WO2022083281A1 - 消息传输方法、系统、电子设备和存储介质 - Google Patents

消息传输方法、系统、电子设备和存储介质 Download PDF

Info

Publication number
WO2022083281A1
WO2022083281A1 PCT/CN2021/114800 CN2021114800W WO2022083281A1 WO 2022083281 A1 WO2022083281 A1 WO 2022083281A1 CN 2021114800 W CN2021114800 W CN 2021114800W WO 2022083281 A1 WO2022083281 A1 WO 2022083281A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
interacted
message transmission
state
link
Prior art date
Application number
PCT/CN2021/114800
Other languages
English (en)
French (fr)
Inventor
彭焦阳
耿长剑
张朋飞
江婷婷
王巍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022083281A1 publication Critical patent/WO2022083281A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a message transmission method, system, electronic device, and storage medium.
  • each 5G network element adopts a service interface
  • the bottom layer adopts HTTP2 protocol multi-link transmission.
  • HTTP2 protocol multi-link transmission Under some external factors, such as network fluctuations, HTTP2 layer protocol errors, network element downtime, etc., the short message service network element (SMSF, Short Message Service Function) and the network element to be interacted with a link or all communication is interrupted. resulting in a larger call loss.
  • SMSSF Short Message Service Function
  • the embodiments of the present application provide a message transmission method, which includes the following steps: acquiring the status of the network elements to be interacted with the SMSF and a list of backup network elements, wherein the status of the network elements includes a reachable state and an unreachable state; The state of the network element is the reachable state, and multiple links are established to the network element to be interacted; through the preset link selection method, the link is selected to transmit messages with the network element to be interacted until the message transmission is successful; The state of the element is unreachable. According to the list of standby network elements, switch the standby network element that has not been selected, and set the standby network element as the network element to be exchanged.
  • Embodiments of the present application also provide a message transmission system, including: a receiving module for acquiring the state of the network elements to be interacted with the SMSF and a list of backup network elements, wherein the AMF state includes a reachable state and an unreachable state; a chain The path redirection module is used to establish multiple links to the NE to be interacted if the state of the NE to be interacted is reachable; to select the link for message transmission with the NE to be interacted through the preset link selection method , until the message transmission is successful; the network element redirection module is used to switch the standby network element that has not been selected according to the list of standby network elements if the status of the network element to be interacted is unreachable, and set the standby network element to the standby network element.
  • Interactive network elements including: a receiving module for acquiring the state of the network elements to be interacted with the SMSF and a list of backup network elements, wherein the AMF state includes a reachable state and an unreach
  • Embodiments of the present application also provide an electronic device, comprising: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions executable by the at least one processor, and the instructions are executed by at least one processor.
  • a processor executes to enable at least one processor to execute the above-described message transmission method.
  • the embodiments of the present application also provide a computer-readable storage medium, and when the computer program is executed by the processor, the above-mentioned message transmission method is implemented.
  • FIG. 1 is a flowchart of a message transmission method provided according to a first embodiment of the present application
  • FIG. 2 is a flowchart of a message transmission method provided according to a second embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a message transmission system provided according to a third embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided according to a fourth embodiment of the present application.
  • SMS will continue to exist for a long time in the 5G era.
  • Voice and SMS are the most basic mobile communication services, the basic functions that every mobile terminal must have, and the representative of telecommunications services. Directly reachable, interoperable, and roaming communication services.
  • Short Message Service Center is a network element that existed in the 2G era. It is mainly used for the storage and forwarding of short messages. Generally, it interacts with surrounding network elements based on the traditional MAP (Manufacturing Automation Protocol) protocol. There are a lot of them on the current network.
  • MAP Manufacturing Automation Protocol
  • the interaction between network elements is mainly based on the SIP protocol, and the IPSMGW network element is added to realize the codec conversion between the SIP and MAP protocols, thereby avoiding the cost and impact of upgrading the existing network SMS center.
  • 5G network evolution the interaction between network elements is based on the HTTP2 protocol.
  • SMSF acts as an interface and bridge for the terminal to send and receive 5G NAS SMS between the 5G core network and the traditional SMS center. SMSF interacts with other network elements through the N20 interface.
  • each 5G network element adopts a service-oriented interface
  • the bottom layer adopts HTTP2 protocol multi-link transmission.
  • HTTP2 protocol multi-link transmission Under some external factors, such as network fluctuations, HTTP2 layer protocol errors, network element downtime, etc., a link or all communication between the SMSF and the network element to be interacted is interrupted, resulting in a large call loss.
  • the purpose of the embodiments of the present application is to provide a message transmission method, system, electronic device and storage medium, which ensure reliable transmission of messages between the SMSF and other network elements under abnormal conditions.
  • the first embodiment of the present application relates to a message transmission method.
  • the specific process is shown in Figure 1.
  • Step 101 Obtain the status of the network elements to be interacted with the SMSF and a list of backup network elements, where the status of the network elements to be interacted includes a reachable state and an unreachable state.
  • NRF network storage function
  • NF Network Function
  • NF Repository Function NF Repository Function
  • the registration information includes NF type, address, service list, etc.
  • the 5G system architecture will gradually cancel the dedicated network element equipment, and instead adopt the form of deploying various network functions (NF, Network Function) on general-purpose servers.
  • the receiving unit of the SMSF receives the registration information of the network element sent by the NRF, and the decoding unit of the SMSF decodes the registration information, wherein the registration information may include the IP port served by the network element, the priority of the IP port, the state of the network element, the standby network element list, etc.
  • the SMSF monitors the NE status through the NRF.
  • the NRF will send a change notification to the SMSF, which includes the current NE status.
  • the SMSF receives and decodes it, the NE status is stored with the instanceID as the index. That is, the instanceID corresponds to different NE states, and the latest NE state is obtained by obtaining the latest instanceID.
  • the standby network element list includes information such as the network element identifier and address of the standby network element.
  • an International Mobile Subscriber Identity (IMSI, International Mobile Subscriber Identity) is generated as a subsequent query network element. Index of manifest information and instanceID information.
  • SMSF can be combined with access and mobility management functions (AMF, Access and Mobility Management Function), session management functions (SMF, Session Management Function), and network exposure functions (NEF, Network Exposure Function)
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • NEF Network Exposure Function
  • the network elements to be interacted are not limited.
  • the status of whether the network element is reachable is obtained, and the status of the network element is stored.
  • the methods of detecting the communication state of the network element include passive detection and active detection.
  • the SMSF registers the network element information with the NRF.
  • the SMSF subscribes the network element information to the NRF.
  • the SMSF receives the NRF notification about the change of the state of the network element, and obtains the state of the network element after decoding.
  • the network element state information is stored in the storage unit by using the instanceId as an index.
  • the network element status may not be updated for a long time or there is no network element status.
  • the active detection method needs to be used to obtain the network element status.
  • the SMSF configures the network element IP-reselection switch N1 and the number of reselection times N2, and the IP link-reselection switch N3 and the number of times N4, and the SMSF configures the number of IP links N5.
  • the SMSF obtains the IP related to the network element service from the NRF.
  • the SMSF establishes N5 links to the network element to be detected according to the IP.
  • the SMSF selects a link to request a service from the network element to be detected.
  • step 6 If successful, the step ends, and the state of the network element is changed to the reachable state. If it fails or times out, go to step 6.
  • N3 determines whether N3 is turned on. If N3 is turned on, N5>1 and N4>1, then directly switch other links under the IP to retry the request (jump 4). If N3 is not turned on or the number of retries reaches N4 or N5 and still fails, go to step 7.
  • Step 102 if the state of the network element to be interacted is a reachable state, multiple links are established to the network element to be interacted with.
  • the registration information obtained in step 101 includes the IP related to the network element to be interacted; establish an IP link according to the network interconnection protocol, wherein the number of IP links is greater than 1.
  • an IP link is a communication tool or medium through which nodes can communicate on the data link layer of the Internet Protocol Suite.
  • Types of IP links may include simple Ethernet, bridged Ethernet, hub, or Asynchronous Transfer Mode (ATM) networks.
  • the registration information obtained in step 101 also includes the priority of the IP port and various load conditions. The IPs with less load are ranked first, and the IPs are selected from front to back in the sorted order. After the IPs are selected, multiple links are established to the network elements to be interacted according to the selected IP addresses.
  • Step 103 Select a link to perform message transmission with the network element to be interacted by using a preset link selection mode, until the message transmission is successful.
  • the preset link selection method select a link for transmission. If the transmission fails, judge whether the IP link re-selection switch is enabled. If the IP link re-selection switch is enabled, and the number of re-selections does not exceed the re-selection of the IP link the maximum number of times, switch to other links for transmission.
  • IP link is not enabled, or all the links of the IP cannot be successfully transmitted, judge whether the IP-reselection switch is enabled. , switch other IPs to establish links, and switch links according to the preset link selection mode until the message transmission is successful.
  • IP-reselection switch If the IP-reselection switch is not turned on, or the number of IP reselections reaches the maximum number, and all links fail to transmit successfully, change the status of the current network element to the unreachable state.
  • Step 104 if the status of the network element to be interacted is unreachable, switch the backup network element that has not been selected according to the list of backup network elements, and set the backup network element as the network element to be interacted with.
  • the link establishment process is no longer performed, which significantly reduces the time and resource cost of establishing a link with the unreachable network element and switching the link.
  • the network element that interacts with the SMSF is switched to the standby network element, and the standby network element is regarded as the network element to be interacted, and the process of step 103 is performed.
  • the network elements that can transmit messages with the SMSF are determined, so as to avoid the time and resource cost of establishing links and switching links with unreachable network elements; at the same time, Establishing multiple links with the reachable network elements to be interacted increases the probability of successful message transmission; and through the backup network element list, transmission attempts can be made with multiple network elements, so that under abnormal conditions, the SMSF can still interact with the pending network elements.
  • the network element performs message transmission to make the transmission more reliable.
  • the second embodiment of the present application relates to a message transmission method, taking the interaction between an SMSF and a mobility management network element (AMF, Authentication Management Function) as an example.
  • AMF is the termination of the RAN control plane interface and the termination of the NAS protocol, providing encryption and integrity protection for the NAS.
  • the main functions of AMF also include access authorization and authentication, connection management, and mobility management.
  • the AMF is responsible for the allocation of EPS bearer IDs, the AMF receives all connection and session related information from the user equipment (UE), and is responsible for handling connection and mobility management tasks.
  • Step 201 Obtain the instanceID of the AMF to be interacted with and the list of backup AMFs according to the IMSI of the user.
  • step 202 is performed.
  • Step 202 Obtain the IP port, IP port priority, IP load, etc. of the AMF to be interacted through the NRF.
  • Step 203 the SMSF configures the AMF IP-reselection switch N1 and the maximum number of reselections N2, and the IP link-reselection switch N3 and the maximum number of reselections N4, and the SMSF configures the number of IP links N5.
  • Step 204 sort the obtained IPs according to the priority, load, etc., and select unselected IPs in the order of high priority and low load to establish N5 links.
  • Step 205 select a link to transmit messages to the AMF. If the transmission is successful, the process ends; if not, step 206 is executed.
  • Step 206 judging whether the IP link reselection switch N3 is turned on.
  • step 207 is performed.
  • Step 207 determine whether the AMF IP-reselection switch N1 is turned on.
  • N1 is not enabled or N1 is enabled and the number of AMF IP reselections exceeds the maximum number of reselections N2, the current AMF state is changed to an unreachable state.
  • step 208 is executed.
  • Step 208 Select an unselected backup AMF according to the backup AMF list, and perform step 202 on the backup AMF as the AMF to be interacted with.
  • step 202 If it is not reached, select the GUAMI of the backup AMF that has not been selected in the backup AMF list, take the selected backup AMF as the AMF to be interacted with, and execute step 202 .
  • the handover step ends, the process ends, and the message transmission fails.
  • the maximum number of retries is configured at the AMF handover, IP handover and IP link handover. In this case, it needs to run for a long time, wastes too much running space and resources, and ensures healthy transmission.
  • SMSF interaction objects In the process of interaction between SMSF and AMF, multiple reselection and redirection processes are set up, which avoids the situation that the entire transmission process is affected by the failure of some communication channels or network elements during the process of interactive message transmission, and improves the transmission efficiency.
  • the reliability of the process ensures that in abnormal situations, such as network fluctuations, HTTP2 layer protocol errors, and AMF network element downtime, the SMSF interaction objects can be redirected by switching links, switching IPs or switching AMFs.
  • the third embodiment of the present application relates to a message transmission system, as shown in FIG. 4 , including:
  • the receiving module 301 is configured to acquire the status of the network elements to be interacted with the SMSF and the list of backup network elements, wherein the AMF status includes a reachable state and an unreachable state.
  • the receiving module further includes: a message receiving unit, a decoding unit and a buffering unit.
  • the message receiving unit is used to receive message notification, instanceId, network element list information, etc.;
  • the decoding unit is used to decode the notification and message;
  • the buffer unit is used to store the mapping relationship between IMSI, instanceId and network element list.
  • instanceId is a unique identifier of a network element state (such as AMF state), instanceId corresponds to a network element identifier, the network element identifier is in the network element list, and a corresponding relationship is established with instanceId as a key.
  • AMF state a network element state
  • instanceId corresponds to a network element identifier
  • the network element identifier is in the network element list
  • a corresponding relationship is established with instanceId as a key.
  • the link redirection module 302 is configured to establish a plurality of links to the network element to be interacted if the state of the network element to be interacted is reachable; select a link to carry out the communication with the network element to be interacted through a preset link selection mode Message transmission until the message transmission is successful.
  • the network element redirection module 303 is configured to switch the standby network element that has not been selected according to the list of standby network elements if the state of the network element to be interacted is unreachable, and set the standby network element as the network element to be interacted with.
  • this embodiment is a system example corresponding to the first embodiment, and this embodiment can be implemented in cooperation with the first embodiment.
  • the relevant technical details mentioned in the first embodiment are still valid in this embodiment, and are not repeated here in order to reduce repetition.
  • the related technical details mentioned in this embodiment can also be applied to the first embodiment.
  • each module involved in this embodiment is a logical module.
  • a logical unit may be a physical unit, a part of a physical unit, or multiple physical units.
  • a composite implementation of the unit in order to highlight the innovative part of the present application, the present embodiment does not introduce units that are not very closely related to solving the technical problems raised by the present application, but this does not mean that there are no other units in the present embodiment.
  • the fourth embodiment of the present application relates to an electronic device, as shown in FIG. 4 , comprising: at least one processor 401; and a memory 402 connected in communication with the at least one processor 401; Instructions executed by the processor 401, the instructions are executed by the at least one processor 401 to enable the at least one processor 401 to execute the message transmission method.
  • the memory and the processor are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus links one or more processors and various circuits of the memory together.
  • the bus may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface between the bus and the transceiver.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory may be used to store data used by the processor in performing operations.
  • the fifth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信领域,公开了一种消息传输方法、系统、电子设备和存储介质。该方法应用于短信服务网元SMSF,包括:获取与SMSF待交互网元的状态和备用网元的清单,其中网元状态包括可达状态和不可达状态;若待交互网元的状态为可达状态,向待交互网元建立多条链路;通过预先设置的链路选择方式,选择链路与待交互网元进行消息传输,直至消息传输成功;若待交互网元的状态为不可达状态,根据备用网元的清单,切换未被选择过的备用网元,将备用网元设置为待交互网元。

Description

消息传输方法、系统、电子设备和存储介质
交叉引用
本申请基于申请号为“202011141712.7”、申请日为2020年10月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信领域,特别涉及消息传输方法、系统、电子设备和存储介质。
背景技术
由于5G各网元采用服务化接口,底层采用HTTP2协议多链路传输。在某些外部因素下,如网络波动、HTTP2层协议错误、网元宕机等,致使短信服务网元(SMSF,Short Message Service Function)与待交互的网元某一链路或全部通信中断,从而造成较大呼损。
发明内容
本申请的实施方式提供了一种消息传输方法,包括以下步骤:获取与SMSF待交互网元的状态和备用网元的清单,其中网元的状态包括可达状态和不可达状态;若待交互网元的状态为可达状态,向待交互网元建立多条链路;通过预先设置的链路选择方式,选择链路与待交互网元进行消息传输,直至消息传输成功;若待交互网元的状态为不可达状态,根据备用网元的清单,切换未被选择过的备用网元,将备用网元设置为待交互网元。
本申请的实施方式还提供了一种消息传输系统,包括:接收模块,用于获取与SMSF待交互网元的状态和备用网元的清单,其中AMF状态包括可达状态和不可达状态;链路重定向模块,用于若待交互网元的状态为可达状态,向待交互网元建立多条链路;通过预先设置的链路选择方式,选择链路与待交互网元进行消息传输,直至消息传输成功;网元重定向模块,用于若待交互网元的状态为不可达状态,根据备用网元的清单,切换未被选择过的备用网元,将备用网元设置为待交互网元。
本申请的实施方式还提供了一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至 少一个处理器执行,以使至少一个处理器能够执行上述的消息传输方法。
本申请的实施方式还提供了一种计算机可读存储介质,计算机程序被处理器执行时实现上述的消息传输方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。
图1是根据本申请的第一实施方式提供的消息传输方法的流程图;
图2是根据本申请的第二实施方式提供的消息传输方法的流程图;
图3是根据本申请的第三实施方式提供的消息传输系统的结构示意图;
图4是根据本申请的第四实施方式提供的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
短信作为网络必达的信息收发通道,在5G时代会继续长期存在,语音、短信是最基础的移动通信服务,是每一个移动终端必备的基础功能,是电信服务的代表,是全球范围内直接可达、可互通、可漫游的通信服务。
短信中心(SMSC,Short Message Service Center),是在2G时代就存在的网元,主要用于短信的存储和转发,一般基于传统MAP(Manufacturing Automation Protocol)协议与周边网元交互,在各运营商现网中数量众多。4G网络演进,网元间交互主要基于SIP协议,新增了IPSMGW网元,实现SIP与MAP协议的编解码转换,从而避免了现网短信中心升级改造带来的成本和影响。5G网络演进,网元间交互基于HTTP2协议,同理,3GPP在5G核心网中新增了SMSF,实现HTTP2与MAP协议的编解码转换。SMSF充当了5G核心网与传统短信中心之间终端收发5G NAS短信接口和桥梁的作用。SMSF通过N20接口与其他网元进行 交互。
然而,由于5G各网元采用服务化接口,底层采用HTTP2协议多链路传输。在某些外部因素下,如网络波动、HTTP2层协议错误、网元宕机等,致使SMSF与待交互的网元某一链路或全部通信中断,从而造成较大呼损。
本申请实施方式的目的在于提供一种消息传输方法、系统、电子设备和存储介质,保障了在异常情况下SMSF与其他网元之间消息的可靠传输。
本申请的第一实施方式涉及一种消息传输方法。具体流程如图1所示。
步骤101,获取与SMSF待交互网元的状态和备用网元的清单,其中待交互网元的状态包括可达状态和不可达状态。
在本实施方式中,由于每个网元启动时,要到网络存储功能(NRF,NF Repository Function)进行注册登记才能提供服务。NRF是用来进行NF登记、管理、状态检测,实现所有NF的自动化管理,登记信息包括NF类型、地址、服务列表等。与过去的移动通信系统不同,5G系统架构将逐渐取消专用的网元设备,转而采用在通用服务器上部署各种网络功能(NF,Network Function)的形式。
因此,SMSF的接收单元接收NRF发送的网元注册信息,SMSF的解码单元对注册信息进行解码,其中,注册信息可以包括网元服务的IP端口、IP端口优先级、网元状态、备用网元清单等信息。同时SMSF通过NRF监控网元状态,当待交互网元上线或下线时,NRF会向SMSF发送变更通知,通知包括当前网元状态,待SMSF接收解码后以instanceID为索引存储该网元状态,即instanceID对应不同的网元状态,通过获取最新的instanceID以获取最新的网元状态。
备用网元清单中包括备用网元的网元标识及地址等信息,通过备用网元清单,在当前待交互网元无法进行交互的情况下切换其他网元进行交互和传输消息,使在发生异常情况无法对当前网元传输消息时,依然可以通过与备用网元建立连接,保证可靠的传输。
需要说明的是,由于不同的用户具有不同的网元及各个网元的状态,存储网元清单信息和instanceID信息后,生成国际移动用户识别码(IMSI,International Mobile Subscriber Identity)作为后续查询网元清单信息和instanceID信息的索引。
具体地,根据不同应用场景的需要,SMSF可以与接入和移动管理功能(AMF,Access and Mobility Management Function)、会话管理功能(SMF,Session Management Function)、网络暴露功能(NEF,Network Exposure Function)等网元进行交互,传输消息,在本实施方式中,对待交互的网元不做限制。
通过预先对网元的通信状态进行了检测,获取了网元是否可达的状态,并对网元状态进行存储,仅对可达的网元建立链路,进行传输,避免了因对不可达网元建立链路,重试链路所浪费的时间成本和资源成本。
对网元的通信状态进行检测的方式包括被动检测和主动检测。
被动检测的方式具体为:
S1、SMSF向NRF注册网元信息。
S2、SMSF向NRF订阅网元信息。
S3、SMSF接收NRF关于网元状态变更通知,解码后获取网元状态。
S4、以instanceId为索引在存储单元存储网元状态信息。
由于被动检测的方式不具有及时性,在一些情况下可能很久不更新网元状态或没有网元状态,此时需要使用主动检测的方式获取网元状态。
主动检测的方式具体为:
S1、SMSF配置网元IP-重选开关N1及重选次数N2,以及IP链路-重选开关N3及次数N4,SMSF配置IP链路数N5。
S2、SMSF作为服务消费者,向NRF获取网元服务相关IP。
S3、SMSF根据IP向待检测网元建立N5条链路。
S4、SMSF选取一条链路向待检测网元请求服务。
S5、如成功则步骤结束,将网元状态变更为可达状态。如失败或超时则继续步骤6。
S6、判断N3是否打开。如N3打开,N5>1并且N4>1,则直接切换该IP下其它链路重试请求(跳转4)。如N3未打开或重试次数达到N4或N5仍未成功,继续步骤7。
S7、判断N1是否打开,如N1未打开跳转步骤9。否则判断跳转次数是否达到N2,达到则跳转9,否则继续。
S8、切换IP跳转步骤3。
S9、以instanceId为索引更新网元状态为不可达状态。
步骤102,若待交互网元的状态为可达状态,向待交互网元建立多条链路。
通过网络存储功能NRF获取待交互网元的相关IP,即步骤101中获取的注册信息中包括与待交互网元相关的IP;根据网络互联协议建立IP链路,其中,IP链路的数量大于1。
具体地,IP链路是一种通信工具或介质,节点可以通过它在Internet协议套件的数据链路层上进行通信。IP链路的类型可能包括简单以太网、桥接以太网、集线器或异步传输模式(Asynchronous Transfer Mode,ATM)网络。在步骤101种获取的注册信息除与待交互网元相 关的IP外,还包括IP端口的优先级、及各种负荷情况等,根据这些信息,对相关的IP进行排序,将优先级较高且负荷较小的IP排在前面,以排序顺序从前往后选取IP,选择IP后,根据选择的IP地址向待交互的网元建立多条链路。
步骤103,通过预先设置的链路选择方式,选择链路与待交互网元进行消息传输,直至消息传输成功。
在SMSF中配置IP-重选开关和重选IP的最大次数、IP链路重选开关和重选IP链路的最大次数。
根据预先设置的链路选择方式,选择一条链路进行传输,如果传输失败,判断IP链路重选开关是否开启,若IP链路重选开关开启,且重选次数未超过重选IP链路的最大次数,则切换其他链路进行传输。
若IP链路未开启,或该IP的所有链路均不能成功传输,判断IP-重选开关是否开启,若IP-重选开关开启,且未达到IP重选最大次数,按照IP的排序顺序,切换其他IP建立链路,并按照预先设置的链路选择方式,切换链路,直至消息传输成功。
若IP-重选开关未开启,或IP重选次数达到最大次数,且所有链路均不能成功传输,则将当前网元的状态变更为不可达状态。
步骤104,若待交互网元的状态为不可达状态,根据备用网元的清单,切换未被选择过的备用网元,将备用网元设置为待交互网元。
由于当前待交互网元的状态为不可达状态,因此不再进行链路建立的过程,显著减少了与不可达网元建立链路及切换链路而多消耗的时间及资源成本。
因此,根据备用网元清单中的备用网元的标识,将与SMSF进行交互的网元切换成备用网元,将该备用网元作为待交互网元,执行步骤103的过程。
在本实施方式中,通过判断网元的状态,确定可与SMSF进行消息传输的网元,避免了与不可达网元建立链路及切换链路进行所多消耗的时间及资源成本;同时,与可达的待交互网元建立多条链路,增加了传输消息成功的几率;并且通过备用网元清单可以与多个网元进行传输尝试,使得在异常情况下,SMSF依然可以与待交互网元进行消息传输,使传输更为可靠。
本申请的第二实施方式涉及一种消息传输方法,以SMSF与移动性管理网元(AMF,Authentication Management Function)的交互为例。AMF是RAN控制面接口的终止,也是NAS协议的终止,为NAS提供加密和完整性保护。AMF的主要功能还包括接入授权和认证、连接管理、移动管理等。在与EPS互操作的场景中,AMF负责EPS承载ID的分配, AMF从用户设备(UE)接收所有连接和会话相关信息,负责处理连接和移动管理任务。
SMSF与AMF交互的具体步骤如图2所示。
步骤201,根据用户的IMSI获取待交互AMF的instanceID和备用AMF清单。
通过instanceId获取待交互AMF状态,通过备用AMF清单获取备用AMF的标识,即全球唯一AMF标识符(GUAMI,Globally Unique AMF ID)。
S1、若AMF状态为可达状态,执行步骤202。
步骤202,通过NRF获取待交互AMF的IP端口、IP端口优先级、IP负荷情况等。
步骤203,SMSF配置AMF IP-重选开关N1及最大重选次数N2,以及IP链路-重选开关N3及最大重选次数N4,SMSF配置IP链路数N5。
步骤204,对获取到的IP按照优先级和负荷等情况进行排序,按照高优先级低负荷的顺序选取未被选取的IP进行建立N5条链路。
步骤205,根据预先设置的选择策略,选取一条链路向AMF进行传输消息。若传输成功,流程结束;若不成功,执行步骤206。
步骤206,判断IP链路重选开关N3是否开启。
若N3开启,且切换次数未达到N4、N5,则切换其他IP链路重试,直至通信成功。
若N3未开启、重试次数达到IP链路最大重选次数N4或重试次数达到IP链路数N5,则执行步骤207。
步骤207,判断AMF IP-重选开关N1是否开启。
若N1开启且AMF IP重选次数未超过最大重选次数N2,则返回步骤204。
若N1未开启或N1开启且AMF IP重选次数超过最大重选次数N2,将当前AMF的状态变更成不可达状态。
S2、若AMF的状态为不可达状态,执行步骤208。
步骤208,根据备用AMF清单,选取未被选择的备用AMF,将该备用AMF作为待交互的AMF执行步骤202。
具体地,配置GUAMI最大重试次数为N6,判断GUAMI切换次数是否达到N6。
若未达到,在备用AMF清单中,选择未被选取过的备用AMF的GUAMI,将选择的备用AMF作为待交互的AMF,执行步骤202。
若切换次数达到N6,则结束切换步骤,流程结束,消息传输失败。
在本实施方式中,在AMF切换、IP切换和IP链路切换处,都配置了最大重试次数,通过配置最大重试次数,使重试次数具有限度,避免了由于有着大量的网元的情况下,需要运 行很久,浪费过多的运行空间和资源,保障健康的进行传输。
在SMSF与AMF交互的过程中,设置了多次的重选重定向过程,避免了在交互传输消息的过程中因为部分通信通道或网元产生故障而影响整个传输过程的情况发生,提高了传输过程的可靠性,确保在异常情况下,如网络波动、HTTP2层协议错误、AMF网元宕机时,可以通过切换链路、切换IP或切换AMF的方法,对SMSF的交互对象进行重定向,大大增加了通信容错的能力。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请第三实施方式涉及一种消息传输系统,如图4所示,包括:
接收模块301,用于获取与SMSF待交互网元的状态和备用网元的清单,其中AMF状态包括可达状态和不可达状态。
具体地,接收模块还包括:消息接收单元、解码单元和缓存单元。其中,消息接收单元用于接收消息通知,instanceId、网元清单信息等;解码单元用于对通知和消息进行解码;缓存单元用于存储IMSI、instanceId和网元清单的映射关系。
需要说明的是,instanceId为网元状态(如AMF的状态)的唯一标识,instanceId对应一个网元标识,网元标识在网元清单中,以instanceId作为key,建立一个对应关系。
链路重定向模块302,用于若待交互网元的状态为可达状态,向待交互网元建立多条链路;通过预先设置的链路选择方式,选择链路与待交互网元进行消息传输,直至消息传输成功。
网元重定向模块303,用于若待交互网元的状态为不可达状态,根据备用网元的清单,切换未被选择过的备用网元,将备用网元设置为待交互网元。
不难发现,本实施方式为与第一实施方式相对应的系统实施例,本实施方式可与第一实施方式互相配合实施。第一实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一实施方式中。
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的 技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请第四实施方式涉及一种电子设备,如图4所示,包括:至少一个处理器401;以及,与至少一个处理器401通信连接的存储器402;其中,存储器402存储有可被至少一个处理器401执行的指令,指令被至少一个处理器401执行,以使至少一个处理器401能够执行消息传输方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路链接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请第五实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种消息传输方法,应用于短信服务网元SMSF,包括:
    获取与所述SMSF待交互网元的状态和备用网元的清单,其中所述网元的状态包括可达状态和不可达状态;
    若所述待交互网元的状态为所述可达状态,向所述待交互网元建立多条链路;
    通过预先设置的链路选择方式,选择所述链路与所述待交互网元进行所述消息传输,直至所述消息传输成功;
    若所述待交互网元的状态为所述不可达状态,根据所述备用网元的清单,切换未被选择过的所述备用网元,将所述备用网元设置为所述待交互网元。
  2. 根据权利要求1所述的消息传输方法,其中,所述获取与所述SMSF待交互网元的状态,包括:
    通过网络存储功能NRF定时获取所述待交互网元的变更通知;
    对所述变更通知进行解码,获取所述待交互网元的状态。
  3. 根据权利要求1或2所述的消息传输方法,其中,所述向所述待交互网元建立多条链路,包括:
    通过网络存储功能NRF获取所述待交互网元的相关网络互连协议IP地址;
    根据所述IP地址建立IP链路,其中,所述IP链路的数量大于1。
  4. 根据权利要求1至3中任一项所述的消息传输方法,其中,所述通过预先设置的链路选择方式,选择所述链路与所述待交互网元进行所述消息传输,直至所述消息传输成功,包括:
    通过所述链路选择方式,选择一条链路与所述待交互网元进行所述消息传输;
    若所述消息传输失败,通过所述链路选择方式,切换其他链路重试。
  5. 根据权利要求4所述的消息传输方法,其中,在所述通过预先设置的链路选择方式,选择所述链路与所述待交互网元进行所述消息传输,直至所述消息传输成功前,还包括:
    配置网元IP重选开关、所述网元IP最大重选次数、IP链路重选开关和所述IP链路最大重选次数。
  6. 根据权利要求5所述的消息传输方法,其中,所述若所述消息传输失败,通过所述链路选择方式,切换其他链路重试,包括:
    确定所述网元IP重选开关和所述IP链路重选开关开启,切换其他所述IP链路进行所述 消息传输,其中,切换次数小于所述网元IP最大重选次数、所述IP链路最大重选次数和所述IP链路数量。
  7. 根据权利要求6所述的消息传输方法,其中,所述确定所述网元IP重选开关和所述IP链路重选开关开启,切换其他所述IP链路进行所述消息传输,若发送失败,将所述待交互网元的状态变更为不可达状态。
  8. 根据权利要求1至7中任一项所述的消息传输方法,其中,所述根据所述备用网元的清单,切换未被选择过的所述备用网元,将所述备用网元设置为所述待交互网元前,包括:
    配置所述备用网元重选开关和所述备用网元最大重选次数。
  9. 根据权利要求1至8中任一项所述的消息传输方法,其中,所述根据所述备用网元的清单,切换未被选择过的所述备用网元,包括:
    确定所述备用网元重选开关开启,切换在所述备用网元清单中未被选择过的所述备用网元,其中,切换次数小于所述备用网元最大重选次数。
  10. 一种消息传输系统,包括:
    接收模块,用于获取与SMSF待交互网元的状态和备用网元的清单,其中所述网元状态包括可达状态和不可达状态;
    链路重定向模块,用于若所述待交互网元的状态为所述可达状态,向所述待交互网元建立多条链路;通过预先设置的链路选择方式,选择所述链路与所述待交互网元进行所述消息传输,直至所述消息传输成功;
    网元重定向模块,用于若所述待交互网元的状态为所述不可达状态,根据所述备用网元的清单,切换未被选择过的所述备用网元,将所述备用网元设置为所述待交互网元。
  11. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至9任一所述的消息传输方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述的消息传输方法。
PCT/CN2021/114800 2020-10-22 2021-08-26 消息传输方法、系统、电子设备和存储介质 WO2022083281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011141712.7 2020-10-22
CN202011141712.7A CN114390454A (zh) 2020-10-22 2020-10-22 消息传输方法、系统、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022083281A1 true WO2022083281A1 (zh) 2022-04-28

Family

ID=81194525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114800 WO2022083281A1 (zh) 2020-10-22 2021-08-26 消息传输方法、系统、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114390454A (zh)
WO (1) WO2022083281A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978910A (zh) * 2022-08-02 2022-08-30 广东省新一代通信与网络创新研究院 一种虚拟化核心网的时间敏感实现方法及系统
CN115865558A (zh) * 2022-11-22 2023-03-28 深圳市东微智能科技股份有限公司 手拉手音频传输系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924772A (zh) * 2018-08-02 2018-11-30 平安科技(深圳)有限公司 短信发送方法、装置、计算机设备和存储介质
WO2019222995A1 (en) * 2018-05-25 2019-11-28 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic backup amf determination and publication
CN111417151A (zh) * 2020-03-27 2020-07-14 广州爱浦路网络技术有限公司 一种5g核心网中备份amf的方法及其系统
CN111865688A (zh) * 2020-07-20 2020-10-30 北京百度网讯科技有限公司 网关监测方法、装置、电子设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019222995A1 (en) * 2018-05-25 2019-11-28 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic backup amf determination and publication
CN108924772A (zh) * 2018-08-02 2018-11-30 平安科技(深圳)有限公司 短信发送方法、装置、计算机设备和存储介质
CN111417151A (zh) * 2020-03-27 2020-07-14 广州爱浦路网络技术有限公司 一种5g核心网中备份amf的方法及其系统
CN111865688A (zh) * 2020-07-20 2020-10-30 北京百度网讯科技有限公司 网关监测方法、装置、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Pseudo-CR on Target AMF for Namf_MT service", 3GPP DRAFT; C4-183085_TARGET AMF IN NAMF_MT SERVICE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG4, no. KunMing, P.R. China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051425623 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978910A (zh) * 2022-08-02 2022-08-30 广东省新一代通信与网络创新研究院 一种虚拟化核心网的时间敏感实现方法及系统
WO2024027217A1 (zh) * 2022-08-02 2024-02-08 广东省新一代通信与网络创新研究院 一种虚拟化核心网的时间敏感实现方法及系统
CN115865558A (zh) * 2022-11-22 2023-03-28 深圳市东微智能科技股份有限公司 手拉手音频传输系统及方法

Also Published As

Publication number Publication date
CN114390454A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
US11153929B2 (en) System and methods for session management
CN112868206A (zh) 在使用基于服务的体系架构的电信网络核心中提供服务代理功能的方法、系统和计算机可读介质
JP5113684B2 (ja) アクセスゲートウェイ装置の制御方法及び通信システム
US8914449B2 (en) Push messaging platform with high scalability and high availability
WO2022083281A1 (zh) 消息传输方法、系统、电子设备和存储介质
US20230199534A1 (en) Service producer health-check
US20240334254A1 (en) Selection of Edge Application Server
WO2019096306A1 (zh) 一种处理请求的方法以及相应实体
US9417887B2 (en) Method and apparatus for bootstrapping gateway in device management system
US20220303793A1 (en) Network function redundancy using binding header enhancements
WO2021028053A1 (en) Devices and methods for supporting handover of ue
WO2022267688A1 (zh) 备用smf发现方法、装置、电子设备和介质
CN112788088A (zh) 多边缘云的网络通信控制方法及边缘运算系统
EP4436221A1 (en) User plane policy authorization method, network element, electronic device, and storage medium
WO2022099509A1 (en) Methods, apparatuses, and computer readable media for controlling downlink transmissions in integrated access and backhaul network
US20230208804A1 (en) Ip address allocation in a wireless communication network
WO2023179365A1 (zh) 一种通信方法和通信装置
US20230292384A1 (en) Method and apparatus for setting up interface
CN115604753A (zh) 会话建立方法、装置、系统、电子设备、存储介质
CN117768924A (zh) 一种网络容灾方法、装置、客户端和业务控制点
CN118055393A (zh) 一种业务处理方法及装置
KR20000013332A (ko) 서비스 독립 블록에서의 위치 정보 참조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 14/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21881700

Country of ref document: EP

Kind code of ref document: A1