WO2022085221A1 - Unsaturated group-containing phosphoric acid ester, thermosetting resin composition containing same, and resin material - Google Patents

Unsaturated group-containing phosphoric acid ester, thermosetting resin composition containing same, and resin material Download PDF

Info

Publication number
WO2022085221A1
WO2022085221A1 PCT/JP2021/014219 JP2021014219W WO2022085221A1 WO 2022085221 A1 WO2022085221 A1 WO 2022085221A1 JP 2021014219 W JP2021014219 W JP 2021014219W WO 2022085221 A1 WO2022085221 A1 WO 2022085221A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
linear
group
independently
Prior art date
Application number
PCT/JP2021/014219
Other languages
French (fr)
Japanese (ja)
Inventor
祐作 望月
Original Assignee
大八化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大八化学工業株式会社 filed Critical 大八化学工業株式会社
Priority to JP2022556382A priority Critical patent/JPWO2022085221A1/ja
Publication of WO2022085221A1 publication Critical patent/WO2022085221A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a phosphoric acid ester having a copolymerizable unsaturated bond.
  • the present invention particularly relates to unsaturated group-containing phosphoric acid esters useful as modifiers for printed circuit boards and the like.
  • the present invention also relates to resin compositions that can be used in printed circuit boards that comply with next-generation communication standards, such as 5G or 6G communication standards.
  • Epoxy resin has been widely used in printed circuit boards. Further, it has been conventionally practiced to add a phosphoric acid ester as a flame retardant to an epoxy resin.
  • Patent Document 1 discloses resorcinol bis (2,6-xylyl) phosphate.
  • Patent Document 2 discloses di (substituted phenyl) -2- (meth) acryloyloxyethyl phosphate as an unsaturated group-containing phosphoric acid ester having excellent hydrolysis resistance. ing. This document discloses that the problem of hydrolysis resistance during emulsion polymerization or suspension polymerization is solved by this unsaturated group-containing phosphoric acid ester.
  • the dielectric property of the substrate largely depends on the thermosetting resin composition used for the substrate.
  • the thermosetting resin and the additives added to the resin have a great influence on the dielectric loss tangent and the transmission loss. Therefore, the thermosetting resin composition used for the substrate corresponding to the next-generation communication standard needs to have excellent dielectric properties that were not required for the thermosetting resin composition for the previous printed circuit board. Will be done.
  • the dielectric loss in a printed circuit board is proportional to the product of the square root of the relative permittivity and the dielectric loss tangent.
  • the product of the square root of the relative permittivity and the dielectric loss tangent is referred to as "contribution to transmission loss".
  • a low contribution of transmission loss is required as a base material for next-generation communication standards. The need for such excellent dielectric properties was not recognized at all during the technological development of Patent Documents 1 and 2.
  • Acrylic-modified polyphenylene ether resin is attracting attention as a resin that can achieve the dielectric properties and heat resistance required for a substrate for such a next-generation communication standard, instead of the conventional epoxy resin.
  • thermosetting resin composition that can solve the above-mentioned problem of reduced heat resistance has not been known. Further, as described above, a thermosetting resin composition capable of producing a substrate having excellent dielectric properties and high heat resistance required for a substrate for a next-generation communication standard has not been known. In particular, no suitable modifier for addition to a resin having an ethylenically unsaturated bond, such as an acrylic-modified polyphenylene ether resin, has been known. For example, in Patent Document 2 above, it is an object to provide an unsaturated group-containing phosphoric acid ester which is less likely to be hydrolyzed during emulsion polymerization or suspension polymerization, and only solving the problem is disclosed. Was there.
  • Patent Document 2 the problem of achieving excellent dielectric properties and high heat resistance is not recognized in Patent Document 2 and is not assumed at all. Further, the above-mentioned Patent Documents 1 and 2 completely describe what kind of modifier is effective for achieving excellent dielectric properties and high heat resistance when added to an acrylic-modified polyphenylene ether resin. No disclosure or suggestion has been made. Therefore, a thermosetting resin composition capable of producing a high-frequency printed circuit board having excellent dielectric properties and high heat resistance corresponding to the next-generation communication standard has not been known.
  • the present invention is a compound that can be used as a modifier for a printed circuit board having excellent dielectric properties and high heat resistance, which is required for a substrate for a next-generation communication standard, and a modification for a printed circuit board. It is an object of the present invention to provide a pledge agent and a thermosetting resin composition.
  • m is 2 or 1
  • R 1 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a linear or branched alkyl group of C 1 to C 4 .
  • R 2 is independently located at any of the 2nd to 6th positions of the benzene ring, is a linear or branched alkyl group of C 1 to C 4 , and may be the same as R 1 .
  • R 3 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a hydrogen atom or a linear or branched alkyl group of C 1 to C 4 , which is the same as R 1 .
  • R 4 is independently a linear or branched alkenyl group of C 2 to C 12 , or the following formula (II) :. It is a substituent having the structure of In formula (II) R 5 is independently a hydrogen atom or a methyl group, respectively. R 6 are independently C2 - C4 linear or branched-chain alkylenes. n is an integer of 1-5, and where m is 1 , R4 is a linear or branched alkenyl group of C2 to C12, a compound.
  • (Item 3) Item 2.
  • Item 4 The compound according to Item 3, wherein R 1 and R 2 are a methyl group at the 2-position and a methyl group at the 6-position, and R 3 is a hydrogen atom.
  • R4 is the following formula (III): It is an alkenyl group having the structure of
  • k is an integer of 0 or more and 10 or less.
  • Item 5 The compound according to Item 5 or 6.
  • a modifier for use in thermosetting resin compositions comprises a compound represented by the following formula (I):
  • m is 2 or 1
  • R 1 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a linear or branched alkyl group of C 1 to C 4
  • R 2 is independently located at any of the 2nd to 6th positions of the benzene ring, is a linear or branched alkyl group of C 1 to C 4 , and may be the same as R 1 .
  • R 3 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a hydrogen atom or a linear or branched alkyl group of C 1 to C 8 , which is the same as R 1 . It may be different, it may be the same as R 2 , or it may be different. Of the 2nd to 6th positions of the benzene ring, the two carbons in which R1 to R3 do not exist each have a hydrogen atom.
  • R 4 is independently a linear or branched alkenyl group of C 2 to C 12 , or R 4 is independently of the following formula (II) :.
  • R 5 is independently a hydrogen atom or a methyl group, respectively.
  • R 6 are independently C2 - C4 linear or branched-chain alkylenes.
  • n is an integer from 1 to 5. Modifier.
  • thermosetting resin composition comprising the compound according to any one of Items 1 to 9 or the modifier according to Item 10 or 11 and a thermosetting resin.
  • thermosetting resin composition according to Item 12 wherein the thermosetting resin contains a thermosetting resin having an ethylenically unsaturated bond.
  • thermosetting resin composition according to Item 12 or 13, wherein the thermosetting resin contains a polyphenylene ether resin modified with an ethylenically unsaturated group.
  • thermosetting resin composition according to any one of Items 12 to 14, further comprising a cross-linking agent having an ethylenically unsaturated bond.
  • thermosetting resin composition according to Item 15 wherein the cross-linking agent is triallyl isocyanurate.
  • thermosetting resin composition according to any one of Items 12 to 16 above, for producing an insulating layer in a high-frequency printing circuit board.
  • (Item 18) A resin material obtained by curing the thermosetting resin composition according to any one of Items 12 to 17 above.
  • a high-frequency printed circuit board including a conductor layer and an insulating layer, wherein the insulating layer contains the resin material according to Item 18.
  • (Item 20) A method for manufacturing a high-frequency printed circuit board including a conductor layer and an insulating layer, comprising a step of curing the thermosetting resin composition according to Item 17 above to form the insulating layer.
  • a compound that can be used as a modifier for a printed circuit board having excellent heat resistance a modifier for a printed circuit board, and a thermosetting resin composition.
  • a compound and a printed circuit board that can be used as a modifier for a printed circuit board having excellent dielectric properties and high heat resistance which are required for a substrate for a next-generation communication standard.
  • a modifier and a thermosetting resin composition for are provided.
  • a phosphoric acid ester compound having an ethylenically unsaturated bond is provided. The details will be described below.
  • the compound of the present invention is represented by the following general formula (I).
  • m is 2 or 1. That is, this compound has two R4 groups and one phenyl group, or has one R4 group and two phenyl groups.
  • R 1 is independently located at any of the 2nd to 6th positions of the benzene ring, preferably at the 2nd, 3rd, 5th or 6th position of the benzene ring, and more preferably. It is located at either the 2-position or the 6-position of the benzene ring.
  • R 2 is independently located at any of the 2nd to 6th positions of the benzene ring in which R 1 does not exist, preferably at the 2nd, 3rd, 5th or 6th positions of the benzene ring. It is located at one of the positions, more preferably at either the 2-position or the 6-position of the benzene ring.
  • both R 1 and R 2 are located at either the 2-position, 3-position, 5-position or 6-position of the benzene ring, and in a more preferred embodiment, R 1 and R 2 Is located at the 2nd and 6th positions of the benzene ring. In one preferred embodiment, R 1 and R 2 are identical.
  • R 1 is an independent linear or branched alkyl group of C 1 to C 8 , and in one embodiment, a linear or branched alkyl group of C 1 to C 4 . In one embodiment, R 1 is an alkyl group from C 1 to C 2 . In one embodiment, R 1 is methyl.
  • alkyl means a monovalent group generated by the loss of one hydrogen atom from a saturated aliphatic hydrocarbon (alkane).
  • Alkylene refers to a divalent group produced by the loss of one more hydrogen atom from an alkyl.
  • alkenyl refers to a structure in which one of the single bonds in alkyl has a double bond. That is, the alkenyl has one double bond. In the description of each substituent in the present specification, when the alkyl group, the alkylene group or the alkenyl group is a branched chain, the number of carbon atoms thereof is 3 or more.
  • a linear or branched alkyl group of C 1 to C 4 means “a linear alkyl group of C 1 to C 4 or an alkyl group of a branched chain of C 3 to C 4 ".
  • a linear or branched alkenyl group of C 2 to C 12 means “a linear alkenyl group of C 2 to C 12 or an alkenyl group of a branched chain of C 3 to C 12 ". ..
  • R 2 is an independently linear or branched alkyl group of C 1 to C 4 , and in one embodiment, an alkyl group of C 1 to C 2 . In one embodiment, R 2 is methyl. R 2 may be the same as or different from R 1 .
  • R 3 is independently located in one of the three carbons in which R 1 and R 2 are absent among the five carbons at positions 2 to 6 of the benzene ring.
  • R 3 is a hydrogen atom or a straight or branched chain alkyl group from C 1 to C 8 and, in one embodiment, a hydrogen atom or a straight or branched alkyl group from C 1 to C 4 .
  • R 3 is a hydrogen or an alkyl group from C 1 to C 2 .
  • R 3 is hydrogen or methyl.
  • R 3 is hydrogen.
  • R4 is independently a linear or branched alkenyl group of C2 to C12, or the following formula (II): It is a substituent having the structure of.
  • R 4 is a linear or branched chain alkenyl group of C 2 to C 12 .
  • R 4 is a linear or branched chain alkenyl group of C 3 to C 12 .
  • R4 is an allyl group.
  • R 4 may be a straight chain or branched chain alkenyl group of C 2 to C 10 , a straight chain or branched chain alkenyl group of C 2 to C 8 , C.
  • R 4 may be a linear or branched alkenyl group of C 3 to C 10 or a linear or branched alkenyl group of C 3 to C 8 .
  • C 3 to C 6 may be a linear or branched alkenyl group, or may be a C 3 to C 4 linear or branched alkenyl group.
  • R 4 is a substituent of formula (II) only if m is 2.
  • R 5 is independently a hydrogen atom or a methyl group.
  • R 6 are independently C 2 to C 4 linear or branched chain alkylenes and, in one embodiment, C 2 alkylene (-CH 2 CH 2- ).
  • N is an integer of 1 to 5, and in one embodiment, it is 1.
  • R4 has the following equation (III): It is a substituent having the structure of, where k is an integer of 0 or more and 10 or less. In one more preferred embodiment, k is an integer greater than or equal to 1 and less than or equal to 10. In one most preferred embodiment, k is 1. In one embodiment, k may be 1 or more. Further, in one embodiment, k may be 8 or less, 6 or less, 4 or less, or 2 or less.
  • m is 1 and R4 is a substituent having the structure of the formula (III).
  • k in formula (III) is 1.
  • m is 1
  • R 4 is a substituent having the structure of formula (III)
  • k is 1
  • R 1 and R 2 are 2-position methyl groups and 6 It is a methyl group at the position
  • R3 is a hydrogen atom.
  • R 1 and R 2 are the methyl group at the 2-position and the methyl group at the 6-position, and R 3 is a hydrogen atom, then R 4 is not a vinyl group.
  • the compound represented by the formula (I) can be produced by appropriately combining conventionally known processes as a method for synthesizing a phosphoric acid ester.
  • the above compound can be used as it is as a modifier in the present invention.
  • thermosetting resin composition of the present invention contains a thermosetting resin and the above-mentioned modifier.
  • thermosetting resin A conventionally known thermosetting resin can be used for the thermosetting resin composition of the present invention.
  • a thermosetting resin having an ethylenically unsaturated bond is used.
  • the ethylenically unsaturated bond means an aliphatic double bond or triple bond capable of performing radical polymerization in the presence of radicals.
  • the group having such an unsaturated bond various substituents such as an acryloyl group, a methacryloyl group, a vinyl group, an allyl group and a maleimide group are well known.
  • the resin obtained by binding these unsaturated bonds to the resin is a thermosetting resin having an ethylenically unsaturated bond, and can be suitably used for the present invention.
  • thermosetting resin having an ethylenically unsaturated bond conventionally known ones can be used.
  • a polyphenylene ether resin modified with an ethylenically unsaturated group a maleimide resin, a styrene resin, or the like can be used.
  • thermosetting resin is a polyphenylene ether resin modified with an ethylenically unsaturated group.
  • the polyphenylene ether resin modified with an ethylenically unsaturated group is a resin in which an ethylenically unsaturated group is bonded to the end of the polyphenylene ether resin.
  • the polyphenylene ether resin modified with an ethylenically unsaturated group is represented by, for example, the following general formula A. (General formula A)
  • R 11 to R 32 are independent hydrogen atoms or substituents, respectively.
  • the substituent include a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkenyl group having 2 to 8 carbon atoms, and a linear or branched group having 2 to 8 carbon atoms. Examples thereof include a chain alkynyl group, an aryl group having 6 to 10 carbon atoms, a carboxyl group, an aldehyde group, a hydroxyl group and an amino group.
  • n 1 is preferably 1 to 100, more preferably 3 to 20.
  • n 2 is preferably 1 to 100, more preferably 3 to 20.
  • R 16 , R 17 , R 20 , R 21 , R 22 , R 23 , R 26 , and R 27 are hydrogen.
  • R 14 , R 15 , R 18 , R 19 , R 24 , R 25 , R 28 , and R 29 are alkyl, and in one embodiment R 14 , R 15 , R 18 , ,. R 19 , R 24 , R 25 , R 28 , and R 29 are methyl.
  • R 13 and R 32 are methyl. In one embodiment, R 13 and R 32 are hydrogen.
  • R 11 , R 12 , R 30 and R 31 are hydrogen.
  • the molecular weight of the polyphenylene ether resin modified with an ethylenically unsaturated group is not particularly limited.
  • a number average molecular weight of 500 or more is preferable, and 1,000 or more is more preferable.
  • the number average molecular weight is preferably 10,000 or less, more preferably 7,000 or less, and 5,000 or less in one embodiment. In one embodiment, it is 3,000 or less. If the molecular weight is too small, the Tg of the cured product tends to be low, and the heat resistance tends to be low. If the molecular weight is too large, it may be difficult to mold the cured product because the fluidity is lowered.
  • Specific preferable resins include, for example, those having the following structures.
  • the resin having such a structure for example, SABIC Japan GK Noryl (registered trademark) SA9000 resin is commercially available. Further, those having the following structures can also be used as preferable resins. As a specific product of the resin having such a structure, for example, MEGTRON (registered trademark) manufactured by Panasonic Corporation is commercially available. Further, in one embodiment, the polyphenylene ethers described in JP-A-2003-515642, JP-A-2006-516297, JP-A-2013-23517, JP-A-2013-23519, WO2014 / 0344103, JP-A-2019-194312, etc. are also available. It can be used in the present invention as a thermosetting resin.
  • a maleimide resin can also be used as the thermosetting resin.
  • Any known maleimide resin can be used. Specifically, for example, 4,4'-bismaleimide diphenylmethane, N, N'-p-phenylene bismaleimide, N, N'-m-phenylene bismaleimide, N, N'-m-phenylene bismaleimide, bisphenol.
  • a diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 1,6'-bismaleimide- (2,2,4-trimethyl) hexane, N, N '-(Sulfonyldi-p-phenylene) dimaleimide can be mentioned.
  • thermosetting resin a corresponding styrene-based resin in which an allyl group is bonded to a polystyrene side chain
  • a polymer having a structural unit represented by the following formula in the molecule is known and can be used in the present invention.
  • Z a indicates an arylene group
  • R 1a to R 3a independently indicate a hydrogen atom or an alkyl group
  • R 4a to R 6a independently indicate a hydrogen atom or 1 carbon atom. It shows up to 6 alkyl groups.
  • styrene-based resins include ODV-XET (X03) manufactured by Nittetsu Chemical & Materials Co., Ltd., ODV-XET (X04) manufactured by Nittetsu Chemical & Materials Co., Ltd., and Nittetsu Chemical & Materials Co., Ltd. ODV-XET (X05) manufactured by the company and the like can be mentioned.
  • thermosetting resin composition of the present invention if necessary, a thermosetting resin having no ethylenically unsaturated bond is used in addition to the above-mentioned thermosetting resin having an ethylenically unsaturated bond. You can also.
  • thermosetting resin can be used.
  • the amount of the thermosetting resin having no ethylenically unsaturated bond is preferably 50 parts by mass or less, preferably 30 parts by mass or less, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond. It is more preferably 10 parts by mass or less.
  • thermosetting resin composition of the present invention a thermoplastic resin can be used in addition to the thermosetting resin, if necessary. However, in order to fully exert the effect of the present invention, it is preferable to use a small amount of the thermoplastic resin.
  • the amount of the thermoplastic resin is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and 10 parts by mass or less with respect to 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond. It is more preferable to do so.
  • the thermosetting resin composition of the present invention does not contain a thermoplastic resin.
  • thermosetting resin composition of the present invention contains, if necessary, a monomer compound having an ethylenically unsaturated bond as a cross-linking agent.
  • the cross-linking agent having an ethylenically unsaturated bond is copolymerized with a thermosetting resin having an ethylenically unsaturated bond during a thermosetting reaction to provide good physical properties to the obtained cured product.
  • the cross-linking agent a monomer known as a cross-linking agent for a thermosetting resin having an ethylenically unsaturated bond can be used.
  • a monomer having two or more ethylenically unsaturated bonds in one molecule is preferable, and a monomer having three or more ethylenically unsaturated bonds in one molecule is more preferable. Further, a monomer having 4 or less ethylenically unsaturated bonds in one molecule is preferable.
  • the cross-linking agent is a monomer having three ethylenically unsaturated bonds in the molecule.
  • the portion having an ethylenically unsaturated bond in the cross-linking agent examples include an allyl group, an acryloyl group, and a methacryloyl group. Allyl groups are preferred.
  • the molecular weight of the cross-linking agent is preferably 100 or more, more preferably 200 or more.
  • the molecular weight of the cross-linking agent is preferably 700 or less, more preferably 500 or less, and even more preferably 300 or less.
  • the amount of the cross-linking agent used is not particularly limited.
  • the amount of the cross-linking agent used is preferably 1 part by mass or more, preferably 3 parts by mass or more, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond in the thermosetting resin composition. It is more preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more. If necessary, the amount may be 20 parts by mass or more, or 30 parts by mass or more, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond.
  • the amount of the cross-linking agent used is preferably 200 parts by mass or less, preferably 150 parts by mass or less, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond in the thermosetting resin composition. It is more preferably 100 parts by mass or less, and further preferably 100 parts by mass or less. If necessary, the amount may be 120 parts by mass or less with respect to 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond, or 100 parts by mass or less.
  • the amount of the cross-linking agent used is too small, it may be difficult to obtain sufficient heat resistance in the cured product obtained by curing the thermosetting resin composition. If the amount of the cross-linking agent used is too large, sufficient tensile strength and impact strength may not be obtained in the cured product obtained by curing the thermosetting resin composition.
  • the modifier compound having an ethylenically unsaturated bond can also function as a cross-linking agent, but in the present invention, the modifier compound having an ethylenically unsaturated bond exerts a remarkable effect as a modifier. Is. Therefore, in the present specification, the modifier compound having an ethylenically unsaturated bond is not included in the cross-linking agent.
  • the thermosetting resin composition of the present invention contains a radical generator, if necessary.
  • the radical generator may be one that generates radicals by heating, or may be one that generates radicals by irradiation with light (for example, visible light or ultraviolet rays).
  • any compound known as a radical polymerization initiator of a compound having an ethylenically unsaturated bond can be used.
  • a peroxide-based initiator, an azo-based initiator, or the like can be used.
  • the amount of the radical generator used is preferably 0.01 part by mass or more, preferably 0.05 part by mass with respect to 100 parts by mass of the total amount of the compounds having an ethylenically unsaturated bond in the thermosetting resin composition.
  • the above is more preferable, 0.1 part by mass or more is further preferable, and 0.5 part by mass or more is particularly preferable.
  • the amount of the radical generator used is preferably 10 parts by mass or less, preferably 5 parts by mass or less, based on 100 parts by mass of the total amount of the compounds having ethylenically unsaturated bonds in the thermosetting resin composition. Is more preferable, and it is further preferable that the content is 3 parts by mass or less.
  • thermosetting resin composition If the amount of the radical generator used is too small, it tends to be difficult to sufficiently cure the thermosetting resin composition. If the amount of the radical generator used is too large, the physical properties of the cured product obtained by curing the thermosetting resin composition as a resin material may not be sufficient.
  • thermosetting resin composition of the present invention the above-mentioned phosphoric acid ester compound having an ethylenically unsaturated bond is used as a modifier.
  • modifying means improving the properties of the resin
  • modifying agent means a compound added to the resin to improve the properties of the resin.
  • the modifier of the present invention is effective for improving the properties of a thermosetting resin, and is particularly effective for improving the properties of a thermosetting resin having an ethylenically unsaturated bond.
  • the modifier of the present invention can improve the dielectric properties of thermosetting resin compositions.
  • the modifier of the present invention is effective in improving either the dielectric loss tangent or the transmission loss of the thermosetting resin composition, and is also effective in improving both the dielectric loss tangent and the transmission loss. Therefore, the modifier of the present invention can be suitably used for a thermosetting resin composition for a printed circuit board. In particular, it can be preferably used for high-frequency printed circuit boards. In addition, the modifier of the present invention can maintain high heat resistance of the thermosetting resin composition.
  • the amount of modifier used is not particularly limited.
  • the amount of the modifier used is preferably 1 part by mass or more, preferably 3 parts by mass or more, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond in the thermosetting resin composition. It is more preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more. If necessary, the amount may be 20 parts by mass or more, or 30 parts by mass or more, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond.
  • the amount of the modifier used is preferably 50 parts by mass or less, preferably 40 parts by mass or less, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond in the thermosetting resin composition. Is more preferable, and it is further preferable that the content is 30 parts by mass or less. If necessary, the amount may be 20 parts by mass or less, or 10 parts by mass or less, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond. If the amount of the modifier used is too small, or if the amount of the modifier used is too large, sufficient physical properties may not be obtained in the cured product obtained by curing the thermosetting resin composition. be.
  • a reinforcing material can be used in the thermosetting resin composition of the present invention, if necessary.
  • any known reinforcing material for the thermosetting resin can be used.
  • a fibrous reinforcing material conventionally used as a reinforcing material for an epoxy resin can be used.
  • glass fiber or the like can be used.
  • the reinforcing material may be one that can be uniformly mixed in the thermosetting resin composition, or may be one that cannot be mixed.
  • Examples of the reinforcing material that can be uniformly mixed in the thermosetting resin composition include short fibers of glass, and examples of the reinforcing material that cannot be uniformly mixed in the thermosetting resin composition include glass length. Examples include fibers.
  • a glass fiber in the shape of a sheet or a mat can be impregnated with a thermosetting resin composition and used as a molding material in the form of a so-called prepreg.
  • the amount of reinforcing material used is not particularly limited.
  • the amount of the reinforcing material is 1 part by mass or more and 10 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin, the cross-linking agent, the radical generator and the modifier. It can be at least parts by mass, at least 30 parts by mass, or at least 50 parts by mass.
  • the amount of the reinforcing material is 300 parts by mass or less, 200 parts by mass or less, based on 100 parts by mass of the total amount of the thermosetting resin, the cross-linking agent, the radical generator and the modifier in the thermosetting resin composition. It can be 150 parts by mass or less, or 100 parts by mass or less.
  • thermosetting resin composition of the present invention includes various types other than the above-mentioned modifiers and reinforcing materials, depending on the properties desired for the resin composition, as long as the effects of the present invention are not affected.
  • Additives can be added.
  • Agents eg, inorganic fillers and the like can be added.
  • each of these additives can be 0.01 part by mass or more with respect to 100 parts by mass of the thermosetting resin, and is 0.1 part by mass or more or 1 part by mass or more. It is also possible, and it is possible to make it 20 parts by mass or less, and it is also possible to make it 10 parts by mass or less or 5 parts by mass or less.
  • thermosetting resin composition of the present invention is not always necessary for the thermosetting resin composition of the present invention. It is sufficient to use these additives in the thermosetting resin composition in the minimum amount necessary based on the performance required for the product manufactured from the thermosetting resin of interest.
  • thermosetting resin composition ⁇ Preparation method of composition>
  • the mixing and stirring operations in the preparation of the thermosetting resin composition can be performed using a conventional stirring device, for example, various mills, a Henschel mixer (FM mixer), or the like.
  • a stirring device for example, various mills, a Henschel mixer (FM mixer), or the like.
  • All components may be placed in a stirrer at once for mixing and stirring.
  • thermosetting resin composition of the present invention a curing reaction can be carried out by a conventionally known method. For example, if a radical generator is heated or irradiated with light to generate a radical, the generated radical causes a polymerization reaction of the ethylenically unsaturated bond of the thermosetting resin to obtain a cured resin. Be done. Further, if the thermosetting resin composition contains a cross-linking agent, the ethylenically unsaturated bond of the thermosetting resin and the ethylenically unsaturated bond of the cross-linking agent cause a polymerization reaction to obtain a cured resin. .. Further, since the compound and the modifier of the present invention also have an ethylenically unsaturated group, a polymerization reaction of the compound and the modifier of the present invention occurs due to radicals.
  • the conditions for curing the thermosetting resin composition are appropriately selected according to the type and amount of the radical generator used. For example, if a radical generator that decomposes relatively quickly even at room temperature to generate radicals is used, it may be at room temperature. When using a radical generator that cannot be rapidly decomposed unless it is at a high temperature, a high temperature is used. Specifically, the temperature at which the thermosetting resin composition is cured can be, for example, 80 ° C. or higher, 100 ° C. or higher, and for example, 250 ° C. or lower, or 230 ° C. or lower. can. The heating time can be, for example, 1 minute or more or 3 minutes or more, and can be, for example, 120 minutes or less or 90 minutes or less.
  • thermosetting resin composition of the present invention When a curing reaction is carried out in the thermosetting resin composition of the present invention, a copolymer containing residues of a thermosetting resin having an ethylenically unsaturated bond and residues of a compound of the present invention or a modifier of the present invention is contained. Is considered to be formed. Further, when the thermosetting resin composition of the present invention is subjected to a curing reaction by including a cross-linking agent, the residue of the thermosetting resin having an ethylenically unsaturated bond and the compound of the present invention or the modifier of the present invention are used. It is believed that a copolymer containing the residues of the cross-linking agent and the residues of the cross-linking agent is formed.
  • the substrate produced by using the thermosetting resin composition of the present invention has excellent dielectric properties and heat resistance due to the excellent dielectric properties and heat resistance of the copolymer thus formed.
  • the cured product obtained by performing a curing reaction in the thermosetting resin composition of the present invention has excellent dielectric properties and heat resistance, and can be preferably used as a material for producing a printed circuit board.
  • a "resin material” is a cured product obtained by performing a curing reaction in a thermosetting resin composition, and refers to a material that can be used for various purposes.
  • thermosetting resin composition before the curing reaction is specified, and the cured product is described as a cured product obtained by curing the composition by the expression of so-called product-by-process.
  • thermosetting resin composition of the present invention can be molded by any method known as a method for molding a thermosetting resin.
  • a desired molded product can be easily obtained by using a molding machine, a mold, or the like corresponding to the desired molded product.
  • the step of performing the curing reaction in the thermosetting resin composition and the step of molding into a desired shape may be performed at the same time or separately.
  • the cured product obtained by performing the curing reaction first may be molded, or the curing reaction may be performed after the molding step is performed first.
  • the obtained molded product has excellent dielectric properties and has the advantage that the heat resistance is not reduced due to the addition of the modifier.
  • thermosetting resin composition containing the above-mentioned thermosetting resin and modifier
  • a substrate that can be used as a printed circuit board can be obtained.
  • the printed circuit board usually has a conductor layer and an insulating layer.
  • the modifier and thermosetting resin composition of the present invention can be used to form an insulating layer of a printed circuit board.
  • the high frequency is not particularly limited, but is preferably 100 MHz or higher, 1 GHz or higher in one embodiment, and 10 GHz or higher in another embodiment. Further, the high frequency may be, for example, 100 GHz or less, or may be 50 GHz or less.
  • the printed circuit board for high frequency means a printed circuit board in which such a high frequency is used.
  • High-frequency printed circuit boards are required to have high heat resistance. If a substrate is manufactured using the thermosetting resin of the present invention, excellent heat resistance can be achieved. Further, if a substrate is manufactured using the thermosetting resin of the present invention, excellent dielectric properties and heat resistance can be achieved, so that the substrate can be suitably used for a high frequency printed circuit board.
  • the obtained mixed solution was gradually heated to a temperature of 110 ° C. over about 3 hours while stirring to react, and the generated hydrogen chloride (hydrochloric acid gas) was recovered with a water scrubber. Then, the pressure in the flask is gradually reduced to 12 kPa at 120 ° C. to remove unreacted phosphorus oxychloride and phenol, and hydrogen chloride produced as a by-product, and the main component is monophenylphosphologi chloride having the following structural formula. 1200 g of the reaction mixture was obtained. The chlorine content of the reaction mixture was 28.3% by mass.
  • the mixed solution in the four-necked flask was adjusted to a temperature of 20 ° C. with stirring, and the monoxylylphosphologi chloride in the dropping funnel was added dropwise over 1 hour while maintaining the same temperature (20 ° C.). After completion of the dropping, the mixture was stirred at the same temperature for 2 hours to obtain a reaction product.
  • the obtained reaction product was washed with dilute hydrochloric acid and water, neutralized and washed with sodium carbonate and water, heated to a temperature of 50 ° C., reduced to 2 kPa, and water, toluene and low boiling point were distilled off at room temperature.
  • the mixture was cooled to 76.2 g of a yellow liquid.
  • the results of NMR measurements were as follows.
  • Compound (3) As the compound (3), a commercially available resorcinol bis (2,6-kisilyl) phosphate (manufactured by Daihachi Chemical Industry Co., Ltd., trade name: PX-200) was used.
  • the obtained mixed solution was gradually heated to a temperature of 160 ° C. over about 3 hours while stirring to react, and the generated hydrogen chloride (hydrochloric acid gas) was recovered with a water scrubber. Then, at the same temperature, the pressure in the flask was gradually reduced to 20 kPa to remove xylene, unreacted phosphorus oxychloride, 2,6-dimethylphenol, and hydrogen chloride produced as a by-product. 1700 g of a reaction mixture containing lolidate as a main component was obtained. The chlorine content of the reaction mixture was 10.9% by mass.
  • the temperature of the mixed solution in the four-necked flask was adjusted to 20 ° C. while stirring, and the allyl alcohol in the dropping funnel was added dropwise over 1 hour and 30 minutes while maintaining the same temperature (20 ° C.). After completion of the dropping, the mixture was stirred at the same temperature for 8 hours to obtain a reaction product.
  • the obtained reaction product was washed with dilute hydrochloric acid and water, neutralized and washed with sodium carbonate and water, heated to a temperature of 50 ° C., reduced to 2 kPa, and water, toluene and low boiling point were distilled off at room temperature.
  • the mixture was cooled to 508.6 g of a yellow liquid.
  • Example 1A and 2A and Comparative Examples 1A and 2A The experiments of Example 1A and Example 2A and Comparative Example 1A and Comparative Example 2A were performed as follows.
  • thermosetting resin composition was prepared by blending various components in the ratios shown in Table 1, and 1.3 g of the resin composition was impregnated into 2.0 g of a glass cloth having a texture of 100 g / m 2 for 10 minutes at room temperature. , 120 ° C. was dried in an oven for 3 minutes to obtain a prepreg. Next, eight prepregs were stacked, sandwiched between stainless steel mirror plates, and cured at a temperature of 210 ° C. and a press pressure of 3 MPa for 60 minutes using a hot press to obtain a sample of the laminated plate.
  • Example 1A and Example 2A were higher than that of Comparative Example 2A, and the decrease in the glass transition temperature due to the addition of the modifier was small. From this, it was confirmed that the decrease in heat resistance due to the addition of the modifier was small.
  • Example 1B, Example 2B and Example 3, and Comparative Example 1B and Comparative Example 2B were carried out in a facility different from the facility where Experiment A was performed as follows.
  • Example 1B and 2B and Comparative Examples 1B and 2B The same experiments as in Examples 1B and 2A and Comparative Examples 1A and 2A were performed again. The results are shown in Table 2 below.
  • Example 1B and Example 2B were higher than that of Comparative Example 2B, and the decrease in the glass transition temperature due to the addition of the modifier was small. From this, it was confirmed that the decrease in heat resistance due to the addition of the modifier was small.
  • Example 3 (Example 3 and Comparative Examples 1B to 2B) (Forming of laminated board and evaluation of physical properties)
  • Example 3 the following compounds were used as raw materials.
  • -Resin Methacrylic acid-modified polyphenylene ether resin (SABIC SA-9000, methacrylic acid-modified polyphenylene ether resin at the end, 2 terminal methacryloyl groups)
  • -Crosslinking agent Triallyl isocyanurate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • -Radical generator 1,3-bis (t-butylperoxyisopropyl) benzene (Perbutyl P manufactured by NOF CORPORATION)
  • thermosetting resin composition was prepared by blending various components in the ratio shown in Table 3, and a sample of a laminated board was obtained by the same method as in Comparative Examples 1A and 2A.
  • Example 3 Glass transition temperature: In Example 3, the measurement was carried out by the same method as in Comparative Examples 1A and 2A. The results are shown in Table 3. For Comparative Example 1B and Comparative Example 2B, the measurement results of the glass transition temperature of Comparative Example 1B and Comparative Example 2B shown in Table 2 are shown again in Table 3.
  • Dielectric loss tangent In the sample of Example 3 and the samples of Comparative Examples 1B and 2B, the dielectric loss tangent was measured. Specifically, in accordance with IEC62810, a dielectric loss tangent (tan ⁇ ) at a frequency of 10 GHz was obtained by the cavity resonator perturbation method using a PNA network analyzer manufactured by Keysight Technology Co., Ltd. and a cavity resonator manufactured by Kanto Electronics Applied Development Co., Ltd. rice field. In the table, the addition amount is by mass.
  • Example 3 It was confirmed that the glass transition temperature in Example 3 was higher than that of Comparative Example 2B, and the decrease in the glass transition temperature due to the addition of the modifier was small. Further, in Example 3, excellent dielectric properties were confirmed. That is, it was confirmed that the dielectric loss tangent and the contribution of transmission loss were lower than those of Comparative Example 1B, and the dielectric characteristics were excellent. Therefore, it is understood that the transmission efficiency of electric signals is high. From this, it was confirmed that in Example 3, high heat resistance was maintained in the cured product and the decrease in heat resistance due to the addition of the modifier was small.
  • a modifier and a thermosetting resin composition for a printed circuit board having excellent heat resistance are provided.
  • INDUSTRIAL APPLICABILITY a modifier and a thermosetting resin composition particularly suitable for a high-frequency printed circuit board corresponding to a next-generation communication standard are provided.
  • a printed circuit board having high electric signal transmission efficiency and excellent heat resistance is provided.

Abstract

The present invention addresses the problem of providing a highly heat-resistant thermosetting resin composition able to be used in a high frequency printed circuit board. Provided is a phosphoric acid ester compound having an ethylenically unsaturated bond. This compound can be added as a modifier to a thermosetting resin such as an ethylenically unsaturated bond-containing poly(phenylene ether) resin. Also provided is a thermosetting resin composition that contains this modifier and a thermosetting resin. This thermosetting resin composition has the advantage of exhibiting high heat resistance. Furthermore, it is possible to achieve excellent dielectric properties and high heat resistance, which are required of printed circuit boards for next generation communication standards.

Description

不飽和基含有リン酸エステル、これを含む熱硬化性樹脂組成物、および樹脂材料Unsaturated group-containing phosphoric acid ester, thermosetting resin composition containing it, and resin material
 本発明は、共重合性不飽和結合を有するリン酸エステルに関する。本発明は特に、印刷回路基板などの改質剤として有用な不飽和基含有リン酸エステルに関する。本発明はまた、次世代通信規格、例えば5Gまたは6Gの通信規格に対応した印刷回路基板に使用可能な樹脂組成物に関する。 The present invention relates to a phosphoric acid ester having a copolymerizable unsaturated bond. The present invention particularly relates to unsaturated group-containing phosphoric acid esters useful as modifiers for printed circuit boards and the like. The present invention also relates to resin compositions that can be used in printed circuit boards that comply with next-generation communication standards, such as 5G or 6G communication standards.
 印刷回路基板においては、エポキシ樹脂を使用することが従来から広く行われている。また、エポキシ樹脂に難燃剤としてリン酸エステルを添加することが従来から行われている。 Epoxy resin has been widely used in printed circuit boards. Further, it has been conventionally practiced to add a phosphoric acid ester as a flame retardant to an epoxy resin.
 エポキシ樹脂に添加される難燃剤として、例えば、特開平5-1079号公報(特許文献1)は、レゾルシノールビス(2,6-キシリル)ホスフェートを開示している。 As a flame retardant added to the epoxy resin, for example, Japanese Patent Application Laid-Open No. 5-1079 (Patent Document 1) discloses resorcinol bis (2,6-xylyl) phosphate.
 また、特開2003-221415号公報(特許文献2)は、耐加水分解性に優れた不飽和基含有リン酸エステルとして、ジ(置換フェニル)-2-(メタ)アクリロイルオキシエチルホスフェートを開示している。この文献では、乳化重合や懸濁重合の際の耐加水分解性という課題がこの不飽和基含有リン酸エステルにより解決されることが開示されている。 Further, Japanese Patent Application Laid-Open No. 2003-221415 (Patent Document 2) discloses di (substituted phenyl) -2- (meth) acryloyloxyethyl phosphate as an unsaturated group-containing phosphoric acid ester having excellent hydrolysis resistance. ing. This document discloses that the problem of hydrolysis resistance during emulsion polymerization or suspension polymerization is solved by this unsaturated group-containing phosphoric acid ester.
 しかしながら、これらの添加剤を用いた樹脂組成物は、当該添加剤を用いない樹脂組成物に比べて耐熱性が低いという欠点が存在する。この耐熱性の問題は、上記特許文献1および特許文献2においては解決されていない。また、近年、情報技術は飛躍的に発展しており、次世代通信規格として知られる5G(第5世代)、または6G(第6世代)の通信規格に対応した印刷回路基板が求められている。これらの新しい基板においては、従来要求されていなかった飛躍的に高い処理速度が求められるようになってきている。また、飛躍的に高い周波数が使用されるようになってきている。このような次世代通信規格に対応する基板において、高い処理速度を達成する際、および高い周波数を使用する際に問題となるのが基板の誘電特性、特に誘電正接および伝送損失である。基板の誘電特性が充分でなければ、高い処理速度が達成できず、また、高い周波数が使用できない。そのため、次世代通信規格のための基板は、優れた誘電特性を必要とする。特に、低い誘電正接および低い伝送損失が必要とされる。 However, the resin composition using these additives has a drawback that the heat resistance is lower than that of the resin composition without the additive. This problem of heat resistance is not solved in the above-mentioned Patent Documents 1 and 2. In recent years, information technology has been dramatically developed, and there is a demand for printed circuit boards compatible with 5G (5th generation) or 6G (6th generation) communication standards known as next-generation communication standards. .. These new substrates are required to have dramatically higher processing speeds, which have not been required in the past. In addition, dramatically higher frequencies are being used. In a substrate corresponding to such a next-generation communication standard, the dielectric characteristics of the substrate, particularly the dielectric loss tangent and the transmission loss, become problems when achieving a high processing speed and when using a high frequency. If the dielectric properties of the substrate are not sufficient, high processing speed cannot be achieved and high frequencies cannot be used. Therefore, the substrate for the next-generation communication standard requires excellent dielectric properties. In particular, low dielectric loss tangent and low transmission loss are required.
 基板の誘電特性は、基板に用いられる熱硬化性樹脂組成物に大きく依存する。特に、熱硬化性樹脂と当該樹脂に添加される添加剤が誘電正接および伝送損失に大きく影響する。そのため、次世代通信規格に対応する基板に用いられる熱硬化性樹脂組成物には、以前の印刷回路基板用の熱硬化性樹脂組成物には必要とされていなかった優れた誘電特性が必要とされる。印刷回路基板における誘電損失は、比誘電率の平方根と誘電正接の積に比例することが知られている。本明細書中では、比誘電率の平方根と誘電正接の積を「伝送損失寄与度」と記載する。低い伝送損失寄与度が、次世代通信規格のための基盤の材料に要望されている。このような優れた誘電特性の必要性は、上記特許文献1および特許文献2の技術開発の際においては全く認識されていなかった。 The dielectric property of the substrate largely depends on the thermosetting resin composition used for the substrate. In particular, the thermosetting resin and the additives added to the resin have a great influence on the dielectric loss tangent and the transmission loss. Therefore, the thermosetting resin composition used for the substrate corresponding to the next-generation communication standard needs to have excellent dielectric properties that were not required for the thermosetting resin composition for the previous printed circuit board. Will be done. It is known that the dielectric loss in a printed circuit board is proportional to the product of the square root of the relative permittivity and the dielectric loss tangent. In the present specification, the product of the square root of the relative permittivity and the dielectric loss tangent is referred to as "contribution to transmission loss". A low contribution of transmission loss is required as a base material for next-generation communication standards. The need for such excellent dielectric properties was not recognized at all during the technological development of Patent Documents 1 and 2.
 加えて、次世代通信規格のための基板においては、高い耐熱性も要望されている。 In addition, high heat resistance is also required for substrates for next-generation communication standards.
 このような次世代通信規格のための基板に必要とされる誘電特性および耐熱性を達成し得る樹脂として、従来のエポキシ樹脂に代わって、アクリル変性ポリフェニレンエーテル樹脂が注目されている。 Acrylic-modified polyphenylene ether resin is attracting attention as a resin that can achieve the dielectric properties and heat resistance required for a substrate for such a next-generation communication standard, instead of the conventional epoxy resin.
 しかしながら、上述した耐熱性低下の問題を解決できる熱硬化性樹脂組成物は知られていなかった。さらに、上述したような、次世代通信規格のための基板において必要とされる、優れた誘電特性および高い耐熱性を有する基板を製造できる熱硬化性樹脂組成物は知られていなかった。特に、アクリル変性ポリフェニレンエーテル樹脂などのエチレン性不飽和結合を有する樹脂に添加するのに適切な改質剤は知られていなかった。例えば、上記特許文献2では、乳化重合や懸濁重合の際に加水分解が生じにくい不飽和基含有リン酸エステルを提供することが課題とされており、その課題を解決することのみが開示されていた。そのため、優れた誘電特性および高い耐熱性を達成するという課題は特許文献2において認識されておらず、まったく想定されていない。さらに、アクリル変性ポリフェニレンエーテル樹脂に添加して優れた誘電特性および高い耐熱性を達成するためにどのような改質剤が有効であるのかという点については上記特許文献1および特許文献2にはまったく開示も示唆もされていない。そのため、次世代通信規格に対応した優れた誘電特性および高い耐熱性を有する高周波用印刷回路基板を製造できる熱硬化性樹脂組成物は知られていなかった。 However, a thermosetting resin composition that can solve the above-mentioned problem of reduced heat resistance has not been known. Further, as described above, a thermosetting resin composition capable of producing a substrate having excellent dielectric properties and high heat resistance required for a substrate for a next-generation communication standard has not been known. In particular, no suitable modifier for addition to a resin having an ethylenically unsaturated bond, such as an acrylic-modified polyphenylene ether resin, has been known. For example, in Patent Document 2 above, it is an object to provide an unsaturated group-containing phosphoric acid ester which is less likely to be hydrolyzed during emulsion polymerization or suspension polymerization, and only solving the problem is disclosed. Was there. Therefore, the problem of achieving excellent dielectric properties and high heat resistance is not recognized in Patent Document 2 and is not assumed at all. Further, the above-mentioned Patent Documents 1 and 2 completely describe what kind of modifier is effective for achieving excellent dielectric properties and high heat resistance when added to an acrylic-modified polyphenylene ether resin. No disclosure or suggestion has been made. Therefore, a thermosetting resin composition capable of producing a high-frequency printed circuit board having excellent dielectric properties and high heat resistance corresponding to the next-generation communication standard has not been known.
特開平5-1079号JP-A-5-1079 特開平2003-221415号Japanese Patent Application Laid-Open No. 2003-221415
 本発明は、次世代通信規格のための基板において必要とされる、優れた誘電特性および高い耐熱性を有する印刷回路基板のための改質剤として使用可能な化合物、印刷回路基板のための改質剤および熱硬化性樹脂組成物を提供することを課題とする。 The present invention is a compound that can be used as a modifier for a printed circuit board having excellent dielectric properties and high heat resistance, which is required for a substrate for a next-generation communication standard, and a modification for a printed circuit board. It is an object of the present invention to provide a pledge agent and a thermosetting resin composition.
 本発明者は、上記次世代通信規格に伴う印刷回路基板に関する新たな課題を解決するために鋭意研究を行なった結果、特定の構造を有するリン酸エステル化合物が上記課題を解決することを見出し、本発明を完成するに至った。 As a result of diligent research to solve the new problems related to the printed circuit board associated with the next-generation communication standard, the present inventor has found that a phosphate ester compound having a specific structure solves the above problems. The present invention has been completed.
 具体的には、本発明によれば、例えば、以下が提供される。 Specifically, according to the present invention, for example, the following is provided.
 (項1)
 下記式(I)で示される化合物であって:
Figure JPOXMLDOC01-appb-C000006
式(I)において、
mは、2または1であり、
は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、C~Cの直鎖もしくは分岐鎖のアルキル基であり、
は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、C~Cの直鎖もしくは分岐鎖のアルキル基であり、Rと同じであってもよく異なっていてもよく、
は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、水素原子、またはC~Cの直鎖もしくは分岐鎖のアルキル基であり、Rと同じであってもよく異なっていてもよく、Rと同じであってもよく異なっていてもよく、
ベンゼン環の2位~6位のうちの、R~Rが存在しない2つの炭素にはそれぞれ水素原子が存在し、
mが2である場合、Rは、それぞれ独立して、C~C12の直鎖もしくは分岐鎖のアルケニル基、または下記式(II):
Figure JPOXMLDOC01-appb-C000007
の構造を有する置換基であり、
式(II)において、
は、それぞれ独立して、水素原子またはメチル基であり、
は、それぞれ独立して、C~Cの直鎖または分岐鎖のアルキレンであり、
nは、1~5の整数であり、そして
mが1である場合、Rは、C~C12の直鎖もしくは分岐鎖のアルケニル基である、化合物。
(Item 1)
A compound represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000006
In formula (I)
m is 2 or 1
R 1 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a linear or branched alkyl group of C 1 to C 4 .
R 2 is independently located at any of the 2nd to 6th positions of the benzene ring, is a linear or branched alkyl group of C 1 to C 4 , and may be the same as R 1 . May be different,
R 3 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a hydrogen atom or a linear or branched alkyl group of C 1 to C 4 , which is the same as R 1 . It may be different, it may be the same as R 2 , or it may be different.
Of the 2nd to 6th positions of the benzene ring, the two carbons in which R1 to R3 do not exist each have a hydrogen atom.
When m is 2, R 4 is independently a linear or branched alkenyl group of C 2 to C 12 , or the following formula (II) :.
Figure JPOXMLDOC01-appb-C000007
It is a substituent having the structure of
In formula (II)
R 5 is independently a hydrogen atom or a methyl group, respectively.
R 6 are independently C2 - C4 linear or branched-chain alkylenes.
n is an integer of 1-5, and where m is 1 , R4 is a linear or branched alkenyl group of C2 to C12, a compound.
 (項2)
 上記項1に記載の化合物であって、
 mが2であるか、あるいは、
 mが1であってかつRがC~C12の直鎖もしくは分岐鎖のアルケニル基である、化合物。
(Item 2)
The compound according to Item 1 above.
m is 2 or
A compound in which m is 1 and R 4 is a linear or branched alkenyl group of C 3 to C 12 .
 (項3)
 RおよびRが2位のアルキル基および6位のアルキル基であり、Rが水素原子である、上記項1または2に記載の化合物。
(Item 3)
Item 2. The compound according to Item 1 or 2, wherein R 1 and R 2 are an alkyl group at a 2-position and an alkyl group at a 6-position, and R 3 is a hydrogen atom.
 (項4)
 RおよびRが2位のメチル基および6位のメチル基であり、Rが水素原子である、上記項3に記載の化合物。
(Item 4)
Item 3. The compound according to Item 3, wherein R 1 and R 2 are a methyl group at the 2-position and a methyl group at the 6-position, and R 3 is a hydrogen atom.
 (項5)
 前記式(I)において、RがC~C12の直鎖もしくは分岐鎖のアルケニル基である、上記項1~4のいずれか1項に記載の化合物。
(Item 5)
The compound according to any one of Items 1 to 4 above, wherein R 4 is a linear or branched alkenyl group of C 2 to C 12 in the formula (I).
 (項6)
 RがC~C12の直鎖もしくは分岐鎖のアルケニル基である、上記項1~5のいずれか1項に記載の化合物。
(Item 6)
Item 6. The compound according to any one of Items 1 to 5 above, wherein R 4 is a linear or branched alkenyl group of C 3 to C 12 .
 (項7)
 前記式(I)において、Rが下記式(III):
Figure JPOXMLDOC01-appb-C000008
の構造を有するアルケニル基であり、
ここで、上記式(III)において、kが0以上10以下の整数である、
上記項5または6に記載の化合物。
(Item 7)
In the above formula (I), R4 is the following formula (III):
Figure JPOXMLDOC01-appb-C000008
It is an alkenyl group having the structure of
Here, in the above equation (III), k is an integer of 0 or more and 10 or less.
Item 5. The compound according to Item 5 or 6.
 (項8)
 kが1以上10以下の整数である、上記項7に記載の化合物。
(Item 8)
Item 2. The compound according to Item 7, wherein k is an integer of 1 or more and 10 or less.
 (項9)
 mが1である、上記項7または8に記載の化合物。
(Item 9)
Item 2. The compound according to Item 7 or 8, wherein m is 1.
 (項10)
 上記項1~9のいずれか1項に記載の化合物を含む、改質剤。
(Item 10)
A modifier containing the compound according to any one of the above items 1 to 9.
 (項11)
 熱硬化性樹脂組成物に使用するための改質剤であって、
 該改質剤は、下記式(I)で示される化合物からなり:
Figure JPOXMLDOC01-appb-C000009
式(I)において、
mは、2または1であり、
は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、C~Cの直鎖もしくは分岐鎖のアルキル基であり、
は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、C~Cの直鎖もしくは分岐鎖のアルキル基であり、Rと同じであってもよく異なっていてもよく、
は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、水素原子、またはC~Cの直鎖もしくは分岐鎖のアルキル基であり、Rと同じであってもよく異なっていてもよく、Rと同じであってもよく異なっていてもよく、
ベンゼン環の2位~6位のうちの、R~Rが存在しない2つの炭素にはそれぞれ水素原子が存在し、
は、それぞれ独立して、C~C12の直鎖もしくは分岐鎖のアルケニル基であるか、あるいは、Rは、それぞれ独立して、下記式(II):
Figure JPOXMLDOC01-appb-C000010
の構造を有する置換基であり、
式(II)において、
は、それぞれ独立して、水素原子またはメチル基であり、
は、それぞれ独立して、C~Cの直鎖または分岐鎖のアルキレンであり、
nは、1~5の整数である、
改質剤。
(Item 11)
A modifier for use in thermosetting resin compositions.
The modifier comprises a compound represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000009
In formula (I)
m is 2 or 1
R 1 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a linear or branched alkyl group of C 1 to C 4 .
R 2 is independently located at any of the 2nd to 6th positions of the benzene ring, is a linear or branched alkyl group of C 1 to C 4 , and may be the same as R 1 . May be different,
R 3 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a hydrogen atom or a linear or branched alkyl group of C 1 to C 8 , which is the same as R 1 . It may be different, it may be the same as R 2 , or it may be different.
Of the 2nd to 6th positions of the benzene ring, the two carbons in which R1 to R3 do not exist each have a hydrogen atom.
R 4 is independently a linear or branched alkenyl group of C 2 to C 12 , or R 4 is independently of the following formula (II) :.
Figure JPOXMLDOC01-appb-C000010
It is a substituent having the structure of
In formula (II)
R 5 is independently a hydrogen atom or a methyl group, respectively.
R 6 are independently C2 - C4 linear or branched-chain alkylenes.
n is an integer from 1 to 5.
Modifier.
 (項12)
 上記項1~9のいずれか1項に記載の化合物または上記項10もしくは11に記載の改質剤、および、熱硬化性樹脂を含む、熱硬化性樹脂組成物。
(Item 12)
A thermosetting resin composition comprising the compound according to any one of Items 1 to 9 or the modifier according to Item 10 or 11 and a thermosetting resin.
 (項13)
 前記熱硬化性樹脂がエチレン性不飽和結合を有する熱硬化性樹脂を含む、上記項12に記載の熱硬化性樹脂組成物。
(Item 13)
Item 12. The thermosetting resin composition according to Item 12, wherein the thermosetting resin contains a thermosetting resin having an ethylenically unsaturated bond.
 (項14)
 前記熱硬化性樹脂がエチレン性不飽和基で変性されたポリフェニレンエーテル樹脂を含む、上記項12または13に記載の熱硬化性樹脂組成物。
(Item 14)
Item 12. The thermosetting resin composition according to Item 12 or 13, wherein the thermosetting resin contains a polyphenylene ether resin modified with an ethylenically unsaturated group.
 (項15)
 エチレン性不飽和結合を有する架橋剤をさらに含む、上記項12~14のいずれか1項に記載の熱硬化性樹脂組成物。
(Item 15)
The thermosetting resin composition according to any one of Items 12 to 14, further comprising a cross-linking agent having an ethylenically unsaturated bond.
 (項16)
 前記架橋剤が、トリアリルイソシアヌレートである、上記項15に記載の熱硬化性樹脂組成物。
(Item 16)
Item 12. The thermosetting resin composition according to Item 15, wherein the cross-linking agent is triallyl isocyanurate.
 (項17)
 高周波用印刷回路基板における絶縁層を製造するための、上記項12~16のいずれか1項に記載の熱硬化性樹脂組成物。
(Item 17)
The thermosetting resin composition according to any one of Items 12 to 16 above, for producing an insulating layer in a high-frequency printing circuit board.
 (項18)
 上記項12~17のいずれか1項に記載の熱硬化性樹脂組成物を硬化させて得られる、樹脂材料。
(Item 18)
A resin material obtained by curing the thermosetting resin composition according to any one of Items 12 to 17 above.
 (項19)
 導体層および絶縁層を備える高周波用印刷回路基板であって、該絶縁層が上記項18に記載の樹脂材料を含む、高周波用印刷回路基板。
(Item 19)
A high-frequency printed circuit board including a conductor layer and an insulating layer, wherein the insulating layer contains the resin material according to Item 18.
 (項20)
 導体層および絶縁層を備える高周波用印刷回路基板を製造する方法であって、上記項17に記載の熱硬化性樹脂組成物を硬化させて該絶縁層を形成する工程を含む、方法。
(Item 20)
A method for manufacturing a high-frequency printed circuit board including a conductor layer and an insulating layer, comprising a step of curing the thermosetting resin composition according to Item 17 above to form the insulating layer.
 本発明によれば、耐熱性に優れる印刷回路基板のための改質剤として使用可能な化合物、印刷回路基板のための改質剤および熱硬化性樹脂組成物が提供される。また、本発明によれば、次世代通信規格のための基板において必要とされる、優れた誘電特性および高い耐熱性を有する印刷回路基板のための改質剤として使用可能な化合物、印刷回路基板のための改質剤および熱硬化性樹脂組成物が提供される。 According to the present invention, there are provided a compound that can be used as a modifier for a printed circuit board having excellent heat resistance, a modifier for a printed circuit board, and a thermosetting resin composition. Further, according to the present invention, a compound and a printed circuit board that can be used as a modifier for a printed circuit board having excellent dielectric properties and high heat resistance, which are required for a substrate for a next-generation communication standard. A modifier and a thermosetting resin composition for are provided.
 本発明によれば、エチレン性不飽和結合を有するリン酸エステル化合物が提供される。以下にその詳細を説明する。 According to the present invention, a phosphoric acid ester compound having an ethylenically unsaturated bond is provided. The details will be described below.
 <化合物>
 本発明の化合物は、以下の一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000011
 式(I)において、mは、2または1である。すなわち、この化合物は、2つのR基と1つのフェニル基を有するか、または、1つのR基と2つのフェニル基を有する。
<Compound>
The compound of the present invention is represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000011
In formula (I), m is 2 or 1. That is, this compound has two R4 groups and one phenyl group, or has one R4 group and two phenyl groups.
 ベンゼン環の2位~6位の5つの炭素のうちの、3つの炭素にR~Rが存在し、残りの2つの炭素にはそれぞれ水素原子が存在する。 Of the five carbons at positions 2 to 6 of the benzene ring, three carbons have R1 to R3, and the remaining two carbons each have a hydrogen atom.
 Rは、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、好ましくはベンゼン環の2位、3位、5位または6位のいずれかに位置し、より好ましくはベンゼン環の2位または6位のいずれかに位置する。 R 1 is independently located at any of the 2nd to 6th positions of the benzene ring, preferably at the 2nd, 3rd, 5th or 6th position of the benzene ring, and more preferably. It is located at either the 2-position or the 6-position of the benzene ring.
 Rは、それぞれ独立して、ベンゼン環の2位~6位のうちのRが存在しない位置のうちのいずれかに位置し、好ましくはベンゼン環の2位、3位、5位または6位のいずれかに位置し、より好ましくはベンゼン環の2位または6位のいずれかに位置する。 R 2 is independently located at any of the 2nd to 6th positions of the benzene ring in which R 1 does not exist, preferably at the 2nd, 3rd, 5th or 6th positions of the benzene ring. It is located at one of the positions, more preferably at either the 2-position or the 6-position of the benzene ring.
 1つの好ましい実施形態においては、RおよびRが両方とも、ベンゼン環の2位、3位、5位または6位のいずれかに位置し、より好ましい実施形態においては、RおよびRがベンゼン環の2位および6位に位置する。1つの好ましい実施形態においては、RおよびRが同一である。 In one preferred embodiment, both R 1 and R 2 are located at either the 2-position, 3-position, 5-position or 6-position of the benzene ring, and in a more preferred embodiment, R 1 and R 2 Is located at the 2nd and 6th positions of the benzene ring. In one preferred embodiment, R 1 and R 2 are identical.
 Rは、それぞれ独立して、C~Cの直鎖もしくは分岐鎖のアルキル基であり、1つの実施形態では、C~Cの直鎖もしくは分岐鎖のアルキル基である。1つの実施形態では、RはC~Cのアルキル基である。1つの実施形態では、Rはメチルである。 R 1 is an independent linear or branched alkyl group of C 1 to C 8 , and in one embodiment, a linear or branched alkyl group of C 1 to C 4 . In one embodiment, R 1 is an alkyl group from C 1 to C 2 . In one embodiment, R 1 is methyl.
 なお、本明細書において「アルキル」とは、飽和の脂肪族炭化水素(アルカン)から水素原子が一つ失われて生ずる1価の基をいう。「アルキレン」とは、アルキルからさらに水素原子が一つ失われて生ずる2価の基をいう。また、本明細書において「アルケニル」とは、アルキルにおける単結合のうちの1つが二重結合になった構造を有するものをいう。すなわち、アルケニルは、二重結合を1つ有する。なお、本明細書中の各置換基の説明において、アルキル基、アルキレン基またはアルケニル基が分岐鎖である場合、その炭素数は3以上である。例えば、「C~Cの直鎖もしくは分岐鎖のアルキル基」は、「C~Cの直鎖のアルキル基またはC~Cの分岐鎖のアルキル基」を意味する。また、例えば、「C~C12の直鎖もしくは分岐鎖のアルケニル基」は、「C~C12の直鎖のアルケニル基またはC~C12の分岐鎖のアルケニル基」を意味する。 In addition, in this specification, "alkyl" means a monovalent group generated by the loss of one hydrogen atom from a saturated aliphatic hydrocarbon (alkane). "Alkylene" refers to a divalent group produced by the loss of one more hydrogen atom from an alkyl. Further, as used herein, the term "alkenyl" refers to a structure in which one of the single bonds in alkyl has a double bond. That is, the alkenyl has one double bond. In the description of each substituent in the present specification, when the alkyl group, the alkylene group or the alkenyl group is a branched chain, the number of carbon atoms thereof is 3 or more. For example, "a linear or branched alkyl group of C 1 to C 4 " means "a linear alkyl group of C 1 to C 4 or an alkyl group of a branched chain of C 3 to C 4 ". Further, for example, "a linear or branched alkenyl group of C 2 to C 12 " means "a linear alkenyl group of C 2 to C 12 or an alkenyl group of a branched chain of C 3 to C 12 ". ..
 Rは、それぞれ独立して、C~Cの直鎖もしくは分岐鎖のアルキル基であり、1つの実施形態では、C~Cのアルキル基である。1つの実施形態では、Rはメチルである。Rは、Rと同じであってもよく異なっていてもよい。 R 2 is an independently linear or branched alkyl group of C 1 to C 4 , and in one embodiment, an alkyl group of C 1 to C 2 . In one embodiment, R 2 is methyl. R 2 may be the same as or different from R 1 .
 Rは、それぞれ独立して、ベンゼン環の2位~6位の5つの炭素のうちのRおよびRが存在しない3つの炭素のうちのいずれかに位置する。Rは、水素原子またはC~Cの直鎖もしくは分岐鎖のアルキル基であり、1つの実施形態では、水素原子またはC~Cの直鎖もしくは分岐鎖のアルキル基である。1つの実施形態では、Rは、水素またはC~Cのアルキル基である。1つの実施形態では、Rは水素またはメチルである。1つの実施形態では、Rは水素である。Rが水素原子である場合には、ベンゼン環の2位~6位の5つの炭素のうちの2つの炭素にのみにアルキル基が存在し、残りの3つの炭素には水素が存在する構造となる。 R 3 is independently located in one of the three carbons in which R 1 and R 2 are absent among the five carbons at positions 2 to 6 of the benzene ring. R 3 is a hydrogen atom or a straight or branched chain alkyl group from C 1 to C 8 and, in one embodiment, a hydrogen atom or a straight or branched alkyl group from C 1 to C 4 . In one embodiment, R 3 is a hydrogen or an alkyl group from C 1 to C 2 . In one embodiment, R 3 is hydrogen or methyl. In one embodiment, R 3 is hydrogen. When R 3 is a hydrogen atom, an alkyl group is present only in two of the five carbons at positions 2 to 6 of the benzene ring, and hydrogen is present in the remaining three carbons. It becomes.
 Rは、それぞれ独立して、C~C12の直鎖もしくは分岐鎖のアルケニル基、または下記式(II):
Figure JPOXMLDOC01-appb-C000012
の構造を有する置換基である。1つの好ましい実施形態では、RはC~C12の直鎖もしくは分岐鎖のアルケニル基である。1つのより好ましい実施形態では、RはC~C12の直鎖もしくは分岐鎖のアルケニル基である。最も好ましい実施形態では、Rはアリル基である。1つの実施形態において、RはC~C10の直鎖もしくは分岐鎖のアルケニル基であってもよく、C~Cの直鎖もしくは分岐鎖のアルケニル基であってもよく、C~Cの直鎖もしくは分岐鎖のアルケニル基であってもよく、C~Cの直鎖もしくは分岐鎖のアルケニル基であってもよい。また、1つの実施形態において、RはC~C10の直鎖もしくは分岐鎖のアルケニル基であってもよく、C~Cの直鎖もしくは分岐鎖のアルケニル基であってもよく、C~Cの直鎖もしくは分岐鎖のアルケニル基であってもよく、C~Cの直鎖もしくは分岐鎖のアルケニル基であってもよい。
Each of R4 is independently a linear or branched alkenyl group of C2 to C12, or the following formula (II):
Figure JPOXMLDOC01-appb-C000012
It is a substituent having the structure of. In one preferred embodiment, R 4 is a linear or branched chain alkenyl group of C 2 to C 12 . In one more preferred embodiment, R 4 is a linear or branched chain alkenyl group of C 3 to C 12 . In the most preferred embodiment, R4 is an allyl group. In one embodiment, R 4 may be a straight chain or branched chain alkenyl group of C 2 to C 10 , a straight chain or branched chain alkenyl group of C 2 to C 8 , C. It may be a linear or branched alkenyl group of 2 to C6, or it may be a linear or branched alkenyl group of C2 to C4 . Further, in one embodiment, R 4 may be a linear or branched alkenyl group of C 3 to C 10 or a linear or branched alkenyl group of C 3 to C 8 . , C 3 to C 6 may be a linear or branched alkenyl group, or may be a C 3 to C 4 linear or branched alkenyl group.
 1つの実施形態では、mが2である場合にのみ、Rが式(II)の置換基である。 In one embodiment, R 4 is a substituent of formula (II) only if m is 2.
 Rは、それぞれ独立して、水素原子またはメチル基である。 R 5 is independently a hydrogen atom or a methyl group.
 Rは、それぞれ独立して、C~Cの直鎖または分岐鎖のアルキレンであり、1つの実施形態では、Cのアルキレン(-CHCH-)である。 R 6 are independently C 2 to C 4 linear or branched chain alkylenes and, in one embodiment, C 2 alkylene (-CH 2 CH 2- ).
 nは、1~5の整数であり、1つの実施形態では、1である。 N is an integer of 1 to 5, and in one embodiment, it is 1.
 1つの実施形態において、Rが下記式(III):
Figure JPOXMLDOC01-appb-C000013
の構造を有する置換基であり、ここで、kは、0以上10以下の整数である。1つのより好ましい実施形態では、kは1以上10以下の整数である。1つの最も好ましい実施形態では、kは1である。1つの実施形態において、kは1以上であってもよい。また、1つの実施形態において、kは8以下であってもよく、6以下であってもよく、4以下であってもよく、2以下であってもよい。
In one embodiment, R4 has the following equation (III):
Figure JPOXMLDOC01-appb-C000013
It is a substituent having the structure of, where k is an integer of 0 or more and 10 or less. In one more preferred embodiment, k is an integer greater than or equal to 1 and less than or equal to 10. In one most preferred embodiment, k is 1. In one embodiment, k may be 1 or more. Further, in one embodiment, k may be 8 or less, 6 or less, 4 or less, or 2 or less.
 本発明の好ましい実施形態においては、mが1であって、かつ、Rが式(III)の構造を有する置換基である。さらに好ましい実施形態においては、式(III)中のkが1である。特に好ましい実施形態においては、mが1であって、Rが式(III)の構造を有する置換基であって、kが1であり、RおよびRが2位のメチル基および6位のメチル基であり、そしてRが水素原子である。mが1であって、かつ、Rが式(III)の構造を有する置換基である化合物を改質剤として使用すれば、耐熱性および誘電特性の両方において優れる組成物が得ることができる。 In a preferred embodiment of the present invention, m is 1 and R4 is a substituent having the structure of the formula (III). In a more preferred embodiment, k in formula (III) is 1. In a particularly preferred embodiment, m is 1, R 4 is a substituent having the structure of formula (III), k is 1, and R 1 and R 2 are 2-position methyl groups and 6 It is a methyl group at the position , and R3 is a hydrogen atom. When a compound in which m is 1 and R 4 is a substituent having a structure of the formula (III) is used as a modifier, a composition excellent in both heat resistance and dielectric properties can be obtained. ..
 本発明の1つの実施形態においては、mが1であって、RおよびRが2位のメチル基および6位のメチル基であり、そしてRが水素原子である場合には、Rはビニル基ではない。 In one embodiment of the invention, if m is 1, R 1 and R 2 are the methyl group at the 2-position and the methyl group at the 6-position, and R 3 is a hydrogen atom, then R 4 is not a vinyl group.
 <化合物の合成方法>
 式(I)で表される化合物は、リン酸エステルの合成方法として従来公知のプロセスを適宜組み合わせることにより製造できる。
<Compound synthesis method>
The compound represented by the formula (I) can be produced by appropriately combining conventionally known processes as a method for synthesizing a phosphoric acid ester.
 式(I)において、m=1であり、Rがアルケニルである化合物は、例えば、対応するアルキル置換フェノールと、オキシ塩化リンと、アルケニルアルコールとを反応させることによって得られる。具体的には、例えば、対応するアルキル置換フェノールにオキシ塩化リンを反応させてジ(アルキル置換フェニル)ホスホロクロリデートを合成し、その後、得られたジ(アルキル置換フェニル)ホスホロクロリデートにアルケニルアルコールを反応させることによって得られる。 In formula (I), the compound with m = 1 and R4 being alkenyl can be obtained, for example, by reacting the corresponding alkyl substituted phenol with phosphorus oxychloride and an alkenyl alcohol. Specifically, for example, the corresponding alkyl-substituted phenol is reacted with phosphorus oxychloride to synthesize a di (alkyl-substituted phenyl) phosphorochloridate, and then the obtained di (alkyl-substituted phenyl) phosphorochloridate is obtained. Obtained by reacting with alkenyl alcohol.
 式(I)において、m=2であり、Rがアルケニルである化合物は、例えば、対応するアルキル置換フェノールにオキシ塩化リンを反応させてモノ(アルキル置換フェニル)ホスホロジクロリデートを合成し、その後、得られたモノ(置換フェニル)ホスホロジクロリデートにアルケニルフェノールを反応させることによって得られる。 In formula (I), the compound having m = 2 and R4 being alkenyl is, for example, reacting the corresponding alkyl substituted phenol with phosphorus oxychloride to synthesize a mono (alkyl substituted phenyl) phosphorodichloridate. Then, it is obtained by reacting the obtained mono (substituted phenyl) phosphorodichloridate with alkenylphenol.
 例えば、式(I)において、m=1であり、Rが式(II)の置換基である化合物は、特開2003-221415号公報に記載されている方法で製造することができる。 For example, a compound having m = 1 in formula (I) and R4 being a substituent of formula (II) can be produced by the method described in JP-A-2003-221415.
 また、式(I)において、m=2であり、Rが式(II)の置換基である化合物は、特開2003-221415号に記載されている方法を応用して製造することができる。
 具体的には、例えば、対応するアルキル置換フェノールにオキシ塩化リンを反応させてモノ(アルキル置換フェニル)ホスホロジクロリデートを合成し、その後、得られたモノ(置換フェニル)ホスホロジクロリデートに水酸基を含有する(メタ)アクリレートを反応させることによって得られる。
Further, the compound in formula (I) where m = 2 and R4 is a substituent of formula (II) can be produced by applying the method described in JP-A-2003-221415. ..
Specifically, for example, a mono (alkyl-substituted phenyl) phosphorodichloridate is synthesized by reacting the corresponding alkyl-substituted phenol with phosphorus oxychloride, and then a hydroxyl group is added to the obtained mono (substituted phenyl) phosphorodichloridate. It is obtained by reacting with a (meth) acrylate containing.
 上記化合物は、本発明において、そのまま、改質剤として使用することができる。 The above compound can be used as it is as a modifier in the present invention.
 <熱硬化性樹脂組成物>
 本発明の熱硬化性樹脂組成物は、熱硬化性樹脂および上記改質剤を含む。
<Thermosetting resin composition>
The thermosetting resin composition of the present invention contains a thermosetting resin and the above-mentioned modifier.
 <熱硬化性樹脂>
 本発明の熱硬化性樹脂組成物には、従来公知の熱硬化性樹脂を用いることができる。1つの好ましい実施形態では、エチレン性不飽和結合を有する熱硬化性樹脂を使用する。
<Thermosetting resin>
A conventionally known thermosetting resin can be used for the thermosetting resin composition of the present invention. In one preferred embodiment, a thermosetting resin having an ethylenically unsaturated bond is used.
 本明細書中において、エチレン性不飽和結合とは、ラジカルの存在下でラジカル重合を行うことができる脂肪族の二重結合または三重結合を意味する。このような不飽和結合を有する基としては、アクリロイル基、メタクリロイル基、ビニル基、アリル基、マレイミド基などの各種置換基が周知である。これらの不飽和結合を有する基を樹脂に結合させて得られる樹脂は、エチレン性不飽和結合を有する熱硬化性樹脂となるので本発明に好適に使用可能である。 In the present specification, the ethylenically unsaturated bond means an aliphatic double bond or triple bond capable of performing radical polymerization in the presence of radicals. As the group having such an unsaturated bond, various substituents such as an acryloyl group, a methacryloyl group, a vinyl group, an allyl group and a maleimide group are well known. The resin obtained by binding these unsaturated bonds to the resin is a thermosetting resin having an ethylenically unsaturated bond, and can be suitably used for the present invention.
 エチレン性不飽和結合を有する熱硬化性樹脂としては、従来公知のものを使用することができる。例えば、エチレン性不飽和基で変性されたポリフェニレンエーテル樹脂、マレイミド樹脂、スチレン系樹脂などが使用可能である。 As the thermosetting resin having an ethylenically unsaturated bond, conventionally known ones can be used. For example, a polyphenylene ether resin modified with an ethylenically unsaturated group, a maleimide resin, a styrene resin, or the like can be used.
 <エチレン性不飽和基で変性されたポリフェニレンエーテル樹脂>
 1つの実施形態において、前記熱硬化性樹脂は、エチレン性不飽和基で変性されたポリフェニレンエーテル樹脂である。エチレン性不飽和基で変性されたポリフェニレンエーテル樹脂は、ポリフェニレンエーテル樹脂の末端にエチレン性不飽和基が結合した樹脂である。
<Polyphenylene ether resin modified with ethylenically unsaturated group>
In one embodiment, the thermosetting resin is a polyphenylene ether resin modified with an ethylenically unsaturated group. The polyphenylene ether resin modified with an ethylenically unsaturated group is a resin in which an ethylenically unsaturated group is bonded to the end of the polyphenylene ether resin.
 エチレン性不飽和基で変性されたポリフェニレンエーテル樹脂は、例えば、以下の一般式Aで示される。
Figure JPOXMLDOC01-appb-C000014
   (一般式A)
The polyphenylene ether resin modified with an ethylenically unsaturated group is represented by, for example, the following general formula A.
Figure JPOXMLDOC01-appb-C000014
(General formula A)
 一般式Aにおいては、ポリフェニレンエーテルの主鎖の両端のヒドロキシル基の水素原子の部分にエチレン性不飽和基が結合している。ここで、式Aにおいて、R11~R32は、それぞれ独立していて水素原子または置換基である。置換基としては例えば、炭素数が1~8個の直鎖または分岐鎖アルキル基、炭素数が2~8個の直鎖または分岐鎖アルケニル基、炭素数が2~8個の直鎖または分岐鎖アルキニル基、炭素数が6~10個のアリール基、カルボキシル基、アルデヒド基、ヒドロキシル基、アミノ基などが挙げられる。X、Y、Zは、それぞれ独立して、単結合、カルボニル基(>C=O)、チオカルボニル基(>C=S)、メチレン基(-CH-)、エチレン基(ジメチレン基)(-CH-CH-)、イソプロペニル基(-C(CH)-)、トリメチレン基(-CH-CH-CH-)またはテトラメチレン基(-CH-CH-CH-CH-)などである。nは好ましくは1~100であり、より好ましくは3~20である。nは好ましくは1~100であり、より好ましくは3~20である。 In the general formula A, an ethylenically unsaturated group is bonded to the hydrogen atom portion of the hydroxyl group at both ends of the main chain of the polyphenylene ether. Here, in the formula A, R 11 to R 32 are independent hydrogen atoms or substituents, respectively. Examples of the substituent include a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkenyl group having 2 to 8 carbon atoms, and a linear or branched group having 2 to 8 carbon atoms. Examples thereof include a chain alkynyl group, an aryl group having 6 to 10 carbon atoms, a carboxyl group, an aldehyde group, a hydroxyl group and an amino group. X, Y, and Z are independently single-bonded, carbonyl group (> C = O), thiocarbonyl group (> C = S), methylene group ( -CH2- ), ethylene group (dimethylene group) ( -CH 2 -CH 2- ), isopropenyl group (-C (CH 3 ) 2- ), trimethylene group (-CH 2 -CH 2 -CH 2- ) or tetramethylene group (-CH 2 -CH 2 -CH 2 -CH 2- ), etc. n 1 is preferably 1 to 100, more preferably 3 to 20. n 2 is preferably 1 to 100, more preferably 3 to 20.
 1つの実施形態において、R16、R17、R20、R21、R22、R23、R26、およびR27が水素である。1つの実施形態において、R14、R15、R18、R19、R24、R25、R28、およびR29がアルキルであり、1つの実施形態において、R14、R15、R18、R19、R24、R25、R28、およびR29がメチルである。 In one embodiment, R 16 , R 17 , R 20 , R 21 , R 22 , R 23 , R 26 , and R 27 are hydrogen. In one embodiment, R 14 , R 15 , R 18 , R 19 , R 24 , R 25 , R 28 , and R 29 are alkyl, and in one embodiment R 14 , R 15 , R 18 , ,. R 19 , R 24 , R 25 , R 28 , and R 29 are methyl.
 1つの実施形態において、XおよびZがカルボニル基(>C=O)であり、Yがイソプロペニル基(-C(CH)-)である。また、1つの実施形態において、Xがベンジレン基(-CCH-)、Yがイソプロペニル基(-C(CH)-)であり、Zがベンジレン基(-CH-)である。 In one embodiment, X and Z are carbonyl groups (> C = O) and Y is an isopropenyl group (-C (CH 3 ) 2- ). Further, in one embodiment, X is a benzylene group (-C 6 H 4 CH 2- ), Y is an isopropenyl group (-C (CH 3 ) 2- ), and Z is a benzylene group (-CH 2 C). 6 H 4- ).
 1つの実施形態において、R13およびR32がメチルである。1つの実施形態において、R13およびR32が水素である。 In one embodiment, R 13 and R 32 are methyl. In one embodiment, R 13 and R 32 are hydrogen.
 1つの実施形態において、R11、R12、R30およびR31が水素である。 In one embodiment, R 11 , R 12 , R 30 and R 31 are hydrogen.
 エチレン性不飽和基で変性されたポリフェニレンエーテル樹脂の分子量は特に限定されない。例えば、数平均分子量500以上が好ましく、1,000以上がより好ましい。また、例えば、数平均分子量10,000以下が好ましく、7,000以下がより好ましく、1つの実施形態では5,000以下である。1つの実施形態では3,000以下である。分子量が小さすぎる場合には、硬化物のTgが低くなりやすく、耐熱性が低下しやすい。分子量が大き過ぎる場合には、流動性が低下するために、硬化物を成形することが困難となるおそれがある。 The molecular weight of the polyphenylene ether resin modified with an ethylenically unsaturated group is not particularly limited. For example, a number average molecular weight of 500 or more is preferable, and 1,000 or more is more preferable. Further, for example, the number average molecular weight is preferably 10,000 or less, more preferably 7,000 or less, and 5,000 or less in one embodiment. In one embodiment, it is 3,000 or less. If the molecular weight is too small, the Tg of the cured product tends to be low, and the heat resistance tends to be low. If the molecular weight is too large, it may be difficult to mold the cured product because the fluidity is lowered.
 具体的な好ましい樹脂としては、例えば、以下の構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000015
Specific preferable resins include, for example, those having the following structures.
Figure JPOXMLDOC01-appb-C000015
 このような構造を有する樹脂の具体的な製品としては、例えば、SABICジャパン合同会社製Noryl(登録商標)SA9000樹脂が市販されている。
 また、以下の構造のものも、好ましい樹脂として用いることができる。
Figure JPOXMLDOC01-appb-C000016
 このような構造を有する樹脂の具体的な製品としては、例えば、パナソニック株式会社製MEGTRON(登録商標)が市販されている。
 また、1つの実施形態において、特表2003-515642、特表2006-516297、特開2013-23517、特開2013-23519、WO2014/034103、特開2019-194312などに記載されたポリフェニレンエーテルも、熱硬化性樹脂として本発明に使用することができる。
As a specific product of the resin having such a structure, for example, SABIC Japan GK Noryl (registered trademark) SA9000 resin is commercially available.
Further, those having the following structures can also be used as preferable resins.
Figure JPOXMLDOC01-appb-C000016
As a specific product of the resin having such a structure, for example, MEGTRON (registered trademark) manufactured by Panasonic Corporation is commercially available.
Further, in one embodiment, the polyphenylene ethers described in JP-A-2003-515642, JP-A-2006-516297, JP-A-2013-23517, JP-A-2013-23519, WO2014 / 0344103, JP-A-2019-194312, etc. are also available. It can be used in the present invention as a thermosetting resin.
 <マレイミド樹脂>
 1つの実施形態において、前記熱硬化性樹脂としてマレイミド樹脂を使用することもできる。マレイミド樹脂としては、任意の公知のものを使用することができる。具体的には、例えば、4,4’-ビスマレイミドジフェニルメタン、N,N’-p-フェニレンビスマレイミド、N,N’-m-フェニレンビスマレイミド、N,N’-m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、N,N’-(スルホニルジ-p-フェニレン)ジマレイミドが挙げられる。
<Maleimide resin>
In one embodiment, a maleimide resin can also be used as the thermosetting resin. Any known maleimide resin can be used. Specifically, for example, 4,4'-bismaleimide diphenylmethane, N, N'-p-phenylene bismaleimide, N, N'-m-phenylene bismaleimide, N, N'-m-phenylene bismaleimide, bisphenol. A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 1,6'-bismaleimide- (2,2,4-trimethyl) hexane, N, N '-(Sulfonyldi-p-phenylene) dimaleimide can be mentioned.
 <スチレン系樹脂>
 1つの実施形態において、前記熱硬化性樹脂として、ポリスチレンの側鎖にアリル基を結合させた対応のスチレン系樹脂を使用することもできる。例えば、分子中に下記式で表される構造単位を有する重合体が知られており、本発明に使用することができる。
Figure JPOXMLDOC01-appb-C000017
 ここで、Zは、アリーレン基を示し、R1a~R3aは、それぞれ独立して、水素原子又はアルキル基を示し、R4a~R6aは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を示す。このようなスチレン系樹脂の具体例としては、日鉄ケミカル&マテリアル株式会社製のODV-XET(X03)、日鉄ケミカル&マテリアル株式会社製のODV-XET(X04)、日鉄ケミカル&マテリアル株式会社製のODV-XET(X05)などが挙げられる。
<Styrene resin>
In one embodiment, as the thermosetting resin, a corresponding styrene-based resin in which an allyl group is bonded to a polystyrene side chain can also be used. For example, a polymer having a structural unit represented by the following formula in the molecule is known and can be used in the present invention.
Figure JPOXMLDOC01-appb-C000017
Here, Z a indicates an arylene group, R 1a to R 3a independently indicate a hydrogen atom or an alkyl group, and R 4a to R 6a independently indicate a hydrogen atom or 1 carbon atom. It shows up to 6 alkyl groups. Specific examples of such styrene-based resins include ODV-XET (X03) manufactured by Nittetsu Chemical & Materials Co., Ltd., ODV-XET (X04) manufactured by Nittetsu Chemical & Materials Co., Ltd., and Nittetsu Chemical & Materials Co., Ltd. ODV-XET (X05) manufactured by the company and the like can be mentioned.
 <その他の樹脂>
 本発明の熱硬化性樹脂組成物においては、必要に応じて、上記エチレン性不飽和結合を有する熱硬化性樹脂に加えて、エチレン性不飽和結合を有さない熱硬化性樹脂を使用することもできる。
<Other resins>
In the thermosetting resin composition of the present invention, if necessary, a thermosetting resin having no ethylenically unsaturated bond is used in addition to the above-mentioned thermosetting resin having an ethylenically unsaturated bond. You can also.
 例えば、エポキシ樹脂を使用することができる。しかしながら、本発明の効果を充分に発揮するためには、エチレン性不飽和結合を有さない熱硬化性樹脂の使用量は少量にすることが好ましい。エチレン性不飽和結合を有さない熱硬化性樹脂の量は、エチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して50質量部以下とすることが好ましく、30質量部以下とすることがより好ましく、10質量部以下とすることがさらに好ましい。 For example, epoxy resin can be used. However, in order to fully exert the effect of the present invention, it is preferable to use a small amount of the thermosetting resin having no ethylenically unsaturated bond. The amount of the thermosetting resin having no ethylenically unsaturated bond is preferably 50 parts by mass or less, preferably 30 parts by mass or less, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond. It is more preferably 10 parts by mass or less.
 本発明の熱硬化性樹脂組成物においては、必要に応じて、熱硬化性樹脂に加えて、熱可塑性樹脂を使用することもできる。しかしながら、本発明の効果を充分に発揮するためには、熱可塑性樹脂の使用量は少量にすることが好ましい。熱可塑性樹脂の量は、エチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して50質量部以下とすることが好ましく、30質量部以下とすることがより好ましく、10質量部以下とすることがさらに好ましい。1つの実施形態においては、本発明の熱硬化性樹脂組成物は、熱可塑性樹脂を含まない。 In the thermosetting resin composition of the present invention, a thermoplastic resin can be used in addition to the thermosetting resin, if necessary. However, in order to fully exert the effect of the present invention, it is preferable to use a small amount of the thermoplastic resin. The amount of the thermoplastic resin is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and 10 parts by mass or less with respect to 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond. It is more preferable to do so. In one embodiment, the thermosetting resin composition of the present invention does not contain a thermoplastic resin.
 <架橋剤>
 本発明の熱硬化性樹脂組成物は、必要に応じて、エチレン性不飽和結合を有するモノマー化合物を架橋剤として含む。エチレン性不飽和結合を有する架橋剤は、熱硬化反応の際に、エチレン性不飽和結合を有する熱硬化性樹脂と共重合して、得られる硬化した製品に良好な物性を提供する。
<Crosslinking agent>
The thermosetting resin composition of the present invention contains, if necessary, a monomer compound having an ethylenically unsaturated bond as a cross-linking agent. The cross-linking agent having an ethylenically unsaturated bond is copolymerized with a thermosetting resin having an ethylenically unsaturated bond during a thermosetting reaction to provide good physical properties to the obtained cured product.
 架橋剤としては、エチレン性不飽和結合を有する熱硬化性樹脂の架橋剤として公知のモノマーが使用可能である。例えば、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、スチレンなどが使用可能である。1つの分子中に2個以上のエチレン性不飽和結合を有するモノマーが好ましく、1つの分子中に3個以上のエチレン性不飽和結合を有するモノマーがさらに好ましい。また、1つの分子中に4個以下のエチレン性不飽和結合を有するモノマーが好ましい。1つの実施形態において架橋剤は、分子中に3個のエチレン性不飽和結合を有するモノマーである。 As the cross-linking agent, a monomer known as a cross-linking agent for a thermosetting resin having an ethylenically unsaturated bond can be used. For example, triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, styrene and the like can be used. A monomer having two or more ethylenically unsaturated bonds in one molecule is preferable, and a monomer having three or more ethylenically unsaturated bonds in one molecule is more preferable. Further, a monomer having 4 or less ethylenically unsaturated bonds in one molecule is preferable. In one embodiment, the cross-linking agent is a monomer having three ethylenically unsaturated bonds in the molecule.
 架橋剤中のエチレン性不飽和結合を有する部分の例としては、アリル基、アクリロイル基、メタクリロイル基などが挙げられる。アリル基が好ましい。架橋剤の分子量は、100以上であることが好ましく、200以上であることがより好ましい。架橋剤の分子量は、700以下であることが好ましく、500以下であることがより好ましく、300以下であることがさらに好ましい。 Examples of the portion having an ethylenically unsaturated bond in the cross-linking agent include an allyl group, an acryloyl group, and a methacryloyl group. Allyl groups are preferred. The molecular weight of the cross-linking agent is preferably 100 or more, more preferably 200 or more. The molecular weight of the cross-linking agent is preferably 700 or less, more preferably 500 or less, and even more preferably 300 or less.
 架橋剤の使用量は特に限定されない。架橋剤の使用量は、熱硬化性樹脂組成物中のエチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して1質量部以上とすることが好ましく、3質量部以上とすることがより好ましく、5質量部以上とすることがさらに好ましく、10質量部以上とすることが特に好ましい。必要に応じて、エチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して20質量部以上とすることも可能であり、30質量部以上とすることも可能である。 The amount of the cross-linking agent used is not particularly limited. The amount of the cross-linking agent used is preferably 1 part by mass or more, preferably 3 parts by mass or more, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond in the thermosetting resin composition. It is more preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more. If necessary, the amount may be 20 parts by mass or more, or 30 parts by mass or more, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond.
 架橋剤の使用量は、熱硬化性樹脂組成物中のエチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して200質量部以下とすることが好ましく、150質量部以下とすることがより好ましく、100質量部以下とすることがさらに好ましい。必要に応じて、エチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して120質量部以下とすることも可能であり、100質量部以下とすることも可能である。 The amount of the cross-linking agent used is preferably 200 parts by mass or less, preferably 150 parts by mass or less, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond in the thermosetting resin composition. It is more preferably 100 parts by mass or less, and further preferably 100 parts by mass or less. If necessary, the amount may be 120 parts by mass or less with respect to 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond, or 100 parts by mass or less.
 架橋剤の使用量が少なすぎる場合には、熱硬化性樹脂組成物を硬化して得られる硬化物において十分な耐熱性が得られにくい場合がある。架橋剤の使用量が多すぎる場合には、熱硬化性樹脂組成物を硬化して得られる硬化物において十分な引張強度および衝撃強度が得られない場合がある。 If the amount of the cross-linking agent used is too small, it may be difficult to obtain sufficient heat resistance in the cured product obtained by curing the thermosetting resin composition. If the amount of the cross-linking agent used is too large, sufficient tensile strength and impact strength may not be obtained in the cured product obtained by curing the thermosetting resin composition.
 なお、エチレン性不飽和結合を有する改質剤化合物は架橋剤としても機能し得るが、本発明において、エチレン性不飽和結合を有する改質剤化合物は、改質剤として顕著な効果を奏するものである。そのため、本明細書においては、エチレン性不飽和結合を有する改質剤化合物は架橋剤に含めない。 The modifier compound having an ethylenically unsaturated bond can also function as a cross-linking agent, but in the present invention, the modifier compound having an ethylenically unsaturated bond exerts a remarkable effect as a modifier. Is. Therefore, in the present specification, the modifier compound having an ethylenically unsaturated bond is not included in the cross-linking agent.
 <ラジカル発生剤>
 本発明の熱硬化性樹脂組成物は、必要に応じて、ラジカル発生剤を含む。ラジカル発生剤は、加熱されることによりラジカルを発生するものであってもよく、光(例えば、可視光もしくは紫外線)の照射によりラジカルを発生するものであってもよい。
<Radical generator>
The thermosetting resin composition of the present invention contains a radical generator, if necessary. The radical generator may be one that generates radicals by heating, or may be one that generates radicals by irradiation with light (for example, visible light or ultraviolet rays).
 ラジカル発生剤としては、エチレン性不飽和結合を有する化合物のラジカル重合開始剤として公知の任意の化合物が使用可能である。例えば、過酸化物系の開始剤、アゾ系の開始剤等が使用可能である。 As the radical generator, any compound known as a radical polymerization initiator of a compound having an ethylenically unsaturated bond can be used. For example, a peroxide-based initiator, an azo-based initiator, or the like can be used.
 ラジカル発生剤の使用量は、熱硬化性樹脂組成物中のエチレン性不飽和結合を有する化合物の合計量100質量部に対して0.01質量部以上とすることが好ましく、0.05質量部以上とすることがより好ましく、0.1質量部以上とすることがさらに好ましく、0.5質量部以上とすることが特に好ましい。ラジカル発生剤の使用量は、熱硬化性樹脂組成物中のエチレン性不飽和結合を有する化合物の合計量100質量部に対して10質量部以下とすることが好ましく、5質量部以下とすることがより好ましく、3質量部以下とすることがさらに好ましい。ラジカル発生剤の使用量が少なすぎる場合には、熱硬化性樹脂組成物を充分に硬化させることが困難になりやすい。ラジカル発生剤の使用量が多すぎる場合には、熱硬化性樹脂組成物を硬化して得られる硬化物の樹脂材料としての物性が充分でない場合がある。 The amount of the radical generator used is preferably 0.01 part by mass or more, preferably 0.05 part by mass with respect to 100 parts by mass of the total amount of the compounds having an ethylenically unsaturated bond in the thermosetting resin composition. The above is more preferable, 0.1 part by mass or more is further preferable, and 0.5 part by mass or more is particularly preferable. The amount of the radical generator used is preferably 10 parts by mass or less, preferably 5 parts by mass or less, based on 100 parts by mass of the total amount of the compounds having ethylenically unsaturated bonds in the thermosetting resin composition. Is more preferable, and it is further preferable that the content is 3 parts by mass or less. If the amount of the radical generator used is too small, it tends to be difficult to sufficiently cure the thermosetting resin composition. If the amount of the radical generator used is too large, the physical properties of the cured product obtained by curing the thermosetting resin composition as a resin material may not be sufficient.
 <改質剤>
 本発明の熱硬化性樹脂組成物には、上述したエチレン性不飽和結合を有するリン酸エステル化合物を改質剤として使用する。本明細書において、改質とは、樹脂の特性を改良することを意味し、改質剤とは、樹脂の特性を改良するために樹脂に添加される化合物を意味する。本発明の改質剤は、熱硬化性樹脂の特性を改良するのに有効であり、特に、エチレン性不飽和結合を有する熱硬化性樹脂の特性を改良するのに有効である。1つの実施形態において、本発明の改質剤は、熱硬化性樹脂組成物の誘電特性を改良することができる。本発明の改質剤は、熱硬化性樹脂組成物の誘電正接または伝送損失のいずれかを改良するのに有効であり、誘電正接および伝送損失の両方を改良するのにも有効である。そのため、本発明の改質剤は、印刷回路基板のための熱硬化性樹脂組成物に好適に使用できる。特に高周波用印刷回路基板に好ましく使用できる。また、本発明の改質剤は、熱硬化性樹脂組成物の高い耐熱性を保持することができる。
<Modifier>
In the thermosetting resin composition of the present invention, the above-mentioned phosphoric acid ester compound having an ethylenically unsaturated bond is used as a modifier. As used herein, modifying means improving the properties of the resin, and modifying agent means a compound added to the resin to improve the properties of the resin. The modifier of the present invention is effective for improving the properties of a thermosetting resin, and is particularly effective for improving the properties of a thermosetting resin having an ethylenically unsaturated bond. In one embodiment, the modifier of the present invention can improve the dielectric properties of thermosetting resin compositions. The modifier of the present invention is effective in improving either the dielectric loss tangent or the transmission loss of the thermosetting resin composition, and is also effective in improving both the dielectric loss tangent and the transmission loss. Therefore, the modifier of the present invention can be suitably used for a thermosetting resin composition for a printed circuit board. In particular, it can be preferably used for high-frequency printed circuit boards. In addition, the modifier of the present invention can maintain high heat resistance of the thermosetting resin composition.
 改質剤の使用量は特に限定されない。改質剤の使用量は、熱硬化性樹脂組成物中のエチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して1質量部以上とすることが好ましく、3質量部以上とすることがより好ましく、5質量部以上とすることがさらに好ましく、10質量部以上とすることが特に好ましい。必要に応じて、エチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して20質量部以上とすることも可能であり、30質量部以上とすることも可能である。 The amount of modifier used is not particularly limited. The amount of the modifier used is preferably 1 part by mass or more, preferably 3 parts by mass or more, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond in the thermosetting resin composition. It is more preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more. If necessary, the amount may be 20 parts by mass or more, or 30 parts by mass or more, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond.
 改質剤の使用量は、熱硬化性樹脂組成物中のエチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して50質量部以下とすることが好ましく、40質量部以下とすることがより好ましく、30質量部以下とすることがさらに好ましい。必要に応じて、エチレン性不飽和結合を有する熱硬化性樹脂100質量部に対して20質量部以下とすることも可能であり、10質量部以下とすることも可能である。改質剤の使用量が少なすぎる場合、または、改質剤の使用量が多すぎる場合には、熱硬化性樹脂組成物を硬化して得られる硬化物において十分な物性が得られない場合がある。 The amount of the modifier used is preferably 50 parts by mass or less, preferably 40 parts by mass or less, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond in the thermosetting resin composition. Is more preferable, and it is further preferable that the content is 30 parts by mass or less. If necessary, the amount may be 20 parts by mass or less, or 10 parts by mass or less, based on 100 parts by mass of the thermosetting resin having an ethylenically unsaturated bond. If the amount of the modifier used is too small, or if the amount of the modifier used is too large, sufficient physical properties may not be obtained in the cured product obtained by curing the thermosetting resin composition. be.
 <補強材>
 本発明の熱硬化性樹脂組成物には、必要に応じて、補強材を使用することができる。
<Reinforcing material>
A reinforcing material can be used in the thermosetting resin composition of the present invention, if necessary.
 補強材としては、熱硬化性樹脂の補強材として公知の任意のものを使用することができる。例えば、従来、エポキシ樹脂の補強材として使用されている繊維状の補強材を使用することができる。具体的には、例えば、ガラス繊維などを使用することができる。 As the reinforcing material, any known reinforcing material for the thermosetting resin can be used. For example, a fibrous reinforcing material conventionally used as a reinforcing material for an epoxy resin can be used. Specifically, for example, glass fiber or the like can be used.
 補強材は、熱硬化性樹脂組成物中に均一に混合できるものであってもよく、混合できないものであってもよい。熱硬化性樹脂組成物中に均一に混合できる補強材としては、例えば、ガラスの短繊維などが挙げられ、熱硬化性樹脂組成物中に均一に混合できない補強材としては、例えば、ガラスの長繊維などが挙げられる。 The reinforcing material may be one that can be uniformly mixed in the thermosetting resin composition, or may be one that cannot be mixed. Examples of the reinforcing material that can be uniformly mixed in the thermosetting resin composition include short fibers of glass, and examples of the reinforcing material that cannot be uniformly mixed in the thermosetting resin composition include glass length. Examples include fibers.
 例えば、ガラス繊維をシートまたはマットの形状にしたものに熱硬化性樹脂組成物を含浸させて、いわゆるプリプレグの形態の成形材料として使用することができる。 For example, a glass fiber in the shape of a sheet or a mat can be impregnated with a thermosetting resin composition and used as a molding material in the form of a so-called prepreg.
 補強材の使用量は特に限定されない。具体的には例えば、熱硬化性樹脂組成物における、熱硬化性樹脂、架橋剤、ラジカル発生剤および改質剤の合計量100質量部に対して、補強材の量を1質量部以上、10質量部以上、30質量部以上、または50質量部以上とすることができる。また、熱硬化性樹脂組成物における、熱硬化性樹脂、架橋剤、ラジカル発生剤および改質剤の合計量100質量部に対して、補強材の量を300質量部以下、200質量部以下、150質量部以下、または100質量部以下とすることができる。 The amount of reinforcing material used is not particularly limited. Specifically, for example, in the thermosetting resin composition, the amount of the reinforcing material is 1 part by mass or more and 10 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin, the cross-linking agent, the radical generator and the modifier. It can be at least parts by mass, at least 30 parts by mass, or at least 50 parts by mass. Further, the amount of the reinforcing material is 300 parts by mass or less, 200 parts by mass or less, based on 100 parts by mass of the total amount of the thermosetting resin, the cross-linking agent, the radical generator and the modifier in the thermosetting resin composition. It can be 150 parts by mass or less, or 100 parts by mass or less.
 <その他の添加剤>
 本発明の熱硬化性樹脂組成物には、本発明の効果に影響を与えない範囲内で、樹脂組成物に所望される性質に応じて、さらに、上記改質剤および補強材以外の各種の添加剤を配合することができる。例えば、公知の難燃剤、難燃助剤、紫外線吸収剤、酸化防止剤、光安定剤、着色剤(例えば、染料または顔料)、表面改質剤、抗菌剤、防虫剤、帯電防止剤、充填剤(例えば、無機充填材)等を添加することができる。
<Other additives>
The thermosetting resin composition of the present invention includes various types other than the above-mentioned modifiers and reinforcing materials, depending on the properties desired for the resin composition, as long as the effects of the present invention are not affected. Additives can be added. For example, known flame retardants, flame retardants, UV absorbers, antioxidants, light stabilizers, colorants (eg dyes or pigments), surface modifiers, antibacterial agents, insect repellents, antistatic agents, fillings. Agents (eg, inorganic fillers) and the like can be added.
 これらの添加剤の種類及び添加量については特に限定はなく、通常用いられている添加剤を、通常の使用量の範囲において使用できる。具体的には、例えば、これらの添加剤のそれぞれについて、熱硬化性樹脂100質量部に対して0.01質量部以上とすることが可能であり、0.1質量部以上または1質量部以上とすることも可能であり、そして20質量部以下とすることが可能であり、10質量部以下または5質量部以下とすることも可能である。 The types and amounts of these additives are not particularly limited, and normally used additives can be used within the range of normal usage amounts. Specifically, for example, each of these additives can be 0.01 part by mass or more with respect to 100 parts by mass of the thermosetting resin, and is 0.1 part by mass or more or 1 part by mass or more. It is also possible, and it is possible to make it 20 parts by mass or less, and it is also possible to make it 10 parts by mass or less or 5 parts by mass or less.
 ただし、上述した着色剤、紫外線吸収剤、加水分解防止剤、充填剤等の添加剤は、本発明の熱硬化性樹脂組成物には必ずしも必要ではない。これらの添加剤は、目的とする熱硬化性樹脂から製造される製品に必要な性能に基づいて必要な最低限の量を熱硬化性樹脂組成物に用いれば十分である。 However, the above-mentioned additives such as colorants, ultraviolet absorbers, hydrolysis inhibitors, fillers and the like are not always necessary for the thermosetting resin composition of the present invention. It is sufficient to use these additives in the thermosetting resin composition in the minimum amount necessary based on the performance required for the product manufactured from the thermosetting resin of interest.
 <組成物の調製方法>
 熱硬化性樹脂組成物の調製の際における混合及び攪拌の操作は、慣用の攪拌装置、例えば、各種ミル、ヘンシェルミキサー(FMミキサー)等を用いて行うことができる。各種成分を均一に混合することができれば、その添加順序は問わない。全成分を一度に攪拌装置に入れて混合及び攪拌してもよい。例えば、ラジカル発生剤以外の材料を先に混合しておき、後からラジカル発生剤を混合するという手順を採用することもできる。
<Preparation method of composition>
The mixing and stirring operations in the preparation of the thermosetting resin composition can be performed using a conventional stirring device, for example, various mills, a Henschel mixer (FM mixer), or the like. As long as various components can be mixed uniformly, the order of addition does not matter. All components may be placed in a stirrer at once for mixing and stirring. For example, it is also possible to adopt a procedure in which a material other than the radical generator is mixed first and then the radical generator is mixed.
 <熱硬化反応>
 本発明の熱硬化性樹脂組成物においては、従来公知の方法によって硬化反応を行うことができる。例えば、ラジカル発生剤に熱を加えるかまたは光を照射してラジカルを発生させれば、発生したラジカルにより、熱硬化性樹脂のエチレン性不飽和結合が重合反応を起こして樹脂の硬化物が得られる。また、熱硬化性樹脂組成物に架橋剤が含まれていれば、熱硬化性樹脂のエチレン性不飽和結合と架橋剤のエチレン性不飽和結合が重合反応を起こして樹脂の硬化物が得られる。また、本発明の化合物および改質剤もエチレン性不飽和基を有するので、ラジカルにより本発明の化合物および改質剤の重合反応が生じる。
<Thermosetting reaction>
In the thermosetting resin composition of the present invention, a curing reaction can be carried out by a conventionally known method. For example, if a radical generator is heated or irradiated with light to generate a radical, the generated radical causes a polymerization reaction of the ethylenically unsaturated bond of the thermosetting resin to obtain a cured resin. Be done. Further, if the thermosetting resin composition contains a cross-linking agent, the ethylenically unsaturated bond of the thermosetting resin and the ethylenically unsaturated bond of the cross-linking agent cause a polymerization reaction to obtain a cured resin. .. Further, since the compound and the modifier of the present invention also have an ethylenically unsaturated group, a polymerization reaction of the compound and the modifier of the present invention occurs due to radicals.
 熱硬化性樹脂組成物を硬化させる条件は、使用するラジカル発生剤の種類および量に応じて適宜選択される。例えば、室温でも比較的に速やかに分解してラジカルを発生するラジカル発生剤を使用する場合であれば、室温であってもよい。高温でなければ速やかに分解できないラジカル発生剤を使用する場合には、高温が使用される。具体的には、熱硬化性樹脂組成物を硬化させる際の温度は、例えば、80℃以上、または100℃以上とすることができ、また例えば、250℃以下、または230℃以下とすることができる。また、加熱する時間は、例えば、1分間以上または3分間以上とすることができ、また例えば、120分間以下または90分間以下とすることができる。 The conditions for curing the thermosetting resin composition are appropriately selected according to the type and amount of the radical generator used. For example, if a radical generator that decomposes relatively quickly even at room temperature to generate radicals is used, it may be at room temperature. When using a radical generator that cannot be rapidly decomposed unless it is at a high temperature, a high temperature is used. Specifically, the temperature at which the thermosetting resin composition is cured can be, for example, 80 ° C. or higher, 100 ° C. or higher, and for example, 250 ° C. or lower, or 230 ° C. or lower. can. The heating time can be, for example, 1 minute or more or 3 minutes or more, and can be, for example, 120 minutes or less or 90 minutes or less.
 本発明の熱硬化性樹脂組成物において硬化反応を行うと、エチレン性不飽和結合を有する熱硬化性樹脂の残基と、本発明の化合物または本発明の改質剤の残基とを含むコポリマーが形成されると考えられる。また、本発明の熱硬化性樹脂組成物に架橋剤を含めて硬化反応を行うと、エチレン性不飽和結合を有する熱硬化性樹脂の残基と、本発明の化合物または本発明の改質剤の残基と、架橋剤の残基とを含むコポリマーが形成されると考えられる。このようにして形成されるコポリマーの誘電特性および耐熱性が優れることにより、本発明の熱硬化性樹脂組成物を用いて製造される基板は優れた誘電特性および耐熱性を有すると理解される。本発明の熱硬化性樹脂組成物において硬化反応を行って得られた硬化物は、優れた誘電特性および耐熱性を有するので、印刷回路基板を製造するための材料として好ましく使用することができる。なお、本明細書において「樹脂材料」とは、熱硬化性樹脂組成物において硬化反応を行って得られた硬化物であって、各種の用途に使用され得る材料をいう。
 なお、硬化物における樹脂の化学構造においては、熱硬化性樹脂組成物中の各成分の分子におけるエチレン性不飽和結合の部分においてラジカル重合反応が生じて複数の分子が結合した構造が生じていると推定されるが、その化学構造を厳密に特定することは困難である。特に、エチレン性不飽和結合を有する分子が複数種類存在する場合には、単独重合が生じる可能性と、共重合が生じる可能性の両方があるので、生成物の化学構造を厳密に特定することは困難であり、理論的には可能であっても多大な費用と時間を必要とすることになり実際的ではない。そのため、硬化反応前の熱硬化性樹脂組成物の組成を特定して、その組成物を硬化して得られた硬化物として、いわゆるプロダクトバイプロセスの表現により硬化物が説明される。
When a curing reaction is carried out in the thermosetting resin composition of the present invention, a copolymer containing residues of a thermosetting resin having an ethylenically unsaturated bond and residues of a compound of the present invention or a modifier of the present invention is contained. Is considered to be formed. Further, when the thermosetting resin composition of the present invention is subjected to a curing reaction by including a cross-linking agent, the residue of the thermosetting resin having an ethylenically unsaturated bond and the compound of the present invention or the modifier of the present invention are used. It is believed that a copolymer containing the residues of the cross-linking agent and the residues of the cross-linking agent is formed. It is understood that the substrate produced by using the thermosetting resin composition of the present invention has excellent dielectric properties and heat resistance due to the excellent dielectric properties and heat resistance of the copolymer thus formed. The cured product obtained by performing a curing reaction in the thermosetting resin composition of the present invention has excellent dielectric properties and heat resistance, and can be preferably used as a material for producing a printed circuit board. In addition, in this specification, a "resin material" is a cured product obtained by performing a curing reaction in a thermosetting resin composition, and refers to a material that can be used for various purposes.
In the chemical structure of the resin in the cured product, a radical polymerization reaction occurs at a portion of the ethylenically unsaturated bond in the molecule of each component in the thermosetting resin composition, resulting in a structure in which a plurality of molecules are bonded. However, it is difficult to specify the chemical structure exactly. In particular, when there are multiple types of molecules with ethylenically unsaturated bonds, there is a possibility that homopolymerization and copolymerization will occur, so the chemical structure of the product should be strictly specified. Is difficult, and even if it is theoretically possible, it requires a lot of money and time, which is not practical. Therefore, the composition of the thermosetting resin composition before the curing reaction is specified, and the cured product is described as a cured product obtained by curing the composition by the expression of so-called product-by-process.
 <成形品>
 本発明の熱硬化性樹脂組成物は、熱硬化性樹脂の成形方法として公知の任意の方法で成形することができる。所望される成形品に応じた成形機および金型等を用いれば、容易に所望の成形品を得ることができる。例えば、加熱プレスなどの方法により、成形および熱硬化性樹脂の硬化反応を行って所望の成形品を得ることが可能である。熱硬化性樹脂組成物において硬化反応を行う工程と所望の形状に成形する工程は、同時に行ってもよく、別々に行ってもよい。硬化反応を先に行って得られた硬化物を成形してもよく、成形工程を先に行った後に硬化反応を行ってもよい。
<Molded product>
The thermosetting resin composition of the present invention can be molded by any method known as a method for molding a thermosetting resin. A desired molded product can be easily obtained by using a molding machine, a mold, or the like corresponding to the desired molded product. For example, it is possible to obtain a desired molded product by performing molding and a curing reaction of a thermosetting resin by a method such as a heat press. The step of performing the curing reaction in the thermosetting resin composition and the step of molding into a desired shape may be performed at the same time or separately. The cured product obtained by performing the curing reaction first may be molded, or the curing reaction may be performed after the molding step is performed first.
 得られる成形品は、優れた誘電特性を有し、改質剤の添加による耐熱性の低下が少ないという利点を有する。 The obtained molded product has excellent dielectric properties and has the advantage that the heat resistance is not reduced due to the addition of the modifier.
 <印刷回路基板>
 上述した熱硬化性樹脂および改質剤を含む熱硬化性樹脂組成物を硬化することにより、印刷回路基板に使用可能な基板を得ることができる。印刷回路基板は、通常、導体層と絶縁層とを有する。本発明の改質剤および熱硬化性樹脂組成物は、印刷回路基板の絶縁層を形成するために使用することができる。
<Printed circuit board>
By curing the thermosetting resin composition containing the above-mentioned thermosetting resin and modifier, a substrate that can be used as a printed circuit board can be obtained. The printed circuit board usually has a conductor layer and an insulating layer. The modifier and thermosetting resin composition of the present invention can be used to form an insulating layer of a printed circuit board.
 本明細書において、高周波とは、特に限定されないが、好ましくは100MHz以上であり、1つの実施形態においては1GHz以上であり、別の実施形態においては10GHz以上である。また、高周波は、例えば、100GHz以下であってもよく、50GHz以下であってもよい。本明細書において高周波用印刷回路基板とは、このような高い周波数が使用される印刷回路基板を意味する。 In the present specification, the high frequency is not particularly limited, but is preferably 100 MHz or higher, 1 GHz or higher in one embodiment, and 10 GHz or higher in another embodiment. Further, the high frequency may be, for example, 100 GHz or less, or may be 50 GHz or less. In the present specification, the printed circuit board for high frequency means a printed circuit board in which such a high frequency is used.
 高周波用印刷回路基板においては、高い耐熱性が要求される。本発明の熱硬化性樹脂を用いて基板を製造すれば、優れた耐熱性を達成できる。さらに、本発明の熱硬化性樹脂を用いて基板を製造すれば、優れた誘電特性および耐熱性を達成できるので、高周波用印刷回路基板に好適に使用することができる。 High-frequency printed circuit boards are required to have high heat resistance. If a substrate is manufactured using the thermosetting resin of the present invention, excellent heat resistance can be achieved. Further, if a substrate is manufactured using the thermosetting resin of the present invention, excellent dielectric properties and heat resistance can be achieved, so that the substrate can be suitably used for a high frequency printed circuit board.
 以下の実施例によって本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。 The present invention will be described more specifically by the following examples, but the present invention is not limited to the following examples.
 (原料)
 以下の合成例において下記の化合物を原料として用いた。
・オキシ塩化リン(東京化成工業株式会社製)
・2,6-ジメチルフェノール(東京化成工業株式会社製)
・トリエチルアミン(東京化成工業株式会社製)
・アリルアルコール(東京化成工業株式会社製)
(material)
The following compounds were used as raw materials in the following synthetic examples.
・ Phosphoryl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.)
・ 2,6-Dimethylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.)
・ Triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
・ Allyl alcohol (manufactured by Tokyo Chemical Industry Co., Ltd.)
 (合成例1A)モノキシリルホスホロジクロリデート(MXPC)の合成
 撹拌機、温度計および塩酸回収装置(水スクラバーを連結したコンデンサー)を備えた容量2リットルの4つ口フラスコに、オキシ塩化リン1500g、2,6-ジメチルフェノール611g、触媒としての塩化マグネシウム1.2gを充填した。
(Synthesis Example 1A) Synthesis of monoxysilylphosphologi chloride (MXPC) Phosphoryl oxychloride in a 4-necked flask with a capacity of 2 liters equipped with a stirrer, a thermometer and a hydrochloric acid recovery device (a condenser connected with a water scrubber). It was filled with 1500 g, 611 g of 2,6-dimethylphenol and 1.2 g of magnesium chloride as a catalyst.
 得られた混合溶液を撹拌しながら約3時間かけて温度110℃まで徐々に加熱昇温して反応させ、発生する塩化水素(塩酸ガス)を水スクラバーで回収した。その後、120℃でフラスコ内の圧力を徐々に12kPaまで減圧し、未反応のオキシ塩化リンおよびフェノール、副生する塩化水素を除去し、下記構造式のモノフェニルホスホロジクロリデートを主成分とする反応混合物1200gを得た。また、反応混合物の塩素含有率は28.3質量%であった。
Figure JPOXMLDOC01-appb-C000018
The obtained mixed solution was gradually heated to a temperature of 110 ° C. over about 3 hours while stirring to react, and the generated hydrogen chloride (hydrochloric acid gas) was recovered with a water scrubber. Then, the pressure in the flask is gradually reduced to 12 kPa at 120 ° C. to remove unreacted phosphorus oxychloride and phenol, and hydrogen chloride produced as a by-product, and the main component is monophenylphosphologi chloride having the following structural formula. 1200 g of the reaction mixture was obtained. The chlorine content of the reaction mixture was 28.3% by mass.
Figure JPOXMLDOC01-appb-C000018
 (合成例1B)化合物(1)
 撹拌機、温度計、滴下ロートおよびコンデンサーを備えた容量0.5リットルの4つ口フラスコに、アリルアルコール34.8g、ハロゲン化水素捕捉剤としてトリエチルアミン60.7g、触媒として4-ジメチルアミノピリジン7.3g、溶剤としてトルエン200gを充填した。また、滴下ロートに合成例1で得られたモノキシリルホスホロジクロリデート71.7gを充填した。
(Synthesis Example 1B) Compound (1)
34.8 g of allyl alcohol, 60.7 g of triethylamine as a hydrogen halide scavenger, and 4-dimethylaminopyridine 7 as a catalyst in a 0.5 liter 4-necked flask equipped with a stirrer, thermometer, dropping funnel and condenser. It was filled with 3 g and 200 g of toluene as a solvent. Further, the dropping funnel was filled with 71.7 g of the monokisilylphosphologi chloride obtained in Synthesis Example 1.
 4つ口フラスコ中の混合溶液を撹拌しながら温度20℃に調整し、同温度(20℃)で維持しながら、滴下ロート中のモノキシリルホスホロジクロリデートを1時間かけて滴下した。滴下終了後、同温度で2時間撹拌し反応生成物を得た。得られた反応生成物を希塩酸および水で洗浄し、炭酸ナトリウム及び水で中和洗浄の後、温度50℃まで加熱し、2kPaまで減圧して水、トルエン、低沸分を留去し、常温まで冷却することで黄色液体76.2gを得た。
 NMRを測定した結果は以下のとおりであった。
H-NMRスペクトル(400MHz,CDCl,δppm):7.00(3H,m),5.92(2H, m),5.35(2H,d),5.23(2H,d),4.61(4H,m),2.36(6H,m)
31P-NMRスペクトル(400MHz,CDCl,δppm):‐0.1,-5.1,-10.3
 また、ASTM D1091に準じて求めたリン原子含有率は、10.70%であった。以上の分析結果から、この生成物は下記構造式の物質を86.7%含むことを確認した。
The mixed solution in the four-necked flask was adjusted to a temperature of 20 ° C. with stirring, and the monoxylylphosphologi chloride in the dropping funnel was added dropwise over 1 hour while maintaining the same temperature (20 ° C.). After completion of the dropping, the mixture was stirred at the same temperature for 2 hours to obtain a reaction product. The obtained reaction product was washed with dilute hydrochloric acid and water, neutralized and washed with sodium carbonate and water, heated to a temperature of 50 ° C., reduced to 2 kPa, and water, toluene and low boiling point were distilled off at room temperature. The mixture was cooled to 76.2 g of a yellow liquid.
The results of NMR measurements were as follows.
1 1 H-NMR spectrum (400 MHz, CDCl 3 , δ ppm): 7.00 (3H, m), 5.92 (2H, m), 5.35 (2H, d), 5.23 (2H, d), 4.61 (4H, m), 2.36 (6H, m)
31 P-NMR spectrum (400 MHz, CDCl 3 , δ ppm): -0.1, -5.1, -10.3.
The phosphorus atom content determined according to ASTM D1091 was 10.70%. From the above analysis results, it was confirmed that this product contained 86.7% of the substance having the following structural formula.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (合成例2)化合物(2)
 特開2003-221415、第0050~0052段落に記載された手順に従い、化合物(2)を得た。
Figure JPOXMLDOC01-appb-C000020
(Synthesis Example 2) Compound (2)
Compound (2) was obtained according to the procedure described in JP-A-2003-221415, paragraphs 0050 to 0052.
Figure JPOXMLDOC01-appb-C000020
 (化合物(3))
 化合物(3)として、市販のレゾルシノールビス(2,6-キシリル)ホスフェート(大八化学工業製、商品名:PX-200)を用いた。
Figure JPOXMLDOC01-appb-C000021
(Compound (3))
As the compound (3), a commercially available resorcinol bis (2,6-kisilyl) phosphate (manufactured by Daihachi Chemical Industry Co., Ltd., trade name: PX-200) was used.
Figure JPOXMLDOC01-appb-C000021
 (合成例3(化合物(4))
 以下の式:
Figure JPOXMLDOC01-appb-C000022
の化合物を、以下の手順で合成した。
(Synthesis Example 3 (Compound (4)))
The following formula:
Figure JPOXMLDOC01-appb-C000022
The compound of was synthesized by the following procedure.
 (合成例4A)ジキシリルホスホロジクロリデート(DXPC)の合成
 撹拌機、温度計および塩酸回収装置(水スクラバーを連結したコンデンサー)を備えた容量2リットルの4つ口フラスコに、オキシ塩化リン767g、2,6-ジメチルフェノール1200g、溶剤としてのキシレン140g、触媒としての塩化マグネシウム6.2gを充填した。
(Synthesis Example 4A) Synthesis of Dixysilyl Phosphoryl Chloridet (DXPC) In a 4-necked flask with a capacity of 2 liters equipped with a stirrer, a thermometer and a hydrochloric acid recovery device (a condenser connected with a water scrubber), 767 g of phosphorus oxychloride. , 1200 g of 2,6-dimethylphenol, 140 g of xylene as a solvent, and 6.2 g of magnesium chloride as a catalyst were charged.
 得られた混合溶液を撹拌しながら約3時間かけて温度160℃まで徐々に加熱昇温して反応させ、発生する塩化水素(塩酸ガス)を水スクラバーで回収した。その後、同温度でフラスコ内の圧力を徐々に20kPaまで減圧し、キシレンや未反応のオキシ塩化リンおよび2,6-ジメチルフェノール、副生する塩化水素を除去し、下記構造式のジキシリルホスホロクロリデートを主成分とする反応混合物1700gを得た。また、反応混合物の塩素含有率は10.9質量%であった。
Figure JPOXMLDOC01-appb-C000023
The obtained mixed solution was gradually heated to a temperature of 160 ° C. over about 3 hours while stirring to react, and the generated hydrogen chloride (hydrochloric acid gas) was recovered with a water scrubber. Then, at the same temperature, the pressure in the flask was gradually reduced to 20 kPa to remove xylene, unreacted phosphorus oxychloride, 2,6-dimethylphenol, and hydrogen chloride produced as a by-product. 1700 g of a reaction mixture containing lolidate as a main component was obtained. The chlorine content of the reaction mixture was 10.9% by mass.
Figure JPOXMLDOC01-appb-C000023
 (合成例4B)化合物(4)
 撹拌機、温度計、滴下ロートおよびコンデンサーを備えた容量2リットルの4つ口フラスコに、合成例Aで得られたジキシリルホスホロジクロリデート487.1g、ハロゲン化水素捕捉剤としてトリエチルアミン151.8g、触媒として4-ジメチルアミノピリジン18.3g、溶剤としてトルエン500gを充填した。また、滴下ロートにアリルアルコール87.1gを充填した。
(Synthesis Example 4B) Compound (4)
In a 4-necked flask with a capacity of 2 liters equipped with a stirrer, a thermometer, a dropping funnel and a condenser, 487.1 g of the dixysilylphosphologic chloride obtained in Synthesis Example A and 151.8 g of triethylamine as a hydrogen halide scavenger. , 18.3 g of 4-dimethylaminopyridine as a catalyst and 500 g of toluene as a solvent. Further, the dropping funnel was filled with 87.1 g of allyl alcohol.
 4つ口フラスコ中の混合溶液を撹拌しながら温度20℃に調整し、同温度(20℃)で維持しながら、滴下ロート中のアリルアルコールを1時間30分かけて滴下した。滴下終了後、同温度で8時間撹拌し反応生成物を得た。得られた反応生成物を希塩酸および水で洗浄し、炭酸ナトリウム及び水で中和洗浄の後、温度50℃まで加熱し、2kPaまで減圧して水、トルエン、低沸分を留去し、常温まで冷却することで黄色液体508.6gを得た。 The temperature of the mixed solution in the four-necked flask was adjusted to 20 ° C. while stirring, and the allyl alcohol in the dropping funnel was added dropwise over 1 hour and 30 minutes while maintaining the same temperature (20 ° C.). After completion of the dropping, the mixture was stirred at the same temperature for 8 hours to obtain a reaction product. The obtained reaction product was washed with dilute hydrochloric acid and water, neutralized and washed with sodium carbonate and water, heated to a temperature of 50 ° C., reduced to 2 kPa, and water, toluene and low boiling point were distilled off at room temperature. The mixture was cooled to 508.6 g of a yellow liquid.
 NMRを測定した結果は以下のとおりであった。
H-NMRスペクトル(400MHz,CDCl,δppm):7.00(6H,m),5.78(1H, m),5.24(1H,d),5.14(1H,d),4.61(2H,m),2.32(12H,m)
31P-NMRスペクトル(400MHz,CDCl,δppm):-10.3,-15.8,-24.4
The results of NMR measurements were as follows.
1 1 H-NMR spectrum (400 MHz, CDCl 3 , δ ppm): 7.00 (6H, m), 5.78 (1H, m), 5.24 (1H, d), 5.14 (1H, d), 4.61 (2H, m), 2.32 (12H, m)
31 P-NMR spectrum (400 MHz, CDCl 3 , δ ppm): -10.3, -15.8, -24.4
 また、ASTM D1091に準じて求めたリン原子含有率は、8.90%であった。以上の分析結果から、この生成物は下記構造式の物質を97.2%含むことを確認した。
Figure JPOXMLDOC01-appb-C000024
The phosphorus atom content determined according to ASTM D1091 was 8.90%. From the above analysis results, it was confirmed that this product contained 97.2% of the substance having the following structural formula.
Figure JPOXMLDOC01-appb-C000024
 <実験A>
 (実施例1Aおよび2Aならびに比較例1Aおよび2A)
 実施例1Aおよび実施例2Aならびに比較例1Aおよび比較例2Aの実験を以下のとおりに行った。
<Experiment A>
(Examples 1A and 2A and Comparative Examples 1A and 2A)
The experiments of Example 1A and Example 2A and Comparative Example 1A and Comparative Example 2A were performed as follows.
 (積層板の成形及び物性評価)
 実施例において下記の化合物を原料として用いた。
・樹脂:メタクリル変性ポリフェニレンエーテル樹脂(SABIC製 SA-9000、末端がメタクリル酸で変性されたポリフェニレンエーテル樹脂、末端メタクリロイル基2個)
・架橋剤:トリアリルイソシアヌレート(東京化成工業株式会社製)
・ラジカル発生剤:1,3―ビス(t-ブチルパーオキシイソプロピル)ベンゼン(日油株式会社製 パーブチルP)
(Forming of laminated board and evaluation of physical properties)
In the examples, the following compounds were used as raw materials.
-Resin: Methacrylic acid-modified polyphenylene ether resin (SABIC SA-9000, methacrylic acid-modified polyphenylene ether resin at the end, 2 terminal methacryloyl groups)
-Crosslinking agent: Triallyl isocyanurate (manufactured by Tokyo Chemical Industry Co., Ltd.)
-Radical generator: 1,3-bis (t-butylperoxyisopropyl) benzene (Perbutyl P manufactured by NOF CORPORATION)
 <樹脂組成物の調製及び物性評価>
 各種成分を表1の割合で配合することで熱硬化性樹脂組成物を作製し、目付け100g/mのガラスクロスの2.0gに樹脂組成物を1.3g含侵させ、室温で10分、120℃オーブンで3分乾燥させプリプレグを得た。次に、このプリプレグを8枚重ね、ステンレス製の鏡面板に挟み、熱プレスを用いて温度210℃、プレス圧3MPaで、60分間硬化させることで積層板のサンプルを得た。
<Preparation of resin composition and evaluation of physical properties>
A thermosetting resin composition was prepared by blending various components in the ratios shown in Table 1, and 1.3 g of the resin composition was impregnated into 2.0 g of a glass cloth having a texture of 100 g / m 2 for 10 minutes at room temperature. , 120 ° C. was dried in an oven for 3 minutes to obtain a prepreg. Next, eight prepregs were stacked, sandwiched between stainless steel mirror plates, and cured at a temperature of 210 ° C. and a press pressure of 3 MPa for 60 minutes using a hot press to obtain a sample of the laminated plate.
 (試験方法)
 ガラス転移温度:JIS K 7244に準じて、株式会社日立ハイテクサイエンス製、動的粘弾性測定装置を用いて曲げモード、窒素雰囲気下、測定周波数10Hz、昇温速度5℃/分で、損失係数(tanδ)から求めた。
(Test method)
Glass transition temperature: According to JIS K 7244, Hitachi High-Tech Science Co., Ltd., using a dynamic viscoelasticity measuring device, bending mode, nitrogen atmosphere, measurement frequency 10 Hz, temperature rise rate 5 ° C / min, loss coefficient ( Obtained from tan δ).
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 実施例1Aおよび実施例2Aにおけるガラス転移温度は比較例2Aよりも高く、改質剤の添加によるガラス転移温度の低下が少ないことが確認された。このことから、改質剤の添加による耐熱性の低下が少ないことが確認された。 It was confirmed that the glass transition temperature in Example 1A and Example 2A was higher than that of Comparative Example 2A, and the decrease in the glass transition temperature due to the addition of the modifier was small. From this, it was confirmed that the decrease in heat resistance due to the addition of the modifier was small.
 <実験B>
 実施例1B、実施例2Bおよび実施例3ならびに比較例1Bおよび比較例2Bの実験を、実験Aを行った施設とは異なる施設において、以下のとおりに行った。
<Experiment B>
The experiments of Example 1B, Example 2B and Example 3, and Comparative Example 1B and Comparative Example 2B were carried out in a facility different from the facility where Experiment A was performed as follows.
 (実施例1Bおよび2Bならびに比較例1Bおよび2B)
 実施例1Bおよび2Aならびに比較例1Aおよび2Aと同じ実験を再度行った。その結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000026
(Examples 1B and 2B and Comparative Examples 1B and 2B)
The same experiments as in Examples 1B and 2A and Comparative Examples 1A and 2A were performed again. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000026
 実施例1Bおよび実施例2Bにおけるガラス転移温度は比較例2Bよりも高く、改質剤の添加によるガラス転移温度の低下が少ないことが確認された。このことから、改質剤の添加による耐熱性の低下が少ないことが確認された。 It was confirmed that the glass transition temperature in Example 1B and Example 2B was higher than that of Comparative Example 2B, and the decrease in the glass transition temperature due to the addition of the modifier was small. From this, it was confirmed that the decrease in heat resistance due to the addition of the modifier was small.
 (実施例3および比較例1B~2B)
 (積層板の成形及び物性評価)
 実施例3において下記の化合物を原料として用いた。
・樹脂:メタクリル変性ポリフェニレンエーテル樹脂(SABIC製 SA-9000、末端がメタクリル酸で変性されたポリフェニレンエーテル樹脂、末端メタクリロイル基2個)
・架橋剤:トリアリルイソシアヌレート(東京化成工業株式会社製)
・ラジカル発生剤:1,3―ビス(t-ブチルパーオキシイソプロピル)ベンゼン(日油株式会社製 パーブチルP)
(Example 3 and Comparative Examples 1B to 2B)
(Forming of laminated board and evaluation of physical properties)
In Example 3, the following compounds were used as raw materials.
-Resin: Methacrylic acid-modified polyphenylene ether resin (SABIC SA-9000, methacrylic acid-modified polyphenylene ether resin at the end, 2 terminal methacryloyl groups)
-Crosslinking agent: Triallyl isocyanurate (manufactured by Tokyo Chemical Industry Co., Ltd.)
-Radical generator: 1,3-bis (t-butylperoxyisopropyl) benzene (Perbutyl P manufactured by NOF CORPORATION)
 <樹脂組成物の調製及び物性評価>
 実施例3において、各種成分を表3の割合で配合することで熱硬化性樹脂組成物を作製し、比較例1Aおよび2Aと同じ方法で積層板のサンプルを得た。
<Preparation of resin composition and evaluation of physical properties>
In Example 3, a thermosetting resin composition was prepared by blending various components in the ratio shown in Table 3, and a sample of a laminated board was obtained by the same method as in Comparative Examples 1A and 2A.
 (試験方法)
(1)ガラス転移温度:実施例3において、比較例1Aおよび2Aと同じ方法で測定を行った。結果を表3に示す。比較例1Bおよび比較例2Bについては、表2に記載した比較例1Bおよび比較例2Bのガラス転移温度の測定結果を再度、表3に示す。
(2)誘電正接:実施例3のサンプル、ならびに上記比較例1Bおよび2Bのサンプルにおいて、誘電正接を測定した。具体的には、IEC62810に準じて、キーサイト・テクノロジー株式会社製PNAネットワークアナライザ及び株式会社関東電子応用開発製空洞共振器を用い、空洞共振器摂動法により周波数10GHzにおける誘電正接(tanδ)を求めた。
 なお、表中、添加量はそれぞれ質量部である。
(Test method)
(1) Glass transition temperature: In Example 3, the measurement was carried out by the same method as in Comparative Examples 1A and 2A. The results are shown in Table 3. For Comparative Example 1B and Comparative Example 2B, the measurement results of the glass transition temperature of Comparative Example 1B and Comparative Example 2B shown in Table 2 are shown again in Table 3.
(2) Dielectric loss tangent: In the sample of Example 3 and the samples of Comparative Examples 1B and 2B, the dielectric loss tangent was measured. Specifically, in accordance with IEC62810, a dielectric loss tangent (tanδ) at a frequency of 10 GHz was obtained by the cavity resonator perturbation method using a PNA network analyzer manufactured by Keysight Technology Co., Ltd. and a cavity resonator manufactured by Kanto Electronics Applied Development Co., Ltd. rice field.
In the table, the addition amount is by mass.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
(3)伝送損失寄与度:実施例3のサンプルおよび比較例1Bのサンプルにおいて、伝送損失寄与度を求めた。具体的には、上記誘電正接(tanδ)を測定した際に、さらに比誘電率(εr)を求めた。得られた誘電正接(tanδ)の値および比誘電率(εr)の値から、下記式(A)に基づいて伝送損失寄与度を求めた。
Figure JPOXMLDOC01-appb-M000028

 伝送損失寄与度は、印刷回路基板における電気信号の劣化度合いを示す指標であり、比誘電率の平方根と誘電正接を掛け合わせることから、この値は、樹脂の組成に起因する伝送効率の性能を反映する値である。この値が低ければ、電気信号の伝送効率が高いことを意味する。
(3) Contribution to transmission loss: The contribution to transmission loss was determined in the sample of Example 3 and the sample of Comparative Example 1B. Specifically, when the dielectric loss tangent (tan δ) was measured, the relative permittivity (εr) was further determined. From the obtained dielectric loss tangent (tan δ) value and relative permittivity (εr) value, the contribution of transmission loss was determined based on the following equation (A).
Figure JPOXMLDOC01-appb-M000028

The contribution of transmission loss is an index showing the degree of deterioration of electrical signals in a printed circuit board, and since the square root of the relative permittivity is multiplied by the dielectric loss tangent, this value determines the performance of transmission efficiency due to the composition of the resin. It is a value to reflect. If this value is low, it means that the transmission efficiency of the electric signal is high.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 実施例3におけるガラス転移温度は比較例2Bよりも高く、改質剤の添加によるガラス転移温度の低下が少ないことが確認された。また、実施例3においては、優れた誘電特性が確認された。すなわち誘電正接および伝送損失寄与度が比較例1Bよりも低く、誘電特性に優れていることが確認された。そのため、電気信号の伝送効率が高いことが理解される。このことから、実施例3においては、硬化生成物において高い耐熱性が維持され改質剤の添加による耐熱性の低下が少ないことが確認された。 It was confirmed that the glass transition temperature in Example 3 was higher than that of Comparative Example 2B, and the decrease in the glass transition temperature due to the addition of the modifier was small. Further, in Example 3, excellent dielectric properties were confirmed. That is, it was confirmed that the dielectric loss tangent and the contribution of transmission loss were lower than those of Comparative Example 1B, and the dielectric characteristics were excellent. Therefore, it is understood that the transmission efficiency of electric signals is high. From this, it was confirmed that in Example 3, high heat resistance was maintained in the cured product and the decrease in heat resistance due to the addition of the modifier was small.
 上記実験Aおよび実験Bの結果から、本発明の改質剤によれば、高い耐熱性が達成できることが確認された。また、上記実験Bの結果から、好ましい実施形態の改質剤を使用すれば、優れた誘電特性および高い耐熱性が同時に達成できることが確認された。 From the results of Experiment A and Experiment B above, it was confirmed that high heat resistance can be achieved by the modifier of the present invention. Further, from the results of Experiment B, it was confirmed that excellent dielectric properties and high heat resistance can be achieved at the same time by using the modifier of the preferred embodiment.
 本発明によれば、耐熱性に優れる印刷回路基板用の改質剤および熱硬化性樹脂組成物が提供される。本発明によれば、特に次世代通信規格に対応する高周波用印刷回路基板に好適な改質剤および熱硬化性樹脂組成物が提供される。本発明の改質剤および熱硬化性樹脂組成物によれば、電気信号の伝送効率が高く、耐熱性にも優れる印刷回路基板が提供される。 According to the present invention, a modifier and a thermosetting resin composition for a printed circuit board having excellent heat resistance are provided. INDUSTRIAL APPLICABILITY According to the present invention, a modifier and a thermosetting resin composition particularly suitable for a high-frequency printed circuit board corresponding to a next-generation communication standard are provided. According to the modifier and the thermosetting resin composition of the present invention, a printed circuit board having high electric signal transmission efficiency and excellent heat resistance is provided.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the invention should be construed only by the claims. It will be understood by those skilled in the art that from the description of a specific preferred embodiment of the present invention, an equivalent range can be implemented based on the description of the present invention and common general technical knowledge. The patents, patent applications and documents cited herein are to be incorporated by reference in their content as they are specifically described herein. Understood.

Claims (20)

  1.  下記式(I)で示される化合物であって:
    Figure JPOXMLDOC01-appb-C000001
    式(I)において、
    mは、2または1であり、
    は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、C~Cの直鎖もしくは分岐鎖のアルキル基であり、
    は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、C~Cの直鎖もしくは分岐鎖のアルキル基であり、Rと同じであってもよく異なっていてもよく、
    は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、水素原子、またはC~Cの直鎖もしくは分岐鎖のアルキル基であり、Rと同じであってもよく異なっていてもよく、Rと同じであってもよく異なっていてもよく、
    ベンゼン環の2位~6位のうちの、R~Rが存在しない2つの炭素にはそれぞれ水素原子が存在し、
    mが2である場合、Rは、それぞれ独立して、C~C12の直鎖もしくは分岐鎖のアルケニル基、または下記式(II):
    Figure JPOXMLDOC01-appb-C000002
    の構造を有する置換基であり、
    式(II)において、
    は、それぞれ独立して、水素原子またはメチル基であり、
    は、それぞれ独立して、C~Cの直鎖または分岐鎖のアルキレンであり、
    nは、1~5の整数であり、そして
    mが1である場合、Rは、C~C12の直鎖もしくは分岐鎖のアルケニル基である、化合物。
    A compound represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    In formula (I)
    m is 2 or 1
    R 1 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a linear or branched alkyl group of C 1 to C 4 .
    R 2 is independently located at any of the 2nd to 6th positions of the benzene ring, is a linear or branched alkyl group of C 1 to C 4 , and may be the same as R 1 . May be different,
    R 3 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a hydrogen atom or a linear or branched alkyl group of C 1 to C 4 , which is the same as R 1 . It may be different, it may be the same as R 2 , or it may be different.
    Of the 2nd to 6th positions of the benzene ring, the two carbons in which R1 to R3 do not exist each have a hydrogen atom.
    When m is 2, R 4 is independently a linear or branched alkenyl group of C 2 to C 12 , or the following formula (II) :.
    Figure JPOXMLDOC01-appb-C000002
    It is a substituent having the structure of
    In formula (II)
    R 5 is independently a hydrogen atom or a methyl group, respectively.
    R 6 are independently C2 - C4 linear or branched-chain alkylenes.
    n is an integer of 1-5, and where m is 1 , R4 is a linear or branched alkenyl group of C2 to C12, a compound.
  2.  請求項1に記載の化合物であって、
     mが2であるか、あるいは、
     mが1であってかつRがC~C12の直鎖もしくは分岐鎖のアルケニル基である、化合物。
    The compound according to claim 1.
    m is 2 or
    A compound in which m is 1 and R 4 is a linear or branched alkenyl group of C 3 to C 12 .
  3.  RおよびRが2位のアルキル基および6位のアルキル基であり、Rが水素原子である、請求項1または2に記載の化合物。 The compound according to claim 1 or 2, wherein R 1 and R 2 are an alkyl group at a 2-position and an alkyl group at a 6-position, and R 3 is a hydrogen atom.
  4.  RおよびRが2位のメチル基および6位のメチル基であり、Rが水素原子である、請求項3に記載の化合物。 The compound according to claim 3, wherein R 1 and R 2 are a methyl group at the 2-position and a methyl group at the 6-position, and R 3 is a hydrogen atom.
  5.  前記式(I)において、RがC~C12の直鎖もしくは分岐鎖のアルケニル基である、請求項1~4のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 4, wherein in the formula (I), R 4 is a linear or branched alkenyl group of C 2 to C 12 .
  6.  RがC~C12の直鎖もしくは分岐鎖のアルケニル基である、請求項1~5のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 5, wherein R 4 is a linear or branched alkenyl group of C 3 to C 12 .
  7.  前記式(I)において、Rが下記式(III):
    Figure JPOXMLDOC01-appb-C000003
    の構造を有するアルケニル基であり、
    ここで、上記式(III)において、kが0以上10以下の整数である、
    請求項5または6に記載の化合物。
    In the above formula (I), R4 is the following formula (III):
    Figure JPOXMLDOC01-appb-C000003
    It is an alkenyl group having the structure of
    Here, in the above equation (III), k is an integer of 0 or more and 10 or less.
    The compound according to claim 5 or 6.
  8.  kが1以上10以下の整数である、請求項7に記載の化合物。 The compound according to claim 7, wherein k is an integer of 1 or more and 10 or less.
  9.  mが1である、請求項7または8に記載の化合物。 The compound according to claim 7 or 8, wherein m is 1.
  10.  請求項1~9のいずれか1項に記載の化合物を含む、改質剤。 A modifier containing the compound according to any one of claims 1 to 9.
  11.  熱硬化性樹脂組成物に使用するための改質剤であって、
     該改質剤は、下記式(I)で示される化合物からなり:
    Figure JPOXMLDOC01-appb-C000004
    式(I)において、
    mは、2または1であり、
    は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、C~Cの直鎖もしくは分岐鎖のアルキル基であり、
    は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、C~Cの直鎖もしくは分岐鎖のアルキル基であり、Rと同じであってもよく異なっていてもよく、
    は、それぞれ独立して、ベンゼン環の2位~6位のいずれかに位置し、水素原子、またはC~Cの直鎖もしくは分岐鎖のアルキル基であり、Rと同じであってもよく異なっていてもよく、Rと同じであってもよく異なっていてもよく、
    ベンゼン環の2位~6位のうちの、R~Rが存在しない2つの炭素にはそれぞれ水素原子が存在し、
    は、それぞれ独立して、C~C12の直鎖もしくは分岐鎖のアルケニル基であるか、あるいは、Rは、それぞれ独立して、下記式(II):
    Figure JPOXMLDOC01-appb-C000005
    の構造を有する置換基であり、
    式(II)において、
    は、それぞれ独立して、水素原子またはメチル基であり、
    は、それぞれ独立して、C~Cの直鎖または分岐鎖のアルキレンであり、
    nは、1~5の整数である、
    改質剤。
    A modifier for use in thermosetting resin compositions.
    The modifier comprises a compound represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000004
    In formula (I)
    m is 2 or 1
    R 1 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a linear or branched alkyl group of C 1 to C 4 .
    R 2 is independently located at any of the 2nd to 6th positions of the benzene ring, is a linear or branched alkyl group of C 1 to C 4 , and may be the same as R 1 . May be different,
    R 3 is independently located at any of the 2nd to 6th positions of the benzene ring, and is a hydrogen atom or a linear or branched alkyl group of C 1 to C 8 , which is the same as R 1 . It may be different, it may be the same as R 2 , or it may be different.
    Of the 2nd to 6th positions of the benzene ring, the two carbons in which R1 to R3 do not exist each have a hydrogen atom.
    R 4 is independently a linear or branched alkenyl group of C 2 to C 12 , or R 4 is independently of the following formula (II) :.
    Figure JPOXMLDOC01-appb-C000005
    It is a substituent having the structure of
    In formula (II)
    R 5 is independently a hydrogen atom or a methyl group, respectively.
    R 6 are independently C2 - C4 linear or branched-chain alkylenes.
    n is an integer from 1 to 5.
    Modifier.
  12.  請求項1~9のいずれか1項に記載の化合物または請求項10もしくは11に記載の改質剤、および、熱硬化性樹脂を含む、熱硬化性樹脂組成物。 A thermosetting resin composition comprising the compound according to any one of claims 1 to 9, the modifier according to claim 10 or 11, and a thermosetting resin.
  13.  前記熱硬化性樹脂がエチレン性不飽和結合を有する熱硬化性樹脂を含む、請求項12に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 12, wherein the thermosetting resin contains a thermosetting resin having an ethylenically unsaturated bond.
  14.  前記熱硬化性樹脂がエチレン性不飽和基で変性されたポリフェニレンエーテル樹脂を含む、請求項12または13に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 12 or 13, wherein the thermosetting resin contains a polyphenylene ether resin modified with an ethylenically unsaturated group.
  15.  エチレン性不飽和結合を有する架橋剤をさらに含む、請求項12~14のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 12 to 14, further comprising a cross-linking agent having an ethylenically unsaturated bond.
  16.  前記架橋剤が、トリアリルイソシアヌレートである、請求項15に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 15, wherein the cross-linking agent is triallyl isocyanurate.
  17.  高周波用印刷回路基板における絶縁層を製造するための、請求項12~16のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 12 to 16, for producing an insulating layer in a high-frequency printed circuit board.
  18.  請求項12~17のいずれか1項に記載の熱硬化性樹脂組成物を硬化させて得られる、樹脂材料。 A resin material obtained by curing the thermosetting resin composition according to any one of claims 12 to 17.
  19.  導体層および絶縁層を備える高周波用印刷回路基板であって、該絶縁層が請求項18に記載の樹脂材料を含む、高周波用印刷回路基板。 A high-frequency printed circuit board including a conductor layer and an insulating layer, wherein the insulating layer contains the resin material according to claim 18.
  20.  導体層および絶縁層を備える高周波用印刷回路基板を製造する方法であって、請求項17に記載の熱硬化性樹脂組成物を硬化させて該絶縁層を形成する工程を含む、方法。 A method for manufacturing a high-frequency printed circuit board including a conductor layer and an insulating layer, comprising a step of curing the thermosetting resin composition according to claim 17 to form the insulating layer.
PCT/JP2021/014219 2020-10-23 2021-04-01 Unsaturated group-containing phosphoric acid ester, thermosetting resin composition containing same, and resin material WO2022085221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022556382A JPWO2022085221A1 (en) 2020-10-23 2021-04-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178402 2020-10-23
JP2020178402 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085221A1 true WO2022085221A1 (en) 2022-04-28

Family

ID=81291190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014219 WO2022085221A1 (en) 2020-10-23 2021-04-01 Unsaturated group-containing phosphoric acid ester, thermosetting resin composition containing same, and resin material

Country Status (3)

Country Link
JP (1) JPWO2022085221A1 (en)
TW (1) TW202227463A (en)
WO (1) WO2022085221A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397226B1 (en) * 2023-02-07 2023-12-12 四国化成工業株式会社 Flame retardants and their uses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221415A (en) * 2002-01-30 2003-08-05 Daihachi Chemical Industry Co Ltd Phosphoric acid ester containing unsaturated group
JP2010105956A (en) * 2008-10-30 2010-05-13 Chisso Corp Phosphorus-containing compound and curable composition containing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221415A (en) * 2002-01-30 2003-08-05 Daihachi Chemical Industry Co Ltd Phosphoric acid ester containing unsaturated group
JP2010105956A (en) * 2008-10-30 2010-05-13 Chisso Corp Phosphorus-containing compound and curable composition containing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Homopolymers and copolymers of 0, 0- bis(methacryloyloxy-ethyl) phosphonates and phosphates", PLASTICHESKIE MASSY, vol. 6, 1967, pages 31 - 34 *
KUMPULAINEN H, ET AL.: "An Efficient Strategy for the Synthesis of 1-Chloroethyl Phosphates and Phosphoramidates", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 70, 27 September 2005 (2005-09-27), pages 9056 - 9058, XP003003168, ISSN: 0022-3263, DOI: 10.1021/jo0513562 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397226B1 (en) * 2023-02-07 2023-12-12 四国化成工業株式会社 Flame retardants and their uses

Also Published As

Publication number Publication date
JPWO2022085221A1 (en) 2022-04-28
TW202227463A (en) 2022-07-16

Similar Documents

Publication Publication Date Title
JP5807186B2 (en) Polyphenylene ether resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
TWI551622B (en) A polyphenylene ether resin, a polyphenylene ether resin, a polyphenylene ether prepolymer, and a resin composition
US9872382B2 (en) Low dielectric composite material and laminate and printed circuit board thereof
US9867287B2 (en) Low dielectric resin composition with phosphorus-containing flame retardant and preparation method and application thereof
JP6172520B2 (en) Resin composition, prepreg, metal-clad laminate, and printed wiring board
TW201723020A (en) Fluorenylidene-diphenol-containing polyphenylene oxide
WO2022085221A1 (en) Unsaturated group-containing phosphoric acid ester, thermosetting resin composition containing same, and resin material
JP2017149859A (en) Thermosetting resin composition, prepreg, copper-clad laminate and printed wiring board
WO2019044154A1 (en) Poly(phenylene ether) resin composition, and prepreg, metal-clad laminate, and wiring board each obtained using same
JP5481744B2 (en) Unsaturated carboxylate compound having phosphazene ring
JP2017210545A (en) Thermosetting resin composition, and prepreg, copper-clad laminate and printed wiring board using the same
CN115710424A (en) Resin composition and product thereof
CN116410594A (en) Resin composition, prepreg and metal foil-clad laminate
WO2021166649A1 (en) Curable resin composition, prepreg, metal-clad laminate, and printed wiring board
JP5768274B2 (en) Oligo (phenyleneoxy) group-containing cyclic phosphazene compound modified with glycidyl group and process for producing the same
JP2021113249A (en) Flame-retardant resin composition
JP7460816B1 (en) Resin composition
WO2023167148A1 (en) Phosphorus-containing (meth)acryloyl compound, production method therefor, flame-retardant resin composition containing phosphorus-containing (meth)acryloyl compound, cured product, and laminated board for electronic circuit board
KR102587585B1 (en) Poly phenylene ether resin
JP4066335B2 (en) Organic phosphorus composition, flame retardant containing the same, and flame retardant resin composition
JP2022016422A (en) Phosphorus-containing (meth)acryloyl compound, method for producing the same, flame-retardant resin composition containing the same, and laminate for electronic circuit board
TWI834447B (en) Resin composition
TWI818811B (en) Resin composition
CN116410596A (en) Resin composition and application thereof
TW202402961A (en) Phosphorous-containing (meth)acryloyl compound, method for producing the same, flame retardant resin composition containing the same and laminate for electronic circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882365

Country of ref document: EP

Kind code of ref document: A1