WO2022085387A1 - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
WO2022085387A1
WO2022085387A1 PCT/JP2021/036038 JP2021036038W WO2022085387A1 WO 2022085387 A1 WO2022085387 A1 WO 2022085387A1 JP 2021036038 W JP2021036038 W JP 2021036038W WO 2022085387 A1 WO2022085387 A1 WO 2022085387A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cylinder
path
exhaust gas
heat recovery
Prior art date
Application number
PCT/JP2021/036038
Other languages
French (fr)
Japanese (ja)
Inventor
智幸 内田
こずえ 鈴木
恭平 小池
Original Assignee
株式会社ユタカ技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユタカ技研 filed Critical 株式会社ユタカ技研
Publication of WO2022085387A1 publication Critical patent/WO2022085387A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust heat recovery device that exchanges heat by the heat of exhaust gas.
  • FIG. 10 is a reprint of FIG. 1 of Patent Document 1 and reassigned.
  • the exhaust heat recovery device 500 has an inner cylinder 510 whose inside is a first flow path 501 for exhaust gas, an outer cylinder 520 surrounding the inner cylinder 510, and an annular heat exchange provided on the outer periphery of the outer cylinder 520.
  • a second flow path 502 for exhaust gas is configured on the outer circumference of the outer cylinder 520.
  • the second flow path 502 is a region surrounded by the upstream closing member 540, the heat exchanger 530, and the downstream closing member 550.
  • the outer cylinder 520 is formed with a plurality of communication holes 520a that allow the first flow path 501 and the second flow path 502 to communicate with each other.
  • the exhaust heat recovery device 500 can be switched between a heat recovery mode that recovers the heat of the exhaust gas and a non-recovery mode that does not recover the heat of the exhaust gas. Switching between the heat recovery mode and the non-recovery mode is performed by opening and closing the valve 560.
  • the exhaust gas introduced from the upstream end of the inner cylinder 510 which is the exhaust gas introduction port passes through the first flow path 501 and the communication hole 520a, and is the first. It flows into the flow path 502 of 2.
  • the exhaust gas flowing into the second flow path 502 exchanges heat with the cooling water flowing inside the heat exchanger 530, passes through the inside of the discharge cylinder 570, and is discharged to the outside (heat recovery mode).
  • thermoactuator (not shown) is driven to open the valve 560.
  • the exhaust gas passes through the first flow path 501 and the inside of the discharge cylinder 570 and is discharged to the outside (non-recovery mode).
  • the communication hole 520a is always open. Therefore, even when the valve 560 is open (non-recovery mode), a part of the exhaust gas flowing through the first flow path 501 flows into the second flow path 502 through the communication hole 520a.
  • the exhaust gas flowing into the second flow path 502 heats the cooling water via the heat exchanger 530. That is, even in the non-recovery mode for which heat exchange is not intended, the exhaust gas flows into the second flow path 502, so that heat exchange is inevitably generated and the cooling water is heated.
  • the waste heat recovery device 500 of the prior art has a configuration for suppressing heat exchange in this non-recovery mode. Specifically, a space S is secured between the outer peripheral surface of the outer cylinder 520 and the inner peripheral surface of the heat exchanger 530. This space S is a part of the second flow path 502, and constitutes a flow path in which the exhaust gas that has entered from the communication hole 520a is directed to the upstream closing member 540.
  • the exhaust gas is folded back by the upstream closing member 540, passes through the inside of the heat exchanger 530, and flows into the inside of the discharge cylinder 570.
  • the second flow path 502 including such a folding back has a large pressure loss and makes it difficult for exhaust gas to flow. Heat exchange can be suppressed.
  • the waste heat recovery device 500 becomes large in the radial direction.
  • An object of the present invention is to provide an exhaust heat recovery device capable of miniaturization while suppressing heat exchange between exhaust gas and cooling water in a non-recovery mode.
  • a first cylinder having a cylindrical shape and the inside of which is a first flow path of exhaust gas
  • a second cylinder which has a cylindrical shape and which constitutes a second flow path together with the first cylinder by surrounding the first cylinder
  • a closing member that closes the upstream end of the second cylinder with reference to the flow direction of the exhaust gas
  • a communication hole formed in the first cylinder and communicating the first flow path and the second flow path
  • a heat exchanger that exchanges heat between the exhaust gas that has flowed into the second flow path from the communication hole and the cooling water.
  • a valve that can open and close the first flow path on the downstream side of the communication hole In an exhaust heat recovery device having a tubular shape and a third cylinder whose inside is a third flow path of exhaust gas that has passed through the first flow path or the second flow path.
  • the communication hole is located on the upstream side of the heat exchanger.
  • the exhaust gas flowing through the second flow path flows toward the third flow path without going toward the closing member side,
  • the first flow path has a branch path for branching the flow of exhaust gas due to the location of the communication hole.
  • a reduced road having a smaller flow path area toward the branch road is located.
  • the area of the opening opened and closed by the valve is larger than the minimum flow path area in the reduced path.
  • the flow path area at any position in the third flow path is equal to or greater than the area of the opening opened and closed by the valve.
  • a featured exhaust heat recovery device is provided.
  • the first cylinder is composed of a single member.
  • the cross section of the portion of the first cylinder in which the communication hole is located has a race track shape as a whole.
  • the first cylinder is composed of two members, a first half body on the upstream side and a second half body on the downstream side, each of which has a tubular shape.
  • the reduction path is configured inside the first half body, and the second half body has the communication hole.
  • the reduced path is joined to the inner peripheral surface of the first cylinder and a part of the inner peripheral surface of the first cylinder to guide the flow of the exhaust gas. It is composed of a guide plate and a guide plate.
  • the cross section of the closing member has a wavy shape.
  • the waste heat recovery device has a communication hole for communicating the first flow path and the second flow path provided on the outer periphery of the first flow path.
  • the first flow path has a branch path for branching the flow of exhaust gas due to the location of the communication hole. Immediately upstream of the branch road, there is a reduced road where the flow path area becomes smaller toward the branch road.
  • the area of the opening opened and closed by the valve is larger than the minimum flow path area in the reduced path.
  • the area of the flow path at any position in the third flow path is equal to or greater than the area of the opening opened and closed by the valve.
  • the communication hole is located upstream of the heat exchanger.
  • the exhaust gas flowing through the second flow path flows toward the third flow path, not toward the closing member side. Therefore, the waste heat recovery device can be miniaturized in the radial direction.
  • the first cylinder is composed of a single member.
  • the first flow path can be configured with the minimum number of parts.
  • the cross section of the portion of the first cylinder where the communication hole is located has a race track shape as a whole. Therefore, the first flow path can be formed by performing plastic working such that the straight pipe is sandwiched in the radial direction and crushed.
  • the first cylinder is composed of two members, a first half body on the upstream side and a second half body on the downstream side, each of which has a tubular shape.
  • a reduction path is configured inside the first half body.
  • the second half has a communication hole. Therefore, neither the first half body nor the second half body can be complicatedly processed to form the first cylinder.
  • the reduced path is composed of an inner peripheral surface of the first cylinder and a guide plate joined to a part of the inner peripheral surface of the first cylinder to guide the flow of exhaust gas. ing. Therefore, the reduced path can be constructed without performing plastic working for forming the reduced path.
  • the cross section of the closing member has a wavy shape. Therefore, even when the first cylinder is thermally expanded due to the heat of the exhaust gas, the closing member can absorb the thermal expansion of the first cylinder.
  • FIG. 6A is a pressure distribution diagram inside the exhaust heat recovery device according to a comparative example.
  • FIG. 6B is a pressure distribution diagram (cross-sectional view taken along the line 6B-6B of FIG. 1) inside the exhaust heat recovery device according to the first embodiment. It is sectional drawing of the exhaust heat recovery device by Example 2.
  • FIG. 6A is a pressure distribution diagram inside the exhaust heat recovery device according to a comparative example.
  • FIG. 6B is a pressure distribution diagram (cross-sectional view taken along the line 6B-6B of FIG. 1) inside the exhaust heat recovery device according to the first embodiment. It is sectional drawing of the exhaust heat recovery device by Example 2.
  • FIG. 8A is a perspective view of the waste heat recovery device according to the third embodiment.
  • FIG. 8B is a sectional view taken along line 8B-8B of FIG. 8A.
  • FIG. 8C is a sectional view taken along line 8C-8C of FIG. 8A.
  • FIG. 9A is a perspective view of the waste heat recovery device according to the fourth embodiment.
  • 9B is a cross-sectional view taken along the line 9B-9B of FIG. 9A. It is a figure explaining the exhaust heat recovery device by the prior art.
  • FIG. 1 shows, for example, an exhaust heat recovery device 10 mounted on a four-wheeled vehicle.
  • the exhaust heat recovery device 10 heats the cooling water by the heat of the exhaust gas generated by the engine.
  • Us indicates upstream and Ds indicates downstream.
  • the “upstream” and “downstream” are based on the flow direction of the exhaust gas flowing along the center line CL of the first cylinder. Further, the “upper end” refers to the upstream end in the exhaust gas flow direction, and the “lower end” refers to the downstream end in the exhaust gas flow direction.
  • the waste heat recovery device 10 has a first cylinder 20 having a cylindrical shape (for example, a cylindrical shape, but the cross section may be polygonal, the same applies hereinafter).
  • the inside of the first cylinder 20 is a first flow path 30 for exhaust gas.
  • the upper end portion 20a of the first cylinder 20 is an exhaust gas introduction port.
  • the first cylinder 20 is surrounded by a tubular second cylinder 40.
  • the annular region between the inner peripheral surface of the second cylinder 40 and the outer peripheral surface of the first cylinder 20 constitutes the second flow path 50 of the exhaust gas.
  • the first cylinder 20 is formed with two communication holes 21, 21 that allow the first flow path 30 and the second flow path 50 to communicate with each other.
  • the communication holes 21, 21 are displaced from each other by 180 degrees in the circumferential direction. The number and size of the communication holes 21 can be changed as appropriate.
  • a tubular heat exchanger 14 that is in contact with the outer peripheral surface of the first cylinder 20 is arranged.
  • the outer peripheral surface of the heat exchanger 14 is in contact with the inner peripheral surface of the second cylinder 40.
  • a sealing member (not shown) may be provided between the outer peripheral surface of the first cylinder 20 and the inner peripheral surface of the heat exchanger 14.
  • the upstream side of the second flow path 50 is closed by the annular closing member 60.
  • the inner peripheral edge 61 of the closing member 60 is joined to the outer peripheral surface of the first cylinder 20.
  • the outer peripheral edge 62 of the closing member 60 is joined to the outer peripheral surface of the upper end portion 40a of the second cylinder 40.
  • the portion (the portion extending in the radial direction) between the edge 61 on the inner peripheral side and the edge 62 on the outer peripheral side is referred to as the main body portion 63.
  • the cross section of the main body 63 is wavy. Specifically, the main body portion 63 is located on the radial inner side and is located on the radial outer side of the first curved portion 64 and the first curved portion 64 which are curved so as to bulge toward the downstream side. It has a second curved portion 65, which is curved so as to bulge toward the upstream side.
  • a third cylinder 70 having a tubular shape is arranged on the downstream side of the second cylinder 40.
  • the inside of the third cylinder 70 is a third flow path 80 for exhaust gas (see also FIG. 4). Exhaust gas that has passed through the first flow path 30 or the second flow path 50 flows through the third flow path 80.
  • the upper end portion 70a of the third cylinder 70 is joined to the outer peripheral surface of the lower end portion 40b of the second cylinder 40.
  • the lower end 70b of the third cylinder 70 serves as an exhaust gas discharge port.
  • the portion between the upper end portion 70a and the lower end portion 70b is referred to as the main body portion 71.
  • the second cylinder 40 is surrounded by a fourth cylinder 90 having a tubular shape.
  • the fourth cylinder 90 is composed of a first half body 91 surrounding a half of the outer circumference of the second cylinder 40 and a second half body 92 surrounding the other half.
  • the upper end portion 91a and the lower end portion 91b of the first half body 91 are joined to the outer peripheral surface of the second cylinder 40, respectively.
  • the upper end portion 92a and the lower end portion 92b of the second half body 92 are joined to the outer peripheral surface of the second cylinder 40, respectively.
  • the annular region between the second cylinder 40 and the fourth cylinder 90 constitutes a cooling flow path 93 through which cooling water flows.
  • An introduction pipe 15 capable of introducing cooling water into the cooling flow path 93 is connected to the first half body 91.
  • a discharge pipe 16 capable of discharging cooling water from the cooling flow path 93 is connected to the second half body 92.
  • a part of the main body 71 of the third cylinder 70 holds the lower end 20b of the first cylinder 20.
  • the main body 71 is in contact with a part of the outer peripheral surface of the lower end 20b of the first cylinder 20. It has a pair of arcuate contact portions 72,72.
  • the pair of contact portions 72, 72 are joined to the lower end portion 20b of the first cylinder 20.
  • the portions of the main body 71 other than the pair of contact portions 72, 72 are radially outwardly separated from the outer peripheral surface of the lower end portion 20b of the first cylinder 20. This portion is referred to as a pair of separation portions 73,73.
  • the first flow path 30 can be opened and closed by a butterfly type valve.
  • the valve has a rod-shaped rotary shaft 101, a disc-shaped valve body 102 fixed to the rotary shaft 101, and columnar support members 103 and 103 that support both ends of the rotary shaft 101. ing.
  • the support members 103 and 103 are inserted into and supported by the support holes 72a and 72a (see FIG. 3) formed in the pair of contact portions 72 and 72 of the third cylinder 70.
  • the first flow path 30 has a branch path 31 for branching the flow of exhaust gas, an upper flow path 32 adjacent to the upstream side of the branch path 31, and a lower flow path 33 adjacent to the downstream side of the branch path 31. And, divide into.
  • Communication holes 21, 21 are located in the branch road 31.
  • the flow path area A1 of the branch path 31 is constant.
  • the upper flow path 32 is adjacent to the first steady path 34, which is located on the most upstream side and has a constant flow path area A2, and the downstream side of the first steady path 34, and has a flow path area toward the downstream side. It has a smaller reduction path 35 and.
  • the reduced road 35 is located immediately upstream of the branch road 31.
  • the lower flow path 33 is adjacent to the downstream side of the branch road 31, and is adjacent to the first expansion path 36 in which the flow path area increases toward the downstream side and the downstream side of the first expansion path 36.
  • a second steady path 37 having a constant cage area A3 and a second expansion path 38 adjacent to the downstream side of the second steady path 37 and having a larger flow path area toward the downstream side. It has a third steady path 39 which is adjacent to the downstream side of the second expansion path 38 and has a constant flow path area A4.
  • the first cylinder 20 is composed of a single member. Specifically, the first cylinder 20 constitutes a first straight pipe portion 23 constituting the first steady path 34, a reduced section 24 constituting the reduced path 35, and a branch path 31. It has a branch portion 25 and a branch portion 25.
  • first cylinder 20 has a first expansion portion 26 constituting the first expansion path 36, a second straight pipe portion 27 constituting the second steady path 37, and a second. It has a second expansion portion 28 constituting the expansion path 38 of the above, and a third straight pipe portion 29 constituting the third steady path 39.
  • the branch portion 25 is a portion of the first cylinder 20 that has been reduced in diameter by diameter reduction processing.
  • the third straight pipe portion 29 is a portion of the first cylinder 20 processed by diameter expansion processing.
  • the outer shape of the reduced portion 24 is tapered, but it may be stepped. As long as the shape is such that the first flow path 30 can be formed, the portion to be reduced in diameter or expanded in diameter may be appropriately selected.
  • the third flow path 80 is divided into an upper flow path 81 on the upstream side of the valve opening and a lower flow path 82 on the downstream side.
  • the upper flow path 81 is two regions surrounded by the second enlarged portion 28, the third straight pipe portion 29, and the separated portion 73.
  • the lower flow path 82 has a steady path 83 having a constant flow path area, and a reduced path 84 adjacent to the downstream side of the steady path 83 and having a smaller flow path area toward the downstream side.
  • the area B2 of the opening 105 (see also FIG. 5) opened and closed by the valve 100 is larger than the minimum flow path area B1 in the reduced path 35 (B2> B1).
  • the flow path area A3 and the area B2 of the opening 105 are substantially equal (A3 ⁇ B2).
  • the flow path area at an arbitrary position (position within the range of the line R) in the lower flow path 82 is defined as the flow path area B3.
  • the flow path area B3 is larger than the area B2 of the opening 105 (B3> B2).
  • the flow path area B3 is set so that the flow path area becomes smaller toward the downstream side.
  • the flow path area B31 on the most downstream side is larger than the area B2 of the opening 105.
  • the flow path area B31 on the most downstream side may be set to be equal to the area B2 of the opening 105.
  • the exhaust gas introduced from the introduction port of the exhaust heat recovery device 10 (the upper end portion 20a of the first cylinder 20) reaches the upper flow path 32, the branch path 31, and the communication holes 21, 21. And flows into the second flow path 50.
  • the exhaust gas that has flowed into the second flow path 50 enters the through hole 14c of the heat recovery body 14 and heats the heat recovery body 14.
  • the heat of the heat recovery body 14 is transmitted to the cooling water flowing through the cooling flow path 93 via the second cylinder 40, and the cooling water is heated (heat recovery mode).
  • the heat exchanger of the present invention is composed of the heat recovery body 14, the second cylinder 40, and the fourth cylinder 90.
  • the heat exchanger may have other well-known configurations.
  • the exhaust gas that has passed through the heat recovery body 14 passes through the third flow path 80 and is discharged from the discharge port (lower end 70b of the third cylinder 70).
  • the thermoactuator (not shown) is driven to open the valve 100.
  • the exhaust gas flows through the first flow path 30, passes through the opening 105 of the valve 100, further flows through the third flow path 80, and is discharged from the discharge port (non-valve). Recovery mode).
  • FIG. 6A is a pressure distribution diagram of the exhaust heat recovery device 600 of the comparative example.
  • the pressure distribution map is drawn in three stages of low pressure P1, medium pressure P2, and high pressure P3.
  • the first cylinder 601 is a straight pipe.
  • the flow path area C1 of the first cylinder 601 is constant.
  • the area C2 of the opening opened and closed by the valve 602 is smaller than the flow path area C1 of the first cylinder 601 (C2 ⁇ C1).
  • the pressure of the first flow path 611 is high pressure P3.
  • the pressure of the second flow path 612 became medium pressure P2. Therefore, as shown by the arrow (1), the exhaust gas easily flows from the first flow path 611 into the second flow path 612 through the communication hole.
  • the pressure on the upstream side of the third flow path 613 was medium pressure P2.
  • the area around the lower end (discharge port) of the third cylinder 603 became a low pressure P1. Therefore, as shown by the arrow (2), the exhaust gas tends to flow from the upstream side of the third flow path 613 to the vicinity of the lower end portion (exhaust port). Therefore, even when the valve 602 is open, the exhaust gas easily passes through the second flow path 612, and heat recovery is performed.
  • the first flow path 30 includes a branch path 31 in which communication holes 21 and 21 are located to branch the flow of exhaust gas, and a reduced path 35 in which the flow path area becomes smaller toward the downstream side. ,have.
  • the reduced road 35 is located immediately upstream of the branch road 31.
  • the area B2 of the opening 105 opened and closed by the valve 100 is larger than the minimum flow path area B1 in the reduced path 35 (B2> B1).
  • the flow path area at an arbitrary position (position within the range of the line R) in the lower flow path 82 is defined as the flow path area B3.
  • the flow path area B3 is larger than the area B2 of the opening 105 (B3> B2).
  • the communication holes 21, 21 are located on the upstream side of the upper end surface 14a of the heat recovery body 14.
  • the second flow path 50 is only a flow from the closing member 60 side to the third flow path 80. Since there is no flow from the third flow path 80 toward the closing member 60 side, the exhaust heat recovery device 10 can be miniaturized in the radial direction.
  • the cross section of the main body 63 of the closing member 60 is wavy. Therefore, even when the first cylinder 20 is thermally expanded due to the heat of the exhaust gas, the closing member 60 can absorb the thermal expansion of the first cylinder.
  • Example 2 to 4 The effects of the above invention are also exhibited in Examples 2 to 4 described below.
  • the configuration of the first cylinder 20 is different from that of Example 1.
  • the configurations common to those of the first embodiment are designated by the same reference numerals as those of the first embodiment, and the description thereof will be omitted.
  • the first cylinder 201 has a tubular shape, that is, a first half body 210 on the upstream side and a second half body 220 on the downstream side. It is composed of members.
  • the first cylinder 201 may be composed of three or more members.
  • a second reduced path 234 (reduced path), which will be described later, is configured inside the first half body 210.
  • the second half body 220 has communication holes 21, 21.
  • the first flow path is divided into an upstream side flow path 230 inside the first half body 210 and a downstream side flow path 240 inside the second half body 220.
  • the upstream side flow path 230 has a first steady path 231 located on the most upstream side and having a constant flow path area, and a flow path area smaller toward the downstream side adjacent to the downstream side of the first steady path 231.
  • the first half body 210 includes a first straight pipe portion 211 constituting the first steady path 231, a first reduced section 212 constituting the first reduced path 232, and a second.
  • the second straight pipe portion 213 constituting the steady path 233, the second reduced section 214 constituting the second reduced path 234, and the third constituting the third steady path 235.
  • the straight pipe portion 215 and the straight pipe portion 215 are integrally configured.
  • the downstream flow path 240 includes a branch path 241 in which the communication holes 21, 21 are located, a fourth steady path 242 adjacent to the downstream side of the branch path 241 and having a constant flow path area, and a fourth steady path.
  • the first expansion path 243 which is adjacent to the downstream side of the steady path 242 and the flow path area increases toward the downstream side, and the first expansion path 243, which is adjacent to the downstream side of the first expansion path 243, have a flow path area. It has a constant fifth steady path 244 and.
  • the second half body 220 has a joint portion 221 joined to the outer peripheral surface of the second straight pipe portion 213, a branch portion 222 constituting the branch path 241 and a fourth.
  • the fourth straight pipe portion 223 constituting the steady path 242, the first expanding section 224 constituting the first expansion path 243, and the fifth expanding section 244 constituting the fifth steady path 244.
  • the straight pipe portion 225 and the straight pipe portion 225 are integrally configured.
  • a part of the third straight pipe portion 215 has entered the branch road 241.
  • the lower end portion 215a of the third straight pipe portion 215 is located on the downstream side of the upstream edge 21b of the communication hole 21.
  • the outer peripheral surface of the joint portion 221 is joined to the closing member 60.
  • the first cylinder 201 has two bodies, a first half body 210 constituting the second reduction path 234 and a second half body 220 having communication holes 21, 21. It is composed of members. That is, since the second reduction path 234 and the communication holes 21 and 21 are provided separately, the shapes of the respective half bodies 210 and 220 are not complicated.
  • FIG. 8A shows a first cylinder 310 constituting the waste heat recovery device of the third embodiment. Other configurations are the same as in Example 1.
  • the first cylinder 310 is composed of a single member.
  • the first cylinder 310 has a branch portion 312 in which communication holes 311 and 311 are located and the flow of exhaust gas is branched.
  • the cross section of the branch portion 312 When viewed from the direction along the center line CL of the first cylinder 310 (see FIG. 8B), the cross section of the branch portion 312 has a race track shape as a whole. Specifically, the branch portion 312 is configured by integrally forming a pair of straight lines 314, 314 extending in parallel with each other and a pair of arcuate arc portions 313, 313. The communication holes 311 and 311 are formed in the arc portions 313 and 313, respectively.
  • the configuration of the first flow path 320 inside the first cylinder 310 is the same as the basic configuration of the first flow path 30 (see FIG. 4) of the first embodiment. That is, the first flow path 320 has a first steady path 321, a reduced path 322, a branch path 323, a first expansion path 324, a second steady path 325, a second expansion path 326, and a third steady path. It can be divided into roads 327 and.
  • the cross section of the branch portion 312 of the first cylinder 310 has a race track shape. Therefore, the branch portion 312 can be formed by plastically working so as to sandwich the cylindrical straight pipe in the radial direction and crush it. Compared with the diameter reduction processing in which the diameter of the cylindrical straight pipe is reduced over the entire circumference, the first flow path 320 can be configured by simple processing.
  • FIG. 9A shows a first cylinder 410 constituting the waste heat recovery device of the fourth embodiment.
  • Other configurations are the same as in Example 1.
  • the first cylinder 410 which is composed of a single member, a guide plate 430 for guiding the exhaust gas flowing through the first flow path 420 is arranged inside the first cylinder 410.
  • the guide plate 430 is joined to the inner peripheral surface 410a of the first cylinder 410.
  • the guide plate 430 is inclined to the downstream side from the joint with the inner peripheral surface 410a as a starting point.
  • the first flow path 420 includes the first steady path 421, the reduced path 422, the branch path 423, the second steady path 424, the expansion path 425, and the third steady path 426. Divide into ,.
  • the flow path areas of the first steady path 421, the branch path 423, and the second steady path 424 are equal to each other.
  • the guide plate 430 and the communication hole 411 are at the same position in the circumferential direction, but may be arranged at different positions in the circumferential direction.
  • the area surrounded by the guide surface 431 of the guide plate 430 and the inner peripheral surface 410a constitutes the reduced path 422.
  • the outer shape of the portion of the first cylinder 410 on the upstream side of the expansion path 425 is constant.
  • the reduced path 422 can be configured without plastic working to form the reduced path 422.
  • the present invention is not limited to Examples 1 to 4 as long as the actions and effects of the present invention are exhibited.
  • Exhaust heat recovery device 14 Heat recovery body (heat exchanger) 20 ... First cylinder 30 ... First flow path 31 ... Branch path 35 ... Reduction path 40 ... Second cylinder 50 ... Second flow path 60 ... Closing member 70 ... Third cylinder 100 ... Valve 105 ... Opening B1 ... Minimum flow path area in the reduced path B2 ... Area of the opening opened and closed by the valve B3 ... Flow path area 200 at any position in the third flow path behind the valve ... Exhaust heat recovery device 201 ... 1st cylinder 210 ... 1st half body 220 ... 2nd half body 310 ... 1st cylinder 311 ... Communication hole 312 ...
  • Cross section of branch portion (cross section of a portion where the communication hole is located) 320 ... 1st flow path 410 ... 1st cylinder 410a ... Inner peripheral surface 411 of the 1st cylinder ... Communication hole 430 ... Guide plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

A communication hole 21 is positioned upstream of a heat exchanger 14. A first flow path 30 has a branch path 31 that branches a flow of exhaust gas with the positioning of the communication hole 21. Upstream of the branch path 31, a narrow path 35 in which a flow path area narrows toward the branch path 31 is positioned. An area B2 of an opening 105 opened and closed by a valve 100 is larger than a minimum flow path area B1 in the narrow path 35. Behind the valve 100, a flow path area B3 at an arbitrary position in a third flow path 80 is equal to or larger than the area B2 of the opening 105 opened and closed by the valve 100 (B1 < B2 ≦ B3).

Description

排熱回収装置Waste heat recovery device
 本発明は、排気ガスの熱により熱交換を行う排熱回収装置に関する。 The present invention relates to an exhaust heat recovery device that exchanges heat by the heat of exhaust gas.
 車両の走行中にエンジンで発生する排気ガスの熱により冷却水を温める、排熱回収装置が知られている。排熱回収装置として、例えば、特許文献1に開示される技術がある。図10は、特許文献1の図1を再掲して符号を振り直したものである。 There is known an exhaust heat recovery device that heats the cooling water by the heat of the exhaust gas generated by the engine while the vehicle is running. As an exhaust heat recovery device, for example, there is a technique disclosed in Patent Document 1. FIG. 10 is a reprint of FIG. 1 of Patent Document 1 and reassigned.
 排熱回収装置500は、内部が排気ガスの第1の流路501である内筒510と、内筒510を囲っている外筒520と、外筒520の外周に設けられた環状の熱交換器530と、熱交換器530の上流側に配置されている上流側閉塞部材540と、熱交換器530の下流側に配置されている下流側閉塞部材550と、下流側閉塞部材550の下流端を開閉可能なバルブ560と、第1の流路501を通過した排気ガス又は熱交換器530を介して熱交換した排気ガスを外部に排出する排出筒570と、を有している。 The exhaust heat recovery device 500 has an inner cylinder 510 whose inside is a first flow path 501 for exhaust gas, an outer cylinder 520 surrounding the inner cylinder 510, and an annular heat exchange provided on the outer periphery of the outer cylinder 520. The vessel 530, the upstream closing member 540 arranged on the upstream side of the heat exchanger 530, the downstream closing member 550 arranged on the downstream side of the heat exchanger 530, and the downstream end of the downstream closing member 550. It has a valve 560 that can open and close the valve 560, and a discharge cylinder 570 that discharges the exhaust gas that has passed through the first flow path 501 or the exhaust gas that has been heat-exchanged via the heat exchanger 530 to the outside.
 外筒520の外周には、排気ガスの第2の流路502が構成されている。第2の流路502は、上流側閉塞部材540と、熱交換器530と、下流側閉塞部材550とに囲われた領域である。外筒520には、第1の流路501と、第2の流路502とを連通させる複数の連通孔520aが形成されている。 A second flow path 502 for exhaust gas is configured on the outer circumference of the outer cylinder 520. The second flow path 502 is a region surrounded by the upstream closing member 540, the heat exchanger 530, and the downstream closing member 550. The outer cylinder 520 is formed with a plurality of communication holes 520a that allow the first flow path 501 and the second flow path 502 to communicate with each other.
 排熱回収装置500は、排気ガスの熱を回収する熱回収モードと、排気ガスの熱を回収しない非回収モードとに切替可能である。熱回収モードと、非回収モードとの切り替えは、バルブ560の開閉により行う。 The exhaust heat recovery device 500 can be switched between a heat recovery mode that recovers the heat of the exhaust gas and a non-recovery mode that does not recover the heat of the exhaust gas. Switching between the heat recovery mode and the non-recovery mode is performed by opening and closing the valve 560.
 バルブ560が閉じている場合、排気ガスの導入口となる内筒510の上流側の端部から導入された排気ガスは、第1の流路501と、連通孔520aとを通過して、第2の流路502に流れ込む。第2の流路502に流れ込んだ排気ガスは、熱交換器530の内部を流れる冷却水と熱交換を行い、排出筒570の内部を通過し、外部に排出される(熱回収モード)。 When the valve 560 is closed, the exhaust gas introduced from the upstream end of the inner cylinder 510 which is the exhaust gas introduction port passes through the first flow path 501 and the communication hole 520a, and is the first. It flows into the flow path 502 of 2. The exhaust gas flowing into the second flow path 502 exchanges heat with the cooling water flowing inside the heat exchanger 530, passes through the inside of the discharge cylinder 570, and is discharged to the outside (heat recovery mode).
 熱回収モードにおいて、冷却水が所定の温度に達すると、サーモアクチュエータ(不図示)が駆動してバルブ560が開く。排気ガスは、第1の流路501と、排出筒570の内部とを通過し、外部に排出される(非回収モード)。 In the heat recovery mode, when the cooling water reaches a predetermined temperature, the thermoactuator (not shown) is driven to open the valve 560. The exhaust gas passes through the first flow path 501 and the inside of the discharge cylinder 570 and is discharged to the outside (non-recovery mode).
特許第4810511号公報Japanese Patent No. 4810511
 連通孔520aは常に開口している。そのため、バルブ560が開いている場合(非回収モード)であっても、第1の流路501を流れる排気ガスの一部は、連通孔520aを介して第2の流路502に流れ込む。 The communication hole 520a is always open. Therefore, even when the valve 560 is open (non-recovery mode), a part of the exhaust gas flowing through the first flow path 501 flows into the second flow path 502 through the communication hole 520a.
 上記の通り、第2の流路502に流れ込んだ排気ガスは、熱交換器530を介して、冷却水を加熱する。即ち、熱交換を目的としていない非回収モードであっても、第2の流路502に排気ガスが流れ込むことにより、熱交換が不可避的に発生し、冷却水が加熱されてしまう。 As described above, the exhaust gas flowing into the second flow path 502 heats the cooling water via the heat exchanger 530. That is, even in the non-recovery mode for which heat exchange is not intended, the exhaust gas flows into the second flow path 502, so that heat exchange is inevitably generated and the cooling water is heated.
 先行技術の排熱回収装置500では、この非回収モードにおける熱交換を抑制する構成を有している。詳細には、外筒520の外周面と、熱交換器530の内周面との間には、スペースSが確保されている。このスペースSは、第2の流路502の一部であり、連通孔520aから進入した排気ガスが上流側閉塞部材540に向かう流路を構成している。 The waste heat recovery device 500 of the prior art has a configuration for suppressing heat exchange in this non-recovery mode. Specifically, a space S is secured between the outer peripheral surface of the outer cylinder 520 and the inner peripheral surface of the heat exchanger 530. This space S is a part of the second flow path 502, and constitutes a flow path in which the exhaust gas that has entered from the communication hole 520a is directed to the upstream closing member 540.
 排気ガスは、上流側閉塞部材540にて折り返して、熱交換器530の内部を通過して、排出筒570の内部に流れ込む。このような折り返しを含む第2の流路502は、圧力損失が大きく、排気ガスが流れにくい。熱交換を抑制できる。 The exhaust gas is folded back by the upstream closing member 540, passes through the inside of the heat exchanger 530, and flows into the inside of the discharge cylinder 570. The second flow path 502 including such a folding back has a large pressure loss and makes it difficult for exhaust gas to flow. Heat exchange can be suppressed.
 一方で、折り返しを含む流路とするためには、スペースSを確保する必要があるため、排熱回収装置500が径方向に大型化してしまう。 On the other hand, since it is necessary to secure a space S in order to make the flow path including the folding back, the waste heat recovery device 500 becomes large in the radial direction.
 本発明は、非回収モードにおける排気ガスと冷却水との熱交換を抑制しつつ、小型化が可能な排熱回収装置の提供を課題とする。 An object of the present invention is to provide an exhaust heat recovery device capable of miniaturization while suppressing heat exchange between exhaust gas and cooling water in a non-recovery mode.
 請求項1による発明によれば、筒状を呈しており、内部が排気ガスの第1の流路である第1の筒と、
 筒状を呈しており、前記第1の筒を囲うことにより、前記第1の筒と共に第2の流路を構成している第2の筒と、
 排気ガスの流れ方向を基準として前記第2の筒の上流側の端部を塞いでいる閉塞部材と、
 前記第1の筒に形成されており、前記第1の流路と前記第2の流路とを連通させている連通孔と、
 前記連通孔から前記第2の流路に流れ込んだ前記排気ガスと、冷却水とで、熱交換を行う熱交換器と、
 前記連通孔よりも下流側にて、第1の流路を開閉可能なバルブと、
 筒状を呈しており、内部が前記第1の流路又は前記第2の流路を通過した排気ガスの第3の流路である第3の筒と、を有する排熱回収装置において、
 前記連通孔は、前記熱交換器よりも上流側に位置しており、
 前記第2の流路を流れる排気ガスは、前記閉塞部材側に向かうことなく、第3の流路に向かって流れ、
 前記第1の流路は、前記連通孔が位置していることにより排気ガスの流れを分岐させる分岐路を有しており、
 前記分岐路の直ぐ上流側には、前記分岐路に向かって流路面積が小さくなる縮小路が位置しており、
 前記バルブにより開閉される開口の面積は、前記縮小路のなかの最小の流路面積よりも大きく、
 前記バルブよりも後方において、前記第3の流路のなかの任意の位置における流路面積は、前記バルブにより開閉される前記開口の面積と等しいか、又は、前記開口の面積よりも大きいことを特徴とする、排熱回収装置が提供される。
According to the first aspect of the invention, a first cylinder having a cylindrical shape and the inside of which is a first flow path of exhaust gas,
A second cylinder which has a cylindrical shape and which constitutes a second flow path together with the first cylinder by surrounding the first cylinder,
A closing member that closes the upstream end of the second cylinder with reference to the flow direction of the exhaust gas, and
A communication hole formed in the first cylinder and communicating the first flow path and the second flow path,
A heat exchanger that exchanges heat between the exhaust gas that has flowed into the second flow path from the communication hole and the cooling water.
A valve that can open and close the first flow path on the downstream side of the communication hole,
In an exhaust heat recovery device having a tubular shape and a third cylinder whose inside is a third flow path of exhaust gas that has passed through the first flow path or the second flow path.
The communication hole is located on the upstream side of the heat exchanger.
The exhaust gas flowing through the second flow path flows toward the third flow path without going toward the closing member side,
The first flow path has a branch path for branching the flow of exhaust gas due to the location of the communication hole.
Immediately upstream of the branch road, a reduced road having a smaller flow path area toward the branch road is located.
The area of the opening opened and closed by the valve is larger than the minimum flow path area in the reduced path.
Behind the valve, the flow path area at any position in the third flow path is equal to or greater than the area of the opening opened and closed by the valve. A featured exhaust heat recovery device is provided.
 請求項2に記載のごとく、前記第1の筒は、単一の部材により構成されている。 As described in claim 2, the first cylinder is composed of a single member.
 請求項3に記載のごとく、前記第1の筒のうち、前記連通孔が位置している部位の断面は、全体としてレーストラック形状を呈している。 As described in claim 3, the cross section of the portion of the first cylinder in which the communication hole is located has a race track shape as a whole.
 請求項4に記載のごとく、前記第1の筒は、各々が筒状を呈している、上流側の第1の半体と、下流側の第2の半体と、の2つの部材によって構成されており、前記第1の半体の内部には、前記縮小路が構成されており、前記第2の半体は、前記連通孔を有している。 As described in claim 4, the first cylinder is composed of two members, a first half body on the upstream side and a second half body on the downstream side, each of which has a tubular shape. The reduction path is configured inside the first half body, and the second half body has the communication hole.
 請求項5に記載のごとく、前記縮小路は、前記第1の筒の内周面と、前記第1の筒の前記内周面の一部に対して接合されて前記排気ガスの流れをガイドするガイド板と、によって構成されている。 As described in claim 5, the reduced path is joined to the inner peripheral surface of the first cylinder and a part of the inner peripheral surface of the first cylinder to guide the flow of the exhaust gas. It is composed of a guide plate and a guide plate.
 請求項6に記載のごとく、前記閉塞部材の断面は、波状を呈している。 As described in claim 6, the cross section of the closing member has a wavy shape.
 請求項1の排熱回収装置は、第1の流路と第1の流路の外周に設けられた第2の流路とを連通させている連通孔を有している。第1の流路は、連通孔が位置していることにより排気ガスの流れを分岐させる分岐路を有している。分岐路の直ぐ上流側には、分岐路に向かって流路面積が小さくなる縮小路が位置している。 The waste heat recovery device according to claim 1 has a communication hole for communicating the first flow path and the second flow path provided on the outer periphery of the first flow path. The first flow path has a branch path for branching the flow of exhaust gas due to the location of the communication hole. Immediately upstream of the branch road, there is a reduced road where the flow path area becomes smaller toward the branch road.
 さらに、バルブにより開閉される開口の面積は、縮小路のなかの最小の流路面積よりも大きい。バルブよりも後方において、第3の流路のなかの任意の位置における流路面積は、バルブにより開閉される開口の面積と等しいか、又は、開口の面積よりも大きい。 Furthermore, the area of the opening opened and closed by the valve is larger than the minimum flow path area in the reduced path. Behind the valve, the area of the flow path at any position in the third flow path is equal to or greater than the area of the opening opened and closed by the valve.
 上記の構成より、いわゆる非回収モードにおいて、排気ガスが連通孔を介して第2の流路に流れ込みにくく、かつ、第2の流路から第3の流路への排気ガスの流れも抑制できる。結果、第2の流路に設けられた熱交換器による排気ガスの熱回収を抑制できる。 From the above configuration, in the so-called non-recovery mode, it is difficult for the exhaust gas to flow into the second flow path through the communication hole, and the flow of the exhaust gas from the second flow path to the third flow path can also be suppressed. .. As a result, the heat recovery of the exhaust gas by the heat exchanger provided in the second flow path can be suppressed.
 加えて、連通孔は、熱交換器よりも上流側に位置している。第2の流路を流れる排気ガスは、閉塞部材側に向かうことなく、第3の流路に向かって流れる。そのため、排熱回収装置を径方向に小型化することができる。 In addition, the communication hole is located upstream of the heat exchanger. The exhaust gas flowing through the second flow path flows toward the third flow path, not toward the closing member side. Therefore, the waste heat recovery device can be miniaturized in the radial direction.
 以上より、非回収モードにおける排気ガスと冷却水との熱交換を抑制しつつ、小型化が可能な排熱回収装置を提供することができる。 From the above, it is possible to provide an exhaust heat recovery device capable of miniaturization while suppressing heat exchange between the exhaust gas and the cooling water in the non-recovery mode.
 請求項2では、第1の筒は、単一の部材により構成されている。直管の一部を塑性変形(例えば、縮径加工又は拡径加工等)することにより、最小限の部品点数で第1の流路を構成することができる。 In claim 2, the first cylinder is composed of a single member. By plastically deforming a part of the straight pipe (for example, diameter reduction processing or diameter expansion processing), the first flow path can be configured with the minimum number of parts.
 請求項3では、第1の筒のうち、連通孔が位置している部位の断面は、全体としてレーストラック形状を呈している。そのため、直管を径方向に挟み込んで潰すような塑性加工を施せば第1の流路を構成することができる。 In claim 3, the cross section of the portion of the first cylinder where the communication hole is located has a race track shape as a whole. Therefore, the first flow path can be formed by performing plastic working such that the straight pipe is sandwiched in the radial direction and crushed.
 請求項4では、第1の筒は、各々が筒状を呈している、上流側の第1の半体と、下流側の第2の半体と、の2つの部材によって構成されている。第1の半体の内部には、縮小路が構成されている。第2の半体は、連通孔を有している。そのため、第1の半体、第2の半体のいずれも複雑に加工せずに第1の筒を構成することができる。 In claim 4, the first cylinder is composed of two members, a first half body on the upstream side and a second half body on the downstream side, each of which has a tubular shape. A reduction path is configured inside the first half body. The second half has a communication hole. Therefore, neither the first half body nor the second half body can be complicatedly processed to form the first cylinder.
 請求項5では、縮小路は、第1の筒の内周面と、第1の筒の内周面の一部に対して接合されて排気ガスの流れをガイドするガイド板と、によって構成されている。そのため、縮小路を構成するための塑性加工を施さずに、縮小路を構成することができる。 In claim 5, the reduced path is composed of an inner peripheral surface of the first cylinder and a guide plate joined to a part of the inner peripheral surface of the first cylinder to guide the flow of exhaust gas. ing. Therefore, the reduced path can be constructed without performing plastic working for forming the reduced path.
 請求項6では、閉塞部材の断面は、波状を呈している。そのため、排気ガスの熱により、第1の筒が拡径するように熱伸びした場合であっても、閉塞部材が第1の筒の熱伸びを吸収することができる。 In claim 6, the cross section of the closing member has a wavy shape. Therefore, even when the first cylinder is thermally expanded due to the heat of the exhaust gas, the closing member can absorb the thermal expansion of the first cylinder.
実施例1による排熱回収装置の斜視図である。It is a perspective view of the exhaust heat recovery device by Example 1. FIG. 図1の2-2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG. 実施例1の排熱回収装置を構成する第1の筒と、第3の筒との斜視図である。It is a perspective view of the 1st cylinder which constitutes the exhaust heat recovery apparatus of Example 1 and the 3rd cylinder. 図1の4-4線断面図である。It is a cross-sectional view taken along line 4-4 of FIG. 図4の5-5線断面図である。FIG. 5 is a sectional view taken along line 5-5 of FIG. 図6Aは、比較例による排熱回収装置の内部の圧力分布図である。図6Bは、実施例1による排熱回収装置の内部の圧力分布図(図1の6B-6B線断面図)である。FIG. 6A is a pressure distribution diagram inside the exhaust heat recovery device according to a comparative example. FIG. 6B is a pressure distribution diagram (cross-sectional view taken along the line 6B-6B of FIG. 1) inside the exhaust heat recovery device according to the first embodiment. 実施例2による排熱回収装置の断面図である。It is sectional drawing of the exhaust heat recovery device by Example 2. FIG. 図8Aは、実施例3による排熱回収装置の斜視図である。図8Bは、図8Aの8B-8B線断面図である。図8Cは、図8Aの8C-8C線断面図である。FIG. 8A is a perspective view of the waste heat recovery device according to the third embodiment. FIG. 8B is a sectional view taken along line 8B-8B of FIG. 8A. FIG. 8C is a sectional view taken along line 8C-8C of FIG. 8A. 図9Aは、実施例4による排熱回収装置の斜視図である。図9Bは、図9Aの9B-9B線断面図である。FIG. 9A is a perspective view of the waste heat recovery device according to the fourth embodiment. 9B is a cross-sectional view taken along the line 9B-9B of FIG. 9A. 従来技術による排熱回収装置を説明する図である。It is a figure explaining the exhaust heat recovery device by the prior art.
 実施例を添付図に基づいて以下に説明する。 An example will be described below based on the attached figure.
<実施例1>
 図1には、例えば、4輪車に搭載される排熱回収装置10が示されている。この排熱回収装置10は、エンジンで発生する排気ガスの熱により冷却水を加熱する。
<Example 1>
FIG. 1 shows, for example, an exhaust heat recovery device 10 mounted on a four-wheeled vehicle. The exhaust heat recovery device 10 heats the cooling water by the heat of the exhaust gas generated by the engine.
 図中Usは上流、Dsは下流を示している。なお、”上流”、”下流”とは、第1の筒の中心線CLに沿って流れる排気ガスの流れ方向を基準とする。さらに、"上端部"とは、排気ガスの流れ方向の上流側の端部を指し、"下端部"とは、排気ガスの流れ方向の下流側の端部を指す。 In the figure, Us indicates upstream and Ds indicates downstream. The "upstream" and "downstream" are based on the flow direction of the exhaust gas flowing along the center line CL of the first cylinder. Further, the "upper end" refers to the upstream end in the exhaust gas flow direction, and the "lower end" refers to the downstream end in the exhaust gas flow direction.
 図1及び図2を参照する。排熱回収装置10は、筒状を呈している(例えば円筒状だが、断面が多角形状でもよい、以下同じ)第1の筒20を有している。第1の筒20の内部は、排気ガスの第1の流路30である。第1の筒20の上端部20aは、排気ガスの導入口である。 Refer to FIGS. 1 and 2. The waste heat recovery device 10 has a first cylinder 20 having a cylindrical shape (for example, a cylindrical shape, but the cross section may be polygonal, the same applies hereinafter). The inside of the first cylinder 20 is a first flow path 30 for exhaust gas. The upper end portion 20a of the first cylinder 20 is an exhaust gas introduction port.
 第1の筒20は、筒状の第2の筒40に囲われている。第2の筒40の内周面と、第1の筒20の外周面との間の環状の領域は、排気ガスの第2の流路50を構成している。第1の筒20には、第1の流路30と第2の流路50とを連通させている2つの連通孔21,21が形成されている。連通孔21,21は、周方向に互いに180度ずれている。連通孔21の個数、大きさは適宜変更できる。 The first cylinder 20 is surrounded by a tubular second cylinder 40. The annular region between the inner peripheral surface of the second cylinder 40 and the outer peripheral surface of the first cylinder 20 constitutes the second flow path 50 of the exhaust gas. The first cylinder 20 is formed with two communication holes 21, 21 that allow the first flow path 30 and the second flow path 50 to communicate with each other. The communication holes 21, 21 are displaced from each other by 180 degrees in the circumferential direction. The number and size of the communication holes 21 can be changed as appropriate.
 第2の流路50には、第1の筒20の外周面に当接している筒状の熱交換体14が配置されている。熱交換体14の外周面は、第2の筒40の内周面に対して当接している。また、第1の筒20の外周面と熱交換体14の内周面の間にはシール部材(図示せず)が設けられていてもよい。 In the second flow path 50, a tubular heat exchanger 14 that is in contact with the outer peripheral surface of the first cylinder 20 is arranged. The outer peripheral surface of the heat exchanger 14 is in contact with the inner peripheral surface of the second cylinder 40. Further, a sealing member (not shown) may be provided between the outer peripheral surface of the first cylinder 20 and the inner peripheral surface of the heat exchanger 14.
 第2の流路50の上流側は、環状の閉塞部材60により塞がれている。閉塞部材60の内周側の縁61は、第1の筒20の外周面に接合されている。閉塞部材60の外周側の縁62は、第2の筒40の上端部40aの外周面に接合されている。 The upstream side of the second flow path 50 is closed by the annular closing member 60. The inner peripheral edge 61 of the closing member 60 is joined to the outer peripheral surface of the first cylinder 20. The outer peripheral edge 62 of the closing member 60 is joined to the outer peripheral surface of the upper end portion 40a of the second cylinder 40.
 内周側の縁61と、外周側の縁62との間の部位(径方向に延びている部位)を本体部63とする。本体部63の断面は、波状である。詳細には、本体部63は、径方向内側に位置していると共に下流側に向かって膨らむように湾曲している第1の湾曲部64と、第1の湾曲部64の径方向外側に位置していると共に上流側に向かって膨らむように湾曲している第2の湾曲部65と、を有している。 The portion (the portion extending in the radial direction) between the edge 61 on the inner peripheral side and the edge 62 on the outer peripheral side is referred to as the main body portion 63. The cross section of the main body 63 is wavy. Specifically, the main body portion 63 is located on the radial inner side and is located on the radial outer side of the first curved portion 64 and the first curved portion 64 which are curved so as to bulge toward the downstream side. It has a second curved portion 65, which is curved so as to bulge toward the upstream side.
 第2の筒40の下流側には、筒状を呈している第3の筒70が配置されている。第3の筒70の内部は、排気ガスの第3の流路80である(図4も参照)。第3の流路80は、第1の流路30又は第2の流路50を通過した排気ガスが流れる。 A third cylinder 70 having a tubular shape is arranged on the downstream side of the second cylinder 40. The inside of the third cylinder 70 is a third flow path 80 for exhaust gas (see also FIG. 4). Exhaust gas that has passed through the first flow path 30 or the second flow path 50 flows through the third flow path 80.
 第3の筒70の上端部70aは、第2の筒40の下端部40bの外周面に接合している。第3の筒70の下端部70bは、排気ガスの排出口となる。第3の筒70のうち、上端部70aと下端部70bとの間の部位を本体部71とする。 The upper end portion 70a of the third cylinder 70 is joined to the outer peripheral surface of the lower end portion 40b of the second cylinder 40. The lower end 70b of the third cylinder 70 serves as an exhaust gas discharge port. Of the third cylinder 70, the portion between the upper end portion 70a and the lower end portion 70b is referred to as the main body portion 71.
 第2の筒40は、筒状を呈している第4の筒90に囲われている。第4の筒90は、第2の筒40の外周の半分を囲っている第1の半体91と、残り半分を囲っている第2の半体92と、から構成されている。 The second cylinder 40 is surrounded by a fourth cylinder 90 having a tubular shape. The fourth cylinder 90 is composed of a first half body 91 surrounding a half of the outer circumference of the second cylinder 40 and a second half body 92 surrounding the other half.
 第1の半体91の上端部91aと、下端部91bとは、それぞれ、第2の筒40の外周面に接合されている。第2の半体92の上端部92aと、下端部92bとは、それぞれ、第2の筒40の外周面に接合されている。 The upper end portion 91a and the lower end portion 91b of the first half body 91 are joined to the outer peripheral surface of the second cylinder 40, respectively. The upper end portion 92a and the lower end portion 92b of the second half body 92 are joined to the outer peripheral surface of the second cylinder 40, respectively.
 第2の筒40と、第4の筒90との間の環状の領域は、冷却水が流れる冷却流路93を構成している。第1の半体91には、冷却流路93に冷却水を導入可能な導入管15が接続されている。第2の半体92には、冷却流路93から冷却水を排出可能な排出管16が接続されている。 The annular region between the second cylinder 40 and the fourth cylinder 90 constitutes a cooling flow path 93 through which cooling water flows. An introduction pipe 15 capable of introducing cooling water into the cooling flow path 93 is connected to the first half body 91. A discharge pipe 16 capable of discharging cooling water from the cooling flow path 93 is connected to the second half body 92.
 図3及び図5を参照する。第3の筒70の本体部71の一部は、第1の筒20の下端部20bを保持している。中心線CLに沿って、第3の筒70の本体部71を見ると(図5参照)、本体部71は、第1の筒20の下端部20bの外周面の一部に当接している円弧状の一対の当接部72,72を有している。一対の当接部72,72は、第1の筒20の下端部20bに接合されている。本体部71のうち、一対の当接部72,72以外の部位は、第1の筒20の下端部20bの外周面から径方向外側に離れている。この部位を一対の離間部73,73とする。 Refer to FIGS. 3 and 5. A part of the main body 71 of the third cylinder 70 holds the lower end 20b of the first cylinder 20. Looking at the main body 71 of the third cylinder 70 along the center line CL (see FIG. 5), the main body 71 is in contact with a part of the outer peripheral surface of the lower end 20b of the first cylinder 20. It has a pair of arcuate contact portions 72,72. The pair of contact portions 72, 72 are joined to the lower end portion 20b of the first cylinder 20. The portions of the main body 71 other than the pair of contact portions 72, 72 are radially outwardly separated from the outer peripheral surface of the lower end portion 20b of the first cylinder 20. This portion is referred to as a pair of separation portions 73,73.
 図2及び図5を参照する。第1の流路30は、バタフライ式のバルブにより開閉可能である。バルブは、棒状の回転軸101と、回転軸101に固定されている円板状の弁体102と、回転軸101の両端を支持している円柱状の支持部材103,103と、を有している。 Refer to FIGS. 2 and 5. The first flow path 30 can be opened and closed by a butterfly type valve. The valve has a rod-shaped rotary shaft 101, a disc-shaped valve body 102 fixed to the rotary shaft 101, and columnar support members 103 and 103 that support both ends of the rotary shaft 101. ing.
 支持部材103,103は、第3の筒70の一対の当接部72,72に形成された支持孔72a,72a(図3参照)に差し込まれて支持されている。 The support members 103 and 103 are inserted into and supported by the support holes 72a and 72a (see FIG. 3) formed in the pair of contact portions 72 and 72 of the third cylinder 70.
 図4を参照する。第1の流路30を、排気ガスの流れを分岐させる分岐路31と、分岐路31の上流側に隣接している上流路32と、分岐路31の下流側に隣接している下流路33と、に区画する。 Refer to FIG. The first flow path 30 has a branch path 31 for branching the flow of exhaust gas, an upper flow path 32 adjacent to the upstream side of the branch path 31, and a lower flow path 33 adjacent to the downstream side of the branch path 31. And, divide into.
 分岐路31には連通孔21,21が位置している。分岐路31の流路面積A1は一定である。 Communication holes 21, 21 are located in the branch road 31. The flow path area A1 of the branch path 31 is constant.
 上流路32は、最も上流側に位置し流路面積A2が一定の第1の定常路34と、第1の定常路34の下流側に隣接していると共に下流側に向かって流路面積が小さくなる縮小路35と、を有している。縮小路35は、分岐路31の直ぐ上流側に位置している。 The upper flow path 32 is adjacent to the first steady path 34, which is located on the most upstream side and has a constant flow path area A2, and the downstream side of the first steady path 34, and has a flow path area toward the downstream side. It has a smaller reduction path 35 and. The reduced road 35 is located immediately upstream of the branch road 31.
 下流路33は、分岐路31の下流側に隣接しており下流側に向かうに連れて流路面積が大きくなる第1の拡大路36と、第1の拡大路36の下流側に隣接しており流路面積A3が一定の第2の定常路37と、第2の定常路37の下流側に隣接しており下流側に向かうに連れて流路面積が大きくなる第2の拡大路38と、第2の拡大路38の下流側に隣接しており流路面積A4が一定の第3の定常路39と、を有している。 The lower flow path 33 is adjacent to the downstream side of the branch road 31, and is adjacent to the first expansion path 36 in which the flow path area increases toward the downstream side and the downstream side of the first expansion path 36. A second steady path 37 having a constant cage area A3 and a second expansion path 38 adjacent to the downstream side of the second steady path 37 and having a larger flow path area toward the downstream side. It has a third steady path 39 which is adjacent to the downstream side of the second expansion path 38 and has a constant flow path area A4.
 図3及び図4を参照する。第1の筒20は、単一の部材により構成されている。詳細には、第1の筒20は、第1の定常路34を構成している第1の直管部23と、縮小路35を構成している縮小部24と、分岐路31を構成している分岐部25と、を有している。 Refer to FIGS. 3 and 4. The first cylinder 20 is composed of a single member. Specifically, the first cylinder 20 constitutes a first straight pipe portion 23 constituting the first steady path 34, a reduced section 24 constituting the reduced path 35, and a branch path 31. It has a branch portion 25 and a branch portion 25.
 さらに、第1の筒20は、第1の拡大路36を構成している第1の拡大部26と、第2の定常路37を構成している第2の直管部27と、第2の拡大路38を構成している第2の拡大部28と、第3の定常路39を構成している第3の直管部29と、を有している。 Further, the first cylinder 20 has a first expansion portion 26 constituting the first expansion path 36, a second straight pipe portion 27 constituting the second steady path 37, and a second. It has a second expansion portion 28 constituting the expansion path 38 of the above, and a third straight pipe portion 29 constituting the third steady path 39.
 分岐部25は、第1の筒20のなかで縮径加工により縮径された部位である。第3の直管部29は、第1の筒20のなかで拡径加工により加工された部位である。縮小部24の外形はテーパ状となっているが、段差状であってもよい。なお、第1の流路30を構成できるような形状となるように加工する限り、縮径加工又は拡径加工する部位は、適宜選択して良い。 The branch portion 25 is a portion of the first cylinder 20 that has been reduced in diameter by diameter reduction processing. The third straight pipe portion 29 is a portion of the first cylinder 20 processed by diameter expansion processing. The outer shape of the reduced portion 24 is tapered, but it may be stepped. As long as the shape is such that the first flow path 30 can be formed, the portion to be reduced in diameter or expanded in diameter may be appropriately selected.
 第3の流路80を、バルブの開口よりも上流側の上流路81と、下流側の下流路82とに区画する。 The third flow path 80 is divided into an upper flow path 81 on the upstream side of the valve opening and a lower flow path 82 on the downstream side.
 上流路81は、第2の拡大部28及び第3の直管部29と、離間部73とに囲われた2つの領域である。下流路82は、流路面積が一定の定常路83と、定常路83の下流側に隣接しており下流側に向かって流路面積が小さくなる縮小路84と、を有している。 The upper flow path 81 is two regions surrounded by the second enlarged portion 28, the third straight pipe portion 29, and the separated portion 73. The lower flow path 82 has a steady path 83 having a constant flow path area, and a reduced path 84 adjacent to the downstream side of the steady path 83 and having a smaller flow path area toward the downstream side.
 バルブ100により開閉される開口105(図5も参照)の面積B2は、縮小路35のなかの最小の流路面積B1よりも大きい(B2>B1)。なお、縮小路35のなかの最小の流路面積B1と、分岐路31の流路面積A1は等しい(B1=A1)。流路面積A3と、開口105の面積B2は略等しい(A3≒B2)。 The area B2 of the opening 105 (see also FIG. 5) opened and closed by the valve 100 is larger than the minimum flow path area B1 in the reduced path 35 (B2> B1). The minimum channel area B1 in the reduced path 35 and the channel area A1 of the branch path 31 are equal (B1 = A1). The flow path area A3 and the area B2 of the opening 105 are substantially equal (A3≈B2).
 下流路82のなかの任意の位置(線Rの範囲内の位置)の流路面積を流路面積B3とする。流路面積B3は、開口105の面積B2よりも大きい(B3>B2)。なお、流路面積B3と、開口105の面積B2とを等しく設定してもよい(B3=B2)。 The flow path area at an arbitrary position (position within the range of the line R) in the lower flow path 82 is defined as the flow path area B3. The flow path area B3 is larger than the area B2 of the opening 105 (B3> B2). The flow path area B3 and the area B2 of the opening 105 may be set equally (B3 = B2).
 実施例1では、流路面積B3は、下流側に向かって流路面積が小さく設定されている。最も下流側の流路面積B31は、開口105の面積B2よりも大きい。例えば、最も下流側の流路面積B31は、開口105の面積B2と等しく設定しても良い。 In the first embodiment, the flow path area B3 is set so that the flow path area becomes smaller toward the downstream side. The flow path area B31 on the most downstream side is larger than the area B2 of the opening 105. For example, the flow path area B31 on the most downstream side may be set to be equal to the area B2 of the opening 105.
 排熱回収装置10の動作について説明する。 The operation of the waste heat recovery device 10 will be described.
 図2を参照する。バルブ100が閉じている場合、排熱回収装置10の導入口(第1の筒20の上端部20a)から導入された排気ガスは、上流路32と、分岐路31と、連通孔21,21を通過して、第2の流路50に流れ込む。第2の流路50に流れ込んだ排気ガスは、熱回収体14の貫通孔14cに進入し、熱回収体14を加熱する。熱回収体14の熱は、第2の筒40を介して、冷却流路93を流れる冷却水に伝わり、冷却水が加熱される(熱回収モード)。 Refer to FIG. When the valve 100 is closed, the exhaust gas introduced from the introduction port of the exhaust heat recovery device 10 (the upper end portion 20a of the first cylinder 20) reaches the upper flow path 32, the branch path 31, and the communication holes 21, 21. And flows into the second flow path 50. The exhaust gas that has flowed into the second flow path 50 enters the through hole 14c of the heat recovery body 14 and heats the heat recovery body 14. The heat of the heat recovery body 14 is transmitted to the cooling water flowing through the cooling flow path 93 via the second cylinder 40, and the cooling water is heated (heat recovery mode).
 熱回収体14と、第2の筒40と、第4の筒90とにより、本発明の熱交換器が構成されているといえる。熱交換器は他の周知の構成でもよい。熱回収体14を通過した排気ガスは、第3の流路80を通過して、排出口(第3の筒70の下端部70b)から排出される。冷却水が所定の温度に達すると、サーモアクチュエータ(不図示)が駆動してバルブ100が開く。 It can be said that the heat exchanger of the present invention is composed of the heat recovery body 14, the second cylinder 40, and the fourth cylinder 90. The heat exchanger may have other well-known configurations. The exhaust gas that has passed through the heat recovery body 14 passes through the third flow path 80 and is discharged from the discharge port (lower end 70b of the third cylinder 70). When the cooling water reaches a predetermined temperature, the thermoactuator (not shown) is driven to open the valve 100.
 図4を参照する。バルブ100が開いている場合、排気ガスは、第1の流路30を流れて、バルブ100の開口105を通過し、さらに第3の流路80を流れて、排出口から排出される(非回収モード)。 Refer to FIG. When the valve 100 is open, the exhaust gas flows through the first flow path 30, passes through the opening 105 of the valve 100, further flows through the third flow path 80, and is discharged from the discharge port (non-valve). Recovery mode).
 実施例1の発明の効果を説明する。 The effect of the invention of Example 1 will be described.
 図6Aは、比較例の排熱回収装置600における圧力分布図である。圧力分布図は、低圧P1、中圧P2、高圧P3の3段階に分けられて描かれている。 FIG. 6A is a pressure distribution diagram of the exhaust heat recovery device 600 of the comparative example. The pressure distribution map is drawn in three stages of low pressure P1, medium pressure P2, and high pressure P3.
 第1の筒601は直管である。第1の筒601の流路面積C1は一定である。バルブ602により開閉される開口の面積C2は、第1の筒601の流路面積C1より小さい(C2<C1)。第3の筒603の下端部(排出口)の流路面積C3は、第1の筒601の流路面積C1と等しい(C3=C1)。 The first cylinder 601 is a straight pipe. The flow path area C1 of the first cylinder 601 is constant. The area C2 of the opening opened and closed by the valve 602 is smaller than the flow path area C1 of the first cylinder 601 (C2 <C1). The flow path area C3 at the lower end (discharge port) of the third cylinder 603 is equal to the flow path area C1 of the first cylinder 601 (C3 = C1).
 このような構成の排熱回収装置600では、第1の流路611の圧力は、高圧P3となった。第2の流路612の圧力は、中圧P2となった。そのため、矢印(1)に示されるように、排気ガスは、第1の流路611から連通孔を介して第2の流路612へ流れ込みやすい。 In the exhaust heat recovery device 600 having such a configuration, the pressure of the first flow path 611 is high pressure P3. The pressure of the second flow path 612 became medium pressure P2. Therefore, as shown by the arrow (1), the exhaust gas easily flows from the first flow path 611 into the second flow path 612 through the communication hole.
 さらに、第3の流路613の上流側の圧力は中圧P2となった。一方、第3の筒603の下端部(排出口)周辺は低圧P1となった。そのため、矢印(2)に示されるように、排気ガスは、第3の流路613の上流側から下端部(排出口)周辺へ流れやすい。したがって、バルブ602が開いている場合であっても、排気ガスは第2の流路612を通過しやすく、熱回収が行われてしまう。 Furthermore, the pressure on the upstream side of the third flow path 613 was medium pressure P2. On the other hand, the area around the lower end (discharge port) of the third cylinder 603 became a low pressure P1. Therefore, as shown by the arrow (2), the exhaust gas tends to flow from the upstream side of the third flow path 613 to the vicinity of the lower end portion (exhaust port). Therefore, even when the valve 602 is open, the exhaust gas easily passes through the second flow path 612, and heat recovery is performed.
 図4を参照する。実施例1において、第1の流路30は、連通孔21,21が位置しており排気ガスの流れを分岐させる分岐路31と、下流側に向かって流路面積が小さくなる縮小路35と、を有している。縮小路35は、分岐路31の直ぐ上流側に位置している。 Refer to FIG. In the first embodiment, the first flow path 30 includes a branch path 31 in which communication holes 21 and 21 are located to branch the flow of exhaust gas, and a reduced path 35 in which the flow path area becomes smaller toward the downstream side. ,have. The reduced road 35 is located immediately upstream of the branch road 31.
 バルブ100により開閉される開口105の面積B2は、縮小路35のなかの最小の流路面積B1よりも大きい(B2>B1)。 The area B2 of the opening 105 opened and closed by the valve 100 is larger than the minimum flow path area B1 in the reduced path 35 (B2> B1).
 下流路82のなかの任意の位置(線Rの範囲内の位置)の流路面積を流路面積B3とする。流路面積B3は、開口105の面積B2よりも大きい(B3>B2)。 The flow path area at an arbitrary position (position within the range of the line R) in the lower flow path 82 is defined as the flow path area B3. The flow path area B3 is larger than the area B2 of the opening 105 (B3> B2).
 図6Bを参照する。上記の構成の排熱回収装置10では、高圧P3となった箇所はない。第1の流路30のうち、上流路32の圧力は中圧P2となり、下流路33の圧力も中圧となった。分岐路31の圧力は低圧P1となった。第2の流路50の圧力は低圧P1となった。 Refer to FIG. 6B. In the exhaust heat recovery device 10 having the above configuration, there is no place where the high pressure P3 is reached. Of the first flow path 30, the pressure of the upper flow path 32 became the medium pressure P2, and the pressure of the lower flow path 33 also became the medium pressure. The pressure of the branch path 31 became low pressure P1. The pressure of the second flow path 50 became low pressure P1.
 分岐路31と、第2の流路50では、圧力差がないため、矢印(3)に示されるような、分岐路31から第2の流路50への排気ガスの流れを抑制することができる。さらに、第2の流路50と、第3の流路80はいずれも低圧P1となった。圧力差がないため、矢印(4)に示されるような、第3の流路80の上流路32から排出口付近への流れも抑制できる。 Since there is no pressure difference between the branch path 31 and the second flow path 50, it is possible to suppress the flow of exhaust gas from the branch path 31 to the second flow path 50 as shown by the arrow (3). can. Further, both the second flow path 50 and the third flow path 80 became low pressure P1. Since there is no pressure difference, it is possible to suppress the flow from the upper flow path 32 of the third flow path 80 to the vicinity of the discharge port as shown by the arrow (4).
 以上より、バルブ100が開いている非回収モードにおいて、熱交換を抑制できる。 From the above, heat exchange can be suppressed in the non-recovery mode in which the valve 100 is open.
 図2を参照する。加えて、連通孔21,21は、熱回収体14の上端面14aよりも上流側に位置している。第2の流路50は、閉塞部材60側から第3の流路80へ向かう流れのみである。第3の流路80から閉塞部材60側へ向かう流れがないため、排熱回収装置10を径方向に小型化することができる。 Refer to FIG. In addition, the communication holes 21, 21 are located on the upstream side of the upper end surface 14a of the heat recovery body 14. The second flow path 50 is only a flow from the closing member 60 side to the third flow path 80. Since there is no flow from the third flow path 80 toward the closing member 60 side, the exhaust heat recovery device 10 can be miniaturized in the radial direction.
 加えて、閉塞部材60の本体部63の断面は、波状である。そのため、排気ガスの熱により、第1の筒20が拡径するように熱伸びした場合であっても、第1の筒の熱伸びを閉塞部材60が吸収することができる。 In addition, the cross section of the main body 63 of the closing member 60 is wavy. Therefore, even when the first cylinder 20 is thermally expanded due to the heat of the exhaust gas, the closing member 60 can absorb the thermal expansion of the first cylinder.
 上記の発明の効果は、以下に説明する実施例2~実施例4においても発揮される。実施例2~4では、第1の筒20の構成が実施例1と異なる。実施例1と共通する構成については、実施例1と同一の符号を付すると共に説明は省略する。 The effects of the above invention are also exhibited in Examples 2 to 4 described below. In Examples 2 to 4, the configuration of the first cylinder 20 is different from that of Example 1. The configurations common to those of the first embodiment are designated by the same reference numerals as those of the first embodiment, and the description thereof will be omitted.
<実施例2>
 図7を参照する。実施例2の排熱回収装置200では、第1の筒201は、筒状を呈している、上流側の第1の半体210と、下流側の第2の半体220と、の2つの部材によって構成されている。なお、第1の筒201は、3つ以上の部材によって構成してもよい。第1の半体210の内部には、後述する第2の縮小路234(縮小路)が構成されている。第2の半体220は、連通孔21,21を有している。
<Example 2>
See FIG. 7. In the waste heat recovery device 200 of the second embodiment, the first cylinder 201 has a tubular shape, that is, a first half body 210 on the upstream side and a second half body 220 on the downstream side. It is composed of members. The first cylinder 201 may be composed of three or more members. Inside the first half body 210, a second reduced path 234 (reduced path), which will be described later, is configured. The second half body 220 has communication holes 21, 21.
 第1の流路を、第1の半体210の内部である上流側流路230と、第2の半体220の内部である下流側流路240と、に区画する。 The first flow path is divided into an upstream side flow path 230 inside the first half body 210 and a downstream side flow path 240 inside the second half body 220.
 上流側流路230は、最も上流側に位置し流路面積が一定の第1の定常路231と、第1の定常路231の下流側に隣接して下流側に向かって流路面積が小さくなる第1の縮小路232と、第1の縮小路232の下流側に隣接しており流路面積が一定の第2の定常路233と、第2の定常路233の下流側に隣接して下流側に向かって流路面積が小さくなる第2の縮小路234(縮小路)と、第2の縮小路234の下流側に隣接しており流路面積が一定の第3の定常路235と、を有している。 The upstream side flow path 230 has a first steady path 231 located on the most upstream side and having a constant flow path area, and a flow path area smaller toward the downstream side adjacent to the downstream side of the first steady path 231. The first reduced path 232, the second steady path 233 which is adjacent to the downstream side of the first reduced path 232 and has a constant flow path area, and the second steady path 233 which is adjacent to the downstream side of the second steady path 233. A second reduced path 234 (reduced path) in which the channel area becomes smaller toward the downstream side, and a third steady path 235 adjacent to the downstream side of the second reduced path 234 and having a constant channel area. ,have.
 第1の半体210は、第1の定常路231を構成している第1の直管部211と、第1の縮小路232を構成している第1の縮小部212と、第2の定常路233を構成している第2の直管部213と、第2の縮径路234を構成している第2の縮小部214と、第3の定常路235を構成している第3の直管部215と、が一体となって構成されている。 The first half body 210 includes a first straight pipe portion 211 constituting the first steady path 231, a first reduced section 212 constituting the first reduced path 232, and a second. The second straight pipe portion 213 constituting the steady path 233, the second reduced section 214 constituting the second reduced path 234, and the third constituting the third steady path 235. The straight pipe portion 215 and the straight pipe portion 215 are integrally configured.
 下流側流路240は、連通孔21,21が位置している分岐路241と、分岐路241の下流側に隣接しており流路面積が一定の第4の定常路242と、第4の定常路242の下流側に隣接しており下流側に向かうに連れて流路面積が大きくなる第1の拡大路243と、第1の拡大路243の下流側に隣接しており流路面積が一定の第5の定常路244と、を有している。 The downstream flow path 240 includes a branch path 241 in which the communication holes 21, 21 are located, a fourth steady path 242 adjacent to the downstream side of the branch path 241 and having a constant flow path area, and a fourth steady path. The first expansion path 243, which is adjacent to the downstream side of the steady path 242 and the flow path area increases toward the downstream side, and the first expansion path 243, which is adjacent to the downstream side of the first expansion path 243, have a flow path area. It has a constant fifth steady path 244 and.
 詳細には、第2の半体220は、第2の直管部213の外周面に対して接合されている接合部221と、分岐路241を構成している分岐部222と、第4の定常路242を構成している第4の直管部223と、第1の拡大路243を構成している第1の拡大部224と、第5の定常路244を構成している第5の直管部225と、が一体となって構成されている。 Specifically, the second half body 220 has a joint portion 221 joined to the outer peripheral surface of the second straight pipe portion 213, a branch portion 222 constituting the branch path 241 and a fourth. The fourth straight pipe portion 223 constituting the steady path 242, the first expanding section 224 constituting the first expansion path 243, and the fifth expanding section 244 constituting the fifth steady path 244. The straight pipe portion 225 and the straight pipe portion 225 are integrally configured.
 第3の直管部215の一部は、分岐路241に進入している。第3の直管部215の下端部215aは、連通孔21の上流側の縁21bよりも下流側に位置している。接合部221の外周面は、閉塞部材60と接合している。 A part of the third straight pipe portion 215 has entered the branch road 241. The lower end portion 215a of the third straight pipe portion 215 is located on the downstream side of the upstream edge 21b of the communication hole 21. The outer peripheral surface of the joint portion 221 is joined to the closing member 60.
 実施例2では、第1の筒201は、第2の縮小路234を構成している第1の半体210と、連通孔21,21を備えた第2の半体220と、の2つの部材によって構成されている。すなわち、第2の縮小路234と、連通孔21,21とをそれぞれ別体に設けているため、各々の半体210,220の形状が複雑とならない。 In the second embodiment, the first cylinder 201 has two bodies, a first half body 210 constituting the second reduction path 234 and a second half body 220 having communication holes 21, 21. It is composed of members. That is, since the second reduction path 234 and the communication holes 21 and 21 are provided separately, the shapes of the respective half bodies 210 and 220 are not complicated.
<実施例3>
 図8Aには、実施例3の排熱回収装置を構成する第1の筒310が示されている。他の構成は実施例1と同一である。第1の筒310は、単一の部材で構成されている。第1の筒310は、連通孔311,311が位置しており排気ガスの流れを分岐させる分岐部312を有している。
<Example 3>
FIG. 8A shows a first cylinder 310 constituting the waste heat recovery device of the third embodiment. Other configurations are the same as in Example 1. The first cylinder 310 is composed of a single member. The first cylinder 310 has a branch portion 312 in which communication holes 311 and 311 are located and the flow of exhaust gas is branched.
 第1の筒310の中心線CLに沿う方向から見て(図8B参照)、分岐部312の断面は、全体としてレーストラック形状を呈している。詳細には、分岐部312は、互いに平行に延びている一対の直線部314,314と、一対の円弧状の円弧部313,313と、が一体となり構成されている。連通孔311,311は、各々の円弧部313,313に形成されている。 When viewed from the direction along the center line CL of the first cylinder 310 (see FIG. 8B), the cross section of the branch portion 312 has a race track shape as a whole. Specifically, the branch portion 312 is configured by integrally forming a pair of straight lines 314, 314 extending in parallel with each other and a pair of arcuate arc portions 313, 313. The communication holes 311 and 311 are formed in the arc portions 313 and 313, respectively.
 図8Cを参照する。第1の筒310の内部の第1の流路320の構成は、実施例1の第1の流路30(図4参照)の基本的な構成と同一である。即ち、第1の流路320は、第1の定常路321、縮小路322、分岐路323、第1の拡大路324、第2の定常路325、第2の拡大路326、第3の定常路327と、に区画できる。 Refer to FIG. 8C. The configuration of the first flow path 320 inside the first cylinder 310 is the same as the basic configuration of the first flow path 30 (see FIG. 4) of the first embodiment. That is, the first flow path 320 has a first steady path 321, a reduced path 322, a branch path 323, a first expansion path 324, a second steady path 325, a second expansion path 326, and a third steady path. It can be divided into roads 327 and.
 第1の筒310の分岐部312の断面は、レーストラック形状を呈している。そのため、円筒状の直管を径方向に挟み込んで潰すように塑性加工することにより、分岐部312を形成することができる。円筒状の直管の径を全周に亘り小さくする縮径加工と比較すると、簡素な加工で第1の流路320を構成することができる。 The cross section of the branch portion 312 of the first cylinder 310 has a race track shape. Therefore, the branch portion 312 can be formed by plastically working so as to sandwich the cylindrical straight pipe in the radial direction and crush it. Compared with the diameter reduction processing in which the diameter of the cylindrical straight pipe is reduced over the entire circumference, the first flow path 320 can be configured by simple processing.
<実施例4>
 図9A、図9Bを参照する。図9Aには、実施例4の排熱回収装置を構成する第1の筒410が示されている。他の構成は実施例1と同一である。第1の筒410は、単一の部材で構成されている第1の筒410の内部には、第1の流路420を流れる排気ガスをガイドするガイド板430が配置されている。
<Example 4>
See FIGS. 9A and 9B. FIG. 9A shows a first cylinder 410 constituting the waste heat recovery device of the fourth embodiment. Other configurations are the same as in Example 1. In the first cylinder 410, which is composed of a single member, a guide plate 430 for guiding the exhaust gas flowing through the first flow path 420 is arranged inside the first cylinder 410.
 ガイド板430は、第1の筒410の内周面410aに対して接合されている。ガイド板430は、内周面410aとの接合箇所を起点として、下流側に傾いている。 The guide plate 430 is joined to the inner peripheral surface 410a of the first cylinder 410. The guide plate 430 is inclined to the downstream side from the joint with the inner peripheral surface 410a as a starting point.
 図9Cを参照する。ガイド板430のガイド面431と、内周面410aとに囲われた領域が、縮小路422を構成している。第1の流路420を、上流側から、第1の定常路421と、縮小路422と、分岐路423と、第2の定常路424と、拡大路425と、第3の定常路426と、に区画する。第1の定常路421と、分岐路423と、第2の定常路424との流路面積は、互いに等しい。 Refer to FIG. 9C. The area surrounded by the guide surface 431 of the guide plate 430 and the inner peripheral surface 410a constitutes the reduced path 422. From the upstream side, the first flow path 420 includes the first steady path 421, the reduced path 422, the branch path 423, the second steady path 424, the expansion path 425, and the third steady path 426. Divide into ,. The flow path areas of the first steady path 421, the branch path 423, and the second steady path 424 are equal to each other.
 ガイド板430と、連通孔411とは、周方向に同じ位置にあるが、周方向に互いに異なる位置に配置してもよい。 The guide plate 430 and the communication hole 411 are at the same position in the circumferential direction, but may be arranged at different positions in the circumferential direction.
 ガイド板430のガイド面431と、内周面410aとに囲われた領域が、縮小路422を構成している。第1の筒410のなかの、拡大路425よりも上流側の部位の外形は一定である。実施例1~実施例3と異なり、縮小路422を構成するための塑性加工を施さずに、縮小路422を構成することができる。 The area surrounded by the guide surface 431 of the guide plate 430 and the inner peripheral surface 410a constitutes the reduced path 422. The outer shape of the portion of the first cylinder 410 on the upstream side of the expansion path 425 is constant. Unlike the first to third embodiments, the reduced path 422 can be configured without plastic working to form the reduced path 422.
 なお、本発明の作用及び効果を奏する限りにおいて、本発明は、実施例1~4に限定されるものではない。 The present invention is not limited to Examples 1 to 4 as long as the actions and effects of the present invention are exhibited.
10…排熱回収装置
14…熱回収体(熱交換器)
20…第1の筒
30…第1の流路
31…分岐路
35…縮小路
40…第2の筒
50…第2の流路
60…閉塞部材
70…第3の筒
100…バルブ
105…開口
B1…縮小路のなかの最小の流路面積
B2…バルブにより開閉される開口の面積
B3…バルブより後方で、第3の流路のなかの任意の位置における流路面積
200…排熱回収装置
201…第1の筒
210…第1の半体
220…第2の半体
310…第1の筒
311…連通孔
312…分岐部の断面(連通孔が位置している部位の断面)
320…第1の流路
410…第1の筒
410a…第1の筒の内周面
411…連通孔
430…ガイド板
10 ... Exhaust heat recovery device 14 ... Heat recovery body (heat exchanger)
20 ... First cylinder 30 ... First flow path 31 ... Branch path 35 ... Reduction path 40 ... Second cylinder 50 ... Second flow path 60 ... Closing member 70 ... Third cylinder 100 ... Valve 105 ... Opening B1 ... Minimum flow path area in the reduced path B2 ... Area of the opening opened and closed by the valve B3 ... Flow path area 200 at any position in the third flow path behind the valve ... Exhaust heat recovery device 201 ... 1st cylinder 210 ... 1st half body 220 ... 2nd half body 310 ... 1st cylinder 311 ... Communication hole 312 ... Cross section of branch portion (cross section of a portion where the communication hole is located)
320 ... 1st flow path 410 ... 1st cylinder 410a ... Inner peripheral surface 411 of the 1st cylinder ... Communication hole 430 ... Guide plate

Claims (6)

  1.  筒状を呈しており、内部が排気ガスの第1の流路である第1の筒と、
     筒状を呈しており、前記第1の筒を囲うことにより、前記第1の筒と共に第2の流路を構成している第2の筒と、
     排気ガスの流れ方向を基準として前記第2の筒の上流側の端部を塞いでいる閉塞部材と、
     前記第1の筒に形成されており、前記第1の流路と前記第2の流路とを連通させている連通孔と、
     前記連通孔から前記第2の流路に流れ込んだ前記排気ガスと、冷却水とで、熱交換を行う熱交換器と、
     前記連通孔よりも下流側にて、第1の流路を開閉可能なバルブと、
     筒状を呈しており、内部が前記第1の流路又は前記第2の流路を通過した排気ガスの第3の流路である第3の筒と、を有する排熱回収装置において、
     前記連通孔は、前記熱交換器よりも上流側に位置しており、
     前記第2の流路を流れる排気ガスは、前記閉塞部材側に向かうことなく、第3の流路に向かって流れ、
     前記第1の流路は、前記連通孔が位置していることにより排気ガスの流れを分岐させる分岐路を有しており、
     前記分岐路の直ぐ上流側には、前記分岐路に向かって流路面積が小さくなる縮小路が位置しており、
     前記バルブにより開閉される開口の面積は、前記縮小路のなかの最小の流路面積よりも大きく、
     前記バルブよりも後方において、前記第3の流路のなかの任意の位置における流路面積は、前記バルブにより開閉される前記開口の面積と等しいか、又は、前記開口の面積よりも大きいことを特徴とする、排熱回収装置。
    The first cylinder, which has a tubular shape and the inside is the first flow path for exhaust gas,
    A second cylinder which has a cylindrical shape and which constitutes a second flow path together with the first cylinder by surrounding the first cylinder,
    A closing member that closes the upstream end of the second cylinder with reference to the flow direction of the exhaust gas, and
    A communication hole formed in the first cylinder and communicating the first flow path and the second flow path,
    A heat exchanger that exchanges heat between the exhaust gas that has flowed into the second flow path from the communication hole and the cooling water.
    A valve that can open and close the first flow path on the downstream side of the communication hole,
    In an exhaust heat recovery device having a tubular shape and a third cylinder whose inside is a third flow path of exhaust gas that has passed through the first flow path or the second flow path.
    The communication hole is located on the upstream side of the heat exchanger.
    The exhaust gas flowing through the second flow path flows toward the third flow path without going toward the closing member side,
    The first flow path has a branch path for branching the flow of exhaust gas due to the location of the communication hole.
    Immediately upstream of the branch road, a reduced road having a smaller flow path area toward the branch road is located.
    The area of the opening opened and closed by the valve is larger than the minimum flow path area in the reduced path.
    Behind the valve, the flow path area at any position in the third flow path is equal to or greater than the area of the opening opened and closed by the valve. A featured exhaust heat recovery device.
  2.  前記第1の筒は、単一の部材により構成されている、ことを特徴とする請求項1に記載の排熱回収装置。 The waste heat recovery device according to claim 1, wherein the first cylinder is composed of a single member.
  3.  前記第1の筒のうち、前記連通孔が位置している部位の断面は、全体としてレーストラック形状を呈している、ことを特徴とする請求項2に記載の排熱回収装置。 The waste heat recovery device according to claim 2, wherein the cross section of the portion of the first cylinder in which the communication hole is located has a race track shape as a whole.
  4.  前記第1の筒は、各々が筒状を呈している、上流側の第1の半体と、下流側の第2の半体と、の2つの部材によって構成されており、
     前記第1の半体の内部には、前記縮小路が構成されており、
     前記第2の半体は、前記連通孔を有している、ことを特徴とする請求項1に記載の排熱回収装置。
    The first cylinder is composed of two members, a first half body on the upstream side and a second half body on the downstream side, each of which has a cylindrical shape.
    The reduced path is configured inside the first half body.
    The waste heat recovery device according to claim 1, wherein the second half body has the communication hole.
  5.  前記縮小路は、前記第1の筒の内周面と、前記第1の筒の前記内周面の一部に対して接合されて前記排気ガスの流れをガイドするガイド板と、によって構成されている、ことを特徴とする請求項1に記載の排熱回収装置。 The reduced path is composed of an inner peripheral surface of the first cylinder and a guide plate joined to a part of the inner peripheral surface of the first cylinder to guide the flow of the exhaust gas. The exhaust heat recovery device according to claim 1, wherein the exhaust heat recovery device is provided.
  6.  前記閉塞部材の断面は、波状を呈している、ことを特徴とする請求項1~請求項5のいずれか1項に記載の排熱回収装置。 The waste heat recovery device according to any one of claims 1 to 5, wherein the cross section of the closing member has a wavy shape.
PCT/JP2021/036038 2020-10-23 2021-09-30 Exhaust heat recovery device WO2022085387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-177832 2020-10-23
JP2020177832A JP2022068969A (en) 2020-10-23 2020-10-23 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
WO2022085387A1 true WO2022085387A1 (en) 2022-04-28

Family

ID=81289904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036038 WO2022085387A1 (en) 2020-10-23 2021-09-30 Exhaust heat recovery device

Country Status (2)

Country Link
JP (1) JP2022068969A (en)
WO (1) WO2022085387A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247638A (en) * 2006-03-17 2007-09-27 Sango Co Ltd Exhaust heat recovery device
JP2009024565A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Exhaust heat collecting device for internal combustion engine
JP2018119418A (en) * 2017-01-23 2018-08-02 トヨタ自動車株式会社 Exhaust heat recovery equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247638A (en) * 2006-03-17 2007-09-27 Sango Co Ltd Exhaust heat recovery device
JP2009024565A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Exhaust heat collecting device for internal combustion engine
JP2018119418A (en) * 2017-01-23 2018-08-02 トヨタ自動車株式会社 Exhaust heat recovery equipment

Also Published As

Publication number Publication date
JP2022068969A (en) 2022-05-11

Similar Documents

Publication Publication Date Title
EP2843213B1 (en) Heat exchanger for aircraft engine
JP4995706B2 (en) Exhaust heat recovery device
WO2013094539A1 (en) Exhaust gas heat recovery device
RU2578015C1 (en) Device for recycling exhaust gas heat
CN104487670B (en) Exhaust gas heat recovery device
CN106066128B (en) Heat exchange device
KR20170088993A (en) Heat recovery device and exhaust line fitted with such device
WO2022085387A1 (en) Exhaust heat recovery device
US10487781B2 (en) Exhaust heat recovery device
JP2006207888A (en) Double-pipe type heat exchanger
CN108026816B (en) Exhaust heat recovery device
US10731608B2 (en) Exhaust heat recovery device
JP2007162509A (en) Exhaust gas passage structure for internal combustion engine, exhaust manifold, cylinder head, and gasket for exhaust manifold
JP7023040B2 (en) Heat exchanger
US20170343302A1 (en) Heat exchanger
US10697403B2 (en) Exhaust heat recovery device
JP6243158B2 (en) Exhaust heat recovery device
JP7157726B2 (en) Exhaust system
JP7221853B2 (en) Exhaust heat recovery device
JP2004108640A (en) Exhaust heat recovery heat exchanger
JP2022068879A (en) Heat exchanger
JP2022114791A (en) Silencer
JP2012246837A (en) Exhaust heat recovery device
JP2008088935A (en) Exhaust system heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882528

Country of ref document: EP

Kind code of ref document: A1