WO2022084563A1 - Baldosa fotovoltaica destinada a ser instalada en pavimentos exteriores transitables - Google Patents

Baldosa fotovoltaica destinada a ser instalada en pavimentos exteriores transitables Download PDF

Info

Publication number
WO2022084563A1
WO2022084563A1 PCT/ES2021/070661 ES2021070661W WO2022084563A1 WO 2022084563 A1 WO2022084563 A1 WO 2022084563A1 ES 2021070661 W ES2021070661 W ES 2021070661W WO 2022084563 A1 WO2022084563 A1 WO 2022084563A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
photovoltaic tile
tile
matrix base
layer
Prior art date
Application number
PCT/ES2021/070661
Other languages
English (en)
French (fr)
Other versions
WO2022084563A4 (es
Inventor
Antonio CABRERA GARCIA-DONCEL
Luis Eduardo MUÑOZ LOMBARDO
Carlos RODRIGUEZ OSORIO
Original Assignee
Solum Photovoltaic Innovation, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solum Photovoltaic Innovation, S.L. filed Critical Solum Photovoltaic Innovation, S.L.
Publication of WO2022084563A1 publication Critical patent/WO2022084563A1/es
Publication of WO2022084563A4 publication Critical patent/WO2022084563A4/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/21Supporting structures directly fixed to an immovable object specially adapted for motorways, e.g. integrated with sound barriers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/46Special adaptation of floors for transmission of light, e.g. by inserts of glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • E01C5/22Pavings made of prefabricated single units made of units composed of a mixture of materials covered by two or more of groups E01C5/008, E01C5/02 - E01C5/20 except embedded reinforcing materials
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C9/00Special pavings; Pavings for special parts of roads or airfields
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground

Definitions

  • the present invention relates to a photovoltaic tile intended to be installed on walkable outdoor pavements that falls within the field of photovoltaic pavement design. More particularly, the present invention describes a photovoltaic tile that comprises an upper layer of polymeric material laminated on the photovoltaic element provided with a layer of resin, preferably bicomponent polyurethane, with additives of hollow glass microspheres and an additive of powder particles. that have a lesser impact on the efficiency of photovoltaic generation than other solutions and simultaneously achieve adequate mechanical resistance and also the slip resistance necessary for walkable pavements, where the photovoltaic tile is configured to be installed on the existing pavement in such a way a way that also allows to reduce installation times and costs.
  • the photovoltaic pavement is a concept that has been tried to develop previously in the state of the art.
  • the known documents prioritize anti-slip and mechanical resistance before energy performance.
  • they seek to use a macro texture in the upper layer, which considerably impacts the performance of the photovoltaic components, since it hinders the absorption of solar radiation by the photovoltaic cells.
  • the known documents suppose a sink that facilitates the deposition of dirt, which is a pressing problem in this application as it increases maintenance work and costs for cleaning.
  • crushed glass fragments are used in the upper layer of the tiles or pavements to provide greater roughness or, alternatively, slit reliefs on the upper face, considerably increasing reflectivity and consequently reducing energy production.
  • these known designs favor the accumulation of dirt and particles that reduce photovoltaic production.
  • the present invention aims to solve some of the problems mentioned in the state of the art. More particularly, the present invention describes a photovoltaic tile intended to be installed on walkable outdoor pavements, comprising:
  • photovoltaic tile further comprises an upper layer comprising, at least, a first layer of a polymeric material laminated on the photovoltaic laminate, where said first layer in turn comprises a coating of resin with additives of mixed hollow glass microspheres and with an additive of powder particles.
  • the upper layer can be provided with a single first layer or can comprise a combination of layers that includes different types of polymers, depending on the properties that are sought to be incorporated from each of them.
  • the upper layer of polymeric material comprises highly transparent thermoplastic polyurethane.
  • the upper layer can comprise an additional material that has a structural matrix that serves as a filter against infrared radiation.
  • this additional material comprises a thermoplastic polyurethane film.
  • the upper layer comprises a coating that in turn comprises a mixture of polyurethane resin with an additive of hollow glass microspheres (HGM) in a weight percentage of 0.05% to 10% weight percentage with respect to the majority component.
  • HGM hollow glass microspheres
  • bicomponent resin mixed with an additive that gives roughness to the surface such as, for example, a transparent high-density polyethylene powder or a polyamide additive thicker than the first in a percentage by weight of 0.1% to 10% percentage by weight with respect to the majority component of bicomponent resin.
  • the hollow microspheres (HGM) additive comprises a weight percentage of 0.1 to 2% relative to the resin. More preferably, from 0.5% to 1%.
  • the powder particle additive may comprise a percentage by weight of 1% to 10% with respect to the resin. Preferably from 2% to 6% and preferably from 3 to 5%.
  • the resin coating of the first layer can be a bicomponent resin with additives of mixed hollow glass microspheres and with an additive of powder particles, in any of the aforementioned ranges for each of said additives.
  • the upper layer also comprises a sealing layer made of two-component polyurethane-based resin, the purpose of which is to protect against abrasive loads on the hollow glass microspheres that make up a first layer of the coating.
  • the tile described above protects walkable outdoor pavements against loads and impacts. Note that, in a conventional solar panel, the impacts are absorbed by the light collection and transmission medium itself, for example, 3.2mm ultra-clear tempered glass. To adapt the photovoltaic technology to the conditions of use of the pavement, this thickness is insufficient.
  • the upper layer described allows to achieve the necessary grip of the passer-by through the appropriate roughness, thus guaranteeing safety against slipping.
  • the upper layer with the corresponding coating described achieves the degree of anti-slip that guarantees pedestrian safety in both wet and dry conditions.
  • tempered glass conventionally installed in photovoltaic panels favors the accumulation of dust and other residues, especially if they are installed on a horizontal plane, causing production losses due to fouling. This has been solved with the technical characteristics described.
  • the upper layer of polymeric material laminated on the photovoltaic laminate which comprises a resin coating, preferably bicomponent polyurethane with an additive of mixed hollow glass microspheres and with an additive of dust particles, such as those mentioned above, allows to avoid losses of production by soiling since it does not present reliefs on its upper face, like other solutions in the state of the art, such as, for example, crushed glass fragments. These properties also allow easier cleaning, and therefore simplify maintenance work.
  • the coating described also has a lower reflectivity index than other known solutions, thus increasing the percentage of solar radiation that reaches the photovoltaic panel.
  • the preferred embodiment that comprises the sealing layer of resin, for example, bicomponent based on polyurethane, together with a first layer that also comprises hollow glass microspheres, provides the photovoltaic tile with hydrophobic properties on its surface. More particularly, it exerts a surface tension on the water that comes into contact with the surface, repelling it. This prevents the accumulation of liquids on said surface and facilitates its cleaning by gravity.
  • the hollow glass microspheres have a lower thermal conductivity than glass, therefore, they reduce the transmission of heat from cells to the outside, thus preventing the surface from being at a high temperature that could harm a passer-by.
  • one of the polymer layers comprises infrared radiation reflective properties, preventing the photovoltaic cells from overheating unnecessarily.
  • the photovoltaic element is a commercial photovoltaic laminate for electricity generation widely known and used in the state of the art, such as, for example, a commercial photovoltaic laminate comprising a circuit of photovoltaic cells packed in EVA between a sheet of fluoride of polyvinyl (PVF) and another made of tempered glass (3.2 mm thick), in this case without anti-reflective treatment.
  • a commercial photovoltaic laminate comprising a circuit of photovoltaic cells packed in EVA between a sheet of fluoride of polyvinyl (PVF) and another made of tempered glass (3.2 mm thick), in this case without anti-reflective treatment.
  • the photovoltaic tile described by the present invention does not require a special design of photovoltaic modules, and allows commercial photovoltaic laminates to be accommodated. This significantly reduces manufacturing costs.
  • the matrix base and the described components of the photovoltaic tile allow to house any type of cell on the market, such as rigid, flexible cells, monocrystalline silicon, polycrystalline silicon, cadmium telluride, high efficiency cells, etc.
  • the perimeter frame of the matrix base comprises a plurality of perimeter holes passing through to the outside intended to house the interconnection wiring.
  • the matrix base serves as an exit point for the interconnection wiring between generation units and the elements for gripping the ground.
  • An inner space or chamber may be arranged between the matrix base and the photovoltaic laminate, wherein said inner chamber or space is provided with a filler.
  • Said filling may comprise polyurethane foam and/or marble gravel to increase thermal transmission from the photovoltaic cells to the outside.
  • the inner chamber can have different configurations.
  • the matrix base comprises a perimeter frame and a plurality of ribs that define through slots.
  • the space that makes up said configuration between the photovoltaic laminate and the space defined internally up to the ground is defined as the interior chamber or space that includes the aforementioned filling.
  • the matrix base comprises a plurality of convex sections, which could be attached directly to the ground without the need for the lower part.
  • Photovoltaic cells are silicon sheets 200 pm thick, so they are very fragile. It is therefore essential to avoid vertical displacements that produce micro-breaks in them that irreversibly degenerate into efficiency losses.
  • the proposed support structure with said photovoltaic cells arranged on the proposed matrix base fulfills said task for any load produced by pedestrians.
  • the lower part is attached to the floor by means of an anchoring mechanism provided with a plurality of plates screwed to the floor.
  • said anchoring mechanism can be provided with rails provided with threaded cylinders adapted to coincide with holes in the lower part and in the upper frame configured in such a way to join said lower part with the upper frame by means of joining means that these threaded cylinders penetrate.
  • Figure 1 Shows an exploded perspective view of the preferred embodiment of the photovoltaic tile showing the upper frame, the matrix base, the lower part and the upper layer comprising a thermoplastic polyurethane film with a polyurethane resin coating. with an additive of hollow glass microspheres and an additive of dust particles.
  • Figure 2. Shows a perspective view of a plurality of adjacent photovoltaic tiles according to the present invention, forming a walkable photovoltaic pavement.
  • Figure 3. Shows a view of section A-A of figure 2, where the filling, the photovoltaic laminate, the matrix base and the perimeter ramp are shown.
  • Figure 4.- Shows a view of section B-B of figure 2, where the filling, the photovoltaic laminate, the matrix base and the intermediate flashing are shown.
  • Figure 5. Shows a perspective view of a second preferred embodiment, where the matrix base comprises a plurality of convex sections and where said matrix base is attached to the ground.
  • Figure 1 shows an exploded view of the photovoltaic tile (1) where it is shown that it comprises a lower part (2) attached to the ground and embedded in a matrix base (3), where said matrix base (3) comprises a perimeter frame (11). ) and a plurality of ribs (10) defining grooves (14).
  • a photovoltaic laminate (4) is placed on said matrix base (3) defining a lower chamber that includes a filler (13) as shown in Figure 3 and Figure 4.
  • said filling (13) comprises polyurethane foam and/or marble gravel to increase thermal transmission from the photovoltaic cells to the outside.
  • figure 1 shows an upper layer (5) laminated on the photovoltaic laminate (4) which in the preferred embodiment described comprises a first layer (17) of a thermoplastic polyurethane film, which is subsequently covered with a coating (18). comprising a bicomponent polyurethane resin (20).
  • the first layer (17) of thermoplastic polyurethane film in turn comprises a coating (18) of bicomponent polyurethane resin (20) with hollow glass microspheres (9) mixed with an additive of powder particles (8) that in a
  • the preferred embodiment consists of transparent high-density polyethylene powder that is thicker than the hollow glass spheres (9).
  • the upper layer (5) in one of its layers comprises a polymeric material with reflective properties of infrared radiation so as not to heat the photovoltaic laminate (4) unnecessarily.
  • figure 1 shows an upper frame (6) rigidly attached to the lower part (2) by means of an anchoring system (7) which in turn comprises rails provided with threaded cylinders adapted to coincide with holes in the lower part (2) and the upper frame (6) configured to join said lower part (2) with the upper frame (6).
  • an anchoring system (7) which in turn comprises rails provided with threaded cylinders adapted to coincide with holes in the lower part (2) and the upper frame (6) configured to join said lower part (2) with the upper frame (6).
  • the lower part (2) is attached to the floor by means of plates that are rigidly coupled to said lower part (2) and screwed to the floor.
  • Figure 2 shows a perspective view of a plurality of photovoltaic tiles (1) according to the present invention, forming a walkable photovoltaic pavement with considerable photovoltaic performance and simultaneously with sufficient mechanical strength and roughness for pedestrian traffic and even light vehicles.
  • the photovoltaic laminates (4) can be of the commercial type and sized to be housed in the photovoltaic tiles (1) described above and connected in series/parallel depending on the surface of the walkable exterior pavement and the needs of the installation.
  • Figure 3 shows a view of section A-A of the preferred embodiment described by figure 2, where it is shown that the inner chamber between the matrix base (3) and the lower part (2) is provided with a filling (13) that It comprises polyurethane foam and marble gravel.
  • Figure 4 shows a view in section B-B of the preferred embodiment described by figure 2.
  • Figure 5 shows an alternative embodiment that does not have the lower part (2) and where the matrix base (3) is attached directly to the ground.
  • the preferred embodiment of figure 5 comprises a matrix base (3) with a configuration without through slots and alternatively comprising a configuration provided with a plurality of convex sections (15).

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Baldosa fotovoltaica (1) destinada a ser instalada en pavimentos exteriores transitables, que comprende: un laminado fotovoltaico (4) dispuesto sobre una base matriz (3), donde dicho laminado fotovoltaico (4) comprende una pluralidad de celdas fotovoltaicas, en la que dicha baldosa fotovoltaica (1) comprende, además, un estrato superior (5) que comprende, al menos, una primera capa (17) de un material polimérico laminado sobre el laminado fotovoltaico (4), y dicha primera capa (17) comprende a su vez un recubrimiento (18) de resina (20) con aditivos de microesferas huecas (9) de vidrio mezcladas y con un aditivo de partículas de polvo (8), permitiendo así la resistencia mecánica y al deslizamiento necesario de la baldosa fotovoltaica (1) para pavimentos transitables y permitiendo además ser instalada sobre el pavimento ya existente de tal forma que reduce tiempos de instalación y costes.

Description

BALDOSA FOTOVOLTAICA DESTINADA A SER INSTALADA EN PAVIMENTOS EXTERIORES TRANSITABLES
Figure imgf000003_0001
OBJETO DE LA INVENCIÓN
La presente invención se refiere a una baldosa fotovoltaica destinada a ser instalada en pavimentos exteriores transitables que se engloba en el campo de diseño de pavimentos fotovoltaicos. Más en particular, la presente invención describe una baldosa fotovoltaica que comprende una estrato superior de material polimérico laminado sobre el elemento fotovoltaico provista de una capa de resina, preferentemente de poliuretano bicomponente, con aditivos de microesferas de vidrio huecas y un aditivo de partículas en polvo que impactan en menor medida sobre la eficiencia en la generación fotovoltaica que otras soluciones y simultáneamente consiguen una adecuada resistencia mecánica y además la resistencia al deslizamiento necesaria para pavimentos transitables, donde la baldosa fotovoltaica está configurada para poder ser instalada sobre el pavimento ya existente de tal forma que permite, además, reducir tiempos de instalación y costes.
ANTECEDENTES DE LA INVENCIÓN
El pavimento fotovoltaico es un concepto que se ha intentado desarrollar con anterioridad en el estado de la técnica.
Por ejemplo, los documentos WO 02/101839 y WO 2013/186412 tienen por objeto pavimentos transitables conformados por componentes fotovoltaicos de algún tipo.
Los antecedentes conocidos en el estado de la técnica tienen por objeto lograr un efectivo encapsulamiento de los módulos fotovoltaicos o bien directamente unos pavimentos transitables conformados por componentes fotovoltaicos.
Sin embargo, los documentos conocidos priorizan el antideslizamiento y la resistencia mecánica antes que el rendimiento energético. A fin de conseguir la resistencia al deslizamiento deseada, buscan usar una macro textura en la capa superior, que impacta considerablemente en el rendimiento de los componentes fotovoltaicos, dado que obstaculiza la absorción de la radiación solar por parte de las células fotovoltaicas. Además, los documentos conocidos suponen un sumidero que facilita la deposición de suciedad, lo cual es un problema acuciante en esta aplicación ya que incrementa las labores y costes de mantenimiento en concepto de limpieza.
Además, algunos pavimentos fotovoltaicos utilizan un vidrio especial de mayor espesor para conseguir una resistencia al impacto adecuada para su uso como pavimento, incurriendo en costes significativos.
Asimismo, en el estado de la técnica conocido se utilizan fragmentos de vidrio triturados en la capa superior de las baldosas o pavimentos para aportar mayor rugosidad o alternativamente relieves de hendidura sobre la cara superior, aumentando considerablemente la reflectividad y por consiguiente mermando la producción de energía. Además, estos diseños conocidos, especialmente mediante la utilización de relieves, favorecen la acumulación de suciedad y partículas que merman la producción fotovoltaica.
Asimismo, los diseños que incrementan el espesor del vidrio superior se desvían de los diseños comerciales y no son aptos para ser utilizados con módulos y/o laminados fotovoltaicos comerciales. Como consecuencia, el fabricar este tipo de modelos implica que se ha de habilitar una línea de producción propia, lo cual impide beneficiarse de la economía de escala fruto de la fabricación en masa de los módulos fotovoltaicos incurriendo en costes adicionales difíciles de asumir para ser competitiva.
Todos los antecedentes conocidos, necesitan fabricar un laminado fotovoltaico con características especiales para el propósito acometido, en este caso pavimentos fotovoltaicos con diseños particulares, no pudiendo utilizar laminados fotovoltaicos comerciales.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención pretende solucionar alguno de los problemas mencionados en el estado de la técnica. Más en particular, la presente invención describe una baldosa fotovoltaica destinada a ser instalada en pavimentos exteriores transitables, que comprende:
- un laminado fotovoltaico dispuesto sobre una base matriz, donde dicho laminado fotovoltaico comprende una pluralidad de celdas fotovoltaicas. y donde dicha baldosa fotovoltaica comprende, además, un estrato superior que comprende, al menos, una primera capa de un material polimérico laminado sobre el laminado fotovoltaico, donde dicha primera capa comprende a su vez un recubrimiento de resina con aditivos de microesferas huecas de vidrio mezcladas y con un aditivo de partículas de polvo.
El estrato superior puede estar dotado de una única primera capa o puede comprender una combinación de capas que incluya diferentes tipos de polímeros, en función de las propiedades que se busquen incorporar de cada uno de ellos.
Ventajosamente, el estrato superior de material polimérico comprende poliuretano termoplástico de alta transparencia.
Además, el estrato superior puede comprender un material adicional que disponga de una matriz estructural que sirva de filtro frente a la radiación infrarroja. En una realización preferente este material adicional comprende un film de poliuretano termoplástico.
Preferentemente, el estrato superior comprende un recubrimiento que comprende a su vez una mezcla de resina de poliuretano con aditivo de microesferas de vidrio huecas (HGM) en un porcentaje en peso de 0,05% a 10% de porcentaje en peso respecto al componente mayoritario de resina de bicomponente mezclado con un aditivo que otorgue rugosidad a la superficie, como, por ejemplo, un polvo de polietileno transparente de alta densidad o un aditivo de poliamida de mayor grosor que el primero en un porcentaje en peso de 0,1% a 10% de porcentaje en peso respecto al componente mayoritario de resina de bicomponente.
Preferiblemente, el aditivo de microesferas huecas (HGM) comprende un porcentaje en peso de 0,1 hasta 2% respecto a la resina. Más preferentemente, de 0,5 % a 1%.
Asimismo, el aditivo de partículas de polvo puede comprender un porcentaje en peso de 1% hasta 10% con respecto a la resina. Preferentemente, de 2% a 6% y preferiblemente de 3 a 5%.
El recubrimiento de resina de la primera capa, puede ser una resina bicomponente con aditivos de microesferas huecas de vidrio mezcladas y con un aditivo de partículas de polvo, en cualquiera de los rangos antes mencionados para cada uno de dichos aditivos.
Ventajosamente, el estrato superior comprende, además, una capa de sellado de resina bicomponente con base de poliuretano que tiene como objetivo la protección frente a cargas abrasivas sobre las microesferas de vidrio huecas que componen una primera capa del recubrimiento.
La baldosa descrita arriba, protege frente a cargas e impactos en los pavimentos exteriores transitables. Nótese que, en un panel solar convencional, los impactos son absorbidos por el propio medio de captación y transmisión de la luz, por ejemplo, un vidrio templado ultra claro de 3,2 mm. Para adaptar la tecnología fotovoltaica a las condiciones de uso del pavimento, este espesor es insuficiente.
De la manera descrita arriba, en particular con el estrato superior tratado con el recubrimiento descrito, consigue la protección necesaria sin necesidad de aumentar el espesor del vidrio templado.
Asimismo, el estrato superior descrito permite conseguir el agarre necesario del viandante mediante la rugosidad adecuada, garantizando así la seguridad frente al deslizamiento. Concretamente el estrato superior con el correspondiente recubrimiento descrito consigue el grado de antideslizamiento que garantiza la seguridad del viandante tanto en condiciones húmedas como en secas.
Adicionalmente, el vidrio templado convencionalmente instalado en paneles fotovoltaicos favorece la acumulación de polvo y otros residuos, especialmente si son instalados en un plano horizontal, provocando pérdidas de producción por ensuciamiento. Esto ha sido solucionado con las características técnicas descritas.
El estrato superior de material polimérico laminado sobre el laminado fotovoltaico, que comprende un recubrimiento de resina preferentemente de poliuretano bicomponente con aditivo de microesferas huecas de vidrio mezcladas y con un aditivo de partículas de polvo como, por ejemplo, los mencionados anteriormente, permite evitar pérdidas de producción por ensuciamiento ya que no presenta relieves en su cara superior, como otras soluciones en el estado de la técnica como, por ejemplo, fragmentos de vidrio triturado. Estas propiedades, permiten además una limpieza más sencilla, y por consiguiente simplifica las labores de mantenimiento.
Asimismo, el recubrimiento descrito presenta, además, un menor índice de reflectividad que otras soluciones conocidas, aumentando así el porcentaje de radiación solar que llega al panel fotovoltaico. La realización preferente que comprende la capa de sellado de resina, por ejemplo, de bicomponente con base de poliuretano, en conjunto con una primera capa que comprende además microesferas de vidrio huecas, dota a la baldosa fotovoltaica de propiedades hidrofóbicas en su superficie. Más en particular, ejerce una tensión superficial sobre el agua que entra en contacto con la superficie, repeliéndola. Esto impide la acumulación de líquidos sobre dicha superficie y facilita su limpieza por gravedad.
Las microesferas de vidrio huecas disponen de una menor conductividad térmica que el vidrio, por lo tanto, reducen la transmisión de calor desde células al exterior evitando así que la superficie esté a una temperatura alta que pueda dañar a un viandante.
Asimismo, en una realización preferente, una de las capas poliméricas comprende propiedades reflectantes de radiación infrarroja, evitando que las células fotovoltaicas se sobrecalienten innecesariamente.
Ventajosamente, el elemento fotovoltaico es un laminado fotovoltaico comercial para la generación eléctrica ampliamente conocidos y utilizados en el estado de la técnica, como, por ejemplo, un laminado fotovoltaico comercial que comprende un circuito de células fotovoltaicas envasadas en EVA entre una lámina de fluoruro de polivinilo (PVF) y otra de vidrio templado (3,2 mm de espesor), en este caso sin tratamiento anti-reflectante.
Como consecuencia, la baldosa fotovoltaica descrita por la presente invención no requiere un diseño especial de módulos fotovoltaicos, y permite alojar laminados fotovoltaicos comerciales. Esto reduce significativamente los costes de fabricación.
Más en particular, la base matriz y los componentes descritos de la baldosa fotovoltaica, permiten alojar cualquier tipo de célula del mercado, tales como células rígidas, flexibles, de silicio monocristalino, silicio policristalino, de teluro de cadmio, las células de alta eficiencia, etc.
Ventajosamente, el marco perimetral de la base matriz comprende una pluralidad de orificios perimetrales pasantes al exterior destinados a alojar el cableado de interconexión.
La base matriz sirve de punto de salida para el cableado de interconexión entre unidades de generación y de los elementos de agarre al suelo. Entre la base matriz y el laminado fotovoltaico puede estar dispuesto un espacio o cámara interior, donde dicha cámara interior o espacio está provisto de un relleno. Dicho relleno puede comprender espuma de poliuretano y/o grava marmolítica para aumentar la transmisión térmica desde las células fotovoltaicas al exterior.
La unión de la estructura soporte más el relleno de espuma de poliuretano en una realización preferente que otorgan la estanqueidad y el aislamiento necesario para garantizar la seguridad eléctrica a la baldosa fotovoltaica.
La cámara interior puede presentar distintas configuraciones. Por ejemplo, en una realización preferente, la base matriz comprende un marco perimetral y una pluralidad de nervios que definen unas ranuras pasantes. El espacio que conforma dicha configuración entre el laminado fotovoltaico y el espacio definido interiormente hasta el suelo es definido como la cámara interior o espacio que comprende el relleno antes mencionado.
En otra realización preferente, la base matriz comprende una pluralidad de secciones convexas, que podría unirse directamente al suelo sin necesidad de la pieza inferior.
Las células fotovoltaicas son láminas de silicio de 200 pm de espesor, por lo que presentan gran fragilidad. Es por ello fundamental evitar desplazamientos verticales que produzcan en ellas microrroturas que degeneran en pérdidas de eficiencia de forma irreversible. La estructura soporte propuesta con dichas células fotovoltaicas dispuestas sobre la base matriz propuesta cumple dicho cometido para cualquier carga producida por viandantes.
Ventajosamente, la pieza inferior está unida al suelo por medio de un mecanismo de anclaje provisto de una pluralidad de pletinas atornilladas al suelo.
Además, dicho mecanismo de anclaje puede estar provisto de unos raíles dotados de cilindros roscados adaptados para coincidir con unos orificios de la pieza inferior y del marco superior configurados de tal manera para unir dicha pieza inferior con el marco superior por medio de medios de unión que penetran dichos cilindros roscados.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 Muestra una vista en perspectiva de un despiece de la realización preferente de la baldosa fotovoltaica donde se muestra el marco superior, la base matriz, la pieza inferior y el estrato superior que comprende un film de poliuretano termoplástico con el recubrimiento de resina de poliuretano con un aditivo de microesferas de vidrio huecas y un aditivo de partículas de polvo.
Figura 2.- Muestra una vista en perspectiva de una pluralidad de baldosas fotovoltaicas adyacentes de acuerdo con la presente invención, conformando un pavimento fotovoltaico transitable.
Figura 3.- Muestra una vista de la sección A-A de la figura 2, donde se muestra el relleno, el laminado fotovoltaico, la base matriz y la rampa perimetral.
Figura 4.- Muestra una vista de la sección B-B de la figura 2, donde se muestra el relleno, el laminado fotovoltaico, la base matriz y el tapajuntas intermedio.
Figura 5.- Muestra una vista en perspectiva de una segunda realización preferente, donde la base matriz comprende una pluralidad de secciones convexas y donde dicha base matriz está unida al suelo.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A continuación, se describe con la ayuda de las figuras 1-4, una realización preferente de la baldosa fotovoltaica (1) destinada a ser instalada en pavimentos exteriores transitables.
La figura 1 muestra un despiece de la baldosa fotovoltaica (1) donde se muestra que comprende una pieza inferior (2) unida al suelo y embutida en una base matriz (3), donde dicha base matriz (3) comprende un marco perimetral (11) y una pluralidad de nervios (10) que definen unas ranuras (14).
Sobre dicha base matriz (3) se coloca un laminado fotovoltaico (4) definiendo una cámara inferior que comprende un relleno (13) tal y como se observa en la figura 3 y figura 4. En la realización preferente descrita, dicho relleno (13) comprende espuma de poliuretano y/o grava marmolítica para aumentar la transmisión térmica desde las células fotovoltaicas al exterior.
Asimismo, la figura 1 muestra un estrato superior (5) laminado sobre el laminado fotovoltaico (4) que en la realización preferente descrita comprende una primera capa (17) de un film de poliuretano termoplástico, que posteriormente se recubre con un recubrimiento (18) que comprende una resina (20) de poliuretano bicomponente.
La primera capa (17) de film de poliuretano termoplástico comprende a su vez un recubrimiento (18) de resina (20) de poliuretano bicomponente con microesferas huecas (9) de vidrio mezcladas con un aditivo de partículas de polvo (8) que en una realización preferente consiste en polvo de polietileno transparente de alta densidad de mayor grosor que las esferas huecas (9) de vidrio.
En la realización preferente, el estrato superior (5) en una de sus capas comprenden un material polimérico con propiedades reflectantes de radiación infrarroja para no calentar el laminado fotovoltaico (4) innecesariamente.
Asimismo, la figura 1 muestra un marco superior (6) rígidamente unido a la pieza inferior (2) por medio de un sistema de anclaje (7) que comprende a su vez unos railes dotados de cilindros roscados adaptados para coincidir con unos orificios de la pieza inferior (2) y del marco superior (6) configurados para unir dicha pieza inferior (2) con el marco superior (6).
Tal y como muestra la figura 1 la pieza inferior (2) está unida al suelo por medio de unas pletinas que están rígidamente acopladas a dicha pieza inferior (2) y atornilladas al suelo.
La figura 2 muestra una vista en perspectiva de una pluralidad de baldosas fotovoltaicas (1) de acuerdo con la presente invención, conformando un pavimento fotovoltaico transitable con un considerable rendimiento fotovoltaico y simultáneamente con una resistencia mecánica y una rugosidad suficiente para el tránsito de peatones e incluso vehículos ligeros. Los laminados fotovoltaicos (4) pueden ser del tipo comerciales y dimensionados para ser alojados en las baldosas fotovoltaicas (1) arriba descritas y conectados en serie/paralelo en función de la superficie del pavimento exterior transitable y de las necesidades de la instalación.
La figura 3 muestra una vista de la sección A-A de la realización preferente descrita por la figura 2, donde se muestra que la cámara interior entre la base matriz (3) y la pieza inferior (2) está provista de un relleno (13) que comprende espuma de poliuretano y grava marmolítica.
La figura 4 muestra una vista en de la sección B-B de la realización preferente descrita por la figura 2.
La figura 5 muestra una realización alternativa que no presenta la pieza inferior (2) y donde la base matriz (3) está unida directamente al suelo.
Más en particular, la realización preferente de la figura 5 comprende una base matriz (3) con una configuración sin ranuras pasantes y que alternativamente comprende una configuración dotada de una pluralidad de secciones convexas (15).

Claims

Figure imgf000012_0001
1 Baldosa fotovoltaica (1) destinada a ser instalada en pavimentos exteriores transitables, que comprende:
- un laminado fotovoltaico (4) dispuesto sobre una base matriz (3), donde dicho laminado fotovoltaico (4) comprende una pluralidad de celdas fotovoltaicas. y donde dicha baldosa fotovoltaica (1) está caracterizada por qué comprende, además, un estrato superior (5) que comprende, al menos, una primera capa (17) de un material polimérico laminado sobre el laminado fotovoltaico (4), donde dicha primera capa (17) comprende a su vez un recubrimiento (18) de resina (20) con aditivos de microesferas huecas (9) de vidrio mezcladas y con un aditivo de partículas de polvo (8).
2.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que el material polimérico es una resina de poliuretano termoplástico de alta transparencia.
3.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que el aditivo de partículas de polvo (8) comprende polvo de polietileno transparente de alta densidad.
4.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que el aditivo de partículas de polvo (8) es un aditivo de poliamida.
5.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que el estrato superior (5) comprende una capa de sellado provista de una resina bicomponente con base de poliuretano.
6.-. La baldosa fotovoltaica (1) de la reivindicación 1 , en la que el aditivo de microesferas huecas (9) de vidrio presenta un porcentaje en peso de 0,1-2% respecto a la resina (20).
7.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que el aditivo de partículas de polvo (8) presenta un porcentaje en peso de 1-10% con respecto a la resina (20).
8.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que el estrato superior (5) comprende en al menos una capa un material polimérico con propiedades reflectantes de radiación infrarroja.
9.- La baldosa fotovoltaica (1) de la reivindicación 1, que comprende una cámara interior (12) provista de un espacio definido entre la base matriz (3) y el laminado fotovoltaico (4), donde dicha cámara interior (12) comprende un relleno (13).
10.- La baldosa fotovoltaica (1) de la reivindicación 9, en la que el relleno (13) comprende grava marmolítica para aumentar la transmisión térmica desde las células fotovoltaicas al exterior.
11. La baldosa fotovoltaica (1) de la reivindicación 9, en la que el relleno (13) comprende espuma de poliuretano.
12.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que la base matriz (3) comprende un marco perimetral (11) y una pluralidad de nervios (10) que definen unas ranuras (14) pasantes.
13.- La baldosa fotovoltaica (1) de la reivindicación 11 , que comprende, además, una pieza inferior (2) unida al suelo y donde la base matriz (3) está embutida a dicha pieza inferior (2).
14.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que la base matriz (3) comprende un marco perimetral (11) y una pluralidad de secciones convexas (15).
15.- La baldosa fotovoltaica (1) de la reivindicación 14, en la que la base matriz (3) está rígidamente unida al suelo.
16.- La baldosa fotovoltaica (1) de la reivindicación 1 , en la que el marco perimetral (11) de la base matriz (3) comprende una pluralidad de orificios perimetrales pasantes al exterior destinados a alojar el cableado de interconexión.
17.- La baldosa fotovoltaica (1) de acuerdo con una cualquiera de las reivindicaciones anteriores, que comprende:
- un mecanismo de anclaje (7) que comprende a su vez unos railes dotados de cilindros roscados adaptados para coincidir con unos orificios de una pieza inferior (2) que está anclada al suelo, y
- un marco superior (6) configurado para a unir la pieza inferior (2) con dicho marco superior (6).
18.- La baldosa fotovoltaica (1) de la reivindicación 17, en la que el mecanismo de anclaje (7) comprende, además, unas pletinas atornilladas al suelo para unir la pieza inferior (2) al suelo.
PCT/ES2021/070661 2020-10-22 2021-09-15 Baldosa fotovoltaica destinada a ser instalada en pavimentos exteriores transitables WO2022084563A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202031061A ES2907780B2 (es) 2020-10-22 2020-10-22 Baldosa fotovoltaica destinada a ser instalada en pavimentos exteriores transitables
ESP202031061 2020-10-22

Publications (2)

Publication Number Publication Date
WO2022084563A1 true WO2022084563A1 (es) 2022-04-28
WO2022084563A4 WO2022084563A4 (es) 2022-06-23

Family

ID=78709485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070661 WO2022084563A1 (es) 2020-10-22 2021-09-15 Baldosa fotovoltaica destinada a ser instalada en pavimentos exteriores transitables

Country Status (2)

Country Link
ES (1) ES2907780B2 (es)
WO (1) WO2022084563A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101839A1 (en) 2001-06-11 2002-12-19 Powertile Limited Photovoltaic tiles
US20050199282A1 (en) * 2004-03-11 2005-09-15 Oleinick Energy, Llc Photovoltaic-embedded surface
WO2013186412A1 (es) 2012-06-14 2013-12-19 Onyx Solar Energy S.L. Suelo transitable fotovoltáico
FR3002083A1 (fr) * 2013-02-12 2014-08-15 Commissariat Energie Atomique Structure photovoltaique pour chaussee.
US20200204105A1 (en) * 2017-05-12 2020-06-25 Solar Earth Technologies Ltd. Seamless encapsulation of photovoltaic modules for paving surfaces

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092759A1 (en) * 2008-10-13 2010-04-15 Hua Fan Fluoropolymer/particulate filled protective sheet
ES1091315Y (es) * 2013-04-11 2014-01-09 Hernandez Antonio Orti Baldosa pisable generadora de electricidad
CN203351622U (zh) * 2013-05-16 2013-12-18 温州市奎达塑料科技有限公司 太阳能光伏玻璃
ES2571440B1 (es) * 2014-11-25 2016-11-24 José Salvador MANSILLA VERA Baldosa solar
WO2018025249A1 (en) * 2016-08-05 2018-02-08 Invent S.R.L. An improved photovoltaic panel.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101839A1 (en) 2001-06-11 2002-12-19 Powertile Limited Photovoltaic tiles
US20050199282A1 (en) * 2004-03-11 2005-09-15 Oleinick Energy, Llc Photovoltaic-embedded surface
WO2013186412A1 (es) 2012-06-14 2013-12-19 Onyx Solar Energy S.L. Suelo transitable fotovoltáico
FR3002083A1 (fr) * 2013-02-12 2014-08-15 Commissariat Energie Atomique Structure photovoltaique pour chaussee.
US20200204105A1 (en) * 2017-05-12 2020-06-25 Solar Earth Technologies Ltd. Seamless encapsulation of photovoltaic modules for paving surfaces

Also Published As

Publication number Publication date
ES2907780B2 (es) 2022-09-28
ES2907780A1 (es) 2022-04-26
WO2022084563A4 (es) 2022-06-23

Similar Documents

Publication Publication Date Title
US10156047B2 (en) Heatable module for use in constructing a pathway for traffic
ES2899143T3 (es) Unidad de mampostería con revestimiento fotovoltaico
US20050199282A1 (en) Photovoltaic-embedded surface
CN1894804A (zh) 光电组件安装单元和系统
JP6871559B2 (ja) 太陽光発電パネル、舗装構造体および壁面構造体
US20140096763A1 (en) Modular, fluid thermal transfer device
CA2837373C (en) Modular, fluid thermal transfer device
US20190348553A1 (en) Apparatus and method for photovoltaic module with tapered edge seal
WO2020122136A1 (ja) 太陽光発電パネルの設置ユニット、及びそれを繋いだ太陽光発電アレイ
US10171025B2 (en) Apparatus and method for solar panel module mounting inserts
KR20210131348A (ko) 횡단 가능한 표면에 통합되는 기능성 장치 및 이를 이용하여 횡단 가능한 표면을 제조하는 방법
ES2818803T3 (es) Sistema solar de concentración de luz
ES2907780B2 (es) Baldosa fotovoltaica destinada a ser instalada en pavimentos exteriores transitables
CN207339739U (zh) 光伏瓦及光伏屋顶
AU2020367466A1 (en) Paver with solar panel
ES2613141T3 (es) Disposición de soporte para cables de calefacción eléctricos de una calefacción por panel radiante
NL2012016C2 (nl) Warmtewisselaarpaneel, geschikt als bouwelement in de vorm van een plafond-, muur-, dak- en/of vloerelement, in het bijzonder voor een ijsbaanvloer.
TWM551200U (zh) 太陽能板道路
KR102645854B1 (ko) 바닥 태양광 모듈
RU2191328C1 (ru) Панель солнечного отопления здания
KR101222290B1 (ko) 옥상 단열 및 방수층 보호를 위한 일사차단재의 구조
KR20210117680A (ko) 폐자원 활용 블록형 태양광 발전 모듈 및 제조 방법
WO2021069988A1 (es) Losa dilatadora y sistema de ensamble para piso modular

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811106

Country of ref document: EP

Kind code of ref document: A1