • the thickness of the polyimide film is, for example, 5 to 100 ⁇ m.
  • the polyimide resin of the polyimide film is preferably soluble in dichloromethane.
  • a polyimide film containing an ultraviolet absorber can be obtained by applying a solution containing a polyimide resin soluble in dichloromethane and an ultraviolet absorber onto a substrate and removing the solvent.
  • a photocurable resin composition (hard coat composition) containing a photocurable resin and a photopolymerization initiator is applied to the surface of the polyimide film and photocured to provide a hard coat layer on the surface of the polyimide film.
  • a hard coat film can be produced.
  • the hardcoat composition may be photocationically polymerizable.
  • An example of a photocurable resin having photocationic polymerizable properties is a polysiloxane compound having an epoxy group.
  • the hard coat composition contains, for example, a photocurable resin having photocationic polymerizable properties, a photocationic polymerization initiator (photoacid generator), and an ultraviolet absorber.
  • the hard coat film can be used as a surface protective material arranged on the visible side surface of the image display panel, for example, in an image display device.
  • the image display device may be bendable.
  • the hard coat film contains an ultraviolet absorber in both the polyimide film and the hard coat layer, photodegradation of the polyimide is suppressed, so that the optical characteristics and mechanical strength change even when exposed to ultraviolet rays or the like. It is small and has excellent light resistance.
  • FIG. 1 is a cross-sectional view of a hard coat film 10 provided with a hard coat layer 2 on one main surface of the polyimide film 1.
  • the hard coat layer 2 is formed by applying the hard coat composition to the main surface of the polyimide film 1 as a film base material and curing it.
  • the hard coat layer may be provided only on one main surface of the polyimide film, or may be provided on both sides of the polyimide film.
  • Both the polyimide film 1 and the hard coat layer 2 contain an ultraviolet absorber. Since both the polyimide film and the hard coat layer contain an ultraviolet absorber, the light resistance is improved, and the yellowing of the hard coat film tends to be suppressed even after long-term exposure to ultraviolet rays.
  • Examples of the ultraviolet absorber contained in the polyimide film and the hard coat layer include triazine-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, hydroxybenzoate-based ultraviolet absorbers, and the like. Be done. Among them, a benzotriazole-based ultraviolet absorber and a triazine-based ultraviolet absorber are preferable because they absorb less visible light and can obtain good light resistance.
  • benzotriazole-based ultraviolet absorber examples include 2- (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (ADEKA "Adecastab LA-24”). ), 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol ("Adecastab LA-29” manufactured by ADEKA), 2,2'-methylenebis [6 -(2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] (ADEKA "Adecastab LA-31G” and “Adecastab LA-31RG”), 2- ( 2H-benzotriazole-2-yl) -p-cresol (ADEKA "Adecastab LA-32”), 2- (2H-benzotriazole-2-yl) -6-dodecyl-4-methylphenol (BASF "TINUVIN571”) ”),
  • triazine-based ultraviolet absorber examples include 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy] -phenol.
  • the compounds exemplified in this specification may be used alone or in combination (coexistence) of two or more.
  • the polyimide film 1 contains a polyimide resin.
  • Polyimide is generally obtained by dehydration cyclization of a polyamic acid obtained by reacting a tetracarboxylic acid dianhydride (hereinafter, may be simply referred to as "acid dianhydride”) with a diamine. That is, the polyimide has an acid dianhydride-derived structure and a diamine-derived structure.
  • a method in which a solution of a polyimide resin dissolved in an organic solvent is applied onto a substrate and the solvent is dried and removed by heating is preferably adopted. Therefore, in addition to being transparent, polyimide is preferably soluble in organic solvents. From the viewpoint of productivity of the polyimide film, it is preferable to use a low boiling point such as dichloromethane for the solution casting method. Therefore, the polyimide resin is preferably soluble in dichloromethane.
  • the acid dianhydride component includes a tetracarboxylic acid dianhydride represented by the general formula (1) and a tetracarboxylic acid dianhydride having a cyclobutane structure, and as a diamine component.
  • Polyimides containing fluoroalkyl substituted benzidine can be mentioned.
  • n is 1 or 2.
  • R 1 to R 4 are independently hydrogen atoms, fluorine atoms, alkyl groups having 1 to 20 carbon atoms or fluoroalkyl groups, and at least one of R 1 to R 4 has 1 to 1 carbon atoms. 20 alkyl or fluoroalkyl groups.
  • the fluoroalkyl-substituted benzidine is contained in an amount of 40 mol% or more and 100 mol% or less with respect to 100 mol% of the total amount of the diamine component, and the formula (1) is used with respect to 100 mol% of the total amount of the acid dianhydride component.
  • examples thereof include an acid dianhydride having an ester structure represented by 40 mol% or more and 85 mol% or less, and an acid dianhydride having a cyclobutane structure containing 15 mol% or more and 60 mol% or less.
  • the compound represented by the above general formula (1) is an acid dianhydride having an ester structure.
  • R 1 to R 4 are an alkyl group or a fluoroalkyl group
  • examples of the alkyl group when R 1 to R 4 are an alkyl group or a fluoroalkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and a t-butyl group. Cyclobutyl group, n-pentyl group, isopentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group and the like can be mentioned.
  • Examples of the fluoroalkyl group include a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group and the
  • the bis (1,3-dioxo-1,3-dihydroiso) represented by the following formula (2) Benzofuran-5-carboxylic acid) -2,2', 3,3', 5,5'-hexamethylbiphenyl-4,4'diyl (TAHMBP) is preferred.
  • acid dianhydride having a cyclobutane structure Specific examples of the acid dianhydride having a cyclobutane structure include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,3-dimethyl-1,2-2,3,4-cyclobutanetetracarboxylic acid dianhydride.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride
  • fluoroalkyl substituted benzidine fluoroalkyl substituted benzidine
  • fluoroalkyl substituted benzidine include 2-fluorobenzidine, 3-fluorobenzidine, 2,3-difluorobenzidine, 2,5-difluorobenzidine, 2,6-difluorobenzidine, and 2,3,5-trifluorobenzidine.
  • 2,3,6-trifluorobenzidine 2,3,5,6-tetrafluorobenzidine, 2,2'-difluorobenzidine, 3,3'-difluorobenzidine, 2,3'-difluorobenzidine, 2,2 ', 3-trifluorobenzidine, 2,3,3'-trifluorobenzidine, 2,2', 5-trifluorobenzidine, 2,2', 6-trifluorobenzidine, 2,3', 5-trifluoro Benzidine, 2,3', 6,-trifluorobenzidine, 2,2', 3,3'-tetrafluorobenzidine, 2,2', 5,5'-tetrafluorobenzidine, 2,2', 6,6 '-Tetrafluorobenzidine, 2,2', 3,3', 6,6'-hexafluorobenzidine, 2,2', 3,3', 5,5', 6,6'-octafluorobenzidine, 2 -(Trifluoromethyl) benzidine, 3- (trifluoro
  • a fluoroalkyl-substituted benzidine having a fluoroalkyl group at the 2-position of the biphenyl skeleton is preferable, and 2,2'-bis (trifluoromethyl) benzidine is more preferable.
  • the aromatic ring of the biphenyl skeleton is twisted due to steric hindrance of the fluoroalkyl group, and coloring is reduced due to the electron attractiveness of the fluoroalkyl group.
  • the polyimide may contain an acid dianhydride component and a diamine component other than the above, as long as the solubility in a low boiling point solvent such as dichloromethane is not impaired and the transparency and mechanical strength are not impaired.
  • acid dianhydride components that can be used in combination are pyromellitic acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane.
  • diamines examples include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3, 3'-Diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfon, 9,9-bis (4-aminophenyl) fluorene, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone
  • the polyimide of one embodiment contains, as an acid dianhydride component, an acid dianhydride having an ester structure represented by the general formula (1) and an acid dianhydride having a cyclobutane structure, and as a diamine component.
  • an acid dianhydride component an acid dianhydride having an ester structure represented by the general formula (1) and an acid dianhydride having a cyclobutane structure, and as a diamine component.
  • fluoroalkyl substituted benzidine includes fluoroalkyl substituted benzidine.
  • the amount of the acid dianhydride represented by the general formula (1) is preferably 40 to 85 mol%, more preferably 45 to 80 mol%, and 50 to 70 with respect to 100 mol% of the total amount of the acid dianhydride component. Mol% is more preferred. Within this range, a polyimide showing high solubility in a low boiling point solvent such as dichloromethane and having excellent mechanical strength can be obtained. As described above, among the acid dianhydrides represented by the general formula (1), TAHMBP represented by the formula (2) is particularly preferable.
  • the amount of acid dianhydride having a cyclobutane structure is preferably 15 to 60 mol%, more preferably 20 to 55 mol%, still more preferably 25 to 50 mol%, based on 100 mol% of the total amount of acid dianhydride components. .. Within this range, a polyimide having solubility in a low boiling point solvent such as dichloromethane, less coloring, and excellent mechanical strength can be obtained. As described above, among the acid dianhydrides having a cyclobutane structure, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (CBDA) is particularly preferable.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride
  • the amount thereof is based on 100 mol% of the total amount of the acid dianhydride component. 45 mol% or less is preferable, and 30 mol% or less is more preferable. From the viewpoint of obtaining a polyimide having excellent solubility, transparency and mechanical strength, preferred examples of the acid dianhydride used in combination are 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (s-BPDA).
  • s-BPDA 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride
  • s-ODPA 4,4'-oxydiphthalic acid dianhydride
  • 6FDA 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride
  • the amount of the fluoroalkyl-substituted benzidine is preferably 40 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, based on 100 mol% of the total diamine component. Within this range, a polyimide having excellent transparency and solubility can be obtained without impairing the mechanical strength. As mentioned above, among the fluoroalkyl-substituted benzidines, 2,2'-bis (trifluoromethyl) benzidine (TFMB) is particularly preferable.
  • TFMB 2,2'-bis (trifluoromethyl) benzidine
  • the amount thereof is preferably 60 mol% or less, more preferably 40% or less, still more preferably 30 mol% or less, based on 100 mol% of the total amount of the diamine component.
  • fluoroalkyl substituted benzidine such as TFMB and 3,3'-diaminodiphenyl sulfone (3,3'-DDS) or 4,4'-diaminodiphenyl sulfone (3,3') -It is preferable to use DDS) together.
  • the amount of diaminodiphenyl sulfone with respect to 100 mol% of the total amount of the diamine component is preferably 5 to 40 mol%, more preferably 10 to 30 mol%.
  • the polyimide preferably contains 40 to 85 mol% of TAHMBP and 15 to 60 mol% of CBDA as an acid dianhydride component, and 40 to 100 mol% of TFMB as a diamine component. Further, from the viewpoint of improving the solubility in a solvent and the transparency of the film, 5 to 40 mol% of diaminodiphenyl sulfone (3,3'-DDS and / and 4,4'-DDS) is contained as a diamine component. Is preferable, and 6FDA, s-BPDA, s-ODPA and the like may be contained as the acid dianhydride.
  • the method for producing the polyimide resin is not particularly limited, but a method in which a diamine and an acid dianhydride are reacted in a solvent to prepare a polyamic acid as a polyimide precursor and imidized by dehydration cyclization of the polyamic acid is preferable.
  • a polyimide solution can be obtained by adding an imidization catalyst and a dehydrating agent to the polyamic acid solution to dehydrate and close the polyamic acid.
  • a polyimide resin can be obtained by mixing a polyimide solution and a poor solvent of polyimide to precipitate a polyimide resin and then solid-liquid separation.
  • a polyamic acid solution is obtained by reacting the acid dianhydride with the diamine in a solvent. It is preferable to use substantially equal molar amounts of acid dianhydride and diamine. That is, the molar ratio of the acid dianhydride component to the diamine is preferably in the range of 95: 105 to 105: 95.
  • the organic solvent that can be used is not particularly limited, and the acid dianhydride and diamine, and the polyamic acid that is a polymerization product may be dissolved.
  • the organic solvent include urea-based solvents such as methyl urea, N, N-dimethylethyl urea; and sulfone-based solvents such as dimethyl sulfoxide, diphenyl sulfone, and tetramethyl sulfone; N, N-dimethylacetamide, N, N-.
  • Amid solvents such as dimethylformamide, N, N'-diethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, hexamethylphosphate triamide; alkyl halide solvents such as chloroform and dichloromethane; benzene, toluene and the like.
  • alkyl halide solvents such as chloroform and dichloromethane
  • benzene, toluene and the like examples thereof include aromatic hydrocarbon solvents, ether solvents such as tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dimethyl ether, diethyl ether, and p-cresol methyl ether.
  • N, N-dimethylacetamide, N, N-dimethylformamide, or N-methylpyrrolidone is preferable because of its excellent polymerization reactivity and solubility of polyamic acid.
  • the reaction temperature in the polymerization of acid dianhydride and diamine is not particularly limited, but is preferably 0 ° C. or higher and 80 ° C. or lower, and more preferably 20 ° C. or higher and 45 ° C. or lower.
  • the temperature is 0 ° C. or higher, the decrease in the reaction rate is suppressed, and when the temperature is 80 ° C. or lower, the decrease in the degree of polymerization due to ring-opening of the acid dianhydride tends to be suppressed.
  • Polyimide is obtained by dehydration cyclization of polyamic acid.
  • a chemical imidization method in which a dehydrating agent, an imidization catalyst, or the like is added to the polyamic acid solution is suitable.
  • the polyamic acid solution may be heated to accelerate the progress of imidization.
  • a tertiary amine is used as the imidization catalyst.
  • a heterocyclic tertiary amine is preferable.
  • Specific examples of the heterocyclic tertiary amine include pyridine, picoline, quinoline, isoquinoline and the like.
  • carboxylic acid anhydride is used, and specific examples thereof include acetic anhydride, propionic acid anhydride, n-butyric acid anhydride, benzoic acid anhydride, and trifluoroacetic anhydride.
  • the amount of the imidization catalyst added is preferably 0.5 to 5.0 times the molar equivalent, more preferably 0.7 to 2.5 times the molar equivalent, and 0.8 to 2. A 0-fold molar equivalent is more preferred.
  • the amount of the dehydrating agent added is preferably 0.5 to 10.0 times the molar equivalent, more preferably 0.7 to 5.0 times the molar equivalent, and 0.8 to 3.0 times the amide group of the polyamic acid. Double molar equivalents are more preferred.
  • the poor solvent is a poor solvent of the polyimide resin, preferably one that is mixed with a solvent in which the polyimide resin is dissolved, and examples thereof include water and alcohols.
  • alcohols include methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, triethylene glycol, 2-butyl alcohol, 2-hexyl alcohol, cyclopentyl alcohol, cyclohexyl alcohol, phenol, t-butyl alcohol and the like.
  • Alcohols such as isopropyl alcohol, 2-butyl alcohol, 2-pentyl alcohol, phenol, cyclopentyl alcohol, cyclohexyl alcohol, and t-butyl alcohol are preferable, and isopropyl alcohol is particularly preferable, because ring opening of the polyimide is unlikely to occur.
  • a polyimide film can be produced by applying a polyimide solution (a dope for film formation) in which a polyimide resin is dissolved in an organic solvent onto a substrate and drying and removing the solvent.
  • the organic solvent for dissolving the polyimide resin may be any solvent as long as it is soluble and soluble in the above-mentioned polyimide resin, and may be appropriately selected depending on the intended use of the polyimide resin.
  • a low boiling point solvent such as, 3-dioxolane is preferable, and dichloromethane is particularly preferable because the boiling point is low and the solvent can be easily removed by drying.
  • the solid content concentration of the polyimide solution may be appropriately set according to the molecular weight of the polyimide, the thickness of the film, the film forming environment, and the like.
  • the solid content concentration is preferably 5 to 30% by weight, more preferably 6 to 20% by weight.
  • the polyimide film contains an ultraviolet absorber.
  • the ultraviolet absorber a benzotriazole-based ultraviolet absorber and a triazine-based ultraviolet absorber are preferable because they absorb less visible light and can obtain good light resistance.
  • the polyimide solution preferably contains a triazine-based ultraviolet absorber.
  • the polyimide solution (and the polyimide film) may contain a triazine-based ultraviolet absorber and a benzotriazole-based ultraviolet absorber.
  • the acid dianhydride of the general formula (1) used as the acid dianhydride component of polyimide is an ester of phenol and trimellitic anhydride, and is easily deteriorated by light due to ultraviolet rays. It is presumed that this is because rearrangement reactions such as optical Fries rearrangement are likely to occur due to the structure. Since the polyimide film contains an ultraviolet absorber, the ultraviolet rays incident on the polyimide film are absorbed by the ultraviolet absorber, so that the polyimide is not easily affected by the ultraviolet rays and tends to suppress coloring (yellowing) due to light deterioration. be.
  • the amount of the ultraviolet absorber in the polyimide solution is preferably 0.1 part by weight or more, more preferably 0.3 part by weight or more, and 0 part by weight with respect to 100 parts by weight of the total solid content. It may be .5 parts by weight or more, 0.7 parts by weight or more, or 1 part by weight or more.
  • the larger the amount of the ultraviolet absorber the more the photodegradation of the polyimide tends to be suppressed.
  • the amount of the ultraviolet absorber is excessively large, the ultraviolet absorber may not be sufficiently compatible with the polyimide, which may cause the polyimide film to become cloudy or bleed out of the ultraviolet absorber to the surface.
  • the amount of the ultraviolet absorber in the polyimide solution is preferably 4.5 parts by weight or less, more preferably 4 parts by weight or less, and 3.5 parts by weight or less or 3 parts by weight or less with respect to 100 parts by weight of the total solid content. May be.
  • the polyimide contains the acid dianhydride component represented by the general formula (1), it is easy to sufficiently suppress the photodegradation of the polyimide while suppressing the white turbidity of the film and the bleed-out of the ultraviolet absorber. is not. Therefore, as will be described later, it is preferable that the hard coat layer 2 provided on the surface of the polyimide film 1 contains an ultraviolet absorber to provide ultraviolet shielding properties and reduce the amount of ultraviolet rays reaching the polyimide film 1. ..
  • the polyimide solution may contain resin components and additives other than the polyimide resin and the ultraviolet absorber.
  • the additive include a cross-linking agent, a dye, a surfactant, a leveling agent, a plasticizer, fine particles and the like.
  • the content of the polyimide resin with respect to 100 parts by weight of the solid content of the polyimide resin composition is preferably 60 parts by weight or more, more preferably 70 parts by weight or more, still more preferably 80 parts by weight or more.
  • the above dyes include anthraquinone compounds, phthalocyanine compounds, indigo compounds and the like.
  • the anthraquinone type is preferable from the viewpoint of heat resistance.
  • the amount used is, for example, about 0.1 to 100 ppm based on the polyimide resin, and may be 1 to 90 ppm, 10 to 80 ppm, or 20 to 70 ppm.
  • the color tone of the polyimide film can be adjusted.
  • the polyimide and the ultraviolet absorber are slightly colored yellow because they absorb light in the short wavelength region of visible light, but the hue can be neutralized by adding a dye that functions as a brewing agent.
  • bluing agent known ones can be appropriately used, and commercially available products such as "Macrolex Blue RR”, “Sumiplast Violet B”, “Sumiplast Violet OR”, “Plast Blue8580”, “Plast Blue8590”, and “Plast” can be used as appropriate. "Bluelet 8840” and the like.
  • a method of applying the polyimide solution to the substrate a known method can be used, and for example, it can be applied by a bar coater or a comma coater.
  • a glass substrate, a metal substrate such as SUS, a metal drum, a metal belt, a plastic film, or the like can be used as the base material to which the polyimide solution is applied.
  • a material that does not dissolve in the solvent of the film-forming dope may be appropriately selected, and as the plastic material, polyethylene terephthalate, polycarbonate, polyacrylate, polyethylene naphthalate or the like is used.
  • the heating temperature is not particularly limited, but is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, from the viewpoint of suppressing the coloring of the polyimide film and the volatilization of the ultraviolet absorber.
  • the heating temperature may be gradually increased.
  • the solvent may be dried under reduced pressure.
  • the residual solvent amount of the polyimide film (mass of the solvent contained in the film with respect to the mass of the film) is preferably 1.5% or less, more preferably 1.0% or less. When the amount of residual solvent is in this range, the mechanical strength of the polyimide film tends to be improved.
  • the thickness of the polyimide film is not particularly limited and may be appropriately set according to the intended use.
  • the thickness of the polyimide film is, for example, about 5 to 100 ⁇ m. From the viewpoint of achieving both mechanical strength and transparency, the thickness of the polyimide film is preferably 30 ⁇ m or more, more preferably 35 ⁇ m or more, still more preferably 40 ⁇ m or more. In particular, when used for applications requiring strength such as a cover window of a display, the thickness of the polyimide film is preferably 40 ⁇ m or more.
  • the thickness of the polyimide film is preferably 90 ⁇ m or less, more preferably 85 ⁇ m or less.
  • the pencil hardness of the polyimide film before forming the hard coat layer is preferably HB or higher. F or more is more preferable.
  • the hard coat layer 2 is formed by applying the hard coat composition on the polyimide film 1 and photo-curing it.
  • the hardcourt composition contains a photocurable resin and a photopolymerization initiator. That is, the hard coat layer is a cured resin layer made of a cured product of the hard coat composition which is a photocurable resin composition.
  • a hardcoat layer containing the UV absorber is formed.
  • the photocurable resin of the hardcoat composition is a polyfunctional compound having two or more photopolymerizable functional groups.
  • the polyfunctional compound may be a monomer or an oligomer.
  • the photopolymerizable functional group may be radically polymerizable or cationically polymerizable.
  • Examples of the radically polymerizable functional group include functional groups having an ethylenically unsaturated double bond such as a vinyl group and a (meth) acryloyl group.
  • Examples of the cationically polymerizable functional group include a cyclic ether group such as an epoxy group and an oxetane group.
  • an epoxy group and an oxetane group are preferable as the photopolymerizable functional group of the photocurable resin because it can be cured by photocationic polymerization and the curing shrinkage is small.
  • the photocationically polymerizable functional group containing an epoxy group include a glycidyl group and an alicyclic epoxy group. Of these, an alicyclic epoxy group is preferable because of its high reactivity with photocationic polymerization.
  • the hard coat composition contains an ultraviolet absorber
  • ultraviolet rays as excitation light may be absorbed by the ultraviolet absorber during photocuring by irradiation with ultraviolet rays, which may cause curing failure (curing inhibition).
  • photoradicals which are active species of photoradical polymerization reactions, have a short life, they need to be continuously irradiated with ultraviolet rays during the curing reaction, and are easily affected by curing inhibition by ultraviolet absorbers.
  • the active species of the photocationic polymerization reaction is an acid generated by light irradiation, and the life of the active species is longer than that of photoradicals, and the curing reaction proceeds for a long time even after light irradiation. Therefore, the photocationic polymerization is less susceptible to the influence of the ultraviolet absorber than the photoradical polymerization, and even when the hard coat composition contains the ultraviolet absorber, curing failure is less likely to occur. Therefore, the hard coat composition is a photocationic polymerizable composition containing a photocurable resin having a photocationically polymerizable functional group such as an epoxy group, a photocationic polymerization initiator (photoacid generator), and an ultraviolet absorber. It is preferable to have.
  • photocationically polymerizable hard coat composition examples include compositions containing polysiloxane compounds having an epoxy group disclosed in WO2018 / 096729, WO2014 / 204010, JP-A-2017-8142 and the like. Be done.
  • the polysiloxane compound having photocationic polymerizable has an epoxy group as a photocationically polymerizable functional group.
  • the epoxy group is preferably an alicyclic epoxy group, and among them, a 3,4-epoxycyclohexyl group is preferable.
  • the polysiloxane compound having an alicyclic epoxy group is, for example, (A) condensation of a silane compound having an alicyclic epoxy group; or (B) a carbon-carbon double having a reactivity with a SiH group in one molecule. It is obtained by a hydrosilylation reaction between a compound having a bond and an alicyclic epoxy group (for example, vinylcyclohexene oxide) and a polysiloxane compound having at least two SiH groups in one molecule. Since a polysiloxane compound having a network structure having a large number of alicyclic epoxy groups in one molecule can be obtained, the polysiloxane compound is preferably formed by the method (A) above.
  • Examples of the silane compound used as a raw material for the condensation reaction of the above (A) include a compound represented by the following general formula (3). Y-R 5- (Si (OR 6 ) x R 7 3-x ) ... (3)
  • Y is an alicyclic epoxy group
  • R5 is an alkylene group having 1 to 10 carbon atoms.
  • R 6 is a monovalent hydrocarbon group selected from a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms, and an alkyl group having 7 to 12 carbon atoms.
  • R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • x is an integer of 1 to 3. When x is 2 or more, the plurality of R 6s may be the same or different. When (3-x) is 2 or more, the plurality of R 7s may be the same or different.
  • the alicyclic epoxy group Y is preferably a 3,4-epoxycyclohexyl group.
  • the alkylene group R 5 may be linear or has branches, but a linear alkylene group is preferable, a linear alkylene having 1 to 5 carbon atoms is preferable, and ethylene is particularly preferable. That is, the substituent Y-R5 - bonded to Si is preferably ⁇ - (3,4-epoxycyclohexyl) ethyl.
  • R 6 examples include hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, decyl group, phenyl group, tolyl group, xylyl group and naphthyl group. Examples thereof include a benzyl group and a phenethyl group. From the viewpoint of enhancing the reactivity of the alicyclic epoxy group during photocationic polymerization of the polysiloxane compound, R6 is preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably an ethyl group or a propyl group.
  • R 7 examples include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a nonyl group, a decyl group and the like.
  • R7 is preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group.
  • x in the general formula (3) is preferably 2 or 3.
  • a silane compound having x of 2 or 3 and a silane compound having x of 1 may be used in combination for the purpose of adjusting the molecular weight of the polysiloxane compound obtained by condensation.
  • silane compound represented by the general formula (3) examples include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, and ⁇ - ( 3,4-Epoxycyclohexyl) ethyldimethylmethoxysilane, ⁇ - (3,4-epoxycyclohexyl) propyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) propylmethyldimethoxysilane, ⁇ - (3,4-epoxy) Cyclohexyl) propyldimethylmethoxysilane and the like can be mentioned.
  • a Si—O—Si bond is formed to form a polysiloxane compound.
  • Alicyclic epoxides such as epoxycyclohexyl groups have high electrophilic reactivity and low nucleophilic reactivity. Therefore, from the viewpoint of suppressing the ring-opening of the epoxy group, it is preferable to carry out the reaction under neutral or basic conditions.
  • Examples of the basic compound used to make the reaction system basic include alkali metals such as sodium hydroxide, lithium hydroxide and magnesium hydroxide, hydroxides of alkaline earth metals, and amines.
  • alkali metals such as sodium hydroxide, lithium hydroxide and magnesium hydroxide
  • hydroxides of alkaline earth metals and amines.
  • the basic compound used for forming the polysiloxane compound is preferably one that can be removed by volatilization.
  • the basic compound preferably has low nucleophilicity. Therefore, as the basic compound, a tertiary amine is preferable, and among them, a tertiary amine having a boiling point of 30 to 160 ° C. such as triethylamine, diethylmethylamine, tripropylamine, methyldiisopropylamine and diisopropylethylamine is preferable.
  • the weight average molecular weight of the polysiloxane compound obtained by condensing the silane compound is preferably 500 or more. Further, from the viewpoint of suppressing the volatilization of the polysiloxane compound, the weight average molecular weight of the polysiloxane compound is preferably 500 or more. On the other hand, if the molecular weight is excessively large, cloudiness may occur due to a decrease in compatibility with other compositions. Therefore, the weight average molecular weight of the polysiloxane compound is preferably 20000 or less. The weight average molecular weight of the polysiloxane compound is more preferably 1000 to 18000, more preferably 1500 to 16000, still more preferably 2000 to 14000, and particularly preferably 2800 to 12000.
  • the polysiloxane compound preferably has a plurality of alicyclic epoxy groups in one molecule.
  • the number of alicyclic epoxy groups in one molecule of the polysiloxane compound is preferably 3 or more, more preferably 4 or more, still more preferably 5 or more.
  • the number of alicyclic epoxy groups contained in one molecule becomes excessively large, the proportion of functional groups that do not contribute to cross-linking between molecules during curing may increase. Therefore, the number of alicyclic epoxy groups in one molecule of the polysiloxane compound is preferably 100 or less, more preferably 80 or less, further preferably 70 or less, and particularly preferably 60 or less.
  • the polysiloxane compound obtained by the condensation of the silane compound represented by the general formula (3) has the residual ratio of the alicyclic epoxy group. Is preferable.
  • the ratio of the number of moles of the alicyclic epoxy group of the condensate (polysiloxane compound) to the number of moles of the alicyclic epoxy group contained in the silane compound is preferably 20% or more, more preferably 40% or more, and more preferably 60% or more. Is even more preferable.
  • the number of OR 6 groups remaining per silane compound unit in the polysiloxane compound is small.
  • the number of OR 6 groups per Si atom in the polysiloxane compound is 2 or less.
  • the average number of OR 6 units per Si atom is preferably 1.5 or less, and more preferably 1.0 or less.
  • the number of OR 6 units per Si atom in the polysiloxane compound may be 0.01 or more, 0.05 or more, or 0.3 or more on average.
  • a silane compound having no alicyclic epoxy group may be used in addition to the silane compound having an alicyclic epoxy group.
  • the silane compound having no alicyclic epoxy group is represented by, for example, the following general formula (4). R 8 -Si (OR 6 ) 3 ... (4)
  • R 8 of the general formula (4) is selected from the group consisting of substituted or unsubstituted alkyl groups having 1 to 10 carbon atoms, alkenyl groups, and substituted aryl groups, and is monovalent without an alicyclic epoxy group. It is a group.
  • R 8 is an alkyl group having a substituent
  • examples of the substituent include a glycidyl group, a thiol group, an amino group, a (meth) acryloyl group, a phenyl group, a cyclohexyl group, a halogen and the like.
  • R 6 in the general formula (4) is the same as R 6 in the general formula (3).
  • the polysiloxane compound obtained by the reaction of the silane compound is a silane compound having no alicyclic epoxy group (general formula) as opposed to a silane compound having an alicyclic epoxy group (compound represented by the general formula (3)).
  • the compound represented by (4) is preferably condensed under the condition that the molar ratio is 2 or less.
  • the molar ratio of the compound represented by the general formula (4) to the compound represented by the general formula (3) is preferably 1 or less, more preferably 0.6 or less, further preferably 0.4 or less, and 0.2. The following are particularly preferred.
  • the molar ratio of the compound represented by the general formula (4) to the compound represented by the general formula (3) may be 0.
  • the content of the polysiloxane compound in the hardcoat composition is preferably 40 parts by weight or more, preferably 50 parts by weight or more, based on 100 parts by weight of the total solid content. More preferably, 60 parts by weight or more is further preferable.
  • the photocationically polymerizable hard coat composition preferably contains a photocationic polymerization initiator.
  • the photocationic polymerization initiator is a compound (photoacid generator) that generates an acid by irradiation with active energy rays. The acid generated from the photoacid generator reacts with the alicyclic epoxy group of the polysiloxane compound to form intermolecular crosslinks and cure the hard coat material.
  • the photoacid generator examples include strong acids such as toluene sulfonic acid or boron tetrafluoride; onium salts such as sulfonium salt, ammonium salt, phosphonium salt, iodonium salt and selenium salt; iron-allene complexes; silanol-metal chelate complexes.
  • Sulfonic acid derivatives such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidesulfonates, benzoinsulfonates; organic halogen compounds and the like.
  • aromatic sulfonium salts or aromatic iodonium salts are preferable because they have high stability in a hard coat composition containing a polysiloxane compound having an alicyclic epoxy group.
  • the counter anion of the aromatic sulfonium salt or the aromatic iodonium salt is a fluoroborate anion or a fluoroantimonate anion.
  • fluoroborate anions are preferred.
  • a fluorophosphate anion or a fluoroantimonate anion is preferable.
  • Such a photoacid generator include diphenyl (4-phenylthiophenyl) sulfonium hexafluorophosphate and hexafluoro, in which a part or all of the fluorine atom of hexafluorophosphate is substituted with a perfluoroalkyl group.
  • Phenylfate derivatives, diphenyl (4-phenylthiophenyl) sulfonium / hexafluoroantimonate and the like can be mentioned.
  • the content of the photocationic polymerization initiator in the hard coat composition is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the above polysiloxane compound.
  • UV absorber When the hard coat composition contains an ultraviolet absorber, a hard coat layer containing the ultraviolet absorber is formed.
  • a benzotriazole-based ultraviolet absorber and a triazine-based ultraviolet absorber are preferable because they absorb less visible light and can obtain good light resistance.
  • the benzotriazole-based ultraviolet absorber has a large absorption coefficient in the UVA region (wavelength 320 to 400 nm) and can effectively suppress deterioration due to the phototransfer reaction of polyimide. Therefore, the hard coat layer (hard coat composition) can be used. It is preferable to contain a benzotriazole-based ultraviolet absorber.
  • the polyimide film preferably contains a triazine-based ultraviolet absorber having excellent heat resistance. If the hard coat layer 2 containing a benzotriazole ultraviolet absorber is formed on the polyimide film 1 containing a triazine-based ultraviolet absorber, ultraviolet rays in a wide wavelength range are absorbed, so that the light deterioration of the polyimide is efficient. Can be suppressed.
  • the amount of the ultraviolet absorber in the hard coat composition is based on 100 parts by weight of the total solid content. 0.1 part by weight or more is preferable, 0.3 part by weight or more is more preferable, and 0.5 part by weight or more, 0.7 part by weight or more, or 1 part by weight or more may be used. The larger the amount of the UV absorber, the higher the UV shielding property of the hard coat layer tends to be.
  • the amount of the ultraviolet absorber in the hard coat composition is preferably 4.5 parts by weight or less, more preferably 4 parts by weight or less, and 3.5 parts by weight or less or 3 parts by weight, based on 100 parts by weight of the total solid content. It may be less than or equal to a part.
  • the hardcourt composition may be a solvent-free type or may contain a solvent. When a solvent is contained, it is preferable that the polyimide film is not dissolved. On the other hand, by using a solvent having a solubility enough to swell the polyimide film, the adhesion between the polyimide film base material 1 and the hard coat layer 2 may be improved.
  • the amount of the solvent in the hardcoat composition is preferably 500 parts by weight or less, more preferably 300 parts by weight or less, still more preferably 100 parts by weight or less, based on 100 parts by weight of the curable resin (polysiloxane compound).
  • the hardcourt composition may contain a reactive diluent.
  • a reactive diluent for example, a cationically polymerizable compound other than the above-mentioned polysiloxane compound is used.
  • the reactive diluent for the polymerization include compounds having a functional group such as an epoxy group, a vinyl ether group, an oxetane group, and an alkoxysilyl group.
  • the hard coat composition may contain a photosensitizer for the purpose of improving the photosensitivity of the photocationic polymerization initiator (photoacid generator).
  • a photosensitizer those capable of absorbing light in a wavelength range that cannot be absorbed by the photoacid generator itself are more efficient, and therefore, those having less overlap with the absorption wavelength range of the photoacid generator are preferable.
  • the photosensitizer include anthracene derivatives, benzophenone derivatives, thioxanthone derivatives, anthraquinone derivatives, benzoin derivatives and the like.
  • the hardcoat composition may contain particles for the purpose of adjusting film properties such as surface hardness and bending resistance, suppressing curing shrinkage, and the like.
  • particles organic particles, inorganic particles, organic-inorganic composite particles and the like may be appropriately selected and used.
  • the material of the organic particles include poly (meth) acrylic acid alkyl ester, crosslinked poly (meth) acrylic acid alkyl ester, crosslinked styrene, nylon, silicone, crosslinked silicone, crosslinked urethane, and crosslinked butadiene.
  • metal oxides such as silica, titania, alumina, tin oxide, zirconia, zinc oxide and antimony oxide; metal nitrogenous products such as silicon nitride and boron nitride; calcium carbonate, calcium hydrogen phosphate and calcium phosphate, Examples thereof include metal salts such as aluminum phosphate.
  • organic-inorganic composite filler include those having an inorganic layer formed on the surface of organic particles and those having an organic layer or organic fine particles formed on the surface of the inorganic particles.
  • the average particle size of the particles is, for example, about 5 nm to 10 ⁇ m. From the viewpoint of enhancing the transparency of the hard coat layer, the average particle size is preferably 1000 nm or less, more preferably 500 nm or less, further preferably 300 nm or less, and particularly preferably 100 nm or less.
  • the particle size can be measured by a laser diffraction / scattering type particle size distribution measuring device, and the volume-based median size is used as the average particle size.
  • the particles may be surface-modified.
  • the surface modification of the particles tends to improve the dispersibility of the particles.
  • the functional group on the particle surface reacts with the epoxy group of the above polysiloxane compound to form a chemical crosslink. Improvement of film strength can be expected.
  • the hardcoat composition may contain additives such as inorganic pigments, organic pigments, surface modifiers, surface modifiers, plasticizers, dispersants, wetting agents, thickeners and defoaming agents. Further, the hard coat composition may contain a thermoplastic, thermosetting or photocurable resin material other than the above-mentioned polysiloxane compound.
  • the hard coat composition contains a photopolymerization initiator and an ultraviolet absorber in addition to the polysiloxane compound as a curable resin, and further, as a solid content (nonvolatile content), a reactive diluent and a photosensitizer. , Particles and other additives may be included.
  • the content of the polysiloxane compound in the hardcoat composition is preferably 40 parts by weight or more, preferably 50 parts by weight or more, based on 100 parts by weight of the total solid content. Is more preferable, and 60 parts by weight or more is further preferable.
  • a hard coat composition is applied onto the polyimide film, the solvent is dried and removed as necessary, and then the hard coat composition is cured by irradiating it with active energy rays such as ultraviolet rays to cure the hard coat composition on the polyimide film 1.
  • active energy rays such as ultraviolet rays
  • the integrated irradiation amount of the active energy rays at the time of photocuring is, for example, about 50 to 10000 mJ / cm 2 , and may be set according to the type and blending amount of the polymerization initiator, the thickness of the hard coat layer, and the like.
  • the curing temperature is not particularly limited, but is usually 100 ° C. or lower.
  • the thickness of the hard coat layer is preferably 0.5 ⁇ m or more, more preferably 2 ⁇ m or more, further preferably 3 ⁇ m or more, and most preferably 5 ⁇ m or more.
  • the thickness of the hard coat layer is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less. If the thickness of the hard coat layer is smaller than 0.5 ⁇ m, it may not be possible to sufficiently improve mechanical properties such as surface hardness. On the other hand, if the thickness of the hard coat layer is larger than 100 ⁇ m, the transparency and bending resistance may decrease.
  • the total light transmittance of the hard coat film is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more.
  • the haze of the hard coat film is preferably 1.5% or less, more preferably 0.9% or less, further preferably 0.7% or less, and particularly preferably 0.5% or less.
  • the yellowness (YI) of the hard coat film is preferably 10 or less, more preferably 6 or less, further preferably 5 or less, and may be 4 or less, 3.5 or less, 3.0 or less, or 2.5 or less. ..
  • both the polyimide film 1 and the hard coat layer 2 contain an ultraviolet absorber. Therefore, when external light is incident from the hard coat layer 2 side, the hard coat layer 2 absorbs (shields) the ultraviolet rays, the amount of the ultraviolet rays reaching the polyimide film 1 is small, and the ultraviolet rays reaching the polyimide film 1 are generated. It is absorbed by the ultraviolet absorber contained in the polyimide film 1. Therefore, the polyimide resin of the polyimide film 1 is not easily affected by ultraviolet rays, and discoloration (increase in yellowness) due to photodegradation is suppressed.
  • the content of the ultraviolet absorber in the polyimide film is preferably 0.1 to 4.5% by weight, more preferably 0.3 to 4% by weight, further preferably 0.5 to 3.5% by weight, and 0.7. It may be up to 3% by weight or 1.0 to 2.5% by weight.
  • the content of the ultraviolet absorber in the hard coat layer is preferably 0.1 to 4.5% by weight, more preferably 0.3 to 4% by weight, further preferably 0.5 to 3.5% by weight, and 0. It may be 7 to 3% by weight or 1.0 to 2.5% by weight.
  • the amount of increase in yellowness of the hardcoat film when irradiated with ultraviolet rays for 48 hours under the conditions of an irradiance of 500 W / m 2 and a black panel temperature of 63 ° C. from the hardcoat layer forming surface side is preferably 6 or less, preferably 5 or less. Is more preferable, and may be 4.5 or less or 4.0 or less.
  • the pencil hardness of the hard coat layer forming surface of the hard coat film is preferably HB or higher, more preferably H or higher, further preferably 2H or higher, particularly preferably 3H or higher, and may be 4H or higher.
  • the tensile elastic modulus of the hard-coated film is preferably 3.5 GPa or more, more preferably 4.0 GPa or more, and even more preferably 5.0 GPa or more.
  • various functional layers may be provided on the hard coat layer 2 or on the non-formed surface of the hard coat layer of the polyimide film 1.
  • the functional layer include an antireflection layer, an antiglare layer, an antistatic layer, a transparent electrode and the like.
  • the hard coat film may be provided with a transparent adhesive layer.
  • the hard coat film of the present invention Since the hard coat film of the present invention has high transparency and excellent mechanical strength, it can be used for a cover window arranged on the visible side surface of an image display panel, a transparent substrate for a display, a transparent substrate for a touch panel, a substrate for a solar cell, and the like. It is preferably used. Since the hard coat film of the present invention has excellent bending resistance and light resistance in addition to transparency and mechanical strength, it is a cover placed on the visible side surface of a curved display or a bendable display in particular. It can be suitably used as a window.
  • the above polyimide solution is applied to non-alkali glass using a bar coater, and in an air atmosphere, 40 ° C. for 60 minutes, 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, 170 ° C. for 30 minutes, 200 ° C.
  • the solvent was removed by heating for 60 minutes with a transparent polyimide film having a thickness of 50 ⁇ m.
  • the hardcourt composition was applied to the main surface of a transparent polyimide substrate having a thickness of 50 ⁇ m using a bar coater so that the thickness after curing was 50 ⁇ m, and heated at 120 ° C. for 10 minutes. Using a high-pressure mercury lamp, ultraviolet rays are irradiated so that the integrated light amount at a wavelength of 365 nm is 1000 mJ / cm 2 , and then heated at 80 ° C. for 2 hours to cure the hard coat composition and hard on the polyimide film substrate. A hardcourt film with a coat (HC) layer was obtained. In Example 2, Comparative Example 5 and Comparative Example 6, a hard coat (HC) layer having a thickness of 50 ⁇ m was formed on both surfaces of the transparent polyimide film substrate. In Comparative Examples 1 to 4, the hard coat layer was not formed.
  • Comparative Example 8 and Comparative Example 9 had wrinkles on the film surface. Therefore, in Comparative Examples 8 and 9, the subsequent evaluation was not carried out.
  • the film was cut into a size of 3 cm square, and the yellowness (YI) was measured using a spectrocolorimeter (“SC-P” manufactured by Suga Test Instruments Co., Ltd.). Then, using a fade meter (“U48-HB” manufactured by Suga Testing Machine), one side of the film (Examples 1 and 3 to 8 and Comparative Examples 7 to 9) under the conditions of an irradiance of 500 W / m 2 and a black panel temperature of 63 ° C. , The hard coat layer forming surface) was irradiated with ultraviolet rays for 48 hours.
  • SC-P spectrocolorimeter
  • U48-HB manufactured by Suga Testing Machine
  • the pencil hardness of the film was measured by the JIS K-5600-5-4 pencil scratch test. In Examples 1 and 3 to 8 and Comparative Examples 7 to 9, the pencil hardness of the hard coat layer forming surface was evaluated.
  • UVA ultraviolet absorbers
  • LA-31RG "ADEKA STAB LA-31RG” manufactured by ADEKA: 2,2'-methylenebis [6- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol]
  • LA-F70 ADEKA
  • ADEKA STUB LA-F70 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine Tin 326: BASF "Tinvin 326” 2- [5-Chloro (2H) -benzotriazole-2-yl] -4-methyl-6- (tert-butyl) phenol
  • LA-29 "ADEKA STAB LA-29” manufactured by ADEKA; 2- (2H-) Benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol
  • LA-32 "ADEKA STAB LA-32” manufactured by ADEKA;
  • the hard coat film containing an ultraviolet absorber in both the polyimide film and the hard coat layer shows high pencil hardness due to the formation of the hard coat layer, and ⁇ YI after light irradiation by a fade test. It can be seen that the size is small and the light resistance is excellent.
  • Comparative Example 5 in which neither the polyimide film nor the hard coat layer contained an ultraviolet absorber, ⁇ YI was large and the light resistance was insufficient.
  • Comparative Example 6 in which the ultraviolet absorber was blended only in the hard coat layer and Comparative Example 7 in which the UV absorber was blended only in the polyimide film, ⁇ YI was smaller than that of Comparative Example 5, but the light resistance was insufficient. ..
  • a hard coat film having excellent transparency, light resistance and surface hardness can be obtained by including an ultraviolet absorber in both the polyimide film and the hard coat layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

This hard coating film (10) is provided with a hard coating layer (2) on at least one surface of a base material film (1). The base material film is a polyimide film that contains a polyimide resin; and the hard coating layer is formed of a cured product of a photocurable resin composition. Since both of the hard coating layer and the polyimide film contain an ultraviolet absorbent, the hard coating film has high hardness and excellent light resistance. This hard coating film is applicable to a surface protective material that is arranged on the viewing-side surface of an image display panel, or the like.

Description

ハードコートフィルムおよびその製造方法、ならびに画像表示装置Hardcourt film and its manufacturing method, and image display device
 本発明は、透明ポリイミドフィルムの少なくとも一方の面にハードコート層を備えるハードコートフィルムおよびその製造方法、ならびに当該ハードコートフィルムを備える画像表示装置に関する。 The present invention relates to a hard coat film having a hard coat layer on at least one surface of the transparent polyimide film, a method for manufacturing the same, and an image display device provided with the hard coat film.
 携帯端末機器の薄型化および軽量化が進み、スマートフォンに代表される端末機器が広く普及している。近年、画面の大型化と携帯性を両立させる方法として、フレキシブルディスプレイ、特に、可撓性基板を用いた有機ELパネルを搭載した折り畳み可能な携帯端末機器が提案されている。 Mobile terminal devices are becoming thinner and lighter, and terminal devices such as smartphones are becoming widespread. In recent years, a flexible display, particularly a foldable mobile terminal device equipped with an organic EL panel using a flexible substrate, has been proposed as a method for achieving both a large screen size and portability.
 フレキシブルデバイスにおいては、ディスプレイ基板だけでなく、カバーウインドウ等の表面保護材も可撓性を有している必要があり、透明性、表面硬度、屈曲耐久性に優れたポリイミドフィルムの表面にハードコート層を設けたハードコートフィルムを用いることが提案されている(例えば、特許文献1および特許文献2)。特許文献1は、反応性のウレタンアクリレート、光ラジカル重合開始剤および紫外線吸収剤を含む光硬化性樹脂組成物を用いてハードコート層を形成することを開示している。 In flexible devices, not only the display substrate but also the surface protective material such as the cover window must have flexibility, and the surface of the polyimide film having excellent transparency, surface hardness, and bending durability is hard coated. It has been proposed to use a hard coat film provided with a layer (for example, Patent Document 1 and Patent Document 2). Patent Document 1 discloses that a hard coat layer is formed by using a photocurable resin composition containing a reactive urethane acrylate, a photoradical polymerization initiator and an ultraviolet absorber.
特開2017-226712号公報Japanese Unexamined Patent Publication No. 2017-226712 国際公開第2020/040209号International Publication No. 2020/040209
 表示装置の表面保護材は、最外層に位置するため、外光に曝されやすい。そのため、表面保護材として用いられるハードコートフィルムは、紫外線等に暴露された際にも、光学特性や機械強度の変化が小さく、高い耐光性を有することが要求される。 Since the surface protective material of the display device is located in the outermost layer, it is easily exposed to external light. Therefore, the hard coat film used as a surface protective material is required to have high light resistance with little change in optical characteristics and mechanical strength even when exposed to ultraviolet rays or the like.
 本発明の一態様は、基材フィルムの少なくとも一方の面にハードコート層が設けられたハードコートフィルムである。基材フィルムは、ポリイミド樹脂を含むポリイミドフィルムであり、ハードコート層は、光硬化性樹脂組成物の硬化物からなる。ハードコート層およびポリイミドフィルムのそれぞれが、紫外線吸収剤を含有する。 One aspect of the present invention is a hard-coated film in which a hard-coat layer is provided on at least one surface of the base film. The base film is a polyimide film containing a polyimide resin, and the hard coat layer is made of a cured product of a photocurable resin composition. Each of the hardcoat layer and the polyimide film contains an ultraviolet absorber.
 ポリイミドフィルムおよびハードコート層に含まれる紫外線吸収剤としては、ベンゾトリアゾール化合物、またはトリアジン化合物が好ましい。ポリイミドフィルムにおける紫外線吸収剤の含有量は、好ましくは0.1~4.5重量%である。ハードコート層における紫外線吸収剤の含有量は、好ましくは0.1~4.5重量%である。 As the ultraviolet absorber contained in the polyimide film and the hard coat layer, a benzotriazole compound or a triazine compound is preferable. The content of the ultraviolet absorber in the polyimide film is preferably 0.1 to 4.5% by weight. The content of the ultraviolet absorber in the hard coat layer is preferably 0.1 to 4.5% by weight.
 ハードコート層の厚みは、例えば0.5~100μmである。ポリイミドフィルムの厚みは、例えば5~100μmである。 The thickness of the hard coat layer is, for example, 0.5 to 100 μm. The thickness of the polyimide film is, for example, 5 to 100 μm.
 ポリイミドフィルムのポリイミド樹脂は、ジクロロメタンに可溶であることが好ましい。例えば、ジクロロメタンに可溶のポリイミド樹脂および紫外線吸収剤を含む溶液を基材上に塗布し、溶媒を除去することにより紫外線吸収剤を含むポリイミドフィルムが得られる。このポリイミドフィルムの表面に、光硬化性樹脂および光重合開始剤を含む光硬化性樹脂組成物(ハードコート組成物)を塗布し、光硬化することにより、ポリイミドフィルムの表面にハードコート層を備えるハードコートフィルムを作製できる。 The polyimide resin of the polyimide film is preferably soluble in dichloromethane. For example, a polyimide film containing an ultraviolet absorber can be obtained by applying a solution containing a polyimide resin soluble in dichloromethane and an ultraviolet absorber onto a substrate and removing the solvent. A photocurable resin composition (hard coat composition) containing a photocurable resin and a photopolymerization initiator is applied to the surface of the polyimide film and photocured to provide a hard coat layer on the surface of the polyimide film. A hard coat film can be produced.
 ハードコート組成物は、光カチオン重合性であってもよい。光カチオン重合性を有する光硬化性樹脂の一例として、エポキシ基を有するポリシロキサン化合物が挙げられる。ハードコート組成物は、例えば、光カチオン重合性を有する光硬化性樹脂、光カチオン重合開始剤(光酸発生剤)および紫外線吸収剤を含有する。 The hardcoat composition may be photocationically polymerizable. An example of a photocurable resin having photocationic polymerizable properties is a polysiloxane compound having an epoxy group. The hard coat composition contains, for example, a photocurable resin having photocationic polymerizable properties, a photocationic polymerization initiator (photoacid generator), and an ultraviolet absorber.
 ハードコートフィルムは、例えば、画像表示装置において、画像表示パネルの視認側表面に配置される表面保護材として使用できる。画像表示装置は、折り曲げ可能であってもよい。 The hard coat film can be used as a surface protective material arranged on the visible side surface of the image display panel, for example, in an image display device. The image display device may be bendable.
 ハードコートフィルムが、ポリイミドフィルムおよびハードコート層の両方に紫外線吸収剤を含むことにより、ポリイミドの光劣化が抑制されるため、紫外線等に暴露された際にも、光学特性や機械強度の変化が小さく、耐光性に優れている。 Since the hard coat film contains an ultraviolet absorber in both the polyimide film and the hard coat layer, photodegradation of the polyimide is suppressed, so that the optical characteristics and mechanical strength change even when exposed to ultraviolet rays or the like. It is small and has excellent light resistance.
ハードコートフィルムの構成例を示す断面図である。It is sectional drawing which shows the structural example of a hard coat film.
 図1は、ポリイミドフィルム1の一方の主面にハードコート層2が設けられたハードコートフィルム10の断面図である。フィルム基材としてのポリイミドフィルム1の主面に、ハードコート組成物を塗布し、硬化することにより、ハードコート層2が形成される。ハードコート層は、ポリイミドフィルムの一方の主面にのみ設けられていてもよく、ポリイミドフィルムの両面に設けられていてもよい。 FIG. 1 is a cross-sectional view of a hard coat film 10 provided with a hard coat layer 2 on one main surface of the polyimide film 1. The hard coat layer 2 is formed by applying the hard coat composition to the main surface of the polyimide film 1 as a film base material and curing it. The hard coat layer may be provided only on one main surface of the polyimide film, or may be provided on both sides of the polyimide film.
 ポリイミドフィルム1およびハードコート層2は、いずれも紫外線吸収剤を含む。ポリイミドフィルムおよびハードコート層の両方が紫外線吸収剤を含むことにより耐光性が向上し、長時間の紫外線暴露後も、ハードコートフィルムの黄変が抑制される傾向がある。 Both the polyimide film 1 and the hard coat layer 2 contain an ultraviolet absorber. Since both the polyimide film and the hard coat layer contain an ultraviolet absorber, the light resistance is improved, and the yellowing of the hard coat film tends to be suppressed even after long-term exposure to ultraviolet rays.
 ポリイミドフィルムおよびハードコート層に含まれる紫外線吸収剤としては、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ヒドロキシベンゾエート系紫外線吸収剤等が挙げられる。中でも、可視光の吸収が少なく、かつ良好な耐光性を得られることから、ベンゾトリアゾール系紫外線吸収剤およびトリアジン系紫外線吸収剤が好ましい。 Examples of the ultraviolet absorber contained in the polyimide film and the hard coat layer include triazine-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, hydroxybenzoate-based ultraviolet absorbers, and the like. Be done. Among them, a benzotriazole-based ultraviolet absorber and a triazine-based ultraviolet absorber are preferable because they absorb less visible light and can obtain good light resistance.
 ベンゾトリアゾール系紫外線吸収剤の具体例としては、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(ADEKA製「アデカスタブ LA-24」)、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(ADEKA製「アデカスタブ LA-29」)、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](ADEKA製「アデカスタブ LA-31G」および「アデカスタブ LA-31RG」)、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール(ADEKA製「アデカスタブ LA-32」)、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール(BASF製「TINUVIN571」)、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール(BASF製「TINUVIN P」)、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-2H-ベンゾトリアゾール(BASF製「TINUVIN PS」)、2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF製「TINUVIN 234」)、2-〔5-クロロ(2H)-ベンゾトリアゾール-2-イル〕-4-メチル-6-(tert-ブチル)フェノール(BASF製「TINUVIN 326、」)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール(BASF製「TINUVIN 328」)、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF製「TINUVIN 329」)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF製「TINUVIN 900」)、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF製「TINUVIN 928」)、2-[2-ヒドロキシ-3-(3、4、5,6-テトラヒドロフタルイミドーメチル)-5-メチルフェニル]ベンゾトリアゾール(住友化学製「Sumisorb250」)等が挙げられる。 Specific examples of the benzotriazole-based ultraviolet absorber include 2- (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (ADEKA "Adecastab LA-24"). ), 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol ("Adecastab LA-29" manufactured by ADEKA), 2,2'-methylenebis [6 -(2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] (ADEKA "Adecastab LA-31G" and "Adecastab LA-31RG"), 2- ( 2H-benzotriazole-2-yl) -p-cresol (ADEKA "Adecastab LA-32"), 2- (2H-benzotriazole-2-yl) -6-dodecyl-4-methylphenol (BASF "TINUVIN571") ”), 2- (2H-benzotriazole-2-yl) -p-cresol (BASF“ TINUVIN P ”), 2- (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole (BASF) "TINUVIN PS"), 2- (2H-benzotriazole-2-yl) -4-6-bis (1-methyl-1-phenylethyl) phenol (BASF "TINUVIN 234"), 2- [5-chloro (2H) -benzotriazole-2-yl] -4-methyl-6- (tert-butyl) phenol (BASF "TINUVIN 326,"), 2- (2H-benzotriazole-2-yl) -4,6 -Di-tert-pentylphenol (BASF "TINUVIN 328"), 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (BASF "TINUVIN") 329 "), 2- (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (BASF's" TINUVIN 900 "), 2- (2H-benzotriazole-" 2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol (BASF "TINUVIN 928"), 2- [2-hydroxy- 3- (3,4,5,6-tetrahydrophthalimide-methyl) -5-methylphenyl] benzotriazole (Sumitomo Chemical's "Sumis" orb250 ") and the like.
 トリアジン系紫外線吸収剤の具体例としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]-フェノール(ADEKA製「アデカスタブ LA-46」)、2,4,6-トリス(2-ヒドロキシ-4-ヘキシロキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA製「アデカスタブ LA-F70」)、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルと[(アルキルオキシ)メチル]オキシランとの反応生成物(BASF製「TINUVIN 400」)、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルとの反応生成物(BASF製「TINUVIN 405」)、(2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン(BASF製「TINUVIN 460」)、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(BASF製「TINUVIN 479」)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(BASF製「TINUVIN 577」)、ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン(BASF製「Tinosorb S」)等が挙げられる。 Specific examples of the triazine-based ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy] -phenol. (ADEKA "Adecastab LA-46"), 2,4,6-Tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (ADEKA "Adecastab LA-F70") , 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine-2-yl) -5-hydroxyphenyl and [(alkyloxy) methyl] oxylan reaction product ( BASF "TINUVIN 400"), 2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid Reaction product with ester (BASF "TINUVIN 405"), (2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3,5- Triazine (BASF "TINUVIN 460"), 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine ( BASF "TINUVIN 479"), 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexyl) oxy] -phenol (BASF "TINUVIN 577"), bis Ethylhexyloxyphenol methoxyphenyltriazine (“Tinosorb S” manufactured by BASF) and the like can be mentioned.
 以下、ポリイミドフィルム、およびハードコート層の好ましい形態について順に説明する。なお、本明細書に例示の化合物等は、特記しない限り、単独で用いてもよく、2種以上を併用(併存)してもよい。 Hereinafter, preferable forms of the polyimide film and the hard coat layer will be described in order. Unless otherwise specified, the compounds exemplified in this specification may be used alone or in combination (coexistence) of two or more.
[ポリイミドフィルム]
<ポリイミドの組成>
 ポリイミドフィルム1はポリイミド樹脂を含む。ポリイミドは、一般に、テトラカルボン酸二無水物(以下、単に「酸二無水物」と記載する場合がある)とジアミンとの反応により得られるポリアミド酸を脱水環化することにより得られる。すなわち、ポリイミドは酸二無水物由来構造とジアミン由来構造とを有する。
[Polyimide film]
<Polyimide composition>
The polyimide film 1 contains a polyimide resin. Polyimide is generally obtained by dehydration cyclization of a polyamic acid obtained by reacting a tetracarboxylic acid dianhydride (hereinafter, may be simply referred to as "acid dianhydride") with a diamine. That is, the polyimide has an acid dianhydride-derived structure and a diamine-derived structure.
 透明ポリイミドフィルムの作製においては、ポリイミド樹脂を有機溶媒に溶解した溶液を基板上に塗布し、加熱により溶媒を乾燥除去する方法(溶液キャスト法)が好ましく採用される。そのため、ポリイミドは、透明であることに加えて、有機溶媒に可溶であることが好ましい。ポリイミドフィルムの生産性の観点から、溶液キャスト法には、ジクロロメタン等の低沸点を用いることが好ましい。そのため、ポリイミド樹脂はジクロロメタンに可溶であることが好ましい。 In the production of a transparent polyimide film, a method (solution casting method) in which a solution of a polyimide resin dissolved in an organic solvent is applied onto a substrate and the solvent is dried and removed by heating is preferably adopted. Therefore, in addition to being transparent, polyimide is preferably soluble in organic solvents. From the viewpoint of productivity of the polyimide film, it is preferable to use a low boiling point such as dichloromethane for the solution casting method. Therefore, the polyimide resin is preferably soluble in dichloromethane.
 ジクロロメタンに可溶のポリイミドの一例として、酸二無水物成分として、一般式(1)で表されるテトラカルボン酸二無水物、およびシクロブタン構造を有するテトラカルボン酸二無水物を含み、ジアミン成分としてフルオロアルキル置換ベンジジンを含むポリイミドが挙げられる。 As an example of polyimide soluble in dichloromethane, the acid dianhydride component includes a tetracarboxylic acid dianhydride represented by the general formula (1) and a tetracarboxylic acid dianhydride having a cyclobutane structure, and as a diamine component. Polyimides containing fluoroalkyl substituted benzidine can be mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(1)において、nは1または2である。R~Rはそれぞれ独立に、水素原子、フッ素原子、炭素原子数1~20のアルキル基またはフルオロアルキル基であり、R~Rのうちの少なくとも1つは、炭素原子数1~20のアルキル基またはフルオロアルキル基である。 In the general formula (1), n is 1 or 2. R 1 to R 4 are independently hydrogen atoms, fluorine atoms, alkyl groups having 1 to 20 carbon atoms or fluoroalkyl groups, and at least one of R 1 to R 4 has 1 to 1 carbon atoms. 20 alkyl or fluoroalkyl groups.
 ポリイミドの組成の一例として、ジアミン成分全量100モル%に対して、フルオロアルキル置換ベンジジンを40モル%以上100モル%以下含み、酸二無水物成分全量100モル%に対して、式(1)で表されるエステル構造を有する酸二無水物を40モル%以上85モル%以下含み、シクロブタン構造を有する酸二無水物を15モル%以上60モル%以下含むものが挙げられる。 As an example of the composition of the polyimide, the fluoroalkyl-substituted benzidine is contained in an amount of 40 mol% or more and 100 mol% or less with respect to 100 mol% of the total amount of the diamine component, and the formula (1) is used with respect to 100 mol% of the total amount of the acid dianhydride component. Examples thereof include an acid dianhydride having an ester structure represented by 40 mol% or more and 85 mol% or less, and an acid dianhydride having a cyclobutane structure containing 15 mol% or more and 60 mol% or less.
(エステル構造を有する酸二無水物)
 上記の一般式(1)で表される化合物は、エステル構造を有する酸二無水物である。R~Rがアルキル基またはフルオロアルキル基である場合のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。フルオロアルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基等が挙げられる。
(Acid dianhydride having an ester structure)
The compound represented by the above general formula (1) is an acid dianhydride having an ester structure. Examples of the alkyl group when R 1 to R 4 are an alkyl group or a fluoroalkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and a t-butyl group. Cyclobutyl group, n-pentyl group, isopentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group and the like can be mentioned. Examples of the fluoroalkyl group include a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group and the like.
 ジクロロメタンに対する高い溶解性を示すポリイミドが得られることから、一般式(1)で表される化合物の中でも、下記式(2)で表されるビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)-2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’ジイル(TAHMBP)が好ましい。 Since a polyimide showing high solubility in dichloromethane can be obtained, among the compounds represented by the general formula (1), the bis (1,3-dioxo-1,3-dihydroiso) represented by the following formula (2) Benzofuran-5-carboxylic acid) -2,2', 3,3', 5,5'-hexamethylbiphenyl-4,4'diyl (TAHMBP) is preferred.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(シクロブタン構造を有する酸二無水物)
 シクロブタン構造を有する酸二無水物の具体例としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,4-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジプロピル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,4-ジプロピル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロブタン-1,2:3,4-ビス(テトラメチレン)-1,2,3,4-テトラカルボン酸二無水物等が挙げられる。中でも、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)が好ましい。
(Acid dianhydride having a cyclobutane structure)
Specific examples of the acid dianhydride having a cyclobutane structure include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,3-dimethyl-1,2-2,3,4-cyclobutanetetracarboxylic acid dianhydride. 1,4-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride , 1,3-Dipropyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,4-dipropyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, cyclobutane-1,2 : 3,4-Bis (tetramethylene) -1,2,3,4-tetracarboxylic acid dianhydride and the like can be mentioned. Of these, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (CBDA) is preferable.
(フルオロアルキル置換ベンジジン)
 フルオロアルキル置換ベンジジンの具体例としては、2-フルオロベンジジン、3-フルオロベンジジン、2,3-ジフルオロベンジジン、2,5-ジフルオロベンジジン、2、6-ジフルオロベンジジン、2,3,5-トリフルオロベンジジン、2,3,6-トリフルオロベンジジン、2,3,5,6-テトラフルオロベンジジン、2,2’-ジフルオロベンジジン、3,3’-ジフルオロベンジジン、2,3’-ジフルオロベンジジン、2,2’,3-トリフルオロベンジジン、2,3,3’-トリフルオロベンジジン、2,2’,5-トリフルオロベンジジン、2,2’,6-トリフルオロベンジジン、2,3’,5-トリフルオロベンジジン、2,3’,6,-トリフルオロベンジジン、2,2’,3,3’-テトラフルオロベンジジン、2,2’,5,5’-テトラフルオロベンジジン、2,2’,6,6’-テトラフルオロベンジジン、2,2’,3,3’,6,6’-ヘキサフルオロベンジジン、2,2’,3,3’,5,5’、6,6’-オクタフルオロベンジジン、2-(トリフルオロメチル)ベンジジン、3-(トリフルオロメチル)ベンジジン、2,3-ビス(トリフルオロメチル)ベンジジン、2,5-ビス(トリフルオロメチル)ベンジジン、2、6-ビス(トリフルオロメチル)ベンジジン、2,3,5-トリス(トリフルオロメチル)ベンジジン、2,3,6-トリス(トリフルオロメチル)ベンジジン、2,3,5,6-テトラキス(トリフルオロメチル)ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,3’-ビス(トリフルオロメチル)ベンジジン、2,2’,3-ビス(トリフルオロメチル)ベンジジン、2,3,3’-トリス(トリフルオロメチル)ベンジジン、2,2’,5-トリス(トリフルオロメチル)ベンジジン、2,2’,6-トリス(トリフルオロメチル)ベンジジン、2,3’,5-トリス(トリフルオロメチル)ベンジジン、2,3’,6,-トリス(トリフルオロメチル)ベンジジン、2,2’,3,3’-テトラキス(トリフルオロメチル)ベンジジン、2,2’,5,5’-テトラキス(トリフルオロメチル)ベンジジン、2,2’,6,6’-テトラキス(トリフルオロメチル)ベンジジン等が挙げられる。
(Fluoroalkyl substituted benzidine)
Specific examples of the fluoroalkyl substituted benzidine include 2-fluorobenzidine, 3-fluorobenzidine, 2,3-difluorobenzidine, 2,5-difluorobenzidine, 2,6-difluorobenzidine, and 2,3,5-trifluorobenzidine. , 2,3,6-trifluorobenzidine, 2,3,5,6-tetrafluorobenzidine, 2,2'-difluorobenzidine, 3,3'-difluorobenzidine, 2,3'-difluorobenzidine, 2,2 ', 3-trifluorobenzidine, 2,3,3'-trifluorobenzidine, 2,2', 5-trifluorobenzidine, 2,2', 6-trifluorobenzidine, 2,3', 5-trifluoro Benzidine, 2,3', 6,-trifluorobenzidine, 2,2', 3,3'-tetrafluorobenzidine, 2,2', 5,5'-tetrafluorobenzidine, 2,2', 6,6 '-Tetrafluorobenzidine, 2,2', 3,3', 6,6'-hexafluorobenzidine, 2,2', 3,3', 5,5', 6,6'-octafluorobenzidine, 2 -(Trifluoromethyl) benzidine, 3- (trifluoromethyl) benzidine, 2,3-bis (trifluoromethyl) benzidine, 2,5-bis (trifluoromethyl) benzidine, 2,6-bis (trifluoromethyl) ) Benzidine, 2,3,5-tris (trifluoromethyl) benzidine, 2,3,6-tris (trifluoromethyl) benzidine, 2,3,5,6-tetrakis (trifluoromethyl) benzidine, 2,2 '-Bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) benzidine, 2,3'-bis (trifluoromethyl) benzidine, 2,2', 3-bis (trifluoromethyl) benzidine , 2,3,3'-tris (trifluoromethyl) benzidine, 2,2', 5-tris (trifluoromethyl) benzidine, 2,2', 6-tris (trifluoromethyl) benzidine, 2,3' , 5-tris (trifluoromethyl) benzidine, 2,3', 6,-tris (trifluoromethyl) benzidine, 2,2', 3,3'-tetrakis (trifluoromethyl) benzidine, 2,2', Examples thereof include 5,5'-tetrakis (trifluoromethyl) benzidine, 2,2', 6,6'-tetrakis (trifluoromethyl) benzidine and the like.
 中でも、ビフェニル骨格の2位にフルオロアルキル基を有するフルオロアルキル置換ベンジジンが好ましく、2,2’-ビス(トリフルオロメチル)ベンジジンがより好ましい。ビフェニル骨格の2位にフルオロアルキル基を有することにより、フルオロアルキル基の立体障害によりビフェニル骨格の芳香族環がねじれることとフルオロアルキル基の電子求引性により、着色が低減する。 Among them, a fluoroalkyl-substituted benzidine having a fluoroalkyl group at the 2-position of the biphenyl skeleton is preferable, and 2,2'-bis (trifluoromethyl) benzidine is more preferable. By having a fluoroalkyl group at the 2-position of the biphenyl skeleton, the aromatic ring of the biphenyl skeleton is twisted due to steric hindrance of the fluoroalkyl group, and coloring is reduced due to the electron attractiveness of the fluoroalkyl group.
(その他酸二無水物およびジアミン)
 ポリイミドは、ジクロロメタン等の低沸点溶媒への溶解性を損なわず、透明性や機械強度を損なわない範囲で、上記以外の酸二無水物成分およびジアミン成分を含んでいてもよい。
(Other acid dianhydrides and diamines)
The polyimide may contain an acid dianhydride component and a diamine component other than the above, as long as the solubility in a low boiling point solvent such as dichloromethane is not impaired and the transparency and mechanical strength are not impaired.
 併用可能な酸二無水物成分の例としては、ピロメリット酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、1,3-ビス[(3,4-ジカルボキシ)ベンゾイル]ベンゼン二無水物、1,4-ビス[(3,4-ジカルボキシ)ベンゾイル]ベンゼン二無水物、2,2-ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、2,2-ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、4,4’-ビス[4-(1,2-ジカルボキシ)フェノキシ]ビフェニル二無水物、4,4’-ビス[3-(1,2-ジカルボキシ)フェノキシ]ビフェニル二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}スルホン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}スルホン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}スルフィド二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}スルフィド二無水物、2,2-ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}-1,1,1,3,3,3-プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。 Examples of acid dianhydride components that can be used in combination are pyromellitic acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane. Acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, ethylenetetracarboxylic acid dianhydride, Butanetetracarboxylic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexane Tetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, 1,1'-bicyclohexane-3,3', 4,4'-tetracarboxylic acid-3,4: 3', 4'- Dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,2', 3,3'-benzophenone tetracarboxylic acid dianhydride, 2,2-bis (3,4-bis) Dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) Carboxyphenyl) sulfonate dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) Phenyl) methane dianhydride, 1,3-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 1,4-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 2 , 2-bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} Propane dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride Anhydride, 4,4'-bis [4- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, 4,4'-bis [3- (1,2-dicarboxy) phenoxy] biphenyl dianhydride , Bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] Fe Nyl} sulfonate dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfonate dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} Sulfide dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride, 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] Phenyl} -1,1,1,3,3,3-propane dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,4,5,8-naphthalenetetracarboxylic acid dianhydride , 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,4,9,10-perylenetetracarboxylic acid dianhydride, Examples thereof include 2,3,6,7-anthracenetetracarboxylic acid dianhydride and 1,2,7,8-phenanthrentetracarboxylic acid dianhydride.
 併用可能なジアミンの例としては、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、9,9-ビス(4-アミノフェニル)フルオレン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノブチル)ポリジメチルシロキサン、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル、ビス(2-アミノメトキシ)エチル]エーテル、ビス[2-(2-アミノエトキシ)エチル]エーテル、ビス[2-(3-アミノプロトキシ)エチル]エーテル、1,2-ビス(アミノメトキシ)エタン、1,2-ビス(2-アミノエトキシ)エタン、1,2-ビス[2-(アミノメトキシ)エトキシ]エタン、1,2-ビス[2-(2-アミノエトキシ)エトキシ]エタン、エチレングリコールビス(3-アミノプロピル)エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、トリエチレングリコールビス(3-アミノプロピル)エーテル、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,2-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、trans-1,4-ジアミノシクロヘキサン、1,2-ジ(2-アミノエチル)シクロヘキサン、1,3-ジ(2-アミノエチル)シクロヘキサン、1,4-ジ(2-アミノエチル)シクロヘキサン、ビス(4-アミノシクロへキシル)メタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、1,4-ジアミノ-2-フルオロベンゼン、1,4-ジアミノ-2,3-ジフルオロベンゼン、1,4-ジアミノ-2,5-ジフルオロベンゼン、1、4-ジアミノ-2,6-ジフルオロベンゼン、1,4-ジアミノ-2,3,5-トリフルオロベンゼン、1、4-ジアミノ、2,3,5,6-テトラフルオロベンゼン、1,4-ジアミノ-2-(トリフルオロメチル)ヘンゼン、1,4-ジアミノ-2,3-ビス(トリフルオロメチル)ベンゼン、1,4-ジアミノ-2,5-ビス(トリフルオロメチル)ベンゼン、1、4-ジアミノ-2,6-ビス(トリフルオロメチル)ベンゼン、1,4-ジアミノ-2,3,5-トリス(トリフルオロメチル)ベンゼン、1、4-ジアミノ、2,3,5,6-テトラキス(トリフルオロメチル)ベンゼンが挙げられる。 Examples of diamines that can be used in combination are p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3, 3'-Diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfon, 9,9-bis (4-aminophenyl) fluorene, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 4,4 '-Diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-Aminophenyl) Propane, 1,1-di (3-aminophenyl) -1-phenylethane, 1,1-di (4-aminophenyl) -1-phenylethane, 1- (3-aminophenyl) -1- (4-Aminophenyl) -1-phenylethane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-amino) Phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4-bis (3) -Aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α,) α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene, 2,6-bis (3-Aminophenoxy) Benzenenitrile, 2,6-bis (3-aminophenoxy) pyridine, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, Bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) pheni Le] Sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-Aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-Aminophenoxy) phenyl] propane, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,4- Bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) -α, α -Dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3-aminophenoxy) -α, α-dimethyl Benzyl] benzene, 1,4-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 4,4'-bis [4- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4 '-Bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4'-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenyl sulfone, 4, 4'-bis [4- (4-aminophenoxy) phenoxy] diphenyl sulfone, 3,3'-diamino-4,4'-diphenoxybenzophenone, 3,3'-diamino-4,4'-dibiphenoxybenzophenone, 3,3'-Diamino-4-phenoxybenzophenone, 3,3'-diamino-4-biphenoxybenzophenone, 6,6'-bis (3-aminophenoxy) -3,3,3', 3'-tetramethyl -1,1'-spirobiindan, 6,6'-bis (4-aminophenoxy) -3,3,3', 3'-tetramethyl-1,1'-spirobiindan, 1,3-bis (3-amino) Propyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, α, ω-bis (3-aminopropyl) polydimethylsiloxane, α, ω-bis (3-aminobutyl) poly Dimethylsiloxane, bis (aminomethyl) A Tel, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, bis (2-aminomethoxy) ethyl] ether, bis [2- (2-aminoethoxy) ethyl] ether, bis [2- ( 3-Aminoprotoxy) ethyl] ether, 1,2-bis (aminomethoxy) ethane, 1,2-bis (2-aminoethoxy) ethane, 1,2-bis [2- (aminomethoxy) ethoxy] ethane, 1,2-bis [2- (2-aminoethoxy) ethoxy] ethane, ethylene glycol bis (3-aminopropyl) ether, diethylene glycol bis (3-aminopropyl) ether, triethylene glycol bis (3-aminopropyl) ether , Ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane , 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, trans-1,4-diamino Cyclohexane, 1,2-di (2-aminoethyl) cyclohexane, 1,3-di (2-aminoethyl) cyclohexane, 1,4-di (2-aminoethyl) cyclohexane, bis (4-aminocyclohexyl) Methan, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 1,4-diamino-2-fluorobenzene , 1,4-Diamino-2,3-difluorobenzene, 1,4-diamino-2,5-difluorobenzene, 1,4-diamino-2,6-difluorobenzene, 1,4-diamino-2,3 5-Trifluorobenzene, 1,4-diamino, 2,3,5,6-tetrafluorobenzene, 1,4-diamino-2- (trifluoromethyl) henzen, 1,4-diamino-2,3-bis (Trifluoromethyl) benzene, 1,4-diamino-2,5-bis (trifluoromethyl) benzene, 1,4-diamino-2,6-bis (trifluoromethyl) benzene, 1,4-diamino-2 , 3,5-Tris (trifluoromethyl) benzene, 1,4-diamino, 2,3,5,6-tetrakis (trifluoromethyl) benzene.
(ポリイミドの組成の具体例)
 上記の通り、一実施形態のポリイミドは、酸二無水物成分として、一般式(1)で表されるエステル構造を有する酸二無水物およびシクロブタン構造を有する酸二無水物を含み、ジアミン成分としてフルオロアルキル置換ベンジジンを含む。
(Specific example of polyimide composition)
As described above, the polyimide of one embodiment contains, as an acid dianhydride component, an acid dianhydride having an ester structure represented by the general formula (1) and an acid dianhydride having a cyclobutane structure, and as a diamine component. Includes fluoroalkyl substituted benzidine.
 一般式(1)で表される酸二無水物の量は、酸二無水物成分全量100モル%に対して、40~85モル%が好ましく、45~80モル%がより好ましく、50~70モル%がさらに好ましい。この範囲とすることにより、ジクロロメタン等の低沸点溶媒に対する高い溶解性を示すとともに、優れた機械強度を有するポリイミドが得られる。前述のように、一般式(1)で表される酸二無水物の中でも、式(2)で表されるTAHMBPが特に好ましい。 The amount of the acid dianhydride represented by the general formula (1) is preferably 40 to 85 mol%, more preferably 45 to 80 mol%, and 50 to 70 with respect to 100 mol% of the total amount of the acid dianhydride component. Mol% is more preferred. Within this range, a polyimide showing high solubility in a low boiling point solvent such as dichloromethane and having excellent mechanical strength can be obtained. As described above, among the acid dianhydrides represented by the general formula (1), TAHMBP represented by the formula (2) is particularly preferable.
 シクロブタン構造を有する酸二無水物の量は、酸二無水物成分全量100モル%に対して、15~60モル%が好ましく、20~55モル%がより好ましく、25~50モル%がさらに好ましい。この範囲とすることにより、ジクロロメタン等の低沸点溶媒に対する溶解性を有しつつ、着色が少なく、かつ機械強度に優れるポリイミドが得られる。前述のように、シクロブタン構造を有する酸二無水物の中でも、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)が特に好ましい。 The amount of acid dianhydride having a cyclobutane structure is preferably 15 to 60 mol%, more preferably 20 to 55 mol%, still more preferably 25 to 50 mol%, based on 100 mol% of the total amount of acid dianhydride components. .. Within this range, a polyimide having solubility in a low boiling point solvent such as dichloromethane, less coloring, and excellent mechanical strength can be obtained. As described above, among the acid dianhydrides having a cyclobutane structure, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (CBDA) is particularly preferable.
 一般式(1)で表される酸二無水物およびシクロブタン構造を有する酸二無水物以外の酸二無水物を併用する場合、その量は、酸二無水物成分全量100モル%に対して、45モル%以下が好ましく、30モル%以下がより好ましい。溶解性、透明性および機械強度に優れるポリイミドを得る観点において、併用する酸二無水物の好ましい例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、4,4’-オキシジフタル酸二無水物(s-ODPA)、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(6FDA)等が挙げられる。 When an acid dianhydride represented by the general formula (1) and an acid dianhydride other than the acid dianhydride having a cyclobutane structure are used in combination, the amount thereof is based on 100 mol% of the total amount of the acid dianhydride component. 45 mol% or less is preferable, and 30 mol% or less is more preferable. From the viewpoint of obtaining a polyimide having excellent solubility, transparency and mechanical strength, preferred examples of the acid dianhydride used in combination are 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (s-BPDA). , 4,4'-oxydiphthalic acid dianhydride (s-ODPA), 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride (6FDA) and the like.
 フルオロアルキル置換ベンジジンの量は、ジアミン成分全量100モル%に対して、40モル%以上が好ましく、60モル%以上がより好ましく、70モル%以上がさらに好ましい。この範囲とすることにより、機械強度を損なうことなく、透明性および溶解性に優れるポリイミドが得られる。前述のように、フルオロアルキル置換ベンジジンの中でも、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)が特に好ましい。 The amount of the fluoroalkyl-substituted benzidine is preferably 40 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, based on 100 mol% of the total diamine component. Within this range, a polyimide having excellent transparency and solubility can be obtained without impairing the mechanical strength. As mentioned above, among the fluoroalkyl-substituted benzidines, 2,2'-bis (trifluoromethyl) benzidine (TFMB) is particularly preferable.
 フルオロアルキル置換ベンジジン以外のジアミンを併用する場合、その量は、ジアミン成分全量100モル%に対して、60モル%以下が好ましく、40%以下がより好ましく、30モル%以下がさらに好ましい。ポリイミドの透明性および溶解性の観点から、TFMB等のフルオロアルキル置換ベンジジンと、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)または4,4’-ジアミノジフェニルスルホン(3,3’-DDS)を併用することが好ましい。ジアミン成分全量100モル%に対するジアミノジフェニルスルホンの量は、5~40モル%が好ましく、10~30モル%がより好ましい。 When a diamine other than the fluoroalkyl-substituted benzidine is used in combination, the amount thereof is preferably 60 mol% or less, more preferably 40% or less, still more preferably 30 mol% or less, based on 100 mol% of the total amount of the diamine component. From the viewpoint of transparency and solubility of polyimide, fluoroalkyl substituted benzidine such as TFMB and 3,3'-diaminodiphenyl sulfone (3,3'-DDS) or 4,4'-diaminodiphenyl sulfone (3,3') -It is preferable to use DDS) together. The amount of diaminodiphenyl sulfone with respect to 100 mol% of the total amount of the diamine component is preferably 5 to 40 mol%, more preferably 10 to 30 mol%.
 上記の様に、ポリイミドは、酸二無水物成分として、TAHMBPを40~85モル%、CBDAを15~60モル%含み、ジアミン成分として、TFMBを40~100モル%含むものが好ましい。さらに、溶媒への溶解性や、フィルムの透明性を向上させる観点から、ジアミン成分としてジアミノジフェニルスルホン(3,3’-DDSまたは/および4,4’-DDS)を5~40モル%含むことが好ましく、酸二無水物として6FDA、s-BPDA、s-ODPA等を含んでいてもよい。 As described above, the polyimide preferably contains 40 to 85 mol% of TAHMBP and 15 to 60 mol% of CBDA as an acid dianhydride component, and 40 to 100 mol% of TFMB as a diamine component. Further, from the viewpoint of improving the solubility in a solvent and the transparency of the film, 5 to 40 mol% of diaminodiphenyl sulfone (3,3'-DDS and / and 4,4'-DDS) is contained as a diamine component. Is preferable, and 6FDA, s-BPDA, s-ODPA and the like may be contained as the acid dianhydride.
<ポリイミド樹脂の作製>
 ポリイミド樹脂の製造方法は特に限定されないが、溶媒中でジアミンと酸二無水物とを反応させてポリイミド前駆体であるポリアミド酸を調製し、ポリアミド酸の脱水環化によりイミド化する方法が好ましい。例えば、ポリアミド酸溶液にイミド化触媒および脱水剤を添加して、ポリアミド酸を脱水閉環することによりポリイミド溶液が得られる。ポリイミド溶液とポリイミドの貧溶媒とを混合して、ポリイミド樹脂を析出させ、固液分離することによりポリイミド樹脂が得られる。
<Manufacturing of polyimide resin>
The method for producing the polyimide resin is not particularly limited, but a method in which a diamine and an acid dianhydride are reacted in a solvent to prepare a polyamic acid as a polyimide precursor and imidized by dehydration cyclization of the polyamic acid is preferable. For example, a polyimide solution can be obtained by adding an imidization catalyst and a dehydrating agent to the polyamic acid solution to dehydrate and close the polyamic acid. A polyimide resin can be obtained by mixing a polyimide solution and a poor solvent of polyimide to precipitate a polyimide resin and then solid-liquid separation.
(ポリアミド酸の合成)
 溶媒中で酸二無水物とジアミンとを反応させることにより、ポリアミド酸溶液が得られる。酸二無水物とジアミンは実質的に等モル量使用することが好ましい。すなわち、酸二無水物成分とジアミンのモル比は95:105~105:95の範囲が好ましい。
(Synthesis of polyamic acid)
A polyamic acid solution is obtained by reacting the acid dianhydride with the diamine in a solvent. It is preferable to use substantially equal molar amounts of acid dianhydride and diamine. That is, the molar ratio of the acid dianhydride component to the diamine is preferably in the range of 95: 105 to 105: 95.
 酸二無水物とジアミンの重合において、使用可能な有機溶媒は特に限定されず、酸二無水物およびジアミン、ならびに重合生成物であるポリアミド酸が溶解すればよい。有機溶媒の具体例としては、メチル尿素、N,N-ジメチルエチルウレア等のウレア系溶媒;ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルホン等のスルホン系溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N’-ジエチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;クロロホルム、ジクロロメタン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。これらの中でも、重合反応性およびポリアミド酸の溶解性に優れることから、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、またはN-メチルピロリドンが好ましい。 In the polymerization of acid dianhydride and diamine, the organic solvent that can be used is not particularly limited, and the acid dianhydride and diamine, and the polyamic acid that is a polymerization product may be dissolved. Specific examples of the organic solvent include urea-based solvents such as methyl urea, N, N-dimethylethyl urea; and sulfone-based solvents such as dimethyl sulfoxide, diphenyl sulfone, and tetramethyl sulfone; N, N-dimethylacetamide, N, N-. Amid solvents such as dimethylformamide, N, N'-diethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, hexamethylphosphate triamide; alkyl halide solvents such as chloroform and dichloromethane; benzene, toluene and the like. Examples thereof include aromatic hydrocarbon solvents, ether solvents such as tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dimethyl ether, diethyl ether, and p-cresol methyl ether. Among these, N, N-dimethylacetamide, N, N-dimethylformamide, or N-methylpyrrolidone is preferable because of its excellent polymerization reactivity and solubility of polyamic acid.
 酸二無水物とジアミンの重合における反応温度は特に限定されないが、0℃以上80℃以下が好ましく、20℃以上45℃以下がより好ましい。0℃以上であることにより反応速度の低下が抑制され、80℃以下であることにより、酸二無水物の開環による重合度の低下等が抑制される傾向がある。 The reaction temperature in the polymerization of acid dianhydride and diamine is not particularly limited, but is preferably 0 ° C. or higher and 80 ° C. or lower, and more preferably 20 ° C. or higher and 45 ° C. or lower. When the temperature is 0 ° C. or higher, the decrease in the reaction rate is suppressed, and when the temperature is 80 ° C. or lower, the decrease in the degree of polymerization due to ring-opening of the acid dianhydride tends to be suppressed.
(イミド化)
 ポリアミド酸の脱水環化によりポリイミドが得られる。溶液でのイミド化には、ポリアミド酸溶液に脱水剤およびイミド化触媒等を添加する化学イミド化法が適している。イミド化の進行を促進するために、ポリアミド酸溶液を加熱してもよい。
(Imidization)
Polyimide is obtained by dehydration cyclization of polyamic acid. For imidization in solution, a chemical imidization method in which a dehydrating agent, an imidization catalyst, or the like is added to the polyamic acid solution is suitable. The polyamic acid solution may be heated to accelerate the progress of imidization.
 イミド化触媒としては、第三級アミンが用いられる。第三級アミンとしては複素環式の第三級アミンが好ましい。複素環式の第三級アミンの具体例としては、ピリジン、ピコリン、キノリン、イソキノリン等が挙げられる。脱水剤としてはカルボン酸無水物が用いられ、具体的には無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等が挙げられる。 A tertiary amine is used as the imidization catalyst. As the tertiary amine, a heterocyclic tertiary amine is preferable. Specific examples of the heterocyclic tertiary amine include pyridine, picoline, quinoline, isoquinoline and the like. As the dehydrating agent, carboxylic acid anhydride is used, and specific examples thereof include acetic anhydride, propionic acid anhydride, n-butyric acid anhydride, benzoic acid anhydride, and trifluoroacetic anhydride.
 イミド化触媒の添加量は、ポリアミド酸のアミド基に対して、0.5~5.0倍モル当量が好ましく、0.7~2.5倍モル当量がより好ましく、0.8~2.0倍モル当量がさらに好ましい。脱水剤の添加量は、ポリアミド酸のアミド基に対して、0.5~10.0倍モル当量が好ましく、0.7~5.0倍モル当量がより好ましく、0.8~3.0倍モル当量がさらに好ましい。 The amount of the imidization catalyst added is preferably 0.5 to 5.0 times the molar equivalent, more preferably 0.7 to 2.5 times the molar equivalent, and 0.8 to 2. A 0-fold molar equivalent is more preferred. The amount of the dehydrating agent added is preferably 0.5 to 10.0 times the molar equivalent, more preferably 0.7 to 5.0 times the molar equivalent, and 0.8 to 3.0 times the amide group of the polyamic acid. Double molar equivalents are more preferred.
(ポリイミド樹脂の析出)
 ポリアミド酸のイミド化により得られたポリイミド溶液から、ポリイミド樹脂を固形物として析出させることが好ましい。ポリイミド溶液と貧溶媒とを混合することにより、ポリイミド樹脂が析出する。貧溶媒は、ポリイミド樹脂の貧溶媒であって、ポリイミド樹脂を溶解している溶媒と混和するものが好ましく、水、アルコール類等が挙げられる。アルコール類としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコール、トリエチレングリコール、2-ブチルアルコール、2-ヘキシルアルコール、シクロペンチルアルコール、シクロヘキシルアルコール、フェノール、t-ブチルアルコール等が挙げられる。ポリイミドの開環等が生じ難いことから、イソプロピルアルコール、2-ブチルアルコール、2-ペンチルアルコール、フェノール、シクロペンチルアルコール、シクロヘキシルアルコール、t-ブチルアルコール等のアルコールが好ましく、イソプロピルアルコールが特に好ましい。
(Precipitation of polyimide resin)
It is preferable to precipitate the polyimide resin as a solid substance from the polyimide solution obtained by imidizing the polyamic acid. By mixing the polyimide solution and the poor solvent, the polyimide resin is precipitated. The poor solvent is a poor solvent of the polyimide resin, preferably one that is mixed with a solvent in which the polyimide resin is dissolved, and examples thereof include water and alcohols. Examples of alcohols include methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, triethylene glycol, 2-butyl alcohol, 2-hexyl alcohol, cyclopentyl alcohol, cyclohexyl alcohol, phenol, t-butyl alcohol and the like. Alcohols such as isopropyl alcohol, 2-butyl alcohol, 2-pentyl alcohol, phenol, cyclopentyl alcohol, cyclohexyl alcohol, and t-butyl alcohol are preferable, and isopropyl alcohol is particularly preferable, because ring opening of the polyimide is unlikely to occur.
<ポリイミドフィルムの作製>
 ポリイミド樹脂を有機溶媒に溶解したポリイミド溶液(製膜用ドープ)を、基材上に塗布し、溶媒を乾燥除去させることによりポリイミドフィルムを製造できる。ポリイミド樹脂を溶解させる有機溶媒としては、上記のポリイミド樹脂を溶解可溶なものであればよく、ポリイミド樹脂の用途に応じて適宜選択すればよいが、ジクロロメタン、酢酸メチル、テトラヒドロフラン、アセトン、及び1,3-ジオキソラン等の低沸点溶媒が好ましく、沸点が低く、溶媒の乾燥除去が容易であることからジクロロメタンが特に好ましい。前述のように酸二無水物成分およびジアミン成分の組成比を調整することにより、ジクロロメタン等の低沸点溶媒に対しても高い溶解性を示すポリイミドが得られる。
<Manufacturing of polyimide film>
A polyimide film can be produced by applying a polyimide solution (a dope for film formation) in which a polyimide resin is dissolved in an organic solvent onto a substrate and drying and removing the solvent. The organic solvent for dissolving the polyimide resin may be any solvent as long as it is soluble and soluble in the above-mentioned polyimide resin, and may be appropriately selected depending on the intended use of the polyimide resin. Dichloromethane, methyl acetate, tetrahydrofuran, acetone, and 1 A low boiling point solvent such as, 3-dioxolane is preferable, and dichloromethane is particularly preferable because the boiling point is low and the solvent can be easily removed by drying. By adjusting the composition ratios of the acid dianhydride component and the diamine component as described above, a polyimide showing high solubility in a low boiling point solvent such as dichloromethane can be obtained.
 ポリイミド溶液の固形分濃度は、ポリイミドの分子量、フィルムの厚みや製膜環境等に応じて適宜設定すればよい。固形分濃度は、5~30重量%が好ましく、6~20重量%がより好ましい。 The solid content concentration of the polyimide solution may be appropriately set according to the molecular weight of the polyimide, the thickness of the film, the film forming environment, and the like. The solid content concentration is preferably 5 to 30% by weight, more preferably 6 to 20% by weight.
(紫外線吸収剤)
 前述のように、ポリイミドフィルムは紫外線吸収剤を含む。紫外線吸収剤を含むポリイミドの作製においては、ポリイミド溶液に紫外線吸収剤を含有させることが好ましい。前述のように、紫外線吸収剤としては、可視光の吸収が少なく、かつ良好な耐光性を得られることから、ベンゾトリアゾール系紫外線吸収剤およびトリアジン系紫外線吸収剤が好ましい。特に、溶媒の乾燥時の加熱による紫外線吸収剤の揮発を抑制する観点から、ポリイミド溶液は、トリアジン系紫外線吸収剤を含むことが好ましい。ポリイミド溶液(およびポリイミドフィルム)は、トリアジン系紫外線吸収剤とベンゾトリアゾール系紫外線吸収剤を含んでいてもよい。
(UV absorber)
As mentioned above, the polyimide film contains an ultraviolet absorber. In the production of a polyimide containing an ultraviolet absorber, it is preferable to include the ultraviolet absorber in the polyimide solution. As described above, as the ultraviolet absorber, a benzotriazole-based ultraviolet absorber and a triazine-based ultraviolet absorber are preferable because they absorb less visible light and can obtain good light resistance. In particular, from the viewpoint of suppressing the volatilization of the ultraviolet absorber due to heating when the solvent is dried, the polyimide solution preferably contains a triazine-based ultraviolet absorber. The polyimide solution (and the polyimide film) may contain a triazine-based ultraviolet absorber and a benzotriazole-based ultraviolet absorber.
 ポリイミドの酸二無水物成分として用いられる一般式(1)の酸二無水物は、フェノールと、無水トリメリット酸とのエステルであり、紫外線による光劣化が生じやすい。これは、構造上、光フリース転移等の転移反応が生じやすいためであると推測される。ポリイミドフィルムが紫外線吸収剤を含むことにより、ポリイミドフィルムに入射した紫外線は紫外線吸収剤に吸収されるため、ポリイミドは紫外線の影響を受け難く、光劣化による着色(黄変)が抑制される傾向がある。 The acid dianhydride of the general formula (1) used as the acid dianhydride component of polyimide is an ester of phenol and trimellitic anhydride, and is easily deteriorated by light due to ultraviolet rays. It is presumed that this is because rearrangement reactions such as optical Fries rearrangement are likely to occur due to the structure. Since the polyimide film contains an ultraviolet absorber, the ultraviolet rays incident on the polyimide film are absorbed by the ultraviolet absorber, so that the polyimide is not easily affected by the ultraviolet rays and tends to suppress coloring (yellowing) due to light deterioration. be.
 ポリイミドの光劣化を抑制する観点から、ポリイミド溶液における紫外線吸収剤の量は、全固形分100重量部に対して、0.1重量部以上が好ましく、0.3重量部以上がより好ましく、0.5重量部以上、0.7重量部以上または1重量部以上であってもよい。紫外線吸収剤の量が多いほど、ポリイミドの光劣化が抑制される傾向がある。一方、紫外線吸収剤の量が過度に多い場合は、紫外線吸収剤がポリイミドと十分に相溶しないことにより、ポリイミドフィルムの白濁や、表面への紫外線吸収剤のブリードアウトが生じる場合がある。そのため、ポリイミド溶液における紫外線吸収剤の量は、全固形分100重量部に対して、4.5重量部以下が好ましく、4重量部以下がより好ましく、3.5重量部以下または3重量部以下であってもよい。 From the viewpoint of suppressing photodegradation of the polyimide, the amount of the ultraviolet absorber in the polyimide solution is preferably 0.1 part by weight or more, more preferably 0.3 part by weight or more, and 0 part by weight with respect to 100 parts by weight of the total solid content. It may be .5 parts by weight or more, 0.7 parts by weight or more, or 1 part by weight or more. The larger the amount of the ultraviolet absorber, the more the photodegradation of the polyimide tends to be suppressed. On the other hand, when the amount of the ultraviolet absorber is excessively large, the ultraviolet absorber may not be sufficiently compatible with the polyimide, which may cause the polyimide film to become cloudy or bleed out of the ultraviolet absorber to the surface. Therefore, the amount of the ultraviolet absorber in the polyimide solution is preferably 4.5 parts by weight or less, more preferably 4 parts by weight or less, and 3.5 parts by weight or less or 3 parts by weight or less with respect to 100 parts by weight of the total solid content. May be.
 ポリイミドが一般式(1)で表される酸二無水物成分を含有している場合、フィルムの白濁や紫外線吸収剤のブリードアウトを抑制しつつ、ポリイミドの光劣化を十分に抑制することは容易ではない。そのため、後述のように、ポリイミドフィルム1の表面に設けられるハードコート層2に紫外線吸収剤を含有させることにより紫外線遮蔽性を持たせ、ポリイミドフィルム1に到達する紫外線の量を低減することが好ましい。 When the polyimide contains the acid dianhydride component represented by the general formula (1), it is easy to sufficiently suppress the photodegradation of the polyimide while suppressing the white turbidity of the film and the bleed-out of the ultraviolet absorber. is not. Therefore, as will be described later, it is preferable that the hard coat layer 2 provided on the surface of the polyimide film 1 contains an ultraviolet absorber to provide ultraviolet shielding properties and reduce the amount of ultraviolet rays reaching the polyimide film 1. ..
(添加剤)
 ポリイミド溶液は、ポリイミド樹脂および紫外線吸収剤以外の樹脂成分や添加剤を含んでいてもよい。添加剤としては、架橋剤、染料、界面活性剤、レベリング剤、可塑剤、微粒子等が挙げられる。ポリイミド樹脂組成物の固形分100重量部に対するポリイミド樹脂の含有量は60重量部以上が好ましく、70重量部以上がより好ましく、80重量部以上がさらに好ましい。
(Additive)
The polyimide solution may contain resin components and additives other than the polyimide resin and the ultraviolet absorber. Examples of the additive include a cross-linking agent, a dye, a surfactant, a leveling agent, a plasticizer, fine particles and the like. The content of the polyimide resin with respect to 100 parts by weight of the solid content of the polyimide resin composition is preferably 60 parts by weight or more, more preferably 70 parts by weight or more, still more preferably 80 parts by weight or more.
 上記の染料の具体例としては、アントラキノン系化合物、フタロシアニン系化合物、インディゴ系化合物等が挙げられる。これらの中でもアントラキノン系が耐熱性の観点から好ましい。その使用量は、例えば、ポリイミド樹脂を基準に、0.1~100ppm程度であり、1~90ppm、10~80ppmまたは20~70ppmであってもよい。染料を含めることにより、ポリイミドフィルムの色調を調整できる。ポリイミドおよび紫外線吸収剤は、可視光の短波長領域の光を吸収するためわずかに黄色に着色しているが、ブルーイング剤として機能する染料を添加することにより、色相をニュートラル化できる。ブルーイング剤は、公知のものを適宜使用可能であり、市販品として、「マクロレックスブルーRR」、「Sumiplast Violet B」、「Sumiplast Violet OR」、「Plast Blue8580」、「Plast Blue8590」、「Plast Violet8840」等が挙げられる。 Specific examples of the above dyes include anthraquinone compounds, phthalocyanine compounds, indigo compounds and the like. Among these, the anthraquinone type is preferable from the viewpoint of heat resistance. The amount used is, for example, about 0.1 to 100 ppm based on the polyimide resin, and may be 1 to 90 ppm, 10 to 80 ppm, or 20 to 70 ppm. By including the dye, the color tone of the polyimide film can be adjusted. The polyimide and the ultraviolet absorber are slightly colored yellow because they absorb light in the short wavelength region of visible light, but the hue can be neutralized by adding a dye that functions as a brewing agent. As the bluing agent, known ones can be appropriately used, and commercially available products such as "Macrolex Blue RR", "Sumiplast Violet B", "Sumiplast Violet OR", "Plast Blue8580", "Plast Blue8590", and "Plast" can be used as appropriate. "Bluelet 8840" and the like.
(塗布および乾燥)
 ポリイミド溶液を基材に塗布する方法としては、公知の方法を用いることができ、例えば、バーコーターやコンマコーターにより塗布できる。ポリイミド溶液を塗布する基材としては、ガラス基板、SUS等の金属基板、金属ドラム、金属ベルト、プラスチックフィルム等を使用できる。生産性向上の観点から、支持体として、金属ドラム、金属ベルト等の無端支持体、または長尺プラスチックフィルム等を用い、ロールトゥーロールによりフィルムを製造することが好ましい。プラスチックフィルムを支持体として使用する場合、製膜ドープの溶媒に溶解しない材料を適宜選択すればよく、プラスチック材料としては、ポリエチレンテレフタレート、ポリカーボネート、ポリアクリレート、ポリエチレンナフタレート等が用いられる。
(Applying and drying)
As a method of applying the polyimide solution to the substrate, a known method can be used, and for example, it can be applied by a bar coater or a comma coater. As the base material to which the polyimide solution is applied, a glass substrate, a metal substrate such as SUS, a metal drum, a metal belt, a plastic film, or the like can be used. From the viewpoint of improving productivity, it is preferable to use a metal drum, an endless support such as a metal belt, a long plastic film, or the like as the support, and to manufacture the film by roll-to-roll. When a plastic film is used as a support, a material that does not dissolve in the solvent of the film-forming dope may be appropriately selected, and as the plastic material, polyethylene terephthalate, polycarbonate, polyacrylate, polyethylene naphthalate or the like is used.
 溶媒の乾燥時には加熱を行うことが好ましい。加熱温度は、特に限定されないが、ポリイミドフィルムの着色および紫外線吸収剤の揮発を抑制する観点から、200℃以下が好ましく、180℃以下がより好ましい。溶媒の乾燥時には、段階的に加熱温度を上昇させてもよい。減圧下で溶媒の乾燥を行ってもよい。ジクロロメタンに可溶のポリイミド樹脂を用い、ジクロロメタンを溶媒としてポリイミド溶液を調製することにより、200℃以下の加熱でも残存溶媒を容易に低減可能であり、着色および紫外線吸収剤の揮発を抑制できる。ポリイミドフィルムの残存溶媒量(フィルムの質量に対するフィルムに含まれる溶媒の質量)は、1.5%以下が好ましく、1.0%以下がより好ましい。残存溶媒量がこの範囲であれば、ポリイミドフィルムの機械強度が向上する傾向がある。 It is preferable to heat the solvent when it dries. The heating temperature is not particularly limited, but is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, from the viewpoint of suppressing the coloring of the polyimide film and the volatilization of the ultraviolet absorber. When the solvent is dried, the heating temperature may be gradually increased. The solvent may be dried under reduced pressure. By using a polyimide resin soluble in dichloromethane and preparing a polyimide solution using dichloromethane as a solvent, the residual solvent can be easily reduced even by heating at 200 ° C. or lower, and coloring and volatilization of the ultraviolet absorber can be suppressed. The residual solvent amount of the polyimide film (mass of the solvent contained in the film with respect to the mass of the film) is preferably 1.5% or less, more preferably 1.0% or less. When the amount of residual solvent is in this range, the mechanical strength of the polyimide film tends to be improved.
 ポリイミドフィルムの厚みは特に限定されず、用途に応じて適宜設定すればよい。ポリイミドフィルムの厚みは、例えば5~100μm程度である。機械強度と透明性とを両立する観点から、ポリイミドフィルムの厚みは30μm以上が好ましく、35μm以上がより好ましく、40μm以上がさらに好ましい。特に、ディスプレイのカバーウインドウ等、強度が求められる用途に用いる場合、ポリイミドフィルムの厚みは40μm以上が好ましい。ポリイミドフィルムの厚みは、90μm以下が好ましく、85μm以下がより好ましい。 The thickness of the polyimide film is not particularly limited and may be appropriately set according to the intended use. The thickness of the polyimide film is, for example, about 5 to 100 μm. From the viewpoint of achieving both mechanical strength and transparency, the thickness of the polyimide film is preferably 30 μm or more, more preferably 35 μm or more, still more preferably 40 μm or more. In particular, when used for applications requiring strength such as a cover window of a display, the thickness of the polyimide film is preferably 40 μm or more. The thickness of the polyimide film is preferably 90 μm or less, more preferably 85 μm or less.
 ロールトゥーロール搬送時のロールとの接触や、巻取時のフィルム同士の接触によるフィルムの傷付きを防止する観点から、ハードコート層を形成する前のポリイミドフィルムの鉛筆硬度はHB以上が好ましく、F以上がより好ましい。 From the viewpoint of preventing the film from being scratched due to contact with the roll during roll-to-roll transfer and contact between the films during winding, the pencil hardness of the polyimide film before forming the hard coat layer is preferably HB or higher. F or more is more preferable.
[ハードコート層]
 ポリイミドフィルム1上にハードコート組成物を塗布し、光硬化することによりハードコート層2が形成される。ハードコート組成物は、光硬化性樹脂および光重合開始剤を含む。すなわち、ハードコート層は、光硬化性樹脂組成物であるハードコート組成物の硬化物からなる硬化樹脂層である。ハードコート組成物に紫外線吸収剤を含めることにより、紫外線吸収剤を含むハードコート層が形成される。
[Hard coat layer]
The hard coat layer 2 is formed by applying the hard coat composition on the polyimide film 1 and photo-curing it. The hardcourt composition contains a photocurable resin and a photopolymerization initiator. That is, the hard coat layer is a cured resin layer made of a cured product of the hard coat composition which is a photocurable resin composition. By including the UV absorber in the hardcoat composition, a hardcoat layer containing the UV absorber is formed.
<ハードコート組成物>
 ハードコート組成物の光硬化性樹脂は、2個以上の光重合性官能基を有する多官能化合物である。多官能化合物はモノマーまたはオリゴマーであってもよい。光重合性官能基は、ラジカル重合性またはカチオン重合性であってもよい。ラジカル重合性官能基としては、ビニル基、(メタ)アクリロイル基等のエチレン性不飽和二重結合を有する官能基が挙げられる。カチオン重合性官能基としては、エポキシ基、オキセタン基等の環状エーテル基が挙げられる。
<Hardcoat composition>
The photocurable resin of the hardcoat composition is a polyfunctional compound having two or more photopolymerizable functional groups. The polyfunctional compound may be a monomer or an oligomer. The photopolymerizable functional group may be radically polymerizable or cationically polymerizable. Examples of the radically polymerizable functional group include functional groups having an ethylenically unsaturated double bond such as a vinyl group and a (meth) acryloyl group. Examples of the cationically polymerizable functional group include a cyclic ether group such as an epoxy group and an oxetane group.
 中でも、光カチオン重合による硬化が可能であり、硬化収縮が小さいことから、光硬化性樹脂の光重合性官能基としては、エポキシ基およびオキセタン基が好ましい。エポキシ基を含む光カチオン重合性の官能基としては、グリシジル基および脂環式エポキシ基が挙げられる。中でも、光カチオン重合の反応性が高いことから、脂環式エポキシ基が好ましい。 Among them, an epoxy group and an oxetane group are preferable as the photopolymerizable functional group of the photocurable resin because it can be cured by photocationic polymerization and the curing shrinkage is small. Examples of the photocationically polymerizable functional group containing an epoxy group include a glycidyl group and an alicyclic epoxy group. Of these, an alicyclic epoxy group is preferable because of its high reactivity with photocationic polymerization.
 上記の通り、ハードコート組成物が紫外線吸収剤を含むため、紫外線照射による光硬化の際に、励起光としての紫外線が紫外線吸収剤により吸収され、硬化不良(硬化阻害)の原因となる場合がある。光ラジカル重合反応の活性種である光ラジカルは短寿命であるため、硬化反応の間は継続して紫外線を照射する必要があり、紫外線吸収剤による硬化阻害の影響を受けやすい。 As described above, since the hard coat composition contains an ultraviolet absorber, ultraviolet rays as excitation light may be absorbed by the ultraviolet absorber during photocuring by irradiation with ultraviolet rays, which may cause curing failure (curing inhibition). be. Since photoradicals, which are active species of photoradical polymerization reactions, have a short life, they need to be continuously irradiated with ultraviolet rays during the curing reaction, and are easily affected by curing inhibition by ultraviolet absorbers.
 一方、光カチオン重合反応の活性種は、光照射により発生した酸であり、光ラジカルに比べて活性種の寿命が長く、光照射後も長期に硬化反応が進行する。そのため、光カチオン重合は、光ラジカル重合に比べて、紫外線吸収剤の影響を受け難く、ハードコート組成物が紫外線吸収剤を含む場合でも、硬化不良が生じ難い。したがって、ハードコート組成物は、エポキシ基等の光カチオン重合性官能基を有する光硬化性樹脂、光カチオン重合開始剤(光酸発生剤)、および紫外線吸収剤を含む光カチオン重合性組成物であることが好ましい。 On the other hand, the active species of the photocationic polymerization reaction is an acid generated by light irradiation, and the life of the active species is longer than that of photoradicals, and the curing reaction proceeds for a long time even after light irradiation. Therefore, the photocationic polymerization is less susceptible to the influence of the ultraviolet absorber than the photoradical polymerization, and even when the hard coat composition contains the ultraviolet absorber, curing failure is less likely to occur. Therefore, the hard coat composition is a photocationic polymerizable composition containing a photocurable resin having a photocationically polymerizable functional group such as an epoxy group, a photocationic polymerization initiator (photoacid generator), and an ultraviolet absorber. It is preferable to have.
 光カチオン重合性のハードコート組成物の例として、WO2018/096729号、WO2014/204010号、特開2017-8142号公報等に開示されている、エポキシ基を有するポリシロキサン化合物を含む組成物が挙げられる。 Examples of the photocationically polymerizable hard coat composition include compositions containing polysiloxane compounds having an epoxy group disclosed in WO2018 / 096729, WO2014 / 204010, JP-A-2017-8142 and the like. Be done.
(光硬化性樹脂としてのポリシロキサン化合物)
 光カチオン重合性を有するポリシロキサン化合物は、光カチオン重合性官能基としてエポキシ基を有する。エポキシ基は好ましくは脂環式エポキシ基であり、中でも、3,4-エポキシシクロヘキシル基が好ましい。
(Polysiloxane compound as a photocurable resin)
The polysiloxane compound having photocationic polymerizable has an epoxy group as a photocationically polymerizable functional group. The epoxy group is preferably an alicyclic epoxy group, and among them, a 3,4-epoxycyclohexyl group is preferable.
 脂環式エポキシ基を有するポリシロキサン化合物は、例えば、(A)脂環式エポキシ基を有するシラン化合物の縮合;または(B)1分子中にSiH基との反応性を有する炭素-炭素二重結合および脂環式エポキシ基を有する化合物(例えばビニルシクロヘキセンオキシド)と、1分子中に少なくとも2個のSiH基を有するポリシロキサン化合物とのヒドロシリル化反応により得られる。1分子中に多数の脂環式エポキシ基を有する網目状構造のポリシロキサン化合物が得られることから、ポリシロキサン化合物は上記(A)の方法により形成することが好ましい。 The polysiloxane compound having an alicyclic epoxy group is, for example, (A) condensation of a silane compound having an alicyclic epoxy group; or (B) a carbon-carbon double having a reactivity with a SiH group in one molecule. It is obtained by a hydrosilylation reaction between a compound having a bond and an alicyclic epoxy group (for example, vinylcyclohexene oxide) and a polysiloxane compound having at least two SiH groups in one molecule. Since a polysiloxane compound having a network structure having a large number of alicyclic epoxy groups in one molecule can be obtained, the polysiloxane compound is preferably formed by the method (A) above.
 上記(A)の縮合反応の原料となるシラン化合物としては、下記一般式(3)で表される化合物が挙げられる。
  Y-R-(Si(OR 3-x) …(3)
Examples of the silane compound used as a raw material for the condensation reaction of the above (A) include a compound represented by the following general formula (3).
Y-R 5- (Si (OR 6 ) x R 7 3-x ) ... (3)
 一般式(3)において、Yは脂環式エポキシ基であり、Rは炭素数1~10のアルキレン基である。Rは水素原子、炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアルキル基から選択される1価の炭化水素基である。Rは水素原子または炭素数1~10のアルキル基である。xは1~3の整数である。xが2以上である場合、複数のRは同一でも異なっていてもよい。(3-x)が2以上である場合、複数のRは同一でも異なっていてもよい。 In the general formula (3), Y is an alicyclic epoxy group, and R5 is an alkylene group having 1 to 10 carbon atoms. R 6 is a monovalent hydrocarbon group selected from a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms, and an alkyl group having 7 to 12 carbon atoms. R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. x is an integer of 1 to 3. When x is 2 or more, the plurality of R 6s may be the same or different. When (3-x) is 2 or more, the plurality of R 7s may be the same or different.
 上記の通り、脂環式エポキシ基Yとしては、3,4-エポキシシクロヘキシル基が好ましい。アルキレン基Rは、直鎖状でも分枝を有していてもよいが、直鎖アルキレン基が好ましく、炭素数1~5の直鎖アルキレンが好ましく、エチレンが特に好ましい。すなわち、Siに結合している置換基Y-R-は、β-(3,4-エポキシシクロヘキシル)エチルであることが好ましい。 As described above, the alicyclic epoxy group Y is preferably a 3,4-epoxycyclohexyl group. The alkylene group R 5 may be linear or has branches, but a linear alkylene group is preferable, a linear alkylene having 1 to 5 carbon atoms is preferable, and ethylene is particularly preferable. That is, the substituent Y-R5 - bonded to Si is preferably β- (3,4-epoxycyclohexyl) ethyl.
 Rの具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、フェニル基、トリル基、キシリル基、ナフチル基、ベンジル基、及び、フェネチル基が挙げられる。ポリシロキサン化合物の光カチオン重合の際の脂環式エポキシ基の反応性を高める観点から、Rは炭素数1~4のアルキル基が好ましく、エチル基またはプロピル基が特に好ましい。 Specific examples of R 6 include hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, decyl group, phenyl group, tolyl group, xylyl group and naphthyl group. Examples thereof include a benzyl group and a phenethyl group. From the viewpoint of enhancing the reactivity of the alicyclic epoxy group during photocationic polymerization of the polysiloxane compound, R6 is preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably an ethyl group or a propyl group.
 Rの具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基等が挙げられる。シラン化合物の縮合を促進する観点から、Rは炭素数1~3のアルキル基が好ましく、メチル基が特に好ましい。 Specific examples of R 7 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a nonyl group, a decyl group and the like. From the viewpoint of promoting the condensation of the silane compound, R7 is preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group.
 網目状のポリシロキサン化合物の形成、およびポリシロキサン化合物に含まれる脂環式エポキシ基の数を大きくして硬化膜の硬度を高める観点から、一般式(3)におけるxは2または3が好ましい。縮合により得られるポリシロキサン化合物の分子量の調整等を目的として、xが2または3であるシラン化合物と、xが1であるシラン化合物とを併用してもよい。 From the viewpoint of forming a mesh-like polysiloxane compound and increasing the number of alicyclic epoxy groups contained in the polysiloxane compound to increase the hardness of the cured film, x in the general formula (3) is preferably 2 or 3. A silane compound having x of 2 or 3 and a silane compound having x of 1 may be used in combination for the purpose of adjusting the molecular weight of the polysiloxane compound obtained by condensation.
 一般式(3)で表されるシラン化合物の具体例としては、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルジメチルメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルメチルジメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルジメチルメトキシシラン等が挙げられる。 Specific examples of the silane compound represented by the general formula (3) include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, and β- ( 3,4-Epoxycyclohexyl) ethyldimethylmethoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4-epoxycyclohexyl) propylmethyldimethoxysilane, γ- (3,4-epoxy) Cyclohexyl) propyldimethylmethoxysilane and the like can be mentioned.
 上記のシラン化合物のSi-OR部分の反応により、Si-O-Si結合が形成されてポリシロキサン化合物が生成する。エポキシシクロヘキシル基等の脂環式エポキシドは、求電子反応性が高く、求核反応性が低い。そのため、エポキシ基の開環を抑制する観点から、中性または塩基性条件下で反応を実施することが好ましい。 By the reaction of the Si—OR 6 portion of the above silane compound, a Si—O—Si bond is formed to form a polysiloxane compound. Alicyclic epoxides such as epoxycyclohexyl groups have high electrophilic reactivity and low nucleophilic reactivity. Therefore, from the viewpoint of suppressing the ring-opening of the epoxy group, it is preferable to carry out the reaction under neutral or basic conditions.
 反応系を塩基性とするために用いる塩基性化合物としては、水酸化ナトリウム、水酸化リチウム、水酸化マグネシウム等のアルカリ金属やアルカリ土類金属の水酸化物や、アミン類が挙げられる。ハードコート層の形成(光硬化反応)の際に塩基性化合物が存在すると、光カチオン重合開始剤(光酸発生剤)から発生する酸が塩基性化合物によりクエンチされて、脂環式エポキシ基の光カチオン重合反応を阻害する場合がある。そのため、ポリシロキサン化合物の形成に用いられる塩基性化合物は、揮発により除去可能であるものが好ましい。また、ポリシロキサン化合物のエポキシ基の開環を抑制する観点から、塩基性化合物は求核性が低いことが好ましい。そのため、塩基性化合物としては第三級アミンが好ましく、中でも、トリエチルアミン、ジエチルメチルアミン、トリプロピルアミン、メチルジイソプロピルアミン、ジイソプロピルエチルアミン等の沸点が30~160℃の第三級アミンが好ましい。 Examples of the basic compound used to make the reaction system basic include alkali metals such as sodium hydroxide, lithium hydroxide and magnesium hydroxide, hydroxides of alkaline earth metals, and amines. When a basic compound is present during the formation of the hard coat layer (photocuring reaction), the acid generated from the photocationic polymerization initiator (photoacid generator) is quenched by the basic compound to form an alicyclic epoxy group. It may inhibit the photocationic polymerization reaction. Therefore, the basic compound used for forming the polysiloxane compound is preferably one that can be removed by volatilization. Further, from the viewpoint of suppressing the ring-opening of the epoxy group of the polysiloxane compound, the basic compound preferably has low nucleophilicity. Therefore, as the basic compound, a tertiary amine is preferable, and among them, a tertiary amine having a boiling point of 30 to 160 ° C. such as triethylamine, diethylmethylamine, tripropylamine, methyldiisopropylamine and diisopropylethylamine is preferable.
 硬化膜の硬度を高める観点から、シラン化合物の縮合により得られるポリシロキサン化合物の重量平均分子量は500以上が好ましい。また、ポリシロキサン化合物の揮発を抑制する観点からも、ポリシロキサン化合物の重量平均分子量は500以上が好ましい。一方、分子量が過度に大きいと、他の組成物との相溶性の低下等に起因して白濁が生じる場合がある。そのため、ポリシロキサン化合物の重量平均分子量は20000以下が好ましい。ポリシロキサン化合物の重量平均分子量は1000~18000がより好ましく、1500~16000がより好ましく、2000~14000がさらに好ましく、2800~12000が特に好ましい。 From the viewpoint of increasing the hardness of the cured film, the weight average molecular weight of the polysiloxane compound obtained by condensing the silane compound is preferably 500 or more. Further, from the viewpoint of suppressing the volatilization of the polysiloxane compound, the weight average molecular weight of the polysiloxane compound is preferably 500 or more. On the other hand, if the molecular weight is excessively large, cloudiness may occur due to a decrease in compatibility with other compositions. Therefore, the weight average molecular weight of the polysiloxane compound is preferably 20000 or less. The weight average molecular weight of the polysiloxane compound is more preferably 1000 to 18000, more preferably 1500 to 16000, still more preferably 2000 to 14000, and particularly preferably 2800 to 12000.
 ポリシロキサン化合物は、1分子中に複数の脂環式エポキシ基を有することが好ましい。ポリシロキサン化合物の1分子中に含まれる脂環式エポキシ基の数が大きいほど、光硬化時の架橋密度が高くなり、硬化膜の機械強度が高められる傾向がある。ポリシロキサン化合物の1分子中の脂環式エポキシ基の数は、3個以上が好ましく、4個以上がより好ましく、5個以上がさらに好ましい。一方、1分子中に含まれる脂環式エポキシ基の数が過度に大きくなると、硬化時に分子間の架橋に寄与しない官能基の割合が増加する場合がある。そのため、ポリシロキサン化合物の1分子中の脂環式エポキシ基の数は、100個以下が好ましく、80個以下がより好ましく、70個以下がさらに好ましく、60個以下が特に好ましい。 The polysiloxane compound preferably has a plurality of alicyclic epoxy groups in one molecule. The larger the number of alicyclic epoxy groups contained in one molecule of the polysiloxane compound, the higher the crosslink density during photocuring, and the higher the mechanical strength of the cured film tends to be. The number of alicyclic epoxy groups in one molecule of the polysiloxane compound is preferably 3 or more, more preferably 4 or more, still more preferably 5 or more. On the other hand, if the number of alicyclic epoxy groups contained in one molecule becomes excessively large, the proportion of functional groups that do not contribute to cross-linking between molecules during curing may increase. Therefore, the number of alicyclic epoxy groups in one molecule of the polysiloxane compound is preferably 100 or less, more preferably 80 or less, further preferably 70 or less, and particularly preferably 60 or less.
 架橋点密度を高めて、硬化物の硬度や耐擦傷性を向上させる観点から、一般式(3)で表されるシラン化合物の縮合により得られるポリシロキサン化合物は、脂環式エポキシ基の残存率が高い方が好ましい。シラン化合物が有する脂環式エポキシ基のモル数に対する、縮合物(ポリシロキサン化合物)の脂環式エポキシ基のモル数の割合は、20%以上が好ましく、40%以上がより好ましく、60%以上がさらに好ましい。 From the viewpoint of increasing the crosslink point density and improving the hardness and scratch resistance of the cured product, the polysiloxane compound obtained by the condensation of the silane compound represented by the general formula (3) has the residual ratio of the alicyclic epoxy group. Is preferable. The ratio of the number of moles of the alicyclic epoxy group of the condensate (polysiloxane compound) to the number of moles of the alicyclic epoxy group contained in the silane compound is preferably 20% or more, more preferably 40% or more, and more preferably 60% or more. Is even more preferable.
 光硬化時の副反応を抑制する観点や硬化物の硬度の観点から、ポリシロキサン化合物におけるシラン化合物単位あたりに残存するOR基の数が小さいことが好ましい。ポリシロキサン化合物におけるSi原子1個あたりのOR基の数は、2個以下である。Si原子1個あたりのOR基の数は、平均1.5個以下が好ましく、1.0個以下がより好ましい。硬化物の耐屈曲性の観点からポリシロキサン化合物におけるSi原子1個あたりのOR基の数は平均0.01個以上、0.05個以上、または0.3個以上であってもよい。 From the viewpoint of suppressing side reactions during photocuring and from the viewpoint of the hardness of the cured product, it is preferable that the number of OR 6 groups remaining per silane compound unit in the polysiloxane compound is small. The number of OR 6 groups per Si atom in the polysiloxane compound is 2 or less. The average number of OR 6 units per Si atom is preferably 1.5 or less, and more preferably 1.0 or less. From the viewpoint of bending resistance of the cured product, the number of OR 6 units per Si atom in the polysiloxane compound may be 0.01 or more, 0.05 or more, or 0.3 or more on average.
 シラン化合物の縮合によりポリシロキサン化合物を得る場合、脂環式エポキシ基を有するシラン化合物に加えて、脂環式エポキシ基を有していないシラン化合物を用いてもよい。脂環式エポキシ基を有さないシラン化合物は、例えば、下記一般式(4)で表される。
  R-Si(OR …(4)
When a polysiloxane compound is obtained by condensation of a silane compound, a silane compound having no alicyclic epoxy group may be used in addition to the silane compound having an alicyclic epoxy group. The silane compound having no alicyclic epoxy group is represented by, for example, the following general formula (4).
R 8 -Si (OR 6 ) 3 ... (4)
 一般式(4)のRは、炭素数1~10の置換または無置換のアルキル基、アルケニル基、および置換アリール基からなる群から選択され、脂環式エポキシ基を有さない1価の基である。Rが置換を有するアルキル基である場合、置換基としては、グリシジル基、チオール基、アミノ基、(メタ)アクリロイル基、フェニル基、シクロヘキシル基、ハロゲン等が挙げられる。一般式(4)のRは、一般式(3)におけるRと同様である。 R 8 of the general formula (4) is selected from the group consisting of substituted or unsubstituted alkyl groups having 1 to 10 carbon atoms, alkenyl groups, and substituted aryl groups, and is monovalent without an alicyclic epoxy group. It is a group. When R 8 is an alkyl group having a substituent, examples of the substituent include a glycidyl group, a thiol group, an amino group, a (meth) acryloyl group, a phenyl group, a cyclohexyl group, a halogen and the like. R 6 in the general formula (4) is the same as R 6 in the general formula (3).
 前述のように、硬化膜の機械強度を高める観点から、ポリシロキサン化合物の1分子中に含まれる脂環式エポキシ基の数は大きいほど好ましい。そのため、シラン化合物の反応により得られるポリシロキサン化合物は、脂環式エポキシ基を有するシラン化合物(一般式(3)で表される化合物)に対する脂環式エポキシ基を有さないシラン化合物(一般式(4)で表される化合物)のモル比が2以下の条件で縮合したものであることが好ましい。一般式(3)で表される化合物に対する一般式(4)で表される化合物のモル比は、1以下が好ましく、0.6以下がより好ましく、0.4以下がさらに好ましく、0.2以下が特に好ましい。一般式(3)で表される化合物に対する一般式(4)で表される化合物のモル比は0でもよい。 As described above, from the viewpoint of increasing the mechanical strength of the cured film, it is preferable that the number of alicyclic epoxy groups contained in one molecule of the polysiloxane compound is large. Therefore, the polysiloxane compound obtained by the reaction of the silane compound is a silane compound having no alicyclic epoxy group (general formula) as opposed to a silane compound having an alicyclic epoxy group (compound represented by the general formula (3)). The compound represented by (4) is preferably condensed under the condition that the molar ratio is 2 or less. The molar ratio of the compound represented by the general formula (4) to the compound represented by the general formula (3) is preferably 1 or less, more preferably 0.6 or less, further preferably 0.4 or less, and 0.2. The following are particularly preferred. The molar ratio of the compound represented by the general formula (4) to the compound represented by the general formula (3) may be 0.
 機械強度に優れるハードコート層を形成する観点から、ハードコート組成物中の上記ポリシロキサン化合物の含有量は、固形分の合計100重量部に対して40重量部以上が好ましく、50重量部以上がより好ましく、60重量部以上がさらに好ましい。 From the viewpoint of forming a hardcoat layer having excellent mechanical strength, the content of the polysiloxane compound in the hardcoat composition is preferably 40 parts by weight or more, preferably 50 parts by weight or more, based on 100 parts by weight of the total solid content. More preferably, 60 parts by weight or more is further preferable.
(光カチオン重合開始剤)
 光カチオン重合性のハードコート組成物は、光カチオン重合開始剤を含むことが好ましい。光カチオン重合開始剤は、活性エネルギー線の照射により酸を発生する化合物(光酸発生剤)である。光酸発生剤から生成した酸により、上記のポリシロキサン化合物の脂環式エポキシ基が反応して、分子間架橋が形成され、ハードコート材料が硬化する。
(Photocationic polymerization initiator)
The photocationically polymerizable hard coat composition preferably contains a photocationic polymerization initiator. The photocationic polymerization initiator is a compound (photoacid generator) that generates an acid by irradiation with active energy rays. The acid generated from the photoacid generator reacts with the alicyclic epoxy group of the polysiloxane compound to form intermolecular crosslinks and cure the hard coat material.
 光酸発生剤としては、トルエンスルホン酸または四フッ化ホウ素等の強酸;スルホニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、セレニウム塩等のオニウム塩類;鉄-アレン錯体類;シラノール-金属キレート錯体類;ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、イミドスルホネート類、ベンゾインスルホネート類等のスルホン酸誘導体;有機ハロゲン化合物類等が挙げられる。 Examples of the photoacid generator include strong acids such as toluene sulfonic acid or boron tetrafluoride; onium salts such as sulfonium salt, ammonium salt, phosphonium salt, iodonium salt and selenium salt; iron-allene complexes; silanol-metal chelate complexes. Sulfonic acid derivatives such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidesulfonates, benzoinsulfonates; organic halogen compounds and the like.
 上記の光酸発生剤の中で、脂環式エポキシ基を有するポリシロキサン化合物を含有するハードコート組成物における安定性が高いことから、芳香族スルホニウム塩または芳香族ヨードニウム塩が好ましい。中でも、光硬化が速く、ポリイミドフィルムとの密着性に優れるハードコート層が得られやすいことから、芳香族スルホニウム塩または芳香族ヨードニウム塩のカウンターアニオンが、フルオロフォスフェート系アニオン、フルオロアンチモネート系アニオン、またはフルオロボレート系アニオンであるものが好ましい。特に、カウンターアニオンは、フルオロフォスフェート系アニオンまたはフルオロアンチモネート系アニオンが好ましい。このような光酸発生剤の具体例としては、ジフェニル(4-フェニルチオフェニル)スルホニウム・ヘキサフルオロフォスフェート、ヘキサフルオロフォスフェートのフッ素原子の一部または全部をパーフルオロアルキル基で置換したヘキサフルオロフォスフェート誘導体、ジフェニル(4-フェニルチオフェニル)スルホニウム・ヘキサフルオロアンチモネート等が挙げられる。 Among the above photoacid generators, aromatic sulfonium salts or aromatic iodonium salts are preferable because they have high stability in a hard coat composition containing a polysiloxane compound having an alicyclic epoxy group. Above all, since a hard coat layer having fast photocuring and excellent adhesion to a polyimide film can be easily obtained, the counter anion of the aromatic sulfonium salt or the aromatic iodonium salt is a fluoroborate anion or a fluoroantimonate anion. , Or fluoroborate anions are preferred. In particular, as the counter anion, a fluorophosphate anion or a fluoroantimonate anion is preferable. Specific examples of such a photoacid generator include diphenyl (4-phenylthiophenyl) sulfonium hexafluorophosphate and hexafluoro, in which a part or all of the fluorine atom of hexafluorophosphate is substituted with a perfluoroalkyl group. Phenylfate derivatives, diphenyl (4-phenylthiophenyl) sulfonium / hexafluoroantimonate and the like can be mentioned.
 ハードコート組成物中の光カチオン重合開始剤の含有量は、上記のポリシロキサン化合物100重量部に対して、0.05~10重量部が好ましく、0.1~5重量部がより好ましい。 The content of the photocationic polymerization initiator in the hard coat composition is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the above polysiloxane compound.
(紫外線吸収剤)
 ハードコート組成物が紫外線吸収剤を含有することにより、紫外線吸収剤を含有するハードコート層が形成される。前述のように、紫外線吸収剤としては、可視光の吸収が少なく、かつ良好な耐光性を得られることから、ベンゾトリアゾール系紫外線吸収剤およびトリアジン系紫外線吸収剤が好ましい。特に、ベンゾトリアゾール系紫外線吸収剤は、UVA領域(波長320~400nm)の吸光係数が大きく、ポリイミドの光転移反応による劣化を効果的に抑制できることから、ハードコート層(ハードコート組成物)は、ベンゾトリアゾール系紫外線吸収剤を含むことが好ましい。
(UV absorber)
When the hard coat composition contains an ultraviolet absorber, a hard coat layer containing the ultraviolet absorber is formed. As described above, as the ultraviolet absorber, a benzotriazole-based ultraviolet absorber and a triazine-based ultraviolet absorber are preferable because they absorb less visible light and can obtain good light resistance. In particular, the benzotriazole-based ultraviolet absorber has a large absorption coefficient in the UVA region (wavelength 320 to 400 nm) and can effectively suppress deterioration due to the phototransfer reaction of polyimide. Therefore, the hard coat layer (hard coat composition) can be used. It is preferable to contain a benzotriazole-based ultraviolet absorber.
 前述のように、ポリイミドフィルムの作製においては、溶媒の乾燥除去等において高温の加熱を必要とするため、ポリイミドフィルムは、耐熱性に優れるトリアジン系紫外線吸収剤を含むことが好ましい。トリアジン系紫外線吸収剤を含むポリイミドフィルム1上にベンゾトリアゾール系紫外線吸収剤を含むハードコート層2が形成されていれば、広い範囲波長範囲の紫外線が吸収されるため、ポリイミドの光劣化を効率的に抑制できる。 As described above, in the production of the polyimide film, high-temperature heating is required for drying and removing the solvent, so that the polyimide film preferably contains a triazine-based ultraviolet absorber having excellent heat resistance. If the hard coat layer 2 containing a benzotriazole ultraviolet absorber is formed on the polyimide film 1 containing a triazine-based ultraviolet absorber, ultraviolet rays in a wide wavelength range are absorbed, so that the light deterioration of the polyimide is efficient. Can be suppressed.
 ハードコート層による紫外線吸収性(遮蔽性)を高め、ポリイミドフィルムに到達する紫外線の量を低減する観点から、ハードコート組成物における紫外線吸収剤の量は、全固形分100重量部に対して、0.1重量部以上が好ましく、0.3重量部以上がより好ましく、0.5重量部以上、0.7重量部以上または1重量部以上であってもよい。紫外線吸収剤の量が多いほどハードコート層による紫外線遮蔽性が高められる傾向がある。一方、紫外線吸収剤の量が過度に多い場合は、ハードコート組成物の光硬化時に紫外線吸収剤により吸収される紫外線の量が多く、光カチオン重合性のハードコート組成物であっても、光硬化が不十分となり、ハードコートフィルムの機械強度(表面硬度)が不足する場合がある。そのため、ハードコート組成物における紫外線吸収剤の量は、全固形分100重量部に対して、4.5重量部以下が好ましく、4重量部以下がより好ましく、3.5重量部以下または3重量部以下であってもよい。 From the viewpoint of increasing the ultraviolet absorption (shielding property) of the hard coat layer and reducing the amount of ultraviolet rays reaching the polyimide film, the amount of the ultraviolet absorber in the hard coat composition is based on 100 parts by weight of the total solid content. 0.1 part by weight or more is preferable, 0.3 part by weight or more is more preferable, and 0.5 part by weight or more, 0.7 part by weight or more, or 1 part by weight or more may be used. The larger the amount of the UV absorber, the higher the UV shielding property of the hard coat layer tends to be. On the other hand, when the amount of the ultraviolet absorber is excessively large, the amount of ultraviolet rays absorbed by the ultraviolet absorber during the photocuring of the hard coat composition is large, and even if the hard coat composition is photocationically polymerizable, the light is emitted. Curing may be insufficient, and the mechanical strength (surface hardness) of the hard coat film may be insufficient. Therefore, the amount of the ultraviolet absorber in the hard coat composition is preferably 4.5 parts by weight or less, more preferably 4 parts by weight or less, and 3.5 parts by weight or less or 3 parts by weight, based on 100 parts by weight of the total solid content. It may be less than or equal to a part.
(溶媒)
 ハードコート組成物は、無溶媒型でもよく、溶媒を含んでいてもよい。溶媒を含む場合は、ポリイミドフィルムを溶解させないものが好ましい。一方、ポリイミドフィルムを膨潤させる程度の溶解性を有する溶媒を用いることにより、ポリイミドフィルム基材1とハードコート層2との密着性が向上する場合がある。ハードコート組成物における溶媒の量は、硬化性樹脂(ポリシロキサン化合物)100重量部に対して、500重量部以下が好ましく、300重量部以下がより好ましく、100重量部以下がさらに好ましい。
(solvent)
The hardcourt composition may be a solvent-free type or may contain a solvent. When a solvent is contained, it is preferable that the polyimide film is not dissolved. On the other hand, by using a solvent having a solubility enough to swell the polyimide film, the adhesion between the polyimide film base material 1 and the hard coat layer 2 may be improved. The amount of the solvent in the hardcoat composition is preferably 500 parts by weight or less, more preferably 300 parts by weight or less, still more preferably 100 parts by weight or less, based on 100 parts by weight of the curable resin (polysiloxane compound).
(反応性希釈剤)
 ハードコート組成物は、反応性希釈剤を含んでいてもよい。反応性希釈剤の例としては、例えば、上記のポリシロキサン化合物以外のカチオン重合性化合物が用いられる。重合の反応性希釈剤としては、エポキシ基、ビニルエーテル基、オキセタン基、およびアルコキシシリル基等の官能基を有する化合物が挙げられる。
(Reactive diluent)
The hardcourt composition may contain a reactive diluent. As an example of the reactive diluent, for example, a cationically polymerizable compound other than the above-mentioned polysiloxane compound is used. Examples of the reactive diluent for the polymerization include compounds having a functional group such as an epoxy group, a vinyl ether group, an oxetane group, and an alkoxysilyl group.
(光増感剤)
 ハードコート組成物は、光カチオン重合開始剤(光酸発生剤)の感光性向上等の目的で、光増感剤を含んでいてもよい。光増感剤は、光酸発生剤が、それ自体では吸収できない波長域の光を吸収できるものがより効率的であるため、光酸発生剤の吸収波長域との重なりが少ないものが好ましい。光増感剤としては、アントラセン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体、アントラキノン誘導体、ベンゾイン誘導体等が挙げられる。
(Photosensitizer)
The hard coat composition may contain a photosensitizer for the purpose of improving the photosensitivity of the photocationic polymerization initiator (photoacid generator). As the photosensitizer, those capable of absorbing light in a wavelength range that cannot be absorbed by the photoacid generator itself are more efficient, and therefore, those having less overlap with the absorption wavelength range of the photoacid generator are preferable. Examples of the photosensitizer include anthracene derivatives, benzophenone derivatives, thioxanthone derivatives, anthraquinone derivatives, benzoin derivatives and the like.
(粒子)
 ハードコート組成物は、表面硬度や耐屈曲性等の膜特性の調整や、硬化収縮の抑制等を目的として粒子を含んでいてもよい。粒子としては、有機粒子、無機粒子、有機無機複合粒子等を適宜選択して用いればよい。有機粒子の材料としては、ポリ(メタ)アクリル酸アルキルエステル、架橋ポリ(メタ)アクリル酸アルキルエステル、架橋スチレン、ナイロン、シリコーン、架橋シリコーン、架橋ウレタン、架橋ブタジエン等が挙げられる。無機粒子の材料としては、シリカ、チタニア、アルミナ、酸化スズ、ジルコニア、酸化亜鉛、酸化アンチモン等の金属酸化物;窒化珪素、窒化ホウ素等の金属窒素化物;炭酸カルシウム、リン酸水素カルシウム、リン酸カルシウム、リン酸アルミニウム等の金属塩等が挙げられる。有機無機複合フィラーとしては、有機粒子の表面に無機物層を形成したものや、無機粒子の表面に有機物層または有機微粒子を形成したものが挙げられる。
(particle)
The hardcoat composition may contain particles for the purpose of adjusting film properties such as surface hardness and bending resistance, suppressing curing shrinkage, and the like. As the particles, organic particles, inorganic particles, organic-inorganic composite particles and the like may be appropriately selected and used. Examples of the material of the organic particles include poly (meth) acrylic acid alkyl ester, crosslinked poly (meth) acrylic acid alkyl ester, crosslinked styrene, nylon, silicone, crosslinked silicone, crosslinked urethane, and crosslinked butadiene. As the material of the inorganic particles, metal oxides such as silica, titania, alumina, tin oxide, zirconia, zinc oxide and antimony oxide; metal nitrogenous products such as silicon nitride and boron nitride; calcium carbonate, calcium hydrogen phosphate and calcium phosphate, Examples thereof include metal salts such as aluminum phosphate. Examples of the organic-inorganic composite filler include those having an inorganic layer formed on the surface of organic particles and those having an organic layer or organic fine particles formed on the surface of the inorganic particles.
 粒子の平均粒子径は、例えば5nm~10μm程度である。ハードコート層の透明性を高める観点から、平均粒子径は1000nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましく、100nm以下が特に好ましい。粒子径は、レーザー回折/散乱式の粒子径分布測定装置により測定でき、体積基準のメジアン径を平均粒子径とする。 The average particle size of the particles is, for example, about 5 nm to 10 μm. From the viewpoint of enhancing the transparency of the hard coat layer, the average particle size is preferably 1000 nm or less, more preferably 500 nm or less, further preferably 300 nm or less, and particularly preferably 100 nm or less. The particle size can be measured by a laser diffraction / scattering type particle size distribution measuring device, and the volume-based median size is used as the average particle size.
 粒子は表面修飾されていてもよい。粒子が表面修飾されることにより、粒子の分散性が向上する傾向がある。また、粒子表面がエポキシ基と反応可能な重合性官能基により修飾されている場合は、粒子表面の官能基と上記のポリシロキサン化合物のエポキシ基とが反応して化学架橋が形成されるため、膜強度の向上が期待できる。 The particles may be surface-modified. The surface modification of the particles tends to improve the dispersibility of the particles. Further, when the particle surface is modified with a polymerizable functional group capable of reacting with an epoxy group, the functional group on the particle surface reacts with the epoxy group of the above polysiloxane compound to form a chemical crosslink. Improvement of film strength can be expected.
(添加剤)
 ハードコート組成物は、無機顔料、有機顔料、表面調整剤、表面改質剤、可塑剤、分散剤、湿潤剤、増粘剤、消泡剤等の添加剤を含んでいてもよい。また、ハードコート組成物は、上記のポリシロキサン化合物以外の熱可塑性、熱硬化性または光硬化性の樹脂材料を含んでいてもよい。
(Additive)
The hardcoat composition may contain additives such as inorganic pigments, organic pigments, surface modifiers, surface modifiers, plasticizers, dispersants, wetting agents, thickeners and defoaming agents. Further, the hard coat composition may contain a thermoplastic, thermosetting or photocurable resin material other than the above-mentioned polysiloxane compound.
 上記の通り、ハードコート組成物は、硬化性樹脂としてのポリシロキサン化合物に加えて、光重合開始剤および紫外線吸収剤を含み、さらに固形分(不揮発分)として反応性希釈剤、光増感剤、粒子およびその他の添加剤を含み得る。機械強度に優れるハードコート層を形成する観点から、ハードコート組成物中の上記ポリシロキサン化合物の含有量は、固形分の合計100重量部に対して、40重量部以上が好ましく、50重量部以上がより好ましく、60重量部以上がさらに好ましい。 As described above, the hard coat composition contains a photopolymerization initiator and an ultraviolet absorber in addition to the polysiloxane compound as a curable resin, and further, as a solid content (nonvolatile content), a reactive diluent and a photosensitizer. , Particles and other additives may be included. From the viewpoint of forming a hardcoat layer having excellent mechanical strength, the content of the polysiloxane compound in the hardcoat composition is preferably 40 parts by weight or more, preferably 50 parts by weight or more, based on 100 parts by weight of the total solid content. Is more preferable, and 60 parts by weight or more is further preferable.
<ハードコート層の形成>
 ポリイミドフィルム上にハードコート組成物を塗布し、必要に応じて溶媒を乾燥除去した後、紫外線等の活性エネルギー線を照射してハードコート組成物を硬化することにより、ポリイミドフィルム1上にハードコート層2が設けられたハードコートフィルムが得られる。
<Formation of hard coat layer>
A hard coat composition is applied onto the polyimide film, the solvent is dried and removed as necessary, and then the hard coat composition is cured by irradiating it with active energy rays such as ultraviolet rays to cure the hard coat composition on the polyimide film 1. A hard-coated film provided with the layer 2 is obtained.
 光硬化の際の活性エネルギー線の積算照射量は、例えば50~10000mJ/cm程度であり、重合開始剤の種類および配合量、ハードコート層の厚み等に応じて設定すればよい。硬化温度は特に限定されないが、通常100℃以下である。 The integrated irradiation amount of the active energy rays at the time of photocuring is, for example, about 50 to 10000 mJ / cm 2 , and may be set according to the type and blending amount of the polymerization initiator, the thickness of the hard coat layer, and the like. The curing temperature is not particularly limited, but is usually 100 ° C. or lower.
 ハードコート層の厚みは、0.5μm以上が好ましく、2μm以上がより好ましく、3μm以上がさらに好ましく、5μm以上が最も好ましい。ハードコート層の厚みは、100μm以下が好ましく、80μm以下がより好ましい。ハードコート層の厚みが0.5μmより小さいと、表面硬度等の機械特性を十分に向上できない場合がある。一方ハードコート層の厚みが100μmより大きいと、透明性や耐屈曲性が低下する場合がある。 The thickness of the hard coat layer is preferably 0.5 μm or more, more preferably 2 μm or more, further preferably 3 μm or more, and most preferably 5 μm or more. The thickness of the hard coat layer is preferably 100 μm or less, more preferably 80 μm or less. If the thickness of the hard coat layer is smaller than 0.5 μm, it may not be possible to sufficiently improve mechanical properties such as surface hardness. On the other hand, if the thickness of the hard coat layer is larger than 100 μm, the transparency and bending resistance may decrease.
[ハードコートフィルムの特性]
 ハードコートフィルムの全光線透過率は、80%以上が好ましく、85%以上がより好ましく、88%以上がさらに好ましい。ハードコートフィルムのヘイズは1.5%以下が好ましく、0.9%以下がより好ましく、0.7%以下がさらに好ましく、0.5%以下が特に好ましい。
[Characteristics of hard-coated film]
The total light transmittance of the hard coat film is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more. The haze of the hard coat film is preferably 1.5% or less, more preferably 0.9% or less, further preferably 0.7% or less, and particularly preferably 0.5% or less.
 ハードコートフィルムの黄色度(YI)は、10以下が好ましく、6以下がより好ましく、5以下がさらに好ましく、4以下、3.5以下、3.0以下または2.5以下であってもよい。 The yellowness (YI) of the hard coat film is preferably 10 or less, more preferably 6 or less, further preferably 5 or less, and may be 4 or less, 3.5 or less, 3.0 or less, or 2.5 or less. ..
 上述のように、本発明のハードコートフィルムは、ポリイミドフィルム1およびハードコート層2の両方に紫外線吸収剤が含まれている。そのため、ハードコート層2側から外光が入射した際に、ハードコート層2により紫外線が吸収(遮蔽)され、ポリイミドフィルム1に到達する紫外線量が少なく、かつポリイミドフィルム1に到達した紫外線は、ポリイミドフィルム1に含まれる紫外線吸収剤により吸収される。したがって、ポリイミドフィルム1のポリイミド樹脂が紫外線の影響を受け難く、光劣化による変色(黄色度の増加)が抑制される。 As described above, in the hard coat film of the present invention, both the polyimide film 1 and the hard coat layer 2 contain an ultraviolet absorber. Therefore, when external light is incident from the hard coat layer 2 side, the hard coat layer 2 absorbs (shields) the ultraviolet rays, the amount of the ultraviolet rays reaching the polyimide film 1 is small, and the ultraviolet rays reaching the polyimide film 1 are generated. It is absorbed by the ultraviolet absorber contained in the polyimide film 1. Therefore, the polyimide resin of the polyimide film 1 is not easily affected by ultraviolet rays, and discoloration (increase in yellowness) due to photodegradation is suppressed.
 ポリイミドフィルムにおける紫外線吸収剤の含有量は、0.1~4.5重量%が好ましく、0.3~4重量%がより好ましく、0.5~3.5重量%がさらに好ましく、0.7~3重量%または1.0~2.5重量%であってもよい。ハードコート層における紫外線吸収剤の含有量は、0.1~4.5重量%が好ましく、0.3~4重量%がより好ましく、0.5~3.5重量%がさらに好ましく、0.7~3重量%または1.0~2.5重量%であってもよい。 The content of the ultraviolet absorber in the polyimide film is preferably 0.1 to 4.5% by weight, more preferably 0.3 to 4% by weight, further preferably 0.5 to 3.5% by weight, and 0.7. It may be up to 3% by weight or 1.0 to 2.5% by weight. The content of the ultraviolet absorber in the hard coat layer is preferably 0.1 to 4.5% by weight, more preferably 0.3 to 4% by weight, further preferably 0.5 to 3.5% by weight, and 0. It may be 7 to 3% by weight or 1.0 to 2.5% by weight.
 ハードコート層形成面側から、放射照度500W/m、ブラックパネル温度63℃の条件で紫外線を48時間照射した際のハードコートフィルムの黄色度の増大量ΔYIは、6以下が好ましく、5以下がより好ましく、4.5以下または4.0以下であってもよい。 The amount of increase in yellowness of the hardcoat film when irradiated with ultraviolet rays for 48 hours under the conditions of an irradiance of 500 W / m 2 and a black panel temperature of 63 ° C. from the hardcoat layer forming surface side is preferably 6 or less, preferably 5 or less. Is more preferable, and may be 4.5 or less or 4.0 or less.
 ハードコートフィルムのハードコート層形成面の鉛筆硬度は、HB以上が好ましく、H以上がより好ましく、2H以上がさらに好ましく、3H以上が特に好ましく、4H以上であってもよい。ハードコートフィルムの引張弾性率は、3.5GPa以上が好ましく、4.0GPa以上がより好ましく、5.0GPa以上がさらに好ましい。 The pencil hardness of the hard coat layer forming surface of the hard coat film is preferably HB or higher, more preferably H or higher, further preferably 2H or higher, particularly preferably 3H or higher, and may be 4H or higher. The tensile elastic modulus of the hard-coated film is preferably 3.5 GPa or more, more preferably 4.0 GPa or more, and even more preferably 5.0 GPa or more.
[ハードコートフィルムの応用]
 ハードコートフィルムは、ハードコート層2上、またはポリイミドフィルム1のハードコート層非形成面に、各種の機能層が設けられてもよい。機能層としては、反射防止層、防眩層、帯電防止層、透明電極等が挙げられる。また、ハードコートフィルムには、透明粘着剤層が付設されてもよい。
[Application of hard coat film]
As the hard coat film, various functional layers may be provided on the hard coat layer 2 or on the non-formed surface of the hard coat layer of the polyimide film 1. Examples of the functional layer include an antireflection layer, an antiglare layer, an antistatic layer, a transparent electrode and the like. Further, the hard coat film may be provided with a transparent adhesive layer.
 本発明のハードコートフィルムは、透明性が高く、機械強度に優れるため、画像表示パネルの視認側表面に配置されるカバーウインドウや、ディスプレイ用透明基板、タッチパネル用透明基板、太陽電池用基板等に好適に用いられる。本発明のハードコートフィルムは、透明性および機械強度に加えて、耐屈曲性にも優れ、かつ耐光性が高いことから、特に、曲面ディスプレイや折り曲げ可能なディスプレイの視認側表面に配置されるカバーウインドウとして好適に使用できる。 Since the hard coat film of the present invention has high transparency and excellent mechanical strength, it can be used for a cover window arranged on the visible side surface of an image display panel, a transparent substrate for a display, a transparent substrate for a touch panel, a substrate for a solar cell, and the like. It is preferably used. Since the hard coat film of the present invention has excellent bending resistance and light resistance in addition to transparency and mechanical strength, it is a cover placed on the visible side surface of a curved display or a bendable display in particular. It can be suitably used as a window.
 以下、実施例および比較例に基づき、本発明についてさらに具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[透明ポリイミドフィルムの作製]
(ポリイミド樹脂の調製)
 反応容器に、ジアミンとして、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)44.2g(138.1mmol)、および3,3’-ジアミノジフェニルスルホン(3,3-DDS)3.8g(15.3mmol)、テトラカルボン酸二無水物として、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)-2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’ジイル(TAHMBP)47.4g(76.7mmol)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)9.0g(46.0mmol)、および4,4’-オキシジフタル酸二無水物(ODA)9.5g(30.7mmol)、ならびに溶媒としてN,N-ジメチルホルムアミド800gを投入し、窒素雰囲気下で12時間攪拌してポリアミド酸溶液を得た。
[Manufacturing of transparent polyimide film]
(Preparation of polyimide resin)
In the reaction vessel, as diamine, 2,2'-bis (trifluoromethyl) benzidine (TFMB) 44.2 g (138.1 mmol), and 3,3'-diaminodiphenyl sulfone (3,3-DDS) 3.8 g. (15.3 mmol), as tetracarboxylic acid dianhydride, bis (1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid) -2,2', 3,3', 5,5'-Hexamethylbiphenyl-4,4'diyl (TAHMBP) 47.4 g (76.7 mmol), 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (CBDA) 9.0 g (46.0 mmol), and. 9.5 g (30.7 mmol) of 4,4'-oxydiphthalic acid dianhydride (ODA) and 800 g of N, N-dimethylformamide as a solvent are added, and the mixture is stirred under a nitrogen atmosphere for 12 hours to obtain a polyamic acid solution. rice field.
 上記のポリアミド酸溶液に、イミド化触媒としてピリジン36.4g(460mmol)および無水酢酸(7.0g(460mmol)を添加し、90℃で4時間攪拌した。室温まで冷却した溶液を攪拌しながら、2-プロピルアルコール(IPA)を2000g添加し、桐山ロートを使用して吸引ろ過を行った。得られた固体を1000gのIPAで6回洗浄した後、120℃に設定した真空オーブンで8時間乾燥させて、白色のポリイミド樹脂を得た。このポリイミド樹脂のモノマー組成は、TFMB/3,3’-DDS//TAHMBP/CBDA/ODA=90/10//50/30/20(モル比)であった。 To the above polyamic acid solution, 36.4 g (460 mmol) of pyridine and acetic anhydride (7.0 g (460 mmol)) were added as imidization catalysts, and the mixture was stirred at 90 ° C. for 4 hours. The solution cooled to room temperature was stirred while stirring. 2000 g of 2-propyl alcohol (IPA) was added and suction filtration was performed using a Kiriyama funnel. The obtained solid was washed 6 times with 1000 g of IPA and then dried in a vacuum oven set at 120 ° C. for 8 hours. A white polyimide resin was obtained. The monomer composition of this polyimide resin was TFMB / 3,3'-DDS // TAHMBP / CBDA / ODA = 90/10 // 50/30/20 (molar ratio). there were.
(ポリイミドフィルムの作製)
 上記のポリイミド樹脂100重量部、ならびに表1に示す紫外線吸収剤(UVA)およびブルーイング剤(有本化学工業製「PlastBlue 8590」)を、ジクロロメタンに溶解し、固形分濃度10重量%のポリイミド溶液を得た。なお、比較例1,5,6では紫外線吸収剤を添加しなかった。比較例4,6では、ブルーイング剤を添加しなかった。
(Preparation of polyimide film)
100 parts by weight of the above-mentioned polyimide resin, and an ultraviolet absorber (UVA) and a bluing agent (“PlastBlue 8590” manufactured by Arimoto Chemical Industry Co., Ltd.) shown in Table 1 are dissolved in dichloromethane, and a polyimide solution having a solid content concentration of 10% by weight is dissolved. Got In Comparative Examples 1, 5 and 6, no ultraviolet absorber was added. In Comparative Examples 4 and 6, no bluing agent was added.
 上記のポリイミド溶液を、バーコーターを用いて無アルカリガラスに塗布し、大気雰囲気下にて、40℃で60分、80℃で30分、150℃で30分、170℃で30分、200℃で60分加熱して溶媒を除去し、厚み50μmの透明ポリイミドフィルムを得た。 The above polyimide solution is applied to non-alkali glass using a bar coater, and in an air atmosphere, 40 ° C. for 60 minutes, 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, 170 ° C. for 30 minutes, 200 ° C. The solvent was removed by heating for 60 minutes with a transparent polyimide film having a thickness of 50 μm.
[ハードコートフィルムの作製]
(シルセスキオキサン化合物の合成)
 温度計、撹拌装置、還流冷却管を取り付けた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ製「SILQUEST A-186」)66.5g(270mmol)および1-メトキシ-2-プロパノール(PGME)16.5gを投入し、均一に撹拌した。この混合液に、塩化マグネシウム0.039g(0.405mmol)を、水9.7g(539mmol)およびメタノール5.8gに溶解した溶液を、5分かけて滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターを用いて減圧脱揮および濃縮を行い、縮合物中のメタノールおよび水を除去して、シルセスキオキサン化合物を得た。
[Making a hard coat film]
(Synthesis of silsesquioxane compound)
66.5 g (270 mmol) of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (“SILQUEST A-186” manufactured by Momentive Performance Materials) in a reaction vessel equipped with a thermometer, agitator, and a reflux condenser. ) And 16.5 g of 1-methoxy-2-propanol (PGME) were added and stirred uniformly. A solution prepared by dissolving 0.039 g (0.405 mmol) of magnesium chloride in 9.7 g (539 mmol) of water and 5.8 g of methanol was added dropwise to this mixed solution over 5 minutes, and the mixture was stirred until uniform. Then, the temperature was raised to 80 ° C., and the polycondensation reaction was carried out for 6 hours with stirring. After completion of the reaction, decompression and concentration were carried out under reduced pressure using a rotary evaporator, and methanol and water in the condensate were removed to obtain a silsesquioxane compound.
(ハードコート組成物の調製)
 上記のシルセスキオキサン化合物100重量部に、光酸発生剤(光カチオン重合開始剤)としてジフェニル(4-フェニルチオフェニル)・SbF塩のプロピレンカーボネート50%溶液(サンアプロ製「CPI-101A」)、および紫外線吸収剤(UVA)を、表1に示す配合量で添加して、ハードコート組成物を調製した。なお、比較例4および比較例6では、光酸発生剤のみを添加し、紫外線吸収剤は添加しなかった。
(Preparation of hard coat composition)
A 50% propylene carbonate solution of diphenyl (4-phenylthiophenyl) and SbF 6 salt as a photoacid generator (photocationic polymerization initiator) in 100 parts by weight of the above silsesquioxane compound (“CPI-101A” manufactured by San-Apro). ) And an ultraviolet absorber (UVA) were added in the blending amounts shown in Table 1 to prepare a hard coat composition. In Comparative Example 4 and Comparative Example 6, only the photoacid generator was added, and the ultraviolet absorber was not added.
(ハードコート層の形成)
 厚み50μmの透明ポリイミド基材の主面に、ハードコート組成物を、硬化後厚みが50μmとなるようにバーコーターを用いて塗布し、120℃で10分加熱した。高圧水銀ランプを用いて、波長365nmの積算光量が1000mJ/cmとなるように紫外線を照射した後、80℃で2時間加熱してハードコート組成物を硬化させ、ポリイミドフィルム基材上にハードコート(HC)層を備えるハードコートフィルムを得た。実施例2、比較例5および比較例6では、透明ポリイミドフィルム基材の両面に厚み50μmのハードコート(HC)層を形成した。比較例1~4ではハードコート層を形成しなかった。
(Formation of hard coat layer)
The hardcourt composition was applied to the main surface of a transparent polyimide substrate having a thickness of 50 μm using a bar coater so that the thickness after curing was 50 μm, and heated at 120 ° C. for 10 minutes. Using a high-pressure mercury lamp, ultraviolet rays are irradiated so that the integrated light amount at a wavelength of 365 nm is 1000 mJ / cm 2 , and then heated at 80 ° C. for 2 hours to cure the hard coat composition and hard on the polyimide film substrate. A hardcourt film with a coat (HC) layer was obtained. In Example 2, Comparative Example 5 and Comparative Example 6, a hard coat (HC) layer having a thickness of 50 μm was formed on both surfaces of the transparent polyimide film substrate. In Comparative Examples 1 to 4, the hard coat layer was not formed.
[ハードコートフィルムの評価]
 実施例および比較例のハードコートフィルム(比較例1~4はハードコート層が形成されていないポリイミドフィルム)について、以下の評価を実施した。
[Evaluation of hard-coated film]
The following evaluations were carried out on the hard-coated films of Examples and Comparative Examples (Comparative Examples 1 to 4 are polyimide films on which a hard-coat layer was not formed).
(外観)
 ハードコートフィルムを目視にて観察したところ、比較例4では白濁がみられた。比較例4のハードコートフィルムのヘイズをスガ試験機製のヘイズメーター「HZ-V3」を用いて、JIS K7361-1に記載の方法により測定したところ、41.0%であった。なお、実施例1~8のハードコートフィルムのヘイズは、いずれも0.5%未満であった。
(exterior)
When the hard-coated film was visually observed, white turbidity was observed in Comparative Example 4. The haze of the hard-coated film of Comparative Example 4 was measured by the method described in JIS K7361-1 using a haze meter "HZ-V3" manufactured by Suga Test Instruments Co., Ltd. and found to be 41.0%. The haze of the hard-coated films of Examples 1 to 8 was less than 0.5%.
 比較例8および比較例9のハードコートフィルムは、フィルム表面にシワが発生していた。そのため、比較例8,9では、以降の評価を実施しなかった。 The hard-coated films of Comparative Example 8 and Comparative Example 9 had wrinkles on the film surface. Therefore, in Comparative Examples 8 and 9, the subsequent evaluation was not carried out.
(黄色度)
 フィルムを3cm角のサイズに切り出し、分光測色計(スガ試験機製「SC-P」)を用いて黄色度(YI)を測定した。その後、フェードメーター(スガ試験機製「U48-HB」)を用い、放射照度500W/m、ブラックパネル温度63℃の条件でフィルムの片面(実施例1,3~8および比較例7~9では、ハードコート層形成面)から紫外線を48時間照射した。紫外線照射後のフィルムの黄色度を測定し、照射前の黄色度YIおよび照射後の黄色度YIから、下記式に従い、照射前後の黄色度の変化量ΔYIを算出した。」
   ΔYI=YI-YI
(Yellowness)
The film was cut into a size of 3 cm square, and the yellowness (YI) was measured using a spectrocolorimeter (“SC-P” manufactured by Suga Test Instruments Co., Ltd.). Then, using a fade meter (“U48-HB” manufactured by Suga Testing Machine), one side of the film (Examples 1 and 3 to 8 and Comparative Examples 7 to 9) under the conditions of an irradiance of 500 W / m 2 and a black panel temperature of 63 ° C. , The hard coat layer forming surface) was irradiated with ultraviolet rays for 48 hours. The yellowness of the film after irradiation with ultraviolet rays was measured, and the amount of change in yellowness before and after irradiation ΔYI was calculated from the yellowness YI 0 before irradiation and the yellowness YI 1 after irradiation according to the following formula. "
ΔYI = YI 1 -YI 0
(鉛筆硬度)
 JIS K-5600-5-4鉛筆引っかき試験により、フィルムの鉛筆硬度を測定した。実施例1,3~8および比較例7~9では、ハードコート層形成面の鉛筆硬度を評価した。
(Pencil hardness)
The pencil hardness of the film was measured by the JIS K-5600-5-4 pencil scratch test. In Examples 1 and 3 to 8 and Comparative Examples 7 to 9, the pencil hardness of the hard coat layer forming surface was evaluated.
 実施例および比較例におけるポリイミドフィルムの添加剤の種類および含有量、ハードコート層の形成面、ハードコート組成物の光酸発生剤の添加量、ハードコート組成物の紫外線吸収剤の種類および含有量、ならびにフィルムの評価結果を表1に示す。 Types and contents of polyimide film additives in Examples and Comparative Examples, hard coat layer forming surface, amount of photoacid generator added in hard coat composition, type and content of UV absorber in hard coat composition , And the evaluation results of the film are shown in Table 1.
 表1において、紫外線吸収剤(UVA)は、以下の略称で記載している。
 LA-31RG:ADEKA製「アデカスタブ LA-31RG」:2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]
 LA-F70:ADEKA製「アデカスタブ LA-F70」:2,4,6-トリス(2-ヒドロキシ-4-ヘキシロキシ-3-メチルフェニル)-1,3,5-トリアジン
 Tin 326:BASF製「Tinvin 326」;2-〔5-クロロ(2H)-ベンゾトリアゾール-2-イル〕-4-メチル-6-(tert-ブチル)フェノール
 LA-29:ADEKA製「アデカスタブ LA-29」;2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール
 LA-32:ADEKA製「アデカスタブ LA-32」;2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール
 LA-24:ADEKA製「アデカスタブ LA-24」;2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール
In Table 1, ultraviolet absorbers (UVA) are described by the following abbreviations.
LA-31RG: "ADEKA STAB LA-31RG" manufactured by ADEKA: 2,2'-methylenebis [6- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol]
LA-F70: ADEKA "ADEKA STUB LA-F70": 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine Tin 326: BASF "Tinvin 326" 2- [5-Chloro (2H) -benzotriazole-2-yl] -4-methyl-6- (tert-butyl) phenol LA-29: "ADEKA STAB LA-29" manufactured by ADEKA; 2- (2H-) Benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol LA-32: "ADEKA STAB LA-32" manufactured by ADEKA; 2- (2H-benzotriazole-2-yl)- p-cresol LA-24: "ADEKA STAB LA-24" manufactured by ADEKA; 2- (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示す通り、ポリイミドフィルムおよびハードコート層の両方に紫外線吸収剤を含むハードコートフィルムは、ハードコート層が形成されていることにより高い鉛筆硬度を示すとともに、フェード試験による光照射後のΔYIが小さく、耐光性に優れていることが分かる。 As shown in Table 1, the hard coat film containing an ultraviolet absorber in both the polyimide film and the hard coat layer shows high pencil hardness due to the formation of the hard coat layer, and ΔYI after light irradiation by a fade test. It can be seen that the size is small and the light resistance is excellent.
 実施例3,4の対比、実施例5,6の対比、および実施例7,8の対比から、ハードコート層に含まれる紫外線吸収剤の量が多いほど、ΔYIが小さくなる傾向があることが分かる。一方、ハードコート組成物の樹脂分100重量部に対して5重量部の紫外線吸収剤を配合した比較例8,9では、硬化後のハードコート層表面にシワがみられた。これは、紫外線吸収剤の量が多いために硬化が不十分であったことに起因していると考えられる。 From the comparison of Examples 3 and 4, the comparison of Examples 5 and 6, and the comparison of Examples 7 and 8, the larger the amount of the ultraviolet absorber contained in the hard coat layer, the smaller the ΔYI tends to be. I understand. On the other hand, in Comparative Examples 8 and 9 in which 5 parts by weight of the ultraviolet absorber was blended with 100 parts by weight of the resin content of the hard coat composition, wrinkles were observed on the surface of the hard coat layer after curing. It is considered that this is due to insufficient curing due to the large amount of the ultraviolet absorber.
 ハードコート層を設けなかった比較例1~4では、実施例に比べてフィルムの鉛筆硬度が低く、硬度が不十分であった。また、ポリイミドフィルムの紫外線吸収剤の有無にかかわらずΔYIが大きく耐光性が不十分であった。ポリイミド樹脂100重量部に対して5重量部の紫外線吸収剤を配合した比較例4では、相溶性が不十分であるために、著しい白濁がみられた。 In Comparative Examples 1 to 4 in which the hard coat layer was not provided, the pencil hardness of the film was lower than that of the examples, and the hardness was insufficient. In addition, ΔYI was large and the light resistance was insufficient regardless of the presence or absence of the ultraviolet absorber of the polyimide film. In Comparative Example 4 in which 5 parts by weight of the ultraviolet absorber was blended with 100 parts by weight of the polyimide resin, remarkable cloudiness was observed due to insufficient compatibility.
 ポリイミドフィルムおよびハードコート層のいずれも紫外線吸収剤を含まない比較例5では、ΔYIが大きく耐光性が不十分であった。ハードコート層のみに紫外線吸収剤を配合した比較例6、およびポリイミドフィルムのみに紫外線吸収剤を配合した比較例7では、比較例5に比べるとΔYIが小さいものの、耐光性は不十分であった。 In Comparative Example 5 in which neither the polyimide film nor the hard coat layer contained an ultraviolet absorber, ΔYI was large and the light resistance was insufficient. In Comparative Example 6 in which the ultraviolet absorber was blended only in the hard coat layer and Comparative Example 7 in which the UV absorber was blended only in the polyimide film, ΔYI was smaller than that of Comparative Example 5, but the light resistance was insufficient. ..
 以上の結果から、ポリイミドフィルムおよびハードコート層の両方に紫外線吸収剤を含めることにより、透明性、耐光性および表面硬度に優れるハードコートフィルムが得られることが分かる。 From the above results, it can be seen that a hard coat film having excellent transparency, light resistance and surface hardness can be obtained by including an ultraviolet absorber in both the polyimide film and the hard coat layer.
  1   ポリイミドフィルム
  2   ハードコート層
 10   ハードコートフィルム

 
1 Polyimide film 2 Hardcourt layer 10 Hardcourt film

Claims (12)

  1.  基材フィルムと、前記基材フィルムの少なくとも一方の面に設けられたハードコート層とを備えるハードコートフィルムであって、
     前記基材フィルムがポリイミド樹脂を含むポリイミドフィルムであり、
     前記ハードコート層は、光硬化性樹脂組成物の硬化物からなり、
     前記ハードコート層および前記ポリイミドフィルムのそれぞれが、紫外線吸収剤を含有する、ハードコートフィルム。
    A hard coat film comprising a base film and a hard coat layer provided on at least one surface of the base film.
    The base film is a polyimide film containing a polyimide resin.
    The hard coat layer is made of a cured product of a photocurable resin composition.
    A hard coat film in which each of the hard coat layer and the polyimide film contains an ultraviolet absorber.
  2.  前記ポリイミド樹脂が、
     ジアミン成分として、ジアミン全量100モル%に対して、フルオロアルキル置換ベンジジンを40モル%以上100モル%以下含み、
     テトラカルボン酸二無水物成分として、テトラカルボン酸二無水物成分全量100モル%に対して、式(1)で表されるエステル構造を有する酸二無水物を40モル%以上85モル%以下含み、シクロブタン構造を有する酸二無水物を15モル%以上60モル%以下含む、
     請求項1に記載のハードコートフィルム:
    Figure JPOXMLDOC01-appb-C000001
     式(1)において、nは1または2であり、R~Rはそれぞれ独立に、水素原子、炭素原子数1~20のアルキル基またはフルオロアルキル基であり、R~Rのうちの少なくとも1つは、炭素原子数1~20のアルキル基またはフルオロアルキル基である。
    The polyimide resin
    As a diamine component, 40 mol% or more and 100 mol% or less of fluoroalkyl-substituted benzidine is contained with respect to 100 mol% of the total amount of diamine.
    As the tetracarboxylic acid dianhydride component, 40 mol% or more and 85 mol% or less of the acid dianhydride having the ester structure represented by the formula (1) is contained with respect to 100 mol% of the total amount of the tetracarboxylic acid dianhydride component. , Contains 15 mol% or more and 60 mol% or less of acid dianhydride having a cyclobutane structure.
    The hard-coated film according to claim 1:
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), n is 1 or 2, and R1 to R4 are independently hydrogen atoms, alkyl groups having 1 to 20 carbon atoms, or fluoroalkyl groups, and among R1 to R4 . At least one of the above is an alkyl group or a fluoroalkyl group having 1 to 20 carbon atoms.
  3.  前記ハードコート層が、エポキシ基を有するポリシロキサン化合物の硬化物を含む、請求項1または2に記載のハードコートフィルム。 The hardcoat film according to claim 1 or 2, wherein the hardcoat layer contains a cured product of a polysiloxane compound having an epoxy group.
  4.  前記紫外線吸収剤が、ベンゾトリアゾール化合物、またはトリアジン化合物である、請求項1~3のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 3, wherein the ultraviolet absorber is a benzotriazole compound or a triazine compound.
  5.  前記ポリイミドフィルムにおける紫外線吸収剤の含有量が、0.1~4.5重量%である、請求項1~4のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 4, wherein the content of the ultraviolet absorber in the polyimide film is 0.1 to 4.5% by weight.
  6.  前記ハードコート層における紫外線吸収剤の含有量が、0.1~4.5重量%である、請求項1~5のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 5, wherein the content of the ultraviolet absorber in the hard coat layer is 0.1 to 4.5% by weight.
  7.  前記ハードコート層の厚みが、0.5~100μmである請求項1~6のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 6, wherein the hard coat layer has a thickness of 0.5 to 100 μm.
  8.  前記ポリイミドフィルムの厚みが、5~100μmである請求項1~7のいずれか1項に記載のハードコートフィルム。 The hard-coated film according to any one of claims 1 to 7, wherein the polyimide film has a thickness of 5 to 100 μm.
  9.  請求項1~8のいずれか1項に記載のハードコートフィルムの製造方法であって、
     ポリイミド樹脂および紫外線吸収剤を含むジクロロメタン溶液を基材上に塗布し、溶媒を除去することにより紫外線吸収剤を含むポリイミドフィルムを作製し、
     前記ポリイミドフィルムの表面に、光硬化性樹脂および光重合開始剤を含む光硬化性樹脂組成物を塗布し、光硬化することによりハードコート層を形成する、ハードコートフィルムの製造方法。
    The method for producing a hardcourt film according to any one of claims 1 to 8.
    A dichloromethane solution containing a polyimide resin and an ultraviolet absorber was applied onto a substrate, and the solvent was removed to prepare a polyimide film containing an ultraviolet absorber.
    A method for producing a hard coat film, wherein a photocurable resin composition containing a photocurable resin and a photopolymerization initiator is applied to the surface of the polyimide film and photocured to form a hard coat layer.
  10.  前記光硬化性樹脂がエポキシ基を有するポリシロキサン化合物であり、前記光重合開始剤が光カチオン重合開始剤である、請求項9に記載のハードコートフィルムの製造方法。 The method for producing a hard coat film according to claim 9, wherein the photocurable resin is a polysiloxane compound having an epoxy group, and the photopolymerization initiator is a photocationic polymerization initiator.
  11.  画像表示パネルの視認側表面に、請求項1~8のいずれか1項に記載のハードコートフィルムを備える、画像表示装置。 An image display device provided with the hard coat film according to any one of claims 1 to 8 on the visible side surface of the image display panel.
  12.  折り曲げ可能である、請求項11に記載の画像表示装置。

     
    The image display device according to claim 11, which is foldable.

PCT/JP2021/038815 2020-10-22 2021-10-20 Hard coating film, method for producing same, and image display device WO2022085735A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237014945A KR20230092933A (en) 2020-10-22 2021-10-20 Hard coating film and its manufacturing method, and image display device
JP2022557588A JPWO2022085735A1 (en) 2020-10-22 2021-10-20
CN202180072077.8A CN116419848A (en) 2020-10-22 2021-10-20 Hard coat film, method for producing same, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020177536 2020-10-22
JP2020-177536 2020-10-22

Publications (1)

Publication Number Publication Date
WO2022085735A1 true WO2022085735A1 (en) 2022-04-28

Family

ID=81289777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038815 WO2022085735A1 (en) 2020-10-22 2021-10-20 Hard coating film, method for producing same, and image display device

Country Status (5)

Country Link
JP (1) JPWO2022085735A1 (en)
KR (1) KR20230092933A (en)
CN (1) CN116419848A (en)
TW (1) TW202231474A (en)
WO (1) WO2022085735A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134865A (en) * 2017-02-22 2018-08-30 住友化学株式会社 Laminate
JP2019147923A (en) * 2018-02-28 2019-09-05 日鉄ケミカル&マテリアル株式会社 Laminate including hard coating liquid composed of siloxane curable resin composition
WO2020004236A1 (en) * 2018-06-28 2020-01-02 株式会社カネカ Polyimide resin, production method for polyimide resin, polyimide film, and production method for polyimide film
JP2020164771A (en) * 2019-03-31 2020-10-08 株式会社カネカ Polyimide film and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226712A (en) 2014-11-10 2017-12-28 住友化学株式会社 Photocurable resin composition and manufacturing method of cured film using the same
CN112639038B (en) 2018-08-24 2022-07-15 株式会社钟化 Hard coat composition, polyimide film with hard coat layer, method for producing the same, and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134865A (en) * 2017-02-22 2018-08-30 住友化学株式会社 Laminate
JP2019147923A (en) * 2018-02-28 2019-09-05 日鉄ケミカル&マテリアル株式会社 Laminate including hard coating liquid composed of siloxane curable resin composition
WO2020004236A1 (en) * 2018-06-28 2020-01-02 株式会社カネカ Polyimide resin, production method for polyimide resin, polyimide film, and production method for polyimide film
JP2020164771A (en) * 2019-03-31 2020-10-08 株式会社カネカ Polyimide film and method for producing the same

Also Published As

Publication number Publication date
KR20230092933A (en) 2023-06-26
TW202231474A (en) 2022-08-16
JPWO2022085735A1 (en) 2022-04-28
CN116419848A (en) 2023-07-11

Similar Documents

Publication Publication Date Title
JP7105051B2 (en) LAMINATED TRANSPARENT FILM, WINDOW FOR DISPLAY DEVICE AND DISPLAY DEVICE
KR102413217B1 (en) Plastic substrate and display device including same
JP7328973B2 (en) Hard coat composition, polyimide film with hard coat, method for producing the same, and image display device
JP7323522B2 (en) Polyimide resin and method for producing the same, and polyimide film and method for producing the same
JP2016093992A (en) Resin film, laminate film, optical member, display member, front plate, and production method of laminate film
WO2017014279A1 (en) Resin film, layered body, optical member, display member, and front plate
JP7009902B2 (en) A method for manufacturing a polyimide film, a method for manufacturing a polyimide precursor, a method for manufacturing a laminate, and a method for manufacturing a surface material for a display.
CN113372783B (en) Optically transparent shear thickening fluid and optical display device comprising same
TW201727274A (en) Polyimide substrate and display substrate module including the same
JP2020189918A (en) Polyimide resin, polyimide solution, and method of producing polyimide film
WO2020246466A1 (en) Polyimide resin and method for producing same, and polyimide film and method for producing same
KR20180072268A (en) Composition For Hard Coating and Polyimide Substrate Including Cured Product Of The Same As A Hard Coating Layer
WO2022085735A1 (en) Hard coating film, method for producing same, and image display device
WO2018134974A1 (en) Resin film, laminate, optical member, gas barrier material and touch sensor substrate
JP7088173B2 (en) Surface material for flexible displays
WO2023276864A1 (en) Silsesquioxane compound and method for producing same
JP2021070800A (en) Hard coat film and image display device
CN118056142A (en) Optical film having multilayer structure and display device including the same
JP7359662B2 (en) Polyimide resin, polyimide solution, polyimide film
WO2021040004A1 (en) Polyimide film, production method therefor, and polyimide resin composition
WO2022176919A1 (en) Polyimide film and production method therefor, hardcoat film, and image display device
JP5282357B2 (en) Polyimide precursor, polyimide, resin composition and article using these
WO2023008493A1 (en) Silane compound, method for producing same, polyorganosiloxane compound, hard coating composition, hard coating film, method for producing same, and display
WO2021172201A1 (en) Hardcoat film, method for producing same, and display device
WO2023008492A1 (en) Hardcoat film, method for producing same, and display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557588

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237014945

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882876

Country of ref document: EP

Kind code of ref document: A1