WO2022085507A1 - 半導体発光装置及び半導体発光モジュール - Google Patents

半導体発光装置及び半導体発光モジュール Download PDF

Info

Publication number
WO2022085507A1
WO2022085507A1 PCT/JP2021/037616 JP2021037616W WO2022085507A1 WO 2022085507 A1 WO2022085507 A1 WO 2022085507A1 JP 2021037616 W JP2021037616 W JP 2021037616W WO 2022085507 A1 WO2022085507 A1 WO 2022085507A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
emitting device
semiconductor
guide member
Prior art date
Application number
PCT/JP2021/037616
Other languages
English (en)
French (fr)
Inventor
圭真 河野
幸治 市川
大蔵 神原
直史 堀尾
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Priority to EP21882648.5A priority Critical patent/EP4203082A4/en
Priority to CN202180069609.2A priority patent/CN116349020A/zh
Priority to US18/029,155 priority patent/US20230387363A1/en
Publication of WO2022085507A1 publication Critical patent/WO2022085507A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a semiconductor light emitting device and a semiconductor light emitting module, particularly a semiconductor light emitting device and a semiconductor light emitting module having a semiconductor light emitting element such as a light emitting diode (LED).
  • LED light emitting diode
  • LEDs light emitting diodes
  • variable light distribution type headlamp ADB: Adaptive Driving Beam
  • LED packages for high-output lighting and LED packages for information communication equipment in which LEDs are arranged at high density are known.
  • Patent Document 1 discloses that an optical reflection layer is provided on the side surface of the substrate and the light emitting element.
  • Patent Document 2 discloses a light emitting device that has a reflective member that covers the side surface of the semiconductor laminate and suppresses light leakage from the upper end of the side surface of the semiconductor laminate to the side.
  • Patent Document 3 discloses a semiconductor light emitting device having a light reflecting groove that suppresses crosstalk between light emitting segments.
  • JP-A-2015-225862 Japanese Unexamined Patent Publication No. 2015-119063 JP-A-2015-156431
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a highly reliable semiconductor light emitting device having excellent airtightness and extremely suppressed light leakage to the outside and incidental light to the outside. do. Another object of the present invention is to provide a semiconductor light emitting module in which crosstalk of light with an adjacent light emitting device is extremely suppressed, the contrast is high, and the light shielding property, airtightness, fixing property and reliability are excellent.
  • the semiconductor light emitting device is A light emitting device assembly having a support substrate and a semiconductor light emitting device having a light emitting semiconductor layer provided on the support substrate, and a light guide member bonded to the semiconductor light emitting device by an element adhesive layer. It has a first coating made of an inorganic material which is a light reflector that is adhered to the side surface of the light emitting element assembly by a side wall adhesive layer and covers the side surface.
  • FIG. 1A It is a top view schematically showing the upper surface of the semiconductor light emitting device 10 according to 1st Embodiment of this invention. It is sectional drawing which shows typically the cross section of the semiconductor light emitting device 10 along the line AA of FIG. 1A. It is a top view schematically showing the back surface of the semiconductor light emitting device 10. It is a partially enlarged sectional view showing the adhesive portion W of the light guide member 13 and the inner coating 14 in an enlarged manner. It is sectional drawing which shows typically and in detail an example of the structure of the LED element 11 which is a semiconductor light emitting element. It is a figure explaining the manufacturing method of the semiconductor light emitting apparatus 10 when the inner coating 14 is an alumina plate.
  • FIG. 3 is a top view showing a semiconductor light emitting module 37 in which semiconductor light emitting devices are arranged in a 5 ⁇ 3 arrangement.
  • FIG. 5A It is sectional drawing which shows the cross section along the line AA of FIG. 5A, and schematically shows the application example of the semiconductor light emitting apparatus 10 of this embodiment. It is sectional drawing which shows typically the cross section of the semiconductor light emitting module 38 of the comparative examples 1 and 2. It is a figure which shows the difference of the light emission display pattern between the semiconductor light emitting module 37 which used the semiconductor light emitting device 10 of this embodiment, and the semiconductor light emitting module 38 which used the semiconductor light emitting device 90 of Comparative Examples 1 and 2. It is sectional drawing which shows typically the cross section of the semiconductor light emitting device 50 by the 2nd Embodiment of this invention. It is sectional drawing which shows typically the cross section of the semiconductor light emitting device 60 by the 3rd Embodiment of this invention. It is a top view schematically showing the case where the semiconductor light emitting device 60 is seen from the top surface. It is sectional drawing which shows typically the cross section of the semiconductor light emitting device 70 by 4th Embodiment of this invention.
  • FIG. 1A is a plan view schematically showing the upper surface of the semiconductor light emitting device 10 according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing a cross section of the semiconductor light emitting device 10 along the line AA of FIG. 1A.
  • FIG. 1C is a plan view schematically showing the back surface of the semiconductor light emitting device 10.
  • the semiconductor light emitting device 10 has a semiconductor light emitting element 11 and a light guide member 13 bonded to the semiconductor light emitting element 11 by an element adhesive layer 12 made of an adhesive. Further, the semiconductor light emitting device 10 has an inner coating 14 and an outer coating 15 that cover the side surfaces of the semiconductor light emitting element 11 and the light guide member 13.
  • the semiconductor light emitting device 11 has a light emitting semiconductor layer 20 provided on the support substrate 31.
  • a light emitting diode LED
  • it may be a surface light emitting element such as a surface light emitting LD (laser diode).
  • the support substrate 31 and the light guide member 13 of the semiconductor light emitting element (hereinafter referred to as LED element) 11 which is a light emitting diode (LED) have a rectangular shape.
  • the side surfaces of the LED element 11, the element adhesive layer 12 (hereinafter, also simply referred to as the adhesive layer 12) and the light guide member 13 are formed in close contact with the inner coating 14 (first coating) and the outer side of the inner coating 14. It is commonly covered by the outer coating 15 (second coating).
  • the inner coating 14 (first coating) is adhered to the LED element 11, the element adhesive layer 12, and the light guide member 13 by the side wall adhesive layer 16 (hereinafter, also simply referred to as the adhesive layer 16). It is preferable that the LED element 11, the element adhesive layer 12, and the light guide member 13 are sealed by the side wall adhesive layer 16.
  • the light guide member 13 has a size and arrangement including the LED semiconductor layer 20 when viewed from the vertical direction of the LED semiconductor layer 20 (hereinafter, also referred to as a top view).
  • FIG. 1D is a partially enlarged cross-sectional view showing a portion shown as W in FIG. 1B, that is, an enlarged portion W of the light guide member 13 and the inner coating 14 formed by the side wall adhesive layer 16.
  • the light guide member 13 and / or the LED element 11 is cut by dicing or the like, and the side surface has fine irregularities.
  • the side wall adhesive layer 16 is formed so as to fill the space between the unevenness of the side surface 13F of the light guide member 13 and the inner coating 14.
  • the inner coating 14 is adhered along the top of the side surface 13F of the light guide member 13. Therefore, light leakage from the upper end portion on the light emitting surface 13E side by guiding light through the side wall adhesive layer 16 is greatly suppressed. Further, the side wall adhesive layer 16 fills the unevenness between the inner coating 14 and the light guide member 13, and the inner coating 14 is firmly fixed to the light guide member 13. The same applies to the adhesive surface between the support substrate 31 and the inner coating 14, so that light leakage is greatly suppressed and the inner coating 14 is firmly fixed.
  • an alumina plate and aluminum / titanium tungsten (Al / TiW) are used as the inner coating (first coating) 14 and the outer coating (second coating) 15, respectively.
  • a dielectric multilayer film and aluminum (Al) are used as the inner coating (first coating) 14 and the outer coating (second coating) 15, respectively.
  • the side wall adhesive layer 16 can use a translucent resin or a white resin. Further, when the inner coating 14 is a dielectric multilayer film, a translucent resin can be used.
  • the inner coating (first coating) 14 has light reflectivity, insulation and airtightness
  • the outer coating 15 (second coating) has light-reflecting or light-absorbing light-shielding properties. That is, the laminated structure of the inner coating 14 and the outer coating 15 has a high reflectance with respect to the light from the inside of the coating, and also has a high light-shielding property with respect to the light from the outside of the coating.
  • a light-reflecting white alumina-ceramic binder is used for the inner coating 14.
  • the ceramic binder is a dense white coating in which the particles constituting the coating are bonded to each other, has a thickness of about several tens of ⁇ m, and has sufficient light reflectivity.
  • Such an inner coating 14 efficiently reflects light from the light guide member 13 toward the inner coating 14.
  • the inner coating 14 and the outer coating 15 cover the entire side surface of the light emitting element assembly 11A in which the LED element 11, the element adhesive layer 12 (hereinafter, also simply referred to as the adhesive layer 12), and the light guide member 13 are integrated. Is preferable. Further, it is preferable that the adhesive layer 12 is filled between the semiconductor light emitting element 11 and the light guide member 13.
  • a light-reflecting ceramic binder such as white alumina, zirconia, magnesia, or titanium oxide, or a light-reflecting composite ceramic binder such as white alumina / zirconia can be used.
  • a silicate-based binder made of an inorganic adhesive can also be used.
  • the silicate-based binder is formed by forming a siloxane bond (Si—O—Si) by heating at around 100 ° C. after applying the inorganic adhesive. This silicate-based binder has heat resistance of around 1000 ° C. and excellent weather resistance.
  • White alumina is an alumina-based fine ceramic used for semiconductor and liquid crystal manufacturing equipment, and has a white or ivory color tone.
  • the light-reflecting composite ceramic binder such as white alumina / zirconia has a higher reflectance than the single ceramic binder because the reflection characteristics at the interface between the alumina particles having different refractive indexes and the zirconia particles are improved.
  • the component ratio it can be adjusted to the coefficient of linear thermal expansion of the light emitting element assembly 11A, and the occurrence of cracks and the like in the inner coating 14 can be suppressed.
  • a light-reflecting or light-shielding metal film can be used for the outer coating film 15.
  • a metal film formed on the inner coating film 14 by vapor deposition, sputtering, or the like can be used.
  • a dielectric multilayer film can be formed on the outer coating film 15 such as a metal film and a ceramic plate by vapor deposition, sputtering, or the like to form the inner coating film 14.
  • a light-absorbing ceramic binder such as black alumina, zirconia, silicon nitride, or titanium carbide
  • a corrosion-resistant metal film such as cermet, or a metal film having a passivation film which is a reflective metal such as an aluminum alloy or stainless steel (SUS) and has an oxide film of a contained metal on the surface
  • a silicate-based binder having a black alumina, zirconia, silicon nitride, titanium carbide or the like light-absorbing ceramic particles similar to the ceramic binder, or a mixture of light-absorbing ceramic particles as an aggregate is used. You can also do it.
  • black alumina for example, there is black alumina (AR (B)) (manufactured by Aszac Co., Ltd.) having a black color tone, and surface reflection is maintained while maintaining the strength and durability that are the characteristics of fine ceramics. Can be suppressed. (Reflectance is 5.1 to 15.3% at wavelengths of 240 to 2600 nm).
  • black ceramics other than alumina there are Nippon Tungsten NPZ-96 (black zirconia), NPA-2 (black alumina + titanium carbide), NPN-3 (black silicon nitride), etc.
  • the outer coating 15 can be omitted in applications that do not require light shielding and corrosion resistance by the outer coating 15.
  • the light guide member 13 also functions as a sealing material on the upper surface side of the semiconductor light emitting device 10.
  • the light emitted from the LED element 11 is incident on the light guide member 13 from the bottom surface 13B of the light guide member 13, and the light emitting LE of the semiconductor light emitting device 10 is emitted from the surface of the light guide member 13 (light emitting surface 13E).
  • the light guide member 13 includes a translucent glass plate, a sapphire plate, a resin plate, a ceramic phosphor plate made of alumina + YAG: Ce or the like containing a wavelength conversion member, or a glass phosphor made of glass + ⁇ or ⁇ sialon or the like.
  • a resin that transmits light emitted by the LED element 11, low melting point glass, a nanometal oxide sintered body, or the like can be used. Further, a composite in which a porous nanometal oxide sintered body is impregnated with a resin or low melting point glass can also be used. Further, a diffusing agent and a light conversion member can be added to the adhesive layer 12.
  • FIG. 2 is a cross-sectional view schematically and in detail showing an example of the configuration of the LED element 11 which is a semiconductor light emitting element.
  • the LED element 11 has a structure in which an LED semiconductor layer 20 which is a so-called thin-film LED is attached to a support substrate 31 as a light emitting semiconductor layer 20.
  • the LED semiconductor layer (light emitting semiconductor layer) 20 has a configuration in which a semiconductor layer (thin film LED) having an LED structure epitaxially grown on a growth substrate is removed from the growth substrate and attached to a support substrate 31. are doing.
  • the p-type semiconductor layer which is the outermost surface layer for growth, is attached to the support substrate 31 with the lower surface as the lower surface, and the n-type semiconductor layer is used as the surface layer.
  • the support substrate 31 is an n-type substrate made of Si (silicon) doped with P (phosphorus) or As (arsenic).
  • the LED semiconductor layer 20 has an n-type semiconductor layer 21, a light emitting layer 22, and a p-type semiconductor layer 23.
  • the n-type semiconductor layer 21 and the p-type semiconductor layer 23 are each composed of at least one semiconductor layer, and may have various semiconductor layers such as a barrier layer, a current diffusion layer, and a contact layer.
  • the LED semiconductor layer 20 is, for example, a blue light emitting LED semiconductor layer composed of a GaN-based semiconductor layer, but is not limited thereto.
  • the light emitting layer 22 has, for example, a single quantum well (SQW) or multiple quantum well (MQW) structure.
  • the LED semiconductor layer 20 has a p-electrode 25A and an n-electrode 25B.
  • the p-electrode 25A is bonded to the p-side substrate electrode 32A by the conductive p-side bonding layer 26, and the n-electrode 25B is bonded to the n-side substrate electrode 32B by the conductive n-side bonding layer 27.
  • the p-electrode 25A is an ITO / Ni / Pt / in which an ITO (indium tin oxide), Ni (nickel), Pt (platinum) and Ag (silver) reflective film are formed on the p-type semiconductor layer 23 in this order. It consists of an Ag layer.
  • the n-electrode 25B is from a (Ti or Ni) / Pt / Au layer in which Ti (titanium) or Ni (nickel), Pt (platinum) and Au (gold) are formed on the n-type semiconductor layer 21 in this order. Become.
  • the materials and structures of the p-electrode 25A and the n-electrode 25B are not limited to the above. It can be appropriately selected in consideration of characteristics such as improvement of extraction efficiency by light reflection, ohmic characteristics, and element reliability (life).
  • An element protective film 28A made of SiO2 is provided on the side surface of the LED semiconductor layer 20. Further, a substrate protective film 28B made of SiO2 is provided on the surface of the substrate 31 (the junction side with the LED semiconductor layer 20).
  • the p-side substrate electrode 32A is connected to the conduction via 33 and is electrically connected to the anode electrode 34A on the back surface of the semiconductor light emitting device 10 via the conduction via 33.
  • the p-side substrate electrode 32A, the conduction via 33, and the anode electrode 34A are insulated from the support substrate 31 by the substrate insulating film 35 made of SiO2.
  • the n-side substrate electrode 32B is electrically connected to the cathode electrode 34B on the back surface of the semiconductor light emitting device 10 via the support substrate 31 which is a Si substrate.
  • the manufacturing method of the semiconductor light emitting device 10 will be described below with reference to FIGS. 3A to 3C. First, as shown in FIG. 3A, the LED element 11 and the light guide member 13 are prepared.
  • An adhesive made of a translucent silicone resin is potted on the upper surface (emission surface) of the LED element 11. Subsequently, the light guide member 13 is placed on the LED element 11 and pressed (including self-weight pressing). It is allowed to stand until it fills the space between the outer circumference of the upper end of the LED element 11 and the outer circumference of the lower end of the light guide member 13.
  • a light emitting element assembly (hereinafter, also referred to as an LED assembly) 11A in which the LED element 11, the adhesive layer 12, and the light guide member 13 are integrated is formed.
  • Al / TiW aluminum / titanium / tungsten
  • the coated plate 17 (ceramic plate) is formed by dicing according to the side wall size of the LED assembly 11A (right figure). It should be noted that, for example, when the LED assembly 11A has a rectangular parallelepiped shape, the coating plates 17 having a plurality of sizes can be formed by dicing according to the side walls having different sizes.
  • the LED assembly 11A is set between the upper chuck CU and the lower chuck CL having substantially the same shape and size as the upper surface of the light guide member 13 and the bottom surface of the LED element 11, respectively. This makes it possible to fix the LED assembly 11A and at the same time mask the top and bottom surfaces of the LED assembly 11A.
  • a silicone resin is sprayed with a sprayer (spray) SP as an adhesive for the coating adhesive surface (side wall) of the LED assembly 11A.
  • the cut coating plate 17 (alumina + Al / TiW) is adsorbed by the coating chuck CP and attached to the coating adhesive surface on which the adhesive is sprayed. At this time, it is instantly heated (preheated) and temporarily bonded.
  • the LED assembly 11A is rotated 180 ° to temporarily bond the coating plate 17 to the opposite surface (opposite surface) of the surface to which the coating plate 17 is attached. In the same manner, the coating plate 17 is adhered to the remaining two surfaces. Finally, heating at 180 ° C. for 5 minutes formed the coated plates 17 on the four sides of the LED assembly 11A.
  • 4A to 4C are diagrams showing a manufacturing method of the semiconductor light emitting device 10 when the inner coating 14 of the coating plate 17 is a dielectric multilayer film.
  • FIG. 4A is a diagram showing the LED assembly 11A formed in the same manner as shown in FIG. 3A.
  • aluminum (Al) 14 is vapor-deposited on a transparent resin film FM, and TiO 2 / SiO 2 is laminated on the aluminum (Al) 14 to form a dielectric multilayer film 15 that reflects visible light (left side).
  • Figure shows that aluminum (Al) 14 is vapor-deposited on a transparent resin film FM, and TiO 2 / SiO 2 is laminated on the aluminum (Al) 14 to form a dielectric multilayer film 15 that reflects visible light (left side).
  • dicing is performed according to the side wall size of the LED assembly 11A to form a coated plate 17 (dielectric multilayer film plate) (right figure).
  • the dielectric multilayer film 15 and Al 14 are cut, and the film FM is cut so as not to be completely cut.
  • the LED assembly 11A is set between the upper chuck CU and the lower chuck CL. This fixes the LED assembly 11A and at the same time masks the top and bottom surfaces of the LED assembly 11A.
  • the silicone resin is sprayed on the coating adhesive surface (side wall) of the LED assembly 11A with the atomizer SP.
  • the dielectric multilayer film plate 17 is pressed against the film bonding surface of the LED assembly 11A to be bonded.
  • a laser is irradiated to peel the dielectric multilayer film plate 17 from the resin film FM.
  • the LED assembly 11A is rotated 180 ° to temporarily bond the coating film to the opposite surface (opposing surface) of the surface to which the coating plate 17 is attached. In the same manner, the dielectric multilayer film plate 17 is adhered to the remaining two surfaces. Finally, the LED assembly 11A was heated at 180 ° C. for 5 minutes to form a dielectric multilayer film plate (coating plate) 17 on the four side surfaces of the LED assembly 11A.
  • 5A to 5D are schematic for explaining the difference between the semiconductor light emitting device 10 of the present embodiment (Ex.1) and the semiconductor light emitting device of Comparative Examples 1 and 2 (Comp.1 and Comp.2). It is a figure.
  • FIG. 5A is a top view showing a semiconductor light emitting module 37 in which semiconductor light emitting devices are arranged in a 5 ⁇ 3 arrangement.
  • the semiconductor light emitting module 37 has a base 37A, a frame (frame body) 37B provided on the base 37A, and a recess 37C in the frame 37B, and the semiconductor light emitting device is closely spaced in the region 37D in the recess 37C. They are arranged next to each other.
  • the base 37A is provided with electrodes for supplying a current to each of the semiconductor light emitting devices, but the illustration is omitted. Further, in FIGS. 5B and 5C, the base 37A on the outer periphery of the frame 37B is not shown.
  • FIG. 5B shows a cross section along the line AA of FIG. 5A, and shows an application example of the semiconductor light emitting device 10 of the present embodiment (Ex.1).
  • the semiconductor light emitting device 10 of the present embodiment is arranged in the recess 37C of the semiconductor light emitting module 37 and mounted on a wiring board (not shown), but a resin or the like that shields light between the semiconductor light emitting devices 10 is provided. not. That is, no light-shielding body such as resin is required between the semiconductor light-emitting devices 10, and each of the semiconductor light-emitting devices 10 is mounted so as to be separated by a gap.
  • FIG. 5C is a light emitting module similar to the semiconductor light emitting module 37 shown in FIG. 5A, but the semiconductor light emitting devices 90 of Comparative Examples 1 and 2 (Comp.1 and Comp.2) are arranged in the frame.
  • the semiconductor light emitting module 38 is shown.
  • the semiconductor light emitting device 90 of the comparative example is a semiconductor light emitting device in which the inner coating 14 and the outer coating 15 are not provided on the side surfaces, and the side surfaces of the LED element 11 and the light guide member 13 are exposed. Then, a resin is filled in the recess 37C as a light-shielding material between the semiconductor light emitting devices. The light-shielding resin is preferably filled so as to reach the upper surface of the semiconductor light emitting device 90.
  • the recess 37C is filled with the light-reflecting resin 91 as a light-shielding material.
  • the silicone resin is filled with the white resin 91 containing TiO2 particles.
  • the recess 37C is filled with a light-absorbing resin (gray resin) 92 as a light-shielding material.
  • the silicone resin is filled with a gray resin 92 containing TiO2 particles and carbon black.
  • FIG. 5D shows a semiconductor light emitting module 37 using the semiconductor light emitting device 10 of the present embodiment (Ex.1) and a semiconductor light emitting device 90 using the semiconductor light emitting devices 90 of Comparative Examples 1 and 2 (Comp.1 and Comp.2). It is a figure which schematically explains the difference of the light emission display pattern from the module 38.
  • the state of the brightness (brightness) of each semiconductor light emitting device 90 when 11 semiconductor light emitting devices are turned on in an S shape among the 15 pieces arranged in 5 ⁇ 3 is schematically shown.
  • the state of brightness (brightness and darkness) in an easy-to-understand manner, the brighter the brightness, the darker it is.
  • the display is blurred due to light leakage from the outer peripheral portion of the light guide member (fluorescent material plate). In addition, crosstalk between the semiconductor light emitting devices 90 also occurs.
  • the light-shielding material 92 is a gray resin as in Comparative Example 2 (Comp.2)
  • the light absorption by the light-shielding material 92 is large, and the brightness of the outer peripheral portion of the light guide member (fluorescent material plate) is greatly reduced.
  • the semiconductor light emitting device 10 of the present embodiment (Ex.1), there is no light leakage to the side of the device and from the upper end portion, and a high contrast light emitting pattern (display pattern) is possible. Further, even when the lights are individually lit, there is no crosstalk and the adjacent distance between the semiconductor light emitting devices can be reduced, so that high-density mounting is possible.
  • the above-mentioned semiconductor light emitting module 37 is not provided with a resin or the like that shields light from a plurality of semiconductor light emitting devices 10 juxtaposed with a gap (that is, a case where the gap is a space) has been described.
  • a light-shielding resin may be provided between the plurality of semiconductor light emitting devices 10.
  • a semiconductor light emitting module capable of a light emitting pattern (display pattern) having higher contrast and no crosstalk can be obtained.
  • the semiconductor light emitting device of the first embodiment high performance and high luminous efficiency in which light leakage from the side surface of the light emitting device and the upper end portion on the light emitting surface side to the outside of the light emitting device and the incident of external light are extremely suppressed.
  • FIG. 6 is a cross-sectional view schematically showing a cross section of the semiconductor light emitting device 50 according to the second embodiment of the present invention. It includes the center line of the semiconductor light emitting device 50 (A-A line shown in FIG. 1A) and shows a cross section in a plane perpendicular to the semiconductor light emitting device 50.
  • the light guide member 13 has a rectangular parallelepiped shape, and the bottom surface 13B of the light guide member 13 is larger than the outer edge of the LED semiconductor layer 20.
  • the support substrate 31 of the LED element 11 has an inverted pyramid shape, that is, a pyramid shape in which the upper surface (the surface on the light guide member 13 side) 31U of the support substrate 31 is larger than the bottom surface 31B. Therefore, the width WE of the light guide member 13 is larger than the width WCB of the bottom surface 31B of the support substrate 31 (WE> WCB).
  • the light guide member 13 and the support substrate 31 are aligned (that is, coaxially) with respect to the central axis CX, and the central axis CX constitutes the central axis of the semiconductor light emitting device 50.
  • the light guide member 13 has a size and arrangement including the LED semiconductor layer 20 when the light guide member 13 is viewed from the vertical direction of the LED semiconductor layer 20 (in a top view). have. That is, the width of the LED semiconductor layer 20 is WL, and WE> WL.
  • the inverted pyramid-shaped support substrate 31 is configured such that the side surface 31F of the support substrate 31 has an angle ⁇ formed with the side surface 13F of the light guide member 13 (or the side surface 31F has an angle ⁇ formed with the inner surface 14F of the inner coating 14). Has been done. That is, the support substrate 31 has a tapered side surface 31F inclined at an angle ⁇ .
  • the support substrate 31 is exposed because it is interpolated by the side wall adhesive layer 16. This does not prevent the semiconductor light emitting device 50 from being short-circuited.
  • the semiconductor light emitting device of the present embodiment similarly to the semiconductor light emitting device of the first embodiment, light leaks from the side surface of the light emitting device and the upper end portion on the light emitting surface side to the outside of the light emitting device, and the incident light is incident on the outside light. It is possible to provide a semiconductor light emitting device having high performance and high luminous efficiency in which the amount of light is extremely suppressed. Further, it is possible to provide a highly reliable semiconductor light emitting device having excellent airtightness.
  • FIG. 7A is a cross-sectional view schematically showing a cross section of the semiconductor light emitting device 60 according to the third embodiment of the present invention. It includes the center line of the semiconductor light emitting device 60 (A-A line shown in FIG. 1A) and shows a cross section in a plane perpendicular to the semiconductor light emitting device 50. Further, FIG. 7B is a top view schematically showing a case where the semiconductor light emitting device 60 is viewed from the upper surface.
  • the light guide member 13 and the support substrate 31 have a rectangular parallelepiped shape.
  • the width WE of the light guide member 13 is smaller than the width WCB of the bottom surface 31B of the support substrate 31 (WE ⁇ WCB).
  • the light guide member 13 has a size and arrangement including the LED semiconductor layer 20 when viewed from the vertical direction of the LED semiconductor layer 20 (in a top view). That is, the width of the LED semiconductor layer 20 is WL, and WE> WL.
  • the size of the light guide member 13 can be made smaller than the size of the support substrate 31.
  • FIG. 7B schematically shows a case where the light guide member 13 is tilted and adhered to the support substrate 31 in a top view, but even if the light guide member 13 is adhered to the support substrate 31, the coated plate 17 is attached. It can be securely adhered.
  • the semiconductor light emitting device of the present embodiment similarly to the semiconductor light emitting device of the above-described embodiment, the light leakage from the side surface and the upper end portion of the light emitting device to the outside of the light emitting device and the incident of external light are extremely suppressed. It is possible to provide a semiconductor light emitting device having high performance and high luminous efficiency. Further, it is possible to provide a highly reliable semiconductor light emitting device having excellent airtightness.
  • FIG. 8 is a cross-sectional view schematically showing the configuration of the semiconductor light emitting device 70 according to the fourth embodiment of the present invention. It differs from the semiconductor light emitting device 10 shown in FIG. 1B in that the LED element 91 is used instead of the LED element 11.
  • the LED element 11 of the above-described embodiment uses the LED semiconductor layer 20 which is a thin film LED, but the LED element 71 of the present embodiment epitaxially grows on the translucent growth substrate 31A. It has an LED semiconductor layer 20 and has a configuration in which the surface side of the LED semiconductor layer 20 is attached to a support substrate 31. In the LED element 71, the LED chip composed of the growth substrate 31A and the LED semiconductor layer 20 is adhered to the support substrate 31 by the element adhesive layer 12A.
  • the semiconductor light emitting device 70 has an LED element 71 and a light guide member 13 bonded to the growth substrate 31A of the LED element 71 by an element adhesive layer 12 made of an adhesive. Further, the semiconductor light emitting device 70 has a coating plate 17 bonded by a side wall adhesive layer 16 so as to cover the side surfaces of the LED element 71 and the light guide member 13.
  • the side surface of the growth substrate 31A of the LED element 71 is also covered with the coating plate 17 bonded by the side wall adhesive layer 16 to shield it from light.
  • the semiconductor light emitting device of the above-described embodiment similarly to the semiconductor light emitting device of the above-described embodiment, light leakage from the side surface and the upper end portion of the light emitting device to the outside of the light emitting device is extremely suppressed, and the semiconductor light emitting with excellent airtightness and high reliability. Equipment can be provided. Further, it is not necessary to remove the growth substrate, and it is possible to provide a simple and cost-effective semiconductor light emitting device.
  • the semiconductor light emitting device substrate, the light guide member, and the like have a rectangular parallelepiped shape or a pyramidal trapezoidal shape has been described as an example, but the present invention is not limited to this. It can be appropriately modified and applied to a polygonal prism shape, a cylindrical shape, a polygonal pyramid shape, a truncated cone shape, etc., depending on the arrangement form, such as when they are arranged adjacent to each other on a circuit board.
  • the coating plate 17 is composed of the first coating (inner coating) and the second coating (outer coating) 15 has been described, but as described above, the coating plate 17 is composed of only the first coating. May be good.
  • 10,50,60,70 Semiconductor light emitting device, 11,71: Semiconductor light emitting element, 11A: Light emitting element assembly, 12: Element adhesive layer, 13: Light guide member, 13E: Light emitting surface, 13F: Light guide member 13 Side surface, 14: 1st coating, 15: 2nd coating, 16: side wall adhesive layer, 20: light emitting semiconductor layer, 21: n-type semiconductor layer, 22: light emitting layer, 23: p-type semiconductor layer, 25A: p-electrode, 25B: n-electrode, 26,27: junction layer, 31: support substrate, 31B: bottom surface of support substrate, 31F: side surface of support substrate, 33: conduction via, 34A: anode electrode, 34B: cathode electrode , CX: Central axis of semiconductor light emitting device, WB: Width of bottom surface of light guide member, WCB: Width of bottom surface of support substrate, WL: Width of light emitting semiconductor layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

支持基板及び支持基板上に設けられた発光半導体層を有する半導体発光素子と、素子接着層によって、半導体発光素子に接着された導光部材とを有する発光素子アセンブリと、発光素子アセンブリの側面に側壁接着層によって接着され、当該側面を被覆する光反射体である無機材料からなる第1の被膜と、を有する。

Description

半導体発光装置及び半導体発光モジュール
 本発明は、半導体発光装置及び半導体発光モジュール、特に発光ダイオード(LED)などの半導体発光素子を有する半導体発光装置及び半導体発光モジュールに関する。
 近年、高出力化や配光制御のため、発光ダイオード(LED)などの半導体発光素子を複数デバイス内に配置して用いることが行われている。
 例えば、自動車用ヘッドライトにおいて、走行環境に合わせて配光を制御する配光可変型のヘッドランプ(ADB: Adaptive Driving Beam)が知られている。また、高出力の照明用LEDパッケージや、LEDを高密度に配置した情報通信機器用のLEDパッケージなどが知られている。
  しかし、一般に、複数の半導体発光素子が並置された半導体発光装置において、導通されている素子から放出された光の一部が非導通状態の素子に伝播することがあった。このような漏れ光や光のクロストークは、複数の半導体発光素子を配置して用いる様々な応用分野において問題であった。
 例えば、特許文献1には、基板及び発光素子の側面に光学反射層を設けることが開示されている。また、特許文献2には、半導体積層体の側面を覆う反射部材を有し、半導体積層体の側面上端から側方への光漏れを抑制する発光素子について開示されている。
 特許文献3には、発光セグメント間のクロストークを抑制する光反射溝を有する半導体発光装置について開示されている。
特開2015-225862号公報 特開2015-119063号公報 特開2015-156431号公報
  本発明は上記した点に鑑みてなされたものであり、外部への光漏れ光及び外光の入射が極めて抑制され、気密性に優れた信頼性の高い半導体発光装置を提供することを目的とする。また、隣接する発光装置との間の光のクロストークが極めて抑制され、コントラストが高く、遮光性、気密性、固定性及び信頼性に優れた半導体発光モジュールを提供することを目的とする。
 本発明の1実施形態による半導体発光装置は、
 支持基板及び前記支持基板上に設けられた発光半導体層を有する半導体発光素子と、素子接着層によって前記半導体発光素子に接着された導光部材とを有する発光素子アセンブリと、
 前記発光素子アセンブリの側面に側壁接着層によって接着され、前記側面を被覆する光反射体である無機材料からなる第1の被膜と、を有している。
本発明の第1の実施形態による半導体発光装置10の上面を模式的に示す平面図である。 図1AのA-A線に沿った半導体発光装置10の断面を模式的に示す断面図である。 半導体発光装置10の裏面を模式的に示す平面図である。 導光部材13及び内側被膜14の接着部Wを拡大して示す部分拡大断面図である。 半導体発光素子であるLED素子11の構成の一例を模式的かつ詳細に示す断面図である。 内側被膜14がアルミナ板である場合の半導体発光装置10の製法について説明する図である。 内側被膜14がアルミナ板である場合の半導体発光装置10の製法について説明する図である。 内側被膜14がアルミナ板である場合の半導体発光装置10の製法について説明する図である。 内側被膜14が誘電体多層膜である場合の半導体発光装置10の製法について説明する図である。 内側被膜14が誘電体多層膜である場合の半導体発光装置10の製法について説明する図である。 内側被膜14が誘電体多層膜である場合の半導体発光装置10の製法について説明する図である。 半導体発光装置が5×3の配列で配置された半導体発光モジュール37を示す上面図である。 図5Aの線A-Aに沿った断面を示し、本実施形態の半導体発光装置10の適用例を模式的に示す断面図である。 比較例1及び2の半導体発光モジュール38の断面を模式的に示す断面図である。 本実施形態の半導体発光装置10を用いた半導体発光モジュール37と、比較例1及び2の半導体発光装置90を用いた半導体発光モジュール38との発光表示パターンの相違を模式的に示す図である。 本発明の第2の実施形態による半導体発光装置50の断面を模式的に示す断面図である。 本発明の第3の実施形態による半導体発光装置60の断面を模式的に示す断面図である。 半導体発光装置60を上面から見た場合を模式的に示す上面図である。 本発明の第4の実施形態による半導体発光装置70の断面を模式的に示す断面図である。
 以下においては、本発明の好適な実施形態について説明するが、これらを適宜改変し、組合せてもよい。また、以下の説明及び添付図面において、実質的に同一又は等価な部分には同一の参照符を付して説明する。
[第1の実施形態]
 図1Aは、本発明の第1の実施形態による半導体発光装置10の上面を模式的に示す平面図である。図1Bは、図1AのA-A線に沿った半導体発光装置10の断面を模式的に示す断面図である。図1Cは、半導体発光装置10の裏面を模式的に示す平面図である。
 半導体発光装置10は、半導体発光素子11と、半導体発光素子11上に接着剤からなる素子接着層12によって接着された導光部材13とを有している。また、半導体発光装置10は、半導体発光素子11及び導光部材13の側面を覆う内側被膜14及び外側被膜15を有している。
 図1A~図1Cに示すように、半導体発光素子11は、支持基板31上に設けられた発光半導体層20を有する。なお、以下において半導体発光素子11として発光ダイオード(LED)を例に説明するが、面発光LD(レーザダイオード)などの面発光素子であってもよい。
 本実施形態において、発光ダイオード(LED)である半導体発光素子(以下、LED素子と称する。)11の支持基板31及び導光部材13は直方体形状を有している。LED素子11、素子接着層12(以下、単に接着層12ともいう。)及び導光部材13の側面は、内側被膜14(第1の被膜)及び内側被膜14の外側に密着して形成された外側被膜15(第2の被膜)によって共通して覆われている。
 より詳細には、内側被膜14(第1の被膜)は、側壁接着層16(以下、単に接着層16ともいう)によってLED素子11、素子接着層12及び導光部材13に接着されている。LED素子11、素子接着層12及び導光部材13は側壁接着層16によって封止されていることが好ましい。
 導光部材13は、LED半導体層20の垂直方向から見たとき(以下、上面視ともいう)、導光部材13がLED半導体層20を包含する大きさ及び配置を有している。
 図1Dは、図1BにWとして示す部分、すなわち側壁接着層16による導光部材13及び内側被膜14の接着部Wを拡大して示す部分拡大断面図である。
 より詳細には、導光部材13及び/又はLED素子11はダイシングなどによって切断され、側面が微細な凹凸を有している。図1Dに示すように、側壁接着層16は、導光部材13の側面13Fの凹凸と、内側被膜14との間を埋めるように形成されている。
 また、内側被膜14は導光部材13の側面13Fの頂部に沿って接着される。従って、側壁接着層16中を導光して光出射面13E側の上端部から光漏れすることが大きく抑制される。また、側壁接着層16が内側被膜14及び導光部材13間の凹凸を充填し、内側被膜14が導光部材13に強固に固着される。なお、支持基板31と内側被膜14との接着面も同様であり、光漏れが大きく抑制されるとともに強固に固着される。
 本実施形態において、内側被膜(第1の被膜)14及び外側被膜(第2の被膜)15としてそれぞれアルミナプレート及びアルミ/チタンタングステン(Al/TiW)が用いられている。
 あるいは、内側被膜(第1の被膜)14及び外側被膜(第2の被膜)15としてそれぞれ誘電体多層膜及びアルミニウム(Al)が用いられている。
 側壁接着層16は、内側被膜14がセラミックの場合には、透光性樹脂または白色樹脂を使用することができる。また、内側被膜14が誘電体多層膜の場合には、透光性樹脂を使用することができる。
 内側被膜(第1の被膜)14は、光反射性、絶縁性及び気密性を有し、外側被膜15(第2の被膜)は光反射性又は光吸収性による遮光性を有する。すなわち、内側被膜14と外側被膜15の積層構造によって被膜内側からの光に対して高い反射率を有し、被膜外側からの光に対して高い遮光性を両立させている。
 内側被膜14には、光反射性の白アルミナ・セラミック結着体が用いられている。セラミック結着体は被膜を構成する粒子が相互に結着した緻密な白色被膜であり、数十μm程度の厚みで、十分な光反射性を有する。このような内側被膜14は、導光部材13から内側被膜14に向かう光を効率よく反射する。
 なお、内側被膜14及び外側被膜15は、LED素子11、素子接着層12(以下、単に接着層12ともいう。)及び導光部材13が一体となった発光素子アセンブリ11Aの全側面を覆うことが好ましい。また、接着層12は、半導体発光素子11及び導光部材13の間に充填されていることが好ましい。
 内側被膜14には、白色のアルミナ、ジルコニア、マグネシア、酸化チタンなどの光反射性セラミック結着体、又は、白色アルミナ・ジルコニアなどの光反射性複合セラミック結着体を用いることができる。また、セラミック結着体と同様な反射率を有する白色のアルミナ、ジルコニア、マグネシアなどの光反射性セラミック粒子、又は白色の光反射性セラミック粒子の混合粒子を骨材とする金属ケイ酸塩系の無機接着剤からなるケイ酸塩系結着体を用いることもできる。ケイ酸塩系結着体は、無機接着剤を塗布後100℃前後の加熱によりシロキサン結合(Si-O-Si)が生成することで形成される。このケイ酸塩系結着体は、1000℃前後の耐熱性と優れた耐候性を有する。
 また、白アルミナは、半導体や液晶の製造装置用として用いられるアルミナ系ファインセラミックスで、白色又はアイボリーの色調を有する。また白アルミナ・ジルコニアなどの光反射性複合セラミック結着体は、屈折率が異なるアルミナ粒子とジルコニア粒子の境界面における反射特性が向上するので、単体のセラミック結着体より高い反射率を有する。また、成分比を調整することで発光素子アセンブリ11Aの線熱膨張係数に合わせ込むこともでき、内側被膜14のクラック等の発生を抑制できる。
 外側被膜15には、光反射性又は遮光性の金属膜を用いることができる。例えば、内側被膜14上に蒸着、スパッタ等により形成された金属膜を用いることができる。
 あるいは、金属膜及びセラミックプレートなどの外側被膜15上に、蒸着、スパッタ等により誘電体多層膜を形成して内側被膜14とすることができる。
 また、外側被膜15には、黒色のアルミナ、ジルコニア、窒化ケイ素、炭化チタンなどの光吸収性セラミック結着体を用いることができる。又は、サーメットなどの耐食性金属被膜、アルミ合金又はステンレス鋼(SUS)などの反射性金属であり表面に含有金属の酸化膜からなる不動態膜を有する金属皮膜を用いることができる。また、セラミック結着体と同様な黒色のアルミナ、ジルコニア、窒化ケイ素、炭化チタンなどの光吸収性セラミック粒子、又は光吸収性セラミック粒子の混合物を骨材とするケイ酸塩系結着体を用いることもできる。
 より詳細には、黒アルミナとしては、例えば、黒い色調を有するブラックアルミナ(AR(B))(アスザック株式会社製)があり、ファインセラミックスの特長である強度、耐久性を維持しつつ、表面反射を抑えることができる。(反射率は波長240~2600nmで5.1~15.3%)。
 また、アルミナ以外の黒セラミックとして、日本タングステンNPZ-96(黒ジルコニア)、NPA-2(黒アルミナ+炭化チタン)、NPN-3(黒窒化ケイ素)などがある。
 なお、外側被膜15による遮光及び耐腐食性を必要としない用途においては、外側被膜15を省略することもできる。
 導光部材13は、半導体発光装置10の上面側の封止材としても機能する。LED素子11からの発光は導光部材13の底面13Bから導光部材13に入射し、導光部材13の表面(光出射面13E)から半導体発光装置10の発光LEが出射される。
 導光部材13には、透光性のガラス板、サファイア板、樹脂板、又は波長変換部材を含有するアルミナ+YAG:Ce等からなるセラミック蛍光体板、ガラス+α又はβサイアロン等からなるガラス蛍光体板、シリコーン樹脂+シリケイト:Ce等からなる樹脂蛍光体板、YAG+Ce等からなる単結晶又は多結晶の単一結晶蛍光体板を用いることができる。
 素子接着層12は、LED素子11が放射した光を透光する樹脂、低融点ガラス、ナノ金属酸化物焼結体等を利用することができる。また、多孔質のナノ金属酸化物焼結体に樹脂又は低融点ガラスを含浸した複合体等を利用することもできる。また、接着層12内に拡散剤、光変換部材を添加することもできる。
 半導体発光装置10の裏面にはアノード電極34A及びカソード電極34Bが設けられ、半導体発光装置10の外部電極として機能する。
(1)LED素子11の構成
 図2は、半導体発光素子であるLED素子11の構成の一例を模式的かつ詳細に示す断面図である。LED素子11は、発光半導体層20として、いわゆるシンフィルムLED(thin-film LED)であるLED半導体層20を支持基板31に貼り付けた構成を有している。
 より具体的には、LED半導体層(発光半導体層)20は、成長基板上にエピタキシャル成長したLED構造を有する半導体層(シンフィルムLED)を成長基板から取り外し、支持基板31に貼り付けた構成を有している。本実施形態では、成長最表面層であるp型半導体層を下面として支持基板31に貼り付け、n型半導体層を表面層としている。
 支持基板31は、P(リン)又はAs(ヒ素)などをドープしたSi(シリコン)からなるn型基板である。
 LED半導体層20は、n型半導体層21、発光層22及びp型半導体層23を有している。n型半導体層21及びp型半導体層23は、それぞれ少なくとも1つの半導体層からなり、障壁層、電流拡散層、コンタクト層など種々の半導体層を有していてもよい。
 LED半導体層20は、例えばGaN系の半導体層からなる青色発光のLED半導体層であるが、これに限定されない。発光層22は、例えば単一量子井戸(SQW)又は多重量子井戸(MQW)構造を有している。
 LED半導体層20には、p-電極25A及びn-電極25Bを有する。p-電極25Aは導電性のp側接合層26によってp側基板電極32Aに接合され、n-電極25Bは導電性のn側接合層27によってn側基板電極32Bに接合されている。
 p-電極25Aは、ITO(インジウムスズ酸化物)、Ni(ニッケル)、Pt(白金)及びAg(銀)反射膜がp型半導体層23上にこの順で形成されたITO/Ni/Pt/Ag層からなる。n-電極25Bは、Ti(チタン)又はNi(ニッケル)、Pt(白金)及びAu(金)がn型半導体層21上にこの順で形成された(Ti又はNi)/Pt/Au層からなる。
 なお、p-電極25A及びn-電極25Bの材料及び構造は上記に限定されない。光反射による取り出し効率向上、オーミック特性、素子信頼性(寿命)などの特性を考慮して適宜選択し得る。
 LED半導体層20の側面には、SiO2からなる素子保護膜28Aが設けられている。また、基板31の表面(LED半導体層20との接合側)には、SiO2からなる基板保護膜28Bが設けられている。
 p側基板電極32Aは導通ビア33に接続され、導通ビア33を介して半導体発光装置10の裏面のアノード電極34Aに電気的に接続されている。p側基板電極32A、導通ビア33及びアノード電極34Aは、SiO2からなる基板絶縁膜35によって支持基板31と絶縁されている。
 n側基板電極32Bは、Si基板である支持基板31を介して半導体発光装置10の裏面のカソード電極34Bに電気的に接続されている。
(2)半導体発光装置10の製法
 図3Aないし図3Cを参照して、半導体発光装置10の製法について以下に説明する。まず、図3Aに示すように、LED素子11及び導光部材13を用意する。
 LED素子11の上面(出光面)に透光性のシリコーン樹脂からなる接着剤をポッティングする。続いて、LED素子11上に導光部材13を載置して、押圧する(自重押圧を含む)。LED素子11の上端外周と、導光部材13の下端外周の間を満たすまで静置する。
 オーブンで180℃、30分の加熱処理を行って接着剤を硬化し、接着層12を形成する。これによりLED素子11、接着層12及び導光部材13が一体となった発光素子アセンブリ(以下、LEDアセンブリともいう。)11Aが形成される。
 次に、図3Bに示すように、内側被膜14となる厚さ100μmのアルミナ板に外側被膜15となるアルミニウム/チタン・タングステン(Al/TiW)を蒸着する(左側の図)。次にアルミナ面をラッピングしてアルミナ板の厚みを50μmとする。
 続いて、LEDアセンブリ11Aの側壁サイズに合わせてダイシングして被膜プレート17(セラミックプレート)を形成する(右側の図)。なお、LEDアセンブリ11Aが直方体形状を有する場合など、サイズの異なる側壁に合わせて複数の大きさの被膜プレート17をダイシングして形成することができる。
 次に、図3Cに示すように、LEDアセンブリ11Aを、それぞれ導光部材13の上面及びLED素子11の底面と略同じ形状及び大きさを有する上チャックCU及び下チャックCLの間にセットする。これにより、LEDアセンブリ11Aを固定すると同時にLEDアセンブリ11Aの上面と底面をマスキングすることができる。
 続いて、LEDアセンブリ11Aの被膜接着面(側壁)の接着剤としてシリコーン樹脂を噴霧器(スプレー)SPで噴霧する。裁断された被膜プレート17(アルミナ+Al/TiW)を被膜用チャックCPで吸着し、接着剤を散布した被膜接着面に貼り付ける。この時、瞬時加熱(プレヒート)して仮接着する。
 次に、LEDアセンブリ11Aを180°回転して、先ほど被膜プレート17を貼り付けた面の反対面(対向面)に被膜プレート17を仮接着する。同じ要領で、残り2面に被膜プレート17を接着する。最後に、180℃、5分加熱して、LEDアセンブリ11Aの4側面に被膜プレート17を形成した。
 図4Aないし図4Cは、被膜プレート17の内側被膜14が誘電体多層膜である場合の半導体発光装置10の製法を示す図である。
 図4Aは、図3Aに示した場合と同様に形成されたLEDアセンブリ11Aを示す図である。図4Bに示すように、透明な樹脂フィルムFMにアルミニウム(Al)14を蒸着し、その上にTiO/SiOを多重積層して可視光を反射する誘電体多層膜15を形成する(左側の図)。
 続いて、LEDアセンブリ11Aの側壁サイズに合わせてダイシングして被膜プレート17(誘電体多層膜プレート)を形成する(右側の図)。このとき、誘電体多層膜15とAl14を切断し、フィルムFMを全切断しないように裁断する。
 次に、図3Cについて説明したように、LEDアセンブリ11Aを上チャックCU及び下チャックCLの間にセットする。これにより、LEDアセンブリ11Aを固定すると同時にLEDアセンブリ11Aの上面と底面をマスキングする。
 続いて、LEDアセンブリ11Aの被膜接着面(側壁)にシリコーン樹脂を噴霧器SPで噴霧する。誘電体多層膜プレート17をLEDアセンブリ11Aの被膜接着面に押圧して接着する。それと同時に、レーザを照射して樹脂フィルムFMから誘電体多層膜プレート17を剥離させる。
 次に、LEDアセンブリ11Aを180°回転して、先ほど被膜プレート17を貼り付けた面の反対面(対向面)に被膜を仮接着する。同じ要領で、残り2面に誘電体多層膜プレート17を接着する。最後に、180℃、5分加熱して、LEDアセンブリ11Aの4側面に誘電体多層膜プレート(被膜プレート)17を形成した。
 図5Aないし図5Dは、本実施形態(Ex.1)の半導体発光装置10と、比較例1及び2(Comp.1及びComp.2)の半導体発光装置との相違を説明するための模式的な図である。
 図5Aは、半導体発光装置が5×3の配列で配置された半導体発光モジュール37を示す上面図である。半導体発光モジュール37は、ベース37Aと、ベース37A上に設けられたフレーム(枠体)37Bと、フレーム37B内の凹部37Cとを有し、凹部37C内に半導体発光装置が領域37D内に狭い間隔で隣接して配列されている。なお、ベース37Aには半導体発光装置の各々に電流を供給するための電極が設けられているが、図示が省略されている。また、図5B及び図5Cでは、フレーム37Bより外周のベース37Aは図示が省略されている。
 図5Bは、図5Aの線A-Aに沿った断面を示し、本実施形態(Ex.1)の半導体発光装置10の適用例を示す。半導体発光モジュール37の凹部37C内には本実施形態の半導体発光装置10が配置され、配線基板(図示しない)上にマウントされているが、半導体発光装置10間を遮光する樹脂などは設けられていない。すなわち、半導体発光装置10間に樹脂などの遮光体は不要で、半導体発光装置10の各々は空隙で隔てられて実装されている。
 図5Cは、図5Aに示す半導体発光モジュール37と同様な発光モジュールであるが、フレーム内に比較例1及び2(Comp.1及びComp.2)の半導体発光装置90が配置された、比較例である半導体発光モジュール38を示している。
 比較例の半導体発光装置90は、側面に内側被膜14及び外側被膜15が設けられていない半導体発光装置であり、LED素子11及び導光部材13の側面は露出している。そして、各半導体発光装置間の遮光材として凹部37C内に樹脂が充填されている。当該遮光樹脂は、半導体発光装置90の上面に達するように充填されていることが好ましい。
 より詳細には、比較例1(Comp.1)においては、遮光材として凹部37C内に光反射性の樹脂91が充填されている。具体的には、シリコーン樹脂にTiO2粒子を含有させた白樹脂91が充填されている。
 比較例2(Comp.2)では、遮光材として凹部37C内に光吸収性の樹脂(グレー樹脂)92が充填されている。具体的には、シリコーン樹脂にTiO2粒子及びカーボンブラックを含有させたグレー樹脂92が充填されている。
 図5Dは、本実施形態(Ex.1)の半導体発光装置10を用いた半導体発光モジュール37と、比較例1及び2(Comp.1及びComp.2)の半導体発光装置90を用いた半導体発光モジュール38との発光表示パターンの相違を模式的に説明する図である。
 なお、図5Dには、5×3に配列された15個のうち、S字上に11個の半導体発光装置を点灯した場合の各半導体発光装置90の輝度(明暗)の状態が模式的に説明されている。輝度(明暗)の状態を分かり易く示すため、輝度が明るいほど黒く示している。
 比較例1(Comp.1)のように、遮光材91が白樹脂の場合、導光部材(蛍光体板)の外周部の光漏れによって表示が滲む。また、半導体発光装置90間のクロストークも発生する。
 比較例2(Comp.2)のように、遮光材92がグレー樹脂の場合、遮光材92による光吸収が大きく、導光部材(蛍光体板)の外周部の輝度低下が大きい。
 一方、本実施形態(Ex.1)の半導体発光装置10においては、装置側方への及び上端部からの光漏れがなく、高いコントラストの発光パターン(表示パターン)が可能となる。また、個別に点灯した場合でも、クロストークが無く半導体発光装置間の隣接距離を小さくできるので、高密度の実装が可能となる。
 なお、上記した半導体発光モジュール37において、間隙をおいて並置された複数の半導体発光装置10間を遮光する樹脂などは設けられていない場合(すなわち、間隙が空間である場合)について説明したが、複数の半導体発光装置10間に遮光性の樹脂を設けても良い。この場合、さらに高コントラストでクロストークの無い発光パターン(表示パターン)が可能な半導体発光モジュールが得られる。
 第1の実施形態の半導体発光装置によれば、発光装置の側面及び光出射面側の上端部から発光装置外への光漏れ、及び外光の入射が極めて抑制された高性能かつ高発光効率の半導体発光装置を提供することができる。また、気密性に優れた信頼性の高い半導体発光装置を提供することができる。
[第2の実施形態]
 図6は、本発明の第2の実施形態による半導体発光装置50の断面を模式的に示す断面図である。半導体発光装置50の中心線(図1Aに示すA-A線)を含み、半導体発光装置50に垂直な面における断面を示している。
 半導体発光装置50において、導光部材13は直方体形状を有し、導光部材13の底面13BはLED半導体層20の外縁よりも大きい。また、LED素子11の支持基板31は逆角錐台形状、すなわち支持基板31の上面(導光部材13側の面)31Uが底面31Bよりも大きい角錐台形状を有している。従って、導光部材13の幅WEは支持基板31の底面31Bの幅WCBよりも大きい(WE>WCB)。
 導光部材13及び支持基板31は中心軸CXに関して整列して(すなわち、同軸に)配列され、中心軸CXは半導体発光装置50の中心軸を構成している。
 第1の実施形態の場合と同様に、導光部材13は、LED半導体層20の垂直方向から見たとき(上面視において)、導光部材13がLED半導体層20を包含する大きさ及び配置を有している。すなわち、LED半導体層20の幅はWLであり、WE>WLである。
 逆角錐台形状の支持基板31は、支持基板31の側面31Fが導光部材13の側面13Fとなす角θ(又は側面31Fが内側被膜14の内側表面14Fとなす角θ)であるように構成されている。すなわち、支持基板31は角度θで傾斜したテーパ状の側面31Fを有している。
 このように、支持基板が、上面から底面に向かって面積が小さくなるように傾斜したテーパ状の側面を有する場合であっても、側壁接着層16によって補間されるので、支持基板31が露出することはなく、半導体発光装置50の短絡が防止される。
 本実施形態の半導体発光装置によれば、第1の実施形態の半導体発光装置と同様に、発光装置の側面及び光出射面側の上端部から発光装置外への光漏れ、及び外光の入射が極めて抑制された高性能かつ高発光効率の半導体発光装置を提供することができる。また、気密性に優れた信頼性の高い半導体発光装置を提供することができる。
[第3の実施形態]
 図7Aは、本発明の第3の実施形態による半導体発光装置60の断面を模式的に示す断面図である。半導体発光装置60の中心線(図1Aに示すA-A線)を含み、半導体発光装置50に垂直な面における断面を示している。また、図7Bは、半導体発光装置60を上面から見た場合を模式的に示す上面図である。
 半導体発光装置60において、導光部材13及び支持基板31は直方体形状を有している。本実施形態において、導光部材13の幅WEは支持基板31の底面31Bの幅WCBよりも小さい(WE<WCB)。
 なお、導光部材13は、LED半導体層20の垂直方向から見たとき(上面視において)、導光部材13がLED半導体層20を包含する大きさ及び配置を有している。すなわち、LED半導体層20の幅はWLであり、WE>WLである。
 支持基板31の大きさよりも導光部材13の大きさ小さくすることができる。図7Bは、導光部材13が支持基板31に対して上面視において傾いて接着されている場合を模式的に示しているが、導光部材13の接着ずれがあった場合でも被膜プレート17を確実に接着することができる。
 本実施形態の半導体発光装置によれば、上記した実施形態の半導体発光装置と同様に、発光装置の側面及び上端部から発光装置外への光漏れ、及び外光の入射が極めて抑制された高性能かつ高発光効率の半導体発光装置を提供することができる。また、気密性に優れた信頼性の高い半導体発光装置を提供することができる。
[第4の実施形態]
 図8は、本発明の第4の実施形態による半導体発光装置70の構成を模式的に示す断面図である。図1Bに示した半導体発光装置10とは、LED素子11に代えてLED素子91が用いられている点で相違している。
 より詳細には、上記した実施形態のLED素子11は、シンフィルムLEDであるLED半導体層20を用いているが、本実施形態のLED素子71は、透光性の成長基板31A上にエピタキシャル成長したLED半導体層20を有し、LED半導体層20の表面側を支持基板31に貼り付けた構成を有している。LED素子71において、成長基板31A及びLED半導体層20からなるLEDチップが素子接着層12Aによって支持基板31に接着されている。
 具体的には、半導体発光装置70は、LED素子71と、LED素子71の成長基板31A上に接着剤からなる素子接着層12によって接着された導光部材13とを有している。また、半導体発光装置70は、LED素子71及び導光部材13の側面を覆うように側壁接着層16によって接着された被膜プレート17を有している。
 本実施形態において、LED素子71の成長基板31Aの側面も、側壁接着層16によって接着された被膜プレート17によって被覆され、遮光されている。
 本実施形態によれば、上記した実施形態の半導体発光装置と同様に、発光装置の側面及び上端部から発光装置外への光漏れが極めて抑制され、気密性に優れた信頼性の高い半導体発光装置を提供することができる。また、成長基板を取り除く必要が無く、簡便でコストに優れた半導体発光装置を提供することができる。
 なお、上記した実施形態においては、半導体発光素子基板及び導光部材などが直方体形状又は角錐台形状を有している場合を例に説明したが、これに限らない。回路基板上に隣接して配置する場合など、配置形態に応じて多角柱形状、円柱形状、多角錐台形状、円錐台形状など適宜改変して適用することができる。
 また、被膜プレート17が、第1の被膜(内側被膜)及び第2の被膜(外側被膜)15からなる場合について説明したが、上記したように被膜プレート17が第1の被膜のみからなっていてもよい。
 以上、詳細に説明したように、本発明によれば、発光装置の側面及び光出射面側の上端部から発光装置外への光漏れ及び外光の入射が極めて抑制され、気密性に優れた信頼性の高い半導体発光装置を提供することができる。
 また、隣接する発光装置への光漏れ、及び隣接する発光装置からの光のクロストークが極めて抑制され、コントラストが高く、遮光性、気密性、固定安定性及び信頼性に優れた半導体発光モジュールを提供することができる。また、外光の入射による2次発光を防ぐことができ、駆動していない半導体発光装置を確実に消灯状態とすることができ、高密度配置及びローカルディミングライティングにも適した半導体発光モジュールを提供することができる。
 10,50,60,70:半導体発光装置、11,71:半導体発光素子、11A:発光素子アセンブリ、12:素子接着層、13:導光部材、13E:光出射面、13F:導光部材13の側面、14:第1の被膜、15:第2の被膜、16:側壁接着層、20:発光半導体層、21:n型半導体層、22:発光層、23:p型半導体層、25A:p-電極、25B:n-電極、26,27:接合層、31:支持基板、31B:支持基板の底面、31F:支持基板の側面、33:導通ビア、34A:アノード電極、34B:カソード電極、CX:半導体発光装置の中心軸、WB:導光部材の底面の幅、WCB:支持基板の底面の幅、WL:発光半導体層の幅 

Claims (14)

  1.  支持基板及び前記支持基板上に設けられた発光半導体層を有する半導体発光素子と、素子接着層によって前記半導体発光素子に接着された導光部材とを有する発光素子アセンブリと、
     前記発光素子アセンブリの側面に側壁接着層によって接着され、前記側面を被覆する光反射体である無機材料からなる第1の被膜と、
     を有する半導体発光装置。
  2.  前記第1の被膜はアルミナプレートである、請求項1に記載の半導体発光装置。
  3.  前記第1の被膜は白色のセラミックを有する、セラミック結着体又はケイ酸塩系結着体である、請求項2に記載の半導体発光装置。
  4.  前記白色のセラミックがアルミナ、ジルコニア、マグネシアの何れかを含む、請求項3に記載の半導体発光装置。
  5.  前記側壁接着層が透光性樹脂または白色樹脂である、請求項2乃至4のいずれか一項に記載の半導体発光装置。
  6.  前記第1の被膜は誘電体多層膜である、請求項1に記載の半導体発光装置。
  7.  前記側壁接着層が透光性樹脂である、請求項6に記載の半導体発光装置。
  8.  前記第1の被膜の外側に接して遮光性の無機材料からなる第2の被膜を有する、請求項1乃至7のいずれか一項に記載の半導体発光装置。
  9.  前記半導体発光素子は、前記支持基板上に貼り付けられたシンフィルム発光半導体層である、請求項1乃至6のいずれか一項に記載の半導体発光装置。
  10.  前記導光部材は、上面視において、前記導光部材の底面が前記半導体発光素子の発光層を包含する大きさ及び配置を有して形成されている、請求項1乃至9のいずれか一項に記載の半導体発光装置。
  11.  前記支持基板は、上面から底面に向かって面積が小さくなるように傾斜したテーパ状の側面を有する、請求項1乃至10のいずれか一項に記載の半導体発光装置。
  12.  前記導光部材及び前記支持基板は、前記半導体層に垂直な中心軸に整列して配置され、前記支持基板は前記導光部材よりも小なる、請求項1乃至11のいずれか一項に記載の半導体発光装置。
  13.  前記半導体発光素子は成長基板を有し、前記成長基板は接着層によって前記導光部材に接着されている、請求項1乃至8及び10乃至12のいずれか一項に記載の半導体発光装置。
  14.  請求項1乃至13に記載の半導体発光装置の複数個が間隙をおいて並置して配置された半導体発光モジュールであって、
     前記半導体発光装置間の前記間隙が空間である半導体発光モジュール。 
PCT/JP2021/037616 2020-10-22 2021-10-11 半導体発光装置及び半導体発光モジュール WO2022085507A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21882648.5A EP4203082A4 (en) 2020-10-22 2021-10-11 SEMICONDUCTOR LIGHT-EMITTING DEVICE AND SEMICONDUCTOR LIGHT-EMITTING MODULE
CN202180069609.2A CN116349020A (zh) 2020-10-22 2021-10-11 半导体发光装置及半导体发光模块
US18/029,155 US20230387363A1 (en) 2020-10-22 2021-10-11 Semiconductor light emitting device and semiconductor light emitting module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-177496 2020-10-22
JP2020177496A JP2022068684A (ja) 2020-10-22 2020-10-22 半導体発光装置及び半導体発光モジュール

Publications (1)

Publication Number Publication Date
WO2022085507A1 true WO2022085507A1 (ja) 2022-04-28

Family

ID=81290470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037616 WO2022085507A1 (ja) 2020-10-22 2021-10-11 半導体発光装置及び半導体発光モジュール

Country Status (5)

Country Link
US (1) US20230387363A1 (ja)
EP (1) EP4203082A4 (ja)
JP (1) JP2022068684A (ja)
CN (1) CN116349020A (ja)
WO (1) WO2022085507A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219324A (ja) * 2009-03-17 2010-09-30 Nichia Corp 発光装置
JP2013175531A (ja) * 2012-02-24 2013-09-05 Stanley Electric Co Ltd 発光装置
JP2015008274A (ja) * 2013-05-31 2015-01-15 株式会社ディスコ 発光チップ
JP2015119063A (ja) 2013-12-19 2015-06-25 日亜化学工業株式会社 発光素子
JP2015156431A (ja) 2014-02-20 2015-08-27 スタンレー電気株式会社 半導体発光素子及び半導体発光装置
JP2015225862A (ja) 2014-05-25 2015-12-14 日亜化学工業株式会社 半導体発光素子及びその製造方法
US20200144462A1 (en) * 2018-11-06 2020-05-07 Epistar Corporation Light-emitting device and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036887A1 (en) * 2013-09-13 2015-03-19 Koninklijke Philips N.V. Frame based package for flip-chip led
US9922963B2 (en) * 2015-09-18 2018-03-20 Genesis Photonics Inc. Light-emitting device
US10763404B2 (en) * 2015-10-05 2020-09-01 Maven Optronics Co., Ltd. Light emitting device with beveled reflector and manufacturing method of the same
US10522728B2 (en) * 2017-01-26 2019-12-31 Maven Optronics Co., Ltd. Beveled chip reflector for chip-scale packaging light-emitting device and manufacturing method of the same
US10224358B2 (en) * 2017-05-09 2019-03-05 Lumileds Llc Light emitting device with reflective sidewall

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219324A (ja) * 2009-03-17 2010-09-30 Nichia Corp 発光装置
JP2013175531A (ja) * 2012-02-24 2013-09-05 Stanley Electric Co Ltd 発光装置
JP2015008274A (ja) * 2013-05-31 2015-01-15 株式会社ディスコ 発光チップ
JP2015119063A (ja) 2013-12-19 2015-06-25 日亜化学工業株式会社 発光素子
JP2015156431A (ja) 2014-02-20 2015-08-27 スタンレー電気株式会社 半導体発光素子及び半導体発光装置
JP2015225862A (ja) 2014-05-25 2015-12-14 日亜化学工業株式会社 半導体発光素子及びその製造方法
US20200144462A1 (en) * 2018-11-06 2020-05-07 Epistar Corporation Light-emitting device and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203082A4

Also Published As

Publication number Publication date
EP4203082A4 (en) 2024-02-28
CN116349020A (zh) 2023-06-27
JP2022068684A (ja) 2022-05-10
US20230387363A1 (en) 2023-11-30
EP4203082A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN111525007B (zh) 具有侧面反射层的发光二极管
US9941447B2 (en) Semiconductor light emitting device and method for producing the same
CN109427758B (zh) 发光装置
US7038246B2 (en) Light emitting apparatus
JP4020092B2 (ja) 半導体発光装置
US20200006297A1 (en) Light-emitting device
EP2128906B1 (en) Light-emitting device
JPWO2005031882A1 (ja) 発光装置
US20210359188A1 (en) Light emitting diode
JP2004140185A (ja) 発光装置
WO2006046655A1 (ja) 発光素子搭載用基板、発光素子収納用パッケージ、発光装置および照明装置
JP2020174196A (ja) 発光装置
WO2017110031A1 (ja) 発光素子および照明装置
JP2005191192A (ja) 発光素子搭載用基板および発光装置
WO2022085507A1 (ja) 半導体発光装置及び半導体発光モジュール
JP5034342B2 (ja) 発光装置
WO2022065284A1 (ja) 半導体発光装置及び半導体発光モジュール
KR20190010988A (ko) 자동차 헤드램프용 발광 다이오드
WO2018179688A1 (ja) 色変換素子および照明装置
US10707372B2 (en) Light-emitting device
KR20180059157A (ko) 복수의 파장변환기를 가지는 발광 다이오드
WO2023089949A1 (ja) 半導体発光装置及び半導体発光モジュール
JP2020053364A (ja) 発光装置
WO2023089947A1 (ja) 半導体発光装置及び半導体発光モジュール
JP7212296B2 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021882648

Country of ref document: EP

Effective date: 20230322

NENP Non-entry into the national phase

Ref country code: DE