WO2022083495A1 - 上行信道的传输方法及设备 - Google Patents

上行信道的传输方法及设备 Download PDF

Info

Publication number
WO2022083495A1
WO2022083495A1 PCT/CN2021/123817 CN2021123817W WO2022083495A1 WO 2022083495 A1 WO2022083495 A1 WO 2022083495A1 CN 2021123817 W CN2021123817 W CN 2021123817W WO 2022083495 A1 WO2022083495 A1 WO 2022083495A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
pucch
pdu
overlapping
transmitted
Prior art date
Application number
PCT/CN2021/123817
Other languages
English (en)
French (fr)
Inventor
司倩倩
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022083495A1 publication Critical patent/WO2022083495A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and device for transmitting an uplink channel.
  • the physical uplink control channel Physical Uplink Control Channel, PUCCH
  • Physical Uplink shared channel Physical Uplink Shared Channel, PUSCH
  • UCI Uplink Control Information
  • the PUSCH selection is performed according to the following rules, and the UCI contained in the PUCCH is selected. Transfer to a selected PUSCH for transmission.
  • the first rule if the PUSCH for transmitting A-CSI is included in the multiple PUSCH, the PUSCH for transmitting A-CSI is preferentially selected;
  • the second rule if there are PUSCH with corresponding PDCCH and PUSCH transmission without corresponding PDCCH transmission in multiple PUSCHs, the PUSCH transmission with corresponding PDCCH is preferentially selected;
  • the third rule if there are multiple PUSCHs that satisfy the above-mentioned second rule, the selection is made according to the numbering order of the carrier where the PUSCH is located, and the PUSCH transmitted on the carrier with the smaller number is preferentially selected;
  • the PUSCH with the earliest initial transmission symbol is preferentially selected.
  • the single-slot PUCCH and the multi-slot PUSCH overlap, in the overlapping timeslots, how to place the UCI on the PUSCH for transmission is determined according to the overlapping situation of the single-slot PUCCH and the single-slot PUSCH. Specifically, if the subcarrier spacing configurations of the single-slot PUCCH and the multi-slot PUSCH are the same, the UCI carried on the PUCCH is transferred to the overlapping PUSCH timeslots for transmission; if the sub-carrier spacing configurations of the single-slot PUCCH and the multi-slot PUSCH are different, The UCI carried on the PUCCH is transferred to one or more PUSCH time slots overlapping with the PUCCH for transmission.
  • a single-slot PUCCH/PUSCH refers to a PUCCH/PUSCH that occupies only one time slot for transmission resources
  • a multi-slot PUCCH/PUSCH refers to a PUCCH/PUSCH that occupies at least two time slots when repeated transmission is configured transfer resources.
  • the PUCCH and the dynamically scheduled physical uplink shared channel collide
  • the UCI is multiplexed to the DG PUSCH for transmission, and the MAC always sends a PDU to the physical layer to ensure the transmission of the UCI.
  • the MAC sends padding bits when there is no data in the PDU.
  • At least one embodiment of the present disclosure provides an uplink channel transmission method and device, and provides a solution when PUCCH and PUSCH collide, which can reduce the implementation complexity on the terminal side and reduce the PUCCH and terminal energy consumption overhead.
  • an embodiment of the present disclosure provides a method for transmitting an uplink channel, including:
  • the terminal determines whether there is a PDU to be transmitted on the PUSCH overlapping with the PUCCH at the start of the preparation process for PUCCH transmission;
  • the UCI is transmitted on the PUCCH.
  • the judging whether there is a PDU to be transmitted on the PUSCH overlapping the PUCCH includes:
  • the MAC layer of the terminal sends a PDU corresponding to any one or more PUSCHs overlapping with the PUCCH to the physical layer, determine that there are PDUs to be transmitted on the PUSCH overlapping with the PUCCH;
  • the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping the PUCCH to the physical layer, it is determined that there is no PDU to be transmitted on the PUSCH overlapping the PUCCH.
  • the UCI is transmitted on the PUCCH, including:
  • the PUSCH bearing A-CSI or SP-CSI is upload UCI
  • the UCI is transmitted on the PUCCH, and all the The PUSCH on which the PUCCH overlaps is described.
  • the first aspect further includes:
  • the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping the PUCCH to the physical layer, and the PUSCH overlapping the PUCCH does not carry A-CSI or SP-CSI, then After the start time, the physical layer of the terminal does not expect to receive the PDU corresponding to the PUSCH overlapping the PUCCH and sent by the MAC layer.
  • the UCI is transmitted on the PUSCH selected based on a preset rule, including:
  • the MAC layer of the terminal Before the start time, if the MAC layer of the terminal sends a PDU corresponding to the first PUSCH overlapping the PUCCH to the physical layer, but the first PUSCH is not the second PUSCH, the MAC layer of the terminal sends the PDU to the physical layer.
  • a PDU corresponding to the second PUSCH is generated and sent to the physical layer, where the second PUSCH is a PUSCH selected based on the preset rule, and the second PUSCH is not a PUSCH that only carries A-CSI or SP-CSI.
  • the MAC layer of the terminal if the second PUSCH has no corresponding data to be transmitted, the MAC layer of the terminal sends the second PUSCH corresponding to the second PUSCH to the physical layer. bit PDU.
  • the PUCCH and the PUSCH have the same physical layer priority.
  • the preset rules include a first rule, a second rule, a third rule, and a fourth rule, wherein,
  • the first rule is: if the PUSCH for transmitting A-CSI is included in the multiple PUSCHs, the PUSCH for transmitting A-CSI is selected;
  • the second rule is: if there are PUSCH transmissions with corresponding PDCCHs and PUSCH transmissions without corresponding PDCCHs at the same time in multiple PUSCHs, select PUSCH transmissions with corresponding PDCCHs;
  • the third rule is: if there are multiple PUSCHs that satisfy the second rule, selection is made according to the number sequence of the carrier where the PUSCH is located, and the PUSCH transmitted on the carrier with a smaller number is selected.
  • the fourth rule is: if multiple PUSCHs time-division multiplexed on the same carrier overlap with the PUCCH, the PUSCH with the earliest initial transmission symbol is selected.
  • an embodiment of the present disclosure provides a terminal, including a memory, a transceiver and a processor;
  • transceiver for sending and receiving data under the control of the processor
  • the UCI is transmitted on the PUCCH.
  • the judging whether there is a PDU to be transmitted on the PUSCH overlapping the PUCCH includes:
  • the MAC layer of the terminal sends a PDU corresponding to any one or more PUSCHs overlapping with the PUCCH to the physical layer, determine that there are PDUs to be transmitted on the PUSCH overlapping with the PUCCH;
  • the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping the PUCCH to the physical layer, it is determined that there is no PDU to be transmitted on the PUSCH overlapping the PUCCH.
  • the UCI is transmitted on the PUCCH, including:
  • the PUSCH bearing A-CSI or SP-CSI is upload UCI
  • the UCI is transmitted on the PUCCH, and all the The PUSCH on which the PUCCH overlaps is described.
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping the PUCCH to the physical layer, and the PUSCH overlapping the PUCCH does not carry A-CSI or SP-CSI, then After the start time, the physical layer of the terminal does not expect to receive the PDU corresponding to the PUSCH overlapping the PUCCH and sent by the MAC layer.
  • the UCI is transmitted on the PUSCH selected based on a preset rule, including:
  • the MAC layer of the terminal Before the start time, if the MAC layer of the terminal sends a PDU corresponding to the first PUSCH overlapping the PUCCH to the physical layer, but the first PUSCH is not the second PUSCH, the MAC layer of the terminal sends the PDU to the physical layer.
  • a PDU corresponding to the second PUSCH is generated and sent to the physical layer, where the second PUSCH is a PUSCH selected based on the preset rule, and the second PUSCH is not a PUSCH that only carries A-CSI or SP-CSI.
  • the MAC layer of the terminal sends the second PUSCH corresponding to the second PUSCH to the physical layer. bit PDU.
  • the PUCCH and the PUSCH have the same physical layer priority.
  • the preset rules include a first rule, a second rule, a third rule, and a fourth rule, wherein,
  • the first rule is: if the PUSCH for transmitting A-CSI is included in the multiple PUSCHs, the PUSCH for transmitting A-CSI is selected;
  • the second rule is: if there are PUSCH transmissions with corresponding PDCCHs and PUSCH transmissions without corresponding PDCCHs at the same time in multiple PUSCHs, select PUSCH transmissions with corresponding PDCCHs;
  • the third rule is: if there are multiple PUSCHs that satisfy the second rule, selection is made according to the number sequence of the carrier where the PUSCH is located, and the PUSCH transmitted on the carrier with a smaller number is selected.
  • the fourth rule is: if multiple PUSCHs time-division multiplexed on the same carrier overlap with the PUCCH, the PUSCH with the earliest initial transmission symbol is selected.
  • an embodiment of the present disclosure provides a terminal, including:
  • a judgment unit configured to judge whether there is a PDU to be transmitted on the PUSCH overlapping with the PUCCH at the start time of the preparation process for PUCCH transmission;
  • a first processing unit configured to transmit UCI on the PUSCH selected based on a preset rule if there is a PDU to be transmitted on the PUSCH overlapping the PUCCH;
  • the second processing unit is configured to transmit the UCI on the PUCCH if there is no PDU to be transmitted on the PUSCH overlapping the PUCCH.
  • embodiments of the present disclosure provide a computer storage medium, including instructions, which, when the instructions are executed on a computer, cause the computer to execute the method as described above.
  • the embodiment of the present disclosure changes the implementation method of determining whether there is PDU transmission on all PUSCHs that conflict with the PUCCH. Instead, a suitable time is determined according to the PUCCH transmission preparation process. If it is determined that there is PDU transmission on the PUSCH overlapping with the PUSCH, the PUSCH can be selected to transmit the UCI, otherwise, the UCI can be transmitted on the PUCCH.
  • the above judgment method can ensure the time required for PUCCH transmission preparation.
  • the embodiment of the present disclosure can reduce the implementation complexity on the terminal side, reduce or avoid the cancellation process of PUCCH transmission, and save PUCCH resources. and terminal energy consumption.
  • FIG. 1 is a schematic diagram of a wireless communication system suitable for an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the disclosure
  • FIG. 3 is a flowchart of a method for transmitting an uplink channel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a scenario of an example of an uplink channel transmission method according to an embodiment of the present disclosure
  • FIG. 5 is a structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is another structural diagram of a terminal according to an embodiment of the present disclosure.
  • LTE Long Time Evolution
  • LTE-A Long Time Evolution
  • 5G NR 5G NR systems
  • code division Multiple Access Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single-carrier frequency division multiple access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • a CDMA system may implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • a TDMA system may implement a radio technology such as the Global System for Mobile Communication (GSM).
  • OFDMA systems can implement radios such as UltraMobile Broadband (UMB), Evolution-UTRA (E-UTRA), IEEE 802.21 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. technology.
  • UMB UltraMobile Broadband
  • E-UTRA Evolution-UTRA
  • IEEE 802.21 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described herein may be used for both the systems and radio technologies mentioned above, as well as for other systems and radio technologies.
  • the following description describes an NR system for example purposes, and NR terminology is used in much of the following description, although these techniques are also applicable to applications other than NR system applications.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present disclosure can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12 .
  • the terminal 11 may also be referred to as a user terminal or user equipment (UE, User Equipment), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device and other terminal-side devices, it should be noted that, in the embodiments of the present disclosure, the specific type of the terminal 11 is not limited .
  • the network device 12 may be a base station and/or a core network element, wherein the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN, etc.) access point, or other access point, etc.), where the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a base station Service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or As long as the same technical effect is achieved by any other suitable term in the field, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiments of the present disclosure,
  • the base stations may communicate with the terminal 11 under the control of a base station controller, which in various examples may be part of a core network or some base station. Some base stations may communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may communicate with each other directly or indirectly via backhaul links, which may be wired or wireless communication links.
  • Wireless communication systems may support operation on multiple carriers (waveform signals of different frequencies).
  • a multi-carrier transmitter can transmit modulated signals on these multiple carriers simultaneously.
  • each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal may be sent on a different carrier and may carry control information (eg, reference signals, control channels, etc.), overhead information, data, and the like.
  • the base station may communicate wirelessly with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that make up only a portion of the coverage area.
  • a wireless communication system may include different types of base stations (eg, macro base stations, micro base stations, or pico base stations). The base stations may also utilize different radio technologies, such as cellular or WLAN radio access technologies. The base stations may be associated with the same or different access networks or operator deployments. The coverage areas of different base stations (including coverage areas of base stations of the same or different types, coverage areas utilizing the same or different radio technologies, or coverage areas belonging to the same or different access networks) may overlap.
  • a communication link in a wireless communication system may include an uplink for carrying uplink (UL) transmissions (eg, from terminal 11 to network device 12), or for carrying downlink (DL) Downlink of transmission (eg, from network device 12 to terminal 11).
  • UL transmissions may also be referred to as reverse link transmissions, and DL transmissions may also be referred to as forward link transmissions.
  • Downlink transmissions may be performed using licensed bands, unlicensed bands, or both.
  • uplink transmissions may be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • a possible solution is to carry UCI on the PUSCH selected based on preset rules when any PUSCH contains PDUs, otherwise when all PUSCHs overlapping with PUCCH do not contain PDUs , UCI is transmitted on PUCCH, and all PUSCH overlapping with PUCCH are not transmitted.
  • UCI such as HARQ-ACK and/or Channel State Information (CSI)
  • a problem with this method is that the time when the MAC sends the PDU may be later than the time when the PUCCH starts to prepare, so that when the terminal determines that all PUSCHs do not carry PDUs, it is too late to prepare and transmit the PUCCH.
  • PUCCH overlaps with PUSCH1 and PUSCH2. It is assumed that based on the preset rules, UCI will be transferred to PUSCH2 for transmission.
  • the terminal needs to start preparing for PUCCH transmission at t1 at the latest, but it needs to wait until t2 to know whether it exists on PUSCH2. PDU transmission, so the terminal does not know whether to prepare PUCCH at time t1, and if it is determined that there is no PDU on PUSCH2 at time t2, it is too late for the terminal to prepare for PUCCH transmission.
  • An implementation solution is that the terminal always starts to prepare the PUCCH regardless of which PUSCH there is a PDU, but this will increase the implementation complexity of the terminal, and the MAC may not send the PDU until the terminal starts to transmit the PUCCH, resulting in the need to cancel PUCCH transmission increases the overhead of PUCCH resources and terminal power.
  • an embodiment of the present disclosure provides a method for transmitting an uplink channel. As shown in FIG. 3 , when the method is applied to the terminal side, the method includes:
  • Step 31 At the start time of the preparation process for PUCCH transmission, the terminal determines whether there is a PDU to be transmitted on the PUSCH overlapping the PUCCH.
  • the preparation process for PUCCH transmission refers to a process in which the terminal prepares the information transmitted on the PUCCH.
  • the terminal usually performs processing such as modulation, coding, and mapping on the above-mentioned transmitted information.
  • the start time of the above preparation process is determined according to the time required to prepare the information transmitted on the PUCCH and the starting position of the PUCCH, so that it can be ensured that the information transmission preparation can be completed in the above preparation process.
  • step 31 in order to ensure that the terminal has enough preparation time for PUCCH transmission, the embodiment of the present disclosure no longer waits until it can be determined whether there is PDU transmission on all PUSCHs before making the above judgment, but ensures the preparation process of PUCCH transmission. The above judgment is made on the premise that it takes time.
  • is a predefined constant value, such as a value such as 64.
  • is the minimum value of the subcarrier spacing configuration of the predetermined relevant channel.
  • the relevant channel may specifically include: the PUCCH, the PDSCH corresponding to the PUCCH, the PUSCH overlapping the PUCCH, the PDCCH corresponding to the PUSCH, and at least one channel among the PDCCH that carries the DCI that schedules the PUCCH .
  • the relevant channel includes the PUCCH, the PDSCH corresponding to the PUCCH, and the PDCCH carrying the DCI scheduling the PUCCH
  • the subcarrier spacing of the PUCCH is configured as 1
  • the subcarrier interval corresponding to the PDSCH of the PUCCH is 1.
  • the determination of the ⁇ value may also be related to the subcarrier spacing (SCS) configuration of other channels overlapping with the PUCCH, such as the SCS of the PUSCH overlapping with the PUCCH, and the SCS of the PDCCH corresponding to the PUSCH. Take the minimum value in the SCS configuration.
  • SCS subcarrier spacing
  • N 1 is a preset value corresponding to PDSCH processing capability and ⁇ value; for example, a correspondence table is preset in which the correspondence between the above preset value and “PUSCH processing capability and ⁇ value” is stored.
  • N 2 is a preset value corresponding to the PUSCH processing capability and ⁇ value;
  • Step 32 if there is a PDU to be transmitted on the PUSCH overlapping the PUCCH, transmit the UCI on the PUSCH selected based on the preset rule.
  • the preset rules generally include the following first rules, second rules, third rules and fourth rules, wherein,
  • the first rule is: if the PUSCH for transmitting A-CSI is included in the multiple PUSCHs, the PUSCH for transmitting A-CSI is selected, that is, the PUSCH for transmitting A-CSI is selected to transmit UCI.
  • the second rule is: if there are PUSCH transmissions with corresponding PDCCHs and PUSCH transmissions without corresponding PDCCHs at the same time, select PUSCH transmissions with corresponding PDCCHs, that is, select PUSCHs with corresponding PDCCHs to transmit UCI.
  • the correspondence between the PDCCH and the PUSCH refers to the PUSCH transmission scheduled by the PDCCH. That is, the PUSCH transmission corresponding to the PDCCH refers to the PUSCH transmission scheduled by the PDCCH.
  • the third rule is: if there are multiple PUSCHs that satisfy the second rule, selection is made according to the number sequence of the carrier where the PUSCH is located, and the PUSCH transmitted on the carrier with a smaller number is selected.
  • the fourth rule is: if multiple PUSCHs time-division multiplexed on the same carrier overlap with the PUCCH, the PUSCH with the earliest initial transmission symbol is selected.
  • the multiple PUSCHs described in each of the above rules are all PUSCHs that overlap with the PUCCH.
  • the first rule, the second rule, the third rule and the fourth rule may be used in sequence to select from the PUSCH overlapping with the PUCCH until a certain rule is selected.
  • PUSCH For example, after a certain PUSCH is selected using the first rule, subsequent rules are not used for selection.
  • Step 33 If there is no PDU to be transmitted on the PUSCH overlapping with the PUCCH, the UCI is transmitted on the PUCCH.
  • the UCI may specifically include at least one of HARQ-ACK, CSI and scheduling request (Scheduling Request, SR).
  • the embodiment of the present disclosure changes the implementation manner of judging at the moment when it is possible to determine whether all PUSCHs conflicting with the PUCCH have PDU transmission, but determines a suitable moment for the judgment according to the PUCCH transmission preparation process. In this way, If it is determined at the judgment moment that there is PDU transmission on the PUSCH overlapping with the PUSCH, the PUSCH can be selected to transmit the UCI, otherwise, the UCI can be transmitted on the PUCCH.
  • the above judgment method can ensure the time required for PUCCH transmission preparation.
  • the embodiment of the present disclosure can reduce the implementation complexity of the terminal side, reduce or avoid the cancellation process of PUCCH transmission, and save PUCCH resources. and terminal energy consumption.
  • the PUCCH and the PUSCH described in this embodiment of the present disclosure have the same physical layer priority. That is to say, in step 31, when judging whether there is a PDU to be transmitted on the PUSCH overlapping with the PUCCH, the judgment is made on the PUSCH which has the same physical layer priority as the PUCCH and overlaps with the PUCCH . Subsequently, in step 32, the UCI is transmitted on the PUSCH with the same physical layer priority as the PUCCH selected based on the preset rule.
  • the PUSCH overlapping with the PUCCH may be a CG PUSCH or a DG PUSCH, and the embodiments of the present disclosure do not exclude any combination, such as two overlapping with the PUCCH.
  • Each PUSCH is a CG PUSCH, or both PUSCHs are a DG PUSCH, or one PUSCH is a CG PUSCH and the other PUSCH is a DG PUSCH.
  • the PUSCH overlapped with the PUCCH mentioned herein refers to at least partial overlap between the PUCCH and the PUSCH in the time domain.
  • the UCI can be transmitted on the PUCCH.
  • the embodiment of the present disclosure may further determine whether the PUSCH overlapping with the PUCCH carries A-CSI or SP-CSI, if there is no PDU to be transmitted on the PUSCH overlapping with the PUCCH, but overlapping with the PUCCH If there is a PUSCH carrying A-CSI or SP-CSI in the PUSCH, UCI can be transmitted on the PUSCH carrying A-CSI or SP-CSI; and if there is no PDU to be transmitted on the PUSCH overlapping with the PUCCH, And if there is no PUSCH carrying A-CSI or SP-CSI in the PUSCH overlapping with the PUCCH, the UCI is transmitted on the PUCCH, and all the PUSCH overlapping with the PUCCH are not transmitted. In this way, the embodiment of the present disclosure can preferentially multiplex the PUSCH that bear
  • the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping with the PUCCH to the physical layer, and the PDU overlapping with the PUCCH If the PUSCH does not carry A-CSI or SP-CSI, after the start time, the physical layer of the terminal does not expect to receive a PDU corresponding to the PUSCH overlapping the PUCCH and sent by the MAC layer.
  • the fact that the physical layer of the terminal does not expect to receive a PDU sent by the MAC layer and corresponding to the PUSCH overlapping the PUCCH means: after the start time, the MAC layer of the terminal does not send the PDU to the physical layer that corresponds to the PUCCH.
  • step 32 if there is a PDU to be transmitted on the PUSCH overlapping the PUCCH, when the UCI is transmitted on the PUSCH selected based on the preset rule, the following situations may exist:
  • the PUSCH selected based on the preset rule is not the first PUSCH, and may be processed in the following manners in this embodiment of the present disclosure:
  • the terminal Before the start time, if the MAC layer of the terminal sends a PDU corresponding to the first PUSCH overlapping the PUCCH to the physical layer, but the first PUSCH is not the second PUSCH, the terminal will UCI is transmitted on the second PUSCH.
  • the MAC layer of the terminal generates and sends the PDU corresponding to the second PUSCH to the physical layer, wherein the second PUSCH is the PUSCH selected based on the preset rule, and the third PUSCH is selected based on the preset rule.
  • a PUSCH is not a PUSCH that only carries A-CSI or SP-CSI. However, if the second PUSCH has no corresponding data to be transmitted, the MAC layer of the terminal may send a PDU corresponding to the second PUSCH and including padding bits to the physical layer.
  • the above embodiment provides an uplink channel transmission method.
  • the terminal side at the moment when the PUCCH preparation starts, it is judged whether there is a PDU on the PUSCH overlapping with the PUCCH, and if so, the UCI is transmitted on the predefined PUSCH.
  • the UCI is transmitted on the PUCCH, and the terminal does not expect to receive the PDU corresponding to the PUSCH that overlaps with the PUCCH sent by the MAC to the physical layer after the PUCCH preparation start time.
  • the start time of PUCCH is t4
  • the time to start PUCCH preparation is t1
  • the latest time when the MAC layer sends the PDU corresponding to PUSCH1 to the physical layer is t3
  • the latest time when the PDU corresponding to PUSCH2 is sent to the physical layer is t2.
  • UCI will be transferred to PUSCH2 for transmission.
  • the terminal's MAC sends the PDU corresponding to PUSCH1 to the physical layer.
  • the terminal determines that there is a PDU on the PUSCH overlapping with the PUCCH before preparing the PUCCH, and the terminal does not prepare the PUCCH, but chooses to multiplex the UCI on the PUSCH2 for transmission.
  • the MAC of the terminal needs to send the PDU of PUSCH2 to the physical layer before time t2.
  • the MAC sends a PDU with padding bits to the physical layer to ensure that the UCI of the physical layer can be multiplexed and transmitted; finally, the terminal transmits PUSCH1 and PUSCH2, where UCI is multiplexed for transmission on PUSCH2.
  • Scenario 2 It is assumed that UCI will be transferred to PUSCH2 for transmission based on preset rules. Before time t1, the terminal's MAC does not send a PDU to the physical layer. At time t1, the terminal determines that there is no PDU on the PUSCH overlapping with the PUCCH before preparing the PUCCH, and no PUSCH carries A-CSI. Then the terminal starts to prepare the PUCCH, and the terminal's The MAC no longer sends the PDU of PUSCH2 to the physical layer; the terminal finally transmits PUCCH, but does not transmit PUSCH1 and PUSCH2.
  • Scenario 3 It is assumed that UCI will be transferred to PUSCH2 for transmission based on preset rules. Before time t1, the terminal's MAC does not send a PDU to the physical layer. At time t1, the terminal determines that there is no PDU on the PUSCH overlapping with the PUCCH before preparing the PUCCH, but the A-CSI transmission is carried on PUSCH2, so the terminal does not prepare the PUCCH at time t1. , before the time t2, the MAC can also send the PDU corresponding to the PUSCH2 to the physical layer; finally, the terminal transmits the PUSCH2, and the UCI is multiplexed on the PUSCH2 for transmission.
  • Scenario 4 It is assumed that UCI will be transferred to PUSCH1 for transmission based on preset rules. Before time t1, the terminal's MAC does not send a PDU to the physical layer. At time t1, the terminal judges that there is no PDU on the PUSCH overlapping with the PUCCH before preparing the PUCCH, but the PUSCH1 carries A-CSI transmission, so the terminal multiplexes the UCI in Transmission is performed on PUSCH1; before time t2, the MAC can also send the PDU corresponding to PUSCH2 to the physical layer; finally the terminal transmits PUSCH1, if the MAC sends the PDU corresponding to PUSCH2 to the physical layer, the terminal also transmits PUSCH2, and UCI is multiplexed on PUSCH1 to transmit.
  • an embodiment of the present disclosure provides a terminal 50, including:
  • a judgment unit 51 configured to judge whether there is a PDU to be transmitted on the PUSCH overlapping with the PUCCH at the start time of the preparation process for PUCCH transmission;
  • a first processing unit 52 configured to transmit UCI on the PUSCH selected based on a preset rule if there is a PDU to be transmitted on the PUSCH overlapping the PUCCH;
  • the second processing unit 53 is configured to transmit the UCI on the PUCCH if there is no PDU to be transmitted on the PUSCH overlapping the PUCCH.
  • the embodiments of the present disclosure provide a solution when PUCCH and PUSCH collide, which can reduce the implementation complexity on the terminal side and reduce the PUCCH and terminal energy consumption overhead.
  • the judging unit is further configured to:
  • the MAC layer of the terminal sends a PDU corresponding to any one or more PUSCHs overlapping with the PUCCH to the physical layer, determine that there are PDUs to be transmitted on the PUSCH overlapping with the PUCCH;
  • the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping the PUCCH to the physical layer, it is determined that there is no PDU to be transmitted on the PUSCH overlapping the PUCCH.
  • the second processing unit 53 is further configured to:
  • the PUSCH bearing A-CSI or SP-CSI is upload UCI
  • the UCI is transmitted on the PUCCH, and all the The PUSCH on which the PUCCH overlaps is described.
  • the terminal further includes:
  • a third processing unit configured to: if, before the start time, the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping the PUCCH to the physical layer, and the PUSCH overlapping the PUCCH does not carry A -CSI or SP-CSI, after the start time, the physical layer of the terminal does not expect to receive a PDU corresponding to the PUSCH overlapped with the PUCCH sent by the MAC layer.
  • the first rationale unit 52 is also used for:
  • the MAC layer of the terminal Before the start time, if the MAC layer of the terminal sends a PDU corresponding to the first PUSCH overlapping the PUCCH to the physical layer, but the first PUSCH is not the second PUSCH, the MAC layer of the terminal sends the PDU to the physical layer.
  • a PDU corresponding to the second PUSCH is generated and sent to the physical layer, where the second PUSCH is a PUSCH selected based on the preset rule, and the second PUSCH is not a PUSCH that only carries A-CSI or SP-CSI.
  • the first rationale unit 52 is also used for:
  • the MAC layer of the terminal sends a PDU corresponding to the second PUSCH and containing padding bits to the physical layer.
  • the PUCCH and the PUSCH have the same physical layer priority.
  • the preset rules include a first rule, a second rule, a third rule and a fourth rule, wherein,
  • the first rule is: if the PUSCH for transmitting A-CSI is included in the multiple PUSCHs, the PUSCH for transmitting A-CSI is selected;
  • the second rule is: if there are PUSCH transmissions with corresponding PDCCHs and PUSCH transmissions without corresponding PDCCHs at the same time in multiple PUSCHs, select PUSCH transmissions with corresponding PDCCHs;
  • the third rule is: if there are multiple PUSCHs that satisfy the second rule, selection is made according to the number sequence of the carrier where the PUSCH is located, and the PUSCH transmitted on the carrier with a smaller number is selected.
  • the fourth rule is: if multiple PUSCHs time-division multiplexed on the same carrier overlap with the PUCCH, the PUSCH with the earliest initial transmission symbol is selected.
  • the terminal in this embodiment is a device corresponding to the method shown in FIG. 3 above, and the implementation manners in the above embodiments are all applicable to the embodiments of the device, and the same technical effect can also be achieved.
  • the above-mentioned terminal provided by the embodiments of the present disclosure can realize all the method steps realized by the above-mentioned method embodiments, and can achieve the same technical effects, and the parts and beneficial effects that are the same as the method embodiments in this embodiment will not be described in detail here. Repeat.
  • FIG. 6 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal 600 includes: a processor 601 , a transceiver 602 , a memory 603 , a user interface 604 and a bus interface.
  • the terminal 600 further includes: program instructions stored on the memory 603 and executable on the processor 601 .
  • the UCI is transmitted on the PUCCH.
  • the processor further implements the following steps when executing the program instructions:
  • the MAC layer of the terminal sends a PDU corresponding to any one or more PUSCHs overlapping with the PUCCH to the physical layer, determine that there are PDUs to be transmitted on the PUSCH overlapping with the PUCCH;
  • the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping the PUCCH to the physical layer, it is determined that there is no PDU to be transmitted on the PUSCH overlapping the PUCCH.
  • the processor further implements the following steps when executing the program instructions:
  • the PUSCH bearing A-CSI or SP-CSI is upload UCI
  • the UCI is transmitted on the PUCCH, and all the The PUSCH on which the PUCCH overlaps is described.
  • the processor further implements the following steps when executing the program instructions:
  • the MAC layer of the terminal does not send a PDU corresponding to any PUSCH overlapping the PUCCH to the physical layer, and the PUSCH overlapping the PUCCH does not carry A-CSI or SP-CSI, then After the start time, the physical layer of the terminal does not expect to receive the PDU corresponding to the PUSCH overlapping the PUCCH and sent by the MAC layer.
  • the processor further implements the following steps when executing the program instructions:
  • the MAC layer of the terminal Before the start time, if the MAC layer of the terminal sends a PDU corresponding to the first PUSCH overlapping the PUCCH to the physical layer, but the first PUSCH is not the second PUSCH, the MAC layer of the terminal sends the PDU to the physical layer.
  • a PDU corresponding to the second PUSCH is generated and sent to the physical layer, where the second PUSCH is a PUSCH selected based on the preset rule, and the second PUSCH is not a PUSCH that only carries A-CSI or SP-CSI.
  • the processor further implements the following steps when executing the program instructions:
  • the MAC layer of the terminal sends a PDU corresponding to the second PUSCH and containing padding bits to the physical layer.
  • the PUCCH and the PUSCH have the same physical layer priority.
  • the preset rules include a first rule, a second rule, a third rule and a fourth rule, wherein,
  • the first rule is: if the PUSCH for transmitting A-CSI is included in the multiple PUSCHs, the PUSCH for transmitting A-CSI is selected;
  • the second rule is: if there are PUSCH transmissions with corresponding PDCCHs and PUSCH transmissions without corresponding PDCCHs at the same time in multiple PUSCHs, select PUSCH transmissions with corresponding PDCCHs;
  • the third rule is: if there are multiple PUSCHs that satisfy the second rule, selection is made according to the number sequence of the carrier where the PUSCH is located, and the PUSCH transmitted on the carrier with a smaller number is selected.
  • the fourth rule is: if multiple PUSCHs time-division multiplexed on the same carrier overlap with the PUCCH, the PUSCH with the earliest initial transmission symbol is selected.
  • the bus architecture may include any number of interconnected buses and bridges, in particular one or more processors represented by processor 601 and various circuits of memory represented by memory 603 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 602 may be a number of elements, including a transmitter and a receiver, that provide a means for communicating with various other devices over a transmission medium.
  • the user interface 604 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 603 may store data used by the processor 601 in performing operations.
  • the terminal in this embodiment is a terminal corresponding to the method shown in FIG. 3 above, and the implementation manners in the above-mentioned embodiments are all applicable to the embodiments of the terminal, and the same technical effect can also be achieved.
  • the transceiver 602 and the memory 603, as well as the transceiver 602 and the processor 601 can be communicated and connected through a bus interface, the function of the processor 601 can also be realized by the transceiver 602, and the function of the transceiver 602 can also be realized by the processor 601 realized.
  • a computer-readable storage medium on which program instructions are stored, and when the program instructions are executed by a processor, the following steps are implemented:
  • the UCI is transmitted on the PUCCH.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present disclosure.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Abstract

本公开公开了一种上行信道的传输方法及设备,其中,所述方法包括:终端在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。

Description

上行信道的传输方法及设备
相关申请的交叉引用
本申请主张在2020年10月19日在中国提交的中国专利申请号No.202011119099.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种上行信道的传输方法及设备。
背景技术
目前在第五代新无线(New Radio,NR)通信系统中,对于同一个终端,为了避免出现过大的峰均平均功率比(Peak to Average Power Ratio,PARR),不支持物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的同时传输,因此当PUCCH和PUSCH的资源重叠时,终端可以将PUCCH承载的上行控制信息(Uplink Control Information,UCI)复用在PUSCH上进行传输。
目前在NR通信系统中,如果单时隙PUCCH和多个单时隙PUSCH重叠,在多个重叠的PUSCH和PUCCH均满足时间线要求时,按照如下规则进行PUSCH选择,并将PUCCH中包含的UCI转移到选择出的一个PUSCH上进行传输。
第一规则:如果多个PUSCH中包含用于传输A-CSI的PUSCH,则优先选择用于传输A-CSI的PUSCH;
第二规则:如果多个PUSCH中同时存在具有对应PDCCH的PUSCH和没有对应PDCCH传输的PUSCH传输,则优先选择具有对应PDCCH的PUSCH传输;
第三规则:如果存在多个满足上述第二规则的PUSCH,按照PUSCH所在载波的编号顺序进行选择,优先选择编号较小载波上传输的PUSCH;
第四规则:如果在同一个载波上有多个时分复用的PUSCH和同一个PUCCH重叠,则优先选择起始传输符号最早的PUSCH。
如果单时隙PUCCH和多时隙PUSCH重叠,在重叠的时隙中,按照单时隙PUCCH和单时隙PUSCH的重叠情况确定如何将UCI放在PUSCH上进行传输。具体的,如果单时隙PUCCH和多时隙PUSCH的子载波间隔配置相同,PUCCH承载的UCI转移到重叠的PUSCH时隙中进行传输;如果单时隙PUCCH和多时隙PUSCH的子载波间隔配置不同,PUCCH承载的UCI转移到与PUCCH重叠的一个或者多个PUSCH时隙中进行传输。这里,单时隙PUCCH/PUSCH是指一个PUCCH/PUSCH只占用一个时隙的传输资源,而多时隙PUCCH/PUSCH是指配置了重复传输的情况下,一个PUCCH/PUSCH占用至少两个时隙的传输资源。
当PUCCH和动态调度的物理上行共享信道(Dynamic Grant Physical Uplink Shared Channel,DG PUSCH)冲突时,则UCI复用到DG PUSCH上传输,MAC总是会发送一个PDU给物理层保证UCI的传输,当MAC的PDU中没有数据时会发送填充(padding)比特。当PUCCH和配置调度的物理上行共享信道(Configured Grant Physical Uplink Shared Channel,CG PUSCH)冲突时,如果CG PUSCH上没有数据传输,目前还没有明确的方案。
发明内容
本公开的至少一个实施例提供了一种上行信道的传输方法及设备,提供了一种PUCCH与PUSCH冲突时的解决方案,可以降低终端侧的实现复杂度,减少PUCCH和终端能耗的开销。
第一方面,本公开实施例提供了一种上行信道的传输方法,包括:
终端在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;
如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
结合第一方面,在第一方面的某些实现方式中,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T1,所述 T1=(N 1+d 1,1)(2048+144)·κ2 ·T C
或者,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T2,所述T2=(N 2+d 2,1)(2048+144)·κ2 ·T C
其中:
d 1,1为预设值或高层配置的值;d 2,1=0或1;μ为预定的相关信道的子载波间隔配置的最小值;N 1为对应于PDSCH处理能力和μ值的预设值;N 2为对应于PUSCH处理能力和μ值的预设值;κ为预定义的常数值;T C为预定的基本时间单位。
结合第一方面,在第一方面的某些实现方式中,所述判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU,包括:
如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的任意一个或者多个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上有待传输的PDU;
如果所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上没有待传输的PDU。
结合第一方面,在第一方面的某些实现方式中,所述如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI,包括:
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,但是与所述PUCCH重叠的PUSCH中存在承载A-CSI或SP-CSI的PUSCH,则在所述承载A-CSI或SP-CSI的PUSCH上传输UCI;
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,且与所述PUCCH重叠的PUSCH中不存在承载A-CSI或SP-CSI的PUSCH,则在PUCCH上传输UCI,且不传输所有与所述PUCCH重叠的PUSCH。
结合第一方面,在第一方面的某些实现方式中,还包括:
如果所述开始时刻之前,所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,且与所述PUCCH重叠的PUSCH未承载A-CSI或SP-CSI,则在所述开始时刻之后,所述终端的物理层不期待收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU。
结合第一方面,在第一方面的某些实现方式中,所述如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI,包括:
在所述开始时刻之前,如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的第一PUSCH对应的PDU,但是所述第一PUSCH不是第二PUSCH,则所述终端的MAC层生成并向物理层发送所述第二PUSCH对应的PDU,其中,所述第二PUSCH是基于所述预设规则选择的PUSCH,且第二PUSCH不是仅承载A-CSI或SP-CSI的PUSCH。
结合第一方面,在第一方面的某些实现方式中,如果所述第二PUSCH没有对应的数据需要传输,则所述终端的MAC层向物理层发送所述第二PUSCH对应的包含有填充比特的PDU。
结合第一方面,在第一方面的某些实现方式中,所述PUCCH与PUSCH的物理层优先级相同。
结合第一方面,在第一方面的某些实现方式中,所述预设规则包括第一规则、第二规则、第三规则和第四规则,其中,
所述第一规则为:如果多个PUSCH中包含用于传输A-CSI的PUSCH,则选择用于传输A-CSI的PUSCH;
所述第二规则为:如果多个PUSCH中同时存在具有对应PDCCH的PUSCH传输和没有对应PDCCH的PUSCH传输,则选择具有对应PDCCH的PUSCH传输;
所述第三规则为:如果存在满足所述第二规则的多个PUSCH,则按照PUSCH所在载波的编号顺序进行选择,选择编号较小载波上传输的PUSCH。
所述第四规则为:如果在同一个载波上有时分复用的多个PUSCH和所述PUCCH重叠,则选择起始传输符号最早的PUSCH。
第二方面,本公开实施例提供了一种终端,包括存储器,收发机和处理器;
存储器,用于存储计算机程序;
收发机,用于在所述处理器的控制下收发数据;
处理器,用于读取所述存储器中的计算机程序并执行以下操作:
在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;
如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
结合第二方面,在第二方面的某些实现方式中,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T1,所述T1=(N 1+d 1,1)(2048+144)·κ2 ·T C
或者,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T2,所述T2=(N 2+d 2,1)(2048+144)·κ2 ·T C
其中:
d 1,1为预设值或高层配置的值;d 2,1=0或1;μ为预定的相关信道的子载波间隔配置的最小值;N 1为对应于PDSCH处理能力和μ值的预设值;N 2为对应于PUSCH处理能力和μ值的预设值;κ为预定义的常数值;T C为预定的基本时间单位。
结合第二方面,在第二方面的某些实现方式中,所述判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU,包括:
如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的任意一个或者多个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上有待传输的PDU;
如果所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上没有待传输的PDU。
结合第二方面,在第二方面的某些实现方式中,所述如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI,包括:
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,但是与所述PUCCH重叠的PUSCH中存在承载A-CSI或SP-CSI的PUSCH,则在所述承载A-CSI或SP-CSI的PUSCH上传输UCI;
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,且与所述PUCCH重叠的PUSCH中不存在承载A-CSI或SP-CSI的PUSCH,则在PUCCH上传输UCI,且不传输所有与所述PUCCH重叠的PUSCH。
结合第二方面,在第二方面的某些实现方式中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
如果所述开始时刻之前,所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,且与所述PUCCH重叠的PUSCH未承载A-CSI或SP-CSI,则在所述开始时刻之后,所述终端的物理层不期待收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU。
结合第二方面,在第二方面的某些实现方式中,所述如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI,包括:
在所述开始时刻之前,如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的第一PUSCH对应的PDU,但是所述第一PUSCH不是第二PUSCH,则所述终端的MAC层生成并向物理层发送所述第二PUSCH对应的PDU,其中,所述第二PUSCH是基于所述预设规则选择的PUSCH,且第二PUSCH不是仅承载A-CSI或SP-CSI的PUSCH。
结合第二方面,在第二方面的某些实现方式中,如果所述第二PUSCH没有对应的数据需要传输,则所述终端的MAC层向物理层发送所述第二PUSCH对应的包含有填充比特的PDU。
结合第二方面,在第二方面的某些实现方式中,所述PUCCH与PUSCH的物理层优先级相同。
结合第二方面,在第二方面的某些实现方式中,所述预设规则包括第一规则、第二规则、第三规则和第四规则,其中,
所述第一规则为:如果多个PUSCH中包含用于传输A-CSI的PUSCH,则选择用于传输A-CSI的PUSCH;
所述第二规则为:如果多个PUSCH中同时存在具有对应PDCCH的PUSCH传输和没有对应PDCCH的PUSCH传输,则选择具有对应PDCCH的PUSCH传输;
所述第三规则为:如果存在满足所述第二规则的多个PUSCH,则按照PUSCH所在载波的编号顺序进行选择,选择编号较小载波上传输的PUSCH。
所述第四规则为:如果在同一个载波上有时分复用的多个PUSCH和所述PUCCH重叠,则选择起始传输符号最早的PUSCH。
第三方面,本公开实施例提供了一种终端,包括:
判断单元,用于在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;
第一处理单元,用于如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
第二处理单元,用于如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
第四方面,本公开实施例提供了一种计算机存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述的方法。
本公开实施例的有益效果是:
本公开实施例改变了在能够确定所有与PUCCH冲突的PUSCH上是否有PDU传输的时刻进行判断的实现方式,而是根据PUCCH传输准备过程来确定一个合适的时刻进行判断,这样,如果在判断时刻确定出存在与PUSCH重叠的PUSCH上有PDU传输,则可以选择PUSCH传输UCI,否则,可以在PUCCH上传输UCI。上述判断方式可以保证PUCCH的传输准备所需要的时间,相对于终端总是准备PUCCH传输的方式,本公开实施例可以降低终端侧的实现复杂度,减少或避免PUCCH传输的取消过程,节约PUCCH资源和终端能耗开销。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为适用于本公开实施例的一种无线通信系统的示意图;
图2为本公开一实施例的一种应用场景示意图;
图3为本公开一实施例提供的上行信道的传输方法的一种流程图;
图4为本公开实施例上行信道的传输方法的示例的场景示意图;
图5为本公开实施例的终端的一种结构图;
图6为本公开实施例的终端的另一种结构图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本公开实施例的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)、LTE的演进(LTE-Advanced,LTE-A)系统以及5G NR系统,并且也可用于其他各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和将来出现的新的通信系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技 术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.21(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作用户终端或用户设备(UE,User Equipment),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站和/或核心网网元,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、 或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
如背景技术所述的,在NR系统中,当承载UCI的PUCCH和一个或者多个CG/DG PUSCH重叠时,可能出现一个或者多个CG/DG PUSCH跳过(skipping)的情况,也就是说,一个或者多个CG/DG PUSCH中的部分或者全部都不传输协议数据单元(Protocol Data Unit,PDU)。目前存在的问题是并不明确在一个或者多个CG/DG PUSCH中的部分或者全部都不传输PDU的情况下,UCI如何进行复用传输。
当一个承载UCI(如HARQ-ACK和/或信道状态信息(Channel State Information,CSI))的PUCCH与一个或者多个CG/DG PUSCH重叠时,当一个或者多个CG/DG PUSCH中的部分或者全部都不传输PDU的情况下,可能的一种方案是当任意一个PUSCH中包含PDU时,在基于预设规则选择的PUSCH上承载UCI,否则当所有与PUCCH重叠的PUSCH中都不包含PDU时,在PUCCH上传输UCI,不传输所有与PUCCH重叠的PUSCH。这种方式的一个问题在于MAC发送PDU的时间可能会晚于PUCCH开始进行准备的时间,导致终端确定所有的PUSCH上都不承载PDU时,已经来不及准备PUCCH并传输。
如图2所示,PUCCH和PUSCH1及PUSCH2重叠,假设基于预设规则,UCI会转移到PUSCH2上传输,终端最晚需要在t1时刻开始准备PUCCH传输,然而需要等到t2时刻才能知道PUSCH2上是否存在PDU传输,因此终端在t1时刻并不明确是不是要准备PUCCH,等到t2时刻如果确定PUSCH2上没有PDU,此时终端已经来不及再去准备传输PUCCH了。一种实现的解决方式是终端不考虑在哪个PUSCH上存在PDU,总是开始准备PUCCH,但是这样会导致终端的实现复杂度增加,并且可能在终端开始传输PUCCH之后MAC才发送PDU,导致需要取消PUCCH传输,增加PUCCH资源和终端电量的开销。
为解决以上问题中的至少一种,本公开实施例提供了一种上行信道的传输方法,如图3所示,该方法在应用于终端侧时,包括:
步骤31,终端在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU。
这里,PUCCH传输的准备过程是指终端准备PUCCH上传输的信息的过 程。在该过程中,终端通常对上述传输的信息进行调制、编码以及映射等处理。需要说明的是,上述准备过程的开始时刻,是根据准备PUCCH上传输的信息所需要的时间以及PUCCH的起始位置来确定的,从而可以保证在上述准备过程中能够完成信息的传输准备。在步骤31中,本公开实施例为了保证终端有足够的PUCCH传输准备时间,不再是等到能确定所有PUSCH上是否有PDU传输的时刻才进行上述判断,而是在保证PUCCH传输的准备过程所需时间的前提下进行上述判断。
具体的,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔通常不小于T1,所述T1=(N 1+d 1,1)(2048+144)·κ2 ·T C
或者,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T2,所述T2=(N 2+d 2,1)(2048+144)·κ2 ·T C
其中:d 1,1为预设值或高层配置的值,如基站通过高层信令(如RRC信令)配置的值;d 2,1=0或1。κ为预定义的常数值,例如64等数值。T C为预定的基本时间单位,如T C=1/Δf max·N f,Δf max=480*10 3Hz,N f=4096。
μ为预定的相关信道的子载波间隔配置的最小值。所述相关信道具体可以包括:所述PUCCH、对应于所述PUCCH的PDSCH、与所述PUCCH重叠的PUSCH、所述PUSCH对应的PDCCH、以及承载调度所述PUCCH的DCI的PDCCH中的至少一个信道。
例如,在所述相关信道包括所述PUCCH、对应于所述PUCCH的PDSCH和承载调度所述PUCCH的DCI的PDCCH时,假设PUCCH的子载波间隔配置为1,对应于所述PUCCH的PDSCH的子载波间隔配置为0,承载调度所述PUCCH的DCI的PDCCH的子载波间隔配置为0,则μ=0。相关技术中,通常通过子载波间隔配置来指示具体的子载波间隔,例如,μ=0时对应于的子载波间隔为15kHz,μ=1时对应于的子载波间隔为30kHz,等等。又例如,所述μ值的确定也可以和PUCCH重叠的其它信道的子载波间隔(SCS)配置相关,比如与PUCCH重叠的PUSCH的SCS,以及,PUSCH对应的PDCCH的SCS相关,在所有相关信道的SCS配置中取最小值。
N 1为对应于PDSCH处理能力和μ值的预设值;例如,预先设置一张对应关系表,该表中保存了上述预设值与“PUSCH处理能力及μ值”之间的对应 关系。类似的,N 2为对应于PUSCH处理能力和μ值的预设值;
在判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU时,如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的任意一个或者多个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上有待传输的PDU;如果所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上没有待传输的PDU。
步骤32,如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI。
这里,所述预设规则通常包括如下的第一规则、第二规则、第三规则和第四规则,其中,
所述第一规则为:如果多个PUSCH中包含用于传输A-CSI的PUSCH,则选择用于传输A-CSI的PUSCH,即,选择用于传输A-CSI的PUSCH来传输UCI。
所述第二规则为:如果多个PUSCH中同时存在具有对应PDCCH的PUSCH传输和没有对应PDCCH的PUSCH传输,则选择具有对应PDCCH的PUSCH传输,即,选择具有对应PDCCH的PUSCH来传输UCI。这里,PDCCH与PUSCH之间的对应关系,是指PDCCH调度的PUSCH传输。即,所述的对应PDCCH的PUSCH传输是指该PDCCH所调度的PUSCH传输。
所述第三规则为:如果存在满足所述第二规则的多个PUSCH,则按照PUSCH所在载波的编号顺序进行选择,选择编号较小载波上传输的PUSCH。
所述第四规则为:如果在同一个载波上有时分复用的多个PUSCH和所述PUCCH重叠,则选择起始传输符号最早的PUSCH。
这里,上述各个规则中所述的多个PUSCH均是与所述PUCCH重叠的PUSCH。
在基于所述预设规则选择的PUSCH上传输UCI时,可以依次使用第一规则、第二规则、第三规则和第四规则,在与所述PUCCH重叠的PUSCH中进行选择,直至选择出某个PUSCH。例如,在使用第一规则选择出了某个PUSCH后,就不再使用后续的规则再进行选择。
步骤33,如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
这里,所述UCI具体可以包含HARQ-ACK,CSI和调度请求(Scheduling Request,SR)中的至少一种。
通过以上步骤,本公开实施例改变了在能够确定所有与PUCCH冲突的PUSCH上是否有PDU传输的时刻进行判断的实现方式,而是根据PUCCH传输准备过程来确定一个合适的时刻进行判断,这样,如果在判断时刻确定出存在与PUSCH重叠的PUSCH上有PDU传输,则可以选择PUSCH传输UCI,否则,可以在PUCCH上传输UCI。上述判断方式可以保证PUCCH的传输准备所需要的时间,相对于终端总是准备PUCCH传输的方式,本公开实施例可以降低终端侧的实现复杂度,减少或避免PUCCH传输的取消过程,节约PUCCH资源和终端能耗开销。
可选的,本公开实施例所述的PUCCH与PUSCH的物理层优先级相同。也就是说,在步骤31中,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU时,是在具有与所述PUCCH相同的物理层优先级,且与所述PUCCH重叠的PUSCH中进行判断。后续在步骤32中则是在基于预设规则选择出的具有与所述PUCCH相同的物理层优先级的PUSCH上传输UCI。
另外需要说明的是,在本实施例中,与所述PUCCH重叠的PUSCH可以是CG PUSCH,也可以是DG PUSCH,本公开实施例不排除任何一种组合情况,比如与所述PUCCH重叠的两个PUSCH都是CG PUSCH,或者两个PUSCH都是DG PUSCH,或者一个PUSCH是CG PUSCH,另一个PUSCH是DG PUSCH。本文所述的与所述PUCCH重叠的PUSCH,是指PUCCH与PUSCH在时域上至少存在部分重叠。
上述步骤33中,在判断出与所述PUCCH重叠的PUSCH上没有待传输的PDU,可以在PUCCH上传输UCI。此时,本公开实施例还可以进一步判断与所述PUCCH重叠的PUSCH是否存在承载A-CSI或SP-CSI,如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,但是与所述PUCCH重叠的PUSCH中存在承载A-CSI或SP-CSI的PUSCH,则可以在所述承载A-CSI或SP-CSI的PUSCH上传输UCI;而如果与所述PUCCH重叠的PUSCH上 没有待传输的PDU,且与所述PUCCH重叠的PUSCH中不存在承载A-CSI或SP-CSI的PUSCH,则在PUCCH上传输UCI,且不传输所有与所述PUCCH重叠的PUSCH。这样,本公开实施例可以优先复用承载A-CSI或SP-CSI,且与所述PUCCH重叠的PUSCH来传输UCI。
在本公开实施例中,如果在PUCCH传输的准备过程的开始时刻之前,所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,且与所述PUCCH重叠的PUSCH未承载A-CSI或SP-CSI,则在所述开始时刻之后,所述终端的物理层不期待收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU。这里,所述终端的物理层不期待收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU是指:在所述开始时刻之后,所述终端的MAC层不向物理层发送与所述PUCCH重叠的PUSCH对应的PDU,或者是,在所述开始时刻之后,所述终端的物理层若收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU,则忽略该PDU。
在上述步骤32中,如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI时,有可能存在以下情形:
在所述PUCCH传输的准备过程的开始时刻,判处出与所述PUCCH重叠的某个或某些PUSCH(为便于描述,将这个或这些PUCCH称作第一PUSCH)上有待传输的PDU,但是,基于所述预设规则所选择出的PUSCH(为便于描述,将选择的PUCCH称作第二PUSCH)不是所述第一PUSCH,本公开实施例可以将按照以下方式进行处理:
在所述开始时刻之前,如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的第一PUSCH对应的PDU,但是所述第一PUSCH不是第二PUSCH,则所述终端将在第二PUSCH上传输UCI,此时,所述终端的MAC层生成并向物理层发送所述第二PUSCH对应的PDU,其中,所述第二PUSCH是基于所述预设规则选择的PUSCH,且第二PUSCH不是仅承载A-CSI或SP-CSI的PUSCH。而如果所述第二PUSCH没有对应的数据需要传输,则所述终端的MAC层可以向物理层发送所述第二PUSCH对应的包含有填充比特的PDU。
以上实施例提供了一种上行信道的传输方法,针对终端侧,在PUCCH准备开始的时刻判断与PUCCH重叠的PUSCH上是否有PDU,如果有则在预定义的PUSCH上传输UCI,如果没有则在PUCCH上传输UCI,终端在PUCCH准备开始时刻之后不期待收到MAC发送与PUCCH重叠的PUSCH对应的PDU给物理层。
以下对本公开实施例的上行信道的传输方法的实现均进行了说明。下面结合附图进一步提供应用本公开实施例上行信道的传输方法的示例。
示例:
如图4所示,PUCCH和PUSCH1及PUSCH2重叠,PUSCH1和PUSCH2是在两个载波上的不同PUSCH,可以同时传输。PUCCH的起始时刻为t4,开始PUCCH准备的时刻为t1,MAC层最晚发送PUSCH1对应的PDU给物理层的时刻为t3,最晚发送PUSCH2对应的PDU给物理层的时刻为t2。
情形1:
假设基于预设规则,UCI会转移到PUSCH2上传输。在t3时刻终端的MAC发送PUSCH1对应的PDU给物理层,则t1时刻终端在准备PUCCH之前判断与PUCCH重叠的PUSCH上存在PDU,则终端不准备PUCCH,而选择将UCI复用在PUSCH2上进行传输,终端的MAC在t2时刻之前需要发送PUSCH2的PDU给物理层,如果PUSCH2没有对应的数据,则MAC发送填充比特的PDU给物理层,保证物理层的UCI能够进行复用传输;最终终端传输PUSCH1和PUSCH2,其中UCI复用在PUSCH2上进行传输。
情形2:假设基于预设规则,UCI会转移到PUSCH2上传输。在t1时刻之前终端的MAC没有发送PDU给物理层,则t1时刻终端在准备PUCCH之前判断与PUCCH重叠的PUSCH上不存在PDU,并且没有PUSCH上承载A-CSI,则终端开始准备PUCCH,终端的MAC不再发送PUSCH2的PDU给物理层;最终终端传输PUCCH,不传输PUSCH1和PUSCH2。
情形3:假设基于预设规则,UCI会转移到PUSCH2上传输。在t1时刻之前终端的MAC没有发送PDU给物理层,则t1时刻终端在准备PUCCH之前判断与PUCCH重叠的PUSCH上不存在PDU,但是PUSCH2上承载了A-CSI传输,则t1时刻终端不准备PUCCH,在t2时刻之前MAC还可以发 送PUSCH2对应的PDU给物理层;最终终端传输PUSCH2,UCI复用在PUSCH2上进行传输。
情形4:假设基于预设规则,UCI会转移到PUSCH1上传输。在t1时刻之前终端的MAC没有发送PDU给物理层,则t1时刻终端在准备PUCCH之前判断与PUCCH重叠的PUSCH上不存在PDU,但是PUSCH1上承载了A-CSI传输,则终端将UCI复用在PUSCH1上进行传输;在t2时刻之前MAC还可以发送PUSCH2对应的PDU给物理层;最终终端传输PUSCH1,如果MAC发送了PUSCH2对应的PDU给物理层,则终端还传输PUSCH2,UCI复用在PUSCH1上进行传输。
在本实施例中,T2=(N 2+d 2,1)(2048+144)·κ2 ·T C,其中假设d 2,1=0,μ对应于承载调度PUSCH的DCI的PDCCH和PUCCH的子载波间隔的最小值,假设PUCCH和对应的PDCCH的子载波间隔都是15kHz,则μ=0;N 2对应于PUSCH处理能力和μ值,可以在3GPP协议TS38.214中查表获得N 2的取值,假设PUSCH处理能力为等级1,则N 2=10;
则T2=(10+0)(2048+144)·64·2 -0·T C=713.54us。
以上介绍了本公开实施例的各种方法。下面将进一步提供实施上述方法的装置。
请参照图5,本公开实施例提供了一种终端50,包括:
判断单元51,用于在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;
第一处理单元52,用于如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
第二处理单元53,用于如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
通过以上单元,本公开实施例提供了一种PUCCH与PUSCH冲突时的解决方案,可以降低终端侧的实现复杂度,减少PUCCH和终端能耗的开销。
可选的,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T1,所述T1=(N 1+d 1,1)(2048+144)·κ2 ·T C
或者,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置 之间的时间间隔不小于T2,所述T2=(N 2+d 2,1)(2048+144)·κ2 ·T C
其中:
d 1,1为预设值或高层配置的值;d 2,1=0或1;μ为预定的相关信道的子载波间隔配置的最小值;N 1为对应于PDSCH处理能力和μ值的预设值;N 2为对应于PUSCH处理能力和μ值的预设值;κ为预定义的常数值;T C为预定的基本时间单位。
可选的,所述判断单元,还用于:
如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的任意一个或者多个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上有待传输的PDU;
如果所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上没有待传输的PDU。
可选的,所述第二处理单元53,还用于:
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,但是与所述PUCCH重叠的PUSCH中存在承载A-CSI或SP-CSI的PUSCH,则在所述承载A-CSI或SP-CSI的PUSCH上传输UCI;
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,且与所述PUCCH重叠的PUSCH中不存在承载A-CSI或SP-CSI的PUSCH,则在PUCCH上传输UCI,且不传输所有与所述PUCCH重叠的PUSCH。
可选的,所述终端还包括:
第三处理单元,用于:如果所述开始时刻之前,所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,且与所述PUCCH重叠的PUSCH未承载A-CSI或SP-CSI,则在所述开始时刻之后,所述终端的物理层不期待收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU。
可选的,所述第一理单元52,还用于:
在所述开始时刻之前,如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的第一PUSCH对应的PDU,但是所述第一PUSCH不是第二 PUSCH,则所述终端的MAC层生成并向物理层发送所述第二PUSCH对应的PDU,其中,所述第二PUSCH是基于所述预设规则选择的PUSCH,且第二PUSCH不是仅承载A-CSI或SP-CSI的PUSCH。
可选的,所述第一理单元52,还用于:
如果所述第二PUSCH没有对应的数据需要传输,则所述终端的MAC层向物理层发送所述第二PUSCH对应的包含有填充比特的PDU。
可选的,所述PUCCH与PUSCH的物理层优先级相同。
可选的,所述预设规则包括第一规则、第二规则、第三规则和第四规则,其中,
所述第一规则为:如果多个PUSCH中包含用于传输A-CSI的PUSCH,则选择用于传输A-CSI的PUSCH;
所述第二规则为:如果多个PUSCH中同时存在具有对应PDCCH的PUSCH传输和没有对应PDCCH的PUSCH传输,则选择具有对应PDCCH的PUSCH传输;
所述第三规则为:如果存在满足所述第二规则的多个PUSCH,则按照PUSCH所在载波的编号顺序进行选择,选择编号较小载波上传输的PUSCH。
所述第四规则为:如果在同一个载波上有时分复用的多个PUSCH和所述PUCCH重叠,则选择起始传输符号最早的PUSCH。
需要说明的是,该实施例中的终端是与上述图3所示的方法对应的装置,上述各实施例中的实现方式均适用于该装置的实施例中,也能达到相同的技术效果。本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参照图6,本公开实施例提供的终端的一种结构示意图,该终端600包括:处理器601、收发机602、存储器603、用户接口604和总线接口。
在本公开实施例中,终端600还包括:存储在存储器上603并可在处理器601上运行的程序指令。
所述处理器601执行所述程序指令时实现以下步骤:
在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的 PUSCH上是否有待传输的PDU;
如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
可选的,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T1,所述T1=(N 1+d 1,1)(2048+144)·κ2 ·T C
或者,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T2,所述T2=(N 2+d 2,1)(2048+144)·κ2 ·T C
其中:
d 1,1为预设值或高层配置的值;d 2,1=0或1;μ为预定的相关信道的子载波间隔配置的最小值;N 1为对应于PDSCH处理能力和μ值的预设值;N 2为对应于PUSCH处理能力和μ值的预设值;κ为预定义的常数值;T C为预定的基本时间单位。
可选的,所述处理器执行所述程序指令时还实现以下步骤:
如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的任意一个或者多个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上有待传输的PDU;
如果所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上没有待传输的PDU。
可选的,所述处理器执行所述程序指令时还实现以下步骤:
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,但是与所述PUCCH重叠的PUSCH中存在承载A-CSI或SP-CSI的PUSCH,则在所述承载A-CSI或SP-CSI的PUSCH上传输UCI;
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,且与所述PUCCH重叠的PUSCH中不存在承载A-CSI或SP-CSI的PUSCH,则在PUCCH上传输UCI,且不传输所有与所述PUCCH重叠的PUSCH。
可选的,所述处理器执行所述程序指令时还实现以下步骤:
如果所述开始时刻之前,所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,且与所述PUCCH重叠的PUSCH未承载A-CSI或SP-CSI,则在所述开始时刻之后,所述终端的物理层不期待收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU。
可选的,所述处理器执行所述程序指令时还实现以下步骤:
在所述开始时刻之前,如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的第一PUSCH对应的PDU,但是所述第一PUSCH不是第二PUSCH,则所述终端的MAC层生成并向物理层发送所述第二PUSCH对应的PDU,其中,所述第二PUSCH是基于所述预设规则选择的PUSCH,且第二PUSCH不是仅承载A-CSI或SP-CSI的PUSCH。
可选的,所述处理器执行所述程序指令时还实现以下步骤:
如果所述第二PUSCH没有对应的数据需要传输,则所述终端的MAC层向物理层发送所述第二PUSCH对应的包含有填充比特的PDU。
可选的,所述PUCCH与PUSCH的物理层优先级相同。
可选的,所述预设规则包括第一规则、第二规则、第三规则和第四规则,其中,
所述第一规则为:如果多个PUSCH中包含用于传输A-CSI的PUSCH,则选择用于传输A-CSI的PUSCH;
所述第二规则为:如果多个PUSCH中同时存在具有对应PDCCH的PUSCH传输和没有对应PDCCH的PUSCH传输,则选择具有对应PDCCH的PUSCH传输;
所述第三规则为:如果存在满足所述第二规则的多个PUSCH,则按照PUSCH所在载波的编号顺序进行选择,选择编号较小载波上传输的PUSCH。
所述第四规则为:如果在同一个载波上有时分复用的多个PUSCH和所述PUCCH重叠,则选择起始传输符号最早的PUSCH。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其 进行进一步描述。总线接口提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口604还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器601负责管理总线架构和通常的处理,存储器603可以存储处理器601在执行操作时所使用的数据。
需要说明的是,该实施例中的终端是与上述图3所示的方法对应的终端,上述各实施例中的实现方式均适用于该终端的实施例中,也能达到相同的技术效果。该终端中,收发机602与存储器603,以及收发机602与处理器601均可以通过总线接口通讯连接,处理器601的功能也可以由收发机602实现,收发机602的功能也可以由处理器601实现。在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有程序指令,该程序指令被处理器执行时实现以下步骤:
在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;
如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
该程序指令被处理器执行时能实现上述应用于终端侧的上行信道的传输方法中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开实施例所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护 范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种上行信道的传输方法,包括:
    终端在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;
    如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
    如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
  2. 如权利要求1所述的方法,其中,
    所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T1,所述T1=(N 1+d 1,1)(2048+144)·κ2 ·T C
    或者,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T2,所述T2=(N 2+d 2,1)(2048+144)·κ2 ·T C
    其中:
    d 1,1为预设值或高层配置的值;d 2,1=0或1;μ为预定的相关信道的子载波间隔配置的最小值;N 1为对应于PDSCH处理能力和μ值的预设值;N 2为对应于PUSCH处理能力和μ值的预设值;κ为预定义的常数值;T C为预定的基本时间单位。
  3. 如权利要求1所述的方法,其中,所述判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU,包括:
    如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的任意一个或者多个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上有待传输的PDU;
    如果所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上没有待传输的PDU。
  4. 如权利要求1所述的方法,其中,所述如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI,包括:
    如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,但是与所述PUCCH重叠的PUSCH中存在承载A-CSI或SP-CSI的PUSCH,则在所述承载A-CSI或SP-CSI的PUSCH上传输UCI;
    如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,且与所述PUCCH重叠的PUSCH中不存在承载A-CSI或SP-CSI的PUSCH,则在PUCCH上传输UCI,且不传输所有与所述PUCCH重叠的PUSCH。
  5. 如权利要求1所述的方法,还包括:
    如果所述开始时刻之前,所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,且与所述PUCCH重叠的PUSCH未承载A-CSI或SP-CSI,则在所述开始时刻之后,所述终端的物理层不期待收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU。
  6. 如权利要求1所述的方法,其中,所述如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI,包括:
    在所述开始时刻之前,如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的第一PUSCH对应的PDU,但是所述第一PUSCH不是第二PUSCH,则所述终端的MAC层生成并向物理层发送所述第二PUSCH对应的PDU,其中,所述第二PUSCH是基于所述预设规则选择的PUSCH,且第二PUSCH不是仅承载A-CSI或SP-CSI的PUSCH。
  7. 如权利要求6所述的方法,其中,如果所述第二PUSCH没有对应的数据需要传输,则所述终端的MAC层向物理层发送所述第二PUSCH对应的包含有填充比特的PDU。
  8. 如权利要求1所述的方法,其中,所述PUCCH与PUSCH的物理层优先级相同。
  9. 如权利要求1所述的方法,其中,所述预设规则包括第一规则、第二规则、第三规则和第四规则,其中,
    所述第一规则为:如果多个PUSCH中包含用于传输A-CSI的PUSCH,则选择用于传输A-CSI的PUSCH;
    所述第二规则为:如果多个PUSCH中同时存在具有对应PDCCH的 PUSCH传输和没有对应PDCCH的PUSCH传输,则选择具有对应PDCCH的PUSCH传输;
    所述第三规则为:如果存在满足所述第二规则的多个PUSCH,则按照PUSCH所在载波的编号顺序进行选择,选择编号较小载波上传输的PUSCH;
    所述第四规则为:如果在同一个载波上有时分复用的多个PUSCH和所述PUCCH重叠,则选择起始传输符号最早的PUSCH。
  10. 一种终端,包括存储器,收发机和处理器;
    存储器,用于存储计算机程序;
    收发机,用于在所述处理器的控制下收发数据;
    处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;
    如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
    如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
  11. 如权利要求10所述的终端,其中,
    所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T1,所述T1=(N 1+d 1,1)(2048+144)·κ2 ·T C
    或者,所述PUCCH传输的准备过程的开始时刻与所述PUCCH起始位置之间的时间间隔不小于T2,所述T2=(N 2+d 2,1)(2048+144)·κ2 ·T C
    其中:
    d 1,1为预设值或高层配置的值;d 2,1=0或1;μ为预定的相关信道的子载波间隔配置的最小值;N 1为对应于PDSCH处理能力和μ值的预设值;N 2为对应于PUSCH处理能力和μ值的预设值;κ为预定义的常数值;T C为预定的基本时间单位。
  12. 如权利要求10所述的终端,其中,所述判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU,包括:
    如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的任意一个 或者多个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上有待传输的PDU;
    如果所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,则判断与所述PUCCH重叠的PUSCH上没有待传输的PDU。
  13. 如权利要求10所述的终端,其中,所述如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI,包括:
    如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,但是与所述PUCCH重叠的PUSCH中存在承载A-CSI或SP-CSI的PUSCH,则在所述承载A-CSI或SP-CSI的PUSCH上传输UCI;
    如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,且与所述PUCCH重叠的PUSCH中不存在承载A-CSI或SP-CSI的PUSCH,则在PUCCH上传输UCI,且不传输所有与所述PUCCH重叠的PUSCH。
  14. 如权利要求10所述的终端,其中,
    所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
    如果所述开始时刻之前,所述终端的MAC层没有向物理层发送与所述PUCCH重叠的任意一个PUSCH对应的PDU,且与所述PUCCH重叠的PUSCH未承载A-CSI或SP-CSI,则在所述开始时刻之后,所述终端的物理层不期待收到MAC层发送的与所述PUCCH重叠的PUSCH对应的PDU。
  15. 如权利要求10所述的终端,其中,所述如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI,包括:
    在所述开始时刻之前,如果所述终端的MAC层向物理层发送了与所述PUCCH重叠的第一PUSCH对应的PDU,但是所述第一PUSCH不是第二PUSCH,则所述终端的MAC层生成并向物理层发送所述第二PUSCH对应的PDU,其中,所述第二PUSCH是基于所述预设规则选择的PUSCH,且第二PUSCH不是仅承载A-CSI或SP-CSI的PUSCH。
  16. 如权利要求15所述的终端,其中,如果所述第二PUSCH没有对应的数据需要传输,则所述终端的MAC层向物理层发送所述第二PUSCH对应 的包含有填充比特的PDU。
  17. 如权利要求10所述的终端,其中,所述PUCCH与PUSCH的物理层优先级相同。
  18. 如权利要求10所述的终端,其中,所述预设规则包括第一规则、第二规则、第三规则和第四规则,其中,
    所述第一规则为:如果多个PUSCH中包含用于传输A-CSI的PUSCH,则选择用于传输A-CSI的PUSCH;
    所述第二规则为:如果多个PUSCH中同时存在具有对应PDCCH的PUSCH传输和没有对应PDCCH的PUSCH传输,则选择具有对应PDCCH的PUSCH传输;
    所述第三规则为:如果存在满足所述第二规则的多个PUSCH,则按照PUSCH所在载波的编号顺序进行选择,选择编号较小载波上传输的PUSCH;
    所述第四规则为:如果在同一个载波上有时分复用的多个PUSCH和所述PUCCH重叠,则选择起始传输符号最早的PUSCH。
  19. 一种终端,包括:
    判断单元,用于在PUCCH传输的准备过程的开始时刻,判断与所述PUCCH重叠的PUSCH上是否有待传输的PDU;
    第一处理单元,用于如果与所述PUCCH重叠的PUSCH上有待传输的PDU,则在基于预设规则选择的PUSCH上传输UCI;
    第二处理单元,用于如果与所述PUCCH重叠的PUSCH上没有待传输的PDU,则在PUCCH上传输UCI。
  20. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至9任一项所述的方法。
PCT/CN2021/123817 2020-10-19 2021-10-14 上行信道的传输方法及设备 WO2022083495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011119099.9 2020-10-19
CN202011119099.9A CN114389771A (zh) 2020-10-19 2020-10-19 一种上行信道的传输方法及设备

Publications (1)

Publication Number Publication Date
WO2022083495A1 true WO2022083495A1 (zh) 2022-04-28

Family

ID=81192669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123817 WO2022083495A1 (zh) 2020-10-19 2021-10-14 上行信道的传输方法及设备

Country Status (2)

Country Link
CN (1) CN114389771A (zh)
WO (1) WO2022083495A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139363A (zh) * 2018-02-09 2019-08-16 维沃移动通信有限公司 发送uci的方法及用户终端
EP3556161A1 (en) * 2016-12-13 2019-10-23 Sharp Kabushiki Kaisha Base stations, user equipments, and related communication methods
CN110932820A (zh) * 2018-09-19 2020-03-27 华为技术有限公司 发送和接收上行控制信息的方法以及通信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2020126725A (ru) * 2018-01-12 2022-02-14 Хуавей Текнолоджиз Ко., Лтд. Способ передачи информации восходящей линии связи и устройство
CN110035550B (zh) * 2018-01-12 2021-08-13 华为技术有限公司 上行控制信息传输方法和通信装置
CN110149726B (zh) * 2018-02-12 2021-03-30 电信科学技术研究院有限公司 一种信息传输方法及终端
CN110958690B (zh) * 2018-09-26 2022-06-17 大唐移动通信设备有限公司 一种上行控制信息的发送、接收方法、终端及网络设备
CN111757496B (zh) * 2019-03-29 2023-07-11 华为技术有限公司 一种通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556161A1 (en) * 2016-12-13 2019-10-23 Sharp Kabushiki Kaisha Base stations, user equipments, and related communication methods
CN110139363A (zh) * 2018-02-09 2019-08-16 维沃移动通信有限公司 发送uci的方法及用户终端
CN110932820A (zh) * 2018-09-19 2020-03-27 华为技术有限公司 发送和接收上行控制信息的方法以及通信装置

Also Published As

Publication number Publication date
CN114389771A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN109075935B (zh) 用于增强型载波聚合的探测参考信号触发的方法和设备
EP3433967B1 (en) Sounding reference signal transmission for carrier aggregation
CN108141857B (zh) 用于低等待时间通信的上行链路控制信道
CN110943806B (zh) 一种混合自动重传请求确认码本的传输方法和设备
JP6661635B2 (ja) ネストされたシステム動作
EP3213573B1 (en) Variable length transmission time intervals (tti)
EP3408962B1 (en) Descriptor channel designs for uplink channels in a shared radio frequency spectrum band
CA3014606C (en) Techniques for communicating in an expanded uplink pilot time slot
JP6457102B2 (ja) ユーザ端末及び無線通信方法
US20170238311A1 (en) Synchronous Licensed Assisted Access
JP5739027B1 (ja) ユーザ端末、無線基地局および無線通信方法
WO2016200546A1 (en) Techniques for managing medium access to multi-channels of a shared radio frequency spectrum band
JP6843901B2 (ja) 無線セルラー通信システムでd2d通信遂行のための電力制御及び多重化方法及び装置
WO2019223580A1 (zh) 物理上行信道的传输方法、接收方法、终端及基站
AU2017261183A1 (en) Techniques for using a portion of a transmission time interval to transmit a transmission that is shorter than a duration of the transmission time interval
JP6425890B2 (ja) ユーザ端末、無線基地局および無線通信方法
JPWO2017026399A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JPWO2017110958A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7179783B2 (ja) 無線通信システムの情報伝送方法および機器
WO2022083495A1 (zh) 上行信道的传输方法及设备
WO2021160112A1 (zh) 确定直通链路进程的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881913

Country of ref document: EP

Kind code of ref document: A1