WO2022083782A1 - Transmission d'accusé de réception de demande de répétition automatique hybride dans des réseaux de prochaine génération - Google Patents

Transmission d'accusé de réception de demande de répétition automatique hybride dans des réseaux de prochaine génération Download PDF

Info

Publication number
WO2022083782A1
WO2022083782A1 PCT/CN2021/126134 CN2021126134W WO2022083782A1 WO 2022083782 A1 WO2022083782 A1 WO 2022083782A1 CN 2021126134 W CN2021126134 W CN 2021126134W WO 2022083782 A1 WO2022083782 A1 WO 2022083782A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
slot
pucch
sps
ack
Prior art date
Application number
PCT/CN2021/126134
Other languages
English (en)
Inventor
Haihan Wang
Original Assignee
FG Innovation Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FG Innovation Company Limited filed Critical FG Innovation Company Limited
Priority to EP21882194.0A priority Critical patent/EP4211860A1/fr
Priority to CN202180067863.9A priority patent/CN116325629A/zh
Publication of WO2022083782A1 publication Critical patent/WO2022083782A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present disclosure generally relates to wireless communications, and more particularly, to the transmission of hybrid automatic repeat request (HARQ) -acknowledgement (ACK) (HARQ-ACK) by a user equipment (UE) .
  • HARQ hybrid automatic repeat request
  • ACK HARQ-ACK
  • UE user equipment
  • the 5G NR system is designed to provide flexibility and configurability to optimize the network services and types, accommodating various use cases, such as enhanced Mobile Broadband (eMBB) , massive Machine-Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) .
  • eMBB enhanced Mobile Broadband
  • mMTC massive Machine-Type Communication
  • URLLC Ultra-Reliable and Low-Latency Communication
  • one semi-persistent scheduling (SPS) configuration may be configured in a cell group to support periodic traffic, such as voice over IP (VoIP) , in NR.
  • periodic traffic such as voice over IP (VoIP)
  • VoIP voice over IP
  • TSN time sensitive networking
  • SPS semi-persistent scheduling
  • BWP bandwidth part
  • UE user equipment
  • PDCCH physical downlink control channels
  • the smallest periodicity of an SPS configuration may be reduced (e.g., to one slot) to better support TSN flows with shorter periodicities.
  • multiple PUCCH resources may be configured by an SPS-PUCCH-AN-List per HARQ-ACK codebook.
  • the actual PUCCH resource to be used among PUCCH resources may be determined based on a size of a HARQ-ACK payload.
  • a HARQ-ACK bit order for SPS PDSCH reception without a corresponding PDCCH may be determined in an ascending order of a downlink (DL) slot per ⁇ SPS configuration index, serving cell index ⁇ , and further in an ascending order of an SPS configuration index per ⁇ serving cell index ⁇ , and/or further in an ascending order of a serving cell index.
  • DL downlink
  • traffic with low latency requirement and low periodicity may be transmitted using SPS PDSCHs. Since the periodicity of an SPS configuration may be as small as one slot, many configured PUCCH resources for SPS PDSCH receptions may not be transmitted (e.g., may be dropped) , for example, when operating in an unpaired spectrum with longer DL-to-UL and/or UL-to-DL switching periods, which may affect the reliability and latency of the traffic. Thus, there is room in the next generation networks to define new methods that enable the transmission of such HARQ-ACKs in other (e.g., deferred) PUCCHs.
  • the present disclosure is directed to a method for managing a UE’s behavior in HARQ-ACK transmissions associated with an SPS PDSCH, which may include deferring the SPS HARQ-ACK feedback (e.g., to the later slots of a PUCCH resource) , constructing HARQ-ACK codebook (s) , and multiplexing PUCCH for an SPS HARQ-ACK and other PUCCHs or PUSCHs.
  • a method for transmitting a HARQ-ACK by a UE receives an SPS configuration.
  • the method receives a DCI format indicating activation of the SPS configuration.
  • the DCI format further indicates a first offset for transmitting the HARQ-ACK.
  • the method receives an SPS PDSCH associated with the SPS configuration in a first slot.
  • the method identifies a second slot based on the first slot and the first offset for transmitting the HARQ-ACK on a first PUCCH corresponding to the SPS PDSCH.
  • the method determines whether the first PUCCH is contained within one or more symbols in the second slot that are either uplink symbols or flexible symbols.
  • the method identifies a third slot based on the first slot and a second offset for transmitting the HARQ-ACK on a second PUCCH corresponding to the SPS PDSCH.
  • the second offset is greater than the first offset and the second PUCCH is contained within one or more symbols in the third slot that are either uplink symbols or flexible symbols.
  • the method further transmits the HARQ-ACK on the second PUCCH in the third slot.
  • the method further drops the HARQ-ACK when the first PUCCH is not contained within the one or more symbols and the particular parameter does not indicate the deferred HARQ transmission.
  • the one or more symbols in the third slot are either semi static uplink symbols or semi static flexible symbols.
  • the method further receives the SPS configuration via radio resource control (RRC) signaling.
  • RRC radio resource control
  • the second offset is less than a maximum value that is included in the SPS configuration.
  • the method further transmits the HARQ-ACK on the first PUCCH in the second slot irrespective of the particular parameter indicating the deferred HARQ transmission or not when the first PUCCH is contained within the one or more symbols.
  • the second offset is determined based on identifying a particular slot earliest in time between the second slot and a maximum slot.
  • the particular slot includes enough number of uplink or flexible symbols for carrying the second PUCCH.
  • the method further receives a second SPS configuration.
  • the method further receives a second DCI format activating the second SPS configuration.
  • the second DCI format further indicates a third offset for transmitting a second HARQ-ACK.
  • the method further receives a second SPS PDSCH associated with the second SPS configuration in a fourth slot.
  • the method further transmits, instead of the HARQ-ACK on the second PUCCH in the third slot, the HARQ-ACK and the second HARQ-ACK on a third PUCCH corresponding to the SPS PDSCH and the second SPS PDSCH in the third slot when the third slot that was previously identified for transmitting the HARQ-ACK is also identified based on the fourth slot and the third offset for transmitting the second HARQ-ACK.
  • the third PUCCH is determined based on a payload size of the second HARQ-ACK and a payload size of the HARQ-ACK.
  • a UE in a second aspect, includes one or more non-transitory computer-readable media storing computer-executable instructions for transmitting a HARQ-ACK.
  • the UE also includes at least one processor coupled to the one or more non-transitory computer-readable media, and configured to execute the computer-executable instructions to receive an SPS configuration.
  • the UE is further configured to receive a DCI format indicating activation of the SPS configuration.
  • the DCI format further indicates a first offset for transmitting the HARQ-ACK.
  • the UE is further configured to receive an SPS PDSCH associated with the SPS configuration in a first slot.
  • the UE is further configured to identify a second slot based on the first slot and the first offset for transmitting the HARQ-ACK on a first PUCCH corresponding to the SPS PDSCH.
  • the UE is further configured to determine whether the first PUCCH is contained within one or more symbols in the second slot that are either uplink symbols or flexible symbols.
  • the UE is further configured to identify a third slot based on the first slot and a second offset for transmitting the HARQ-ACK on a second PUCCH corresponding to the SPS PDSCH, and transmit the HARQ-ACK on the second PUCCH in the third slot when the first PUCCH is not contained within the one or more symbols and a particular parameter included in the SPS configuration indicates a deferred HARQ transmission.
  • the second offset is greater than the first offset and the second PUCCH is contained within one or more symbols in the third slot that are either uplink symbols or flexible symbols.
  • the UE is further configured to drop the HARQ-ACK when the first PUCCH is not contained within the one or more symbols and the particular parameter does not indicate the deferred HARQ transmission.
  • the one or more symbols in the third slot are either semi static uplink symbols or semi static flexible symbols.
  • the at least one processor is further configured to execute the computer-executable instructions to receive the SPS configuration via RRC signaling.
  • the second offset is less than a maximum value that is included in the SPS configuration.
  • the at least one processor is further configured to execute the computer-executable instructions to transmit the HARQ-ACK on the first PUCCH in the second slot irrespective of the particular parameter indicating the deferred HARQ transmission or not when the first PUCCH is contained within the one or more symbols.
  • the second offset is determined based on identifying a particular slot earliest in time between the second slot and a maximum slot.
  • the particular slot includes enough number of uplink or flexible symbols for carrying the second PUCCH.
  • the at least one processor is further configured to execute the computer-executable instructions to receive a second SPS configuration.
  • the UE including the at least one processor, is further configured to receive a second DCI format activating the second SPS configuration, the second DCI format further indicating a third offset for transmitting a second HARQ-ACK.
  • the UE is further configured to receive a second SPS PDSCH associated with the second SPS configuration in a fourth slot.
  • the UE is further configured to transmit, instead of the HARQ-ACK on the second PUCCH in the third slot, the HARQ-ACK and the second HARQ-ACK on a third PUCCH corresponding to the SPS PDSCH and the second SPS PDSCH in the third slot when the third slot that was previously identified for transmitting the HARQ-ACK is also identified based on the fourth slot and the third offset for transmitting the second HARQ-ACK.
  • the third PUCCH is determined based on a payload size of the second HARQ-ACK and a payload size of the HARQ-ACK.
  • FIG. 1 is a schematic diagram illustrating a typical 5G NR frame structure, according to an example implementation of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating deferring a HARQ-ACK transmission based on a PUCCH corresponding to an SPS PDSCH, according to an example implementation of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating deferring a HARQ-ACK transmission based on a PUCCH corresponding to multiple SPS PDSCHs of one or more SPS configurations, according to an example implementation of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating deferring a HARQ-ACK transmission based on a PUCCH corresponding to an SPS PDSCH, according to another example implementation of the present disclosure.
  • FIG. 5 is a flowchart illustrating a method for transmitting a HARQ-ACK by a UE, according to an example implementation of the present disclosure.
  • FIG. 6 is a flowchart further illustrating the method of FIG. 5, according to an example implementation of the present disclosure.
  • FIG. 7 is a block diagram illustrating a node for wireless communication, according to an example implementation of the present disclosure.
  • Any sentence, paragraph, (sub) -bullet, point, action, behavior, term, alternative, aspect, example, or claim described in the present disclosure may be combined logically, reasonably, and properly to form a specific method. Any sentence, paragraph, (sub) -bullet, point, action, behavior, term, alternative, aspect, example, or claim described in the present disclosure may be implemented independently and separately to form a specific method. Dependency, e.g., “based on” , “more specifically” , “in some implementations” , “in one alternative” , “in one example” , “in one aspect” , or etc., in the present disclosure is just one possible example in which would not restrict the specific method.
  • One aspect of the present disclosure may be used, for example, in a communication, communication equipment (e.g., a mobile telephone apparatus, ad base station apparatus, a wireless LAN apparatus, and/or a sensor device, etc. ) , and integrated circuit (e.g., a communication chip) and/or a program, etc.
  • communication equipment e.g., a mobile telephone apparatus, ad base station apparatus, a wireless LAN apparatus, and/or a sensor device, etc.
  • integrated circuit e.g., a communication chip
  • X/Y may include the meaning of “X or Y” .
  • X/Y may also include the meaning of “X and Y” .
  • X/Y may also include the meaning of “X and/or Y” .
  • any network function (s) or algorithm (s) described in the present disclosure may be implemented by hardware, software or a combination of software and hardware. Described functions may correspond to modules which may be software, hardware, firmware, or any combination thereof.
  • the software implementation may comprise computer executable instructions stored on computer readable medium such as memory or other type of storage devices.
  • one or more microprocessors or general-purpose computers with communication processing capability may be programmed with corresponding executable instructions and carry out the described network function (s) or algorithm (s) .
  • the microprocessors or general-purpose computers may be formed of Applications Specific Integrated Circuitry (ASIC) , programmable logic arrays, and/or using one or more Digital Signal Processor (DSPs) .
  • ASIC Application Specific Integrated Circuitry
  • DSPs Digital Signal Processor
  • the computer readable medium includes but is not limited to Random Access Memory (RAM) , Read Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM) , flash memory, Compact Disc Read-Only Memory (CD-ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory Compact Disc Read-Only Memory (CD-ROM)
  • CD-ROM Compact Disc Read-Only Memory
  • magnetic cassettes magnetic tape
  • magnetic disk storage or any other equivalent medium capable of storing computer-readable instructions.
  • a radio communication network architecture typically includes at least one base station, at least one UE, and one or more optional network elements that provide connection towards a network.
  • the UE communicates with the network (e.g., a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial Radio Access network (E-UTRAN) , a 5G Core (5GC) , or an internet) , through a RAN established by one or more base stations.
  • the network e.g., a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial Radio Access network (E-UTRAN) , a 5G Core (5GC) , or an internet
  • a UE may include, but is not limited to, a mobile station, a mobile terminal or device, a user communication radio terminal.
  • a UE may be a portable radio equipment, which includes, but is not limited to, a mobile phone, a tablet, a wearable device, a sensor, a vehicle, or a Personal Digital Assistant (PDA) with wireless communication capability.
  • PDA Personal Digital Assistant
  • the UE is configured to receive and transmit signals over an air interface to one or more cells in a radio access network.
  • a base station may be configured to provide communication services according to at least one of the following Radio Access Technologies (RATs) : Worldwide Interoperability for Microwave Access (WiMAX) , Global System for Mobile communications (GSM, often referred to as 2G) , GSM Enhanced Data rates for GSM Evolution (EDGE) Radio Access Network (GERAN) , General Packet Radio Service (GPRS) , Universal Mobile Telecommunication System (UMTS, often referred to as 3G) based on basic wideband-code division multiple access (W-CDMA) , high-speed packet access (HSPA) , LTE, LTE-A, eLTE (evolved LTE, e.g., LTE connected to 5GC) , NR (often referred to as 5G) , and/or LTE-A Pro.
  • RATs Radio Access Technologies
  • WiMAX Worldwide Interoperability for Microwave Access
  • GSM Global System for Mobile communications
  • EDGE GSM Enhanced Data rates for GSM Evolution
  • GERAN
  • a base station may include, but is not limited to, a node B (NB) as in the UMTS, an evolved node B (eNB) as in the LTE or LTE-A, a radio network controller (RNC) as in the UMTS, a base station controller (BSC) as in the GSM/GSM Enhanced Data rates for GSM Evolution (EDGE) Radio Access Network (GERAN) , a next-generation eNB (ng-eNB) as in an Evolved Universal Terrestrial Radio Access (E-UTRA) BS in connection with the 5GC, a next-generation Node B (gNB) as in the 5G Access Network (5G-AN) , and any other apparatus capable of controlling radio communication and managing radio resources within a cell.
  • the BS may connect to serve the one or more UEs through a radio interface to the network.
  • the base station may be operable to provide radio coverage to a specific geographical area using a plurality of cells included in the RAN.
  • the BS may support the operations of the cells.
  • Each cell may be operable to provide services to at least one UE within its radio coverage.
  • each cell (often referred to as a serving cell) may provide services to serve one or more UEs within its radio coverage (e.g., each cell schedules the Downlink (DL) and optionally Uplink (UL) resources to at least one UE within its radio coverage for DL and optionally UL packet transmission) .
  • the BS may communicate with one or more UEs in the radio communication system through the plurality of cells.
  • a cell may allocate sidelink (SL) resources for supporting Proximity Service (ProSe) or Vehicle to Everything (V2X) services. Each cell may have overlapped coverage areas with other cells.
  • MR-DC Multi-RAT Dual Connectivity
  • a Primary Cell (PCell) may refer to the SpCell of an MCG.
  • a Primary SCG Cell (PSCell) may refer to the SpCell of an SCG.
  • MCG may refer to a group of serving cells associated with the Master Node (MN) , including the SpCell and optionally one or more Secondary Cells (SCells) .
  • An SCG may refer to a group of serving cells associated with the Secondary Node (SN) , including the SpCell and optionally one or more SCells.
  • the frame structure for NR is to support flexible configurations for accommodating various next generation (e.g., 5G) communication requirements, such as Enhanced Mobile Broadband (eMBB) , Massive Machine Type Communication (mMTC) , Ultra-Reliable and Low-Latency Communication (URLLC) , while fulfilling high reliability, high data rate and low latency requirements.
  • 5G next generation
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-Reliable and Low-Latency Communication
  • OFDM Orthogonal Frequency-Division Multiplexing
  • the scalable OFDM numerology such as the adaptive sub-carrier spacing, the channel bandwidth, and the Cyclic Prefix (CP) may also be used.
  • two coding schemes are considered for NR: (1) Low-Density Parity-Check (LDPC) code and (2) Polar Code.
  • the coding scheme adaption may be configured based on the channel conditions and/or the service applications.
  • a downlink (DL) transmission data, a guard period, and an uplink (UL) transmission data should at least be included, where the respective portions of the DL transmission data, the guard period, the UL transmission data should also be configurable, for example, based on the network dynamics of NR.
  • sidelink resources may also be provided in an NR frame to support ProSe services, (E-UTRA/NR) sidelink services, or (E-UTRA/NR) V2X services.
  • system and “network” herein may be used interchangeably.
  • the term “and/or” herein is only an association relationship for describing associated objects, and represents that three relationships may exist. For example, A and/or B may indicate that: A exists alone, A and B exist at the same time, or B exists alone.
  • the character “/” herein generally represents that the former and latter associated objects are in an “or” relationship.
  • a UE configured with multi-connectivity may connect to a Master Node (MN) as an anchor and one or more Secondary Nodes (SNs) for data delivery.
  • MN Master Node
  • SNs Secondary Nodes
  • Each one of these nodes may be formed by a cell group that includes one or more cells.
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the MCG is a set of one or more serving cells including the PCell and zero or more secondary cells.
  • the SCG is a set of one or more serving cells including the PSCell and zero or more secondary cells.
  • the Primary Cell may be an MCG cell that operates on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection reestablishment procedure.
  • the PCell In the MR-DC mode, the PCell may belong to the MN.
  • the Primary SCG Cell (PSCell) may be an SCG cell in which the UE performs random access (e.g., when performing the reconfiguration with a sync procedure) .
  • the PSCell may belong to the SN.
  • a Special Cell may be referred to a PCell of the MCG, or a PSCell of the SCG, depending on whether the MAC entity is associated with the MCG or the SCG.
  • Special Cell may refer to the PCell.
  • a Special Cell may support a Physical Uplink Control Channel (PUCCH) transmission and contention-based Random Access (CBRA) , and may always be activated. Additionally, for a UE in an RRC_CONNECTED state that is not configured with the CA/DC, may communicate with only one serving cell (SCell) which may be the primary cell. Conversely, for a UE in the RRC_CONNECTED state that is configured with the CA/DC a set of serving cells including the special cell (s) and all of the secondary cells may communicate with the UE.
  • PUCCH Physical Uplink Control Channel
  • CBRA contention-based Random Access
  • bandwidth part may be a subset of a total cell bandwidth of a cell.
  • BWP adaptation may be achieved by configuring a UE with BWP (s) and informing the UE which of the configured BWPs is/are currently the active one.
  • a gNB in order to enable bandwidth adaptation (BA) on a PCell, a gNB may configure a UE with UL and DL BWP (s) .
  • a gNB may configure a UE with at least one DL BWP (e.g., there may be no BWP configured in a UL) .
  • an initial BWP may be the BWP used for initial access.
  • an initial BWP may be the BWP configured for a UE to first operate at an SCell activation.
  • a UE may be configured with a first active uplink BWP by a firstActiveUplinkBWP information element (IE) .
  • IE firstActiveUplinkBWP information element
  • the firstActiveUplinkBWP IE field may contain the ID of the UL BWP to be activated upon performing an RRC configuration or an RRC reconfiguration.
  • the RRC configuration or the RRC reconfiguration may not impose a BWP switch.
  • the first Active UplinkBWP IE field may contain the ID of the UL BWP to be used upon a MAC-activation of an SCell.
  • HARQ-ACK may include the term hybrid automatic repeat request (HARQ) and the term acknowledgement/non-acknowledgement (ACK/NACK) .
  • the term HARQ may be a scheme that combines an automatic repeat request (ARQ) error control mechanism and a forward error correction (FEC) coding in which unsuccessful attempts are used in FEC decoding instead of being discarded.
  • ARQ automatic repeat request
  • FEC forward error correction
  • a HARQ-ACK feedback may be used to indicate whether a HARQ process is successfully performed.
  • code block group may refer to code blocks of a transport block (TB) grouped together.
  • Each CBG may include the same or different number of code block (s) .
  • CBG-based retransmissions may be scheduled to carry a number of CBGs of a TB.
  • reporting a HARQ-ACK for an SPS PDSCH of multiple SPS configurations that is multiplexed with a HARQ-ACK corresponding to a dynamically scheduled PDSCH or an SPS release scheduled by a downlink control information (DCI) may be determined, for example, based on the DCI.
  • the HARQ-ACK codebook used for an SPS configuration may be determined by a radio resource control (RRC) parameter configured in an SPS PDSCH configuration.
  • RRC radio resource control
  • a HARQ-ACK bit location (e.g., a location within a HARQ-ACK codebook) for an SPS PDSCH may be derived based on a time domain resource allocation (TDRA) table row index and an offset (e.g., K1) indicated, for example, in the activation DCI.
  • TDRA time domain resource allocation
  • K1 offset
  • the HARQ-ACK bit location for an SPS PDSCH release with a separate release DCI (e.g., DCI that releases one SPS configuration) may be derived based on the TDRA table row index indicated in the activation DCI and the offset K1 indicated in the release DCI.
  • the HARQ-ACK bit location for the SPS PDSCH release with a joint release DCI may be derived based on the TDRA table row index indicated in the activation DCI for an SPS PDSCH with the lowest SPS configuration index among the jointly released configurations and the offset K1 indicated in the release DCI.
  • a HARQ-ACK bit order for an SPS PDSCH release with a separate/joint release DCI may be derived based on a downlink assignment index (DAI) and an offset (e.g., K1) indicated in the release DCI.
  • DAI downlink assignment index
  • K1 offset
  • a HARQ-ACK bit location within a HARQ-ACK codebook for an SPS PDSCH with an associated PDCCH may be derived based on the DAI and the offset (e.g., K1) indicated in an activation DCI.
  • the HARQ-ACK bit (s) for an SPS PDSCH without a corresponding PDCCH may be appended after the HARQ-ACK bit (s) for the dynamically scheduled PDSCHs and/or for an SPS PDSCH release.
  • the HARQ-ACK bit order may be determined in an ascending order of a DL slot per ⁇ SPS configuration index, serving cell index ⁇ , and further in an ascending order of an SPS configuration index per ⁇ serving cell index ⁇ , and/or further in an ascending order of a serving cell index.
  • a HARQ-ACK codebook for SPS HARQ-ACK bit (s) when transmitted in a PUCCH resource configured for transmission of only SPS HARQ-ACK bit (s) may also be referred as the Type-1 HARQ-ACK codebook.
  • the Type-1 HARQ-ACK codebook hereon may also be referred to as the Type-1 HARQ-ACK codebook transmitted in a PUCCH resource scheduled by a DCI format (e.g., a DCI format 1_0, a DCI format 1_1, and a DCI format 1_2) .
  • a UE may be configured with two HARQ-ACK codebooks.
  • the UE may be indicated (e.g., by the pdsch-HARQ-ACK-Codebook-List) to generate one or more HARQ-ACK codebooks.
  • the one HARQ-ACK codebook may be associated with a PUCCH of a priority index “0” .
  • a UE may multiplex the same HARQ-ACK codebook with only HARQ-ACK information associated with the same priority index.
  • a first HARQ-ACK codebook may be associated with a PUCCH of a priority index “0” (e.g., low priority) and a second HARQ-ACK codebook may be associated with a PUCCH of priority index “1” (e.g., high priority)
  • the UE may provide each of ⁇ PUCCH-Config, UCI-OnPUSCH, PDSCH-codeBlockGroupTransmission ⁇ by ⁇ PUCCHConfigurationList, UCI-OnPUSCH-List, and PDSCH-CodeBlockGroupTransmission-List ⁇ for use with the first and second HARQ-ACK codebooks.
  • various methods may be implemented for determination of a PUCCH resource for the transmission of HARQ-ACK bit (s) .
  • FIG. 1 is a schematic diagram illustrating a typical 5G NR frame structure, according to an example implementation of the present disclosure.
  • a slot 100 may include 14 symbols (e.g., symbol 0 to symbol 13) , each configured as a symbol (e.g., D, F, U) , as illustrated in FIG. 1.
  • Symbol 0 to symbol 5 may be configured with symbols indicated as downlink (DL) symbols (e.g., D)
  • symbol 6 and symbol 7 may be configured with symbols indicated as flexible symbols (e.g., F)
  • symbol 8 to symbol 13 may be configured with symbols indicated as uplink (UL) symbols (e.g., U) .
  • DL downlink
  • F flexible symbols
  • UL uplink
  • UL uplink
  • the PUCCH may not be transmitted since the PUCCH is contained in DL symbols (e.g., D) , at least because symbol 4 and symbol 5 may be pre-configured with DL symbols (e.g., D) .
  • the PUCCH may collide with DL symbols (e.g., D) , at least, in symbol 4 and symbol 5.
  • the present disclosure provides a UE and a method for management of the UE’s behavior for the HARQ-ACK transmission associated with an SPS PDSCH, which may include deferring an SPS HARQ-ACK feedback, constructing HARQ-ACK codebook, and/or multiplexing the PUCCH for an SPS HARQ-ACK and other PUCCHs or PUSCHs.
  • deferring the SPS HARQ-ACK bit (s) to be transmitted in any slots after a slot in which a PUCCH resource for the SPS HARQ-ACK is initially configured may be beneficial for rescheduling of unsuccessfully received/decoded SPS PDSCHs.
  • a UE may configure and/or indicate the PUCCH resource used for transmission of the deferred SPS HARQ-ACK bit (s) .
  • a UE may be provided with a PUCCH resource for transmission (s) of deferred HARQ-ACK bit (s) corresponding to the SPS PDSCH receptions.
  • a slot may include a sub-slot if the UE is provided with a subslotLength-ForPUCCH, which may indicate a number of symbols of a sub-slot for an associated PUCCH transmission.
  • a PUCCH resource in a slot “n+k+d” may be provided.
  • An offset “k” may be a number of slots indicated by a PDSCH-to-HARQ_feedback timing indicator field in a corresponding DCI format used for activation of the SPS configuration of an SPS PDSCH reception or provided by an dl-DataToUL-ACK feedback if the PDSCH-to-HARQ_feedback timing indicator field is not present in the corresponding DCI format.
  • the offset “d” may be a value or multiple values chosen from a set of values.
  • a maximum value in the value set may be preconfigured or predefined and the set of values may include all integers less than or equal to the maximum value.
  • a PUCCH resource for transmission of only SPS HARQ-ACK bit (s) in a slot may be selected from the PUCCH resource configured by an SPS-PUCCH-AN-List-r16 based on a total payload size of the deferred and the non-deferred SPS HARQ-ACK bits. An example of the method described above may be illustrated in FIG. 2.
  • FIG. 2 is a schematic diagram illustrating deferring a HARQ-ACK transmission based on a PUCCH corresponding to an SPS PDSCH, according to an example implementation of the present disclosure.
  • example slots may include a slot 202A (e.g., slot 0) , slot 202B (e.g., slot 1) , a slot 202C (e.g., slot 2) , a slot 202D (e.g., slot 3) , and a slot 202E (e.g., slot 4) .
  • the slot 202A, slot 202B, and slot 202C may all be configured with one or more DL symbols (e.g., resulting in them becoming non-patterned slots) while the slot 202D and the slot 202E may be both configured with one or more UL symbols (e.g., resulting in them becoming patterned slots) .
  • the PUCCH 206A configured in the slot 202B may not be transmittable to the base station, for example, as the PUCCH 206A collides with the DL symbol in the slot 202B (e.g., the PUCCH 206A configured in the non-patterned slot 202B or the slot 202B with a DL symbol) .
  • the UE may determine first whether a particular parameter (e.g., that is also included in the SPS configuration) indicates a deferral in the corresponding HARQ transmission (e.g., when a particular bit representing the parameter is set to one) .
  • a particular parameter e.g., that is also included in the SPS configuration
  • the UE may determine the offset d, and may subsequently identify the slot 202D, as this slot is the earliest slot (in the time domain) between the slot 202B and a maximum slot (e.g., slot 202E) that includes enough number of uplink (and/or flexible) symbols for carrying the PUCCH 206B.
  • a maximum slot e.g., slot 202E
  • the UE may determine to drop the HARQ-ACK, for example, instead of transmitting the PUCCH 206A in the first available uplink slot.
  • a HARQ-ACK bit (s) corresponding to an (e.g., first) SPS PDSCH is deferred (e.g., indicated by a differed HARQ-ACK parameter included in the SPS configuration)
  • the other HARQ-ACK bit (s) corresponding to the other SPS PDSCH of a same or different SPS configurations may be a non-deferred HARQ-ACK bit (s) .
  • FIG. 3 An example of some such implementations may be illustrated in FIG. 3, which a schematic diagram illustrating deferring a HARQ-ACK transmission based on a PUCCH corresponding to multiple SPS PDSCHs of one or more SPS configurations.
  • example slots may include a slot 302A (e.g., slot 0) , a slot 302B (e.g., slot 1) , a slot 302C (e.g., slot 2) , a slot 302D (e.g., slot 3) , and a slot 302E (e.g., slot 4) .
  • the slot 302A, slot 302B, and slot 302C may all be configured with one or more DL symbols (e.g., resulting in them becoming non-patterned slots) while the slot 302D, and the slot 302E may be both configured with one or more UL symbols (e.g., resulting in them becoming patterned slots) .
  • the deferred HARQ-ACK bit (s) corresponding to the first SPS PDSCH 304A of SPS configuration 1 and the non-deferred HARQ-ACK bit (s) corresponding to the second SPS PDSCHE 304B of SPS configuration 2 may be assigned to the same slot 302D.
  • the UE may determine to transmit the deferred HARQ-ACK bit (s) corresponding to first SPS PDSCH 304A of SPS configuration 1 and the non-deferred HARQ-ACK bit (s) corresponding to the second SPS PDSCH 304B of SPS configuration 2 in the same slot 302D on a new PUCCH (e.g., PUCCH 306) that corresponds to the first SPS PDSCH 304A and the second SPS PDSCH 304B.
  • a new PUCCH e.g., PUCCH 306
  • the UE may determine whether to transmit both the deferred and non-deferred HARQ-ACK bits on the third PUCCH 306 based on the payload sizes of the deferred HARQ-ACK and the non-deferred HARQ-ACK.
  • a BS may configure suitable SPS configurations and PUCCH resources such that a PUCCH resource that is capable of accommodating the deferred and the non-deferred HARQ-ACKs may always be available for the UE to transmit the deferred and non-deferred HARQ-ACKs.
  • the offset “d” may be a value or multiple values chosen from a set of values.
  • a maximum value in the value set may be preconfigured or predefined and the set of values may include all integers less than or equal to the maximum value.
  • FIG. 4 is a schematic diagram illustrating deferring a HARQ-ACK transmission based on a PUCCH corresponding to an SPS PDSCH, according to another example implementation of the present disclosure.
  • example slots as illustrated in FIG.
  • a slot 402A (e.g., slot 0) , a slot 402B (e.g., slot 1) , a slot 402C (e.g., slot 2) , a slot 402D (e.g., slot 3) , and a slot 402E (e.g., slot 4) .
  • the slot 402A, slot 402B, and slot 402C may all be configured with one or more DL symbols (e.g., resulting in them becoming non-patterned slots) while the slot 402D, and the slot 402E may both be configured with one or more UL symbols (e.g., resulting in them becoming patterned slots) .
  • the offset “d” may be a value in a set of values ⁇ 0, 1, 2, 3 ⁇ .
  • the first PUCCH 406A in the slot 402B may not be transmittable to the base station, for example, as the first PUCCH 406A collides with the DL symbol in the slot 402B (e.g., the first PUCCH 406A configured in the non-patterned slot 402B or the slot 402B with a DL symbol) .
  • the second PUCCH 406B in the slot 402C may also collide with a DL symbol in the slot 402C (e.g., the second PUCCH 406B configured in the non-patterned slot 402C or the slot 402C with a DL symbol) .
  • the UE may iteratively inspect the subsequent slot (s) until the UE reaches a slot with a UL symbol (s) or a flexible symbol (s) , or until the UE reaches a threshold number of inspection iteration.
  • the UE may iteratively inspect subsequent slots until the next available slot with a UL symbol (s) or flexible symbol (s) (e.g., slot 402D) is reached, or until the UE reaches a threshold number of inspection iteration (e.g., the UE may be configured with a threshold number of two inspection iterations which may allow the UE to only inspect two subsequent slots having an UL symbol (s) or flexible symbol (s) after the slot 402B) .
  • a threshold number of inspection iteration e.g., the UE may be configured with a threshold number of two inspection iterations which may allow the UE to only inspect two subsequent slots having an UL symbol (s) or flexible symbol (s) after the slot 402B.
  • the set of values may be an SPS configuration-specific configuration. In other words, the set of values may be different for different SPS configurations.
  • the maximum value of the offset “d” may be a number of slots of a multiple times of the periodicity of the SPS configuration of the SPS PDSCH reception. In some implementations, the maximum value of the offset “d” may be a value such that “k+d” is a number of slots of a multiple times of the periodicity of the SPS configuration of the SPS PDSCH reception.
  • the offset “d” may be a value determined based on a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon and PUCCH resource related configurations (e.g., a PUCCH-Config and an SPS-Config or an SPS-PUCCH-AN-List-r16) .
  • the offset “d” may be the smallest value such that the symbols containing the PUCCH resource indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the offset “d” may be the smallest value such that the symbols containing the PUCCH resource indicated by SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the offset “d” may be the smallest value such that the symbols containing the PUCCH resource indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the offset “d” may be the smallest value such that the symbols containing the PUCCH resource indicated by SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the offset “d” may be the set of values such that the symbols containing the PUCCH resource indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot may be set to a NACK.
  • the offset “d” may be the set of values such that the symbols containing the PUCCH resource indicated by SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” are indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot if a HARQ-ACK bit (s) corresponding to an SPS PDSCH reception is reported in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot, the HARQ-ACK bit (s) corresponding to the SPS PDSCH reception in a second PUCCH provided for the HARQ-ACK bit (s) in a second slot that is after the first slot may be set to a NACK.
  • the HARQ-ACK bit (s) in the second slot may be regarded as deferred HARQ- ACK bit (s) .
  • the offset “d” may be a set of values such that the symbols containing one or more than one of the PUCCH resources indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config and of the PUCCH resources overlapping with the PUCCH resource indicated by the n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the PUCCH resource sets that may be dynamically scheduled and may accommodate the SPS HARQ-ACK codebook in the slot “n+k+d” are indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot may be set to a NACK.
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by SPS-PUCCH-AN-r16 in PUCCH-Config and of the PUCCH resources overlapping with the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the PUCCH resource sets that may be dynamically scheduled and may accommodate the SPS HARQ- ACK codebook in the slot “n+k+d” are indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot if a HARQ-ACK bit (s) corresponding to an SPS PDSCH reception is reported in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot, the HARQ-ACK bit (s) corresponding to the SPS PDSCH reception in a second PUCCH provided for the HARQ-ACK bit (s) in a second slot that is positioned after the first slot may be set to a NACK.
  • the HARQ-ACK bit (s) in the second slot may be regarded as deferred HARQ-ACK bit (s) .
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config and of the PUCCH resources overlapping with the PUCCH resource indicated by the n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the PUCCH resource sets that may be dynamically scheduled and may accommodate the SPS HARQ-ACK codebook in the slot “n+k+d” may be indicated as uplink or flexible by a slot configurations tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot may be set to a NACK.
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by SPS-PUCCH-AN-r16 in PUCCH-Config and of the PUCCH resources overlapping with the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the PUCCH resource sets that may be dynamically scheduled and may accommodate the SPS HARQ-ACK codebook in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in the PUCCH-Config in slot n+k+d may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot if a HARQ-ACK bit (s) corresponding to an SPS PDSCH reception is reported in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot, the HARQ-ACK bit (s) corresponding to the SPS PDSCH reception in a second PUCCH provided for the HARQ-ACK bit (s) in a second slot that is positioned after the first slot may be set to a NACK.
  • the HARQ-ACK bit (s) in the second slot may be regarded as deferred HARQ-ACK bit (s) .
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot may be set to a NACK.
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by SPS-PUCCH-AN-r16 in PUCCH-Config.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of d may be a value such that all symbols containing the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot if a HARQ-ACK bit (s) corresponding to an SPS PDSCH reception is reported in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot, the HARQ-ACK bit (s) corresponding to the SPS PDSCH reception in a second PUCCH provided for the HARQ-ACK bit (s) in a second slot that is positioned after the first slot may be set to a NACK.
  • the HARQ-ACK bit (s) in the second slot may be regarded as deferred HARQ-ACK bit (s) .
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot may be set to a NACK.
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by SPS-PUCCH-AN-r16 in PUCCH-Config.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot if a HARQ-ACK bit (s) corresponding to an SPS PDSCH reception is reported in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot, the HARQ-ACK bit (s) corresponding to the SPS PDSCH reception in a second PUCCH provided for the HARQ-ACK bit (s) in a second slot that is positioned after the first slot may be set to a NACK.
  • the HARQ-ACK bit (s) in the second slot may be regarded as deferred HARQ-ACK bit (s) .
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config and of the PUCCH resources in the PUCCH resource sets that may be dynamically scheduled and may accommodate the SPS HARQ-ACK codebook in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot may be set to a NACK.
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by SPS-PUCCH-AN-r16 in PUCCH-Config and of the PUCCH resources in the PUCCH resource sets that may be dynamically scheduled and may accommodate the SPS HARQ-ACK codebook in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in the PUCCH-Config in the slot “n+k+d” may be indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot the HARQ-ACK bit (s) corresponding to the SPS PDSCH reception in a second PUCCH provided for the HARQ-ACK bit (s) in a second slot that is positioned after the first slot may be set to a NACK.
  • the HARQ-ACK bit (s) in the second slot may be regarded as deferred HARQ-ACK bit (s) .
  • the offset “d” may be the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by n1PUCCH-AN in SPS-Config or by SPS-PUCCH-AN-r16 in PUCCH-Config and of the PUCCH resources in the PUCCH resource sets that may be dynamically scheduled and may accommodate the SPS HARQ-ACK codebook in the slot “n+k+d” are indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by n1PUCCH-AN in the SPS-Config or by the SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” may be indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot may be set to a NACK.
  • “d” is the set of values such that the symbols containing one or more than one of the PUCCH resources indicated by SPS-PUCCH-AN-r16 in PUCCH-Config and of the PUCCH resources in the PUCCH resource sets that may be dynamically scheduled and may accommodate the SPS HARQ-ACK codebook in the slot “n+k+d” are indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the SPS-PUCCH-AN-r16 may indicate the PUCCH resource that may accommodate the deferred (or non-deferred) HARQ-ACK bit (s) corresponding to the SPS PDSCH reception and other deferred and non-deferred HARQ-ACK bits corresponding to other SPS PDSCH receptions.
  • the maximum value of the offset “d” may be a value such that all symbols containing the PUCCH resource indicated by the SPS-PUCCH-AN-r16 in PUCCH-Config in the slot “n+k+d” are indicated as uplink by a slot configuration tdd-UL-DL-ConfigurationDedicated or tdd-UL-DL-ConfigurationCommon.
  • the HARQ-ACK bit (s) corresponding to an SPS PDSCH reception in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot if a HARQ-ACK bit (s) corresponding to an SPS PDSCH reception is reported in a first PUCCH provided for the HARQ-ACK bit (s) in a first slot, the HARQ-ACK bit (s) corresponding to the SPS PDSCH reception in a second PUCCH provided for the HARQ-ACK bit (s) in a second slot that is positioned after the first slot may be set to a NACK.
  • the HARQ-ACK bit (s) in the second slot may be regarded as deferred HARQ-ACK bit (s) .
  • the maximum value of the offset “d” may be limited such that the value of “k+d” may be smaller than or equal to the maximum offset “K1” value in the dl-DataToUL-ACK in the first PUCCH-Config and in the second PUCCH-Config if the harq-CodebookID in SPS-Config of the SPS PDSCH reception indicates a low priority HARQ-ACK codebook and a high priority HARQ-ACK codebook, respectively.
  • the above feature may be applicable when the type of the HARQ-ACK codebook of the same priority as indicated by harq-CodebookID in the SPS-Config of the SPS PDSCH reception is a Type-1 HARQ-ACK codebook, where the type of the HARQ-ACK is configured by pdsch-HARQ-ACK-CodebookList-r16.
  • the above feature may be applicable when the type of the HARQ-ACK codebook of the same priority as indicated by harq-CodebookID in the SPS-Config of the SPS PDSCH reception is a Type-1 HARQ-ACK codebook or a Type-2 HARQ-ACK codebook, where the type of the HARQ-ACK is configured by pdsch-HARQ-ACK-CodebookList-r16.
  • all symbols may be determined as flexible symbols or uplink symbols.
  • a sub-slot may be used instead of a slot for transmission of HARQ-ACK bit (s) of SPS PDSCH receptions of an SPS configuration if the harq-CodebookID in the SPS-Config indicates a priority, and the PUCCH-Config corresponding to the priority is configured with subslotLengthForPUCCH-r16.
  • the first PUCCH-Config may correspond to the low priority and the second PUCCH-Config may correspond to the high priority.
  • whether or not a HARQ-ACK may be deferred may be configured or indicated per SPS configuration by RRC configuration and/or by using activation DCI.
  • the PUCCH resource provided for SPS HARQ-ACK transmission (s) may be determined based on the payload size of the deferred and non-deferred HARQ-ACK bits.
  • the PUCCH resource provided for SPS HARQ-ACK transmission (s) may be determined based on the payload size of the non-deferred HARQ-ACK bit (s) .
  • FIG. 5 is a flowchart illustrating a method/process for transmitting a HARQ-ACK by a UE, according to an example implementation of the present disclosure.
  • process 500 may start by receiving a semi-persistent scheduling (SPS) configuration in action 502.
  • receiving the SPS configuration may include receiving the SPS configuration via radio resource control (RRC) signaling.
  • RRC radio resource control
  • process 500 may receive, in action 504, a downlink control information (DCI) format indicating activation of the SPS configuration.
  • the DCI format may further indicate a first offset (e.g., offset k) for transmitting the HARQ-ACK.
  • process 500 may further receive an SPS physical downlink shared channel (PDSCH) associated with the SPS configuration in a first slot (e.g., slot n) .
  • PDSCH physical downlink shared channel
  • process 500 may identify, in action 508, a second slot (e.g., slot n + k) based on the first slot (e.g., slot n) and the first offset (e.g., k) for transmitting the HARQ-ACK on a first physical uplink control channel (PUCCH) corresponding to the SPS PDSCH.
  • a second slot e.g., slot n + k
  • the process may determine, in action 510, whether the first PUCCH is contained within one or more symbols in the second slot that are either uplink symbols or flexible symbols.
  • the process 500 may proceed to action 520 which is described below.
  • the process 500 may proceed to action 512, which may further determine whether a particular parameter included in the SPS configuration indicates deferred HARQ transmission.
  • the process 500 may proceed to action 518, which is described below.
  • the process 500 may identify, in action 514, a third slot (e.g., slot n + k +d) based on the first slot and a second offset (e.g., offset d) for transmitting the HARQ-ACK on a second PUCCH corresponding to the SPS PDSCH.
  • the second offset may be greater than the first offset (e.g., d > k) and the second PUCCH may be contained within one or more symbols in the third slot that are either uplink symbols or flexible symbols.
  • the one or more symbols in the third slot may be either semi static uplink symbols or semi static flexible symbols.
  • the second offset may be determined based on identifying a particular slot earliest in time between the second slot and a maximum slot.
  • the particular slot may include enough number of uplink or flexible symbols for carrying the second PUCCH.
  • the second offset may be less than a maximum value which is also included in the SPS configuration.
  • the process 500 may further transmit, in action 516, the HARQ-ACK on the second PUCCH in the third slot.
  • the process 500 may proceed to action 512, which may further determine whether a particular parameter included in the SPS configuration is indicating a deferred HARQ transmission. If the particular parameter included in the SPS configuration is determined not to be indicating the deferred HARQ transmission, the process 500 may proceed to action 518 in which the UE may drop the HARQ-ACK.
  • the process 500 may proceed to action 520 in which the UE may transmit the HARQ-ACK on the first PUCCH in the second slot. In such a situation, the process 500 may transmit the HARQ-ACK on the first PUCCH in the second slot irrespective of the particular parameter indicating the deferred HARQ transmission or not. That is, when the first PUCCH is contained within the one or more symbols, the process 500 may not investigate the status of the particular parameter and transmit the HARQ-ACK on the first PUCCH in the second slot without knowing whether this parameter indicates a deferred transmission of HARQ or not.
  • FIG. 6 is a flowchart further illustrating the method/process in FIG. 5, according to an example implementation of the present disclosure.
  • process 500 may proceed to action 602 (e.g., instead of proceeding to action 516 shown in FIG. 5) .
  • process 500 may receive a second SPS configuration.
  • the process 500 may further receive, in action 604, a second DCI format activating the second SPS configuration.
  • the second DCI format may further indicate a third offset for transmitting a second HARQ-ACK.
  • the process 500 may further receive, in action 606, a second SPS PDSCH associated with the second SPS configuration in a fourth slot.
  • the process 500 may transmit, in action 608, the HARQ-ACK (e.g., in action 514) and the second HARQ-ACK (e.g., in action 604) on a third PUCCH corresponding to the SPS PDSCH and the second SPS PDSCH in the third slot instead of proceeding to action 516 in which the UE may transmit only the HARQ-ACK on the second PUCCH in the third slot.
  • the third PUCCH may be determined based on a payload size of the second HARQ-ACK and a payload size of the HARQ-ACK.
  • the present disclosure may provide management of UE behavior of HARQ-ACK transmission for SPS PDSCH by HARQ-ACK codebook construction. Specifically, defining a size of a HARQ-ACK codebook of a PUCCH resource for transmission of only SPS HARQ-ACK bit (s) and the ordering of the SPS HARQ-ACK bit (s) may be necessary to construct a HARQ-ACK codebook. Constructing a HARQ-ACK codebook for a PUCCH resource provided for UE to report only SPS HARQ-ACK bit (s) may be achieved by some example implementations.
  • an example pseudocode “m –n ⁇ k + d max ” may be used to construct a HARQ-ACK codebook for a PUCCH resource in a UL slot “m” provided for a UE to report only SPS HARQ-ACK bit (s) .
  • HARQ-ACK information of an SPS PDSCH reception in DL slots overlapping with a UL slot “n” may be multiplexed in the PUCCH resource in the UL slot “m” .
  • an offset “k” may be a number of UL slots indicated by the PDSCH-to-HARQ_feedback timing indicator field in a corresponding DCI format used for activation of the SPS configuration of the SPS PDSCH reception or provided by dl-DataToUL-ACK if the PDSCH-to-HARQ_feedback timing indicator field is not present in the DCI format, and an offset “d max ” may be the maximum number of UL slots that the HARQ-ACK information of the SPS PDSCH reception may be deferred.
  • deferred HARQ-ACK bit (s) for a ⁇ SPS configuration index, serving cell index ⁇ may be appended after or prepended before non-deferred HARQ-ACK bit (s) for the ⁇ SPS configuration index, serving cell index ⁇ .
  • the bit ordering for the deferred HARQ-ACK bit (s) may be in ascending order of DL slot per ⁇ SPS configuration index, serving cell index ⁇ , and then in ascending order of SPS configuration index per ⁇ serving cell index ⁇ , and then in ascending order of serving cell index.
  • deferred HARQ-ACK bit (s) for all ⁇ DL slots, SPS configuration index, serving cell index ⁇ may be appended after or prepended before non-deferred HARQ-ACK bit (s) for all ⁇ DL slots, SPS configuration index, serving cell index ⁇ .
  • the bit ordering for the deferred HARQ-ACK bit (s) may be in ascending order of DL slot per ⁇ SPS configuration index, serving cell index ⁇ , and then in ascending order of SPS configuration index per ⁇ serving cell index ⁇ , and then in ascending order of serving cell index.
  • deferred HARQ-ACK bit (s) for a serving cell may be appended after or prepended before non-deferred HARQ-ACK bit (s) for the serving cell.
  • the bit ordering for the deferred HARQ-ACK bit (s) may be in ascending order of DL slot per ⁇ SPS configuration index, serving cell index ⁇ , and then in ascending order of SPS configuration index per ⁇ serving cell index ⁇ .
  • the bit ordering for the non-deferred HARQ-ACK bit (s) may be in ascending order of DL slot per ⁇ SPS configuration index, serving cell index ⁇ , and then in ascending order of SPS configuration index per ⁇ serving cell index ⁇ .
  • the concatenated deferred HARQ-ACK bit (s) and non-deferred HARQ-ACK bit (s) of a serving cell are ordered in ascending order of serving cell index.
  • deferred HARQ-ACK bit (s) for a ⁇ DL slot, serving cell index ⁇ may be appended after or prepended before non-deferred HARQ-ACK bit (s) for the ⁇ DL slot, serving cell index ⁇ .
  • the bit ordering for the deferred HARQ-ACK bit (s) may be in ascending order of SPS configuration index per ⁇ DL slot, serving cell index ⁇ , and then in ascending order of DL slot per ⁇ serving cell index ⁇ .
  • the bit ordering for the non-deferred HARQ-ACK bit (s) may be in ascending order of SPS configuration index per ⁇ DL slot, serving cell index ⁇ , and then in ascending order of DL slot per ⁇ serving cell index ⁇ .
  • the concatenated deferred HARQ-ACK bit (s) and non-deferred HARQ-ACK bit (s) of a ⁇ DL slot, serving cell index ⁇ are ordered in ascending order of serving cell index.
  • the total payload size of the deferred and non-deferred SPS HARQ-ACK bits exceeds the maxPayloadSize of the PUCCH resource provided for the SPS HARQ-ACK bits or a dynamically scheduled PUCCH resource in which the SPS HARQ-ACK bits are multiplexed or may result in a code rate for a total number of HARQ-ACK bits higher than the maximum code rate of the PUCCH resource, dropping of some deferred SPS HARQ-ACK bit (s) may be performed.
  • the total payload size of the deferred and non-deferred SPS HARQ-ACK bits exceeds the maxPayloadSize of the PUCCH resource provided for the SPS HARQ-ACK bits and the PUCCH resource is determined based on the total payload size of the non-deferred SPS HARQ-ACK bit (s) .
  • dropping of some deferred SPS HARQ-ACK bit (s) may be performed.
  • dropping of deferred SPS HARQ-ACK bit (s) may be in ascending order of DL slot number per ⁇ SPS configuration index, serving cell index ⁇ of the corresponding SPS PDSCH receptions, and/or in descending order of SPS configuration index per serving cell index, and/or in descending order of serving cell index.
  • the present disclosure may provide management of UE behavior of HARQ-ACK transmission for SPS PDSCH by multiplexing PUCCH for SPS HARQ-ACK only and other PUCCHs or PUSCHs.
  • defining the manner/mechanism (s) to multiplex the SPS HARQ-ACK bit (s) and the UCIs of the overlapping PUCCHs may be necessary when a PUCCH resource for transmission of only SPS HARQ-ACK bit (s) overlaps with other PUCCHs or PUSCHs.
  • the PUCCH resource when a PUCCH resource is provided for SPS HARQ-ACK only transmission, and the symbols containing the PUCCH resource are indicated as uplink or flexible by a slot configuration tdd-UL-DL-ConfigurationCommon or by tdd-UL-DL-ConfigurationDedicated, the PUCCH resource may be included in a resource set “Q” for a group of PUCCH resources of the same priority as indicated by harq-CodebookID in the SPS-Config (s) of the SPS PDSCH reception (s) corresponding to the SPS HARQ-ACK bit (s) .
  • UCI multiplexing procedure may be performed as specified in Clause 9.2.5 in TS 38.213 V15.3.0.
  • an SPS HARQ-ACK bit (s) may be reported in the HARQ-ACK bit (s) of the Type-1 HARQ-ACK codebook if the SPS PDSCH reception corresponding to the SPS HARQ-ACK bit (s) is within the M A, c occasions for candidate PDSCH receptions corresponding to the HARQ-ACK bit (s) of the Type-1 HARQ-ACK codebook as specified in Clause 9.1.2.1 in TS 38.213 V15.3.0.
  • an SPS HARQ-ACK bit (s) may not be reported in the HARQ-ACK bit (s) of the Type-1 HARQ-ACK codebook if the SPS PDSCH reception corresponding to the SPS HARQ-ACK bit (s) is not within the M A, c occasions for candidate PDSCH receptions corresponding to the HARQ-ACK bit (s) of the Type-1 HARQ-ACK codebook.
  • a Type-1 HARQ-ACK codebook in a dynamically scheduled PUCCH resource may be extended if there is SPS HARQ-ACK bit (s) containing deferred SPS HARQ-ACK bit (s) that may be multiplexed in the PUCCH resource, and the number of deferred slots “d” may cause “k+d” to be larger than the maximum value of offset “k” .
  • “k” may be a number of slots indicated by the PDSCH-to-HARQ_feedback timing indicator field in a corresponding DCI format used for activation of the SPS configuration of the SPS PDSCH reception or provided by dl-DataToUL-ACK if the PDSCH-to-HARQ_feedback timing indicator field is not present in the DCI format.
  • the maximum value of “k” is the maximum value configured in dl-DataToUL-ACK.
  • an extra number of HARQ-ACK bit (s) may be prepended or appended to the Type-1 HARQ-ACK codebook, the number of HARQ-ACK bit (s) may be the number of occasions for candidate PDSCH receptions in the slots in which there are corresponding SPS PDSCH receptions for the deferred SPS HARQ-ACK bit (s) , and the SPS PDSCH receptions may not be within the M A, c occasions for candidate PDSCH receptions corresponding to the HARQ-ACK bit (s) of the Type-1 HARQ-ACK codebook.
  • the Type-1 HARQ-ACK codebook may be extended for the candidate PDSCH receptions in a number of slots which may be preconfigured or predefined.
  • the extended number of slots is in units of DL slots. For example, when the maximum deferred UL slots results in “k+d” being larger than the maximum value of “k” by “X” UL slots, the extended number of DL slots may be equal to or less than slots.
  • parameter (s) PDSCH-CodeBlockGroupTransmission and/or maxNrofCodeWordsScheduledByDCI may be considered to be not configured for determining the number of HARQ-ACK bit (s) for the extended number of DL slots.
  • the SPS HARQ-ACK bit (s) may be reported by appending the SPS HARQ-ACK bit (s) to the Type-2 HARQ-ACK codebook.
  • the SPS HARQ-ACK bit (s) when SPS HARQ-ACK bit (s) is multiplexed in a Type-1 HARQ-ACK codebook or a Type-2 HARQ-ACK codebook of a dynamically scheduled PUCCH and the PUCCH overlaps with a PUSCH in a slot, the SPS HARQ-ACK bit (s) may be multiplexed in the PUSCH in the slot.
  • the SPS HARQ-ACK bit (s) When SPS HARQ-ACK bit (s) is not multiplexed in a Type-1 HARQ-ACK codebook or a Type-2 HARQ-ACK codebook of a dynamically scheduled PUCCH in a slot, and the PUCCH configured for transmission of only SPS HARQ-ACK bit (s) overlaps with a PUSCH in the slot, the SPS HARQ-ACK bit (s) may be multiplexed in the PUSCH in the slot.
  • FIG. 7 is a block diagram illustrating a node 700 for wireless communication, according to one example implementation of the present disclosure.
  • the node 700 may include a transceiver 720, a processor 726, a memory 728, one or more presentation components 734, and at least one antenna 736.
  • the node 700 may also include a Radio Frequency (RF) spectrum band module, a base station communications module, a network communications module, and a system communications management module, input/output (I/O) ports, I/O components, and a power supply (not explicitly shown in Figure 7) in which each of the components above may be in communication with each other, directly or indirectly, over one or more buses 738.
  • RF Radio Frequency
  • I/O input/output
  • the transceiver 720 may include a transmitter 722 and a receiver 724 configured to transmit and/or receive time and/or frequency resource partitioning information.
  • the transceiver 720 may be configured to transmit in different types of subframes and slots including, but not limited to, usable, non-usable and flexibly usable subframes and slot formats.
  • the transceiver 720 may be configured to receive data and control signaling.
  • the node 700 may include a variety of computer-readable media.
  • Computer-readable media may be any available media accessible by the node 700 and include both volatile and non-volatile media, removable and non-removable media.
  • Computer-readable media may include computer storage media and communication media.
  • Computer storage media may include both volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media may include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices.
  • Computer storage media do not include a propagated data signal.
  • Communication media may embody computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
  • modulated data signal may be a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer-readable media.
  • the memory 728 may include computer-storage media in the form of volatile and/or non-volatile memory.
  • the memory 728 may be removable, non-removable, or a combination thereof.
  • Exemplary memory may include solid-state memory, hard drives, optical-disc drives, etc.
  • the memory 728 may store computer-readable, computer-executable instructions 732 (e.g., software codes) that are configured to, when executed, cause the processor 726 to perform various functions described herein, for example, with reference to FIGS. 2 through 6.
  • instructions 732 may not be directly executable by the processor 726 but be configured to cause the node 700 (e.g., when compiled and executed) to perform various functions described herein.
  • the processor 726 may include an intelligent hardware device, for example, a central processing unit (CPU) , a microcontroller, an ASIC, etc.
  • the processor 726 may include memory.
  • the processor 726 may process data 730 and instructions 732 received from the memory 728, and information through the transceiver 720, the base band communications module, and/or the network communications module.
  • the processor 726 may also process information to be sent to the transceiver 720 for transmission through the antenna 736, and further to the network communications module for transmission to a core network.
  • the one or more presentation components 734 may present data indications to a person or other device.
  • the one or more presentation components 734 may include a display device, speaker, printing component, vibrating component, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

L'invention concerne un procédé de transmission d'un HARQ-ACK au moyen d'un UE. Le procédé comprend les étapes consistant à : recevoir une configuration de SPS ; recevoir un format de DCI qui active la configuration de SPS et qui indique un premier décalage permettant de transmettre le HARQ-ACK ; après réception d'un PDSCH de SPS associé à la configuration de SPS dans un premier intervalle, identifier un deuxième intervalle sur la base du premier intervalle et du premier décalage permettant de transmettre le HARQ-ACK ; déterminer si un premier PUCCH de transmission du HARQ-ACK est intégré dans des symboles de liaison montante/flexibles du deuxième intervalle ; puis lorsque le premier PUCCH n'est pas intégré dans les symboles de liaison montante/flexibles et lorsqu'un paramètre qui est intégré dans la configuration de SPS indique une transmission de HARQ différée, identifier un troisième intervalle sur la base du premier intervalle et d'un second décalage ; et transmettre le HARQ-ACK sur un second PUCCH dans le troisième intervalle.
PCT/CN2021/126134 2020-10-23 2021-10-25 Transmission d'accusé de réception de demande de répétition automatique hybride dans des réseaux de prochaine génération WO2022083782A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21882194.0A EP4211860A1 (fr) 2020-10-23 2021-10-25 Transmission d'accusé de réception de demande de répétition automatique hybride dans des réseaux de prochaine génération
CN202180067863.9A CN116325629A (zh) 2020-10-23 2021-10-25 在下一代网络中传输混合自动重复请求确认

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063104915P 2020-10-23 2020-10-23
US63/104,915 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022083782A1 true WO2022083782A1 (fr) 2022-04-28

Family

ID=81291651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126134 WO2022083782A1 (fr) 2020-10-23 2021-10-25 Transmission d'accusé de réception de demande de répétition automatique hybride dans des réseaux de prochaine génération

Country Status (4)

Country Link
EP (1) EP4211860A1 (fr)
CN (1) CN116325629A (fr)
TW (1) TWI783750B (fr)
WO (1) WO2022083782A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246672A1 (fr) * 2022-06-21 2023-12-28 上海朗帛通信技术有限公司 Procédé et appareil utilisés dans un nœud pour une communication sans fil
WO2023246742A1 (fr) * 2022-06-23 2023-12-28 上海朗帛通信技术有限公司 Procédé et appareil utilisés pour un nœud de communication sans fil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331792A1 (en) * 2015-11-05 2018-11-15 Lg Electronics Inc. Method for signal transmission, and apparatus therefor
CN111262670A (zh) * 2019-01-11 2020-06-09 维沃移动通信有限公司 一种混合自动重传确认反馈信息传输方法和终端设备
US20200214006A1 (en) * 2017-09-11 2020-07-02 Wilus Institute Of Standards And Technology Inc. Method, device and system for uplink transmission and downlink reception in wireless communication system
CN111601384A (zh) * 2019-02-20 2020-08-28 华硕电脑股份有限公司 处置侧链路和上行链路混合自动重复请求-确认反馈的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331792A1 (en) * 2015-11-05 2018-11-15 Lg Electronics Inc. Method for signal transmission, and apparatus therefor
US20200214006A1 (en) * 2017-09-11 2020-07-02 Wilus Institute Of Standards And Technology Inc. Method, device and system for uplink transmission and downlink reception in wireless communication system
CN111262670A (zh) * 2019-01-11 2020-06-09 维沃移动通信有限公司 一种混合自动重传确认反馈信息传输方法和终端设备
CN111601384A (zh) * 2019-02-20 2020-08-28 华硕电脑股份有限公司 处置侧链路和上行链路混合自动重复请求-确认反馈的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on DL SPS enhancements", 3GPP DRAFT; R1-1912541, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823475 *
TCL COMMUNICATION: "UE feedback enhancements for HARQ-ACK", 3GPP DRAFT; R1-2100920, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971263 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246672A1 (fr) * 2022-06-21 2023-12-28 上海朗帛通信技术有限公司 Procédé et appareil utilisés dans un nœud pour une communication sans fil
WO2023246742A1 (fr) * 2022-06-23 2023-12-28 上海朗帛通信技术有限公司 Procédé et appareil utilisés pour un nœud de communication sans fil

Also Published As

Publication number Publication date
TWI783750B (zh) 2022-11-11
EP4211860A1 (fr) 2023-07-19
TW202224373A (zh) 2022-06-16
CN116325629A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US10813150B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10542503B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US20180323939A1 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US11678328B2 (en) Method of multiplexing uplink control information and related device
US11595158B2 (en) Methods and apparatuses for SPS HARQ-ACK transmission
WO2013187072A1 (fr) Dispositifs pour envoyer et recevoir des informations de rétroaction
US20120207109A1 (en) Multiplexing of ACK/NACK and channel state information on uplink control channel
WO2021031995A1 (fr) Procédé et appareil de gestion de retour d'informations de harq
WO2021000707A1 (fr) Procédé et appareil permettant de réaliser des transmissions de répétition dans un système de communication sans fil
WO2022152242A1 (fr) Procédé associé à des répétitions de pusch, équipement utilisateur et dispositif de réseau
WO2022083782A1 (fr) Transmission d'accusé de réception de demande de répétition automatique hybride dans des réseaux de prochaine génération
US20230051867A1 (en) Method related to physical uplink control channel cell switching and user equipment
US11844069B2 (en) Method for transmitting PUSCH and user equipment
US20220131677A1 (en) Wireless communication method and user equipment for transmission on different bandwidth parts
US20230050524A1 (en) Method and device for performing logical-channel-based prioritization
US20230126768A1 (en) Transmitting hybrid automatic repeat request acknowledgement in next generation networks
US20230354367A1 (en) Method for configuring downlink control information monitoring and terminal device
WO2023011637A1 (fr) Procédé et appareil de retransmission d'accusé de réception de demande de répétition automatique hybride
WO2022152243A1 (fr) Équipement d'utilisateur et procédé de multiplexage d'informations de contrôle de liaison montante
WO2023051830A1 (fr) Procédé de transmission de canal physique de commande en liaison montante et dispositif associé
US11800523B2 (en) User equipment and method for configuring PUCCH resources
WO2024067833A1 (fr) Procédé, équipement utilisateur et station de base pour transmissions pusch cg

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021882194

Country of ref document: EP

Effective date: 20230414

NENP Non-entry into the national phase

Ref country code: DE