WO2022085345A1 - 匂い検知モジュールおよび匂い検知方法 - Google Patents

匂い検知モジュールおよび匂い検知方法 Download PDF

Info

Publication number
WO2022085345A1
WO2022085345A1 PCT/JP2021/034086 JP2021034086W WO2022085345A1 WO 2022085345 A1 WO2022085345 A1 WO 2022085345A1 JP 2021034086 W JP2021034086 W JP 2021034086W WO 2022085345 A1 WO2022085345 A1 WO 2022085345A1
Authority
WO
WIPO (PCT)
Prior art keywords
odor
detection module
measured
measurement
sensor
Prior art date
Application number
PCT/JP2021/034086
Other languages
English (en)
French (fr)
Inventor
修二 藤田
幸人 井上
和貴 高木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022557296A priority Critical patent/JPWO2022085345A1/ja
Publication of WO2022085345A1 publication Critical patent/WO2022085345A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present technology relates to an odor detection module and an odor detection method, and more specifically, an odor detection module and an odor that detects an odor to be measured by using a sensor element that detects an odor and an odor presentation unit that presents a reference odor. Regarding the detection method.
  • Patent Document 1 not all the reference data obtained by measuring each of a plurality of types of standard odors is necessarily used, and the strength of the unknown odor is determined according to the type and classification of the unknown sample to be measured. Odor measurement that appropriately selects an appropriate standard odor to express the degree of odor, etc., and calculates an index value that indicates the degree of odor intensity using only the reference data corresponding to the selected standard odor. A device has been proposed.
  • n evaluations corresponding to each reference in the m-dimensional space formed by the detection outputs from the m odor sensors are measured.
  • the measurement point is positioned in the m-dimensional space by measuring the reference axis acquisition step for positioning the reference axis and the evaluation target whose purpose has changed or may have changed with the odor measuring device, and the measurement point and the above are described.
  • An odor evaluation method characterized by having an evaluation step for creating information reflecting a change in odor quality from a target odor to an evaluation target odor based on the positional relationship with n evaluation reference axes has been proposed. There is.
  • the main purpose of this technique is to provide an odor detection module that can detect odors stably and with high accuracy regardless of time or environmental factors.
  • smell means to include all kinds of odors such as good scents and bad scents.
  • the present technology includes a sensor element that detects an odor and an odor presenting unit that presents a reference odor on the surface of the sensor element, and the sensor element detects the reference odor and the odor to be measured.
  • a detection module Provides a detection module.
  • the odor detection module further includes a processing unit that inputs the response output of the sensor element and calculates the intensity information and / or identification information of the odor to be measured based on the trained model generated by machine learning. be able to.
  • a step of presenting a reference odor a step of measuring the reference odor, a step of measuring the odor of the measurement target, the measured odor of the reference, and the measured odor of the measurement target are measured.
  • an odor detection method including a step of calculating the odor intensity information and / or identification information of the odor to be measured based on a trained model acquired and generated by machine learning.
  • odor can be detected stably and with high accuracy regardless of time or environmental factors. It should be noted that the above effects are not necessarily limited, and in addition to or in place of the above effects, any effect shown herein or any other effect that can be grasped from the present specification may be used. It may be played.
  • FIG. 1 is a schematic configuration diagram showing a configuration example of the odor detection module 10 according to the present embodiment.
  • the odor detection module 10 includes a multi-array sensor 11, an odor display 12 which is an odor presenting unit, an exhaust mechanism 13, an exhaust mechanism 14, and a reference airflow inlet 15.
  • the airflow inlet 16 to be measured is provided.
  • the odor detection module 10 includes an AI processing unit 18 connected to the multi-array sensor 11.
  • sensor elements for detecting odors are arranged in a plurality of arrays, and each sensor element can detect an odor of a different reference and an odor of a measurement target (object and / or space).
  • a measurement target object and / or space.
  • various sensor responses are possible. For example, even if the sensor response is only ON / OFF, if there is one sensor, only two patterns can be identified, but if there are ten sensors, 210 can identify 1,024 patterns.
  • the surface of the multi-array sensor 11 is normally covered, and the surface is exposed at the time of odor measurement. This makes it possible to prevent contamination of the sensor surface. Further, in the sensor element of the multi-array sensor 11, the surface of the unused portion is exposed at the time of odor measurement. By exposing a new sensor surface for each measurement, a stable sensor response can be obtained.
  • each sensor element of the multi-array sensor 11 is formed of any one of a polymer material, an inorganic material, and a metal material having different nanostructures or chemical properties. These sensitive membranes make it possible to identify various odors.
  • a metal oxide semiconductor for example, a metal oxide semiconductor, CMOS (Complementary Metal-Oxide-Semiconductor), SAW (Surface Acoustic Wave), SPR (Surface Plasma Resonance), QCM (Quartz Crystal Microbalance), cantilever, piezo element, etc. are used. It can be done, and there is no particular limitation.
  • the surface-sensitive film of the sensor element includes, for example, various organic polymer films, SAM (Self-Assembled Monolayer) film, LB (Langmuir-Blodgett) film, GPCR (GTP-binding Protein-Coupled Receptor), and other biological heights.
  • SAM Self-Assembled Monolayer
  • LB Liangmuir-Blodgett
  • GPCR GTP-binding Protein-Coupled Receptor
  • a membrane containing a molecule or the like can be used.
  • the olfactory display 12 presents a reference odor on the surface of the multi-array sensor 11.
  • the odor display 12 has a plurality of odor holding portions 17 that hold a fragrance that serves as a reference odor.
  • Each odor holding unit 17 has a plurality of fragrances interchangeably built in.
  • the sensory display 12 can independently control a plurality of fragrances and change them over time to present a reference odor.
  • the exhaust mechanisms 13 and 14 exhaust the air and airflow flowing near the surface of the multi-array sensor 11 to the outside. In this way, by exhausting the air, it is possible to eliminate the odor mixture of the reference odor and the odor to be measured.
  • a blower, a fan, a compressed air discharge, and the like are used for the exhaust mechanisms 13 and 14.
  • the reference airflow inlet 15 sends the reference odor airflow emitted from the sensory display 12 to the multi-array sensor 11.
  • the airflow inlet 16 to be measured is formed so as to be openable and closable, and the odor of the measurement target is sent to the multi-array sensor 11 at the time of opening.
  • the AI processing unit 18 inputs a reference measurement value which is a sensorgram for measuring the reference odor and a target measurement value which is a sensorgram for measuring the odor of the measurement target, and inputs the intensity information of the odor of the measurement target and / or Output the type.
  • the AI processing unit 18 inputs a sensorgram measured by measurement, which is a response output from the multi-array sensor 11, and uses artificial intelligence (AI) based on a trained model generated by machine learning.
  • AI artificial intelligence
  • the AI processing unit 18 can use, for example, strength / identification calculation AI software.
  • the AI algorithms of the AI processing unit 18 include, for example, various neural nets such as Deep Learning and GNN (graph neural network), SVM (support vector machine), SOM (Self-organizing maps), KNN (k-nearest neighbor), and Random. Forest, PCA (principal component analysis), etc. can be used.
  • FIG. 2 is a schematic configuration diagram illustrating an operation example in which a reference odor is presented to the multi-array sensor 11 by the odor display 12 of the odor detection module 10.
  • FIG. 3 is a schematic configuration diagram illustrating an operation example of measuring the odor of the measurement target by the multi-array sensor 11 of the odor detection module 10.
  • FIG. 4 is a flowchart showing an example of an odor detection method by the odor detection module 10.
  • FIG. 2 As an example, the sensory display 12 is first placed above the reference airflow inlet 15 and the pre-measurement mode is started.
  • the odor holding unit 17 of the mounted odor display 12 presents a sequence of a plurality of patterns of reference odors to the multi-array sensor 11.
  • the target measurement mode is switched to and the measurement target airflow inlet 16 is opened.
  • the air inlet 16 to be measured is opened, the odor of the object to be measured and / or the space to be measured is taken into the multi-array sensor 11 from the air inlet 16 to be measured, and the odor of the measurement target is measured by the multi-array sensor 11.
  • the sensorgram is input to the AI processing unit 18.
  • the artificial intelligence (AI) in the AI processing unit 18 is trained in advance by presenting a large amount of odor sequence patterns and presenting known intensities and types of odors. After that, when the sensorgram is input to the AI processing unit 18, the sensorgram of each sequence at the time of the prior reference odor measurement is applied to the AI trained by presenting a large amount of odor sequence patterns and presenting known intensities and types of odors. And, by inputting the sensorgram at the time of measurement of the measurement target, the intensity information and / or the odor identification information (odor identification) of the measurement target is calculated.
  • step S1 the sense of smell display 12 creates a presentation sequence of the odor library.
  • a plurality of standard odors are combined and changed in time series.
  • step S2 the sensory display 12 sequences the presentation sequence of the odor library.
  • step S3 the multi-array sensor 11 detects a reference odor.
  • step S4 the multi-array sensor 11 exhausts the reference odor airflow from the exhaust mechanisms 13 and 14, and outputs the reference odor sensorgram to the AI processing unit 18.
  • the AI processing unit 18 inputs the output sensorgram. Further, the process returns to step S1 and the steps S1 to S4 are repeated as many times as necessary. After that, the process proceeds to step S5.
  • step S5 the odor detection module 10 switches the inlet to the multi-array sensor 11 from the olfactory display 12 to the airflow inlet 16 to be measured.
  • step S6 the multi-array sensor 11 detects the odor of the measurement target.
  • step S7 the multi-array sensor 11 exhausts the airflow of the odor to be measured from the exhaust mechanisms 13 and 14, and outputs the sensorgram of the odor to be measured to the AI processing unit 18.
  • the AI processing unit 18 inputs the output sensorgram.
  • step S8 the AI processing unit 18 performs pattern analysis by AI from the sensorgram of the reference odor measured in advance and the odor of the target measurement. At this time, the intensity information and the identification information are calculated by the pattern matching AI using the results of the pre-measurement based on the built-in reference odor and the target measurement as inputs.
  • step S9 the AI processing unit 18 outputs the analyzed intensity information of the measurement target and identification information such as the type of odor to the outside.
  • the odor detection module 10 is a module in which a multi-array sensor 11 which is a plurality of arrayed sensor elements and an odor display 12 having a plurality of reference odors are integrated. ..
  • the odor detection module 10 presents fragrance on the surface of the multi-array sensor 11 while changing the composition of a plurality of reference odors held in the mounted odor display 12 over time.
  • the intensity of the sensor signal to be measured and the identification can be calibrated.
  • the odor detection module 10 can stably and accurately detect and identify odors in the air regardless of temporal or environmental factors including deterioration and climate.
  • the odor detection module 10 since the odor detection module 10 has the multi-array sensor 11 and the olfactory display 12 compactly integrated, it can be mounted on a portable device such as a mobile device or a wearable device. Therefore, the odor detection module 10 is easy to carry and can measure the odor at a place according to the user's request.
  • the reference odor is measured in advance before the measurement of the odor of the measurement target, but the reference odor may be measured at the same time as the odor of the measurement target, or the odor of the measurement target may be measured. It may be measured after the measurement of.
  • the olfactory display 12 can present a reference odor according to the surrounding environment such as temperature and humidity, and can also present a reference odor corrected according to the number of times of use.
  • 5 to 7 are sequence diagrams of odors presented by the sensory display 12. 5 to 7 show that the fragrance mix presented varies over time. 8 to 10 are graphs showing sensorgrams from each sequence shown in FIGS. 5 to 7. 8 to 10 show the reaction of the sensor.
  • FIG. 5 shows a state in which the sensory display 12 possesses eight standard scents A to H, changes them over time, and presents the scent to the multi-array sensor 11 (sequence 1). ) Is shown.
  • the sequence 1 only the odor A is presented first, and after a predetermined time elapses, the odor H is presented while continuing the presentation of the odor A. Next, the presentation of the odor A is stopped, the presentation of the odor H is continued, and the odor, the odor C, and the odor F to be measured are presented. After that, the presentation of the odor, the odor C, and the odor F to be measured is stopped, and only the presentation of the odor H is continued.
  • FIG. 6 shows how the olfactory display 12 presents the fragrance to the multi-array sensor 11 (sequence 2), as in FIG.
  • sequence 2 no odor is presented at the beginning, and odor E and odor F are presented after a lapse of a predetermined time.
  • Smell B and Smell C are presented while continuing the presentation of Smell E and Smell F.
  • the presentation of odor B, odor E, and odor F is continued, and after a predetermined time elapses, the presentation of odor B, odor E, and odor F is also stopped.
  • only the odor to be measured is presented.
  • FIG. 7 also shows how the olfactory display 12 presents the fragrance to the multi-array sensor 11 (sequence 3), as in FIGS. 5 and 6.
  • sequence 3 only the odor to be measured is first presented.
  • the presentation of the odor to be measured is stopped, and the odor A and the odor E are presented.
  • the presentation of odor A and odor E is stopped, and odor C and odor G are presented.
  • the presentation of the scent C is stopped, the presentation of the scent G is continued, and the scent E is presented.
  • the presentation of the odor G is stopped and only the odor E is presented.
  • FIG. 8 shows sensorgram 1 from sequence 1 shown in FIG.
  • the horizontal axis of FIG. 8 represents time (seconds), and the vertical axis represents response (current change amount%).
  • the reaction of Sensor 7 and Sensor 8 becomes large, and the reaction of Sensor 6 becomes relatively small. Overall, it can be said that there is little variation in the reaction from Sensor 1 to Sensor 10.
  • FIG. 8 shows the reaction of each Sensor when the sensorgram response of each Sensor changes subtly due to the change of the perfume mix to be exposed.
  • the timing at which the fragrance mix changes extremely is represented as a line graph.
  • FIG. 9 shows the sensorgram 2 from the sequence 2 shown in FIG. 6, similar to FIG. As shown in FIG. 9, in Sensorgram 2, for example, as time passes, the reaction of Sensor 8 and Sensor 9 becomes large, and the reaction of Sensor 1 becomes relatively small. Overall, it can be said that the variation in the reaction from Sensor 1 to Sensor 10 is slightly larger than that of Sensorgram 1.
  • FIG. 10 also shows the sensorgram 3 from the sequence 3 shown in FIG. 7, similar to FIGS. 8 and 9.
  • Sensorgram 3 for example, as time passes, the reaction of Sensor 1 and Sensor 8 becomes large, and the reaction of Sensor 4 becomes relatively small. Overall, the variation in the reaction from Sensor 1 to Sensor 10 is not so large, but it can be said that the reaction is gradual over time.
  • the AI processing unit 18 is an AI that has been learned by presenting an odor sequence pattern and presenting a known intensity and type of odor, and is a measurement target by pattern matching AI based on the input sensor grams 1 to 3 and the surrounding environment. The intensity information of the odor and the identification information are calculated.
  • FIG. 11 is a schematic configuration diagram showing a configuration example of the odor detection module 20.
  • the difference between the odor detection module 20 and the odor detection module 10 according to the first embodiment is that information is transmitted and received using a communication network.
  • the odor detection module 20 has a multi-array sensor 11, an odor display 12 which is an odor presenting unit, and an exhaust mechanism, similarly to the odor detection module 10 according to the first embodiment.
  • a 13 and an exhaust mechanism 14, a reference airflow inlet 15, a measurement target airflow inlet 16, and an AI processing unit 18 are provided.
  • the odor detection module 20 includes a transmission / reception unit 21 for transmitting / receiving information to / from the cloud server 30.
  • the transmission / reception unit 21 transmits information on the reference measurement value obtained by measuring the reference odor and the target measurement value measured by measuring the odor of the measurement target to the cloud server 30 by the multi-array sensor 11, and the latest from the cloud server 30. Receive the trained model. Further, the transmission / reception unit 21 outputs the received information to the AI processing unit 18.
  • the AI processing unit 18 When calculating the latest trained model, for example, the calculation process is divided into two, and the first calculation process is calculated by the AI processing unit 18 of the odor detection module 20 which is an edge device close to the site. In the second calculation step, the cloud server 30 can also calculate the latest trained model based on the information after the calculation.
  • the AI processing unit 18 calculates the intensity information and / or the identification information of the odor to be measured based on the latest learned model received by the transmission / reception unit 21.
  • the olfactory display 12 is first placed above the reference airflow inlet 15 and the pre-measurement mode is started.
  • the odor holding unit 17 of the mounted odor display 12 presents a sequence of a plurality of patterns of reference odors to the multi-array sensor 11.
  • the target measurement mode is switched to and the measurement target airflow inlet 16 is opened.
  • the air inlet 16 to be measured is opened, the odor of the object to be measured and / or the space to be measured is taken into the multi-array sensor 11 from the air inlet 16 to be measured, and the odor of the measurement target is measured by the multi-array sensor 11.
  • the sensorgram is input to the AI processing unit 18.
  • the transmission / reception unit 21 provides information on the reference measurement value, which is a sensorgram in which the reference odor is measured by the multi-array sensor 11, and the target measurement value, which is the sensorgram in which the odor of the measurement target is measured, when online. And receives the latest trained model from the cloud server 30. When the transmission / reception unit 21 receives the latest trained model, it outputs it to the AI processing unit 18.
  • the AI processing unit 18 After that, when the latest trained model and sensorgram are input to the AI processing unit 18, a large amount of odor sequence patterns are presented and known intensities and types of odors are presented in advance. By inputting the sensorgram of each sequence at the time of odor measurement and the sensorgram at the time of measurement of the measurement target, the intensity information and / or the odor identification information (smell identification) of the measurement target is calculated.
  • the AI processing unit 18 performs learning based on the latest trained model, so that the first embodiment is used. Compared with the odor detection module 10, the accuracy of identifying the measurement target can be further improved. Further, the odor detection module 20 can also be used as an odor detection system in combination with the cloud server 30.
  • the odor detection module according to this technology can identify the odor of the measurement target, which was conventionally difficult to respond to the environment and subjectively identified, with high accuracy by objective evaluation.
  • the odor detection module according to the present technology can be utilized, for example, in the field of environmental assessment.
  • the processing unit further includes a processing unit that inputs a response output of the sensor element and calculates the intensity information and / or identification information of the odor of the measurement target based on the trained model generated by machine learning. Smell detection module.
  • the odor detection module according to (3) wherein the odor presenting unit independently controls the plurality of fragrances and changes them over time to present the reference odor.
  • the odor detection module according to any one of (1) to (4) wherein the odor presenting unit presents the odor of the reference according to the surrounding environment.
  • the odor detection module according to any one of (1) to (6) comprising the plurality of the sensor elements and arranging the plurality of the sensor elements in an array.
  • the processing unit inputs the reference measurement value for measuring the reference odor and the target measurement value for measuring the odor of the measurement target, and outputs the intensity information of the odor of the measurement target and / or the identification information.
  • the odor detection module When online, the transmitter / receiver that transmits the information of the reference measurement value that measured the odor of the reference and the target measurement value that measured the odor of the measurement target to the cloud server and receives the latest trained model from the cloud server is further added. Prepare, The odor detection module according to (2), wherein the processing unit calculates intensity information and / or identification information of the odor to be measured based on the latest learned model received by the transmission / reception unit.
  • Smell detection methods including.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

経時的または環境的な要因によらずに、安定的に精度高く匂いを検知することができる匂い検知モジュールを提供すること。 匂い検知モジュール10は、匂いを検知するセンサ素子11と、センサ素子11の表面に基準の匂いを提示する匂い提示部12と、を備え、センサ素子11が、基準の匂いおよび測定対象の匂いを検知する。匂い検知モジュール10は、センサ素子11の応答出力を入力し、機械学習により生成された学習済みモデルに基づいて、測定対象の匂いの強度情報および/または識別情報を演算する処理部18をさらに備えることができる。

Description

匂い検知モジュールおよび匂い検知方法
 本技術は、匂い検知モジュールおよび匂い検知方法に関し、より詳細には、匂いを検知するセンサ素子および基準の匂いを提示する匂い提示部を用いて測定対象となる匂いを検知する匂い検知モジュールおよび匂い検知方法に関する。
 従来、人の嗅覚を用いて主観的に行われてきた広範囲の種類のにおいの識別または評価を、客観的に行うことが可能なにおいセンサが提案されている。
 例えば、特許文献1では、複数種類の標準においをそれぞれ測定することによって得られる基準データを必ずしも全て使用せず、測定対象である未知試料の種別や区分などに応じて、その未知のにおいの強さの程度などを表現するのに適切な標準においを適宜選択し、その選択された標準においに対応する基準データのみを使用してにおいの強さの程度を表す指標値を算出する、におい測定装置が提案されている。
 また、特許文献2では、互いに異なる応答特性を有するm(mは2以上の整数)個のにおいセンサを具備するにおい測定装置を利用して、目的物質のにおいの質の変化を評価するにおい評価方法であって、目的においに対しにおいの質が既知であるn(nは2以上の整数)種の添加においをそれぞれ混合したものを基準においとし、n種の基準においについてそれぞれ前記添加においの濃度を1乃至複数段階に調整したものを前記におい測定装置で測定することにより、前記m個のにおいセンサからの検出出力により形成されるm次元空間において各基準においにそれぞれ対応するn本の評価基準軸を位置付ける基準軸取得ステップと、目的においが変化した又はその可能性がある評価対象においを前記におい測定装置で測定することにより前記m次元空間内に測定点を位置付け、該測定点と前記n本の評価基準軸との位置関係に基づいて目的においから評価対象においへのにおい質の変化を反映した情報を作成する評価ステップと、を有することを特徴とするにおい評価方法が提案されている。
特開2004-093447号公報 特開2007-248377号公報
 しかしながら、特許文献1および特許文献2の技術で用いられるにおいセンサでは、センサ表面が経時的または環境的要因により、化学的または物理的に変化し、再現的な計測が難しいことが知られている。このような要因として、例えば、湿度変化による不安定さや、繰り返し使用におけるバックグラウンド値の変化が知られている。そのため、感度や識別能が高くても継続して使用できないことから、においセンサの実用化が遅れているという問題がある。
 そこで、本技術では、経時的または環境的な要因によらずに、安定的に精度高く匂いを検知することができる匂い検知モジュールを提供することを主目的とする。ここで、「匂い」とは、良い香りや悪い香りなどあらゆるにおいを含むことを表している。
 本技術では、匂いを検知するセンサ素子と、前記センサ素子の表面に基準の匂いを提示する匂い提示部と、を備え、前記センサ素子が、前記基準の匂いおよび測定対象の匂いを検知する匂い検知モジュールを提供する。
 前記匂い検知モジュールは、前記センサ素子の応答出力を入力し、機械学習により生成された学習済みモデルに基づいて、前記測定対象の匂いの強度情報および/または識別情報を演算する処理部をさらに備えることができる。
 また、本技術では、基準の匂いを提示するステップと、前記基準の匂いを測定するステップと、測定対象の匂いを測定するステップと、測定した前記基準の匂いおよび測定した前記測定対象の匂いを取得し、機械学習により生成された学習済みモデルに基づいて、前記測定対象の匂いの強度情報および/または識別情報を演算するステップと、を含む、匂い検知方法を提供する。
本技術の第1実施形態に係る匂い検知モジュールの構成例を示す概略構成図である。 本技術の第1実施形態に係る匂い検知モジュールの動作例を説明する概略構成図である。 本技術の第1実施形態に係る匂い検知モジュールの動作例を説明する概略構成図である。 本技術の第1実施形態に係る匂い検知方法の例を示すフローチャートである。 本技術の第1実施形態に係る嗅覚ディスプレイが提示する匂いのシーケンス図である。 本技術の第1実施形態に係る嗅覚ディスプレイが提示する匂いのシーケンス図である。 本技術の第1実施形態に係る嗅覚ディスプレイが提示する匂いのシーケンス図である。 本技術の第1実施形態に係る嗅覚ディスプレイが提示するシーケンスからのセンサグラムを示すグラフである。 本技術の第1実施形態に係る嗅覚ディスプレイが提示するシーケンスからのセンサグラムを示すグラフである。 本技術の第1実施形態に係る嗅覚ディスプレイが提示するシーケンスからのセンサグラムを示すグラフである。 本技術の第2実施形態に係る匂い検知モジュールの構成例を示す概略構成図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、いずれの実施形態も組み合わせることが可能である。また、これらにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
 
1.第1実施形態
(1)匂い検知モジュールの構成例
(2)匂い検知モジュールの動作例
(3)実施例
(3-1)匂いのシーケンス
(3-2)センサグラム
2.第2実施形態
(1)匂い検知モジュールの構成例
(2)匂い検知モジュールの動作例
 
 本技術によれば、経時的または環境的な要因によらずに、安定的に精度高く匂いを検知することができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、又は上記の効果に代えて、本明細書に示されたいずれかの効果又は本明細書から把握され得る他の効果が奏されてもよい。
1.第1実施形態
(1)匂い検知モジュールの構成例
 図1を参照して、本技術の第1実施形態に係る匂い検知モジュール10の構成例について説明する。図1は、本実施形態に係る匂い検知モジュール10の構成例を示す概略構成図である。
 図1に示すように、本実施形態に係る匂い検知モジュール10は、マルチアレイセンサ11と、匂い提示部である嗅覚ディスプレイ12と、排気機構13および排気機構14と、基準気流流入口15と、測定対象気流流入口16と、を備える。さらに、匂い検知モジュール10は、マルチアレイセンサ11に接続されたAI処理部18を備えている。
 マルチアレイセンサ11は、匂いを検知するセンサ素子が複数アレイ状に配置され、各センサ素子はそれぞれ異なる基準の匂いおよび測定対象(物体および/または空間)の匂いを検知することができる。このように、異なる反応特性をもつセンサ素子が複数あることで、多様なセンサ応答が可能になる。例えば、センサ応答がON/OFFだけとしてもセンサが1個なら2パターンのみの識別となるが、センサが10個なら210で1,024パターンの識別が可能になる。
 また、マルチアレイセンサ11は、通常時に表面が被覆され、匂い測定時に表面が露出される。これにより、センサ表面の汚染を防ぐことができる。さらに、マルチアレイセンサ11のセンサ素子は、匂い測定時に未使用部分の表面が露出される。測定ごとに新しいセンサ表面が露出することで、安定したセンサ応答を得ることができる。
 マルチアレイセンサ11の各センサ素子の表面は、異なるナノ構造もしくは化学特性を有する高分子材料、無機材料または金属材料のいずれか一つの材料で形成されている。これら感応膜により、多様なにおいの識別が可能になる。センサ素子としては、例えば、金属酸化物半導体、CMOS(Complementary Metal-Oxide-Semiconductor)、SAW (Surface Acoustic Wave)、SPR(Surface Plasmon Resonance)、QCM(Quartz Crystal Microbalance)、カンチレバー、ピエゾ素子などを用いることができ、特に限定はない。また、センサ素子の表面感応膜には、例えば、各種有機高分子膜、SAM (Self-Assembled Monolayer)膜、LB(Langmuir-Blodgett)膜、GPCR(GTP-binding Protein-Coupled Receptor)などの生体高分子を含む膜などを用いることができる。
 嗅覚ディスプレイ12は、マルチアレイセンサ11の表面に基準の匂いを提示する。嗅覚ディスプレイ12は、基準の匂いとなる香料を保持する複数の匂い保持部17を有している。各匂い保持部17は、複数の香料を交換可能な交換式で内蔵している。また、嗅覚ディスプレイ12は、複数の香料を独立制御して経時的に変化させて基準の匂いを提示することができる。
 排気機構13および14は、マルチアレイセンサ11の表面近傍を流れる空気や気流を外部へ排気する。このように、排気することによって基準の匂いや測定対象の匂いの匂い混ざりを解消することができる。排気機構13および14には、例えば、ブロア、ファン、圧縮エア放出などが用いられる。
 基準気流流入口15は、嗅覚ディスプレイ12から放出される基準の匂いの気流をマルチアレイセンサ11へ送り込む。
 測定対象気流流入口16は、開閉可能に形成され、開口時に測定対象の匂いをマルチアレイセンサ11へ送り込む。
 AI処理部18は、基準の匂いを測定したセンサグラムである基準測定値と測定対象の匂いを測定したセンサグラムである対象測定値とを入力して、測定対象の匂いの強度情報および/または種類を出力する。例えば、AI処理部18は、マルチアレイセンサ11からの応答出力である測定によるセンサグラムを入力し、機械学習により生成された学習済みモデルに基づいて、人工知能(AI:Artificial Intelligence)を用いた処理により、測定対象の匂いの強度情報および/または識別情報を演算して、外部へ出力する。
 AI処理部18は、例えば、強度・識別演算AIソフトを用いることができる。AI処理部18のAIアルゴリズムは、例えば、Deep LearningやGNN(graph neural network)などの各種ニューラルネット、SVM(support vector machine)、SOM(Self-organizing maps)、KNN(k-nearest neighbor)、Random Forest、PCA(principal component analysis)などを用いることができる。
(2)匂い検知モジュールの動作例
 次に、図2から図4を参照して、匂い検知モジュール10による匂い検知の動作例について説明する。図2は、匂い検知モジュール10の嗅覚ディスプレイ12により、マルチアレイセンサ11に基準の匂いを提示する動作例を説明する概略構成図である。図3は、匂い検知モジュール10のマルチアレイセンサ11により、測定対象の匂いを測定する動作例を説明する概略構成図である。図4は、匂い検知モジュール10による匂い検知方法の例を示すフローチャートである。
 まず、図2および図3を用いて、匂い検知モジュール10による匂い検知の動作例について説明する。図2に示すように、一例として、最初に嗅覚ディスプレイ12を基準気流流入口15の上部に配置し、事前測定モードを開始する。事前測定モードが開始すると、搭載する嗅覚ディスプレイ12の匂い保持部17から複数パターンの基準の匂いをマルチアレイセンサ11へ向けてシーケンス提示する。
 次に、図3に示すように、事前測定モード測定直後に、対象測定モードに切り替えて、測定対象気流流入口16を開口する。測定対象気流流入口16を開口すると、測定対象物体および/または測定対象空間の匂いを測定対象気流流入口16からマルチアレイセンサ11へ取り込み、マルチアレイセンサ11で測定対象の匂いを測定する。マルチアレイセンサ11で測定対象の匂いを測定すると、そのセンサグラムをAI処理部18へ入力する。
 ここで、AI処理部18内の人工知能(AI)は、あらかじめ大量の匂いシーケンスパターン提示と既知強度および種類匂い提示により、学習させておく。その後、AI処理部18へセンサグラムが入力されると、あらかじめ大量の匂いシーケンスパターン提示と既知強度および種類匂い提示により、学習させていたAIに、事前基準匂い測定時の各シーケンスのセンサグラム、および、測定対象の測定時のセンサグラムを入力することで、測定対象の強度情報および/または匂いの識別情報(匂いの同定)を算出する。
 次に、図4を用いて、匂い検知モジュール10による匂い検知方法(センシング)の例について説明する。
 ステップS1において、嗅覚ディスプレイ12は、匂いライブラリの提示シーケンスを作成する。このとき、既知の基準の匂いの事前測定では、複数の基準の匂いを組み合わせて時系列で変化させている。
 ステップS2において、嗅覚ディスプレイ12は、匂いライブラリの提示シーケンスをシーケンス芳香する。
 ステップS3において、マルチアレイセンサ11は、基準の匂いを検出する。
 ステップS4において、マルチアレイセンサ11は、排気機構13および14から基準の匂いの気流を排気し、AI処理部18へ基準の匂いのセンサグラムを出力する。AI処理部18は、出力されたセンサグラムを入力する。さらに、ステップS1に戻り、必要な回数だけ、ステップS1からステップS4を繰り返す。その後、ステップS5へ進む。
 次に、ステップS5において、匂い検知モジュール10は、マルチアレイセンサ11への流入口を嗅覚ディスプレイ12から測定対象気流流入口16へ切り替える。
 ステップS6において、マルチアレイセンサ11は、測定対象の匂いを検出する。
 ステップS7において、マルチアレイセンサ11は、排気機構13および14から測定対象の匂いの気流を排気し、AI処理部18へ測定対象の匂いのセンサグラムを出力する。AI処理部18は、出力されたセンサグラムを入力する。
 ステップS8において、AI処理部18は、事前測定した基準の匂いおよび対象測定の匂いのセンサグラムからAIによるパターン解析を行う。このとき、内蔵の基準の匂いによる事前測定と対象測定の結果を入力としたパターンマッチングAIで強度情報と識別情報の演算を実施する。
 ステップS9において、AI処理部18は、解析した測定対象の強度情報および匂いの種類等の識別情報を外部へ出力する。
 以上の通り、本実施形態に係る匂い検知モジュール10は、アレイ化された複数のセンサ素子であるマルチアレイセンサ11と複数の基準の匂いを保有する嗅覚ディスプレイ12とが一体化されたモジュールである。本構成により、匂い検知モジュール10は、搭載された嗅覚ディスプレイ12内に保有された複数の基準の匂いの構成を経時的に変化させながら、マルチアレイセンサ11の表面に芳香提示することで、その直後に計測する測定対象のセンサシグナルに対する強度、識別に対する校正を行うことができる。これにより、匂い検知モジュール10は、劣化や気候などを含む経時的または環境的な要因によらずに、安定的に精度高く空気中の匂いを検知および識別することができる。
 また、匂い検知モジュール10は、マルチアレイセンサ11と嗅覚ディスプレイ12とがコンパクトにまとまっているので、モバイル機器、ウェアラブル機器などのポータブル機器に搭載することができる。このため、匂い検知モジュール10は、持ち運びが容易でユーザの要望に合わせた場所で匂いの測定をすることができる。
 なお、本実施形態では、測定対象の匂いの測定前に、事前に基準の匂いを測定しているが、基準の匂いは、測定対象の匂いと同時に測定してもよいし、測定対象の匂いの測定後に測定してもよい。また、嗅覚ディスプレイ12は、気温や湿気などの周囲の環境に応じて基準の匂いを提示することができ、使用回数に応じて補正した基準の匂いを提示することもできる。
(3)実施例
 次に、図5から図10を参照して、本実施形態に係る匂い検知モジュール10を用いて匂い検知した実施例について説明する。図5から図7は、嗅覚ディスプレイ12が提示する匂いのシーケンス図である。図5から図7は、時間によって提示される香料のミックスが変化させていることを示している。図8から図10は、図5から図7に示す各シーケンスからのセンサグラムを示すグラフである。図8から図10は、センサの反応を表している。
(3-1)匂いのシーケンス
 図5は、嗅覚ディスプレイ12が8種類の基準の匂いAからHを保有し、それらを経時的に変化させて、マルチアレイセンサ11へ芳香提示する様子(シーケンス1)を示している。図5に示すように、シーケンス1では、始めに匂いAだけを提示し、所定の時間経過後に、匂いAの提示を継続しつつ匂いHを提示する。次に、匂いAの提示を止めて、匂いHの提示を継続しつつ、測定対象の匂い、匂いCおよび匂いFを提示する。その後、測定対象の匂い、匂いCおよび匂いFの提示を止めて、匂いHの提示だけを継続する。
 図6は、図5と同様に、嗅覚ディスプレイ12がマルチアレイセンサ11へ芳香提示する様子(シーケンス2)を示している。図6に示すように、シーケンス2では、始めに何も匂いを提示せず、所定の時間経過後に、匂いEおよび匂いFを提示する。次に、匂いEおよび匂いFの提示を継続しつつ、匂いBおよび匂いCを提示する。その後、匂いCの提示だけを止めて、匂いB、匂いEおよび匂いFの提示を継続し、所定の時間経過後に、匂いB、匂いEおよび匂いFの提示も停止する。その後、測定対象の匂いだけを提示する。
 図7も、図5および図6と同様に、嗅覚ディスプレイ12がマルチアレイセンサ11へ芳香提示する様子(シーケンス3)を示している。図7に示すように、シーケンス3では、始めに測定対象の匂いだけを提示する。次に、測定対象の匂いの提示を止めて、匂いAおよび匂いEを提示する。次に、匂いAおよび匂いEの提示を止めて、匂いCおよび匂いGを提示する。その後、匂いCの提示を止めて、匂いGの提示を継続しつつ、匂いEを提示する。その後、所定の時間経過後に、匂いGの提示を止めて、匂いEだけを提示する。
(3-2)センサグラム
 図8は、図5に示すシーケンス1からのセンサグラム1を示している。図8の横軸は、時間(秒)を表し、縦軸はレスポンス(電流変化量%)を表している。図8に示すように、センサグラム1では、例えば、時間が経過するにつれて、Sensor7およびSensor8の反応が大きくなり、Sensor6の反応は比較的小さい。全体的には、Sensor1からSensor10の反応のばらつきは少ないと言える。このように、図8は、さらされる香料ミックスが変わることで個々のSensorのセンサグラム応答が微妙に変化していく時の各Sensorの反応を表している。図8では、例えば、極端にその香料ミックスが変わるタイミングを折れ線グラフとして表している。
 図9は、図8と同様に、図6に示すシーケンス2からのセンサグラム2を示している。図9に示すように、センサグラム2では、例えば、時間が経過するにつれて、Sensor8およびSensor9の反応が大きくなり、Sensor1の反応は比較的小さい。全体的には、Sensor1からSensor10の反応のばらつきは、大小の幅がセンサグラム1に比べてやや大きいと言える。
 図10も、図8および図9と同様に、図7に示すシーケンス3からのセンサグラム3を示している。図10に示すように、センサグラム3では、例えば、時間が経過するにつれて、Sensor1およびSensor8の反応が大きくなり、Sensor4の反応は比較的小さい。全体的には、Sensor1からSensor10の反応のばらつきは、さほど大きくないが、経時的に緩やかに反応していると言える。
 マルチアレイセンサ11で作成されたセンサグラム1から3は、AI処理部18へ出力される。AI処理部18は、匂いシーケンスパターン提示と既知強度および種類匂い提示により学習済のAIで、入力されたセンサグラム1から3や周囲の環境の状況等に基づいて、パターンマッチングAIにより、測定対象の匂いの強度情報と識別情報の演算を行う。
2.第2実施形態
(1)匂い検知モジュールの構成例
 次に、図11を参照して、本技術の第2実施形態に係る匂い検知モジュール20の構成例について説明する。図11は、匂い検知モジュール20の構成例を示す概略構成図である。匂い検知モジュール20が第1実施形態に係る匂い検知モジュール10と相違する点は、通信ネットワークを利用して情報の送受信を行う点である。
 図11に示すように、本実施形態に係る匂い検知モジュール20は、第1実施形態に係る匂い検知モジュール10と同様に、マルチアレイセンサ11と、匂い提示部である嗅覚ディスプレイ12と、排気機構13および排気機構14と、基準気流流入口15と、測定対象気流流入口16と、AI処理部18と、を備えている。さらに、匂い検知モジュール20は、クラウドサーバ30と情報の送受信を行う送受信部21を備えている。
 送受信部21は、オンライン時に、マルチアレイセンサ11で、基準の匂いを測定した基準測定値および測定対象の匂いを測定した対象測定値の情報をクラウドサーバ30に送信し、クラウドサーバ30から最新の学習済みモデルを受信する。また、送受信部21は、受信した情報をAI処理部18へ出力する。なお、最新の学習済みモデルを演算する際に、例えば、演算工程を2つに分けて、第1演算工程は、現場に近いエッジデバイスである匂い検知モジュール20のAI処理部18で演算し、第2演算工程で、その演算した後の情報に基づいて、クラウドサーバ30が最新の学習済みモデルを演算することもできる。
 その後、AI処理部18は、送受信部21が受信した最新の学習済モデルに基づいて、測定対象となる匂いの強度情報および/または識別情報を演算する。
(2)匂い検知モジュールの動作例
 次に、図11を参照して、匂い検知モジュール20による匂い検知の動作例について説明する。
 図2と同様に、一例として、最初に嗅覚ディスプレイ12を基準気流流入口15の上部に配置し、事前測定モードを開始する。事前測定モードが開始すると、搭載する嗅覚ディスプレイ12の匂い保持部17から複数パターンの基準の匂いをマルチアレイセンサ11へ向けてシーケンス提示する。
 次に、図3と同様に、事前測定モード測定直後に、対象測定モードに切り替えて、測定対象気流流入口16を開口する。測定対象気流流入口16を開口すると、測定対象物体および/または測定対象空間の匂いを測定対象気流流入口16からマルチアレイセンサ11へ取り込み、マルチアレイセンサ11で測定対象の匂いを測定する。マルチアレイセンサ11で測定対象の匂いを測定すると、そのセンサグラムをAI処理部18へ入力する。
 ここで、送受信部21は、オンライン時に、マルチアレイセンサ11で基準の匂いを測定したセンサグラムである基準測定値および測定対象の匂いを測定したセンサグラムである対象測定値の情報をクラウドサーバ30に送信し、クラウドサーバ30から最新の学習済みモデルを受信する。送受信部21は、最新の学習済みモデルを受信すると、それをAI処理部18へ出力する。
 その後、AI処理部18へ最新の学習済みモデルおよびセンサグラムが入力されると、あらかじめ大量の匂いシーケンスパターン提示と既知強度および種類匂い提示により、最新の学習済みモデルも学習したAIに、事前基準匂い測定時の各シーケンスのセンサグラム、および、測定対象の測定時のセンサグラムを入力することで、測定対象の強度情報および/または匂いの識別情報(匂いの同定)を算出する。
 以上により、本実施形態に係る匂い検知モジュール20によれば、第1実施形態と同様の効果に加え、AI処理部18が最新の学習済みモデルも踏まえた学習を行うため、第1実施形態に係る匂い検知モジュール10に比べて、測定対象を特定する精度をより高めることができる。また、匂い検知モジュール20は、クラウドサーバ30と組み合わせて、匂い検知システムとして用いることもできる。
 本技術に係る匂い検知モジュールは、従来、環境に対応しにくく主観的に識別していた測定対象の匂いを客観的評価により精度高く識別することができる。これにより、本技術に係る匂い検知モジュールは、例えば、環境アセスメントの分野などで活用することができる。
 なお、本技術では、以下の構成を取ることができる。
(1)
 匂いを検知するセンサ素子と、
 前記センサ素子の表面に基準の匂いを提示する匂い提示部と、
を備え、
 前記センサ素子が、前記基準の匂いおよび測定対象の匂いを検知する匂い検知モジュール。
(2)
 前記センサ素子の応答出力を入力し、機械学習により生成された学習済みモデルに基づいて、前記測定対象の匂いの強度情報および/または識別情報を演算する処理部をさらに備える、(1)に記載の匂い検知モジュール。
(3)
 前記匂い提示部は、複数の香料を保持している、(1)または(2)に記載の匂い検知モジュール。
(4)
 前記匂い提示部は、前記複数の香料を独立制御して経時的に変化させて前記基準の匂いを提示する、(3)に記載の匂い検知モジュール。
(5)
 前記匂い提示部は、周囲の環境に応じて前記基準の匂いを提示する、(1)から(4)のいずれか一つに記載の匂い検知モジュール。
(6)
 前記匂い提示部は、使用回数に応じて補正した前記基準の匂いを提示する、(1)から(5)のいずれか一つに記載の匂い検知モジュール。
(7)
 前記センサ素子を複数備え、複数の前記センサ素子がアレイ状に配置されている、(1)から(6)のいずれか一つに記載の匂い検知モジュール。
(8)
 前記センサ素子の表面近傍の空気を排出する排気機構をさらに備える、(1)から(7)のいずれか一つに記載の匂い検知モジュール。
(9)
 前記センサ素子は、通常時に表面が被覆され、匂い測定時に表面が露出される、(1)から(8)のいずれか一つに記載の匂い検知モジュール。
(10)
 前記センサ素子は、匂い測定時に未使用部分の表面が露出される、(1)から(9)のいずれか一つに記載の匂い検知モジュール。
(11)
 前記センサ素子を複数備え、前記センサ素子のそれぞれの表面が、異なるナノ構造もしくは化学特性を有する高分子材料、無機材料または金属材料のいずれか一つの材料で形成されている、(1)から(10)のいずれか一つに記載の匂い検知モジュール。
(12)
 前記処理部は、前記基準の匂いを測定した基準測定値と前記測定対象の匂いを測定した対象測定値とを入力して、前記測定対象の匂いの強度情報および/または前記識別情報を出力する、(2)に記載の匂い検知モジュール。
(13)
 オンライン時に、前記基準の匂いを測定した基準測定値および前記測定対象の匂いを測定した対象測定値の情報をクラウドサーバに送信し、前記クラウドサーバから最新の学習済みモデルを受信する送受信部をさらに備え、
 前記処理部は、前記送受信部が受信した前記最新の学習済モデルに基づいて、前記測定対象となる匂いの強度情報および/または識別情報を演算する、(2)に記載の匂い検知モジュール。
(14)
 基準の匂いを提示するステップと、
 前記基準の匂いを測定するステップと、
 測定対象の匂いを測定するステップと、
 測定した前記基準の匂いおよび測定した前記測定対象の匂いを取得し、機械学習により生成された学習済みモデルに基づいて、前記測定対象の匂いの強度情報および/または識別情報を演算するステップと、
を含む、匂い検知方法。
10、20 匂い検知モジュール
11 マルチアレイセンサ(センサ素子)
12 嗅覚ディスプレイ(匂い提示部)
13、14 排気機構
15 基準気流流入口
16 測定対象気流流入口
17 匂い保持部
18 AI処理部
21 送受信部
30 クラウドサーバ
 

Claims (14)

  1.  匂いを検知するセンサ素子と、
     前記センサ素子の表面に基準の匂いを提示する匂い提示部と、
    を備え、
     前記センサ素子が、前記基準の匂いおよび測定対象の匂いを検知する匂い検知モジュール。
  2.  前記センサ素子の応答出力を入力し、機械学習により生成された学習済みモデルに基づいて、前記測定対象の匂いの強度情報および/または識別情報を演算する処理部をさらに備える、請求項1に記載の匂い検知モジュール。
  3.  前記匂い提示部は、複数の香料を保持している、請求項1に記載の匂い検知モジュール。
  4.  前記匂い提示部は、前記複数の香料を独立制御して経時的に変化させて前記基準の匂いを提示する、請求項3に記載の匂い検知モジュール。
  5.  前記匂い提示部は、周囲の環境に応じて前記基準の匂いを提示する、請求項1に記載の匂い検知モジュール。
  6.  前記匂い提示部は、使用回数に応じて補正した前記基準の匂いを提示する、請求項1に記載の匂い検知モジュール。
  7.  前記センサ素子を複数備え、複数の前記センサ素子がアレイ状に配置されている、請求項1に記載の匂い検知モジュール。
  8.  前記センサ素子の表面近傍の空気を排出する排気機構をさらに備える、請求項1に記載の匂い検知モジュール。
  9.  前記センサ素子は、通常時に表面が被覆され、匂い測定時に表面が露出される、請求項1に記載の匂い検知モジュール。
  10.  前記センサ素子は、匂い測定時に未使用部分の表面が露出される、請求項1に記載の匂い検知モジュール。
  11.  前記センサ素子を複数備え、前記センサ素子のそれぞれの表面が、異なるナノ構造もしくは化学特性を有する高分子材料、無機材料または金属材料のいずれか一つの材料で形成されている、請求項1に記載の匂い検知モジュール。
  12.  前記処理部は、前記基準の匂いを測定した基準測定値と前記測定対象の匂いを測定した対象測定値とを入力して、前記測定対象の匂いの強度情報および/または前記識別情報を出力する、請求項2に記載の匂い検知モジュール。
  13.  オンライン時に、前記基準の匂いを測定した基準測定値および前記測定対象の匂いを測定した対象測定値の情報をクラウドサーバに送信し、前記クラウドサーバから最新の学習済みモデルを受信する送受信部をさらに備え、
     前記処理部は、前記送受信部が受信した前記最新の学習済モデルに基づいて、前記測定対象となる匂いの強度情報および/または識別情報を演算する、請求項2に記載の匂い検知モジュール。
  14.  基準の匂いを提示するステップと、
     前記基準の匂いを測定するステップと、
     測定対象の匂いを測定するステップと、
     測定した前記基準の匂いおよび測定した前記測定対象の匂いを取得し、機械学習により生成された学習済みモデルに基づいて、前記測定対象の匂いの強度情報および/または識別情報を演算するステップと、
    を含む、匂い検知方法。
     
PCT/JP2021/034086 2020-10-23 2021-09-16 匂い検知モジュールおよび匂い検知方法 WO2022085345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022557296A JPWO2022085345A1 (ja) 2020-10-23 2021-09-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-177966 2020-10-23
JP2020177966 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085345A1 true WO2022085345A1 (ja) 2022-04-28

Family

ID=81291200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034086 WO2022085345A1 (ja) 2020-10-23 2021-09-16 匂い検知モジュールおよび匂い検知方法

Country Status (2)

Country Link
JP (1) JPWO2022085345A1 (ja)
WO (1) WO2022085345A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042559A1 (ja) * 2021-09-14 2023-03-23 太陽誘電株式会社 におい測定装置、脱離処理装置及びにおい測定方法
WO2023163028A1 (ja) * 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 匂い検知システム及び匂い検知方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093447A (ja) * 2002-09-02 2004-03-25 Shimadzu Corp におい測定装置
JP2007278774A (ja) * 2006-04-05 2007-10-25 Shimadzu Corp におい評価装置
JP2018141650A (ja) * 2017-02-27 2018-09-13 国立研究開発法人物質・材料研究機構 化学センサによる試料識別方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093447A (ja) * 2002-09-02 2004-03-25 Shimadzu Corp におい測定装置
JP2007278774A (ja) * 2006-04-05 2007-10-25 Shimadzu Corp におい評価装置
JP2018141650A (ja) * 2017-02-27 2018-09-13 国立研究開発法人物質・材料研究機構 化学センサによる試料識別方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042559A1 (ja) * 2021-09-14 2023-03-23 太陽誘電株式会社 におい測定装置、脱離処理装置及びにおい測定方法
WO2023163028A1 (ja) * 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 匂い検知システム及び匂い検知方法

Also Published As

Publication number Publication date
JPWO2022085345A1 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2022085345A1 (ja) 匂い検知モジュールおよび匂い検知方法
Penza et al. Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array
EP3187852B1 (en) Odour identification device and odour identification method
AU776581B2 (en) Multiple sensing system and device
US20020152037A1 (en) Multiple sensing system and device
Deng et al. Fabrication of a sensor array based on quartz crystal microbalance and the application in egg shelf life evaluation
UA120585C2 (uk) Спосіб ідентифікації і розрізнення матеріалів та система для його здійснення
EP3879266A1 (en) Gas sensing device and method for operating a gas sensing device
Cunningham et al. Design, fabrication and vapor characterization of a microfabricated flexural plate resonator sensor and application to integrated sensor arrays
Sunil et al. Optimal selection of SAW sensors for E-Nose applications
EP1337836B1 (en) System and method for gas discharge spectroscopy
JPH07294405A (ja) 閉塞されたスペ−ス内における空気の品質を評価する装置
JP2023541907A (ja) 流体試料を識別するためのセンサ、およびそのようなセンサに対して認定試験を適用するための方法
JP7201184B2 (ja) 匂い識別装置、情報処理装置、携帯デバイス、ウエアラブルデバイス、空調機器、及び医療機器
Stedman et al. Distinguishing chemicals using CMUT chemical sensor array and artificial neural networks
KR20220007538A (ko) 가스들의 혼합물에서 하나 이상의 가스를 감지하기 위한 가스 감지 디바이스
WO2022085144A1 (ja) ガスセンサーデバイス、情報処理装置、及び匂い提示システム
JP2022114254A (ja) 情報処理装置、匂い測定システムおよびプログラム
Shirshov et al. Analysis of some alcohol molecules based on the change of RGB components of interferentially colored calixarene films
Alstrøm et al. Data-driven modeling of nano-nose gas sensor arrays
Lenz et al. Selective gas detection using conductivity-based MEMS resonator and machine learning
WO2020065807A1 (ja) 情報処理装置、処理装置、情報処理方法、処理方法、決定方法、およびプログラム
JPH11142313A (ja) 物質濃度の定量化方法、物質濃度検出装置および記録媒体
Molina et al. Portable Olfactometric Platform for Scent Tea Classification
WO2024070023A1 (ja) ガス分析システム及びガス分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882486

Country of ref document: EP

Kind code of ref document: A1