WO2022085177A1 - Ventilation device - Google Patents

Ventilation device Download PDF

Info

Publication number
WO2022085177A1
WO2022085177A1 PCT/JP2020/039903 JP2020039903W WO2022085177A1 WO 2022085177 A1 WO2022085177 A1 WO 2022085177A1 JP 2020039903 W JP2020039903 W JP 2020039903W WO 2022085177 A1 WO2022085177 A1 WO 2022085177A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
heat exchanger
air supply
temperature sensor
Prior art date
Application number
PCT/JP2020/039903
Other languages
French (fr)
Japanese (ja)
Inventor
康敬 落合
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022556347A priority Critical patent/JP7433465B2/en
Priority to PCT/JP2020/039903 priority patent/WO2022085177A1/en
Publication of WO2022085177A1 publication Critical patent/WO2022085177A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • This disclosure relates to a ventilation system equipped with a total heat exchanger.
  • Patent Document 1 describes an air supply fan provided with an air supply motor, an exhaust fan provided with an exhaust motor, and a total heat exchanger for exchanging heat when ventilating indoor air and outdoor air.
  • a temperature detecting means provided on the air supply inlet side of the heat exchange element in the air supply / ventilation path and a humidity detecting means provided on the exhaust inlet side of the heat exchange element in the exhaust air blowing path.
  • the rotation speed of the air supply motor and the exhaust motor is reduced according to the temperature detected by the air supply and the humidity detected by the humidity detection means, and the air supply air volume and the exhaust air volume are reduced to exhaust the total heat exchanger. It prevents dew condensation that occurs at the side outlet.
  • filters for air purification are provided on the outdoor air suction side and the indoor air suction side of the total heat exchanger, respectively.
  • Patent Document 1 can prevent dew condensation on the total heat exchanger, but detects that an abnormality has occurred due to an abnormality due to dew condensation or freezing, or an abnormality due to a decrease in air volume caused by clogging of a filter or the like. There was a problem that it could not be done.
  • the present disclosure has been made to solve the above problems, and when an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume caused by filter clogging occurs, it is necessary to detect the occurrence of such abnormality.
  • the purpose is to provide a ventilation system that can be used.
  • the ventilation device is arranged in the casing and the casing in which the air supply passage through which the air blown from the air supply port passes and the exhaust passage through which the air blown out from the exhaust port passes are formed.
  • a total heat exchanger that exchanges heat between the air flowing through the air supply passage and the air flowing through the exhaust passage, a first temperature sensor that detects the air temperature on the inlet side of the air supply passage, and an outlet side of the air supply passage.
  • the second temperature sensor that detects the air temperature
  • the third temperature sensor that detects the air temperature on the inlet side of the exhaust passage
  • the first temperature sensor the second temperature sensor
  • the third temperature sensor It is provided with a control device for determining that an abnormality has occurred when the temperature efficiency of the total heat exchanger calculated based on each detected air temperature is larger than the reference value.
  • the temperature efficiency of the heat exchanger becomes larger than the standard value. Therefore, according to the ventilation device according to the present disclosure, when the above temperature efficiency is larger than the reference value, it is determined that an abnormality has occurred, and the air volume is reduced due to an abnormality due to dew condensation or freezing, or a filter clogging. When an abnormality occurs, it is possible to detect that the abnormality has occurred.
  • FIG. 1 It is a top view which shows the structure of the ventilation apparatus which concerns on Embodiment 1.
  • FIG. 2 is a side schematic diagram which shows the structure of the ventilation apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the temperature change of the supply air and the exhaust when the outside air temperature is higher than the room temperature in the normal state of the total heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure which shows the temperature change of the supply air and the exhaust when the outside air temperature is lower than the room temperature in the normal state of the total heat exchanger which concerns on Embodiment 1.
  • FIG. 1 It is a figure which shows the temperature change of the supply air and the exhaust when the outside air temperature is higher than the room temperature in the state of dew condensation, freezing, or a decrease in air volume in the total heat exchanger according to the first embodiment. It is a figure which shows the temperature change of the air supply and the exhaust when the outside air temperature is lower than the room temperature in the state of dew condensation, freezing, or a decrease in air volume in the total heat exchanger according to the first embodiment. It is a figure which shows the change of the temperature efficiency of the total heat exchanger at the time of the occurrence of dew condensation or freezing which concerns on Embodiment 1. FIG. It is a figure which shows the change of the temperature efficiency of the total heat exchanger when the air volume drop occurs which concerns on Embodiment 1. FIG.
  • FIG. 1 It is a figure which shows the control flow which identifies the abnormality factor of the ventilation apparatus which concerns on Embodiment 1.
  • FIG. 2 is a refrigerant circuit diagram of the ventilation system which concerns on Embodiment 2.
  • FIG. It is a side schematic diagram which shows the structure of the ventilation apparatus which concerns on Embodiment 2.
  • FIG. It is a figure which shows the control flow which identifies the abnormal factor of the ventilation apparatus which concerns on Embodiment 2.
  • FIG. 1 It is a side schematic diagram which shows the structure of the modification of the ventilation apparatus which concerns on Embodiment 2.
  • FIG. 1 is a schematic top view showing the configuration of the ventilation device 1 according to the first embodiment.
  • FIG. 2 is a schematic side view showing the configuration of the ventilation device 1 according to the first embodiment.
  • the ventilation device 1 includes a casing 10, an air supply fan 11, an air supply fan motor 12, an exhaust fan 13, and an exhaust fan motor 14. It includes a heat exchanger 20, an air supply filter 41, and an exhaust filter 42. Further, the ventilation device 1 includes an outside air temperature sensor (hereinafter, also referred to as a first temperature sensor) 51, a supply air temperature sensor (hereinafter, also referred to as a second temperature sensor) 52, and an indoor air temperature sensor (hereinafter, a third temperature). It includes a 53 (also referred to as a sensor), an exhaust temperature sensor 54, and a control device 30.
  • a first temperature sensor hereinafter, also referred to as a first temperature sensor
  • a supply air temperature sensor hereinafter, also referred to as a second temperature sensor
  • an indoor air temperature sensor hereinafter, a third temperature
  • the casing 10 constitutes the outer shell of the ventilation device 1, and has an outside air port 10a for taking in outside air (OA) inside, an exhaust port 10b for discharging exhaust gas (EA) to the outside, and a return air (RA) inside. It is provided with a return air port 10c for taking in air and an air supply port 10d for supplying air supply (SA) into the room. Further, inside the casing 10, an air supply passage 10ad through which air taken in from the outside air port 10a and blown out from the air supply port 10d passes, and air taken in from the return air port 10c and blown out from the exhaust port 10b. The exhaust passage 10bc through which the air passes is formed. In the following, the return air is also referred to as indoor air.
  • the total heat exchanger 20 is made of paper, for example, and exchanges sensible heat and latent heat between the air flowing through the air supply passage 10ad and the air flowing through the exhaust passage 10bc, that is, exchanging the total heat.
  • the air supply filter 41 and the exhaust filter 42 are provided on the total heat exchanger 20, respectively, and remove dust or dirt from the total heat exchanger 20 so as not to adhere to the total heat exchanger 20.
  • the air supply filter 41 is provided at a position on the windward side of the air supply passage 10ad in the total heat exchanger 20, and the exhaust filter 42 is provided at a position on the windward side of the exhaust passage 10bc in the total heat exchanger 20. Has been done.
  • the supply air fan motor 12 operates the supply air fan 11, and the exhaust fan motor 14 operates the exhaust fan 13.
  • the supply air fan motor 12 and the exhaust fan motor 14 may be controlled by fixing the rotation speed, or may be controlled by changing the rotation speed step by step.
  • the air supply fan 11 takes in the outside air (OA) from the outside air port 10a into the air supply passage 10ad in the casing 10, exchanges the total heat with the total heat exchanger 20, and then supplies air (SA) from the air supply port 10d. It is supplied to the room, which is the space subject to air conditioning.
  • the exhaust fan 13 takes in the return air (RA) from the return air port 10c into the exhaust passage 10bc in the casing 10, exchanges the total heat with the total heat exchanger 20, and then exhausts (EA) from the exhaust port 10b to the outside. It is to be discharged to.
  • the outside air temperature sensor 51 is provided, for example, in the vicinity of the outside air port 10a of the casing 10 and detects the air temperature on the inlet side of the supply air passage 10ad, that is, the outside air temperature.
  • the supply air temperature sensor 52 is provided, for example, in the vicinity of the air supply port 10d of the casing 10 and detects the air temperature on the outlet side of the supply air passage 10ad, that is, the supply air temperature.
  • the indoor air temperature sensor 53 is provided, for example, in the vicinity of the return air port 10c of the casing 10 and detects the air temperature on the inlet side of the exhaust passage 10bc, that is, the indoor temperature.
  • the exhaust temperature sensor 54 is provided, for example, in the vicinity of the exhaust port 10b of the casing 10 and detects the air temperature on the outlet side of the exhaust passage 10bc, that is, the exhaust temperature.
  • Each of these temperature sensors is composed of, for example, a thermistor.
  • the control device 30 has a microcomputer equipped with a CPU, ROM, RAM, I / O port, and the like.
  • the control device 30 controls the operation of the entire ventilation device 1 including the supply air fan motor 12 and the exhaust fan motor 14 based on the detection signal from each temperature sensor, the operation signal from the operation unit (not shown), and the like.
  • the control device 30 may be provided in the ventilation device 1, or may be provided separately from the ventilation device 1 and may be configured to control the ventilation device 1 by communication.
  • control device 30 has a storage unit 31, an extraction unit 32, a calculation unit 33, and a comparison unit as functional blocks related to abnormality detection of the ventilation device 1, control of the air supply fan 11 and the exhaust fan 13, and identification of the abnormal location. It includes 34, a determination unit 35, a control unit 36, and a notification unit 37.
  • the storage unit 31 is configured to store data related to the temperature detected by each temperature sensor. These data are periodically acquired during the operation of the ventilator 1. Further, various data necessary for abnormality determination are stored in the storage unit 31.
  • the extraction unit 32 is configured to extract data necessary for abnormality determination from the data stored in the storage unit 31.
  • the calculation unit 33 is configured to perform necessary calculations based on the data extracted by the extraction unit 32.
  • the comparison unit 34 is configured to compare the value obtained by the calculation in the calculation unit 33 with the threshold value, or to compare the values obtained by the calculation in the calculation unit 33.
  • the determination unit 35 is configured to perform abnormality determination on the ventilation device 1 based on the comparison result in the comparison unit 34.
  • the control unit 36 controls the supply air fan 11 and the exhaust fan 13 according to each operation mode such as a dry operation and a normal ventilation operation based on the result of the determination unit 35.
  • the notification unit 37 displays a part that displays the operation mode controlled by the control unit 36, and an abnormality such as an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume caused by filter clogging based on the result of the determination unit 35. It is composed of the part to be used and the part to be used.
  • the notification unit 37 may be provided in the control device 30, or may be provided separately from the control device 30, and may be configured by, for example, a remote PC. When it is separate from the control device 30, the notification unit 37 is configured to notify the operation mode of the ventilation device 1 and the content of an abnormality by a command from the control device 30.
  • the notification unit 37 has at least one of a display unit for visually notifying information and a voice output unit for aurally notifying information.
  • FIG. 3 is a diagram showing temperature changes of air supply and exhaust when the outside air temperature TOA in the normal state of the total heat exchanger 20 according to the first embodiment is higher than the room temperature TRA .
  • high-temperature outside air is supplied from the supply air passage 11ad and low-temperature indoor air is supplied from the exhaust passage 11bc to the total heat exchanger 20, and the total heat is exchanged between the outside air and the indoor air. .. After that, the outside air is supplied to the room as supply air whose temperature has dropped, and the indoor air is discharged to the outside as exhaust gas whose temperature has risen.
  • the normal temperature efficiency ⁇ c when the outside air temperature TOA is higher than the room temperature TRA is as follows.
  • FIG. 4 is a diagram showing temperature changes of air supply and exhaust when the outside air temperature TOA in the normal state of the total heat exchanger 20 according to the first embodiment is lower than the room temperature TRA .
  • low-temperature outside air is supplied from the supply air passage 11ad and high-temperature indoor air is supplied from the exhaust passage 11bc to the total heat exchanger 20, and the total heat is exchanged between the outside air and the indoor air. .. After that, the outside air is supplied to the room as supply air whose temperature has risen, and the indoor air is discharged to the outside as exhaust gas whose temperature has dropped.
  • the normal temperature efficiency ⁇ h when the outside air temperature TOA is lower than the room temperature TRA ( TOA ⁇ TRA ) is as follows.
  • the abnormalities of the ventilation device 1 include abnormalities due to dew condensation or freezing and abnormalities due to a decrease in air volume caused by clogging of the filter, and these abnormalities will be described in detail.
  • the total heat exchanger 20 gets wet as described above.
  • the thermal conductivity of the total heat exchanger 20 is about 0.06 [W / (mk)], which is the thermal conductivity of paper, which is a main component thereof.
  • the total heat exchanger 20 gets wet, its thermal conductivity becomes close to the thermal conductivity of water of 0.6 [W / (mk)], so that the temperature efficiency is improved, that is, the value of the temperature efficiency ⁇ is increased. It gets higher.
  • the decrease in air volume caused by clogging of the filter or the like is caused by the accumulation of dust or dirt in the air supply filter 41 and the exhaust filter 42.
  • the filter was cleaned regularly to ensure the required ventilation volume.
  • the filter is cleaned after a certain period of time, and there is no one that detects a decrease in air volume in the state of the filter.
  • the air volume on the high temperature side decreases due to clogging of the filter or the like, the air volume on the relatively low temperature side increases, so that the high temperature air easily exchanges heat with the low temperature air in the total heat exchanger 20.
  • the high temperature air approaches the low temperature air. Therefore, the temperature efficiency of the total heat exchanger 20 is improved, that is, the value of the temperature efficiency ⁇ is increased.
  • FIGS. 5 and 6 will be used to explain changes in the temperature of the supply air and the exhaust gas of the ventilation device 1 when dew condensation, freezing, or a decrease in air volume occurs.
  • FIG. 5 is a diagram showing temperature changes of air supply and exhaust when the outside air temperature TOA is higher than the room temperature TRA when the total heat exchanger 20 according to the first embodiment is in a state of dew condensation, freezing, or a decrease in air volume. be.
  • the temperature efficiency ⁇ c'at the time of abnormality when the outside air temperature TOA is higher than the room temperature TRA is as follows.
  • FIG. 6 shows supply and exhaust when the total heat exchanger 20 according to the first embodiment has an outside air temperature TOA lower than the room temperature TRA ( TOA ⁇ TRA ) when the total heat exchanger 20 is in a state of dew condensation, freezing, or a decrease in air volume. It is a figure which shows the temperature change of.
  • the temperature efficiency ⁇ h'at the time of abnormality when the outside air temperature TOA is lower than the room temperature TRA is as follows.
  • the drying operation is an operation in which either one of the air supply fan 11 and the exhaust fan 13 is stopped to dry the total heat exchanger 20.
  • the normal operation is an operation in which both the air supply fan 11 and the exhaust fan 13 are operated.
  • the change in the temperature efficiency ⁇ when the total heat exchanger 20 is dried in the drying operation and the temperature efficiency after returning to the normal operation after the drying operation is done from at least one of the changes in ⁇ .
  • FIGS. 7 and 8 the difference between the abnormality due to dew condensation or freezing and the abnormality due to the decrease in air volume will be described.
  • FIG. 7 is a diagram showing changes in the temperature efficiency ⁇ of the total heat exchanger 20 when dew condensation or freezing occurs according to the first embodiment.
  • FIG. 8 is a diagram showing changes in the temperature efficiency ⁇ of the total heat exchanger 20 when a decrease in air volume occurs according to the first embodiment.
  • both were determined to be abnormal at t1 during normal operation, then the dry operation was performed from t1 to t3, and after t3, the time (horizontal axis) when the normal operation was performed. It shows the change in temperature efficiency ⁇ (vertical axis).
  • ⁇ 1 in FIGS. 7 and 8 is the temperature efficiency when the ventilation device 1 is normal.
  • ⁇ 3 in FIGS. 7 and 8 is used to determine which of the abnormalities caused by dew condensation or freezing and the abnormalities caused by the air volume decrease caused by the clogging of the filter, etc., when the ventilation device 1 is abnormal. Temperature efficiency.
  • FIG. 9 is a diagram showing a control flow for identifying an abnormal factor of the ventilation device 1 according to the first embodiment. It is assumed that normal operation is performed at the start of the control flow shown in FIG.
  • Step S101 The control device 30 calculates the current temperature efficiency ⁇ now based on each air temperature detected by the outside air temperature sensor 51, the supply air temperature sensor 52, and the indoor air temperature sensor 53.
  • Step S102 The control device 30 determines whether or not the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is larger than 0. When the control device 30 determines that the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is larger than 0, it is determined that the difference is greater than 0, and the process proceeds to step S103. On the other hand, when the control device 30 determines that the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is 0 or less, it determines that it is normal and ends this control flow.
  • Step S103 The control device 30 stops the exhaust fan 13 and starts the drying operation. Further, the control device 30 notifies the notification unit 37 that the drying operation is being performed. Although an example of stopping the exhaust fan 13 in order to start the drying operation has been described here, the supply air fan 11 may be stopped.
  • Step S104 The control device 30 determines whether or not a certain time has elapsed after starting the drying operation. When the control device 30 determines that a certain time has elapsed after starting the drying operation, the total heat exchanger 20 is determined to be dry, and the process proceeds to step S105. On the other hand, when the control device 30 determines that a certain time has not elapsed since the start of the drying operation, it is determined that the total heat exchanger 20 is not dry, and the process of step S104 is performed again.
  • the control device 30 determines that the total heat exchanger 20 has dried after a certain period of time has elapsed after the start of the drying operation, but the present invention is not limited thereto.
  • Step S105 The control device 30 operates the exhaust fan 13 and starts normal operation. Further, the control device 30 notifies the notification unit 37 that the normal operation is being performed.
  • Step S106 The control device 30 calculates the current temperature efficiency ⁇ now based on each air temperature detected by the outside air temperature sensor 51, the supply air temperature sensor 52, and the indoor air temperature sensor 53.
  • Step S107 The control device 30 determines whether or not the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is larger than 0.
  • the control device 30 determines that the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is larger than 0
  • it is determined that the abnormality is due to the decrease in air volume and the process proceeds to step S108.
  • the control device 30 determines that the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is 0 or less, it is determined that there is no abnormality due to the decrease in air volume, and this control flow is terminated.
  • the control device 30 may notify the notification unit 37 that the abnormality is due to dew condensation or freezing.
  • Step S108 The control device 30 notifies the notification unit 37 that the abnormality is caused by the decrease in air volume.
  • the ventilation device 1 is a casing 10 in which an air supply passage 10ad through which the air blown from the air supply port 10d passes and an exhaust passage 10bc through which the air blown from the exhaust port 10b passes are formed.
  • a total heat exchanger 20 that is arranged in the casing 10 and exchanges heat between the air flowing through the air supply passage 10ad and the air flowing through the exhaust passage 10bc, and the first that detects the air temperature on the inlet side of the air supply passage 10ad.
  • the temperature sensor 51, the second temperature sensor 52 that detects the air temperature on the outlet side of the air supply passage 10ad, the third temperature sensor 53 that detects the air temperature on the inlet side of the exhaust passage 10bc, and the first temperature sensor 51. Control to determine that an abnormality has occurred when the temperature efficiency of the total heat exchanger 20 calculated based on each air temperature detected by the second temperature sensor 52 and the third temperature sensor 53 is larger than the reference value.
  • the device 30 is provided.
  • an abnormality occurs due to an abnormality due to dew condensation or freezing, or an abnormality due to a decrease in air volume caused by clogging of the filter, etc.
  • it is calculated based on each air temperature detected by the first temperature sensor 51, the second temperature sensor 52, and the third temperature sensor 53.
  • the temperature efficiency of the total heat exchanger 20 becomes larger than the reference value. Therefore, according to the ventilation device 1 according to the first embodiment, when the above temperature efficiency is larger than the reference value, it is determined that an abnormality has occurred. By doing so, when an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume caused by clogging of the filter or the like occurs, it is possible to detect that the abnormality has occurred.
  • the ventilation device 1 includes an air supply fan 11 for flowing air through the supply air passage 10ad and an exhaust fan 13 for flowing air through the exhaust passage 10bc, and the control device 30 is an air supply fan. If it is determined that an abnormality has occurred during normal operation in which both the air supply fan 11 and the exhaust fan 13 are operated, a drying operation is performed in which one of the air supply fan 11 and the exhaust fan 13 is stopped.
  • the ventilation device 1 According to the ventilation device 1 according to the first embodiment, if it is determined that an abnormality has occurred during normal operation, a drying operation is performed in which either the supply air fan 11 or the exhaust fan 13 is stopped. Therefore, even if an abnormality occurs in the ventilation device 1 due to dew condensation or freezing, the total heat exchanger 20 can be dried.
  • the control device 30 is detected by the first temperature sensor 51, the second temperature sensor 52, and the third temperature sensor 53 after a certain period of time has elapsed from the start of the drying operation. If the temperature efficiency calculated based on each air temperature is greater than the reference value, it is determined that an abnormality has occurred due to a decrease in air volume, and if the temperature efficiency is below the reference value, an abnormality due to dew condensation or freezing has occurred. It is determined that it has occurred.
  • the ventilation device 1 According to the ventilation device 1 according to the first embodiment, if the temperature efficiency calculated after a certain period of time has elapsed from the start of the drying operation is larger than the reference value, it is determined that an abnormality due to a decrease in air volume has occurred, and the temperature efficiency is determined. If is less than or equal to the reference value, it is determined that an abnormality due to dew condensation or freezing has occurred. Therefore, it is possible to identify the cause of the abnormality, which of the abnormalities caused by dew condensation or freezing and the abnormalities caused by the decrease in air volume caused by the clogging of the filter.
  • the ventilation device 1 includes a notification unit 37, and the control device 30 notifies the notification unit 37 that the drying operation is being performed during the drying operation.
  • the notification unit 37 notifies the user that the drying operation is being performed during the drying operation, so that the user can be notified that the ventilation device 1 is in the drying operation. can.
  • the notification unit 37 when the control device 30 determines that an abnormality due to dew condensation or freezing has occurred, the notification unit 37 notifies that fact, and an abnormality occurs due to a decrease in air volume. If it is determined that the problem is observed, the notification unit 37 notifies the user to that effect.
  • the notification unit 37 notifies the user of the abnormal factor when an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume occurs, so that the user is notified of the abnormal factor of the ventilation device 1. I can inform you.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but the description thereof will be omitted for those overlapping with the first embodiment, and the same parts or the corresponding parts as those in the first embodiment will be designated by the same reference numerals.
  • FIG. 10 is a refrigerant circuit diagram of the ventilation device 1 according to the second embodiment.
  • FIG. 11 is a schematic side view showing the configuration of the ventilation device 1 according to the second embodiment.
  • the compressor 111, the flow path switching device 112, the first heat exchanger 113, the throttle device 121, and the second heat exchanger 122 are sequentially connected by piping. It is provided with a refrigerant circuit 101 through which the refrigerant circulates.
  • the ventilation device 1 can operate both the cooling operation and the heating operation by switching the flow path switching device 112. Further, the refrigerant circuit 101 is provided with a suction pressure sensor 116 and a condensation temperature sensor 153.
  • the compressor 111 sucks in the low temperature and low pressure refrigerant, compresses the sucked refrigerant, and discharges the high temperature and high pressure refrigerant.
  • the compressor 111 is composed of, for example, an inverter compressor whose capacity, which is a transmission amount per unit time, is controlled by changing the operating frequency.
  • the flow path switching device 112 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant.
  • the flow path switching device 112 switches to the state shown by the solid line in FIG. 10 during the cooling operation, and the discharge side of the compressor 111 and the first heat exchanger 113 are connected to each other. Further, the flow path switching device 112 switches to the state shown by the broken line in FIG. 10 during the heating operation, and the discharge side of the compressor 111 and the second heat exchanger 122 are connected to each other.
  • the first heat exchanger 113 exchanges heat between the outside air and the refrigerant.
  • the first heat exchanger 113 functions as a condenser that dissipates the heat of the refrigerant to the outside air and condenses the refrigerant during the cooling operation. Further, the first heat exchanger 113 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outside air by the heat of vaporization at that time.
  • the throttle device 121 is, for example, an electronic expansion valve capable of adjusting the opening degree of the throttle, and by adjusting the opening degree, the pressure of the refrigerant flowing into the first heat exchanger 113 or the second heat exchanger 122 can be adjusted. Control.
  • the second heat exchanger 122 exchanges heat between the indoor air and the refrigerant.
  • the second heat exchanger 122 functions as an evaporator that evaporates the refrigerant during the cooling operation and cools the indoor air by the heat of vaporization at that time. Further, the second heat exchanger 122 functions as a condenser that dissipates the heat of the refrigerant to the indoor air and condenses the refrigerant during the heating operation.
  • the second heat exchanger 122 is arranged on the leeward side of the total heat exchanger 20 of the air supply passage 10ad.
  • the evaporation temperature or the condensation temperature is controlled. Specifically, in the summer, the evaporation temperature is lowered to lower the temperature of the supply air after passing through the second heat exchanger 122, and in the winter, the condensation temperature is raised to lower the second heat exchanger 122.
  • the suction pressure sensor 116 is provided on the suction side of the compressor 111, and detects the suction pressure for calculating the evaporation temperature during the cooling operation.
  • the evaporation temperature is a saturation temperature calculated from the suction pressure detected by the suction pressure sensor 116.
  • the condensation temperature sensor 153 is provided in the second heat exchanger 122 and detects the condensation temperature during the heating operation.
  • a temperature sensor may be provided in the first heat exchanger 113 instead of the suction pressure sensor 116.
  • a pressure sensor may be provided on the discharge side of the compressor 111 instead of the condensation temperature sensor 153.
  • FIG. 12 is a diagram showing a control flow for identifying an abnormal factor of the ventilation device 1 according to the second embodiment. It is assumed that normal operation is performed at the start of the control flow shown in FIG.
  • Step S201 The control device 30 calculates the current temperature efficiency ⁇ now based on each air temperature detected by the outside air temperature sensor 51, the supply air temperature sensor 52, and the indoor air temperature sensor 53.
  • Step S202 The control device 30 determines whether or not the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is larger than 0. When the control device 30 determines that the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is larger than 0, it is determined that the difference is greater than 0, and the process proceeds to step S203. On the other hand, when the control device 30 determines that the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is 0 or less, it determines that it is normal and ends this control flow.
  • Step S203 The control device 30 stops the exhaust fan 13 and starts the drying operation. Further, the control device 30 notifies the notification unit 37 that the drying operation is being performed. Further, the control device 30 controls the evaporation temperature or the condensation temperature according to the outside air temperature. That is, when the outside air temperature is equal to or higher than the predetermined value in the summer, the operating frequency of the compressor 111 and the opening degree of the throttle device 121 are controlled so that the evaporation temperature drops to the predetermined value or lower. Further, when the outside air temperature is equal to or less than a predetermined value in winter, the operating frequency of the compressor 111 and the opening degree of the throttle device 121 are controlled so that the condensation temperature rises to the predetermined value or more. Although an example of stopping the exhaust fan 13 in order to start the drying operation has been described here, the supply air fan 11 may be stopped.
  • Step S204 The control device 30 determines whether or not a certain time has elapsed after starting the drying operation. When the control device 30 determines that a certain time has elapsed after starting the drying operation, the total heat exchanger 20 is determined to be dry, and the process proceeds to step S205. On the other hand, when the control device 30 determines that a certain time has not elapsed since the start of the drying operation, it is determined that the total heat exchanger 20 is not dry, and the process of step S204 is performed again.
  • the control device 30 determines that the total heat exchanger 20 has dried after a certain period of time has elapsed after the start of the drying operation, but the present invention is not limited thereto.
  • Step S205 The control device 30 operates the exhaust fan 13 and starts normal operation. Further, the control device 30 notifies the notification unit 37 that the normal operation is being performed. Further, the control device 30 controls the evaporation temperature or the condensation temperature according to the outside air temperature. That is, when the outside air temperature is equal to or higher than the predetermined value in the summer, the operating frequency of the compressor 111 and the opening degree of the throttle device 121 are controlled so that the evaporation temperature drops to the predetermined value or lower. Further, when the outside air temperature is equal to or less than a predetermined value in winter, the operating frequency of the compressor 111 and the opening degree of the throttle device 121 are controlled so that the condensation temperature rises to the predetermined value or more.
  • Step S206 The control device 30 calculates the current temperature efficiency ⁇ now based on each air temperature detected by the outside air temperature sensor 51, the supply air temperature sensor 52, and the indoor air temperature sensor 53.
  • Step S207 The control device 30 determines whether or not the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is larger than 0.
  • the control device 30 determines that the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is larger than 0
  • it is determined that the abnormality is due to the decrease in air volume and the process proceeds to step S208.
  • the control device 30 determines that the difference between the current temperature efficiency ⁇ now and the reference value ⁇ st is 0 or less, it is determined that there is no abnormality due to the decrease in air volume, and this control flow is terminated.
  • the control device 30 may notify the notification unit 37 that the abnormality is due to dew condensation or freezing.
  • Step S208 The control device 30 notifies the notification unit 37 that the abnormality is caused by the decrease in air volume.
  • FIG. 13 is a schematic side view showing the configuration of a modified example of the ventilation device 1 according to the second embodiment.
  • the first heat exchanger 113 is arranged on the windward side of the total heat exchanger 20 of the air supply passage 10ad.
  • the air taken in from the outside air port 10a is heated by the heat released from the first heat exchanger 113 functioning as a condenser, that is, the heat of condensation, and then supplied to the total heat exchanger 20.
  • the first heat exchanger 113 functioning as a condenser, that is, the heat of condensation, and then supplied to the total heat exchanger 20.
  • the compressor 111, the flow path switching device 112, the first heat exchanger 113, the throttle device 121, and the second heat exchanger 122 are connected by pipes, and the refrigerant circulates.
  • a refrigerant circuit 101 is provided, the second heat exchanger 122 is arranged on the leeward side of the total heat exchanger 20 of the air supply passage 10ad, and the control device 30 is detected by the first temperature sensor 51 during the drying operation. The evaporation temperature or the condensation temperature is controlled according to the temperature.
  • the evaporation temperature or the condensation temperature is controlled according to the temperature detected by the first temperature sensor 51 during the drying operation. Therefore, even when the outside air is not totally heat exchanged with the room air by the total heat exchanger 20 and the temperature does not change, the room temperature can be kept constant by lowering or raising the temperature of the supply air.
  • the first heat exchanger 113 is arranged on the windward side of the total heat exchanger 20 of the air supply passage 10ad.
  • the first heat exchanger 113 is arranged on the wind side of the total heat exchanger 20 of the air supply passage 10ad, it is taken in from the outside air port 10a during the drying operation.
  • the generated air is heated by the heat of condensation and then supplied to the total heat exchanger 20. Therefore, the time required for drying the total heat exchanger 20 during the drying operation can be shortened.
  • Ventilation device 10 casing, 10a outside air port, 10ad air supply path, 10b exhaust port, 10bc exhaust path, 10c return air port, 10d air supply port, 11 air supply fan, 11ad air supply path, 11bc exhaust port, 12 supply Qi fan motor, 13 exhaust fan, 14 exhaust fan motor, 20 total heat exchanger, 30 control device, 31 storage unit, 32 extraction unit, 33 calculation unit, 34 comparison unit, 35 judgment unit, 36 control unit, 37 notification unit , 41 air supply filter, 42 exhaust filter, 51 outside air temperature sensor, 52 supply air temperature sensor, 53 indoor air temperature sensor, 54 exhaust temperature sensor, 101 refrigerant circuit, 111 compressor, 112 flow path switching device, 113 first heat Exchanger, 116 suction pressure sensor, 121 throttle device, 122 second heat exchanger, 153 condensate temperature sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This ventilation device comprises: a casing that includes, formed therein, an air supply channel through which air blown from an air supply port passes and an exhaust channel through which air blown from an exhaust port passes; a total heat exchanger that is disposed in the casing and exchanges heat between the air flowing through the air supply channel and the air flowing through the exhaust channel; a first temperature sensor that detects the air temperature on the inlet side of the air supply channel; a second temperature sensor that detects the air temperature on the outlet side of the air supply channel; a third temperature sensor that detects the air temperature on the inlet side of the exhaust channel; and a controller that determines that an abnormality has occurred if the temperature efficiency of the total heat exchanger calculated on the basis of the respective air temperatures detected by the first, second, and third temperature sensors is greater than a reference value.

Description

換気装置Ventilation system
 本開示は、全熱交換器を備えた換気装置に関するものである。 This disclosure relates to a ventilation system equipped with a total heat exchanger.
 従来、全熱交換器の結露を防止する換気装置がある(例えば、特許文献1参照)。 Conventionally, there is a ventilation device that prevents dew condensation on the total heat exchanger (see, for example, Patent Document 1).
 特許文献1は、給気用モータを備えた給気用ファンと、排気用モータを備えた排気用ファンと、室内の空気と屋外の空気を換気する際に熱交換するための全熱交換器と、給気送風経路において熱交換素子の給気入口側に設けられた温度検知手段と、排気送風経路において熱交換素子の排気入口側に設けられた湿度検知手段と、を備え、温度検知手段が検知した温度と湿度検知手段が検知した湿度とに応じて給気用モータと排気用モータとの回転数を減少させ、給気風量と排気風量とを低下させることで全熱交換器の排気側出口部に発生する結露を防止している。また、特許文献1では、全熱交換器の室外空気吸込側および室内空気吸込側にそれぞれ空気清浄用のフィルタが設けられている。 Patent Document 1 describes an air supply fan provided with an air supply motor, an exhaust fan provided with an exhaust motor, and a total heat exchanger for exchanging heat when ventilating indoor air and outdoor air. A temperature detecting means provided on the air supply inlet side of the heat exchange element in the air supply / ventilation path and a humidity detecting means provided on the exhaust inlet side of the heat exchange element in the exhaust air blowing path. The rotation speed of the air supply motor and the exhaust motor is reduced according to the temperature detected by the air supply and the humidity detected by the humidity detection means, and the air supply air volume and the exhaust air volume are reduced to exhaust the total heat exchanger. It prevents dew condensation that occurs at the side outlet. Further, in Patent Document 1, filters for air purification are provided on the outdoor air suction side and the indoor air suction side of the total heat exchanger, respectively.
特開2016-65692号公報Japanese Unexamined Patent Publication No. 2016-65692
 特許文献1は、全熱交換器の結露を防止することはできるが、結露あるいは結氷による異常あるいはフィルタ目詰まりなどによって生じる風量低下による異常が発生した場合、それら異常が発生したことを検知することができないという課題があった。 Patent Document 1 can prevent dew condensation on the total heat exchanger, but detects that an abnormality has occurred due to an abnormality due to dew condensation or freezing, or an abnormality due to a decrease in air volume caused by clogging of a filter or the like. There was a problem that it could not be done.
 本開示は、以上のような課題を解決するためになされたもので、結露あるいは結氷による異常あるいはフィルタ目詰まりなどによって生じる風量低下による異常が発生した場合、それら異常が発生したことを検知することができる換気装置を提供することを目的としている。 The present disclosure has been made to solve the above problems, and when an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume caused by filter clogging occurs, it is necessary to detect the occurrence of such abnormality. The purpose is to provide a ventilation system that can be used.
 本開示に係る換気装置は、給気口から吹き出される空気が通過する給気路および排気口から吹き出される空気が通過する排気路が形成されたケーシングと、前記ケーシング内に配置され、前記給気路を流れる空気と前記排気路を流れる空気とで熱交換させる全熱交換器と、前記給気路の入口側の空気温度を検知する第一温度センサと、前記給気路の出口側の空気温度を検知する第二温度センサと、前記排気路の入口側の空気温度を検知する第三温度センサと、前記第一温度センサ、前記第二温度センサ、および、前記第三温度センサが検知した各空気温度に基づいて算出された前記全熱交換器の温度効率が基準値より大きい場合は異常が発生していると判定する制御装置と、を備えたものである。 The ventilation device according to the present disclosure is arranged in the casing and the casing in which the air supply passage through which the air blown from the air supply port passes and the exhaust passage through which the air blown out from the exhaust port passes are formed. A total heat exchanger that exchanges heat between the air flowing through the air supply passage and the air flowing through the exhaust passage, a first temperature sensor that detects the air temperature on the inlet side of the air supply passage, and an outlet side of the air supply passage. The second temperature sensor that detects the air temperature, the third temperature sensor that detects the air temperature on the inlet side of the exhaust passage, the first temperature sensor, the second temperature sensor, and the third temperature sensor It is provided with a control device for determining that an abnormality has occurred when the temperature efficiency of the total heat exchanger calculated based on each detected air temperature is larger than the reference value.
 結露あるいは結氷による異常あるいはフィルタ目詰まりなどによって生じる風量低下による異常が発生した場合、第一温度センサ、第二温度センサ、および、第三温度センサが検知した各空気温度に基づいて算出された全熱交換器の温度効率が基準値より大きくなる。そこで、本開示に係る換気装置によれば、上記の温度効率が基準値より大きい場合は異常が発生していると判定することで、結露あるいは結氷による異常あるいはフィルタ目詰まりなどによって生じる風量低下による異常が発生した場合、それら異常が発生したことを検知することができる。 All calculated based on each air temperature detected by the first temperature sensor, the second temperature sensor, and the third temperature sensor when an abnormality occurs due to an abnormality due to dew condensation or freezing, or an abnormality due to a decrease in air volume caused by clogging of the filter. The temperature efficiency of the heat exchanger becomes larger than the standard value. Therefore, according to the ventilation device according to the present disclosure, when the above temperature efficiency is larger than the reference value, it is determined that an abnormality has occurred, and the air volume is reduced due to an abnormality due to dew condensation or freezing, or a filter clogging. When an abnormality occurs, it is possible to detect that the abnormality has occurred.
実施の形態1に係る換気装置の構成を示す上面模式図である。It is a top view which shows the structure of the ventilation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る換気装置の構成を示す側面模式図である。It is a side schematic diagram which shows the structure of the ventilation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る全熱交換器が正常状態での外気温度が室内温度よりも高い場合の給気および排気の温度変化を示す図である。It is a figure which shows the temperature change of the supply air and the exhaust when the outside air temperature is higher than the room temperature in the normal state of the total heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る全熱交換器が正常状態での外気温度が室内温度よりも低い場合の給気および排気の温度変化を示す図である。It is a figure which shows the temperature change of the supply air and the exhaust when the outside air temperature is lower than the room temperature in the normal state of the total heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る全熱交換器が結露あるいは結氷もしくは風量低下状態での外気温度が室内温度よりも高い場合の給気および排気の温度変化を示す図である。It is a figure which shows the temperature change of the supply air and the exhaust when the outside air temperature is higher than the room temperature in the state of dew condensation, freezing, or a decrease in air volume in the total heat exchanger according to the first embodiment. 実施の形態1に係る全熱交換器が結露あるいは結氷もしくは風量低下状態での外気温度が室内温度よりも低い場合の給気および排気の温度変化を示す図である。It is a figure which shows the temperature change of the air supply and the exhaust when the outside air temperature is lower than the room temperature in the state of dew condensation, freezing, or a decrease in air volume in the total heat exchanger according to the first embodiment. 実施の形態1に係る結露あるいは結氷発生時の全熱交換器の温度効率の変化を示す図である。It is a figure which shows the change of the temperature efficiency of the total heat exchanger at the time of the occurrence of dew condensation or freezing which concerns on Embodiment 1. FIG. 実施の形態1に係る風量低下発生時の全熱交換器の温度効率の変化を示す図である。It is a figure which shows the change of the temperature efficiency of the total heat exchanger when the air volume drop occurs which concerns on Embodiment 1. FIG. 実施の形態1に係る換気装置の異常要因を特定する制御フローを示す図である。It is a figure which shows the control flow which identifies the abnormality factor of the ventilation apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る換気装置の冷媒回路図である。It is a refrigerant circuit diagram of the ventilation system which concerns on Embodiment 2. FIG. 実施の形態2に係る換気装置の構成を示す側面模式図である。It is a side schematic diagram which shows the structure of the ventilation apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る換気装置の異常要因を特定する制御フローを示す図である。It is a figure which shows the control flow which identifies the abnormal factor of the ventilation apparatus which concerns on Embodiment 2. 実施の形態2に係る換気装置の変形例の構成を示す側面模式図である。It is a side schematic diagram which shows the structure of the modification of the ventilation apparatus which concerns on Embodiment 2. FIG.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below. Further, in the drawings below, the relationship between the sizes of the constituent members may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る換気装置1の構成を示す上面模式図である。図2は、実施の形態1に係る換気装置1の構成を示す側面模式図である。
Embodiment 1.
FIG. 1 is a schematic top view showing the configuration of the ventilation device 1 according to the first embodiment. FIG. 2 is a schematic side view showing the configuration of the ventilation device 1 according to the first embodiment.
 図1および図2に示すように、実施の形態1に係る換気装置1は、ケーシング10と、給気ファン11と、給気ファンモータ12と、排気ファン13と、排気ファンモータ14と、全熱交換器20と、給気フィルタ41と、排気フィルタ42とを備えている。さらに、換気装置1は、外気温度センサ(以下、第一温度センサとも称する)51と、給気温度センサ(以下、第二温度センサとも称する)52と、室内空気温度センサ(以下、第三温度センサとも称する)53と、排気温度センサ54と、制御装置30とを備えている。 As shown in FIGS. 1 and 2, the ventilation device 1 according to the first embodiment includes a casing 10, an air supply fan 11, an air supply fan motor 12, an exhaust fan 13, and an exhaust fan motor 14. It includes a heat exchanger 20, an air supply filter 41, and an exhaust filter 42. Further, the ventilation device 1 includes an outside air temperature sensor (hereinafter, also referred to as a first temperature sensor) 51, a supply air temperature sensor (hereinafter, also referred to as a second temperature sensor) 52, and an indoor air temperature sensor (hereinafter, a third temperature). It includes a 53 (also referred to as a sensor), an exhaust temperature sensor 54, and a control device 30.
 ケーシング10は、換気装置1の外郭を構成するものであり、内部に外気(OA)を取り込む外気口10aと、室外に排気(EA)を排出する排気口10bと、内部に還気(RA)を取り込む還気口10cと、室内に給気(SA)を供給する給気口10dとを備えている。また、ケーシング10の内部には、外気口10aから取り込まれて給気口10dから吹き出される空気が通過する給気路10adと、還気口10cから取り込まれて排気口10bから吹き出される空気が通過する排気路10bcとが形成されている。なお、以下において還気を室内空気とも称する。 The casing 10 constitutes the outer shell of the ventilation device 1, and has an outside air port 10a for taking in outside air (OA) inside, an exhaust port 10b for discharging exhaust gas (EA) to the outside, and a return air (RA) inside. It is provided with a return air port 10c for taking in air and an air supply port 10d for supplying air supply (SA) into the room. Further, inside the casing 10, an air supply passage 10ad through which air taken in from the outside air port 10a and blown out from the air supply port 10d passes, and air taken in from the return air port 10c and blown out from the exhaust port 10b. The exhaust passage 10bc through which the air passes is formed. In the following, the return air is also referred to as indoor air.
 全熱交換器20は、例えば紙でできており、給気路10adを流れる空気と排気路10bcを流れる空気とで、顕熱および潜熱を交換、つまり全熱交換させるものである。 The total heat exchanger 20 is made of paper, for example, and exchanges sensible heat and latent heat between the air flowing through the air supply passage 10ad and the air flowing through the exhaust passage 10bc, that is, exchanging the total heat.
 給気フィルタ41および排気フィルタ42は、それぞれ全熱交換器20に設けられ、ゴミあるいはほこりなどが全熱交換器20に付着しないようそれらを取り除くものである。給気フィルタ41は、全熱交換器20において給気路10adの風上側となる位置に設けられており、排気フィルタ42は、全熱交換器20において排気路10bcの風上側となる位置に設けられている。 The air supply filter 41 and the exhaust filter 42 are provided on the total heat exchanger 20, respectively, and remove dust or dirt from the total heat exchanger 20 so as not to adhere to the total heat exchanger 20. The air supply filter 41 is provided at a position on the windward side of the air supply passage 10ad in the total heat exchanger 20, and the exhaust filter 42 is provided at a position on the windward side of the exhaust passage 10bc in the total heat exchanger 20. Has been done.
 給気ファンモータ12は給気ファン11を動作させるものであり、排気ファンモータ14は排気ファン13を動作させるものである。給気ファンモータ12および排気ファンモータ14は、回転数固定で制御されるようにしてもよいし、回転数を段階的に変更して制御されるようにしてもよい。 The supply air fan motor 12 operates the supply air fan 11, and the exhaust fan motor 14 operates the exhaust fan 13. The supply air fan motor 12 and the exhaust fan motor 14 may be controlled by fixing the rotation speed, or may be controlled by changing the rotation speed step by step.
 給気ファン11は、外気口10aから外気(OA)をケーシング10内の給気路10adに取り込んで、全熱交換器20で全熱交換させた後、給気口10dから給気(SA)として空調対象空間である室内に供給するものである。排気ファン13は、還気口10cから還気(RA)をケーシング10内の排気路10bcに取り込んで、全熱交換器20で全熱交換させた後、排気口10bから排気(EA)として室外に排出するものである。 The air supply fan 11 takes in the outside air (OA) from the outside air port 10a into the air supply passage 10ad in the casing 10, exchanges the total heat with the total heat exchanger 20, and then supplies air (SA) from the air supply port 10d. It is supplied to the room, which is the space subject to air conditioning. The exhaust fan 13 takes in the return air (RA) from the return air port 10c into the exhaust passage 10bc in the casing 10, exchanges the total heat with the total heat exchanger 20, and then exhausts (EA) from the exhaust port 10b to the outside. It is to be discharged to.
 外気温度センサ51は、例えばケーシング10の外気口10a付近に設けられ、給気路10adの入口側の空気温度、つまり外気温度を検知するものである。給気温度センサ52は、例えばケーシング10の給気口10d付近に設けられ、給気路10adの出口側の空気温度、つまり給気温度を検知するものである。室内空気温度センサ53は、例えばケーシング10の還気口10c付近に設けられ、排気路10bcの入口側の空気温度、つまり室内温度を検知するものである。排気温度センサ54は、例えばケーシング10の排気口10b付近に設けられ、排気路10bcの出口側の空気温度、つまり排気温度を検知するものである。これらの各温度センサは、例えばサーミスタで構成されている。 The outside air temperature sensor 51 is provided, for example, in the vicinity of the outside air port 10a of the casing 10 and detects the air temperature on the inlet side of the supply air passage 10ad, that is, the outside air temperature. The supply air temperature sensor 52 is provided, for example, in the vicinity of the air supply port 10d of the casing 10 and detects the air temperature on the outlet side of the supply air passage 10ad, that is, the supply air temperature. The indoor air temperature sensor 53 is provided, for example, in the vicinity of the return air port 10c of the casing 10 and detects the air temperature on the inlet side of the exhaust passage 10bc, that is, the indoor temperature. The exhaust temperature sensor 54 is provided, for example, in the vicinity of the exhaust port 10b of the casing 10 and detects the air temperature on the outlet side of the exhaust passage 10bc, that is, the exhaust temperature. Each of these temperature sensors is composed of, for example, a thermistor.
 制御装置30は、CPU、ROM、RAM、I/Oポートなどを備えたマイクロコンピュータを有している。制御装置30は、各温度センサからの検知信号、および不図示の操作部からの操作信号などに基づき、給気ファンモータ12および排気ファンモータ14を含む換気装置1全体の動作を制御する。なお、制御装置30は、換気装置1に設けられていてもよいし、換気装置1とは別体として設けられ、通信で換気装置1を制御するような構成でもよい。 The control device 30 has a microcomputer equipped with a CPU, ROM, RAM, I / O port, and the like. The control device 30 controls the operation of the entire ventilation device 1 including the supply air fan motor 12 and the exhaust fan motor 14 based on the detection signal from each temperature sensor, the operation signal from the operation unit (not shown), and the like. The control device 30 may be provided in the ventilation device 1, or may be provided separately from the ventilation device 1 and may be configured to control the ventilation device 1 by communication.
 また、制御装置30は、換気装置1の異常検知、給気ファン11および排気ファン13の制御、および、異常個所特定に関わる機能ブロックとして、記憶部31、抽出部32、演算部33、比較部34、判定部35、制御部36、および、報知部37を備えている。 Further, the control device 30 has a storage unit 31, an extraction unit 32, a calculation unit 33, and a comparison unit as functional blocks related to abnormality detection of the ventilation device 1, control of the air supply fan 11 and the exhaust fan 13, and identification of the abnormal location. It includes 34, a determination unit 35, a control unit 36, and a notification unit 37.
 記憶部31は、各温度センサで検知された温度に関するデータを記憶するように構成されている。これらのデータは、換気装置1の運転中に定期的に取得される。また、記憶部31には、異常判定に必要な各種データが記憶されている。 The storage unit 31 is configured to store data related to the temperature detected by each temperature sensor. These data are periodically acquired during the operation of the ventilator 1. Further, various data necessary for abnormality determination are stored in the storage unit 31.
 抽出部32は、記憶部31に記憶されたデータの中から、異常判定に必要となるデータを抽出するように構成されている。 The extraction unit 32 is configured to extract data necessary for abnormality determination from the data stored in the storage unit 31.
 演算部33は、抽出部32で抽出されたデータに基づき、必要な演算を行うように構成されている。 The calculation unit 33 is configured to perform necessary calculations based on the data extracted by the extraction unit 32.
 比較部34は、演算部33での演算により得られた値と閾値との比較、または演算部33での演算により得られた値同士の比較を行うように構成されている。 The comparison unit 34 is configured to compare the value obtained by the calculation in the calculation unit 33 with the threshold value, or to compare the values obtained by the calculation in the calculation unit 33.
 判定部35は、比較部34での比較結果に基づき、換気装置1について異常判定を行うように構成されている。 The determination unit 35 is configured to perform abnormality determination on the ventilation device 1 based on the comparison result in the comparison unit 34.
 制御部36は、判定部35の結果に基づき、乾燥運転および通常換気運転などの各運転モードに応じて、給気ファン11および排気ファン13を制御するものである。 The control unit 36 controls the supply air fan 11 and the exhaust fan 13 according to each operation mode such as a dry operation and a normal ventilation operation based on the result of the determination unit 35.
 報知部37は、制御部36で制御されている運転モードを表示する部分と、判定部35の結果に基づき結露あるいは結氷による異常あるいはフィルタ目詰まりなどによって生じる風量低下による異常などの異常内容を表示する部分と、で構成されている。 The notification unit 37 displays a part that displays the operation mode controlled by the control unit 36, and an abnormality such as an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume caused by filter clogging based on the result of the determination unit 35. It is composed of the part to be used and the part to be used.
 なお、報知部37は、制御装置30に設けられていてもよいし、制御装置30とは別体として設けられ、例えば遠隔のPCなどで構成されていてもよい。制御装置30とは別体となる場合は、報知部37は制御装置30からの指令により、換気装置1の運転モードおよび異常内容などを報知するように構成されている。報知部37は、情報を視覚的に報知する表示部、および、情報を聴覚的に報知する音声出力部のうち、少なくとも一方を有している。 The notification unit 37 may be provided in the control device 30, or may be provided separately from the control device 30, and may be configured by, for example, a remote PC. When it is separate from the control device 30, the notification unit 37 is configured to notify the operation mode of the ventilation device 1 and the content of an abnormality by a command from the control device 30. The notification unit 37 has at least one of a display unit for visually notifying information and a voice output unit for aurally notifying information.
 次に、図3および図4を用いて、換気装置1の給気および排気の温度変化を説明する。 Next, the temperature changes of the air supply and the exhaust of the ventilation device 1 will be described with reference to FIGS. 3 and 4.
 図3は、実施の形態1に係る全熱交換器20が正常状態での外気温度TOAが室内温度TRAよりも高い場合の給気および排気の温度変化を示す図である。 FIG. 3 is a diagram showing temperature changes of air supply and exhaust when the outside air temperature TOA in the normal state of the total heat exchanger 20 according to the first embodiment is higher than the room temperature TRA .
 図3から分かるように、給気路11adから温度の高い外気が、排気路11bcから温度の低い室内空気が、それぞれ全熱交換器20に供給され、外気と室内空気とで全熱交換を行う。その後、外気は温度が低下した給気として室内に供給され、室内空気は温度が上昇した排気として屋外に排出される。 As can be seen from FIG. 3, high-temperature outside air is supplied from the supply air passage 11ad and low-temperature indoor air is supplied from the exhaust passage 11bc to the total heat exchanger 20, and the total heat is exchanged between the outside air and the indoor air. .. After that, the outside air is supplied to the room as supply air whose temperature has dropped, and the indoor air is discharged to the outside as exhaust gas whose temperature has risen.
 ここで、全熱交換器20の性能を示す指標として、外気温度TOAが室内温度TRAよりも高い場合(TOA>TRA)の正常時の温度効率ηcは、下記となる。 Here, as an index indicating the performance of the total heat exchanger 20, the normal temperature efficiency ηc when the outside air temperature TOA is higher than the room temperature TRA ( TOA > TRA) is as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図4は、実施の形態1に係る全熱交換器20が正常状態での外気温度TOAが室内温度TRAよりも低い場合の給気および排気の温度変化を示す図である。 FIG. 4 is a diagram showing temperature changes of air supply and exhaust when the outside air temperature TOA in the normal state of the total heat exchanger 20 according to the first embodiment is lower than the room temperature TRA .
 図4から分かるように、給気路11adから温度の低い外気が、排気路11bcから温度の高い室内空気が、それぞれ全熱交換器20に供給され、外気と室内空気とで全熱交換を行う。その後、外気は温度が上昇した給気として室内に供給され、室内空気は温度が低下した排気として屋外に排出される。 As can be seen from FIG. 4, low-temperature outside air is supplied from the supply air passage 11ad and high-temperature indoor air is supplied from the exhaust passage 11bc to the total heat exchanger 20, and the total heat is exchanged between the outside air and the indoor air. .. After that, the outside air is supplied to the room as supply air whose temperature has risen, and the indoor air is discharged to the outside as exhaust gas whose temperature has dropped.
 ここで、全熱交換器20の性能を示す指標として、外気温度TOAが室内温度TRAよりも低い場合(TOA<TRA)の正常時の温度効率ηhは、下記となる。 Here, as an index showing the performance of the total heat exchanger 20, the normal temperature efficiency ηh when the outside air temperature TOA is lower than the room temperature TRA ( TOA < TRA ) is as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
[換気装置の異常について]
 次に、実施の形態1に係る換気装置1の異常について説明する。
[Abnormal ventilation system]
Next, the abnormality of the ventilation device 1 according to the first embodiment will be described.
 換気装置1の異常として、結露あるいは結氷による異常とフィルタ目詰まりなどによって生じる風量低下による異常とがあり、これら異常について詳細に説明する。 The abnormalities of the ventilation device 1 include abnormalities due to dew condensation or freezing and abnormalities due to a decrease in air volume caused by clogging of the filter, and these abnormalities will be described in detail.
 まず、結露および結氷について説明する。結露は全熱交換器20で全熱交換する外気と室内空気とにおいて、温度が高い側の空気が冷やされ、露点温度まで下がり、空気中の水分が全熱交換器20の表面に析出することである。そして、結氷は、全熱交換器20内で空気中の水分が結露した後に凍結し、風路を閉塞するまで氷塊が成長することである。この結露あるいは結氷が発生すると、換気装置1の内部からの水滴の落下、つまり露垂れなどが発生してクレームの要因になるほか、全熱交換器20の表面にカビまたは菌が繁殖し、不衛生な状態となる。また、この結露が全熱交換器20の劣化を引き起こす要因にもなっている。 First, we will explain about dew condensation and freezing. Condensation occurs when the air on the higher temperature side is cooled in the outside air and the indoor air where the total heat is exchanged by the total heat exchanger 20, the temperature drops to the dew point temperature, and the moisture in the air is deposited on the surface of the total heat exchanger 20. Is. Then, the freezing is that the moisture in the air condenses in the total heat exchanger 20 and then freezes, and the ice block grows until the air passage is blocked. When this dew or ice occurs, water droplets fall from the inside of the ventilation device 1, that is, dew drips, which causes complaints, and mold or fungi grow on the surface of the total heat exchanger 20, which is not possible. It will be in a hygienic condition. In addition, this dew condensation is also a factor that causes deterioration of the total heat exchanger 20.
 結露あるいは結氷が発生すると、上記のように全熱交換器20が濡れる。通常、全熱交換器20の熱伝導率は、その主な構成部材である紙の熱伝導率0.06[W/(mk)]程度である。しかし、全熱交換器20が濡れると、その熱伝導率は水の熱伝導率0.6[W/(mk)]に近くなることから、温度効率が向上する、つまり温度効率ηの値が高くなる。 When dew condensation or freezing occurs, the total heat exchanger 20 gets wet as described above. Normally, the thermal conductivity of the total heat exchanger 20 is about 0.06 [W / (mk)], which is the thermal conductivity of paper, which is a main component thereof. However, when the total heat exchanger 20 gets wet, its thermal conductivity becomes close to the thermal conductivity of water of 0.6 [W / (mk)], so that the temperature efficiency is improved, that is, the value of the temperature efficiency η is increased. It gets higher.
 次に、風量低下について説明する。フィルタ目詰まりなどによって生じる風量低下は、給気フィルタ41および排気フィルタ42にゴミあるいはほこりなどが溜まり発生するものである。風量低下が生じると必要な換気量が室内に供給できないため、従来では定期的にフィルタ清掃などを行い、必要な換気量を確保できるようにしていた。ただ、現状一定期間が経ったらフィルタ清掃を行っており、フィルタの状態で風量低下を検知するものはなかった。 Next, the decrease in air volume will be explained. The decrease in air volume caused by clogging of the filter or the like is caused by the accumulation of dust or dirt in the air supply filter 41 and the exhaust filter 42. When the air volume drops, the required ventilation volume cannot be supplied to the room. Therefore, in the past, the filter was cleaned regularly to ensure the required ventilation volume. However, at present, the filter is cleaned after a certain period of time, and there is no one that detects a decrease in air volume in the state of the filter.
 フィルタ目詰まりなどによって温度の高い側の風量が低下すると、相対的に温度の低い側の風量が増加することから、全熱交換器20で温度の高い空気が温度の低い空気と熱交換しやすくなり、高温空気が低温空気に近づく。よって、全熱交換器20での温度効率が向上する、つまり温度効率ηの値が高くなる。 When the air volume on the high temperature side decreases due to clogging of the filter or the like, the air volume on the relatively low temperature side increases, so that the high temperature air easily exchanges heat with the low temperature air in the total heat exchanger 20. The high temperature air approaches the low temperature air. Therefore, the temperature efficiency of the total heat exchanger 20 is improved, that is, the value of the temperature efficiency η is increased.
 図5および図6を用いて、結露あるいは結氷もしくは風量低下が発生した場合の換気装置1の給気および排気の温度の変化を説明する。 FIGS. 5 and 6 will be used to explain changes in the temperature of the supply air and the exhaust gas of the ventilation device 1 when dew condensation, freezing, or a decrease in air volume occurs.
 図5は、実施の形態1に係る全熱交換器20が結露あるいは結氷もしくは風量低下状態での外気温度TOAが室内温度TRAよりも高い場合の給気および排気の温度変化を示す図である。 FIG. 5 is a diagram showing temperature changes of air supply and exhaust when the outside air temperature TOA is higher than the room temperature TRA when the total heat exchanger 20 according to the first embodiment is in a state of dew condensation, freezing, or a decrease in air volume. be.
 図5から分かるように、給気路11adから温度の高い外気が、排気路11bcから温度の低い室内空気が、それぞれ全熱交換器20に供給され、外気と室内空気とで全熱交換を行う。その後、外気は温度が低下した給気として室内に供給され、室内空気は温度が上昇した排気として屋外に排出されるが、結露あるいは結氷もしくは風量低下により全熱交換器20の熱交換性能が向上する。そのため、異常時(太点線)の給気温度T’SAは正常時(細点線)の給気温度TSAよりも低下することが分かる。 As can be seen from FIG. 5, high temperature outside air is supplied from the supply air passage 11ad and low temperature indoor air is supplied from the exhaust passage 11bc to the total heat exchanger 20, and total heat exchange is performed between the outside air and the indoor air. .. After that, the outside air is supplied to the room as supply air whose temperature has dropped, and the indoor air is discharged to the outside as exhaust gas whose temperature has risen. However, the heat exchange performance of the total heat exchanger 20 is improved due to dew condensation, freezing, or a decrease in air volume. do. Therefore, it can be seen that the supply air temperature T'SA in the abnormal state (thick dotted line) is lower than the supply air temperature T SA in the normal state (thin dotted line).
 ここで、全熱交換器20の性能を示す指標として、外気温度TOAが室内温度TRAよりも高い場合(TOA>TRA)の異常時の温度効率ηc’は、下記となる。 Here, as an index indicating the performance of the total heat exchanger 20, the temperature efficiency ηc'at the time of abnormality when the outside air temperature TOA is higher than the room temperature TRA ( TOA > TRA ) is as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図6は、実施の形態1に係る全熱交換器20が結露あるいは結氷もしくは風量低下状態での外気温度TOAが室内温度TRAよりも低い場合(TOA<TRA)の給気および排気の温度変化を示す図である。 FIG. 6 shows supply and exhaust when the total heat exchanger 20 according to the first embodiment has an outside air temperature TOA lower than the room temperature TRA ( TOA < TRA ) when the total heat exchanger 20 is in a state of dew condensation, freezing, or a decrease in air volume. It is a figure which shows the temperature change of.
 図6から分かるように、給気路11adから温度の低い外気が、排気路11bcから温度の高い室内空気が、それぞれ全熱交換器20に供給され、外気と室内空気とで全熱交換を行う。その後、外気は温度が上昇した給気として室内に供給され、室内空気は温度が低下した排気として屋外に排出されるが、結露あるいは結氷もしくは風量低下により全熱交換器20の熱交換性能が向上する。そのため、異常時(太点線)の給気温度T’SAは正常時(細点線)の給気温度TSAよりも上昇することが分かる。 As can be seen from FIG. 6, low-temperature outside air is supplied from the supply air passage 11ad and high-temperature indoor air is supplied from the exhaust passage 11bc to the total heat exchanger 20, and the total heat is exchanged between the outside air and the indoor air. .. After that, the outside air is supplied to the room as supply air whose temperature has risen, and the indoor air is discharged to the outside as exhaust gas whose temperature has dropped. However, the heat exchange performance of the total heat exchanger 20 is improved due to dew condensation, freezing, or a decrease in air volume. do. Therefore, it can be seen that the supply air temperature T'SA in the abnormal state (thick dotted line) is higher than the supply air temperature T SA in the normal state (thin dotted line).
 ここで、全熱交換器20の性能を示す指標として、外気温度TOAが室内温度TRAよりも低い場合(TOA<TRA)の異常時の温度効率ηh’は、下記となる。 Here, as an index indicating the performance of the total heat exchanger 20, the temperature efficiency ηh'at the time of abnormality when the outside air temperature TOA is lower than the room temperature TRA ( TOA < TRA ) is as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
[換気装置の異常検知方法について]
 以上のように、正常時と異常時とで温度効率ηの値に差異があり、結露あるいは結氷もしくは風量低下状態では温度効率ηの値が正常時に比べて高くなるということが分かる。よって、この温度効率ηの値を用いてまずは正常状態か異常状態かの特定が行われる。
[About the abnormality detection method of the ventilation system]
As described above, it can be seen that there is a difference in the value of the temperature efficiency η between the normal state and the abnormal time, and the value of the temperature efficiency η is higher in the state of dew condensation, freezing, or the decrease in air volume than in the normal state. Therefore, using the value of this temperature efficiency η, first, whether it is a normal state or an abnormal state is specified.
 また、結露あるいは結氷が疑われる温度効率ηがあらかじめ設定された基準値ηstよりも大きくなる場合には、露垂れ、カビ、および、菌の発生を抑制するため、結露あるいは結氷している全熱交換器20を乾かすことが望ましい。よって、その場合には全熱交換器20を乾燥させる乾燥運転が行われる。ここで、乾燥運転は、給気ファン11および排気ファン13のうちどちらか一方を停止させ、全熱交換器20を乾燥させる運転である。それに対し、通常運転は、給気ファン11および排気ファン13の両方を動作させる運転である。 In addition, when the temperature efficiency η suspected of dew condensation or freezing becomes larger than the preset standard value ηst, the total heat of dew condensation or freezing is to be suppressed in order to suppress the generation of dew dripping, mold, and bacteria. It is desirable to dry the exchanger 20. Therefore, in that case, a drying operation for drying the total heat exchanger 20 is performed. Here, the drying operation is an operation in which either one of the air supply fan 11 and the exhaust fan 13 is stopped to dry the total heat exchanger 20. On the other hand, the normal operation is an operation in which both the air supply fan 11 and the exhaust fan 13 are operated.
 この乾燥運転を用いて、結露あるいは結氷による異常かフィルタ目詰まりなどによって生じる風量低下による異常かの異常要因の特定が行われる。 Using this drying operation, it is possible to identify the cause of the abnormality, whether it is an abnormality due to dew condensation or freezing, or an abnormality due to a decrease in air volume caused by clogging of the filter.
 結露あるいは結氷による異常か風量低下による異常かの異常要因の特定については、乾燥運転で全熱交換器20を乾かす際の温度効率ηの変化と、乾燥運転後に通常運転に戻してからの温度効率ηの変化と、のうち少なくともいずれか一方から行われる。 To identify the cause of the abnormality, whether it is an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume, the change in the temperature efficiency η when the total heat exchanger 20 is dried in the drying operation and the temperature efficiency after returning to the normal operation after the drying operation. It is done from at least one of the changes in η.
 図7および図8を用いて、結露あるいは結氷による異常と風量低下による異常との違いを説明する。 Using FIGS. 7 and 8, the difference between the abnormality due to dew condensation or freezing and the abnormality due to the decrease in air volume will be described.
 図7は、実施の形態1に係る結露あるいは結氷発生時の全熱交換器20の温度効率ηの変化を示す図である。図8は、実施の形態1に係る風量低下発生時の全熱交換器20の温度効率ηの変化を示す図である。なお、図7および図8は、いずれも通常運転中にt1で異常と判定され、その後t1~t3で乾燥運転が行われ、t3以降は通常運転が行われた場合の時間(横軸)に対する温度効率η(縦軸)の変化を示している。また、図7および図8中のη1は、換気装置1が正常時の温度効率である。また、図7および図8中のη2は、換気装置1に異常が発生したのか判定を行う際に用いられる温度効率である。また、図7および図8中のη3は、換気装置1が異常時に結露あるいは結氷による異常およびフィルタ目詰まりなどによって生じる風量低下による異常のうちどちらの異常が発生したのか判定を行う際に用いられる温度効率である。 FIG. 7 is a diagram showing changes in the temperature efficiency η of the total heat exchanger 20 when dew condensation or freezing occurs according to the first embodiment. FIG. 8 is a diagram showing changes in the temperature efficiency η of the total heat exchanger 20 when a decrease in air volume occurs according to the first embodiment. In addition, in FIG. 7 and FIG. 8, both were determined to be abnormal at t1 during normal operation, then the dry operation was performed from t1 to t3, and after t3, the time (horizontal axis) when the normal operation was performed. It shows the change in temperature efficiency η (vertical axis). Further, η1 in FIGS. 7 and 8 is the temperature efficiency when the ventilation device 1 is normal. Further, η2 in FIGS. 7 and 8 is the temperature efficiency used when determining whether or not an abnormality has occurred in the ventilation device 1. Further, η3 in FIGS. 7 and 8 is used to determine which of the abnormalities caused by dew condensation or freezing and the abnormalities caused by the air volume decrease caused by the clogging of the filter, etc., when the ventilation device 1 is abnormal. Temperature efficiency.
 まず、乾燥運転で全熱交換器20を乾かす際の結露あるいは結氷発生時と風量低下発生時との違いについて説明する。 First, the difference between the time when dew condensation or ice formation occurs and the time when the air volume decreases when the total heat exchanger 20 is dried in the drying operation will be described.
 結露あるいは結氷発生時は、図7に示すように、水の熱容量分および蒸発潜熱分、温度が低下するため、温度効率η=0(=η3)、つまり全熱交換器20に入る空気と全熱交換器20から出ていく空気との温度差が0となるまでに、t1~t3の時間がかかる。それに対し、風量低下発生時は、図8に示すように、乾燥運転となり給気ファン11および排気ファン13のうちどちらか一方が停止すると、η=0(=η3)となるまでに、t1~t2の時間しかかからない。つまり、風量低下発生時は、全熱交換器20での温度変化がないため、t1~t2の短時間でη=0となるが、結露あるいは結氷発生時は、全熱交換器20での温度変化があるため、その分、温度効率η=0となるまでに時間がかかる。そのため、温度効率がη2からη3となるまでにかかる時間によって、結露あるいは結氷および風量低下のうちどちらが発生したのかが分かる。 When dew or freezing occurs, as shown in FIG. 7, the heat capacity of water, the latent heat of evaporation, and the temperature decrease, so that the temperature efficiency is η = 0 (= η3), that is, the air entering the total heat exchanger 20 and all. It takes time from t1 to t3 until the temperature difference from the air discharged from the heat exchanger 20 becomes zero. On the other hand, when the air volume drops, as shown in FIG. 8, when one of the supply air fan 11 and the exhaust fan 13 is stopped due to the dry operation, t1 to 0 (= η3) until η = 0 (= η3). It only takes t2 time. That is, since there is no temperature change in the total heat exchanger 20 when the air volume drops, η = 0 in a short time of t1 to t2, but when dew condensation or freezing occurs, the temperature in the total heat exchanger 20 Since there is a change, it takes time for the temperature efficiency η = 0. Therefore, depending on the time it takes for the temperature efficiency to change from η2 to η3, it is possible to know which of dew condensation, freezing, and air volume reduction has occurred.
 次に、乾燥運転で全熱交換器20を乾かした後の通常運転時の結露あるいは結氷発生時と風量低下発生時との違いについて説明する。 Next, the difference between the time when dew condensation or freezing occurs and the time when the air volume drops occurs during normal operation after the total heat exchanger 20 is dried in the drying operation will be described.
 結露あるいは結氷発生時は、図7に示すように、結露あるいは結氷して全熱交換器20が徐々に濡れると、水の熱容量分および蒸発潜熱分、温度が上昇しづらくなるため、温度効率ηの値がη2まで高くなるのにある程度の時間が必要である(t3~t5参照)。それに対し、風量低下発生時は、図8に示すように、結露あるいは結氷発生時のように全熱交換器20の状態変化がないことから短時間で温度効率ηがη2まで高くなる(t3~t5参照)。そのため、温度効率がη3からη2となるまでにかかる時間によって、結露あるいは結氷および風量低下のうちどちらが発生したのかが分かる。 When dew condensation or freezing occurs, as shown in FIG. 7, when the total heat exchanger 20 gradually gets wet due to dew condensation or freezing, the heat capacity of water, the latent heat of vaporization, and the temperature do not easily rise, so that the temperature efficiency η It takes some time for the value of to rise to η2 (see t3 to t5). On the other hand, when the air volume drops, as shown in FIG. 8, the temperature efficiency η increases to η2 in a short time because the state of the total heat exchanger 20 does not change as in the case of dew condensation or icing. See t5). Therefore, depending on the time it takes for the temperature efficiency to change from η3 to η2, it is possible to know which of dew condensation, freezing, and air volume reduction has occurred.
 図9を用いて、実施の形態1に係る換気装置1の異常要因を特定する制御フローを説明する。 A control flow for identifying an abnormal factor of the ventilation device 1 according to the first embodiment will be described with reference to FIG. 9.
 図9は、実施の形態1に係る換気装置1の異常要因を特定する制御フローを示す図である。なお、図9の制御フロー開始時は通常運転が行われているものとする。 FIG. 9 is a diagram showing a control flow for identifying an abnormal factor of the ventilation device 1 according to the first embodiment. It is assumed that normal operation is performed at the start of the control flow shown in FIG.
(ステップS101)
 制御装置30は、外気温度センサ51、給気温度センサ52、および、室内空気温度センサ53で検知された各空気温度に基づいて、現在の温度効率ηnowを算出する。
(Step S101)
The control device 30 calculates the current temperature efficiency ηnow based on each air temperature detected by the outside air temperature sensor 51, the supply air temperature sensor 52, and the indoor air temperature sensor 53.
(ステップS102)
 制御装置30は、現在の温度効率ηnowと基準値ηstとの差分が0より大きいかどうかを判定する。制御装置30が、現在の温度効率ηnowと基準値ηstとの差分が0より大きいと判定した場合、異常であると判定し、ステップS103の処理に進む。一方、制御装置30が、現在の温度効率ηnowと基準値ηstとの差分が0以下であると判定した場合、正常であると判定し、この制御フローを終了する。
(Step S102)
The control device 30 determines whether or not the difference between the current temperature efficiency ηnow and the reference value ηst is larger than 0. When the control device 30 determines that the difference between the current temperature efficiency ηnow and the reference value ηst is larger than 0, it is determined that the difference is greater than 0, and the process proceeds to step S103. On the other hand, when the control device 30 determines that the difference between the current temperature efficiency ηnow and the reference value ηst is 0 or less, it determines that it is normal and ends this control flow.
(ステップS103)
 制御装置30は、排気ファン13を停止させ、乾燥運転を開始する。また、制御装置30は、乾燥運転を行っている旨を、報知部37に報知させる。なお、ここでは乾燥運転を開始するために排気ファン13を停止させる例について説明したが、給気ファン11を停止させてもよい。
(Step S103)
The control device 30 stops the exhaust fan 13 and starts the drying operation. Further, the control device 30 notifies the notification unit 37 that the drying operation is being performed. Although an example of stopping the exhaust fan 13 in order to start the drying operation has been described here, the supply air fan 11 may be stopped.
(ステップS104)
 制御装置30は、乾燥運転を開始後、一定時間が経過したかどうかを判定する。制御装置30が、乾燥運転を開始後、一定時間が経過したと判定した場合、全熱交換器20は乾いたと判定し、ステップS105の処理に進む。一方、制御装置30が、乾燥運転を開始後、一定時間が経過していないと判定した場合、全熱交換器20は乾いていないと判定し、再度ステップS104の処理を行う。
(Step S104)
The control device 30 determines whether or not a certain time has elapsed after starting the drying operation. When the control device 30 determines that a certain time has elapsed after starting the drying operation, the total heat exchanger 20 is determined to be dry, and the process proceeds to step S105. On the other hand, when the control device 30 determines that a certain time has not elapsed since the start of the drying operation, it is determined that the total heat exchanger 20 is not dry, and the process of step S104 is performed again.
 ここで、ステップS104の処理において、制御装置30は、乾燥運転を開始後、一定時間が経過したら全熱交換器20は乾いたと判定しているが、それに限定されない。例えば、制御装置30は、給気温度TSAと外気温度TOAとの差分が0になり温度効率η=0になったらなどで、全熱交換器20は乾いたと判定してもよい。 Here, in the process of step S104, the control device 30 determines that the total heat exchanger 20 has dried after a certain period of time has elapsed after the start of the drying operation, but the present invention is not limited thereto. For example, the control device 30 may determine that the total heat exchanger 20 is dry when the difference between the supply air temperature T SA and the outside air temperature TO A becomes 0 and the temperature efficiency η = 0.
(ステップS105)
 制御装置30は、排気ファン13を動作させ、通常運転を開始する。また、制御装置30は、通常運転を行っている旨を、報知部37に報知させる。
(Step S105)
The control device 30 operates the exhaust fan 13 and starts normal operation. Further, the control device 30 notifies the notification unit 37 that the normal operation is being performed.
(ステップS106)
 制御装置30は、外気温度センサ51、給気温度センサ52、および、室内空気温度センサ53で検知された各空気温度に基づいて、現在の温度効率ηnowを算出する。
(Step S106)
The control device 30 calculates the current temperature efficiency ηnow based on each air temperature detected by the outside air temperature sensor 51, the supply air temperature sensor 52, and the indoor air temperature sensor 53.
(ステップS107)
 制御装置30は、現在の温度効率ηnowと基準値ηstとの差分が0より大きいかどうかを判定する。制御装置30が、現在の温度効率ηnowと基準値ηstとの差分が0より大きいと判定した場合、風量低下による異常であると判定し、ステップS108の処理に進む。一方、制御装置30が、現在の温度効率ηnowと基準値ηstとの差分が0以下であると判定した場合、風量低下による異常はないと判定し、この制御フローを終了する。なお、制御フローを終了する前に、制御装置30が、結露あるいは結氷による異常である旨を、報知部37に報知させるようにしてもよい。
(Step S107)
The control device 30 determines whether or not the difference between the current temperature efficiency ηnow and the reference value ηst is larger than 0. When the control device 30 determines that the difference between the current temperature efficiency ηnow and the reference value ηst is larger than 0, it is determined that the abnormality is due to the decrease in air volume, and the process proceeds to step S108. On the other hand, when the control device 30 determines that the difference between the current temperature efficiency ηnow and the reference value ηst is 0 or less, it is determined that there is no abnormality due to the decrease in air volume, and this control flow is terminated. Before ending the control flow, the control device 30 may notify the notification unit 37 that the abnormality is due to dew condensation or freezing.
(ステップS108)
 制御装置30は、風量低下による異常である旨を、報知部37に報知させる。
(Step S108)
The control device 30 notifies the notification unit 37 that the abnormality is caused by the decrease in air volume.
 以上、実施の形態1に係る換気装置1は、給気口10dから吹き出される空気が通過する給気路10adおよび排気口10bから吹き出される空気が通過する排気路10bcが形成されたケーシング10と、ケーシング10内に配置され、給気路10adを流れる空気と排気路10bcを流れる空気とで熱交換させる全熱交換器20と、給気路10adの入口側の空気温度を検知する第一温度センサ51と、給気路10adの出口側の空気温度を検知する第二温度センサ52と、排気路10bcの入口側の空気温度を検知する第三温度センサ53と、第一温度センサ51、第二温度センサ52、および、第三温度センサ53が検知した各空気温度に基づいて算出された全熱交換器20の温度効率が基準値より大きい場合は異常が発生していると判定する制御装置30と、を備えたものである。 As described above, the ventilation device 1 according to the first embodiment is a casing 10 in which an air supply passage 10ad through which the air blown from the air supply port 10d passes and an exhaust passage 10bc through which the air blown from the exhaust port 10b passes are formed. A total heat exchanger 20 that is arranged in the casing 10 and exchanges heat between the air flowing through the air supply passage 10ad and the air flowing through the exhaust passage 10bc, and the first that detects the air temperature on the inlet side of the air supply passage 10ad. The temperature sensor 51, the second temperature sensor 52 that detects the air temperature on the outlet side of the air supply passage 10ad, the third temperature sensor 53 that detects the air temperature on the inlet side of the exhaust passage 10bc, and the first temperature sensor 51. Control to determine that an abnormality has occurred when the temperature efficiency of the total heat exchanger 20 calculated based on each air temperature detected by the second temperature sensor 52 and the third temperature sensor 53 is larger than the reference value. The device 30 is provided.
 結露あるいは結氷による異常あるいはフィルタ目詰まりなどによって生じる風量低下による異常が発生した場合、第一温度センサ51、第二温度センサ52、および、第三温度センサ53が検知した各空気温度に基づいて算出された全熱交換器20の温度効率が基準値より大きくなる。そこで、実施の形態1に係る換気装置1によれば、上記の温度効率が基準値より大きい場合は異常が発生していると判定する。そうすることで、結露あるいは結氷による異常あるいはフィルタ目詰まりなどによって生じる風量低下による異常が発生した場合、それら異常が発生したことを検知することができる。 When an abnormality occurs due to an abnormality due to dew condensation or freezing, or an abnormality due to a decrease in air volume caused by clogging of the filter, etc., it is calculated based on each air temperature detected by the first temperature sensor 51, the second temperature sensor 52, and the third temperature sensor 53. The temperature efficiency of the total heat exchanger 20 becomes larger than the reference value. Therefore, according to the ventilation device 1 according to the first embodiment, when the above temperature efficiency is larger than the reference value, it is determined that an abnormality has occurred. By doing so, when an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume caused by clogging of the filter or the like occurs, it is possible to detect that the abnormality has occurred.
 また、実施の形態1に係る換気装置1は、給気路10adに空気を流す給気ファン11と、排気路10bcに空気を流す排気ファン13と、を備え、制御装置30は、給気ファン11および排気ファン13の両方を運転させる通常運転時において、異常が発生していると判定したら、給気ファン11および排気ファン13のうちどちらか一方を停止させる乾燥運転を行うものである。 Further, the ventilation device 1 according to the first embodiment includes an air supply fan 11 for flowing air through the supply air passage 10ad and an exhaust fan 13 for flowing air through the exhaust passage 10bc, and the control device 30 is an air supply fan. If it is determined that an abnormality has occurred during normal operation in which both the air supply fan 11 and the exhaust fan 13 are operated, a drying operation is performed in which one of the air supply fan 11 and the exhaust fan 13 is stopped.
 実施の形態1に係る換気装置1によれば、通常運転時において、異常が発生していると判定したら、給気ファン11および排気ファン13のうちどちらか一方を停止させる乾燥運転を行う。そのため、換気装置1に結露あるいは結氷による異常が発生した場合でも、全熱交換器20を乾かすことができる。 According to the ventilation device 1 according to the first embodiment, if it is determined that an abnormality has occurred during normal operation, a drying operation is performed in which either the supply air fan 11 or the exhaust fan 13 is stopped. Therefore, even if an abnormality occurs in the ventilation device 1 due to dew condensation or freezing, the total heat exchanger 20 can be dried.
 また、実施の形態1に係る換気装置1において、制御装置30は、乾燥運転を開始して一定時間経過後、第一温度センサ51、第二温度センサ52、および、第三温度センサ53が検知した各空気温度に基づいて算出された温度効率が基準値より大きい場合は風量低下による異常が発生していると判定し、該温度効率が該基準値以下である場合は結露あるいは結氷による異常が発生していると判定するものである。 Further, in the ventilation device 1 according to the first embodiment, the control device 30 is detected by the first temperature sensor 51, the second temperature sensor 52, and the third temperature sensor 53 after a certain period of time has elapsed from the start of the drying operation. If the temperature efficiency calculated based on each air temperature is greater than the reference value, it is determined that an abnormality has occurred due to a decrease in air volume, and if the temperature efficiency is below the reference value, an abnormality due to dew condensation or freezing has occurred. It is determined that it has occurred.
 実施の形態1に係る換気装置1によれば、乾燥運転を開始して一定時間経過後に算出した温度効率が基準値より大きい場合は風量低下による異常が発生していると判定し、該温度効率が該基準値以下である場合は結露あるいは結氷による異常が発生していると判定する。そのため、結露あるいは結氷による異常およびフィルタ目詰まりなどによって生じる風量低下による異常のうち、どちらの異常が発生したのか異常要因を特定することができる。 According to the ventilation device 1 according to the first embodiment, if the temperature efficiency calculated after a certain period of time has elapsed from the start of the drying operation is larger than the reference value, it is determined that an abnormality due to a decrease in air volume has occurred, and the temperature efficiency is determined. If is less than or equal to the reference value, it is determined that an abnormality due to dew condensation or freezing has occurred. Therefore, it is possible to identify the cause of the abnormality, which of the abnormalities caused by dew condensation or freezing and the abnormalities caused by the decrease in air volume caused by the clogging of the filter.
 また、実施の形態1に係る換気装置1は、報知部37を備え、制御装置30は、乾燥運転時に、乾燥運転を行っている旨を報知部37により報知させるものである。 Further, the ventilation device 1 according to the first embodiment includes a notification unit 37, and the control device 30 notifies the notification unit 37 that the drying operation is being performed during the drying operation.
 実施の形態1に係る換気装置1によれば、報知部37により、乾燥運転時に乾燥運転を行っている旨が報知されるため、ユーザーに換気装置1が乾燥運転中であることを知らせることができる。 According to the ventilation device 1 according to the first embodiment, the notification unit 37 notifies the user that the drying operation is being performed during the drying operation, so that the user can be notified that the ventilation device 1 is in the drying operation. can.
 また、実施の形態1に係る換気装置1において、制御装置30は、結露あるいは結氷による異常が発生していると判定した場合は、その旨を報知部37により報知させ、風量低下による異常が発生していると判定した場合は、その旨を報知部37により報知させるものである。 Further, in the ventilation device 1 according to the first embodiment, when the control device 30 determines that an abnormality due to dew condensation or freezing has occurred, the notification unit 37 notifies that fact, and an abnormality occurs due to a decrease in air volume. If it is determined that the problem is observed, the notification unit 37 notifies the user to that effect.
 実施の形態1に係る換気装置1によれば、報知部37により、結露あるいは結氷による異常あるいは風量低下による異常が発生した場合に異常要因が報知されるため、ユーザーに換気装置1の異常要因を知らせることができる。 According to the ventilation device 1 according to the first embodiment, the notification unit 37 notifies the user of the abnormal factor when an abnormality due to dew condensation or freezing or an abnormality due to a decrease in air volume occurs, so that the user is notified of the abnormal factor of the ventilation device 1. I can inform you.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Hereinafter, the second embodiment will be described, but the description thereof will be omitted for those overlapping with the first embodiment, and the same parts or the corresponding parts as those in the first embodiment will be designated by the same reference numerals.
 図10は、実施の形態2に係る換気装置1の冷媒回路図である。図11は、実施の形態2に係る換気装置1の構成を示す側面模式図である。 FIG. 10 is a refrigerant circuit diagram of the ventilation device 1 according to the second embodiment. FIG. 11 is a schematic side view showing the configuration of the ventilation device 1 according to the second embodiment.
 実施の形態2に係る換気装置1は、図10に示すように、圧縮機111、流路切替装置112、第一熱交換器113、絞り装置121、第二熱交換器122が順次配管で接続され、冷媒が循環する冷媒回路101を備えている。そして、換気装置1は、流路切替装置112の切り替えにより冷房運転および暖房運転の両方が運転可能である。また、冷媒回路101には、吸入圧力センサ116と凝縮温度センサ153とが設けられている。 In the ventilation device 1 according to the second embodiment, as shown in FIG. 10, the compressor 111, the flow path switching device 112, the first heat exchanger 113, the throttle device 121, and the second heat exchanger 122 are sequentially connected by piping. It is provided with a refrigerant circuit 101 through which the refrigerant circulates. The ventilation device 1 can operate both the cooling operation and the heating operation by switching the flow path switching device 112. Further, the refrigerant circuit 101 is provided with a suction pressure sensor 116 and a condensation temperature sensor 153.
 圧縮機111は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機111は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機などからなる。 The compressor 111 sucks in the low temperature and low pressure refrigerant, compresses the sucked refrigerant, and discharges the high temperature and high pressure refrigerant. The compressor 111 is composed of, for example, an inverter compressor whose capacity, which is a transmission amount per unit time, is controlled by changing the operating frequency.
 流路切替装置112は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転と暖房運転との切り替えを行う。流路切替装置112は、冷房運転時に、図10の実線で示す状態に切り替わり、圧縮機111の吐出側と第一熱交換器113とが接続される。また、流路切替装置112は、暖房運転時に、図10の破線で示す状態に切り替わり、圧縮機111の吐出側と第二熱交換器122とが接続される。 The flow path switching device 112 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant. The flow path switching device 112 switches to the state shown by the solid line in FIG. 10 during the cooling operation, and the discharge side of the compressor 111 and the first heat exchanger 113 are connected to each other. Further, the flow path switching device 112 switches to the state shown by the broken line in FIG. 10 during the heating operation, and the discharge side of the compressor 111 and the second heat exchanger 122 are connected to each other.
 第一熱交換器113は、外気と冷媒との間で熱交換を行う。第一熱交換器113は、冷房運転の際に、冷媒の熱を外気に放熱して冷媒を凝縮させる凝縮器として機能する。また、第一熱交換器113は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により外気を冷却する蒸発器として機能する。 The first heat exchanger 113 exchanges heat between the outside air and the refrigerant. The first heat exchanger 113 functions as a condenser that dissipates the heat of the refrigerant to the outside air and condenses the refrigerant during the cooling operation. Further, the first heat exchanger 113 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outside air by the heat of vaporization at that time.
 絞り装置121は、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって第一熱交換器113または第二熱交換器122に流入する冷媒の圧力を制御する。 The throttle device 121 is, for example, an electronic expansion valve capable of adjusting the opening degree of the throttle, and by adjusting the opening degree, the pressure of the refrigerant flowing into the first heat exchanger 113 or the second heat exchanger 122 can be adjusted. Control.
 第二熱交換器122は、室内空気と冷媒との間で熱交換を行う。第二熱交換器122は、冷房運転の際に、冷媒を蒸発させ、その際の気化熱により室内空気を冷却する蒸発器として機能する。また、第二熱交換器122は、暖房運転の際に、冷媒の熱を室内空気に放熱して冷媒を凝縮させる凝縮器として機能する。 The second heat exchanger 122 exchanges heat between the indoor air and the refrigerant. The second heat exchanger 122 functions as an evaporator that evaporates the refrigerant during the cooling operation and cools the indoor air by the heat of vaporization at that time. Further, the second heat exchanger 122 functions as a condenser that dissipates the heat of the refrigerant to the indoor air and condenses the refrigerant during the heating operation.
 この第二熱交換器122は、図11に示すように、給気路10adの全熱交換器20よりも風下側に配置されている。ここで、乾燥運転時など外気が全熱交換器20で室内空気と全熱交換されずに温度変化しない場合、外気がそのまま給気として室内に供給されてしまうと、夏場では室内温度が上昇してしまい、冬場では室内温度が低下してしまう。そこで、このような場合では、蒸発温度あるいは凝縮温度を制御する。具体的には、夏場では蒸発温度を低下させることで、第二熱交換器122を通過した後の給気の温度を低下させ、冬場では凝縮温度を上昇させることにより第二熱交換器122を通過した後の給気の温度を上昇させる。そうすることで、乾燥運転時など外気が全熱交換器20で室内空気と全熱交換されずに温度変化しない場合であっても、給気の温度を低下あるいは上昇させることで、室内温度を一定に保つことができる。 As shown in FIG. 11, the second heat exchanger 122 is arranged on the leeward side of the total heat exchanger 20 of the air supply passage 10ad. Here, when the outside air does not exchange the total heat with the indoor air in the total heat exchanger 20 and the temperature does not change, such as during drying operation, if the outside air is supplied to the room as supply air as it is, the indoor temperature rises in the summer. In winter, the room temperature drops. Therefore, in such a case, the evaporation temperature or the condensation temperature is controlled. Specifically, in the summer, the evaporation temperature is lowered to lower the temperature of the supply air after passing through the second heat exchanger 122, and in the winter, the condensation temperature is raised to lower the second heat exchanger 122. Raises the temperature of the supply air after passing through. By doing so, even when the outside air does not exchange the total heat with the room air in the total heat exchanger 20 and the temperature does not change, such as during dry operation, the temperature of the supply air can be lowered or raised to raise the room temperature. Can be kept constant.
 吸入圧力センサ116は、圧縮機111の吸入側に設けられており、冷房運転時の蒸発温度を算出するための吸入圧力を検知するものである。蒸発温度は、吸入圧力センサ116で検知される吸入圧力から算出される飽和温度である。 The suction pressure sensor 116 is provided on the suction side of the compressor 111, and detects the suction pressure for calculating the evaporation temperature during the cooling operation. The evaporation temperature is a saturation temperature calculated from the suction pressure detected by the suction pressure sensor 116.
 凝縮温度センサ153は、第二熱交換器122に設けられており、暖房運転時の凝縮温度を検知するものである。 The condensation temperature sensor 153 is provided in the second heat exchanger 122 and detects the condensation temperature during the heating operation.
 なお、冷房運転時の蒸発温度を検知するために、吸入圧力センサ116の代わりに第一熱交換器113に温度センサを設けてもよい。また、暖房運転時の凝縮温度を検知するために、凝縮温度センサ153の代わりに圧縮機111の吐出側に圧力センサを設けてもよい。 In addition, in order to detect the evaporation temperature during the cooling operation, a temperature sensor may be provided in the first heat exchanger 113 instead of the suction pressure sensor 116. Further, in order to detect the condensation temperature during the heating operation, a pressure sensor may be provided on the discharge side of the compressor 111 instead of the condensation temperature sensor 153.
 図12を用いて、実施の形態2に係る換気装置1の異常要因を特定する制御フローを説明する。 A control flow for identifying an abnormal factor of the ventilation device 1 according to the second embodiment will be described with reference to FIG.
 図12は、実施の形態2に係る換気装置1の異常要因を特定する制御フローを示す図である。なお、図12の制御フロー開始時は通常運転が行われているものとする。 FIG. 12 is a diagram showing a control flow for identifying an abnormal factor of the ventilation device 1 according to the second embodiment. It is assumed that normal operation is performed at the start of the control flow shown in FIG.
(ステップS201)
 制御装置30は、外気温度センサ51、給気温度センサ52、および、室内空気温度センサ53で検知された各空気温度に基づいて、現在の温度効率ηnowを算出する。
(Step S201)
The control device 30 calculates the current temperature efficiency ηnow based on each air temperature detected by the outside air temperature sensor 51, the supply air temperature sensor 52, and the indoor air temperature sensor 53.
(ステップS202)
 制御装置30は、現在の温度効率ηnowと基準値ηstとの差分が0より大きいかどうかを判定する。制御装置30が、現在の温度効率ηnowと基準値ηstとの差分が0より大きいと判定した場合、異常であると判定し、ステップS203の処理に進む。一方、制御装置30が、現在の温度効率ηnowと基準値ηstとの差分が0以下であると判定した場合、正常であると判定し、この制御フローを終了する。
(Step S202)
The control device 30 determines whether or not the difference between the current temperature efficiency ηnow and the reference value ηst is larger than 0. When the control device 30 determines that the difference between the current temperature efficiency ηnow and the reference value ηst is larger than 0, it is determined that the difference is greater than 0, and the process proceeds to step S203. On the other hand, when the control device 30 determines that the difference between the current temperature efficiency ηnow and the reference value ηst is 0 or less, it determines that it is normal and ends this control flow.
(ステップS203)
 制御装置30は、排気ファン13を停止させ、乾燥運転を開始する。また、制御装置30は、乾燥運転を行っている旨を、報知部37に報知させる。また、制御装置30は、外気温度に応じて蒸発温度あるいは凝縮温度を制御する。つまり、夏場で外気温度が所定値以上の場合には、蒸発温度が所定値以下まで低下するように圧縮機111の運転周波数および絞り装置121の開度を制御する。また、冬場で外気温度が所定値以下の場合には、凝縮温度が所定値以上まで上昇するように圧縮機111の運転周波数および絞り装置121の開度を制御する。なお、ここでは乾燥運転を開始するために排気ファン13を停止させる例について説明したが、給気ファン11を停止させてもよい。
(Step S203)
The control device 30 stops the exhaust fan 13 and starts the drying operation. Further, the control device 30 notifies the notification unit 37 that the drying operation is being performed. Further, the control device 30 controls the evaporation temperature or the condensation temperature according to the outside air temperature. That is, when the outside air temperature is equal to or higher than the predetermined value in the summer, the operating frequency of the compressor 111 and the opening degree of the throttle device 121 are controlled so that the evaporation temperature drops to the predetermined value or lower. Further, when the outside air temperature is equal to or less than a predetermined value in winter, the operating frequency of the compressor 111 and the opening degree of the throttle device 121 are controlled so that the condensation temperature rises to the predetermined value or more. Although an example of stopping the exhaust fan 13 in order to start the drying operation has been described here, the supply air fan 11 may be stopped.
(ステップS204)
 制御装置30は、乾燥運転を開始後、一定時間が経過したかどうかを判定する。制御装置30が、乾燥運転を開始後、一定時間が経過したと判定した場合、全熱交換器20は乾いたと判定し、ステップS205の処理に進む。一方、制御装置30が、乾燥運転を開始後、一定時間が経過していないと判定した場合、全熱交換器20は乾いていないと判定し、再度ステップS204の処理を行う。
(Step S204)
The control device 30 determines whether or not a certain time has elapsed after starting the drying operation. When the control device 30 determines that a certain time has elapsed after starting the drying operation, the total heat exchanger 20 is determined to be dry, and the process proceeds to step S205. On the other hand, when the control device 30 determines that a certain time has not elapsed since the start of the drying operation, it is determined that the total heat exchanger 20 is not dry, and the process of step S204 is performed again.
 ここで、ステップS204の処理において、制御装置30は、乾燥運転を開始後、一定時間が経過したら全熱交換器20は乾いたと判定しているが、それに限定されない。例えば、制御装置30は、給気温度TSAと外気温度TOAとの差分が0になり温度効率η=0になったらなどで、全熱交換器20は乾いたと判定してもよい。 Here, in the process of step S204, the control device 30 determines that the total heat exchanger 20 has dried after a certain period of time has elapsed after the start of the drying operation, but the present invention is not limited thereto. For example, the control device 30 may determine that the total heat exchanger 20 is dry when the difference between the supply air temperature T SA and the outside air temperature TO A becomes 0 and the temperature efficiency η = 0.
(ステップS205)
 制御装置30は、排気ファン13を動作させ、通常運転を開始する。また、制御装置30は、通常運転を行っている旨を、報知部37に報知させる。また、制御装置30は、外気温度に応じて蒸発温度あるいは凝縮温度を制御する。つまり、夏場で外気温度が所定値以上の場合には、蒸発温度が所定値以下まで低下するように圧縮機111の運転周波数および絞り装置121の開度を制御する。また、冬場で外気温度が所定値以下の場合には、凝縮温度が所定値以上まで上昇するように圧縮機111の運転周波数および絞り装置121の開度を制御する。
(Step S205)
The control device 30 operates the exhaust fan 13 and starts normal operation. Further, the control device 30 notifies the notification unit 37 that the normal operation is being performed. Further, the control device 30 controls the evaporation temperature or the condensation temperature according to the outside air temperature. That is, when the outside air temperature is equal to or higher than the predetermined value in the summer, the operating frequency of the compressor 111 and the opening degree of the throttle device 121 are controlled so that the evaporation temperature drops to the predetermined value or lower. Further, when the outside air temperature is equal to or less than a predetermined value in winter, the operating frequency of the compressor 111 and the opening degree of the throttle device 121 are controlled so that the condensation temperature rises to the predetermined value or more.
(ステップS206)
 制御装置30は、外気温度センサ51、給気温度センサ52、および、室内空気温度センサ53で検知された各空気温度に基づいて、現在の温度効率ηnowを算出する。
(Step S206)
The control device 30 calculates the current temperature efficiency ηnow based on each air temperature detected by the outside air temperature sensor 51, the supply air temperature sensor 52, and the indoor air temperature sensor 53.
(ステップS207)
 制御装置30は、現在の温度効率ηnowと基準値ηstとの差分が0より大きいかどうかを判定する。制御装置30が、現在の温度効率ηnowと基準値ηstとの差分が0より大きいと判定した場合、風量低下による異常であると判定し、ステップS208の処理に進む。一方、制御装置30が、現在の温度効率ηnowと基準値ηstとの差分が0以下であると判定した場合、風量低下による異常はないと判定し、この制御フローを終了する。なお、制御フローを終了する前に、制御装置30が、結露あるいは結氷による異常である旨を、報知部37に報知させるようにしてもよい。
(Step S207)
The control device 30 determines whether or not the difference between the current temperature efficiency ηnow and the reference value ηst is larger than 0. When the control device 30 determines that the difference between the current temperature efficiency ηnow and the reference value ηst is larger than 0, it is determined that the abnormality is due to the decrease in air volume, and the process proceeds to step S208. On the other hand, when the control device 30 determines that the difference between the current temperature efficiency ηnow and the reference value ηst is 0 or less, it is determined that there is no abnormality due to the decrease in air volume, and this control flow is terminated. Before ending the control flow, the control device 30 may notify the notification unit 37 that the abnormality is due to dew condensation or freezing.
(ステップS208)
 制御装置30は、風量低下による異常である旨を、報知部37に報知させる。
(Step S208)
The control device 30 notifies the notification unit 37 that the abnormality is caused by the decrease in air volume.
 図13は、実施の形態2に係る換気装置1の変形例の構成を示す側面模式図である。 FIG. 13 is a schematic side view showing the configuration of a modified example of the ventilation device 1 according to the second embodiment.
 実施の形態2に係る換気装置1の変形例では、図13に示すように、第一熱交換器113が、給気路10adの全熱交換器20よりも風上側に配置されている。 In the modified example of the ventilation device 1 according to the second embodiment, as shown in FIG. 13, the first heat exchanger 113 is arranged on the windward side of the total heat exchanger 20 of the air supply passage 10ad.
 そして、乾燥運転時、外気口10aから取り込まれた空気は、凝縮器として機能する第一熱交換器113から放出された熱、つまり凝縮熱で加熱された後、全熱交換器20に供給される。そのため、第一熱交換器113を給気路10adの全熱交換器20よりも風上側に配置することで、乾燥運転時に全熱交換器20の乾燥に要する時間を短縮することができる。 Then, during the drying operation, the air taken in from the outside air port 10a is heated by the heat released from the first heat exchanger 113 functioning as a condenser, that is, the heat of condensation, and then supplied to the total heat exchanger 20. To. Therefore, by arranging the first heat exchanger 113 on the windward side of the total heat exchanger 20 of the air supply passage 10ad, the time required for drying the total heat exchanger 20 during the drying operation can be shortened.
 以上、実施の形態2に係る換気装置1は、圧縮機111、流路切替装置112、第一熱交換器113、絞り装置121、第二熱交換器122が配管で接続され、冷媒が循環する冷媒回路101を備え、第二熱交換器122は給気路10adの全熱交換器20よりも風下側に配置されており、制御装置30は、乾燥運転時に、第一温度センサ51が検知した温度に応じて蒸発温度あるいは凝縮温度を制御するものである。 As described above, in the ventilation device 1 according to the second embodiment, the compressor 111, the flow path switching device 112, the first heat exchanger 113, the throttle device 121, and the second heat exchanger 122 are connected by pipes, and the refrigerant circulates. A refrigerant circuit 101 is provided, the second heat exchanger 122 is arranged on the leeward side of the total heat exchanger 20 of the air supply passage 10ad, and the control device 30 is detected by the first temperature sensor 51 during the drying operation. The evaporation temperature or the condensation temperature is controlled according to the temperature.
 実施の形態2に係る換気装置1によれば、乾燥運転時に、第一温度センサ51が検知した温度に応じて蒸発温度あるいは凝縮温度を制御する。そのため、外気が全熱交換器20で室内空気と全熱交換されずに温度変化しない場合であっても、給気の温度を低下あるいは上昇させることで、室内温度を一定に保つことができる。 According to the ventilation device 1 according to the second embodiment, the evaporation temperature or the condensation temperature is controlled according to the temperature detected by the first temperature sensor 51 during the drying operation. Therefore, even when the outside air is not totally heat exchanged with the room air by the total heat exchanger 20 and the temperature does not change, the room temperature can be kept constant by lowering or raising the temperature of the supply air.
 また、実施の形態2に係る換気装置1において、第一熱交換器113は給気路10adの全熱交換器20よりも風上側に配置されている。 Further, in the ventilation device 1 according to the second embodiment, the first heat exchanger 113 is arranged on the windward side of the total heat exchanger 20 of the air supply passage 10ad.
 実施の形態2に係る換気装置1によれば、第一熱交換器113が給気路10adの全熱交換器20よりも風上側に配置されているため、乾燥運転時、外気口10aから取り込まれた空気は凝縮熱で加熱された後、全熱交換器20に供給される。そのため、乾燥運転時に全熱交換器20の乾燥に要する時間を短縮することができる。 According to the ventilation device 1 according to the second embodiment, since the first heat exchanger 113 is arranged on the wind side of the total heat exchanger 20 of the air supply passage 10ad, it is taken in from the outside air port 10a during the drying operation. The generated air is heated by the heat of condensation and then supplied to the total heat exchanger 20. Therefore, the time required for drying the total heat exchanger 20 during the drying operation can be shortened.
 1 換気装置、10 ケーシング、10a 外気口、10ad 給気路、10b 排気口、10bc 排気路、10c 還気口、10d 給気口、11 給気ファン、11ad 給気路、11bc 排気路、12 給気ファンモータ、13 排気ファン、14 排気ファンモータ、20 全熱交換器、30 制御装置、31 記憶部、32 抽出部、33 演算部、34 比較部、35 判定部、36 制御部、37 報知部、41 給気フィルタ、42 排気フィルタ、51 外気温度センサ、52 給気温度センサ、53 室内空気温度センサ、54 排気温度センサ、101 冷媒回路、111 圧縮機、112 流路切替装置、113 第一熱交換器、116 吸入圧力センサ、121 絞り装置、122 第二熱交換器、153 凝縮温度センサ。 1 Ventilation device, 10 casing, 10a outside air port, 10ad air supply path, 10b exhaust port, 10bc exhaust path, 10c return air port, 10d air supply port, 11 air supply fan, 11ad air supply path, 11bc exhaust port, 12 supply Qi fan motor, 13 exhaust fan, 14 exhaust fan motor, 20 total heat exchanger, 30 control device, 31 storage unit, 32 extraction unit, 33 calculation unit, 34 comparison unit, 35 judgment unit, 36 control unit, 37 notification unit , 41 air supply filter, 42 exhaust filter, 51 outside air temperature sensor, 52 supply air temperature sensor, 53 indoor air temperature sensor, 54 exhaust temperature sensor, 101 refrigerant circuit, 111 compressor, 112 flow path switching device, 113 first heat Exchanger, 116 suction pressure sensor, 121 throttle device, 122 second heat exchanger, 153 condensate temperature sensor.

Claims (9)

  1.  給気口から吹き出される空気が通過する給気路および排気口から吹き出される空気が通過する排気路が形成されたケーシングと、
     前記ケーシング内に配置され、前記給気路を流れる空気と前記排気路を流れる空気とで熱交換させる全熱交換器と、
     前記給気路の入口側の空気温度を検知する第一温度センサと、
     前記給気路の出口側の空気温度を検知する第二温度センサと、
     前記排気路の入口側の空気温度を検知する第三温度センサと、
     前記第一温度センサ、前記第二温度センサ、および、前記第三温度センサが検知した各空気温度に基づいて算出された前記全熱交換器の温度効率が基準値より大きい場合は異常が発生していると判定する制御装置と、を備えた
     換気装置。
    A casing in which an air supply path through which the air blown from the air supply port passes and an exhaust path through which the air blown out from the exhaust port passes are formed.
    A total heat exchanger, which is arranged in the casing and exchanges heat between the air flowing through the air supply passage and the air flowing through the exhaust passage.
    The first temperature sensor that detects the air temperature on the inlet side of the air supply passage, and
    A second temperature sensor that detects the air temperature on the outlet side of the air supply passage, and
    A third temperature sensor that detects the air temperature on the inlet side of the exhaust passage,
    If the temperature efficiency of the first temperature sensor, the second temperature sensor, and the total heat exchanger calculated based on each air temperature detected by the third temperature sensor is larger than the reference value, an abnormality occurs. A ventilation device equipped with a control device for determining that the temperature is high.
  2.  前記給気路に空気を流す給気ファンと、
     前記排気路に空気を流す排気ファンと、を備え、
     前記制御装置は、
     前記給気ファンおよび前記排気ファンの両方を動作させる通常運転時において、前記異常が発生していると判定したら、
     前記給気ファンおよび前記排気ファンのうちどちらか一方を停止させる乾燥運転を行う
     請求項1に記載の換気装置。
    An air supply fan that allows air to flow through the air supply path,
    It is equipped with an exhaust fan that allows air to flow through the exhaust passage.
    The control device is
    If it is determined that the abnormality has occurred during normal operation in which both the air supply fan and the exhaust fan are operated,
    The ventilation device according to claim 1, wherein a drying operation is performed in which either the air supply fan or the exhaust fan is stopped.
  3.  前記乾燥運転は、
     前記排気ファンのみを停止させる運転である
     請求項2に記載の換気装置。
    The drying operation is
    The ventilation device according to claim 2, which is an operation of stopping only the exhaust fan.
  4.  前記乾燥運転は、
     前記給気ファンのみを停止させる運転である
     請求項2に記載の換気装置。
    The drying operation is
    The ventilation device according to claim 2, wherein only the air supply fan is stopped.
  5.  前記制御装置は、
     前記乾燥運転を開始して一定時間経過後、
     前記第一温度センサ、前記第二温度センサ、および、前記第三温度センサが検知した各空気温度に基づいて前記温度効率を算出し、該温度効率が前記基準値より大きい場合は風量低下による異常が発生していると判定し、前記温度効率が前記基準値以下である場合は結露あるいは結氷による異常が発生していると判定する
     請求項2~4のいずれか一項に記載の換気装置。
    The control device is
    After a certain period of time has passed since the drying operation was started,
    The temperature efficiency is calculated based on each air temperature detected by the first temperature sensor, the second temperature sensor, and the third temperature sensor, and if the temperature efficiency is larger than the reference value, an abnormality due to a decrease in air volume is performed. The ventilation device according to any one of claims 2 to 4, wherein it is determined that an abnormality has occurred due to dew condensation or freezing when the temperature efficiency is equal to or lower than the reference value.
  6.  報知部を備え、
     前記制御装置は、
     前記乾燥運転時に、前記乾燥運転を行っている旨を前記報知部により報知させる
     請求項2~5のいずれか一項に記載の換気装置。
    Equipped with a notification unit
    The control device is
    The ventilation device according to any one of claims 2 to 5, wherein the notification unit notifies that the drying operation is being performed during the drying operation.
  7.  前記制御装置は、
     結露あるいは結氷による異常が発生していると判定した場合は、その旨を前記報知部により報知させ、
     風量低下による異常が発生していると判定した場合は、その旨を前記報知部により報知させる
     請求項5に従属する請求項6に記載の換気装置。
    The control device is
    If it is determined that an abnormality has occurred due to dew condensation or freezing, the notification unit notifies that fact.
    The ventilation device according to claim 6, which is subordinate to claim 5, in which when it is determined that an abnormality has occurred due to a decrease in air volume, the notification unit notifies the fact.
  8.  圧縮機、流路切替装置、第一熱交換器、絞り装置、第二熱交換器が配管で接続され、冷媒が循環する冷媒回路を備え、
     前記第二熱交換器は前記給気路の前記全熱交換器よりも風下側に配置されており、
     前記制御装置は、
     前記乾燥運転時に、前記第一温度センサが検知した温度に応じて蒸発温度あるいは凝縮温度を制御する
     請求項1~7のいずれか一項に記載の換気装置。
    A compressor, a flow path switching device, a first heat exchanger, a throttle device, and a second heat exchanger are connected by piping and equipped with a refrigerant circuit in which refrigerant circulates.
    The second heat exchanger is arranged on the leeward side of the total heat exchanger in the air supply passage.
    The control device is
    The ventilation device according to any one of claims 1 to 7, wherein the evaporation temperature or the condensation temperature is controlled according to the temperature detected by the first temperature sensor during the drying operation.
  9.  前記第一熱交換器は前記給気路の前記全熱交換器よりも風上側に配置されている
     請求項8に記載の換気装置。
    The ventilation device according to claim 8, wherein the first heat exchanger is arranged on the windward side of the total heat exchanger in the air supply passage.
PCT/JP2020/039903 2020-10-23 2020-10-23 Ventilation device WO2022085177A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022556347A JP7433465B2 (en) 2020-10-23 2020-10-23 ventilation system
PCT/JP2020/039903 WO2022085177A1 (en) 2020-10-23 2020-10-23 Ventilation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039903 WO2022085177A1 (en) 2020-10-23 2020-10-23 Ventilation device

Publications (1)

Publication Number Publication Date
WO2022085177A1 true WO2022085177A1 (en) 2022-04-28

Family

ID=81290304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039903 WO2022085177A1 (en) 2020-10-23 2020-10-23 Ventilation device

Country Status (2)

Country Link
JP (1) JP7433465B2 (en)
WO (1) WO2022085177A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163576A (en) * 2010-02-04 2011-08-25 Toenec Corp Malfunction detecting device of total enthalpy heat exchanger and peripheral equipment in air conditioning system
US20140260362A1 (en) * 2013-03-14 2014-09-18 In Sook JUNG Heat exchanger, heat recovery ventilator including the same, and method for defrosting and checking operations thereof
WO2017037816A1 (en) * 2015-08-31 2017-03-09 三菱電機株式会社 Ventilation device
WO2019082531A1 (en) * 2017-10-24 2019-05-02 三菱電機株式会社 Ventilator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163576A (en) * 2010-02-04 2011-08-25 Toenec Corp Malfunction detecting device of total enthalpy heat exchanger and peripheral equipment in air conditioning system
US20140260362A1 (en) * 2013-03-14 2014-09-18 In Sook JUNG Heat exchanger, heat recovery ventilator including the same, and method for defrosting and checking operations thereof
WO2017037816A1 (en) * 2015-08-31 2017-03-09 三菱電機株式会社 Ventilation device
WO2019082531A1 (en) * 2017-10-24 2019-05-02 三菱電機株式会社 Ventilator

Also Published As

Publication number Publication date
JP7433465B2 (en) 2024-02-19
JPWO2022085177A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
US20100241287A1 (en) Air conditioning control device, air conditioning apparatus, and air conditioning control method
CN110017564B (en) Double-cold-source fresh air unit and control method thereof
KR101070186B1 (en) Direct expansion air handling unit having apparatus for automatic controlling air volum of blower by change of refrigerant flow
JP6473064B2 (en) Ventilation equipment
JP7034227B1 (en) Air conditioner and management device
CN115751508A (en) Dehumidifier and control method thereof
JP6995192B2 (en) Vehicle air conditioning system
JP2015017751A (en) Heat pump heat source machine
JP5423080B2 (en) Local cooling system, its control device, program
JP6952882B2 (en) Air conditioner
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
CN110118418A (en) A kind of auxiliary heat of air conditioner electric removes condensation control method and air conditioner
WO2022085177A1 (en) Ventilation device
WO2020187241A1 (en) Self-cleaning control method for air conditioner
CN113566384B (en) Control method for preventing indoor machine of air conditioner from condensation and storage medium
KR101029988B1 (en) Method for automatic controlling air volum of blower by change of refrigerant flow of direct expansion air handling unit
JP2011149646A (en) Air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP4186492B2 (en) Air conditioner
CN113218117A (en) Method and system for reducing frosting of air energy heat pump
JPH074686A (en) Air conditioner
KR101303239B1 (en) Air conditioner and method for controlling the same
CN114459082B (en) Air conditioner and control method thereof
KR101553550B1 (en) White plume preventing system using cooling and dehumidifying and preventing method for white plume using it
CN105318509B (en) The control system and control method of cabinet air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958726

Country of ref document: EP

Kind code of ref document: A1