WO2022084623A1 - Circuit d'assistance hydraulique avec structure de valve amelioree - Google Patents

Circuit d'assistance hydraulique avec structure de valve amelioree Download PDF

Info

Publication number
WO2022084623A1
WO2022084623A1 PCT/FR2021/051827 FR2021051827W WO2022084623A1 WO 2022084623 A1 WO2022084623 A1 WO 2022084623A1 FR 2021051827 W FR2021051827 W FR 2021051827W WO 2022084623 A1 WO2022084623 A1 WO 2022084623A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
orifice
valve
pump
configuration
Prior art date
Application number
PCT/FR2021/051827
Other languages
English (en)
Inventor
Loris TAXIL
Gery Depierre
Original Assignee
Poclain Hydraulics Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poclain Hydraulics Industrie filed Critical Poclain Hydraulics Industrie
Publication of WO2022084623A1 publication Critical patent/WO2022084623A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4078Fluid exchange between hydrostatic circuits and external sources or consumers
    • F16H61/4139Replenishing or scavenging pumps, e.g. auxiliary charge pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4192Detecting malfunction or potential malfunction, e.g. fail safe

Definitions

  • This presentation concerns hydraulic systems, in particular hydraulic assistance systems that can be implemented on vehicles or machines to carry out, for example, temporary training of wheels, a member or an axle.
  • Hydraulic assistance systems are commonly used for various types of machinery or vehicles, in particular to drive, for example temporarily, wheels, a component or an axle.
  • Part of the components are commonly flexible components, in order to allow pivoting movement of a hydraulic motor, which is necessary in particular in the case where the system is used for driving a vehicle wheel or machine, in particular a steering wheel.
  • Documents EP2361798 and WO2011/128556 present examples of known circuits.
  • FIG. 1 thus represents an example of a known structure of a hydraulic assistance circuit.
  • This figure shows a hydraulic assistance circuit 100 comprising a hydraulic pump 112 coupled to a primary motor M via a clutch 130.
  • the hydraulic pump 112 is for example a power or translation pump which ensures the transmission of power in the hydraulic transmission to the wheels. This is typically a pump that operates at high pressure, typically 200 to 600 bar, and during its use on a machine of 80 to 600 bar. This is typically a closed loop circuit pump.
  • the hydraulic pump 112 is connected to a hydraulic motor 120 via a hydraulic circuit.
  • the term "connected" means that two elements are hydraulically connected, so that a fluid can circulate between the two elements.
  • a single hydraulic motor 120 is shown to represent a receiver and simplify the circuit.
  • the circuits have one or more hydraulic motors, for example one hydraulic motor per axle that it is desired to equip, the hydraulic motors possibly being mounted in parallel, for example.
  • the hydraulic motor 120 is typically an axial or radial piston hydraulic motor, and is typically configured in such a way as to allow disengagement of the pistons, for example by withdrawal of the pistons in their respective housings of the cylinder block, in order to present a freewheel configuration. , at zero displacement.
  • Such hydraulic motors are well known.
  • the hydraulic motor is typically arranged in such a way as to make it possible to drive in rotation a rotating member, for example a wheel or an axle of a vehicle or machine, or even a wheel of a coupling such as a trailer. In general, it is possible, for example, to equip such a temporary hydraulic system with the carrying wheels not driven by the transmission shaft of a vehicle or machine, the steering wheels, the lift axles, the trailer.
  • the primary engine M is for example a heat engine or an electric motor.
  • HP and BP designate the two branches of the closed loop hydraulic circuit connecting the hydraulic pump 112 to the hydraulic motor 120, these two branches being considered here as the HP high pressure branch and the BP low pressure branch of the hydraulic circuit. for a given direction of operation, for example forward operation in the case where the hydraulic motor 112 drives a vehicle wheel or axle. It is understood that these indications are purely illustrative, and should not be interpreted in a limiting manner.
  • the hydraulic assistance circuit 100 comprises a booster pump 140, driven in rotation by the primary motor M, and thus adapted to draw fluid from a reservoir R in order to perform in particular a boosting of the hydraulic circuit as will be seen. afterwards. This booster pump 140 typically operates at 20 or 30 bar.
  • this booster pump 140 can also provide pressure for the hydraulic piloting of other components, or to power accessories.
  • this booster pump 140 is permanently driven, even when the hydraulic transmission is disengaged.
  • the hydraulic pump 112 is typically integrated in a pump unit 110, which forms an integrated assembly in a casing.
  • the pump block 110 is typically coupled to a valve block 150, comprising in particular various valves, valves and check valves in particular to perform a boosting and safety function.
  • the valve block 150 is itself connected to the hydraulic motor, typically by means of flexible hydraulic conduits.
  • the valve unit 150 comprises a crankcase valve 160 and a booster circuit 170.
  • the housing valve 160 has a first port 161 connected to the booster pump 140, a second port connected to a reservoir R, and a third port 163 connected to the housing of the hydraulic motor 120.
  • the housing valve 160 such as shown is driven by an actuator 164 opposed by a return means 165 so as to alternate between two configurations: a first configuration in which the first orifice 161 is closed, and the second orifice 162 is connected to the third orifice 163, and a second configuration in which the first orifice 161 is connected to the third orifice 163, and the second orifice is closed.
  • the first orifice 161 of the crankcase valve 160 is also connected to the booster circuit 170 via a calibrated non-return valve 172.
  • the booster circuit 170 has a known structure, it makes it possible to supply the branch of the circuit hydraulics with the lowest pressure, to compensate for any pressure drops and avoid cavitation of the hydraulic devices.
  • Such a hydraulic assistance circuit 100 can be disengaged or actuated by controlling the clutch 130, in order to couple or not the hydraulic pump 112 to the primary motor M.
  • the crankcase valve 160 is controlled so as to apply pressure in the crankcase of the hydraulic motor 120, which disengages the pistons by retracting them into their respective housings of the cylinder block, thus obtaining a freewheel configuration in which the pistons are not subjected to repeated shocks which could damage them, and the hydraulic motor 120 can freewheel with a minimal friction torque.
  • the piping of a hydraulic circuit that is to say the various elements forming the conduits in which the fluid circulates, comprises protected parts and exposed or very exposed parts.
  • the protected parts are generally located near the engine of the vehicle or machine, typically between the pumps 112, 140 and the valve block 150, and more particularly between the pump block 110 and the valve block 150, while the rest of the hydraulic circuit can run along the frame of the machine and be exposed to shocks, crushing or tearing.
  • hoses and pipes going to steering wheels usually have to be supplied with hoses.
  • conduits leading to suspended or lift axles, conduits passing close to the hitch saddle of a semi-trailer truck, connecting pipes between a tractor and a trailer and more generally anything that constitutes a joint must necessarily be flexible and/or of variable lengths.
  • the various ducts which may also be rigid, but which are exposed due to their location, for example the ducts which are arranged along a frame, are liable to break, be crushed or torn during maneuvers or use. More generally, it is considered here that the conduits extending from the valve block 112 are exposed conduits of the circuit.
  • valve unit 150, the pump unit 110, the clutch 130, the prime mover M as well as the booster pump 140 and the tank R are a unit generally protected or housed in rigid casings, as opposed to hydraulic lines connected to this assembly, which may be flexible and/or extend into exposed locations.
  • a break in the hydraulic circuit can lead to a continuous discharge of hydraulic fluid until the reservoir R is empty. This particularly in the case where the booster pump 40 is permanently driven even when the pump 12 is disengaged.
  • the present presentation thus proposes to respond at least partially to these problems.
  • a hydraulic assistance system comprising a pump unit, comprising a hydraulic pump, the pump unit having a first orifice and a second orifice defining an inlet and a discharge, a primary motor and a clutch, the hydraulic pump being coupled to the prime mover via the clutch, a booster pump, coupled to the prime mover, adapted to draw fluid from a reservoir and deliver a boost flow, a hydraulic motor adapted to drive a rotating member , the hydraulic motor having a first orifice and a second orifice defining an inlet and a discharge, a valve unit, adapted to connect the pump unit and the booster pump to the hydraulic motor so as to form a hydraulic circuit, in which the valve unit includes an assist valve, adapted to selectively connect the pump block discharge to the hydraulic motor inlet and the hy motor discharge draulic at the inlet of the pump unit, a pilot valve, suitable for, in a first configuration, connecting the booster pump to a crankcase of the hydraulic motor,
  • the pump unit further comprises a booster circuit, connected to the booster pump upstream of the pilot valve, said booster circuit being adapted to perform boostering in a branch of the hydraulic circuit.
  • the pilot valve is a solenoid valve controlled by an electric actuator opposed by a return means, the return means tending to position the pilot valve in its first configuration.
  • the assistance valve has
  • the assistance valve being configured to alternate between:
  • the hydraulic assistance system further comprises a device for detecting leaks in the hydraulic circuit, said leak detection device comprising a controller and a plurality of sensors of pressure, the controller being configured to detect the presence of leaks in the hydraulic circuit, and to switch the pilot valve into its first configuration when a leak is detected.
  • the hydraulic assistance system can then comprise at least one pressure sensor from among:
  • - a pressure sensor suitable for measuring the pressure delivered by the booster pump, upstream of the valve block.
  • the hydraulic assistance system comprises an exchange unit, adapted to achieve a calibrated flow of fluid from the inlet of the pump unit to the reservoir.
  • the hydraulic circuit connecting the pump unit to the hydraulic motor is a closed-loop hydraulic circuit.
  • This presentation also relates to a device comprising a hydraulic assistance system as defined above, the device comprising a member adapted to be driven in rotation by the hydraulic motor.
  • Figure 1 described above schematically represents an example of a hydraulic assistance circuit
  • Figure 2 shows an example of a system according to one aspect of the invention
  • Figure 3 illustrates the circuit already shown in Figure 2, but in another configuration.
  • FIG. 2 schematically represents an example of a hydraulic assistance circuit according to one aspect of the invention.
  • the hydraulic assistance system 1 as presented comprises a hydraulic pump 12 coupled to a primary motor M via a clutch 30.
  • the hydraulic pump 12 is connected to a hydraulic motor 20 via a hydraulic circuit.
  • the hydraulic motor 20 is typically an axial or radial piston hydraulic motor, and is typically configured in such a way as to allow the pistons to be disengaged, for example by withdrawing the pistons from their respective housings in the cylinder block, in order to present a freewheel configuration. , at zero displacement.
  • Such hydraulic motors are well known.
  • the hydraulic motor is typically arranged in such a way as to make it possible to drive in rotation a rotating member, for example a wheel or an axle of a vehicle or finally, or even a coupling.
  • the hydraulic motor 20 designates one or more hydraulic motors 20, which can be mounted for example in series or in parallel.
  • the primary engine M is for example a heat engine or an electric motor.
  • HP and BP designate the two branches of the hydraulic circuit connecting the hydraulic pump 12 to the hydraulic motor 20, these two branches being considered here as the high pressure branch HP and the low pressure branch BP of the hydraulic circuit for a sense of given operation, for example forward operation in the case where the hydraulic motor 12 drives a vehicle wheel or axle. It is understood that these indications are purely illustrative, and should not be interpreted in a limiting manner.
  • the hydraulic assistance system 1 comprises a booster pump 40, driven in rotation by the primary motor M, and thus adapted to draw fluid from a reservoir R in order to perform in particular a boosting of the hydraulic circuit as will be seen. afterwards.
  • the hydraulic devices, in particular the pumps and motors each have an inlet and a discharge, which can, if necessary, be reversed according to the direction of operation.
  • the booster pump 40 is also used to control the other hydraulic components.
  • the hydraulic pump 12 is typically integrated into a pump block 10, which forms an integrated assembly in a casing.
  • the pump block 10 is coupled to a valve block 50, comprising in particular various valves, valves and check valves in particular to perform a boosting function.
  • the valve block 50 is itself connected to the hydraulic motor, typically by means of flexible hydraulic conduits or more generally by means of conduits which are considered to be exposed elements of the hydraulic circuit.
  • the valve unit 50 as presented has different orifices, which are here connected to the booster pump 40, to two orifices of the pump unit 10, to the reservoir R, to the hydraulic motor 20, here via 3 orifices respectively connected to the intake, discharge, and hydraulic motor housing 20.
  • valve unit 50 as presented here comprises:
  • a sixth orifice 56 connected to an internal volume of the casing of the hydraulic motor 20. It is understood here that the sixth orifice 56 is connected to an orifice of the casing allowing fluid to penetrate into an internal volume of the casing of the hydraulic motor, this internal volume of the casing being distinct from the supply and delivery circuits of the pressurized fluid providing the rotational movement.
  • the elements connected to the fourth port 54, the fifth port 55 and the sixth port 56 of the valve block 50 are here typically considered to be exposed elements of the system.
  • the connections are indeed typically made by means of pipes such as flexible conduits, or elements which are positioned in exposed areas of a device, as opposed to the valve unit 50 and the pump unit 10 which are elements protected by a crankcase.
  • the valve unit 50 here comprises an assistance valve 60, a pilot valve 70 and a booster circuit 80.
  • the assistance valve 60 as proposed is a valve of the 5/2 type, that is to say a valve having 5 orifices and two configurations.
  • the assistance valve 60 comprises:
  • a fourth port 64 connected to the seventh port 57 of the valve block 50 via two parallel channels; a first channel provided with two successive calibrated valves 104 and 102, and a second channel provided with a restriction 106.
  • the assistance valve 60 is controlled by a first hydraulic control 66 coupled to a return means 67 tending to position the assistance valve in a first configuration, opposed by a second hydraulic control 68 adapted to position the assist valve 60 in a second configuration.
  • the assistance valve 60 connects its first orifice 61 to its second orifice 62, and connects its third orifice 63 to its fourth orifice 64 and to its fifth orifice 65. This configuration thus isolates the hydraulic motor 20 from the hydraulic pump 12, the inlet and the discharge of the hydraulic motor 20 then being connected to the reservoir R.
  • the assistance valve 60 connects its first orifice 61 to its third orifice 63, its second orifice 62 to its fifth orifice 65, while its fourth orifice 64 is closed.
  • This second configuration thus makes it possible to connect the hydraulic pump 12 to the hydraulic motor 20, and thus to perform a drive function.
  • the pilot valve 70 as shown is a 4/2 valve, that is to say a valve having 4 orifices and 2 configurations.
  • the pilot valve 70 comprises:
  • the assistance valve 70 is controlled by a command, 76, typically an electric control, which opposes an elastic return means 77 such as a spring, means to alternate between two configurations.
  • first orifice 71 is connected to the fourth orifice 74, and the second orifice 72 is connected to the third orifice 73.
  • first orifice 71 is connected to the third orifice 73, and the second port 72 is connected to the fourth port 74.
  • the pilot valve 70 is a valve connecting the third port 53 of the valve block 50 to the second control 68 of the assistance valve 60, and alternating between a passing configuration (which may be proportional or of the all or nothing) and a non-passing configuration.
  • the pilot valve 70 can then be a 2/2 valve, that is to say a valve having 2 orifices and two configurations.
  • the pilot valve makes it possible to connect or to isolate the third orifice 53 of the valve block 50 from the second control 68 of the assistance valve 60; it is thus controlled between a conducting (or open) configuration and a non-conducting (or closed) configuration.
  • Such a variant can in particular be used when it is not intended to apply pressure in the casing of the hydraulic motor 20.
  • the booster circuit 80 has a known structure; it comprises here two pressure limiters connected respectively to the first orifice 51 and to the second orifice 52 of the valve unit 50, so that all or part of the flow delivered by the booster pump 40 can be injected into the low pressure branch of the circuit hydraulic when the pressure within the booster circuit 80 exceeds a predetermined threshold value.
  • the booster circuit is connected to the third port 53 of the valve block 53, upstream of the pilot valve 70.
  • the system also comprises an optional exchange block 90, connected to the valve block 50 via two additional orifices, respectively connected to the first orifice 51 and to the second orifice 52 of the valve block 50.
  • the exchange block 90 can be integrated into the valve block 50.
  • the exchange block 90 as shown comprises a 3-port 3-position distributor 92, connected to the two branches of the hydraulic circuit on the one hand, and to the reservoir R via a pressure limiter 94 on the other hand.
  • the exchange unit 90 is adapted to achieve a calibrated leak flow to the reservoir R from the low pressure branch of the hydraulic circuit.
  • the exchange block 90 thus makes it possible to ensure a renewal of the oil in the closed loop of the system, in order to carry out a filtration and a cooling of the oil.
  • the assistance valve 60 and the pilot valve 70 are maintained in their respective first configurations.
  • the hydraulic motor 20 and the hydraulic pump 12 are then isolated from each other.
  • the booster pump 40 is connected to the casing of the hydraulic motor 20 so as to apply a given pressure in the internal volume of the casing of the hydraulic motor 20, calibrated by the calibrated valve 102.
  • This pressure applied in the internal volume of the casing of the hydraulic motor 20 retracts the pistons of the hydraulic motor into their respective housings in the cylinder block, and thus disengages them from the associated running surface, typically a multi-lobe cam or an inclined disc, which thus positions the motor hydraulic 20 in a zero displacement configuration. It is this configuration which is represented in FIG. 2.
  • the pilot valve 70 is in the closed configuration; the flow delivered by the booster pump 40 is then injected into the hydraulic circuit via the booster circuit 80.
  • control 76 of the pilot valve 70 is actuated.
  • the internal volume of the casing of the hydraulic motor 20 is then connected to the reservoir R, and is therefore at ambient pressure.
  • the pilot valve 70 then switches to its second configuration, which applies pressure to the assistance valve 60 via its second control 68, and thus causes it to switch to its second configuration, which connects the pump 12 to the hydraulic motor 20.
  • the application of pressure to the inlet of the hydraulic motor 20 will, if necessary, cause the pistons to come out of their housings to switch the hydraulic motor 20 to the active configuration, i.e. say with a non-zero displacement.
  • Figure 3 illustrates such a configuration.
  • control 76 of the pilot valve 70 is deactivated, which then causes the return of the assistance valve 60 to its first configuration, and the return of the system to a freewheel configuration. .
  • valve unit 50 as proposed makes it possible to split the hydraulic circuit into two separate loops when the system 1 is in a free-rolling configuration.
  • valve unit 50 and the pump unit 10 are typically components housed in rigid casings, while the hydraulic conduits connecting the valve unit 50 to the hydraulic motor 20 are commonly composed of exposed piping and comprising flexible elements and exposed to the ambient environment, which are therefore more likely to break, be crushed or torn off during the use of the vehicle or machine. It can therefore be considered that there is a part of the circuit protected between the pumps 20, 40 and the valve block 50, and a part of the circuit exposed between the valve block 50 and the hydraulic motors 20.
  • the booster pump 40 would discharge the contents of the tank R into the ambient environment.
  • the valve block structure 50 as proposed makes it possible to avoid such a problem, insofar as it makes it possible to subdivide the system into two separate hydraulic circuits, and thus to switch the hydraulic pump 12 and the associated booster circuit 80 into a hydraulic circuit isolated from a possible leak.
  • the command 76 of the pilot valve 70 thus makes it possible to pilot the entire system.
  • the pilot valve 70 makes it possible to ensure that the pistons are withdrawn when the system switches to the freewheel configuration, which makes it possible to avoid any risk of damaging the hydraulic motor 20.
  • the system typically comprises a control unit 35 such as a computer or an electronic control unit, commonly referred to by the acronym in English “ECU”.
  • Control unit 35 is typically configured to drive control 76 of pilot valve 70.
  • the control unit 35 is typically associated with pressure sensors PA, PR and PG. These pressure sensors PA, PR and PG are typically suitable for measuring the pressure respectively at the fourth orifice, at the fifth orifice and at the third orifice of the valve block 50, which corresponds respectively to the pressure at the two orifices of the hydraulic motor 20, and at the input of the booster circuit 80, and deliver a signal reflecting the measured pressure to the control utility 35.
  • the control unit 35 can thus, by means of the measured pressure values, identify a potential leak in the hydraulic circuit, which can result in particular in a drop in pressure at the inlet or at the outlet. of the hydraulic motor 20, and/or by an inability of the booster pump to establish pressure in the booster circuit.
  • control unit 35 In the event that the control unit 35 detects such a potential leak in the system, it can then stop the piloting of the control 76 of the pilot valve 70 so as to bring back the pilot valve 70 and consequently the assistance valve 60 in their first respective configurations, which then places the system in freewheel configuration and isolates the booster pump 40 and the pump unit 10 from the hydraulic motor 20 at the level of which the leak is likely to be located.
  • the control unit 35 can then be configured to send a signal or an instruction which will lead to a signal intended for the user, for example via a visual or audible signal, so that the latter is then informed of a potential leak. in the system.
  • the pilot valve 70 can be piloted manually by the user, who can for example use a command to pilot the pilot valve 70 to switch to the free-rolling configuration, for example following the actuation of a signal issued by the control unit 35.
  • the hydraulic assistance system as proposed can be applied to any type of device comprising a member or an axle which can thus be selectively driven in rotation by the hydraulic assistance system 1, for example a vehicle, a machine , machine, trailer or hitch.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Système d'assistance hydraulique (1) comprenant une pompe hydraulique (12) reliée à un moteur hydraulique (20) par un bloc valve (50), le système (1) comprenant en outre une pompe de gavage (40) adaptée pour prélever un fluide dans un réservoir (R) et pour délivrer une pression de gavage dans le circuit hydraulique et sélectivement appliquer une pression dans un carter du moteur hydraulique (20), ledit système (1) étant caractérisé en ce que le bloc valve (50) est adapté pour sélectivement isoler la pompe hydraulique (12) du moteur hydraulique (20).

Description

Description
Titre de l'invention : Circuit d'assistance hydraulique avec structure de valve améliorée.
Domaine Technique
[0001 ] Le présent exposé concerne les systèmes hydrauliques, notamment les systèmes d’assistance hydrauliques pouvant être mis en œuvre sur des véhicules ou des engins pour réaliser un entrainement par exemple temporaire de roues, d’un organe ou d’un essieu.
Technique antérieure
[0002] Les systèmes d’assistance hydraulique sont communément employés pour divers types d’engins ou de véhicules, notamment pour réaliser un entrainement par exemple temporaire de roues, d’un organe ou d’un essieu.
[0003] Une partie des composants sont communément des composants flexibles, afin de permettre mouvement de pivot d’un moteur hydraulique, ce qui est nécessaire notamment dans le cas où le système est employé pour l’entrainement d’une roue de véhicule ou d’engin, en particulier une roue directrice. Les documents EP2361798 et WO201 1/128556 présentent des exemples de circuits connus.
[0004] Cependant, de tels composant sont ainsi exposés au milieu ambiant, et peuvent être endommagés, entraînant alors une fuite dans le circuit hydraulique. Plus généralement, une telle problématique concerne les conduits hydrauliques s’étendant dans des parties exposées du véhicule, ou plus généralement les conduits hydrauliques s’étendant hors de carters assurant leur protection. Une problématique concerne alors l’arrêt de l’écoulement du fluide hydraulique.
[0005] La figure 1 représente ainsi un exemple de structure connue de circuit d’assistance hydraulique.
[0006] On représente sur cette figure un circuit d’assistance hydraulique 100 comprenant une pompe hydraulique 1 12 couplée à un moteur primaire M via un embrayage 130. La pompe hydraulique 1 12 est par exemple une pompe de puissance ou de translation qui assure la transmission de puissance dans la transmission hydraulique vers les roues. Il s’agit typiquement d’une pompe qui fonctionne a pression élevée, typiquement 200 à 600 bars, et au cours de son utilisation sur un engin de 80 à 600 bar. Il s’agit typiquement d’une pompe pour circuit en boucle fermée. La pompe hydraulique 112 est reliée à un moteur hydraulique 120 via un circuit hydraulique. Dans le présent exposé, on entend par « relié » que deux éléments sont reliés hydrauliquement, de sorte qu’un fluide puisse circuler entre les deux éléments. Dans l’exemple illustré, un seul moteur hydraulique 120 est représenté pour figurer un récepteur et simplifier le circuit. Les circuits présentent cependant un ou plusieurs moteurs hydrauliques, par exemple un moteur hydraulique par essieu que l’on souhaite équiper, les moteurs hydrauliques pouvant par exemple être montés en parallèle. Le moteur hydraulique 120 est typiquement un moteur hydraulique à pistons axiaux ou radiaux, et est typiquement configuré de manière à permettre un désengagement des pistons, par exemple par retrait des pistons dans leurs logements respectifs du bloc cylindres, afin de présenter une configuration de roue libre, à cylindrée nulle. De tels moteurs hydrauliques sont bien connus. Le moteur hydraulique est typiquement disposé de manière à permettre d’entrainer en rotation un organe tournant, par exemple une roue ou un essieu de véhicule ou d’engin, ou encore une roue d’un attelage tel qu’une remorque. D’une manière générale, on peut par exemple équiper d’un tel système hydraulique temporaire les roues porteuses non entraînées par l’arbre de transmission d’un véhicule ou d’un engin, les roues directrices, les essieux relevables, les roues de remorque. Le moteur primaire M est par exemple un moteur thermique ou un moteur électrique.
[0007] On désigne par HP et BP les deux branches du circuit hydraulique en boucle fermée reliant la pompe hydraulique 1 12 au moteur hydraulique 120, ces deux branches étant ici considérées comme la branche haute pression HP et la branche basse pression BP du circuit hydraulique pour un sens de fonctionnement donné, par exemple un fonctionnement en marche avant dans le cas où le moteur hydraulique 1 12 entraine une roue ou un essieu de véhicule. On comprend que ces indications sont purement illustratives, et ne doivent pas être interprétées de manière limitative. [0008] Le circuit d’assistance hydraulique 100 comprend une pompe de gavage 140, entraînée en rotation par le moteur primaire M, et adaptée ainsi pour prélever du fluide dans un réservoir R afin de réaliser notamment un gavage du circuit hydraulique comme on le verra par la suite. Cette pompe de gavage 140 fonctionne typiquement à 20 ou 30 bar. Elle peut également fournir une pression pour le pilotage hydraulique d’autres composants, ou pour alimenter des accessoires. D’une manière typique, cette pompe de gavage 140 est entraînée en permanence, même lorsque la transmission hydraulique est débrayée. Les appareils hydrauliques, notamment les pompes et moteurs présentent chacun une admission et un refoulement, qui peuvent le cas échéant être inversés selon le sens de fonctionnement.
[0009] La pompe hydraulique 1 12 est typiquement intégrée dans un bloc pompe 1 10, qui forme un ensemble intégré dans un carter. Le bloc pompe 1 10 est typiquement couplé à un bloc valve 150, comprenant notamment différentes valves, soupapes et clapets notamment pour réaliser une fonction de gavage et de sécurité. Le bloc valve 150 est lui-même relié au moteur hydraulique, typiquement au moyen de conduits hydrauliques flexibles.
[0010] Dans l’exemple illustré, le bloc valve 150 comprend une valve de carter 160 et un circuit de gavage 170.
[0011 ] La valve de carter 160 présente un premier orifice 161 relié à la pompe de gavage 140, un deuxième orifice relié à un réservoir R, et un troisième orifice 163 relié au carter du moteur hydraulique 120. La valve de carter 160 telle que représentée est pilotée par un actionneur 164 auquel s’oppose un moyen de rappel 165 de manière à alterner entre deux configurations : une première configuration dans laquelle le premier orifice 161 est obturé, et le deuxième orifice 162 est relié au troisième orifice 163, et une deuxième configuration dans laquelle le premier orifice 161 est relié au troisième orifice 163, et le deuxième orifice est obturé.
[0012] Le premier orifice 161 de la valve de carter 160 est également relié au circuit de gavage 170 via un clapet anti retour taré 172. Le circuit de gavage 170 présente une structure connue, il permet d’alimenter la branche du circuit hydraulique ayant la pression la plus faible, pour combler d’éventuelles chutes de pression et éviter une cavitation des appareils hydrauliques.
[0013] Un tel circuit d’assistance hydraulique 100 peut être désengagé ou actionné par le pilotage de l’embrayage 130, afin de coupler ou non la pompe hydraulique 112 au moteur primaire M. Dans le cas où le circuit d’assistance hydraulique 100 est désengagé, la valve de carter 160 est pilotée de manière à appliquer une pression dans le carter du moteur hydraulique 120, ce qui vient désengager les pistons en les rentrant dans leurs logements respectifs du bloc cylindres, pour ainsi obtenir une configuration de roue libre dans laquelle les pistons ne sont pas soumis à des chocs répétés qui pourraient les endommager, et le moteur hydraulique 120 peut tourner en roue libre avec un couple de frottement minimal.
[0014] Comme indiqué, une problématique apparaît cependant dans de tels circuits en cas de rupture d’éléments hydrauliques, en particulier les éléments hydrauliques flexibles reliant le bloc valve 150 au moteur hydraulique 120. D’une manière générale, on peut considérer que le tuyautage d’un circuit hydraulique, c’est-à-dire les différents éléments formant les conduits dans lequel le fluide circule, comporte des parties protégées et des parties exposées ou très exposées. Les parties protégées se trouvent généralement au voisinage du moteur du véhicule ou de l’engin, typiquement entre les pompes 112, 140 et le bloc valve 150, et plus particulièrement entre le bloc pompe 110 et le bloc valve 150, tandis que le reste du circuit hydraulique peut courir le long du châssis de l’engin et être exposé à des chocs, des écrasements ou des arrachements. En particulier les flexibles et les tuyaux allant vers des roues directrices doivent généralement être alimentées par des flexibles. De même, les conduits allant vers des essieux suspendus ou relevables, les conduits passant près de la selle de l’attelage d’un camion semi-remorque, les tuyaux de raccordement entre un tracteur et une remorque et plus généralement tout ce qui constitue une articulation doivent nécessairement être souples et/ou de longueurs variables. De même, les différents conduits qui peuvent également être rigides, mais qui sont exposés du fait de leur emplacement, par exemple les conduits qui sont disposés le long d’un châssis sont susceptibles de se rompre, d’être écrasés ou arrachés pendant les manoeuvres ou l’utilisation. Plus généralement, on considère ici que les conduits s’étendant depuis le bloc valve 112 sont des conduits exposés du circuit. De manière alternative, on considère que le bloc valve 150, le bloc pompe 1 10, l’embrayage 130, le moteur primaire M ainsi que la pompe de gavage 140 et le réservoir R sont un ensemble généralement protégé ou logé dans des carters rigides, par opposition aux conduits hydrauliques reliés à cet ensemble, qui peuvent être flexibles et/ou s’étendre dans des endroits exposés. Ainsi, une rupture dans le circuit hydraulique peut conduire à une décharge continue de fluide hydraulique jusqu’à ce que le réservoir R soit vide. Cela particulièrement dans le cas où la pompe de gavage 40 est entraînée en permanence même lorsque la pompe 12 est débrayée.
Exposé de l’invention
[0015] Le présent exposé propose ainsi de répondre au moins partiellement à ces problématiques.
[0016] A cet effet, le présent exposé concerne un système d’assistance hydraulique comprenant un bloc pompe, comprenant une pompe hydraulique, le bloc pompe présentant un premier orifice et un second orifice définissant une admission et un refoulement, un moteur primaire et un embrayage, la pompe hydraulique étant couplée au moteur primaire via l’embrayage, une pompe de gavage, couplée au moteur primaire, adaptée pour prélever un fluide dans un réservoir et délivrer un débit de gavage, un moteur hydraulique adapté pour entrainer un organe en rotation, le moteur hydraulique présentant un premier orifice et un second orifice définissant une admission et un refoulement, un bloc valve, adapté pour relier le bloc pompe et la pompe de gavage au moteur hydraulique de manière à former un circuit hydraulique, dans lequel le bloc valve comprend une valve d’assistance, adaptée pour sélectivement relier le refoulement du bloc pompe à l’admission du moteur hydraulique et le refoulement du moteur hydraulique à l’admission du bloc pompe, une valve de pilotage, adaptée pour, dans une première configuration, relier la pompe de gavage à un carter du moteur hydraulique, la valve d’assistance étant alors dans sa première configuration, et pour, dans une seconde configuration, relier la pompe de gavage à une commande hydraulique tendant à positionner la valve d’assistance dans sa seconde configuration, caractérisé en ce que la valve de pilotage est adaptée pour, dans une première configuration, relier la pompe de gavage à un carter du moteur hydraulique, la valve d’assistance étant alors dans sa première configuration, et pour, dans une seconde configuration, relier la pompe de gavage à une commande hydraulique tendant à positionner la valve d’assistance dans sa seconde configuration.
[0017] Selon un exemple, le bloc pompe comprend en outre un circuit de gavage, relié à la pompe de gavage en amont de la valve de pilotage, ledit circuit de gavage étant adapté pour réaliser un gavage dans une branche du circuit hydraulique.
[0018] Selon un exemple, la valve de pilotage est une électrovanne pilotée par un actionneur électrique auquel s’oppose un moyen de rappel, le moyen de rappel tendant à positionner la valve de pilotage dans sa première configuration.
[0019] Selon un exemple, la valve d’assistance présente
- un premier orifice et un deuxième orifice reliés respectivement au refoulement et à l’admission du bloc pompe
- un troisième orifice et un cinquième orifice relié respectivement à l’admission et au refoulement du moteur hydraulique,
- un quatrième orifice relié au réservoir, le valve d’assistance étant configurée de manière à alterner entre :
- une première configuration, dans laquelle le premier orifice est relié au deuxième orifice, et le troisième orifice, le quatrième orifice et le cinquième orifice sont reliés, et
- une seconde configuration, dans laquelle le premier orifice est relié au troisième orifice, le deuxième orifice est relié au cinquième orifice, et le quatrième orifice est obturé.
[0020] Selon un exemple, le système d’assistance hydraulique comprend en outre un dispositif de détection de fuites dans le circuit hydraulique, ledit dispositif de détection de fuites comprenant un contrôleur et une pluralité de capteurs de pression, le contrôleur étant configuré pour détecter la présence de fuites dans le circuit hydraulique, et pour basculer la valve de pilotage dans sa première configuration lorsqu’une fuite est détectée.
[0021 ] Le système d’assistance hydraulique peut alors comprendre au moins un capteur de pression parmi :
- un capteur de pression adapté pour mesurer la pression à l’admission du moteur hydraulique,
- un capteur de pression adapté pour mesurer la pression au refoulement du moteur hydraulique,
- un capteur de pression adapté pour mesurer la pression délivrée par la pompe de gavage, en amont du bloc valve.
[0022] Selon un exemple, le système d’assistance hydraulique comprend un bloc d’échange, adapté pour réaliser un écoulement calibré de fluide depuis l’admission du bloc pompe vers le réservoir.
[0023] Selon un exemple, le circuit hydraulique reliant le bloc pompe u moteur hydraulique est un circuit hydraulique en boucle fermée.
Le présent exposé concerne également un dispositif comprenant un système d’assistance hydraulique tel que défini précédemment, le dispositif comprenant un organe adapté pour être entrainé en rotation par le moteur hydraulique.
Brève description des dessins
[0024] L’invention et ses avantages seront mieux compris à la lecture de la description détaillée faite ci-après de différents modes de réalisation de l’invention donnés à titre d’exemples non limitatifs.
[0025] [Fig. 1 ] La figure 1 décrite précédemment représente schématiquement un exemple de circuit d’assistance hydraulique,
[0026] [Fig. 2] La figure 2 représente un exemple de système selon un aspect de l’invention,
[0027] [Fig. 3] La figure 3 illustre le circuit déjà représenté sur la figure 2, mais dans une autre configuration.
[0028] Sur l’ensemble des figures, les éléments en commun sont repérés par des références numériques identiques. Description des modes de réalisation
[0029] On décrit à présent différents modes de réalisation de l’invention en référence aux figures introduites précédemment.
[0030] La figure 2 représente schématiquement un exemple de circuit d’assistance hydraulique selon un aspect de l’invention.
[0031 ] On retrouve dans ce circuit des éléments en commun avec le circuit déjà présenté en référence à la figure 1 .
[0032] Le système d’assistance hydraulique 1 tel que présenté comprend une pompe hydraulique 12 couplée à un moteur primaire M via un embrayage 30. La pompe hydraulique 12 est reliée à un moteur hydraulique 20 via un circuit hydraulique. Le moteur hydraulique 20 est typiquement un moteur hydraulique à pistons axiaux ou radiaux, et est typiquement configuré de manière à permettre un désengagement des pistons, par exemple par retrait des pistons dans leurs logements respectifs du bloc cylindres, afin de présenter une configuration de roue libre, à cylindrée nulle. De tels moteurs hydrauliques sont bien connus. Le moteur hydraulique est typiquement disposé de manière à permettre d’entrainer en rotation un organe tournant, par exemple une roue ou un essieu de véhicule ou d’enfin, ou encore un attelage. Comme pour l’exemple décrit en référence à la figure 1 , on comprend que le moteur hydraulique 20 désigne un ou plusieurs moteurs hydrauliques 20, pouvant être montés par exemple en série ou en parallèle. Le moteur primaire M est par exemple un moteur thermique ou un moteur électrique.
[0033] On désigne par HP et BP les deux branches du circuit hydraulique reliant la pompe hydraulique 12 au moteur hydraulique 20, ces deux branches étant ici considérées comme la branche haute pression HP et la branche basse pression BP du circuit hydraulique pour un sens de fonctionnement donné, par exemple un fonctionnement en marche avant dans le cas où le moteur hydraulique 12 entraine une roue ou un essieu de véhicule. On comprend que ces indications sont purement illustratives, et ne doivent pas être interprétées de manière limitative. [0034] Le système d’assistance hydraulique 1 comprend une pompe de gavage 40, entraînée en rotation par le moteur primaire M, et adaptée ainsi pour prélever du fluide dans un réservoir R afin de réaliser notamment un gavage du circuit hydraulique comme on le verra par la suite. Les appareils hydrauliques, notamment les pompes et moteurs présentent chacun une admission et un refoulement, qui peuvent le cas échéant être inversés selon le sens de fonctionnement. Comme on le verra par la suite, la pompe de gavage 40 est également utilisée pour assurer un pilotage des autres composants hydrauliques.
[0035] La pompe hydraulique 12 est typiquement intégrée dans un bloc pompe 10, qui forme un ensemble intégré dans un carter. Le bloc pompe 10 est couplé à un bloc valve 50, comprenant notamment différentes valves, soupapes et clapets notamment pour réaliser une fonction de gavage. Le bloc valve 50 est lui-même relié au moteur hydraulique, typiquement au moyen de conduits hydrauliques flexibles ou plus généralement au moyen de conduits que l’on considère comme des éléments exposés du circuit hydraulique.
[0036] Comme on le voit sur cette figure, le système tel que proposé modifie l’architecture du bloc valve 50 par rapport au système tel que présenté précédemment en référence à la figure 1 .
[0037] Le bloc valve 50 tel que présenté présente différents orifices, qui sont ici reliés à la pompe de gavage 40, à deux orifices du bloc pompe 10, au réservoir R, au moteur hydraulique 20, ici via 3 orifices reliés respectivement à l’admission, au refoulement, et au carter du moteur hydraulique 20.
[0038] Plus précisément, le bloc valve 50 tel que présenté comprend ici :
- un premier orifice 51 et un deuxième orifice 52 reliés au bloc pompe 10, plus précisément au refoulement et à l’admission du bloc pompe 10 dans l’exemple illustré.
- un troisième orifice 53 relié à la pompe de gavage 40.
- un quatrième orifice 54 et un cinquième orifice 55 reliés au moteur hydraulique 20 afin d’en assurer l’alimentation, ici reliés respectivement à l’admission et au refoulement du moteur hydraulique 20.
- un sixième orifice 56 relié à un volume interne du carter du moteur hydraulique 20. On comprend ici que le sixième orifice 56 est relié à un orifice du carter permettant de faire pénétrer du fluide dans un volume interne du carter du moteur hydraulique, ce volume interne du carter étant distinct des circuits d’alimentation et de refoulement du fluide sous pression assurant le mouvement de rotation.
- un septième orifice 57 relié au réservoir R.
[0039] Les éléments reliés au quatrième orifice 54, au cinquième orifice 55 et au sixième orifice 56 du bloc valve 50 sont ici typiquement considérés comme étant des éléments exposés du système. Les liaisons sont en effet typiquement réalisées au moyen de tuyautages tels que des conduits flexibles, ou des éléments qui sont positionnés dans des zones exposées d’un dispositif, par opposition au bloc valve 50 et au bloc pompe 10 qui sont des éléments protégés par un carter.
[0040] Le bloc valve 50 comprend ici une valve d’assistance 60, une valve de pilotage 70 et un circuit de gavage 80.
[0041 ] La valve d’assistance 60 telle que proposée est une valve du type 5/2, c’est- à-dire une valve présentant 5 orifices et deux configurations.
[0042] La valve d’assistance 60 comprend :
- un premier orifice 61 relié au premier orifice 51 du bloc valve 50.
- un deuxième orifice 62 relié au deuxième orifice 52 du bloc valve 50.
- un troisième orifice 63 relié au quatrième orifice 54 du bloc valve 50.
- un quatrième orifice 64 relié au septième orifice 57 du bloc valve 50 via deux voies parallèles ; une première voie munie de deux soupapes tarées 104 et 102 successives, et une seconde voie munie d’une restriction 106.
- un cinquième orifice 65 relié au cinquième orifice 55 du bloc valve 50.
[0043] La valve d’assistance 60 est pilotée par une première commande 66 hydraulique couplée à un moyen de rappel 67 tendant à positionner la valve d’assistance dans une première configuration, auxquels s’oppose une seconde commande 68 hydraulique adaptée pour positionner la valve d’assistance 60 dans une seconde configuration.
[0044] Dans sa première configuration, que l’on qualifie de configuration de roue libre, la valve d’assistance 60 relie son premier orifice 61 à son second orifice 62, et relie son troisième orifice 63 à son quatrième orifice 64 et à son cinquième orifice 65. Cette configuration vient ainsi isoler le moteur hydraulique 20 de la pompe hydraulique 12, l’admission et le refoulement du moteur hydraulique 20 étant alors reliés au réservoir R.
[0045] Dans sa seconde configuration, que l’on qualifie de configuration d’assistance, la valve d’assistance 60 relie son premier orifice 61 à son troisième orifice 63, son deuxième orifice 62 à son cinquième orifice 65, alors que son quatrième orifice 64 est obturé. Cette seconde configuration permet ainsi de relier la pompe hydraulique 12 au moteur hydraulique 20, et ainsi de réaliser une fonction d’entrainement.
[0046] La valve de pilotage 70 telle que représentée est une valve 4/2, c’est-à-dire une valve présentant 4 orifices et 2 configurations. Dans l’exemple illustré, la valve de pilotage 70 comprend :
- un premier orifice 71 relié au troisième orifice 53 du bloc valve 50,
- un deuxième orifice 72 relié à la première commande 66 de la valve d’assistance 60 et au septième orifice 57 du bloc valve 50,
- un troisième orifice 73 relié à la seconde commande 68 de la valve d’assistance 60,
- un quatrième orifice 74 relié d’une part au sixième orifice 56 du bloc valve 50, et d’autre part au septième orifice 57 du bloc valve 50 via la soupape tarée 102. La valve d’assistance 70 est pilotée par une commande, 76, typiquement une commande électrique, à laquelle s’oppose un moyen de rappel élastique 77 tel qu’un ressort, de moyen à alterner entre deux configurations.
[0047] Dans une première configuration, le premier orifice 71 est relié au quatrième orifice 74, et le deuxième orifice 72 est relié au troisième orifice 73. Dans une seconde configuration, le premier orifice 71 est relié au troisième orifice 73, et le deuxième orifice 72 est relié au quatrième orifice 74.
[0048] En variante, la valve de pilotage 70 est une valve reliant le troisième orifice 53 du bloc valve 50 à la seconde commande 68 de la valve d’assistance 60, et alternant entre une configuration passante (pouvant être proportionnelle ou du type tout ou rien) et une configuration non passante. La valve de pilotage 70 peut alors être une valve 2/2, c’est-à-dire une valve présentant 2 orifices et deux configurations. Dans une telle variante, la valve de pilotage permet de relier ou d’isoler le troisième orifice 53 du bloc valve 50 par rapport à la seconde commande 68 de la valve d’assistance 60 ; il est ainsi piloté entre une configuration passante (ou ouverte) et une configuration non passante (ou fermée). Une telle variante peut notamment être utilisée lorsqu’il n’est pas prévu d’appliquer une pression dans le carter du moteur hydraulique 20.
[0049] Le circuit de gavage 80 présente une structure connue ; il comprend ici deux limiteurs de pression reliés respectivement au premier orifice 51 et au deuxième orifice 52 du bloc valve 50, de manière à ce que tout ou partie du débit délivré par la pompe de gavage 40 puisse être injecté dans la branche basse pression du circuit hydraulique lorsque la pression au sein du circuit de gavage 80 dépasse une valeur seuil prédéterminée.
[0050] Le circuit de gavage est relié au troisième orifice 53 du bloc valve 53, en amont de la valve de pilotage 70.
[0051 ] Dans l’exemple illustré, le système comprend également un bloc d’échange 90 optionnel, relié au bloc valve 50 via deux orifices additionnels, reliés respectivement au premier orifice 51 et au deuxième orifice 52 du bloc valve 50. En variante, le bloc d’échange 90 peut être intégré au bloc valve 50.
[0052] Le bloc d’échange 90 tel que représenté comprend un distributeur 3 orifices à 3 positions 92, relié aux deux branches du circuit hydraulique d’une part, et au réservoir R via un limiteur de pression 94 d’autre part. Le bloc d’échange 90 est adapté pour réaliser un débit calibré de fuite vers le réservoir R depuis la branche basse pression du circuit hydraulique. Le bloc d’échange 90 permet ainsi d’assurer un renouvellement de l’huile dans la boucle fermée du système, afin de réaliser une filtration et un refroidissement de l’huile.
[0053] On décrit à présent un exemple de fonctionnement du système ainsi présenté.
[0054] En l’absence de consigne, la valve d’assistance 60 et la valve de pilotage 70 sont maintenues dans leurs premières configurations respectives. Le moteur hydraulique 20 et la pompe hydraulique 12 sont alors isolés l’un de l’autre. La pompe de gavage 40 est reliée au carter du moteur hydraulique 20 de manière à appliquer une pression donnée dans le volume interne du carter du moteur hydraulique 20, calibrée par la soupape tarée 102. Cette pression appliquée dans le volume interne du carter du moteur hydraulique 20 vient rétracter les pistons du moteurs hydraulique dans leurs logements respectifs du bloc cylindres, et ainsi les désengager de la surface de roulement associée, typiquement une came multilobes ou un disque incliné, ce qui positionne ainsi le moteur hydraulique 20 dans une configuration de cylindrée nulle. C’est cette configuration qui est représentée sur la figure 2. En variante, la valve de pilotage 70 est en configuration non passante ; le débit délivré par la pompe de gavage 40 est alors injecté dans le circuit hydraulique via le circuit de gavage 80.
[0055] Pour engager l’assistance hydraulique, on actionne la commande 76 de la valve de pilotage 70. Le volume interne du carter du moteur hydraulique 20 est alors relié au réservoir R, et est donc à pression ambiante.
[0056] La valve de pilotage 70 bascule alors dans sa seconde configuration, ce qui vient appliquer une pression sur la valve d’assistance 60 via sa seconde commande 68, et ainsi la faire basculer dans sa seconde configuration, ce qui vient relier la pompe hydraulique 12 au moteur hydraulique 20. L’application d’une pression à l’admission du moteur hydraulique 20 va le cas échéant venir faire sortir les pistons de leurs logements pour passer le moteur hydraulique 20 en configuration active, c’est-à-dire avec une cylindrée non nulle. La figure 3 illustre une telle configuration.
[0057] Pour désengager le système, on désactive la commande 76 de la valve de pilotage 70, ce qui vient alors entrainer le retour de la valve d’assistance 60 dans sa première configuration, et le retour du système dans une configuration de roue libre.
[0058] Par rapport aux systèmes antérieurs, notamment un système tel que décrit précédemment en référence à la figure 1 , on comprend ici que le bloc valve 50 tel que proposé permet de venir scinder le circuit hydraulique en deux boucles distinctes lorsque le système 1 est en configuration de roule libre.
[0059] Une telle fonctionnalité permet ainsi d’éviter une fuite importante de fluide en cas de rupture d’une conduite hydraulique. En effet, comme déjà indiqué en introduction de la présente demande de brevet, le bloc valve 50 et le bloc pompe 10 sont typiquement des composants logés dans des carters rigides, alors que les conduits hydrauliques reliant le bloc valve 50 au moteur hydraulique 20 sont communément composés d’un tuyautage apparent et comportant des éléments flexibles et exposés au milieu ambiant, qui sont donc plus susceptibles de se rompre, d’être écrasés ou arrachés lors de l’utilisation du véhicule ou de l’engin. On peut donc considérer qu’il y a une partie de circuit protégé entre les pompes 20, 40 et le bloc valve 50, et une partie de circuit exposée entre le bloc valves 50 et les moteurs hydrauliques 20. Or cas de rupture d’un élément de la partie exposée du circuit hydraulique, la pompe de gavage 40 viendrait déverser le contenu du réservoir R vers le milieu ambiant. La structure de bloc valve 50 telle que proposée permet d’éviter une telle problématique, dans la mesure où elle permet de subdiviser le système en deux circuits hydrauliques disjoints, et ainsi de faire basculer la pompe hydraulique 12 et le circuit de gavage 80 associé dans un circuit hydraulique isolé d’une éventuelle fuite.
[0060] La commande 76 de la valve de pilotage 70 permet ainsi de piloter l’ensemble du système. La valve de pilotage 70 permet de s’assurer du retrait des pistons lorsque le système passe en configuration de roue libre, ce qui permet d’éviter tout risque d’endommager le moteur hydraulique 20.
[0061 ] Le système comprend typiquement une unité de commande 35 tel qu’un calculateur ou une unité de contrôle électronique, communément désignée par l’acronyme en langue anglaise « ECU ». L’unité de commande 35 est typiquement configurée de manière à piloter la commande 76 de la valve de pilotage 70.
[0062] L’unité de commande 35 est typiquement associée à des capteurs de pression PA, PR et PG. Ces capteurs de pression PA, PR et PG sont typiquement adaptés pour mesurer la pression respectivement au quatrième orifice, au cinquième orifice et au troisième orifice du bloc valve 50, ce qui correspond respectivement à la pression aux deux orifices du moteur hydraulique 20, et à l’entrée du circuit de gavage 80, et délivrent un signal traduisant la pression mesurée à l’utilité de commande 35.
[0063] L’unité de commande 35 peut ainsi, au moyen des valeurs de pression mesurées, identifier une potentielle fuite dans le circuit hydraulique, qui peut se traduire notamment par une chute de pression à l’admission ou au refoulement du moteur hydraulique 20, et/ou par une incapacité de la pompe de gavage à établir une pression dans le circuit de gavage.
[0064] Dans le cas où l’unité de commande 35 détecte une telle fuite potentielle dans le système, elle peut alors arrêter le pilotage de la commande 76 de la valve de pilotage 70 de manière à ramener la valve de pilotage 70 et par conséquent la valve d’assistance 60 dans leurs premières configurations respectives, ce qui place alors le système en configuration de roue libre et isole la pompe de gavage 40 et le bloc pompe 10 du moteur hydraulique 20 au niveau duquel la fuite est susceptible de se situer. L’unité de commande 35 peut alors être configurée pour envoyer un signal ou une consigne qui va entrainer un signal à destination de l’utilisateur, par exemple via un signal visuel ou sonore, pour que ce dernier soit alors informé d’une potentielle fuite dans le système. En variante, la valve de pilotage 70 peut être pilotée manuellement par l’utilisateur, qui peut par exemple utiliser une commande pour piloter la valve de pilotage 70 pour passer en configuration de roule libre, par exemple suite à l’actionnement d’un signal émis par l’unité de commande 35.
[0065] Le système d’assistance hydraulique tel que proposé peut être appliqué pour tout type de dispositif comprenant un organe ou un essieu qui peut ainsi être sélectivement entrainé en rotation par le système d’assistance hydraulique 1 , par exemple un véhicule, un engin, une machine, une remorque ou un attelage.
[0066] Bien que la présente invention ait été décrite en se référant à des exemples de réalisation spécifiques, il est évident que des modifications et des changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En particulier, des caractéristiques individuelles des différents modes de réalisation illustrés/mentionnés peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.
[0067] Il est également évident que toutes les caractéristiques décrites en référence à un procédé sont transposables, seules ou en combinaison, à un dispositif, et inversement, toutes les caractéristiques décrites en référence à un dispositif sont transposables, seules ou en combinaison, à un procédé.

Claims

Revendications
[Revendication 1] Système d’assistance hydraulique (1 ) comprenant un bloc pompe (10), comprenant une pompe hydraulique (12), le bloc pompe présentant un premier orifice et un second orifice définissant une admission et un refoulement, un moteur primaire (M) et un embrayage (30), ladite pompe hydraulique (12) étant couplée au moteur primaire (M) via l’embrayage (30) une pompe de gavage (40), couplée au moteur primaire (M), adaptée pour prélever un fluide dans un réservoir (R) et délivrer un débit de gavage, un moteur hydraulique (20) adapté pour entrainer un organe en rotation, le moteur hydraulique (20) présentant un premier orifice et un second orifice définissant une admission et un refoulement, un bloc valve (50), adapté pour relier le bloc pompe (10) et la pompe de gavage (40) au moteur hydraulique (M) de manière à former un circuit hydraulique, dans lequel le bloc valve (50) comprend une valve d’assistance (60), adaptée pour, dans une première configuration, relier le refoulement du bloc pompe (10) à l’admission du bloc pompe, et relier l’admission et le refoulement du moteur hydraulique (20) au réservoir, dans une seconde configuration, relier le refoulement du bloc pompe (10) à l’admission du moteur hydraulique (20) et le refoulement du moteur hydraulique (20) à l’admission du bloc pompe (10), une valve de pilotage (70), adaptée pour, sélectivement relier la pompe de gavage (40) à une commande hydraulique (68) tendant à positionner la valve d’assistance (60) dans sa seconde configuration, ledit système étant caractérisé en ce que la valve de pilotage (70) est adaptée pour, dans une première configuration, relier la pompe de gavage (40) à un carter du moteur hydraulique (20), la valve d’assistance (60) étant alors dans sa première configuration, et pour, dans une seconde configuration, relier la pompe de gavage (40) à une commande hydraulique (68) tendant à positionner la valve d’assistance (60) dans sa seconde configuration.
[Revendication 2] Système d’assistance hydraulique (1 ) selon la revendication 1 , dans lequel le bloc pompe (10) comprend en outre un circuit de gavage (80), relié à la pompe de gavage (40) en amont de la valve de pilotage (70), ledit circuit de gavage (80) étant adapté pour réaliser un gavage dans une branche du circuit hydraulique.
[Revendication 3] Système d’assistance hydraulique (1 ) selon l’une des revendications 1 ou 2, dans lequel la valve de pilotage (70) est une électrovanne pilotée par un actionneur électrique (76) auquel s’oppose un moyen de rappel (77), le moyen de rappel (77) tendant à positionner la valve de pilotage (70) dans sa première configuration.
[Revendication 4] Système d’assistance hydraulique (1 ) selon l’une des revendications 1 à 3, dans lequel la valve d’assistance (60) présente
- un premier orifice (61 ) et un deuxième orifice (62) reliés respectivement au refoulement et à l’admission du bloc pompe (10)
- un troisième orifice (63) et un cinquième orifice (65) relié respectivement à l’admission et au refoulement du moteur hydraulique,
- un quatrième orifice (64) relié au réservoir (R), le valve d’assistance étant configurée de manière à alterner entre :
- une première configuration, dans laquelle le premier orifice (61 ) est relié au deuxième orifice (62), et le troisième orifice (63), le quatrième orifice (64) et le cinquième orifice (65) sont reliés, et
- une seconde configuration, dans laquelle le premier orifice (61 ) est relié au troisième orifice (63), le deuxième orifice (62) est relié au cinquième orifice (65), et le quatrième orifice (64) est obturé.
[Revendication 5] Système d’assistance hydraulique (1 ) selon l’une des revendications 1 à 4, comprenant en outre un dispositif de détection de fuites dans le circuit hydraulique, ledit dispositif de détection de fuites comprenant un contrôleur (35) et une pluralité de capteurs de pression (PA, PR, PG), le contrôleur (35) étant configuré pour détecter la présence de fuites dans le circuit hydraulique, et pour basculer la valve de pilotage (70) dans sa première configuration lorsqu’une fuite est détectée.
[Revendication 6] Système d’assistance hydraulique (1 ) selon la revendication 5, comprenant au moins un capteur de pression parmi : 18
- un capteur de pression adapté pour mesurer la pression à l’admission du moteur hydraulique (20),
- un capteur de pression adapté pour mesurer la pression au refoulement du moteur hydraulique (20), - un capteur de pression adapté pour mesurer la pression délivrée par la pompe de gavage (40), en amont du bloc valve (50).
[Revendication 7] Système d’assistance hydraulique (1 ) selon l’une des revendications 1 à 6, comprenant en outre un bloc d’échange (90), adapté pour réaliser un écoulement calibré de fluide depuis l’admission du bloc pompe (10) vers le réservoir (R).
[Revendication 8] Système d’assistance hydraulique (1 ) selon l’une des revendications 1 à 7, dans lequel le circuit hydraulique reliant le bloc pompe (10) au moteur hydraulique (20) est un circuit hydraulique en boucle fermée.
[Revendication 9] Dispositif comprenant un système d’assistance hydraulique selon l’une des revendications 1 à 8, le dispositif comprenant un organe adapté pour être entrainé en rotation par le moteur hydraulique (20).
PCT/FR2021/051827 2020-10-23 2021-10-20 Circuit d'assistance hydraulique avec structure de valve amelioree WO2022084623A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010899A FR3115571B1 (fr) 2020-10-23 2020-10-23 Circuit d’assistance hydraulique avec structure de valve améliorée.
FRFR2010899 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022084623A1 true WO2022084623A1 (fr) 2022-04-28

Family

ID=73793491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051827 WO2022084623A1 (fr) 2020-10-23 2021-10-20 Circuit d'assistance hydraulique avec structure de valve amelioree

Country Status (2)

Country Link
FR (1) FR3115571B1 (fr)
WO (1) WO2022084623A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159501A (ja) * 1992-11-24 1994-06-07 Komatsu Ltd 4輪走行装置の油圧駆動系異常検出装置
EP0993982A1 (fr) * 1998-10-12 2000-04-19 Poclain Hydraulics Industrie Dispositif d'assistance motrice pour un véhicule ayant une transmission principale mécanique
EP2361798A1 (fr) 2010-02-18 2011-08-31 Poclain Hydraulics Industrie Système de transmission hydraulique dont la pompe principale peut être actionnée en permanence
WO2011128556A1 (fr) 2010-04-16 2011-10-20 Poclain Hydraulics Industrie Dispositif de transmission hydraulique permettant un crabotage peu bruyant.
WO2019058058A1 (fr) * 2017-09-22 2019-03-28 Poclain Hydraulics Industrie Bloc d'alimentation pour au moins une machine hydraulique
FR3083839A1 (fr) * 2018-07-16 2020-01-17 Poclain Hydraulics Industrie Circuit d'assistance hydraulique comprenant des moyens de gavage ameliores

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159501A (ja) * 1992-11-24 1994-06-07 Komatsu Ltd 4輪走行装置の油圧駆動系異常検出装置
EP0993982A1 (fr) * 1998-10-12 2000-04-19 Poclain Hydraulics Industrie Dispositif d'assistance motrice pour un véhicule ayant une transmission principale mécanique
EP2361798A1 (fr) 2010-02-18 2011-08-31 Poclain Hydraulics Industrie Système de transmission hydraulique dont la pompe principale peut être actionnée en permanence
WO2011128556A1 (fr) 2010-04-16 2011-10-20 Poclain Hydraulics Industrie Dispositif de transmission hydraulique permettant un crabotage peu bruyant.
WO2019058058A1 (fr) * 2017-09-22 2019-03-28 Poclain Hydraulics Industrie Bloc d'alimentation pour au moins une machine hydraulique
FR3083839A1 (fr) * 2018-07-16 2020-01-17 Poclain Hydraulics Industrie Circuit d'assistance hydraulique comprenant des moyens de gavage ameliores

Also Published As

Publication number Publication date
FR3115571B1 (fr) 2023-01-27
FR3115571A1 (fr) 2022-04-29

Similar Documents

Publication Publication Date Title
EP2361798B1 (fr) Système de transmission hydraulique dont la pompe principale peut être actionnée en permanence
EP3126175B1 (fr) Système d'assistance hydraulique
EP3398823B1 (fr) Circuit de freinage hydraulique amélioré
EP3480458A1 (fr) Machine hydraulique comprenant un système de freinage amélioré
WO2008116996A1 (fr) Dispositif de transmission hydrostatique d'un engin mobile
EP3041701B1 (fr) Véhicule comprenant une transmission hydrostatique comprenant un embrayage réalisant une fonction de différentiel
WO2022084623A1 (fr) Circuit d'assistance hydraulique avec structure de valve amelioree
EP3532366B1 (fr) Système d'assistance à l'entraînement de véhicule comprenant un circuit hydraulique ouvert
WO2022084639A1 (fr) Circuit d'assistance hydraulique ameliore
EP3824205B1 (fr) Circuit d'assistance hydraulique comprenant des moyens de gavage ameliores
EP4077977B1 (fr) Système d'assistance hydraulique ouvert amélioré
FR2974038A1 (fr) Dispositif de transmission hydrostatique conferant une motricite elevee
EP3820748B1 (fr) Procede et circuit de freinage hydraulique d'urgence ameliores pour attelage
FR3108291A1 (fr) transmission hydraulique avec freinage d’urgence.
FR3026684A1 (fr) Procede de commande d'une transmission hydrostatique d'un vehicule automobile
FR2964073A1 (fr) Commande hydraulique de freinage en particulier pour vehicule automobile
EP3126176A1 (fr) Systeme d'assistance hydraulique pour vehicule
EP3532752B1 (fr) Système d'assistance à l'entraînement de véhicule comprenant un circuit hydraulique ouvert
WO2023118756A1 (fr) Architecture hydraulique amelioree pour couplage d'un circuit hydraulique secondaire
EP3222478B1 (fr) Dispositif de freinage redondant
FR3035829A1 (fr) Systeme d'assistance hydraulique pour engins motorises a circuit ouvert
WO2019211279A1 (fr) Systeme de transmission hydraulique de puissance pour vehicule
FR3075732A1 (fr) Vehicule comprenant un dispositif de mise a l'arret controle du moteur principal et un dispositif d'assistance a l'entrainement
FR3051518A1 (fr) Systeme de gestion de cylindree pour tete d'ebranchage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21810078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21810078

Country of ref document: EP

Kind code of ref document: A1