WO2022083233A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2022083233A1
WO2022083233A1 PCT/CN2021/111010 CN2021111010W WO2022083233A1 WO 2022083233 A1 WO2022083233 A1 WO 2022083233A1 CN 2021111010 W CN2021111010 W CN 2021111010W WO 2022083233 A1 WO2022083233 A1 WO 2022083233A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
backoff
duration
request
response information
Prior art date
Application number
PCT/CN2021/111010
Other languages
English (en)
French (fr)
Inventor
李云波
阮卫
淦明
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022083233A1 publication Critical patent/WO2022083233A1/zh
Priority to US18/302,051 priority Critical patent/US20230262785A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a data transmission method and apparatus.
  • the Institute of Electrical and Electronics Engineers (IEEE) 802.11 is one of the current mainstream wireless access standards and has been widely used.
  • the IEEE 802.11a standard only supports 20MHz bandwidth, but the bandwidth continues to increase in the subsequent standard evolution.
  • the 802.11n standard supports a maximum bandwidth of 40MHz
  • the 802.11ac/ax standard supports a maximum bandwidth of 160 (80+80)MHz.
  • To ensure backward compatibility during standard evolution no matter how large the bandwidth is, there is a unique primary 20MHz channel. This primary 20MHz channel must be included when a device sends data using any bandwidth. A problem caused by this is that when the only primary 20MHz channel is busy, all other idle secondary channels (or called secondary channels) cannot be used, thereby reducing system efficiency.
  • the maximum bandwidth supported by the latest generation of Wi-Fi standards is 320MHz.
  • the 802.11be standard in order to make full use of the channel, when the access point (AP) supports a large bandwidth (such as 320MHz), a part of the stations (station, STA) that only supports a small bandwidth (such as only 80MHz) are allowed to be used.
  • the data transmission is scheduled to be performed on the secondary channel, so as to avoid that all STAs supporting a small bandwidth gather on the primary channel, and few or no STAs can perform data transmission on the secondary channel.
  • a typical transmission method on the slave channel is: schedule each STA that only supports 80MHz to camp on a certain slave 80MHz channel in the 320MHz channel; when the STA camps on any other slave 80MHz channel other than the main 80MHz channel
  • the STA's uplink data can only be scheduled by the AP through the trigger frame, the STA cannot actively compete for the channel and send the uplink data. Otherwise, the transmission end times of the data on multiple slave 80MHz channels may not be the same, so that the AP cannot perform correct analysis.
  • the above solution can enable the AP to obtain additional transmission opportunities on the non-primary channel, it cannot reduce the data transmission delay between the AP and the same STA, or increase the data transmission throughput between the AP and the same STA.
  • the present application provides a data transmission method and apparatus for reducing the data transmission delay between two devices and increasing the data transmission throughput between the two devices.
  • a first aspect provides a data transmission method, comprising: a first device performs a backoff on a primary 20MHz channel to perform data transmission with a second device; when a first preset condition is met, the first device switches from the primary 20MHz channel To the first channel, the first channel is a channel preconfigured for communication between the first device and the second device, the first channel does not include the main 20MHz channel, and the first preset condition at least includes: the main 20MHz channel is in a busy state.
  • the first preset condition at least includes that the primary 20MHz channel is in a busy state
  • data transmission between the first device and the second device cannot be performed through the primary 20MHz channel when the preset condition is met.
  • the first device switches from the main 20MHz channel to the first channel, and there is a certain probability that an additional transmission opportunity can be obtained before the main 20MHz channel switches from the busy state to the idle state, so as to be compatible with the The second device performs data transmission.
  • the first device and the second device need to wait for the main 20MHz channel to switch from the busy state to the idle state before data transmission can be performed.
  • the channel is in a busy state, there is a certain probability of data transmission, thereby reducing the data transmission delay between the first device and the second device, and improving the data throughput between the first device and the second device.
  • the main 20MHz channel is in a busy state, including at least one of the following situations: the first device receives a first overlapped basic service set (overlapped BSS, OBSS) frame on the main 20MHz channel; or, the first device determines The energy detection result on the primary 20MHz channel is a busy state; or, the first device determines that the value of the first network allocation vector (NAV) on the primary 20MHz channel is greater than 0.
  • first overlapped basic service set overlapped BSS, OBSS
  • NAV network allocation vector
  • the first preset condition further includes: the target duration is greater than or equal to the first preset duration; wherein the target duration is the remaining transmission duration of the first OBSS frame received by the first device on the primary 20MHz channel , or, the target duration is the remaining timing duration of the first NAV on the main 20MHz channel. In this way, the probability of the first device performing unnecessary channel switching operations is reduced.
  • the method further includes: the first device performs backoff on the first channel; after the first channel backs off to 0, the first device performs data transmission with the second device on the first channel.
  • the first device when the first channel includes multiple subchannels, the first device performs backoff on the first channel, including: the first device performs backoff on each of the multiple subchannels. In this way, it is beneficial to compete for the channel as soon as possible, thereby reducing the data transmission delay.
  • the method further includes: if the first device synchronizes to a physical frame header in any sub-channel in the first channel, the first device suspends the backoff of all sub-channels in the first channel, and determines Whether the physical frame corresponding to the physical frame header is an OBSS frame; if the physical frame corresponding to the physical frame header is an OBSS frame, the first device continues to perform backoff on each subchannel in the first channel; or, if the physical frame header corresponds to an OBSS frame If the physical frame corresponding to the physical frame header is not an OBSS frame, the first device continues to suspend the backoff of all subchannels in the first channel until the transmission of the physical frame corresponding to the physical frame header is completed; or, if the physical frame corresponding to the physical frame header is not an OBSS frame, then the first device A device continues to suspend the backoff of all subchannels in the first channel until the NAV set in the physical frame corresponding to the physical frame header is reduced to 0. In this way, the problem of sending and
  • the method further includes: the first device receives a physical frame on any subchannel in the first channel; if the first device determines that the physical frame is from the BSS to which the first device belongs, the first device Suspend the backoff of all subchannels in the first channel until the transmission of the physical frame is completed; or, if the first device determines that the physical frame is from the BSS to which the first device belongs, the first device suspends the backoff of all subchannels in the first channel until the The NAV set by the physical frame is reduced to 0. In this way, the probability of sending and receiving conflict of the first device is reduced.
  • the first device when the first channel includes multiple subchannels, the first device performs backoff on the first channel, including: the first device performs backoff on one of the multiple subchannels; when the subchannel is in a In the busy state, the first device switches to another sub-channel among the multiple sub-channels to perform backoff according to a preset sequence. In this way, the flexibility of the first device to perform backoff is improved, and it is avoided that the first device cannot compete for a channel because one sub-channel is in a busy state for a long time.
  • the sub-channel is in a busy state, including at least one of the following situations: the first device receives the second OBSS frame on the sub-channel; or, the first device does not detect the radio frame, but the first device determines the sub-channel.
  • the energy detection result on the channel is that the duration of the busy state is greater than or equal to the second preset duration; or, the first device determines that the value of the second NAV on the subchannel is greater than 0.
  • the method further includes: the first device performs energy detection on the subchannel; when the energy detection value on the subchannel is greater than or equal to the energy detection threshold, the first device determines the energy detection result on the subchannel. is a busy state; or, when the energy detection value on the subchannel is less than the energy detection threshold, the first device determines that the energy detection result on the subchannel is an idle state; wherein, the energy detection threshold of the subchannel is set to be less than -62dBm and greater than -82dBm value.
  • the method further includes: before the duration of switching from the primary 20MHz channel to the first channel by the first device reaches the target duration, the first device switches from the first channel to the primary 20MHz channel; wherein the target duration is The remaining transmission duration of the first OBSS frame received by the first device on the primary 20MHz channel, or the target duration is the remaining timing duration of the first NAV on the primary 20MHz channel. In this way, the opportunity for the first device to miss the update of the first NAV on the primary 20MHz channel is reduced.
  • the method further includes: if the target duration is the remaining timing duration of the first NAV on the primary 20MHz channel, the first device performs a blind recovery operation on the primary 20MHz channel. In this way, it is beneficial to ensure the fairness of the channel competition between the first device and other devices, and prevent the first device from preempting the channel competed by other devices, thereby affecting the normal transmission of other devices.
  • the method further includes: the first device receiving the first indication information sent by the second device; or, the first device sending the first indication information to the second device; wherein the first indication information is used to configure first channel. Based on this design, the same first channel can be determined between the first device and the second device.
  • the method further includes: the first device sends first request information to the second device, where the first request information is used to request to negotiate the first channel; the first device receives the first response information sent by the second device , the first response information is used to respond to the first request information, and the first response information is used to determine the first channel. Based on this design, the same first channel can be determined between the first device and the second device.
  • the method further includes: the first device receives first request information sent by the second device, where the first request information is used to request negotiation of the first channel; the first device sends first response information to the second device , the first response information is used to respond to the first request information, and the first response information is used to determine the first channel. Based on this design, the same first channel can be determined between the first device and the second device.
  • the first channel is one of the following situations: the first channel is a secondary 20MHz channel; or, the first channel is the 20MHz channel with the lowest frequency among the 80MHz channels; or the first channel is the highest frequency among the 80MHz channels. 20MHz channel.
  • the method further includes: the first device receives second indication information sent by the second device; or, the first device sends second indication information to the second device; wherein the second indication information is used to indicate Whether to enable the first transmission mechanism, the first transmission mechanism is used for the first device and the second device to switch from the main 20MHz channel to the channel when the first preset condition is met.
  • the first transmission mechanism can be flexibly enabled or disabled between the first device and the second device, so that the first transmission mechanism is applied in an appropriate scenario.
  • the method further includes: the first device sends second request information to the second device; the first device receives second response information sent by the second device; wherein the second request information is used to request to enable the first device.
  • a transmission mechanism, the second response information is used to express approval or refusal to enable the first transmission mechanism, and the first transmission mechanism is used for the first device and the second device to switch from the main 20MHz channel to the channel when the first preset condition is met
  • the second request information is used to request to close the first transmission mechanism
  • the second response information is used to express approval or refusal to close the first transmission mechanism.
  • the first transmission mechanism can be flexibly enabled or disabled between the first device and the second device, so that the first transmission mechanism is applied in an appropriate scenario.
  • the method further includes: the first device receives second request information sent by the second device; the first device sends second response information to the second device; wherein the second request information is used to request to enable the first device transmission mechanism, the second response information is used to express approval or refusal to enable the first transmission mechanism, and the first transmission mechanism is used for the first device and the second device to switch from the main 20MHz channel to the channel when the first preset condition is met; Alternatively, the second request information is used to request to close the first transmission mechanism, and the second response information is used to express agreement or refusal to close the first transmission mechanism.
  • the first transmission mechanism can be flexibly enabled or disabled between the first device and the second device, so that the first transmission mechanism is applied in an appropriate scenario.
  • the method further includes: the first device receives third indication information sent by the second device; or, the first device sends third indication information to the second device; wherein the third indication information is used to indicate the first The service type of the data transmitted on a channel. Based on this design, the service type of the data transmitted on the first channel can be determined between the first device and the second device, thereby helping to reduce the transmission delay of the data of the service type.
  • the method further includes: the first device sends third request information to the second device, where the third request information is used to request negotiation of the service type of the data transmitted on the first channel; the first device receives the second device The sent third response information is used to respond to the third request information, and the third response information is used to determine the service type of the data transmitted on the first channel. Based on this design, the service type of the data transmitted on the first channel can be determined between the first device and the second device, thereby helping to reduce the transmission delay of the data of the service type.
  • the method further includes: the first device receives third request information sent by the second device, where the third request information is used to request negotiation of the service type of the data transmitted on the first channel; The device sends third response information, where the third response information is used to respond to the third request information, and the third response information is used to determine the service type of the data transmitted on the first channel. Based on this design, the service type of the data transmitted on the first channel can be determined between the first device and the second device, thereby helping to reduce the transmission delay of the data of the service type.
  • a communication device comprising: a backoff module and a switching module.
  • the backoff module is used to perform backoff on the primary 20MHz channel to perform data transmission with the second device.
  • the switching module is used to switch from the main 20MHz channel to the first channel when the first preset condition is met, the first channel is a channel preconfigured for communication between the communication device and the second device, and the first channel does not include the main 20MHz channel
  • the first preset condition at least includes: the main 20MHz channel is in a busy state.
  • the main 20MHz channel is in a busy state, including at least one of the following situations: the first device receives the first OBSS frame on the main 20MHz channel; or, the first device determines the energy detection result on the main 20MHz channel is a busy state; or, the first device determines that the value of the first NAV on the primary 20MHz channel is greater than 0.
  • the first preset condition further includes: the target duration is greater than or equal to the first preset duration; wherein the target duration is the remaining transmission duration of the first OBSS frame received by the first device on the primary 20MHz channel , or, the target duration is the remaining timing duration of the first NAV on the main 20MHz channel.
  • the communication device further includes a communication module.
  • the backoff module is further configured to perform backoff on the first channel.
  • the communication module is used to perform data transmission with the second device on the first channel after the first channel backs off to 0.
  • the backoff module is specifically configured to perform backoff on each of the plurality of subchannels when the first channel includes a plurality of subchannels.
  • the backoff module is also used to suspend the backoff of all subchannels in the first channel if any subchannel in the first channel is synchronized to a physical frame header, and determine the corresponding physical frame header. Whether the physical frame is an OBSS frame; if the physical frame corresponding to the physical frame header is an OBSS frame, continue to perform backoff on each subchannel in the first channel; or, if the physical frame corresponding to the physical frame header is not an OBSS frame, then Continue to suspend the backoff of all subchannels in the first channel until the transmission of the physical frame corresponding to the physical frame header is completed; or, if the physical frame corresponding to the physical frame header is not an OBSS frame, continue to suspend the backoff of all subchannels in the first channel, Until the NAV set with the physical frame corresponding to the physical frame header is reduced to 0.
  • the backoff module is further configured to suspend all physical frames in the first channel if it is determined that the physical frame comes from the BSS to which the first device belongs when a physical frame is received on any sub-channel in the first channel.
  • the subchannel is backed off until the transmission of the physical frame is completed; or, if it is determined that the physical frame is from the BSS to which the first device belongs, the backoff of all subchannels in the first channel is suspended until the NAV set by the physical frame is reduced to 0.
  • the back-off module is specifically configured to perform back-off on one of the sub-channels when the first channel includes multiple sub-channels; when the sub-channel is in a busy state, switch according to a preset order. Backoff is performed to another sub-channel of the plurality of sub-channels.
  • the sub-channel is in a busy state, including at least one of the following situations: the first device receives the second OBSS frame on the sub-channel; or, the first device does not detect the radio frame, but the first device determines the sub-channel.
  • the energy detection result on the channel is that the duration of the busy state is greater than or equal to the second preset duration; or, the first device determines that the value of the second NAV on the subchannel is greater than 0.
  • the backoff module is also used to perform energy detection on the subchannel; when the energy detection value on the subchannel is greater than or equal to the energy detection threshold, determine that the energy detection result on the subchannel is a busy state; or , when the energy detection value on the subchannel is less than the energy detection threshold, determine that the energy detection result on the subchannel is an idle state; wherein, the energy detection threshold of the subchannel is set to a value less than -62dBm and greater than -82dBm.
  • the switching module is also used to switch from the first channel to the main 20MHz channel before the duration of the first device switching from the main 20MHz channel to the first channel reaches the target duration; wherein, the target duration is the first The remaining transmission duration of the first OBSS frame received by the device on the primary 20MHz channel, or the target duration is the remaining timing duration of the first NAV on the primary 20MHz channel.
  • the backoff module is further configured to perform a blind recovery operation on the primary 20MHz channel if the target duration is the remaining timing duration of the first NAV on the primary 20MHz channel.
  • the communication device further includes a communication module.
  • the communication module is configured to receive the first indication information sent by the second device; or, send the first indication information to the second device; wherein the first indication information is used to configure the first channel.
  • the communication device further includes a communication module.
  • the communication module is used to send the first request information to the second device, and the first request information is used to request negotiation of the first channel; and the first response information sent by the second device is received, and the first response information is used to respond to the first request. information, the first response information is used to determine the first channel.
  • the communication device further includes a communication module.
  • the communication module receives first request information sent by the second device, where the first request information is used to request negotiation of the first channel; and sends first response information to the second device, where the first response information is used to respond to the first request information, The first response information is used to determine the first channel.
  • the first channel is one of the following situations: the first channel is a secondary 20MHz channel; or, the first channel is the 20MHz channel with the lowest frequency among the 80MHz channels; or the first channel is the highest frequency among the 80MHz channels. 20MHz channel.
  • the communication device further includes a communication module.
  • the communication module is used to receive the second indication information sent by the second device; or, send the second indication information to the second device; wherein, the second indication information is used to indicate whether to enable the first transmission mechanism, the first transmission mechanism It is used for the communication device and the second device to switch from the main 20MHz channel to the channel under the condition that the first preset condition is satisfied.
  • the communication device further includes a communication module.
  • the communication module is used to send the second request information to the second device; receive the second response information sent by the second device; wherein, the second request information is used to request to enable the first transmission mechanism, and the second response information is used to indicate Approve or refuse to open the first transmission mechanism, the first transmission mechanism is used for the communication device and the second device to switch from the main 20MHz channel to the channel when the first preset condition is met; or, the second request information is used to request to close the first transmission mechanism.
  • a transmission mechanism, the second response information is used to express approval or refusal to close the first transmission mechanism.
  • the communication device further includes a communication module.
  • the communication module is used to receive the second request information sent by the second device; send the second response information to the second device; wherein the second request information is used to request to enable the first transmission mechanism, and the second response information is used to indicate Approve or refuse to open the first transmission mechanism, the first transmission mechanism is used for the communication device and the second device to switch from the main 20MHz channel to the channel when the first preset condition is met; or, the second request information is used to request to close the first transmission mechanism.
  • a transmission mechanism, the second response information is used to express approval or refusal to close the first transmission mechanism.
  • the communication device further includes a communication module.
  • the communication module is configured to receive third indication information sent by the second device; or, send third indication information to the second device; wherein the third indication information is used to indicate the service type of the data transmitted on the first channel.
  • the communication device further includes a communication module.
  • the communication module is used to send third request information to the second device, where the third request information is used to request negotiation of the service type of the data transmitted on the first channel; receive third response information sent by the second device, the third response The information is used to respond to the third request information, and the third response information is used to determine the service type of the data transmitted on the first channel.
  • the communication device further includes a communication module.
  • the communication module is used to receive third request information sent by the second device, where the third request information is used to request negotiation of the service type of the data transmitted on the first channel; send third response information to the second device, the third response The information is used to respond to the third request information, and the third response information is used to determine the service type of the data transmitted on the first channel.
  • a communication device in a third aspect, includes a processor and a transceiver, and the processor and the transceiver are used to implement the method provided by any one of the foregoing designs in the first aspect.
  • the processor is configured to perform processing actions in the corresponding method
  • the transceiver is configured to perform the actions of receiving/transmitting in the corresponding method.
  • a computer-readable storage medium stores computer instructions, which, when the computer instructions are executed on a computer, cause the computer to execute the method provided by any one of the designs in the first aspect.
  • a fifth aspect provides a computer program product comprising computer instructions, which, when executed on a computer, cause the computer to perform the method provided by any one of the designs in the first aspect.
  • a chip including: a processing circuit and a transceiver pin, where the processing circuit and the transceiver pin are used to implement the method provided by any one of the above-mentioned first aspect.
  • the processing circuit is used for executing the processing actions in the corresponding method
  • the transceiver pins are used for executing the receiving/transmitting actions in the corresponding method.
  • FIG. 1 is a schematic diagram of a channel division of a 320 MHz channel according to an embodiment of the present application
  • FIG. 2 is another schematic diagram of channel division of a 320 MHz channel provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a backoff process provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of channel competition on a temporary main channel according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a system architecture of a wireless local area network according to an embodiment of the present application.
  • FIG. 6(a) is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 6(b) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 6(c) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 7(a) is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 7(b) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 7(c) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 8(a) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 8(b) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 9(a) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 9(b) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 10(a) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 10(b) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 11(a) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 11(b) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 12(a) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 12(b) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 13(a) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 13(b) is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a hardware structure of a communication apparatus according to an embodiment of the present application.
  • data transmission and transmission data generally refer to communication.
  • data generally refers to communication information, and is not limited to data information, but may also be signaling information and the like.
  • transmission refers broadly to sending and receiving.
  • BSS is used to describe a group of devices that can communicate with each other in wireless local area networks (WLAN).
  • a WLAN may include multiple BSSs.
  • Each BSS has a unique identification called Basic Service Set Identifier (BSSID).
  • BSSID Basic Service Set Identifier
  • one BSS may include one AP and multiple STAs associated with the AP.
  • TXOP Transmission opportunity
  • TXOP is the basic unit of wireless channel access.
  • TXOP consists of an initial time and a maximum duration (TXOP limit).
  • TXOP limit The station that obtains the TXOP can no longer compete for the channel again within the TXOP limit time, and continuously use the channel to transmit multiple data frames.
  • TXOP can be obtained through competition or distribution by a hybrid coordinator (HC). Among them, the TXOP obtained through competition may be called an enhanced distributed channel access (EDCA) TXOP. The TXOP obtained via HC allocation may be referred to as a hybrid coordination function controlled channel access (HCCA) TXOP.
  • HCCA hybrid coordination function controlled channel access
  • channels are usually divided into primary channels and secondary channels, wherein secondary channels may contain one or more sub-channels.
  • the channel bandwidth when the channel bandwidth is 20MHz, there is only one main channel with a bandwidth of 20MHz; when the channel bandwidth is greater than 20MHz, a channel with a bandwidth of 20MHz is included as the main channel, and the rest One or more of the 20MHz channels are slave channels.
  • FIG. 1 is a schematic diagram of a channel division of a 320 MHz channel provided by an embodiment of the present application.
  • the 320MHz frequency band can be divided into 16 20MHz channels.
  • the 16 20MHz channels may be sequentially numbered from channel 1 to channel 16. It should be understood that each number represents a 20MHz channel.
  • channel 1 can be used as a primary 20MHz channel (primary 20MHz channel, P20), and channel 2 can be used as a secondary 20MHz channel (S20).
  • Channels 1 and 2 can be aggregated as primary 40MHz channels, and channels 3 and 4 can be aggregated as secondary 40MHz channels.
  • Channel 1-Channel 4 can be aggregated as a primary 80MHz channel
  • channel 5-Channel 8 can be aggregated as a secondary 80MHz channel
  • Channel 1-Channel 8 can be aggregated as a primary 160MHz channel
  • channel 9-Channel 16 can be aggregated as a secondary 160MHz channel.
  • main 20MHz channel is the common channel of operation for stations that are members of the basic service set.
  • Stations in the basic service set can perform channel contention on the primary 20MHz channel to preempt channel resources.
  • the main 20MHz channel does not have to be channel 1, but can also be other channels.
  • channel 1 is used as the main 20MHz channel for illustration.
  • the secondary channel may also have other names, such as a secondary channel, a secondary channel, and the like, which are not limited in this embodiment of the present application.
  • the 802.11 system supports various channel bandwidths, such as 20MHz, 40MHz, 80MHz, 160MHz continuous bandwidth, or 80MHz+80MHz discontinuous bandwidth, or 320MHz, 240MHz+80MHz, 160MHz+160MHz, etc.
  • the channel bandwidth can also be other bandwidths.
  • the channel division method may be similar to the above-mentioned 320MHz channel, which will not be repeated here.
  • FIG. 2 is a schematic diagram of another channel division of a 320 MHz channel provided by an embodiment of the present application. As shown in FIG. 2 , taking the bandwidth of a segment as 80 MHz as an example, the 320 MHz channel shown in FIG. 2 can be divided into 4 segments. Frequency domain segmentation may also be referred to as frequency domain slicing, or simply slicing or segmenting.
  • the carrier sense mechanism can be divided into a physical carrier sense mechanism and a virtual carrier sense mechanism.
  • the physical carrier sensing mechanism is also called clear channel assessment (CCA).
  • CCA clear channel assessment
  • the target device first receives data on this channel. If after a given time, the target device does not find other devices sending data on this channel, the target device starts to send data; if it finds that other devices are sending data, the target device randomly avoids for a period of time and retry the process again.
  • Clear channel assessment includes packet detection and energy detection. Among them, packet detection is to detect whether there is data packet transmission on the channel (it can be judged by detecting whether there is a packet header). If there is a data packet on the channel and the energy exceeds a packet detection threshold, the channel is considered busy. Energy detection is to detect the energy on the channel. If the energy on the channel is greater than or equal to the energy detection threshold, the channel is considered busy. When the result of the packet detection and the result of the energy detection are both the channel is idle, the channel is considered to be in an idle state. In other words, if the packet header is not detected within a certain period of time, and the energy on the channel during energy detection is less than the energy detection threshold, the channel is considered to be in an idle state.
  • the “energy detection” mentioned hereinafter in this application refers to the situation that the packet header is not detected, that is, when the result of the "energy detection” mentioned in this application hereinafter is that the channel is idle, it means This channel is idle.
  • the virtual carrier sense mechanism uses the information found in the 802.11 frame to predict the state of the wireless medium.
  • virtual carrier sense is provided by NAV.
  • a device can maintain one or more NAVs.
  • NAV itself is a timer, set by using the duration value in the MAC header of the frame. The value of NAV decreases over time.
  • a non-zero NAV indicates that the wireless medium is busy.
  • NAV is zero, indicating that the wireless medium is idle.
  • the above-mentioned wireless medium may be a channel, a frequency band, or the like.
  • NAV is set by using the duration value in the MAC header of the frame.
  • the current NAV value of the station the station can update the NAV according to the duration field in the received frame. If the receiving address of the frame is the station, it means that the station is the receiving station, or the value of the duration field in the frame is less than or equal to the current NAV value of the station, the NAV cannot be updated.
  • the NAV value is calculated from the end time of the received radio frame.
  • the IEEE 802.11 standard supports multiple users to share the same transmission medium, and the sender checks the availability of the transmission medium before sending data.
  • the IEEE 802.11 standard uses carrier sense multiple access with collision avoidance (CSMA/CA) to achieve channel competition. Among them, in order to avoid collision, CSMA/CA adopts a back-off mechanism.
  • the backoff mechanism on a single channel is described below.
  • the device Before the device sends a message, the device can select a random number from 0 to the contention window (CW), and use the random number as the initial value of the backoff counter.
  • the idle time of the channel After the idle time of the channel reaches the arbitration inter-frame space (AIFS), when the channel is idle for every timeslot (timeslot), the count value of the backoff counter is decremented by 1.
  • the back-off counter suspends counting.
  • the backoff counter resumes counting.
  • the back-off process ends, and the device can start data transmission.
  • the backoff counter starts to back off. Whenever the channel is in an idle state in a time slot, the count value of the back-off counter is decremented by 1 until the count value of the back-off counter is 0. After the count value of the backoff counter is 0, the device successfully competes for the channel, and the device can send PPDUs on the channel.
  • the maximum bandwidth supported by the latest generation of Wi-Fi standards is 320MHz.
  • the AP supports a large bandwidth (such as 320MHz)
  • it is allowed to schedule a part of the STAs that only support a small bandwidth (such as only 80MHz) to a specific slave channel for reception, thereby avoiding all STAs.
  • STAs that support small bandwidths are gathered on the primary channel, while few or no STAs can transmit or receive on the secondary channel.
  • the AP when the AP receives an OBSS frame on the primary channel and sets the network allocation vector (NAV), the AP can switch from the primary channel to a specific secondary channel for channel listening and backoff.
  • This application refers to this particular slave channel as a temporary master channel.
  • the temporary primary channel may also be referred to herein as a parking channel, or a frame reception channel, or a backup channel, or by other names.
  • the temporary primary channel is uniformly used for description below.
  • the temporary main channel may temporarily serve as a working channel of the station, and the station may park on or operate on the temporary main channel to receive signaling or data.
  • the AP may schedule STA1 to the primary 20MHz channel and schedule STA2 to channel 13 . That is, channel 13 is the temporary main channel of STA2.
  • the AP first performs backoff on the primary 20MHz channel.
  • the AP can determine that the primary 20MHz channel is busy, so the AP can switch to channel 13 for channel contention.
  • the AP may send data to STA2 on channel 13 and other idle sub-channels (eg, channel 14, channel 15, channel 16, and 802MHz segment 3 in FIG. 4).
  • the STA1 residing on the primary 20MHz channel and the STA2 residing on the temporary primary channel are not the same STA.
  • the primary channel is busy, although the AP can obtain additional transmission opportunities on the temporary primary channel, the data sent by the AP on the temporary primary channel cannot be used by STA1 residing on the primary channel. take over.
  • the AP also needs to wait for the main 20MHz channel to switch from the busy state to the idle state before continuing to contend for the channel, so as to send data to STA1 residing on the main 20MHz channel. Therefore, the related technical solutions cannot achieve the purpose of reducing the data transmission delay between the AP and the STA1 or increasing the data transmission throughput therebetween.
  • an embodiment of the present application provides a data transmission method, the specific idea of which is as follows: the first device and the second device perform data transmission (or perform backoff) on the main 20MHz channel; When conditions (eg, the primary 20MHz channel is in a busy state), both the first device and the second device switch from the primary 20MHz channel to the pre-negotiated first channel.
  • the above-mentioned first device and second device may be APs or STAs.
  • the first device and the second device need to wait until the main channel is switched from the busy state to the idle state before data transmission is possible.
  • the busy state other channels are used to transmit data, thereby effectively reducing the data transmission delay.
  • the embodiment of the present application provides a data transmission method, which can be applied to various communication systems, for example, a system using the IEEE 802.11 standard.
  • the IEEE 802.11 standard includes, but is not limited to, the 802.11be standard, or the next-generation 802.11 standard.
  • the applicable scenarios of the technical solution of the present application include: communication between AP and STA, communication between AP and AP, and communication between STA and STA.
  • FIG. 5 is a schematic diagram of a system architecture of a wireless local area network provided by an embodiment of the present application.
  • the wireless local area network may include one AP and one or more stations (such as STA1, STA2 and STA3 in FIG. 5).
  • the AP can access the Internet in a wired or wireless manner, the AP can be associated with multiple STAs, and the AP and the associated multiple STAs can perform uplink and downlink communications through the 802.11 protocol.
  • the 802.11 protocol may include IEEE 802.11be, and may also include IEEE 802.11ax, IEEE 802.11ac and other protocols.
  • the 802.11 protocol may also include a next-generation protocol of IEEE 802.11be, and the like.
  • the device implementing the method of the present application may be an AP or STA in a WLAN, or a chip or a processing system installed in the AP or STA.
  • An access point is a device with wireless communication functions, supports communication using the WLAN protocol, and has the function of communicating with other devices (such as stations or other access points) in the WLAN network. Can have the ability to communicate with other devices.
  • an access point may be referred to as an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The device with these chips or processing system installed can be controlled by the chip or the processing system.
  • the AP in this embodiment of the present application is a device that provides services for the STA, and can support the 802.11 series of protocols.
  • the AP can be a communication entity such as a communication server, router, switch, and bridge; the AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • the AP can also be the chips and processing devices in these various forms of equipment. system, so as to implement the methods and functions of the embodiments of the present application.
  • a station (eg STA1, STA2, STA2 in FIG. 5) is a device with wireless communication function, supports communication using WLAN protocol, and has the ability to communicate with other stations or access points in the WLAN network.
  • a station can be referred to as a non-access point station (non-access point station, non-AP STA).
  • STA is any user communication device that allows the user to communicate with the AP and then communicate with the WLAN.
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The devices on which these chips or processing systems are installed may implement the methods and functions of the embodiments of the present application under the control of the chips or processing systems.
  • the STA may be a tablet computer, a desktop computer, a laptop computer, a notebook computer, an Ultra-mobile Personal Computer (UMPC), a handheld computer, a netbook, a Personal Digital Assistant (PDA), a mobile phone, etc.
  • UMPC Ultra-mobile Personal Computer
  • PDA Personal Digital Assistant
  • the WLAN system can provide high-speed and low-latency transmission.
  • the WLAN system will be applied in more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry, or the Banking industry, used in corporate offices, stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • devices that support WLAN communication can be sensor nodes in smart cities (such as smart water meters, smart electricity meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, etc.) devices, display screens, TV sets, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart office (such as printers, projectors, Amplifiers, stereos, etc.), IoV devices in the Internet of Vehicles, infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.), and large-scale sports And equipment for music venues, etc.
  • the specific forms of the STA and the AP are not limited in the embodiments of the present application, which are only exemplary descriptions herein.
  • a data transmission method is provided in an embodiment of the present application, and the method includes the following steps:
  • the first device performs backoff on the primary 20MHz channel to perform data transmission with the second device.
  • the first device may be an AP or a STA.
  • the second device may be an AP or a STA.
  • the first device may configure the initial value of the backoff counter on the primary 20 MHz channel according to the contention window on the primary 20 MHz channel. And, whenever the primary 20MHz channel is in an idle state in one time slot, the first device may decrease the count value of the backoff counter on the primary 20MHz channel by 1. If the primary 20MHz channel becomes busy at a certain moment, the first device suspends the backoff; after that, the first device needs to wait for the idle time of the primary 20MHz channel to reach a preset inter-frame interval before continuing to back off.
  • the first device may determine a second channel on the primary channel between the first device and the second device to transmit data.
  • the second channel includes one or more sub-channels in the main channel that are in an idle state when the back-off counter decreases to 0.
  • the primary channel between the first device and the second device contains the primary 20MHz channel.
  • the primary channel may be a primary 20 MHz channel, a primary 40 MHz channel, a primary 80 MHz channel, or a primary 160 MHz channel, which is not limited in this embodiment of the present application.
  • the main channel may be punctured with a preamble, or may not be punctured with a preamble.
  • the primary channel between the first device and the second device may be determined through negotiation between the first device and the second device, or defined by a standard.
  • the first device can perform the following steps. S102.
  • the first device switches from the main 20MHz channel to the first channel.
  • the first channel is a channel preconfigured for communication between the first device and the second device.
  • the first channel does not include the main 20MHz channel.
  • the first device and the second device may negotiate with each other to determine the first channel; alternatively, the first device and the second device may determine the first channel according to the standard channel.
  • the first channel when the first channel is defined by a standard, the first channel may be one of the following situations: (1) the first channel is a secondary 20MHz channel; (2) the first channel is a 20MHz channel with the lowest frequency among the 80MHz channels ; (3) The first channel is the 80MHz channel, which is the 20MHz channel with the highest frequency in the 80MHz channel.
  • the above-mentioned 80MHz channel may be any 80MHz channel among the 320MHz channels.
  • the first channel is located within the bandwidth supported by the first device, and is also located within the bandwidth supported by the second device. In this way, both the first device and the second device can use the first channel, thereby ensuring that data transmission between the first device and the second device can be performed normally on the first channel.
  • first channel determined by the first device and the first channel determined by the second device are the same channel, so as to ensure that the first device and the second device can switch from the main 20MHz channel to the same channel, thereby ensuring the Data transmission is enabled on the first channel between a device and a second device.
  • This embodiment of the present application does not limit the bandwidth of the first channel, for example, the bandwidth of the first channel may be 20 MHz, 40 MHz, 80 MHz, or other types of bandwidths.
  • the first channel may use preamble puncture, or may not use preamble puncture.
  • the first preset condition at least includes: the primary 20 MHz channel is in a busy state.
  • the primary 20MHz channel is in a busy state, indicating that the primary channel including the first device and the second device cannot be used. Therefore, the first device can switch from the main 20MHz channel to the first channel to obtain an additional transmission opportunity to transmit data with the second device before the main 20MHz channel is idle, thereby reducing the delay of data transmission.
  • the main 20MHz channel is in a busy state, which may include at least one of the following situations:
  • the first device receives the first OBSS frame on the primary 20MHz channel.
  • the first device may determine whether the radio frame is an OBSS frame according to the SIG A field in the radio frame or the address field in the MAC frame header. For example, if the BSS color (color) in the HE SIG A field (or EHT SIG A) field in the radio frame is different from the BSS color to which the first device belongs, the first device may determine that the radio frame is an OBSS frame. For another example, if the BSSID in the MAC header in the radio frame is different from the BSSID of the BSS to which the first device belongs, the first device may determine that the radio frame is an OBSS frame.
  • the above content is only a brief introduction to the specific implementation manner of determining whether a radio frame is an OBSS frame by the first device, and the specific details may refer to the prior art.
  • the energy detection result of the first device on the main 20MHz channel is a busy state.
  • the first device performs energy detection on the primary 20MHz channel.
  • the energy detection threshold is set to -62dBm.
  • the first device determines that the value of the first NAV on the primary 20MHz channel is greater than 0.
  • the first device maintains two NAVs, such as a NAV of another cell, that is, a basic NAV (Basic NAV), and a NAV of this cell, that is, a NAV of this BSS (intra-BSS NAV), the above-mentioned first A NAV can be a Basic NAV.
  • the communication device can only maintain one NAV (whether it is a frame from this cell or other cells, the receiving address of which is not the communication device and the value of the duration field in the frame is greater than the current value of the NAV, the NAV is updated), then The above-mentioned first NAV is the NAV maintained by the communication device.
  • the above-mentioned first preset condition may further include: the target duration is greater than or equal to the first preset duration.
  • the first preset duration may be determined through negotiation between the first device and the second device, or defined in a standard.
  • the target duration may be the remaining transmission duration of the first OBSS frame, or the target duration may be the remaining timing duration of the first NAV on the primary 20MHz channel.
  • the target duration may be the remaining timing duration of the first NAV on the primary 20MHz channel.
  • the first device after switching to the first channel, the first device needs to perform channel competition before sending data.
  • the target duration is small (that is, the target duration is smaller than the first preset duration)
  • the first device has a higher probability to obtain a transmission opportunity on the first channel to transmit data. In this case, the first device switches from the main 20MHz channel to the first channel, which is beneficial to obtain additional transmission opportunities to reduce the data transmission delay.
  • the switching of the first device from the main 20MHz channel to the first channel can be specifically implemented as follows: the physical frame header synchronization module, the packet analysis module and other functional modules configured by the first device perform processing on the signals received on the first channel. deal with.
  • the process of switching the first device from the main 20MHz channel to the first channel is mainly a process of switching digital processing modules, and does not involve the frequency switching of radio frequency and analog devices. Therefore, the first device switches from the main 20MHz channel to the first channel.
  • the delay caused by the channel process is small and can usually be ignored.
  • the first preset condition at least includes that the primary 20MHz channel is in a busy state, under the condition that the preset condition is met, the first device and the second device cannot pass through the primary 20MHz channel. 20MHz channel for data transmission.
  • the first device switches from the main 20MHz channel to the first channel, and there is a certain probability that an additional transmission opportunity can be obtained before the main 20MHz channel switches from the busy state to the idle state, so as to be compatible with the The second device performs data transmission.
  • the first device and the second device need to wait for the main 20MHz channel to switch from the busy state to the idle state before data transmission can be performed.
  • the channel is in a busy state, there is a certain probability of data transmission, thereby reducing the data transmission delay between the first device and the second device, and improving the data throughput between the first device and the second device.
  • the data transmission method may further include step S103 after step S102 .
  • the data transmission method may further include step S104.
  • the first device performs backoff on the first channel.
  • the first channel may include one or more sub-channels.
  • the bandwidth of the sub-channel included in the first channel may be 20 MHz.
  • step S103 may adopt one of the following implementation manners:
  • Step S103 The first device performs backoff on each of the multiple subchannels.
  • the first device configures a backoff counter for the subchannel. It should be understood that the initial values of the backoff counters of different subchannels may be configured to be the same or different, which is not limited.
  • the advantages of the implementation mode 1 are that it has a high degree of flexibility, and can quickly obtain a transmission opportunity when the channel load is low, thereby increasing the probability of obtaining a transmission opportunity.
  • step S103 if the implementation mode 1 is adopted in step S103, the following operation 1 or operation 2 also needs to be performed in the process of performing the backoff by the first device.
  • the first device if the first device synchronizes to a physical frame header on any sub-channel in the first channel, the first device suspends the backoff of all sub-channels in the first channel, and determines the physical frame corresponding to the physical frame header Whether it is an OBSS frame. If the physical frame corresponding to the physical frame header is an OBSS frame, the first device continues to perform backoff on each subchannel in the first channel. If the physical frame corresponding to the physical frame header is not an OBSS frame, the first device continues to suspend the backoff of all sub-channels in the first channel until the transmission of the physical frame corresponding to the physical frame header is completed. Alternatively, if the physical frame corresponding to the physical frame header is not an OBSS frame, the first device continues to suspend the backoff of all subchannels in the first channel until the NAV set in the physical frame corresponding to the physical frame header is reduced to 0.
  • the physical frame corresponding to the physical frame header is not an OBSS frame, it means that the physical frame corresponding to the physical frame header is a frame of the BSS to which the first device belongs.
  • the NAV set in the physical frame corresponding to the physical frame header refers to the NAV set by the first device according to the duration field in the physical frame.
  • the above-mentioned first device continues to perform backoff on each sub-channel in the first channel, which specifically refers to: for each sub-channel, the first device determines whether to use the back-off counter corresponding to the sub-channel according to the busy or idle state of the sub-channel. The count value is decremented by 1. It should be understood that, for the sub-channel for transmitting the OBSS frame, the first device can detect that the sub-channel is in a busy state, so the first device suspends the counting of the back-off counter corresponding to the sub-channel.
  • the first device is configured with a physical frame header synchronization module on each sub-channel in the first channel.
  • operation 1 further requires the first device to be configured with at least one set of packet parsing modules.
  • the beneficial effect of operation 1 is that the synchronization starts from a physical frame header on any sub-channel in the first channel, and the backoff of all sub-channels is suspended to avoid the problem of causing the first device to generate transmission and reception conflicts.
  • Operation 2 The first device receives a physical frame on any subchannel in the first channel. If the first device determines that the physical frame is from the BSS to which the first device belongs, the first device suspends the backoff of all subchannels in the first channel until the transmission of the physical frame is completed. Alternatively, if the first device determines that the physical frame is from a BSS to which the first device belongs, the first device suspends the backoff of all subchannels in the first channel until the NAV set for the physical frame is reduced to 0.
  • the second operation requires that the first device is configured with a physical frame header synchronization module and a packet analysis module on each sub-channel in the first channel.
  • the beneficial effect of operation 2 is that: if the first device determines that the physical frame received on a certain subchannel is from the BSS to which the first device belongs, the first device suspends the backoff of all subchannels, thereby avoiding the process of receiving the physical frame. , a certain sub-channel backs off to 0, thereby helping to reduce the possibility of a conflict between sending and receiving by the first device.
  • Step S103 The first device performs backoff on one sub-channel among the multiple sub-channels.
  • the first device switches to another sub-channel among the multiple sub-channels to perform backoff according to a preset sequence.
  • implementation mode 2 The first device only needs to be configured with one set of packet parsing modules, and the requirements for device capabilities are low. (2) Switching to another sub-channel to perform backoff when one sub-channel is in a busy state is conducive to obtaining a transmission opportunity as soon as possible and improving the probability of obtaining a transmission opportunity.
  • step S103 The implementation mode 2 of step S103 is described by way of example, and it is assumed that the first channel configured between the first device and the second device includes sub-channel 1 to sub-channel 4.
  • the preset order is: sub-channel 4, sub-channel 2, sub-channel 3, sub-channel 1. Therefore, when the first preset condition is satisfied, the first device first switches from the main 20MHz channel to sub-channel 4, and performs backoff on sub-channel 4.
  • sub-channel 4 is busy
  • the first device switches from sub-channel 4 to sub-channel 2 to perform backoff
  • sub-channel 2 is busy
  • the first device switches from sub-channel 2 to sub-channel 3 to perform back-off.
  • sub-channel 3 When sub-channel 3 is in a busy state, the first device switches from sub-channel 3 to sub-channel 1 to perform backoff.
  • the above preset sequence may adopt any one of the following designs:
  • the preset order is an order in which multiple sub-channels are sorted by priority.
  • the priority of each subchannel may be determined through negotiation between the first device and the second device, or defined by a standard.
  • the preset order is an order in which multiple sub-channels are sorted from high to low in frequency.
  • the preset order may also be an order in which the multiple subchannels are sorted from low to high frequency.
  • the preset order may also be an order in which multiple sub-channels are sorted according to the channel load from low to high.
  • the preset order is the order generated by random sorting of multiple sub-channels.
  • Design 1 to Design 4 are only examples of the preset sequence, and the embodiments of the present application are not limited thereto.
  • first device and the second device use the same preset sequence to ensure that the first device and the second device can switch to the same channel as much as possible.
  • the sub-channel is in a busy state, including at least one of the following situations:
  • the first device receives the second OBSS frame on the subchannel.
  • Scenario 2-2 when the first device does not detect a radio frame, but the first device determines that the energy detection result on the subchannel is a busy state for a duration greater than or equal to the second preset duration.
  • the first device in the process of performing backoff on the subchannel, performs energy detection on the subchannel.
  • the energy detection value on the subchannel is greater than or equal to the energy detection threshold, the first device determines that the energy detection result on the subchannel is a busy state.
  • the energy detection value on the subchannel is less than the energy detection threshold, the first device determines that the energy detection result on the subchannel is an idle state.
  • the energy detection threshold is set to -62dBm , it may preempt the channel of the traditional site and affect the fairness.
  • the energy detection threshold of the subchannel is set to a value less than -62 dBm and greater than -82 dBm to ensure fairness.
  • the first device determines that the value of the second NAV on the subchannel is greater than 0.
  • the initial value of the backoff counter on the first channel may be set according to the following rules:
  • the first device sets the initial value of the backoff counter on the first channel (or a sub-channel in the first channel) according to the minimum contention window CW_min or the contention window of the main 20MHz channel.
  • the first device sets the first channel (or a sub-channel in the first channel) according to the count value of the backoff counter on the main 20MHz channel.
  • the initial value of the backoff counter on is the contention window on the first channel according to the contention window on the primary 20MHz channel.
  • the first device may set the initial value of the backoff counter on the first channel (or the subchannel in the first channel) to the count value of the backoff counter on the main 20MHz channel.
  • Rule 3 The first device sets the initial value of the backoff counter on the first channel (or a sub-channel in the first channel) according to the preset contention window.
  • the above-mentioned preset contention window may be defined in a communication standard, or may be defined by the first device.
  • the target subchannel is any subchannel in the first channel.
  • the first device may perform data transmission with the second device on the target subchannel.
  • the first device may perform data transmission on a third channel including the target subchannel.
  • the third channel may also include other sub-channels in the idle state in the first channel.
  • the first device and the second device may transmit data of any service type on the first channel.
  • the first device and the second device only transmit data of the target service type on the first channel, so as to ensure the data of the target service type. In this way, data of a non-target service type can be prevented from preempting the first channel, and the transmission delay of data of the target service type can be increased.
  • the data of the target service type may be determined through negotiation between the first device and the second device, or may be defined in a communication standard.
  • the first device obtains additional transmission opportunities by performing backoff on the first channel, thereby effectively reducing the transmission delay between the first device and the second device, and enabling Increase data transfer throughput between the first device and the second device.
  • the data transmission method may further include step S105 .
  • the first device switches from the first channel to the main 20MHz channel.
  • the second preset condition is: before the switching duration reaches the target duration, or when the switching duration reaches the target duration.
  • the first device may set a timer, and the timing duration of the timer is the target duration. Therefore, before the timer expires, the first device can determine whether to switch from the first channel to the main 20MHz channel according to the actual situation. When the timer is about to expire, the first device needs to switch from the first channel to the primary 20MHz channel.
  • the second preset condition is: the switching duration reaches the third preset duration.
  • the first device may set a timer, and the timing duration of the timer is the third preset duration. Therefore, before the timer expires, the first device does not perform the operation of switching from the first channel to the primary 20MHz channel.
  • the counting time of the timer reaches the third preset duration, the first device switches from the first channel to the main 20MHz channel.
  • the switching duration refers to the duration during which the first device switches from the primary 20MHz channel to the first channel. That is to say, the switching duration is the duration from the moment when the first device switches from the main 20MHz channel to the first channel to the current moment.
  • the third preset duration is less than or equal to the target duration.
  • the third preset duration may be determined through negotiation between the first device and the second device, and may be defined in a communication standard.
  • the target duration may be the remaining transmission duration of the first OBSS frame received by the first device on the primary 20MHz channel.
  • the target duration may be the remaining timing duration of the first NAV on the main 20MHz channel.
  • the switching of the first device from the first channel to the main 20MHz channel can be specifically implemented as follows: the physical frame header synchronization module, the packet analysis module and other functional modules configured by the first device are directed to receive data on the main 20MHz channel. signal is processed.
  • the first device can switch from the first channel to the primary channel according to the existing CCA rules continue to back off.
  • the primary 20MHz channel is already occupied, other sites usually do not send other physical frames, and the first device and the second device cannot continue to perform backoff on the primary 20MHz, so the first One device and the second device cannot transmit data on the main 20MHz. Therefore, during the period of receiving the first OBSS frame, the first device will not miss other physical frames and thus miss the opportunity to update the first NAV on the main 20MHz. Therefore, even if the first device continues to back off according to the existing CCA rules after switching from the first channel to the primary channel, it will not affect the transmission of other stations, resulting in a fairness problem.
  • the energy detection threshold is -62dBm.
  • the first device needs to perform blindness recovery (blindness recovery) on the primary 20MHz channel after switching from the first channel to the primary 20MHz channel operate.
  • the blind recovery operation may include: after the first device switches to the primary 20MHz channel, setting a fourth preset duration.
  • the energy detection threshold of the CCA is a value between -62dBm and -82dBm.
  • the first device needs to perform a request to send/clear to send (RTS/CTS) interaction after the backoff ends before data can be transmitted.
  • the fourth preset duration may be referred to as a NAVSyncDELAY period.
  • the fourth preset duration is a millisecond level duration, for example, 5 milliseconds.
  • the first device continues to back off according to the existing CCA rules after switching from the first channel to the primary 20MHz channel.
  • the first device may miss the update opportunity of the first NAV on the primary 20MHz channel within the remaining timing of the first NAV on the primary 20MHz channel, the probability of missing the update opportunity is small. Therefore, without missing the opportunity to update the first NAV of the primary 20MHz channel by default, after switching from the first channel to the primary 20MHz channel, the first device continues to back off according to the existing CCA rules, which is beneficial to the first device. Devices compete for the channel as soon as possible.
  • the first device switches from the first channel to the main 20MHz channel, so that the first device and the second device can operate on the main 20MHz channel transmit data on the channel.
  • the probability of the first device missing the NAV update opportunity on the primary 20MHz channel is small, so that the first device can back off on the primary 20MHz channel according to the existing CCA rules.
  • a data transmission method provided by an embodiment of the present application includes the following steps:
  • the second device performs backoff on the primary 20MHz channel to perform data transmission with the first device.
  • the second device switches from the primary 20MHz channel to the first channel.
  • steps S201-S202 are similar to S101-S102 in FIG. 6(a), and the specific details thereof can refer to the embodiment shown in FIG. 6(a), which will not be repeated here.
  • the first device implements the embodiment shown in FIG. 6( a ), and the second device implements the embodiment shown in FIG. 7( a ), so as to ensure that under the same conditions, the first device and the second device are connected from the main 20MHz channel.
  • the first device and the second device can obtain additional transmission opportunities on the first channel for data transmission, thereby reducing the data transmission delay caused by the busy main 20Mhz channel.
  • the data transmission method may further include step S203 after step S202 .
  • the data transmission method may further include step S204.
  • the second device performs backoff on the first channel.
  • steps S203 and S204 are similar to S103-S104 in FIG. 6(b), and the specific details thereof may refer to the embodiment shown in FIG. 6(b), which will not be repeated here.
  • the second device obtains additional transmission opportunities by performing backoff on the first channel, thereby effectively reducing the transmission delay between the first device and the second device.
  • the data transmission method may further include step S205 .
  • the second device switches from the first channel to the main 20MHz channel.
  • step S205 is similar to step S105 in FIG. 6( c ), and the specific details thereof may refer to the embodiment shown in FIG. 6( c ), which will not be repeated here.
  • the first device performs step S105 in FIG. 6(c), and the second device performs step S105 in FIG. 7(c), so as to ensure that the first device and the second device switch from the first channel to the main channel synchronously as much as possible.
  • 20MHz channel so that the first device and the second device can communicate on the main 20MHz channel.
  • FIG. 8(a), FIG. 8(b), FIG. 9(a), or FIG. 9(b) may be the same as the above-mentioned FIG. 6(a), FIG. (c), the embodiments shown in Fig. 7(a), Fig. 7(b), and Fig. 7(c) are used in combination with each other.
  • a data transmission method provided in an embodiment of the present application includes the following steps:
  • the first device generates first indication information.
  • the first indication information is carried in a management frame, a control frame or an action frame.
  • the first indication information may be carried in an existing frame or a newly added frame.
  • the first indication information is used to configure the first channel, which may adopt any one of the following designs:
  • the first indication information includes the index of the first channel.
  • the first indication information includes an index of each subchannel in the first channel.
  • the first indication information includes a bitmap, the bitmap includes a plurality of bits, and each bit corresponds to a 20MHz channel. For each bit in the bitmap, when the value of a bit is the first value, the 20MHz channel corresponding to the bit is a sub-channel in the first channel; when the value of a bit is the second value, The 20MHz channel corresponding to this bit is not a subchannel in the first channel.
  • the above-mentioned first value is 1, and the second value is 0.
  • the above-mentioned first numerical value is 0, and the second numerical value is 1. It should be understood that when the bitmap includes bits corresponding to the main 20MHz channel, the bits corresponding to the main 20MHz channel are set to the second value by default.
  • the first indication information is only applicable to the second device. Therefore, the first channel indicated by the first indication information is only a channel for communication between the first device and the second device.
  • the radio frame carrying the first indication information may also carry indication information for configuring a channel for communication between the first device and other devices.
  • the first indication information is applicable to multiple devices associated with the sender (ie, the first device). Therefore, the first channel indicated by the first indication information is not only a channel for communication between the first device and the second device, but also a channel for communication between the first device and other devices.
  • the first device may determine the position of the first channel in the frequency band according to the actual situation (for example, the load situation of each slave channel, etc.). After that, the first device generates first indication information according to the position of the first channel in the frequency band.
  • the first device sends the first indication information to the second device.
  • the second device receives the first indication information sent by the first device.
  • the second device may determine the first channel according to the first indication information.
  • the first device sends the first indication information to the second device, so that the first device and the second device can determine the same first channel.
  • a data transmission method provided by an embodiment of the present application includes the following steps:
  • the second device generates first indication information.
  • the second device sends first indication information to the first device.
  • the first device receives the second indication information sent by the second device.
  • the first device may determine the first channel according to the first indication information.
  • the second device sends the first indication information to the first device, so that the first device and the second device can determine the same first channel.
  • a data transmission method provided in an embodiment of the present application includes the following steps:
  • the first device sends first request information to the second device.
  • the second device receives the first request information sent by the first device.
  • the first request information may be carried in an association request frame, or a control type in the A-Control field, or a request frame of an independent frame type.
  • the first request information is used to request to negotiate the first channel.
  • the first request information does not indicate the suggested first channel.
  • the first request information is also used to indicate the suggested first channel.
  • the suggested first channel is the first channel suggested by the first device to be used by the second device, but not necessarily the first channel actually used.
  • the first request information is also used to indicate the suggested first channel, and any one of the following designs can be adopted:
  • the first request information includes the index of the suggested first channel.
  • the first request information includes an index of each sub-channel in the suggested first channel.
  • the first request information includes a bitmap, the bitmap includes a plurality of bits, and each bit corresponds to a 20MHz channel.
  • the bitmap includes a plurality of bits, and each bit corresponds to a 20MHz channel.
  • the 20MHz channel corresponding to the bit is a sub-channel in the proposed first channel; when the value of a bit is the second value , the 20MHz channel corresponding to this bit is not a subchannel in the proposed first channel.
  • the above-mentioned first value is 1, and the second value is 0.
  • the above-mentioned first numerical value is 0, and the second numerical value is 1. It should be understood that when the bitmap includes bits corresponding to the main 20MHz channel, the bits corresponding to the main 20MHz channel are set to the second value by default.
  • the second device sends first response information to the first device.
  • the first device receives the first response information sent by the second device.
  • the first response information is used to respond to the first request information.
  • the first response information may be carried in the associated response frame, or the control type in the A-Control field, or in the response frame of an independent frame type.
  • the first response information is used to determine the first channel.
  • the first response information is also used to configure the first channel.
  • the first indication information is also used to indicate the suggested first channel
  • the first response information is also used to indicate agreement to use the suggested first channel, or the first response information is also used to configure first channel.
  • the suggested first channel is the first channel actually used.
  • the first response information is also used to configure the first channel, and any one of the following designs can be adopted:
  • the first response information includes the index of the first channel.
  • the first response information includes an index of each subchannel in the first channel.
  • the first response information includes a bitmap, the bitmap includes a plurality of bits, and each bit corresponds to a 20MHz channel. For each bit in the bitmap, when the value of a bit is the first value, the 20MHz channel corresponding to the bit is a sub-channel in the first channel; when the value of a bit is the second value, The 20MHz channel corresponding to this bit is not a subchannel in the first channel.
  • the above-mentioned first value is 1, and the second value is 0.
  • the above-mentioned first numerical value is 0, and the second numerical value is 1. It should be understood that when the bitmap includes bits corresponding to the main 20MHz channel, the bits corresponding to the main 20MHz channel are set to the second value by default.
  • both the first device and the second device determine the first channel according to the first response information.
  • the first device and the second device can determine the same first channel based on the interaction process of the first request information and the first response information.
  • a data transmission method provided in an embodiment of the present application includes the following steps:
  • the second device sends first request information to the first device.
  • the first device receives the first request information sent by the second device.
  • the first device sends first response information to the second device.
  • the second device receives the first response information sent by the first device.
  • the first device and the second device can determine the same first channel based on the interaction process of the first request information and the first response information.
  • the embodiment of the present application defines the transmission mechanism introduced in the embodiments shown in FIG. 6(a) and FIG. 7(a) as the first transmission mechanism.
  • the first transmission mechanism is used for the first device and the second device to switch from the primary 20MHz channel to the first channel under the condition that the first preset condition is satisfied.
  • the first transmission mechanism may be enabled by default between the first device and the second device.
  • whether to enable the first transmission mechanism may be negotiated between the first device and the second device to improve flexibility and facilitate use in different application scenarios.
  • the first device and the second device may negotiate to disable the first transmission mechanism, thereby simplifying the related operations of the first device and the second device.
  • the first device does not execute the embodiment shown in FIG. 6( a ), and the second device does not execute the embodiment shown in FIG. 7( a ).
  • the first device may execute the embodiment shown in FIG. 6( a ), and the second device may execute the embodiment shown in FIG. 7( a ).
  • FIG. 10( a ) A possible example, as shown in FIG. 10( a ), is a data transmission method provided in an embodiment of the present application, and the method includes the following steps:
  • the first device generates second indication information.
  • the second indication information is used to indicate whether to enable the first transmission mechanism. Or, the second indication information is used to indicate whether to close the first transmission mechanism.
  • the second indication information may be carried in a management frame, a control frame or an A-control field.
  • the second indication information is information specially sent to the second device.
  • the second indication information is information broadcast to other devices associated with the first device. It should be understood that other devices associated with the first device include the second device.
  • the first device sends second indication information to the second device.
  • the second device receives the second indication information sent by the first device.
  • the second device determines whether to enable the first transmission mechanism according to the second indication information.
  • the second device determines to enable the first transmission mechanism.
  • the second device determines to close the first transmission mechanism.
  • the first device determines whether to enable the first transmission mechanism between the first device and the second device by sending the second indication information to the second device.
  • a data transmission method provided in this embodiment of the present application includes the following steps:
  • the second device generates second indication information.
  • the second indication information is used to indicate whether to enable the first transmission mechanism. Or, the second indication information is used to indicate whether to close the first transmission mechanism.
  • the second indication information may be carried in a management frame, a control frame or an A-control field.
  • the second indication information is information specially sent to the first device.
  • the second indication information is information broadcast to other devices associated with the second device. It should be understood that other devices associated with the second device include the first device.
  • the second device sends second indication information to the first device.
  • the first device receives the second indication information sent by the second device.
  • the first device determines, according to the second indication information, whether to enable the first transmission mechanism.
  • the first device determines to enable the first transmission mechanism.
  • the second indication information is used to instruct to close the first transmission mechanism.
  • the second device determines whether to enable the first transmission mechanism between the first device and the second device by sending the second indication information to the first device.
  • a data transmission method provided by an embodiment of the present application includes the following steps:
  • the first device sends second request information to the second device.
  • the second device receives the second request information sent by the first device.
  • the second request information is used to request to enable the first transmission mechanism. Or, the second request information is used to request to close the first transmission mechanism.
  • the second request information may be carried in a management frame, a control frame or an A-control field.
  • the second device sends second response information to the first device.
  • the first device receives the second response information sent by the second device.
  • the second response information is used to respond to the second request information.
  • the second response information may be carried in a management frame, a control frame or an A-control field.
  • the second response information is used to indicate approval/rejection to enable the first transmission mechanism.
  • the first transmission mechanism when the second response information is used to indicate agreement to enable the first transmission mechanism, the first transmission mechanism is enabled between the first device and the second device.
  • the second response information when the second response information is used to indicate refusal to enable the first transmission mechanism, the first transmission mechanism is closed between the first device and the second device.
  • the second response information is used to indicate approval/rejection of closing the first transmission mechanism.
  • the first transmission mechanism is closed between the first device and the second device.
  • the second response information is used to indicate that the first transmission mechanism is refused to be closed, the first transmission mechanism is enabled between the first device and the second device.
  • the second device and the first device negotiate to determine whether to enable the first transmission mechanism through the interaction of the second request information and the second response information.
  • a data transmission method provided by an embodiment of the present application includes the following steps:
  • the second device sends second request information to the first device.
  • the first device receives the second request information sent by the second device.
  • the first device sends second response information to the second device.
  • the second device receives the second response information sent by the first device.
  • the second device and the first device negotiate to determine whether to enable the first transmission mechanism through the interaction of the second request information and the second response information.
  • Figure 12 (a), Figure 12 (b), Figure 13 (a), or Figure 13 (b) may be the same as the above-mentioned Figure 6 (a), Figure 6 (b), Figure 6 (c), the embodiments shown in Fig. 7(a), Fig. 7(b), and Fig. 7(c) are used in combination with each other.
  • a data transmission method provided by an embodiment of the present application includes the following steps:
  • the first device generates third indication information.
  • the third indication information is used to indicate the service type of the data transmitted on the first channel.
  • the third indication information may include identifiers of one or more service types. Therefore, the identifier of the service type included in the third indication information is used to determine the service type of the data allowed to be transmitted on the first channel.
  • the identifier of the service type may be an access category (access category, AC) or a service identifier (traffic identifier, TID).
  • the types of ACs can be as shown in Table 1.
  • the third indication information may be used to indicate that data corresponding to AC_VO and/or AC_VI is transmitted on the first channel.
  • the third indication information may be carried in a management frame, a control frame, or an A-control field.
  • the first device sends third indication information to the second device.
  • the second device receives the first indication information sent by the first device.
  • the second device determines, according to the third indication information, the service type of the data transmitted on the first channel.
  • the second device may determine, according to the third indication information sent by the first device, the service types of data allowed on the first channel, so as to reduce the transmission of data of these service types time delay.
  • a data transmission method provided in this embodiment of the present application includes the following steps:
  • the second device generates third indication information.
  • the second device sends third indication information to the first device.
  • the first device receives the first indication information sent by the second device.
  • the first device determines, according to the third indication information, the service type of the data transmitted on the first channel.
  • the first device can determine the service types of data allowed on the first channel according to the third indication information sent by the first device, so as to reduce the transmission of data of these service types time delay.
  • a data transmission method provided by an embodiment of the present application includes the following steps:
  • the first device sends third request information to the second device.
  • the second device receives the third request information sent by the first device.
  • the third request information is used for requesting to negotiate the service type of the data transmitted on the first channel.
  • the third request information includes one or more identifiers of suggested service types.
  • the third request information does not include the identification of one or more suggested service types.
  • the third request information is carried in a management frame, a control frame, or an A-control field.
  • the second device sends third response information to the first device.
  • the first device receives the third response information sent by the second device.
  • the third response information is used to respond to the third request information.
  • the third response information is used to determine the service type of the data transmitted on the first channel.
  • the third response information includes one or more identifications of the service type of the data transmitted on the first channel.
  • the third response information when the third request information includes an identifier of one or more suggested service types, is used to indicate that the one or more suggested service types are allowed to be transmitted on the first channel. data of the service type; or, the third response information includes one or more identifiers of the service type of the data transmitted on the first channel.
  • the first device and the second device determine the service type of the data transmitted on the first channel based on the third response information.
  • the first device and the second device can determine the type of services allowed to transmit data on the first channel based on the interaction of the third request information and the third response information, so as to reduce these services The transmission delay of the type of data.
  • a data transmission method provided by an embodiment of the present application includes the following steps:
  • the second device sends third request information to the first device.
  • the first device receives the third request information sent by the second device.
  • the first device sends third response information to the second device.
  • the second device receives the third response information sent by the first device.
  • the first device and the second device can determine the service types of the data that are allowed to be transmitted on the first channel based on the interaction of the third request information and the third response information, so as to reduce these services The transmission delay of the type of data.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one functional module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following is an example of dividing each function module corresponding to each function to illustrate:
  • a communication device provided by an embodiment of the present application includes: a backoff module 101 , a switching module 102 , and a communication module 103 .
  • the backoff module 101 is configured to perform step S101 in FIG. 6( a ) and step S103 in FIG. 6( b ).
  • the switching module 102 is configured to execute step S102 in FIG. 6( a ) and step S105 in FIG. 6( c ).
  • the communication module 103 is used to perform step S104 in FIG. 6(b), step S302 in FIG. 8(a), step S402 in FIG. 8(b), steps S501-S502 in FIG. 9(a), and steps S501-S502 in FIG.
  • the backoff module 101 is configured to perform step S201 in FIG. 7( a ) and step S203 in FIG. 7( b ).
  • the switching module 102 is configured to execute step S202 in FIG. 7( a ) and step S205 in FIG. 7( c ).
  • the communication module 103 is used to perform step S204 in FIG. 7(b), step S302 in FIG. 8(a), step S402 in FIG. 8(b), steps S501-S502 in FIG. 9(a), and step S502 in FIG.
  • the aforementioned backoff module 101 and the switching module 102 may be integrated into a processing module.
  • FIG. 15 is a structural diagram of a possible product form of the communication device according to the embodiment of the present application.
  • the communication apparatus described in this embodiment of the present application may be the above-mentioned first device, where the first device includes a processor 201 and a transceiver 202 .
  • the communication device further includes a storage medium 203 .
  • the processor 201 is configured to execute step S101 in Fig. 6(a), step S103 in Fig. 6(b), step S102 in Fig. 6(a), and step S105 in Fig. 6(c).
  • the transceiver 202 is configured to perform step S104 in FIG. 6(b), step S302 in FIG. 8(a), step S402 in FIG. 8(b), steps S501-S502 in FIG. 9(a), and FIG. 9 Steps S601-S602 in (b), Step S702 in Figure 10(a), Step S802 in Figure 10(b), Steps S901-S902 in Figure 11(a), Steps in Figure 11(b) S1001-S1002, step S1102 in Fig. 12(a), step S1202 in Fig. 12(b), steps S1301-S1302 in Fig. 13(a), steps S1401-S1402 in Fig. 13(b).
  • the communication apparatus described in this embodiment of the present application may be the above-mentioned second device, where the second device includes a processor 201 and a transceiver 202 .
  • the communication device further includes a storage medium 203 .
  • the processor 201 is configured to execute step S201 in FIG. 7( a ), step S203 in FIG. 7( b ), step S202 in FIG. 7( a ), and step S205 in FIG. 7( c ).
  • the transceiver 202 is configured to perform step S204 in FIG. 7(b), step S302 in FIG. 8(a), step S402 in FIG. 8(b), steps S501-S502 in FIG. 9(a), and FIG. 9 Steps S601-S602 in (b), Step S702 in Figure 10(a), Step S802 in Figure 10(b), Steps S901-S902 in Figure 11(a), Steps in Figure 11(b) S1001-S1002, step S1102 in Fig. 12(a), step S1202 in Fig. 12(b), steps S1301-S1302 in Fig. 13(a), steps S1401-S1402 in Fig. 13(b).
  • the communication device described in the embodiments of the present application may also be implemented by a chip.
  • the chip includes: a processing circuit 201 and a transceiver pin 202 .
  • the chip may further include a storage medium 203 .
  • the communication apparatus described in the embodiments of the present application may also be implemented by using the following circuits or devices: one or more field programmable gate arrays (FPGA), programmable logic A programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic A programmable logic device
  • state machine gate logic
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and when the computer instructions are executed on a computer, causes the computer to execute the communication methods in the foregoing method embodiments. .
  • the embodiments of the present application further provide a computer program product including computer instructions, when the computer instructions are executed on the computer, the computer can execute the communication method in the foregoing method embodiments.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server Or the data center transmits to another website site, computer, server or data center by wired (eg coaxial cable, optical fiber, digital subscriber line) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media, or semiconductor media (eg, solid state drives), and the like.
  • the apparatuses and methods disclosed in the several embodiments provided in this application may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another device, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, which are stored in a storage medium , including several instructions to make a device (may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置,涉及无线通信技术领域(例如WLAN),用于降低两个设备之间的数据传输时延或者提高数据传输吞吐量。该数据传输方法包括以下步骤:第一设备在主20MHz信道上执行退避,以便于第二设备进行数据传输;当满足第一预设条件时,第一设备从主20MHz信道切换到第一信道,第一信道是预配置给第一设备与第二设备之间通信的信道,第一信道不包括主20MHz信道。第一预设条件至少包括:主20MHz信道处于繁忙状态。本申请适用于两个设备的通信过程中。

Description

数据传输方法及装置
本申请要求于2020年10月19日提交国家知识产权局、申请号为202011120199.3、申请名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及数据传输方法及装置。
背景技术
电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11是当前主流的无线接入标准之一,获得了极其广泛的应用。IEEE 802.11a标准只支持20MHz带宽,但是在后续标准演进过程中带宽不断增大,例如802.11n标准中最大支持40MHz带宽,802.11ac/ax标准中最大支持160(80+80)MHz带宽。为了保证标准演进过程中的后向兼容性,无论带宽多大,都有一个唯一的主20MHz的信道。在设备使用任何带宽发送数据时都必须包括该主20MHz的信道。这样导致的一个问题:当这个唯一的主20MHz信道繁忙时,其它所有空闲的从信道(或称为次信道)都无法使用,从而导致系统效率降低。
目前,最新一代Wi-Fi标准(即802.11be标准)支持的最大带宽为320MHz。802.11be标准中为了充分利用信道,在接入点(access point,AP)支持大带宽(比如320MHz)的情况下,允许将一部分仅支持小带宽(比如仅支持80MHz)的站点(station,STA)调度到从信道上进行数据传输,从而避免所有支持小带宽的STA都聚集在主信道上,而很少或者没有STA能够在从信道上进行数据传输。一种典型的从信道上传输方法是:将每个仅支持80MHz的STA调度到320MHz信道中的某个从80MHz信道上驻留;当STA驻留在主80MHz信道外的其他任一从80MHz信道时,STA的上行数据只能由AP通过触发帧进行调度,STA不能主动进行信道竞争并发送上行数据。否则,多个从80MHz信道上的数据的发送结束时刻可能不相同,导致AP不能进行正确的解析。
上述方案虽然可以使得AP在非主信道上获得额外的传输机会,但是并不能降低AP与同一个STA之间的数据传输时延,或者不能增加AP与同一个STA之间的数据传输吞吐量。
发明内容
本申请提供一种数据传输方法及装置,用于降低两个设备之间的数据传输时延,以及增加两个设备之间的数据传输吞吐量。
第一方面,提供一种数据传输方法,包括:第一设备在主20MHz信道上执行退避,以与第二设备进行数据传输;当满足第一预设条件时,第一设备从主20MHz信道切换到第一信道,第一信道是预配置给第一设备与第二设备之间通信的信道,第一信道不包括主20MHz信道,第一预设条件至少包括:主20MHz信道处于繁忙状态。
基于上述技术方案,由于第一预设条件至少包括主20MHz信道处于繁忙状态,因此在满足预设条件的情况下,第一设备与第二设备之间并不能通过主20MHz信道进行数据传输。而在满足第一预设条件的情况下,第一设备从主20MHz信道切换到第一信道,在 主20MHz信道从繁忙状态切换到空闲状态之前有一定概率能够获取到额外的传输机会,从而与第二设备进行数据传输。相比于现有技术中第一设备与第二设备之间需要等待主20MHz信道从繁忙状态切换到空闲状态之后才能进行数据传输,本申请实施例能够使得第一设备与第二设备在主20MHz信道处于繁忙状态的情况下有一定概率进行数据传输,从而有概率降低第一设备与第二设备之间的数据传输时延,并且能够提高第一设备和第二设备之间的数据吞吐量。
一种可能的设计中,主20MHz信道处于繁忙状态,包括以下情形至少一个:第一设备在主20MHz信道上接收到第一重叠基本服务集(overlapped BSS,OBSS)帧;或者,第一设备确定在主20MHz信道上的能量检测结果为繁忙状态;或者,第一设备确定在主20MHz信道上的第一网络分配矢量(network allocation vector,NAV)的值大于0。
一种可能的设计中,第一预设条件还包括:目标时长大于或等于第一预设时长;其中,目标时长为第一设备在主20MHz信道上接收到的第一OBSS帧的剩余传输时长,或者,目标时长为主20MHz信道上的第一NAV的剩余计时时长。这样一来,降低第一设备进行不必要的信道切换操作的概率。
一种可能的设计中,该方法还包括:第一设备在第一信道上执行退避;在第一信道退避到0后,第一设备在第一信道上与第二设备进行数据传输。
一种可能的设计中,当第一信道包括多个子信道时,第一设备在第一信道上执行退避,包括:第一设备在多个子信道中的每一个子信道上执行退避。这样一来,有利于尽快竞争到信道,从而减少数据传输时延。
一种可能的设计中,该方法还包括:若第一设备在第一信道中的任意一个子信道同步到一个物理帧头,则第一设备暂停第一信道中所有子信道的退避,并判断物理帧头对应的物理帧是否是OBSS帧;若物理帧头对应的物理帧是OBSS帧,则第一设备继续在第一信道中的每一个子信道上执行退避;或者,若物理帧头对应的物理帧不是OBSS帧,则第一设备继续暂停第一信道中所有子信道的退避,直至物理帧头对应的物理帧传输完毕;或者,若物理帧头对应的物理帧不是OBSS帧,则第一设备继续暂停第一信道中所有子信道的退避,直至以物理帧头对应的物理帧设置的NAV减少到0。这样一来,避免第一设备发生收发冲突的问题。
一种可能的设计中,该方法还包括:第一设备在第一信道中的任意一个子信道上接收到一个物理帧;若第一设备确定物理帧来自第一设备所属BSS,则第一设备暂停第一信道中所有子信道的退避,直至物理帧传输完毕;或者,若第一设备确定物理帧来自第一设备所属BSS,则第一设备暂停第一信道中所有子信道的退避,直至以物理帧设置的NAV减少到0。这样一来,降低第一设备发生收发冲突的概率。
一种可能的设计中,当第一信道包括多个子信道时,第一设备在第一信道上执行退避,包括:第一设备在多个子信道中的一个子信道上执行退避;当子信道处于繁忙状态时,第一设备按照预设顺序,切换至多个子信道中的另一个子信道上执行退避。这样一来,提高第一设备执行退避的灵活度,避免第一设备因为一个子信道长期处于繁忙状态,而不能竞争到信道。
一种可能的设计中,子信道处于繁忙状态,包括以下情形至少一个:第一设备在子信道上接收到第二OBSS帧;或者,第一设备没有检测到无线帧,但是第一设备确定子信道 上的能量检测结果为繁忙状态的持续时间大于或等于第二预设时长;或者,第一设备确定子信道上的第二NAV的值大于0。
一种可能的设计中,该方法还包括:第一设备在子信道上进行能量检测;当子信道上的能量检测值大于或等于能量检测门限时,第一设备确定子信道上的能量检测结果为繁忙状态;或者,当子信道上的能量检测值小于能量检测门限时,第一设备确定子信道上的能量检测结果为空闲状态;其中,子信道的能量检测门限设置为小于-62dBm并且大于-82dBm的数值。这样一来,有利于保证第一设备与其他设备之间竞争信道的公平性,避免第一设备抢占其他设备竞争到的信道,从而影响其他设备的正常传输。
一种可能的设计中,该方法还包括:在第一设备从主20MHz信道切换到第一信道的时长达到目标时长之前,第一设备从第一信道切换到主20MHz信道;其中,目标时长为第一设备在主20MHz信道上接收到的第一OBSS帧的剩余传输时长,或者,目标时长为主20MHz信道上的第一NAV的剩余计时时长。这样一来,降低第一设备错失主20MHz信道上的第一NAV的更新机会。
一种可能的设计中,该方法还包括:若目标时长为主20MHz信道上的第一NAV的剩余计时时长,则第一设备在主20MHz信道上执行盲恢复操作。这样一来,有利于保证第一设备与其他设备之间竞争信道的公平性,避免第一设备抢占其他设备竞争到的信道,从而影响其他设备的正常传输。
一种可能的设计中,该方法还包括:第一设备接收第二设备发送的第一指示信息;或者,第一设备向第二设备发送第一指示信息;其中,第一指示信息用于配置第一信道。基于该设计,第一设备和第二设备之间可以确定相同的第一信道。
一种可能的设计中,该方法还包括:第一设备向第二设备发送第一请求信息,第一请求信息用于请求协商第一信道;第一设备接收第二设备发送的第一响应信息,第一响应信息用于响应第一请求信息,第一响应信息用于确定第一信道。基于该设计,第一设备和第二设备之间可以确定相同的第一信道。
一种可能的设计中,该方法还包括:第一设备接收第二设备发送的第一请求信息,第一请求信息用于请求协商第一信道;第一设备向第二设备发送第一响应信息,第一响应信息用于响应第一请求信息,第一响应信息用于确定第一信道。基于该设计,第一设备和第二设备之间可以确定相同的第一信道。
一种可能的设计中,第一信道为以下情形之一:第一信道为次20MHz信道;或者,第一信道为80MHz信道中频率最低的20MHz信道;或者,第一信道为80MHz信道中频率最高的20MHz信道。
一种可能的设计中,该方法还包括:第一设备接收第二设备发送的第二指示信息;或者,第一设备向第二设备发送第二指示信息;其中,第二指示信息用于指示是否开启第一传输机制,第一传输机制用于第一设备与第二设备在满足第一预设条件的情况下从主20MHz信道切换到信道。基于该设计,第一设备和第二设备之间可以灵活地开启或关闭第一传输机制,以使得第一传输机制应用在合适的场景下。
一种可能的设计中,该方法还包括:第一设备向第二设备发送第二请求信息;第一设备接收第二设备发送的第二响应信息;其中,第二请求信息用于请求开启第一传输机制,第二响应信息用于表示同意或者拒绝开启第一传输机制,第一传输机制用于第一设备与第 二设备在满足第一预设条件的情况下从主20MHz信道切换到信道;或者,第二请求信息用于请求关闭第一传输机制,第二响应信息用于表示同意或者拒绝关闭第一传输机制。基于该设计,第一设备和第二设备之间可以灵活地开启或关闭第一传输机制,以使得第一传输机制应用在合适的场景下。
一种可能的设计中,方法还包括:第一设备接收第二设备发送的第二请求信息;第一设备向第二设备发送第二响应信息;其中,第二请求信息用于请求开启第一传输机制,第二响应信息用于表示同意或者拒绝开启第一传输机制,第一传输机制用于第一设备与第二设备在满足第一预设条件的情况下从主20MHz信道切换到信道;或者,第二请求信息用于请求关闭第一传输机制,第二响应信息用于表示同意或者拒绝关闭第一传输机制。基于该设计,第一设备和第二设备之间可以灵活地开启或关闭第一传输机制,以使得第一传输机制应用在合适的场景下。
一种可能的设计中,方法还包括:第一设备接收第二设备发送的第三指示信息;或者,第一设备向第二设备发送第三指示信息;其中,第三指示信息用于指示第一信道上传输的数据的业务类型。基于该设计,第一设备和第二设备之间可以确定在第一信道上传输的数据的业务类型,从而有利于降低该业务类型的数据的传输时延。
一种可能的设计中,方法还包括:第一设备向第二设备发送第三请求信息,第三请求信息用于请求协商第一信道上传输的数据的业务类型;第一设备接收第二设备发送的第三响应信息,第三响应信息用于响应第三请求信息,第三响应信息用于确定第一信道上传输的数据的业务类型。基于该设计,第一设备和第二设备之间可以确定在第一信道上传输的数据的业务类型,从而有利于降低该业务类型的数据的传输时延。
一种可能的设计中,方法还包括:第一设备接收第二设备发送的第三请求信息,第三请求信息用于请求协商第一信道上传输的数据的业务类型;第一设备向第二设备发送第三响应信息,第三响应信息用于响应第三请求信息,第三响应信息用于确定第一信道上传输的数据的业务类型。基于该设计,第一设备和第二设备之间可以确定在第一信道上传输的数据的业务类型,从而有利于降低该业务类型的数据的传输时延。
第二方面,提供一种通信装置,包括:退避模块和切换模块。其中,退避模块用于在主20MHz信道上执行退避,以与第二设备进行数据传输。切换模块,用于当满足第一预设条件时,从主20MHz信道切换到第一信道,第一信道是预配置给通信装置与第二设备之间通信的信道,第一信道不包括主20MHz信道,第一预设条件至少包括:主20MHz信道处于繁忙状态。
一种可能的设计中,主20MHz信道处于繁忙状态,包括以下情形至少一个:第一设备在主20MHz信道上接收到第一OBSS帧;或者,第一设备确定在主20MHz信道上的能量检测结果为繁忙状态;或者,第一设备确定在主20MHz信道上的第一NAV的值大于0。
一种可能的设计中,第一预设条件还包括:目标时长大于或等于第一预设时长;其中,目标时长为第一设备在主20MHz信道上接收到的第一OBSS帧的剩余传输时长,或者,目标时长为主20MHz信道上的第一NAV的剩余计时时长。
一种可能的设计中,该通信装置还包括通信模块。其中,退避模块,还用于在第一信道上执行退避。通信模块,用于在第一信道退避到0后,在第一信道上与第二设备进行数据传输。
一种可能的设计中,退避模块,具体用于当第一信道包括多个子信道时,在多个子信道中的每一个子信道上执行退避。
一种可能的设计中,退避模块,还用于若在第一信道中的任意一个子信道同步到一个物理帧头,则暂停第一信道中所有子信道的退避,并判断物理帧头对应的物理帧是否是OBSS帧;若物理帧头对应的物理帧是OBSS帧,则继续在第一信道中的每一个子信道上执行退避;或者,若物理帧头对应的物理帧不是OBSS帧,则继续暂停第一信道中所有子信道的退避,直至物理帧头对应的物理帧传输完毕;或者,若物理帧头对应的物理帧不是OBSS帧,则继续暂停第一信道中所有子信道的退避,直至以物理帧头对应的物理帧设置的NAV减少到0。
一种可能的设计中,退避模块,还用于当在第一信道中的任意一个子信道上接收到一个物理帧时,若确定物理帧来自第一设备所属BSS,则暂停第一信道中所有子信道的退避,直至物理帧传输完毕;或者,若确定物理帧来自第一设备所属BSS,则暂停第一信道中所有子信道的退避,直至以物理帧设置的NAV减少到0。
一种可能的设计中,退避模块,具体用于当第一信道包括多个子信道时,在多个子信道中的一个子信道上执行退避;当子信道处于繁忙状态时,按照预设顺序,切换至多个子信道中的另一个子信道上执行退避。
一种可能的设计中,子信道处于繁忙状态,包括以下情形至少一个:第一设备在子信道上接收到第二OBSS帧;或者,第一设备没有检测到无线帧,但是第一设备确定子信道上的能量检测结果为繁忙状态的持续时间大于或等于第二预设时长;或者,第一设备确定子信道上的第二NAV的值大于0。
一种可能的设计中,退避模块,还用于在子信道上进行能量检测;当子信道上的能量检测值大于或等于能量检测门限时,确定子信道上的能量检测结果为繁忙状态;或者,当子信道上的能量检测值小于能量检测门限时,确定子信道上的能量检测结果为空闲状态;其中,子信道的能量检测门限设置为小于-62dBm并且大于-82dBm的数值。
一种可能的设计中,切换模块,还用于在第一设备从主20MHz信道切换到第一信道的时长达到目标时长之前,从第一信道切换到主20MHz信道;其中,目标时长为第一设备在主20MHz信道上接收到的第一OBSS帧的剩余传输时长,或者,目标时长为主20MHz信道上的第一NAV的剩余计时时长。
一种可能的设计中,退避模块,还用于若目标时长为主20MHz信道上的第一NAV的剩余计时时长,则在主20MHz信道上执行盲恢复操作。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,用于接收第二设备发送的第一指示信息;或者,向第二设备发送第一指示信息;其中,第一指示信息用于配置第一信道。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,用于向第二设备发送第一请求信息,第一请求信息用于请求协商第一信道;接收第二设备发送的第一响应信息,第一响应信息用于响应第一请求信息,第一响应信息用于确定第一信道。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,接收第二设备发送的第一请求信息,第一请求信息用于请求协商第一信道;向第二设备发送第一响应信息,第一响应信息用于响应第一请求信息,第一响应信息用于确定第一信道。
一种可能的设计中,第一信道为以下情形之一:第一信道为次20MHz信道;或者,第一信道为80MHz信道中频率最低的20MHz信道;或者,第一信道为80MHz信道中频率最高的20MHz信道。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,用于接收第二设备发送的第二指示信息;或者,向第二设备发送第二指示信息;其中,第二指示信息用于指示是否开启第一传输机制,第一传输机制用于通信装置与第二设备在满足第一预设条件的情况下从主20MHz信道切换到信道。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,用于向第二设备发送第二请求信息;接收第二设备发送的第二响应信息;其中,第二请求信息用于请求开启第一传输机制,第二响应信息用于表示同意或者拒绝开启第一传输机制,第一传输机制用于通信装置与第二设备在满足第一预设条件的情况下从主20MHz信道切换到信道;或者,第二请求信息用于请求关闭第一传输机制,第二响应信息用于表示同意或者拒绝关闭第一传输机制。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,用于接收第二设备发送的第二请求信息;向第二设备发送第二响应信息;其中,第二请求信息用于请求开启第一传输机制,第二响应信息用于表示同意或者拒绝开启第一传输机制,第一传输机制用于通信装置与第二设备在满足第一预设条件的情况下从主20MHz信道切换到信道;或者,第二请求信息用于请求关闭第一传输机制,第二响应信息用于表示同意或者拒绝关闭第一传输机制。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,用于接收第二设备发送的第三指示信息;或者,向第二设备发送第三指示信息;其中,第三指示信息用于指示第一信道上传输的数据的业务类型。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,用于向第二设备发送第三请求信息,第三请求信息用于请求协商第一信道上传输的数据的业务类型;接收第二设备发送的第三响应信息,第三响应信息用于响应第三请求信息,第三响应信息用于确定第一信道上传输的数据的业务类型。
一种可能的设计中,该通信装置还包括通信模块。其中,通信模块,用于接收第二设备发送的第三请求信息,第三请求信息用于请求协商第一信道上传输的数据的业务类型;向第二设备发送第三响应信息,第三响应信息用于响应第三请求信息,第三响应信息用于确定第一信道上传输的数据的业务类型。
第三方面,提供一种通信装置,所述通信装置包括处理器和收发器,处理器和收发器用于实现上述第一方面中任一设计提供的方法。其中,处理器用于执行相应方法中的处理动作,收发器用于执行相应方法中的接收/发送的动作。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行第一方面中任一设计提供的方法。
第五方面,提供一种包含计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行第一方面中任一设计提供的方法。
第六方面,提供一种芯片,包括:处理电路和收发管脚,处理电路和收发管脚用于实现上述第一方面中任一设计提供的方法。其中,处理电路用于执行相应方法中的处理动作, 收发管脚用于执行相应方法中的接收/发送的动作。
需要说明的是,上述第二方面至第六方面中任一种设计所带来的技术效果可以参见第一方面中对应设计所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的320MHz信道的一种信道划分示意图;
图2是本申请实施例提供的320MHz信道的另一种信道划分示意图;
图3为本申请实施例提供的一种退避流程的示意图;
图4为本申请实施例提供的一种临时主信道上信道竞争的示意图;
图5为本申请实施例提供的一种无线局域网的系统架构示意图;
图6(a)为本申请实施例提供的一种数据传输方法的流程图;
图6(b)为本申请实施例提供的另一种数据传输方法的流程图;
图6(c)为本申请实施例提供的另一种数据传输方法的流程图;
图7(a)为本申请实施例提供的一种数据传输方法的流程图;
图7(b)为本申请实施例提供的另一种数据传输方法的流程图;
图7(c)为本申请实施例提供的另一种数据传输方法的流程图;
图8(a)为本申请实施例提供的另一种数据传输方法的流程图;
图8(b)为本申请实施例提供的另一种数据传输方法的流程图;
图9(a)为本申请实施例提供的另一种数据传输方法的流程图;
图9(b)为本申请实施例提供的另一种数据传输方法的流程图;
图10(a)为本申请实施例提供的另一种数据传输方法的流程图;
图10(b)为本申请实施例提供的另一种数据传输方法的流程图;
图11(a)为本申请实施例提供的另一种数据传输方法的流程图;
图11(b)为本申请实施例提供的另一种数据传输方法的流程图;
图12(a)为本申请实施例提供的另一种数据传输方法的流程图;
图12(b)为本申请实施例提供的另一种数据传输方法的流程图;
图13(a)为本申请实施例提供的另一种数据传输方法的流程图;
图13(b)为本申请实施例提供的另一种数据传输方法的流程图;
图14为本申请实施例提供的一种通信装置的结构示意图;
图15为本申请实施例提供的一种通信装置的硬件结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
可理解的,本申请提及的“数据传输”和“传输数据”泛指通信。其中,“数据”泛指通信的信息,并不局限于数据信息,还可以是信令信息等。“传输”泛指发送和接收。
下面先对本申请实施例所涉及的技术术语进行简单介绍,以便于理解本申请的技术方案。
1、BSS
BSS用于描述无线局域网(wireless local area networks,WLAN)中一组能够相互通信的设备。WLAN中可以包括多个BSS。每一个BSS具有唯一的标识,称为基本服务集标识符(BSSID)。可选的,一个BSS可以包含一个AP和多个关联该AP的STA。
2、传输机会(transmission opportunity,TXOP)
TXOP是无线信道接入的基本单元。TXOP由初始时间和最大持续时间(TXOP limit)组成。获得TXOP的站点在TXOP limit时间内可以不再重新竞争信道、连续使用信道传输多个数据帧。
TXOP可以经由竞争或者混合协调器(hybrid coordinator,HC)分配两种方式获得。其中,经由竞争获得的TXOP可以被称为增强的分布式信道访问(enhanced distributed channel access,EDCA)TXOP。经由HC分配获得的TXOP可以被称为混合式协调功能控制信道访问(hybrid coordination function controlled channel access,HCCA)TXOP。
应理解,本申请不涉及TXOP的获取,TXOP的获取方式的具体细节可以参考现有技术。
3、信道
在WLAN中,信道通常分为主信道和从信道,其中,从信道可以包含一个或多个子信道。
一个示例中,若以20MHz为基本带宽单位进行划分,当信道带宽为20MHz时,仅具有一个带宽为20MHz的主信道;当信道带宽大于20MHz时,包含一个带宽为20MHz的信道为主信道,其余的一个或多个20MHz信道为从信道。
示例性的,图1是本申请实施例提供的320MHz信道的一种信道划分示意图。如图1所示,320MHz的频带可以被划分为16个20MHz信道。这16个20MHz信道依次编号可以为信道1至信道16。应理解,每一个编号代表一个20MHz信道。在图1中,可以以信道1为主20MHz信道(primary 20MHz channel,P20),信道2可以作为一个从20MHz信道(secondary 20MHz channel,S20)。信道1和信道2可以聚合为主40MHz信道,信道3和信道4可以聚合为从40MHz信道。信道1-信道4可以聚合为主80MHz信道,信道5-信道8可以聚合为从80MHz信道。信道1-信道8可以聚合为主160MHz信道,信道9-信道16可以聚合为从160MHz信道。
应理解,主20MHz信道为属于一个基本服务集合中的成员的站点的公共操作信道(The common channel of operation for stations that are members of the basic service set)。基本服务集合(basic service set,BSS)中的站点可在主20MHz信道上进行信道竞争,以抢占信道资源。
主20MHz信道不一定为信道1,也可以为其他信道。图1中仅以信道1作为主20MHz信道进行举例说明。另外,从信道还可以有其他名称,例如次信道、辅信道等,本申请实施例不限于此。
需要说明的是,802.11系统支持各种不同大小的信道带宽,例如20MHz,40MHz,80MHz,160MHz连续的带宽,或者80MHz+80MHz非连续的带宽,或者是320MHz,240MHz+80MHz,160MHz+160MHz等,在下一代802.11标准中,信道带宽还可以是其他带宽。可选的,其信道划分方法可以与上述320MHz信道类似,在此不再赘述。
在WLAN中,一个用于传输的连续频谱块可称为一个频域分段(frequency segment)。一个WLAN信道可以包括多个频域分段,其中每个频域分段的带宽可以是80MHz,40MHz,20MHz或160MHz。参见图2,图2是本申请实施例提供的320MHz信道的另一种信道划分示意图。如图2所示,以分段的带宽为80MHz为例,则图2所示的320MHz信道可分为4个分段。频域分段还可以称作频域分片,或简称为分片或分段。
4、载波侦听机制
载波侦听机制可以分为物理载波侦听机制和虚拟载波侦听机制。
(1)物理载波侦听机制又被称为空闲信道评估(clear channel assessment,CCA)。在无线通信系统中,当目标设备需要在某一信道上发送数据之前,目标设备首先在这个信道上进行接收。如果经过给定的时间,目标设备没有发现其他设备在此信道上发送数据,则目标设备开始发送数据;如果发现有其他设备在发送数据,则目标设备随机避让一段时间后再次重试此过程。
空闲信道评估包括包检测和能量检测。其中,包检测是检测信道上是否有数据包传输(可通过检测是否有包头来判断是否有数据包传输),如果信道上存在数据包且能量超过一个包检测阈值,则认为信道繁忙。能量检测是检测信道上的能量大小,如果信道上的能量大于或等于能量检测阈值,则认为信道繁忙。当包检测的结果和能量检测的结果均为信道空闲时,才认为该信道是空闲状态。换句话说,如果在某段时间内没有检测到包头,且能量检测时信道上的能量小于该能量检测阈值,则认为该信道是空闲状态。
本申请下文中单独提及的“能量检测”均是指在没有检测到包头的情况下进行的,也就是说,本申请下文单独提及的“能量检测”的结果为信道空闲时,就表示这个信道是空闲状态。
(2)虚拟载波侦听机制使用在802.11帧中所发现的信息来预测无线介质的状态。通常,虚拟载波侦听是由NAV所提供。一个设备可以维护一个或多个NAV。NAV本身为一个定时器,通过使用帧的MAC报头中的持续时间值来进行设置。NAV的值会随着时间推移不断减少。NAV不为零,表示无线介质处于繁忙状态。NAV为零,表示无线介质处于空闲状态。上述无线介质可以为信道、频段等。
其中,NAV通过使用帧的MAC报头中的持续时间值来进行设置,可以具体实现为:当一个站点接收到一个帧后,如果该帧的接收地址不是该站点且该帧中duration字段的数值大于站点当前的NAV数值,则该站点可以根据接收到的帧中的持续时间(duration)字段来更新NAV。如果该帧的接收地址是该站点,说明该站点为接收站点,或该帧中duration字段的数值小于或等于站点当前的NAV数值,则不可以更新NAV。其中,NAV数值从接收到的无线帧的结束时刻开始算起的。
5、退避机制
IEEE 802.11标准支持多个用户共享同一传输介质,由发送者在发送数据前先进行传输介质的可用性检测。IEEE 802.11标准采用载波侦听多路访问/碰撞避免(carrier sense  multiple access with collision avoidance,CSMA/CA)来实现信道的竞争。其中,为了避免碰撞,CSMA/CA采用了退避机制。
下面对单信道上的退避机制进行说明。在设备发送消息之前,设备可以从0到竞争窗口(contention window,CW)之间选择一个随机数,并以该随机数作为退避计数器的初始值。在信道的空闲时间达到仲裁帧间间隔(arbitration inter-frame space,AIFS)之后,当信道每空闲一个时隙(timeslot)时,退避计数器的计数值减1。在退避计数器的计数值减为0之前,若信道在某一个timeslot的状态为繁忙,则退避计数器暂停计数。之后,若信道从繁忙状态转为空闲状态后,并且信道的空闲时间达到AIFS之后,退避计数器恢复计数。当退避计数器的计数值为0时,退避流程结束,设备可以开始数据传输。
结合图3进行举例说明,假设退避计数器的初始值为5,在信道的空闲时间达到AIFS后,退避计数器开始回退。每当信道在一个时隙中处于空闲状态,退避计数器的计数值减1,直至退避计数器的计数值为0。在退避计数器的计数值为0后,设备成功竞争到信道,设备可以在该信道上发送PPDU。
以上是本申请实施例所涉及的技术术语,在此统一说明,以下不再赘述。
目前,最新一代Wi-Fi标准(即802.11be标准)支持的最大带宽为320MHz。802.11be标准中为了充分利用信道,在AP支持大带宽(比如320MHz)的情况下,允许将一部分仅支持小带宽(比如仅支持80MHz)的STA调度到特定的从信道上进行接收,从而避免所有支持小带宽的STA都聚集在主信道上,而很少或者没有STA能够在从信道上进行发送或接收。
从而,AP在主信道上接收到一个OBSS帧并设置网络分配矢量(network allocation vector,NAV)的情况下,AP可以从该主信道切换到某一个特定的从信道上进行信道侦听和退避。本申请将这个特定的从信道称为临时主信道。临时主信道在本申请中又可称作驻留信道(parking channel)、或帧接收信道、或备用信道或其他名称。为便于描述,下文统一采用临时主信道进行描述。其中,该临时主信道可以临时作为站点的工作信道,站点可驻留在(parking on)或工作在(operated on)该临时主信道上接收信令或数据。
结合图4进行举例说明,AP可以将STA1调度到主20MHz信道,将STA2调度到信道13上。也即,信道13即为STA2的临时主信道。在AP待发送数据给STA1时,AP先在主20MHz信道上执行退避。当一个OBSS帧在主80MHz信道上传输时,AP可以确定主20MHz信道处于繁忙状态,因此AP可以切换到信道13上进行信道竞争。当信道13退避到0时,AP可以在信道13以及其他空闲的子信道(例如图4中的信道14、信道15、信道16以及802MHz分段3)上向STA2发送数据。
相关技术方案中驻留在主20MHz信道的STA1和驻留在临时主信道的STA2不是同一个STA。这种情况下,在主信道处于繁忙状态的情况下,AP虽然可以在临时主信道上获取额外的传输机会,但是AP在临时主信道上发送的数据并不能被驻留在主信道上的STA1接收。AP还需要等待主20MHz信道从繁忙状态切换到空闲状态之后,才能继续竞争信道,以便于向驻留在主20MHz信道上的STA1发送数据。从而,相关技术方案并不能达到降低AP与STA1之间数据传输时延或增大两者之间的数据传输吞吐量的目的。
为了解决这一技术问题,本申请实施例提供一种数据传输方法,其具体思路为:第一设备与第二设备在主20MHz信道上进行数据传输(或者执行退避);当满足第一预设条件 (例如主20MHz信道处于繁忙状态)时,第一设备和第二设备均从主20MHz信道切换到预先协商好的第一信道。应理解,上述第一设备和第二设备可以为AP或者STA。
相比于相关技术中第一设备和第二设备需要等待到主信道从繁忙状态切换到空闲状态之后才可能传输数据,本申请提供的技术方案可以使得第一设备和第二设备在主信道处于繁忙状态的时间内,利用其它信道传输数据,从而有效地降低数据传输时延。
本申请实施例提供一种数据传输方法,可以应用于各种通信系统,例如采用IEEE 802.11标准的系统。示例性的,IEEE 802.11标准包括但不限于:802.11be标准、或者更下一代的802.11标准。本申请的技术方案适用的场景包括:AP与STA之间的通信、AP与AP之间的通信、以及STA与STA之间的通信等。
参见图5,图5是本申请实施例提供的无线局域网的系统架构示意图。如图5所示,该无线局域网可以包括一个AP和一个或多个站点(如图5中的STA1、STA2以及STA3)。该AP可以通过有线或者无线的方式接入因特网,该AP可以关联多个STA,该AP与关联的多个STA之间可以通过802.11协议进行上行和下行通信。其中,该802.11协议可以包括IEEE 802.11be,还可以包括IEEE 802.11ax,IEEE 802.11ac等协议。当然,随着通信技术的不断演进和发展,该802.11协议还可以包括IEEE 802.11be的下一代协议等。实现本申请方法的装置可以是WLAN中的AP或STA,或者是,安装在AP或STA中的芯片或处理系统。
接入点(图5中的AP)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中其他设备(比如站点或其他接入点)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN系统中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
站点(例如图5中的STA1、STA2、STA2)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或接入点通信的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置或,娱乐设备,游戏设备或系统,全球定位系统设备等,STA还可以为上述这些终端中的芯片和处理系统。
WLAN系统可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用 于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
针对第一设备,如图6(a)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S101、第一设备在主20MHz信道上执行退避,以与第二设备进行数据传输。
其中,第一设备可以为AP或者STA。第二设备可以为AP或者STA。
在本申请实施例中,第一设备可以根据主20MHz信道上的竞争窗口,来配置主20MHz信道上退避计数器的初始值。并且,每当主20MHz信道在一个时隙内处于空闲状态,则第一设备可以将主20MHz信道上退避计数器的计数值减1。若主20MHz信道在某个时刻变为繁忙状态,则第一设备暂停退避;之后,第一设备需要等待主20MHz信道的空闲时间达到预设帧间间隔,才能继续退避。
在主20MHz信道的退避计数器减到0之后,第一设备可以在第一设备与第二设备之间的主信道上确定第二信道,以传输数据。第二信道包括主信道中退避计数器减到0的时刻处于空闲状态的一个或多个子信道。
第一设备与第二设备之间的主信道包含主20MHz信道。示例性的,该主信道可以是主20MHz信道,也可以是主40MHz信道,也可以是主80MHz信道,还可以是主160MHz信道,本申请实施例对此不作限定。该主信道可以采用前导码打孔,或者不采用前导码打孔。
第一设备与第二设备之间的主信道可以是第一设备与第二设备之间协商确定的,或者标准定义的。
应理解,在第一设备所配置的主20MHz信道的退避计数器减到0之前,或者第一设备与第二设备在第二信道上进行数据传输的过程中,第一设备均可以执行下述步骤S102。
S102、当满足第一预设条件时,第一设备从主20MHz信道切换到第一信道。
其中,第一信道是预配置给第一设备与第二设备之间通信的信道。第一信道不包括主20MHz信道。
应理解,在执行图6(a)所示实施例之前,第一设备与第二设备之间可以相互协商确定第一信道;或者,第一设备与第二设备可以根据标准规定,确定第一信道。
示例性的,当第一信道是由标准定义时,第一信道可以为以下情形之一:(1)第一信道为次20MHz信道;(2)第一信道为80MHz信道中频率最低的20MHz信道;(3)第一信道为80MHz信道为80MHz信道中频率最高的20MHz信道。可选的,上述80MHz信道可以是320MHz信道中任意一个80MHz信道。
在本申请实施例中,第一信道位于第一设备所支持的带宽内,并且还位于第二设备所 支持的带宽内。这样一来,第一设备和第二设备均能够使用第一信道,从而保证第一设备和第二设备之间在第一信道上能够正常进行数据传输。
应理解,第一设备所确定的第一信道和第二设备所确定的第一信道是相同的信道,以保证第一设备和第二设备可以从主20MHz信道切换到相同的信道,从而保证第一设备和第二设备之间在第一信道上能够进行数据传输。
本申请实施例不对第一信道的带宽进行限定,例如第一信道的带宽可以为20MHz,40MHz,80MHz,或者其他类型的带宽等。第一信道可以采用前导码打孔(preamble puncture),或者不采用前导码打孔。
在本申请实施例中,第一预设条件至少包括:主20MHz信道处于繁忙状态。
应理解,主20MHz信道处于繁忙状态,说明包含第一设备与第二设备之间的主信道不能被使用。因此,第一设备可以从主20MHz信道切换到第一信道,获取额外的传输机会,以在主20MHz信道空闲之前与第二设备之间传输数据,降低数据传输的时延。
可选的,主20MHz信道处于繁忙状态,可以包括以下情形至少一个:
情形1-1、第一设备在主20MHz信道上接收到第一OBSS帧。
示例性的,第一设备在接收到一个无线帧之后,可以根据无线帧中的SIG A字段或者MAC帧头中的地址字段,判断该无线帧是否是OBSS帧。例如,若无线帧中的HE SIG A字段(或者EHT SIG A)字段中的BSS颜色(color)与第一设备所属的BSS color不同,则第一设备可以确定该无线帧是OBSS帧。又例如,若无线帧中的MAC帧头中的BSSID与第一设备所属的BSS的BSSID不同,则第一设备可以确定该无线帧是OBSS帧。上述内容仅是对第一设备判断一个无线帧是否是OBSS帧的具体实现方式的简单介绍,其具体细节可以参考现有技术。
情形1-2、第一设备在主20MHz信道上的能量检测结果为繁忙状态。
可选的,第一设备在主20MHz信道上进行能量检测。当主20MHz信道上能量检测值大于或等于能量检测门限时,第一设备确定在主20MHz信道上的能量检测结果为繁忙状态。反之,第一设备确定在主20MHz信道上的能量检测结果为空闲状态。其中,能量检测门限设置为-62dBm。
情形1-3、第一设备确定主20MHz信道上的第一NAV的值大于0。
可选的,若第一设备维护两个NAV,如一个其他小区的NAV,即基本NAV(Basic NAV),和一个本小区的NAV,即本BSS的NAV(intra-BSS NAV),则上述第一NAV可以是Basic NAV。如果该通信设备只能维护一个NAV(无论是来自本小区还是其他小区的帧,其接收地址不是该通信设备且该帧中duration字段的值大于该NAV的当前值,该NAV就更新),则上述第一NAV就是该通信设备维护的这个NAV。
可选的,上述第一预设条件还可以包括:目标时长大于或等于第一预设时长。其中,第一预设时长可以是第一设备和第二设备之间协商确定的,或者标准中定义的。
当主20MHz信道处于繁忙状态是情形1-1时,目标时长可以为上述第一OBSS帧的剩余传输时长,或者目标时长可以为主20MHz信道上第一NAV的剩余计时时长。
当主20MHz信道处于繁忙状态是情形1-2或情形1-3时,目标时长可以为主20MHz信道上第一NAV的剩余计时时长。
应理解,第一设备在切换到第一信道之后,还需要先进行信道竞争才能进行数据发送。 考虑到信道竞争所需时间和数据发送时间,如果目标时长较小(也即目标时长小于第一预设时长),第一设备可能难以在目标时长内与第二设备在第一信道上进行数据传输。这种情况下,第一设备从主20MHz信道切换到第一信道的必要性较低。因此,在目标时长小于第一预设时长的情况下,第一设备不从主20MHz信道切换到第一信道,可以简化操作。
如果目标时长较大(也即目标时长大于或等于第一预设时长),第一设备有较大概率可以在第一信道上获取到传输机会以传输数据。这种情况下,第一设备从主20MHz信道切换到第一信道,有利于获取额外传输机会以降低数据传输时延。
可选的,第一设备从主20MHz信道切换到第一信道,可以具体实现为:第一设备所配置的物理帧头同步模块、包解析模块等功能模块针对第一信道上接收到的信号进行处理。
应理解,第一设备从主20MHz信道切换到第一信道的过程主要是一个数字处理模块切换的过程,不涉及到射频和模拟器件的频率切换,因此第一设备从主20MHz信道切换到第一信道的过程所产生的时延较小,通常可以忽略。
基于图6(a)所示的实施例,由于第一预设条件至少包括主20MHz信道处于繁忙状态,因此在满足预设条件的情况下,第一设备与第二设备之间并不能通过主20MHz信道进行数据传输。而在满足第一预设条件的情况下,第一设备从主20MHz信道切换到第一信道,在主20MHz信道从繁忙状态切换到空闲状态之前有一定概率能够获取到额外的传输机会,从而与第二设备进行数据传输。相比于现有技术中第一设备与第二设备之间需要等待主20MHz信道从繁忙状态切换到空闲状态之后才能进行数据传输,本申请实施例能够使得第一设备与第二设备在主20MHz信道处于繁忙状态的情况下有一定概率进行数据传输,从而有概率降低第一设备与第二设备之间的数据传输时延,并且能够提高第一设备和第二设备之间的数据吞吐量。
可选的,在图6(a)所示实施例的基础上,如图6(b)所示,该数据传输方法在步骤S102之后还可以包括步骤S103。可选的,该数据传输方法还可以包括步骤S104。
S103、第一设备在第一信道上执行退避。
其中,第一信道可以包括一个或多个子信道。可选的,第一信道所包括的子信道的带宽可以为20MHz。
可选的,当第一信道包括多个子信道时,步骤S103可以采用以下实现方式之一:
步骤S103的实现方式1、第一设备在多个子信道中的每一个子信道上执行退避。
基于实现方式1,对于多个子信道中的每一个子信道,第一设备均为该子信道配置退避计数器。应理解,不同子信道的退避计数器的初始值可以配置得相同或者不相同,对此不作限定。
应理解,实现方式1的优点在于:具有较高的灵活度,并且能够在信道负载较低的情况下快速获得传输机会,提高获取到传输机会的概率。
可选的,若步骤S103采用实现方式1,第一设备执行退避的过程中还需要执行以下操作一或操作二。
操作一,若第一设备在第一信道中的任意一个子信道上同步到一个物理帧头,则第一设备暂停第一信道中所有子信道的退避,并判断该物理帧头对应的物理帧是否是OBSS帧。若该物理帧头对应的物理帧是OBSS帧,则第一设备继续在第一信道中的每一个子信道上执行退避。若该物理帧头对应的物理帧不是OBSS帧,则第一设备继续暂停第一信道中所 有子信道的退避,直至物理帧头对应的物理帧传输完毕。或者,若该物理帧头对应的物理帧不是OBSS帧,则第一设备继续暂停第一信道中所有子信道的退避,直至物理帧头对应的物理帧设置的NAV减少到0。
其中,若物理帧头对应的物理帧不是OBSS帧,说明该物理帧头对应的物理帧是第一设备所属的BSS的帧。
针对第一信道,上述物理帧头对应的物理帧设置的NAV是指,第一设备根据物理帧中duration字段设置的NAV。
上述第一设备继续在第一信道中的每一个子信道上执行退避,具体是指:对于每一个子信道,第一设备根据子信道的忙闲状态,确定是否将子信道对应的退避计数器的计数值减1。应理解,对于传输OBSS帧的子信道来说,第一设备可以检测到该子信道处于繁忙状态,因此第一设备暂停该子信道对应的退避计数器的计数。
应理解,操作一要求第一设备在第一信道中的每一个子信道上配置有物理帧头同步模块。
可选的,操作一还要求第一设备至少配置一套包解析模块。
应理解,如果第一设备在接收到发送给自身的物理帧的时间段内,第一信道中的某一个子信道退避到0,则会触发第一设备发送物理帧,从而导致第一设备在同一时间段内在一个子信道上接发物理帧,而在另外一个子信道上发送物理帧。这种情况下,若第一设备不具备同时收发能力,则会导致第一设备产生收发冲突的问题。因此,操作一的有益效果在于:在第一信道中的任意一个子信道上同步到一个物理帧头开始,暂停所有子信道的退避,以避免导致第一设备产生收发冲突的问题。
操作二、第一设备在第一信道中的任意一个子信道上接收到一个物理帧。若第一设备确定该物理帧来自第一设备所属BSS,则第一设备暂停第一信道中所有子信道的退避,直至该物理帧传输完毕。或者,若第一设备确定该物理帧来自第一设备所属BSS,则第一设备暂停第一信道中所有子信道的退避,直至该物理帧所设置的NAV减少到0。
应理解,操作二要求第一设备在第一信道中的每一个子信道上配置有物理帧头同步模块以及包解析模块。
操作二的有益效果在于:若第一设备确定某一个子信道上接收到的物理帧来自第一设备所属BSS,则第一设备暂停所有子信道的退避,从而避免在该物理帧的接收过程中,某一个子信道退避到0,进而有利于降低第一设备发生收发冲突问题的可能性。
步骤S103的实现方式2、第一设备在多个子信道中的一个子信道上执行退避。在该子信道处于繁忙状态的情况下,第一设备按照预设顺序,切换至多个子信道中的另一个子信道上执行退避。
应理解,实现方式2的优点在于:(1)第一设备仅需要配置一套包解析模块,对设备能力的要求低。(2)在一个子信道处于繁忙状态的情况下切换到另一个子信道上执行退避,有利于尽快获取到传输机会,提高获取到传输机会的概率。
以举例的方式对步骤S103的实现方式2进行说明,假设第一设备与第二设备之间配置的第一信道包括子信道1~子信道4。预设顺序为:子信道4,子信道2,子信道3,子信道1。从而,在满足第一预设条件的情况下,第一设备先从主20MHz信道切换到子信道4,并在子信道4上执行退避。当子信道4处于繁忙状态时,第一设备从子信道4切换到子信 道2上执行退避,当子信道2处于繁忙状态时,第一设备从子信道2切换到子信道3上执行退避。当子信道3处于繁忙状态时,第一设备从子信道3切换至子信道1上执行退避。
可选的,上述预设顺序可以采用以下设计中的任意一种:
设计1、预设顺序为多个子信道按照优先级进行排序的顺序。每一个子信道的优先级可以是第一设备与第二设备协商确定的,或者标准定义的。
设计2、预设顺序是多个子信道按照频率从高到低进行排序的顺序。或者,预设顺序还可以是多个子信道按照频率从低到高进行排序的顺序。
设计3、预设顺序还可以是多个子信道按照信道负载从低到高进行排序的顺序。
设计4、预设顺序是多个子信道随机排序生成的顺序。
应理解,上述设计1-设计4仅是对预设顺序的举例,本申请实施例不限于此。
需要说明的是,第一设备和第二设备使用相同的预设顺序,以尽量保证第一设备和第二设备可以切换到相同的信道。
在本申请实施例中,子信道处于繁忙状态,包括以下情形至少一个:
情形2-1、第一设备在子信道上接收到第二OBSS帧。
情形2-2、当第一设备没有检测到无线帧,但是第一设备确定子信道上的能量检测结果为繁忙状态的持续时间大于或等于第二预设时长。
在本申请实施例中,在子信道执行退避的过程中,第一设备在子信道上进行能量检测。当子信道上的能量检测值大于或等于能量检测门限时,第一设备确定子信道上的能量检测结果为繁忙状态。或者,当子信道上的能量检测值小于能量检测门限时,第一设备确定所述子信道上的能量检测结果为空闲状态。
应理解,在第一设备从主20MHz信道切换到第一信道之后,由于第一设备缺少第一信道上相关NAV的记录,如果第一设备按照现有CCA规则,将能量检测门限设置为-62dBm,则可能会抢占传统站点的信道,影响公平性。
基于此,本申请实施例将子信道的能量检测门限设置为小于-62dBm并且大于-82dBm的数值,以保证公平性。
情形2-3、第一设备确定子信道上的第二NAV的值大于0。
在本申请实施例中,第一信道(或者第一信道中的子信道)上的退避计数器的初始值可以按照以下规则设置:
规则1、第一设备根据最小竞争窗口CW_min或者主20MHz信道的竞争窗口,设置第一信道(或者第一信道中的子信道)上的退避计数器的初始值。
规则2、在主20MHz信道上的退避计数器的计数值不为0的情况下,第一设备根据主20MHz信道上的退避计数器的计数值,设置第一信道(或者第一信道中的子信道)上的退避计数器的初始值。可选地,根据主20MHz信道上的竞争窗口这是第一信道上的竞争窗口。
示例性的,第一设备可以将第一信道(或者第一信道中的子信道)上的退避计数器的初始值设置为主20MHz信道上的退避计数器的计数值。
规则3、第一设备根据预设的竞争窗口,设置第一信道(或者第一信道中的子信道)上的退避计数器的初始值。
上述预设的竞争窗口可以是通信标准中定义的,也可以是第一设备定义的。
S104、在第一信道退避到0之后,第一设备与第二设备进行数据传输。
可选的,第一信道退避到0,可以是指第一信道中的目标子信道退避到0。目标子信道即为第一信道中的任意一个子信道。
可选的,在目标子信道退避到0之后,第一设备可以在目标子信道上与第二设备进行数据传输。或者,第一设备可以在包括目标子信道的第三信道上进行数据传输。其中,第三信道除了包括目标子信道之外,还可以包括第一信道中处于空闲状态的其他子信道。
一种可能的实现方式中,第一设备与第二设备可以在第一信道上传输任意业务类型的数据。
另一种可能的实现方式中,第一设备与第二设备在第一信道上仅传输目标业务类型的数据,以保证目标业务类型的数据。这样一来,可以避免非目标业务类型的数据抢占第一信道,而增大目标业务类型的数据的传输时延。
可选的,上述目标业务类型的数据可以是第一设备与第二设备之间协商确定的,也可以是通信标准中定义的。
基于图6(b)所示的实施例,第一设备通过在第一信道上执行退避,以获取额外的传输机会,从而有效降低第一设备与第二设备之间的传输时延,以及能够增加第一设备与第二设备之间的数据传输吞吐量。
可选的,在图6(a)所示实施例的基础上,如图6(c)所示,该数据传输方法在步骤S102之后,还可以包括步骤S105。
S105、在满足第二预设条件的情况下,第一设备从第一信道切换到主20MHz信道。
一种可能的设计中,第二预设条件为:在切换时长达到目标时长之前,或者当切换时长达到目标时长时。基于该设计,第一设备可以设置一个定时器,该定时器的定时时长为目标时长。从而,在定时器超时之前,第一设备可以根据实际情况,确定是否从第一信道切换到主20MHz信道。在定时器即将超时的情况下,第一设备需要从第一信道切换到主20MHz信道。
另一种可能的设计中,第二预设条件为:切换时长达到第三预设时长。基于该设计,第一设备可以设置一个定时器,该定时器的定时时长为第三预设时长。从而,在定时器超时之前,第一设备不执行从第一信道切换到主20MHz信道切换的操作。当定时器的计时时间到达第三预设时长时,第一设备从第一信道切换到主20MHz信道。
切换时长是指第一设备从主20MHz信道切换到第一信道的时长。也就是说,切换时长为第一设备从主20MHz信道切换到第一信道的时刻至当前时刻的时长。
可选的,第三预设时长小于或等于目标时长。第三预设时长可以是第一设备和第二设备之间协商确定的,可以是通信标准中定义的。
可选的,目标时长可以为第一设备在所述主20MHz信道上接收到的第一OBSS帧的剩余传输时长。或者,目标时长可以为主20MHz信道上的第一NAV的剩余计时时长。
在本申请实施例中,第一设备从第一信道切换到主20MHz信道,可以具体实现为:第一设备所配置的物理帧头同步模块、包解析模块等功能模块针对主20MHz信道上接收到的信号进行处理。
可选的、若目标时长为第一设备在所述主20MHz信道上接收到的第一OBSS帧的剩余传输时长,则第一设备在从第一信道切换到主信道之后,可以按照现有的CCA规则继 续退避。
应理解,在接收第一OBSS帧的时间段中,主20MHz信道已经被占用,其他站点通常不会发送其他物理帧,并且第一设备和第二设备无法继续在主20MHz上执行退避,从而第一设备和第二设备无法在主20MHz上传输数据。因此,在接收第一OBSS帧的时间段内,第一设备不会错过其他物理帧而导致错过更新主20MHz上的第一NAV的机会。从而,即使第一设备在从第一信道切换到主信道之后,按照现有的CCA规则继续退避,也并不会影响其他站点的传输,导致公平性问题。
现有的CCA规则中,能量检测门限为-62dBm。
可选的,若目标时长为主20MHz信道上的第一NAV的剩余计时时长,则第一设备在从第一信道切换到主20MHz信道之后,需要在主20MHz信道上执行盲恢复(blindness recovery)操作。
应理解,在主20MHz信道上的第一NAV的剩余计时时长内,主20MHz信道上可能会有其他物理帧传输,此时由于第一设备已经切换到第一信道上,从而第一设备会错过对该物理帧的接收。如果该物理帧会导致主20MHz信道上的第一NAV更新,则第一设备会错过第一NAV的更新机会。这样一来,第一设备丢失了主20MHz上的NAV记录。这种情况下,如果第一设备在从第一信道切换到主20MHz信道之后,按照现有的CCA规则进行退避,可能影响到其他站点的传输。因此,从公平性的角度进行考虑,第一设备在从第一信道切换到主信道之后,需要执行盲恢复操作。
示例性的,盲恢复操作可以包括:第一设备切换到主20MHz信道之后,设置第四预设时长。在第四预设时长内,CCA的能量检测门限为-62dBm到-82dBm之间的一个数值。另外,第一设备在退避结束之后需要先执行请求发送/允许发送(request to send/clear to send,RTS/CTS)交互才能传输数据。其中,第四预设时长可以被称为NAVSyncDELAY时间段。第四预设时长是一个毫秒级别的时长,例如5毫秒。
可选的,若目标时长为主20MHz信道上的第一NAV的剩余计时时长,则第一设备在从第一信道切换到主20MHz信道之后,按照现有的CCA规则继续退避。
应理解,虽然在主20MHz信道上的第一NAV的剩余计时时长内,第一设备可能会错失主20MHz信道的第一NAV的更新机会,但是错失更新机会的发生概率较小。因此,在不默认不会错失主20MHz信道的第一NAV的更新机会的情况下,第一设备在从第一信道切换到主20MHz信道之后,按照现有的CCA规则继续退避,有利于第一设备尽快竞争到信道。
基于图6(c)所示的实施例,在满足第二预设条件的情况下,第一设备从第一信道切换至主20MH在信道,以便于第一设备和第二设备可以在主20MHz信道上传输数据。
并且,在满足第二预设条件的情况下,第一设备错过主20MHz信道上的NAV更新机会的概率较小,以使得第一设备在主20MHz信道可以按照现有CCA规则进行退避。
针对第二设备,如图7(a)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S201、第二设备在主20MHz信道上执行退避,以与第一设备进行数据传输。
S202、当满足第一预设条件时,第二设备从主20MHz信道切换到第一信道。
其中,步骤S201-S202与图6(a)中的S101-S102相似,其具体细节可以参考图6(a) 所示的实施例,在此不再赘述。
应理解,第一设备执行图6(a)所示实施例,第二设备执行图7(a)所示实施例,从而保证在同样条件下,第一设备和第二设备从主20MHz信道上切换到第一信道,从而第一设备与第二设备可以在第一信道上可以获取额外的传输机会以进行数据传输,从而降低因为主20Mhz信道繁忙所带来的数据传输时延。
可选的,在图7(a)所示实施例的基础上,如图7(b)所示实施例,该数据传输方法在步骤S202之后,还可以包括步骤S203。可选的,该数据传输方法还可以包括步骤S204。
S203、第二设备在第一信道上执行退避。
S204、在第一信道退避到0之后,第一设备与第二设备进行数据传输。
其中,步骤S203和S204与图6(b)中的S103-S104相似,其具体细节可以参考图6(b)所示的实施例,在此不再赘述。
基于图7(b)所示实施例,第二设备通过在第一信道上执行退避,以获取额外的传输机会,从而有效降低第一设备与第二设备之间的传输时延。
可选的,在图7(a)所示实施例的基础上,如图7(c)所示,该数据传输方法在步骤S202之后,还可以包括步骤S205。
S205、在满足第二预设条件的情况下,第二设备从第一信道切换到主20MHz信道。
其中,步骤S205与图6(c)中的步骤S105相似,其具体细节可以参考图6(c)所示的实施例,在此不再赘述。
应理解,第一设备执行图6(c)中的步骤S105,第二设备执行图7(c)中的步骤S105,以保证第一设备和第二设备尽量同步地从第一信道切换到主20MHz信道,从而使得第一设备与第二设备可以在主20MHz信道上进行通信。
下面对第一设备和第二设备之间协商确定第一信道的具体实现方式进行介绍。应理解,下述图8(a)、图8(b)、图9(a)、或图9(b)所示实施例可以与上述图6(a)、图6(b)、图6(c)、图7(a)、图7(b)、以及图7(c)所示实施例相互结合使用。
一个可能的示例中,如图8(a)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S301、第一设备生成第一指示信息。
其中,第一指示信息承载于管理帧、控制帧或者动作帧中。第一指示信息可以承载于现有的帧或者新增的帧中。
在本申请实施例中,第一指示信息用于配置第一信道,其可采用以下设计中的任意一种:
设计1、第一指示信息包括第一信道的索引。或者,第一指示信息包括第一信道中每一个子信道的索引。
设计2、第一指示信息包括位图,所述位图包括多个比特,每一个比特对应一个20MHz信道。对于位图中的每一个比特来说,当一个比特的取值为第一数值时,该比特对应的20MHz信道是第一信道中的子信道;当一个比特的取值为第二数值时,该比特对应的20MHz信道不为第一信道中的子信道。示例性的,上述第一数值为1,第二数值为0。或者,上述第一数值为0,第二数值为1。应理解,当该位图包括主20MHz信道对应的比特时,该主20MHz信道对应的比特默认设置为第二数值。
可选的,第一指示信息仅适用于第二设备。从而,第一指示信息所指示的第一信道仅是第一设备与第二设备之间通信的信道。这种情况下,承载第一指示信息的无线帧还可以携带用于配置第一设备与其他设备之间通信的信道的指示信息。
可选的,第一指示信息适用于发送端(也即第一设备)关联的多个设备。从而,第一指示信息所指示的第一信道不仅是第一设备与第二设备之间通信的信道,还是第一设备与其他设备之间通信的信道。
作为一种可能的实现方式,第一设备可以根据实际情况(例如各个从信道的负载情况等),确定第一信道在频带中的位置。之后,第一设备根据第一信道在频带中的位置,生成第一指示信息。
S302、第一设备向第二设备发送第一指示信息。相应的,第二设备接收第一设备发送的第一指示信息。
应理解,第二设备在接收到第一指示信息之后,可以根据第一指示信息,确定第一信道。
基于图8(a)所示实施例,第一设备通过向第二设备发送第一指示信息,以使得第一设备和第二设备之间能够确定相同的第一信道。
另一个可能的示例中,如图8(b)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S401、第二设备生成第一指示信息。
其中,第一指示信息的相关描述可以参考前文,在此不再赘述。
S402、第二设备向第一设备发送第一指示信息。相应的,第一设备接收第二设备发送的第二指示信息。
应理解,第一设备在接收到第一指示信息之后,可以根据第一指示信息,确定第一信道。
基于图8(b)所示实施例,第二设备通过向第一设备发送第一指示信息,以使得第一设备和第二设备之间能够确定相同的第一信道。
另一个可能的示例中,如图9(a)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S501、第一设备向第二设备发送第一请求信息。相应的,第二设备接收第一设备发送的第一请求信息。
其中,第一请求信息可以承载于关联请求帧,或者A-Control字段中的控制类型,又或者一个独立帧类型的请求帧中。
在本申请实施例中,第一请求信息用于请求协商第一信道。
一种可能的设计中,第一请求信息未指示建议的第一信道。
另一种可能的设计中,第一请求信息还用于指示建议的第一信道。其中,建议的第一信道是第一设备建议第二设备使用的第一信道,但不一定是实际使用的第一信道。
可选的,第一请求信息还用于指示建议的第一信道,可采用以下设计中的任意一种:
设计1、第一请求信息包括建议的第一信道的索引。或者,第一请求信息包括建议的第一信道中每一个子信道的索引。
设计2、第一请求信息包括位图,所述位图包括多个比特,每一个比特对应一个20MHz 信道。对于位图中的每一个比特来说,当一个比特的取值为第一数值时,该比特对应的20MHz信道是建议的第一信道中的子信道;当一个比特的取值为第二数值时,该比特对应的20MHz信道不为建议的第一信道中的子信道。示例性的,上述第一数值为1,第二数值为0。或者,上述第一数值为0,第二数值为1。应理解,当该位图包括主20MHz信道对应的比特时,该主20MHz信道对应的比特默认设置为第二数值。
S502、第二设备向第一设备发送第一响应信息。相应的,第一设备接收第二设备发送的第一响应信息。
其中,第一响应信息用于响应第一请求信息。第一响应信息可以承载于关联响应帧,或者A-Control字段中的控制类型,又或者一个独立帧类型的响应帧中。
在本申请实施例中,第一响应信息用于确定第一信道。
一种可能的设计中,若第一指示信息未指示建议的第一信道,则第一响应信息还用于配置第一信道。
另一种可能的设计中,若第一指示信息还用于指示建议的第一信道,则第一响应信息还用于表示同意使用建议的第一信道,或者,第一响应信息还用于配置第一信道。
应理解,若第一响应信息用于表示同意使用建议的第一信道,则建议的第一信道即为实际使用的第一信道。
可选的,第一响应信息还用于配置第一信道,可采用以下设计中的任意一种:
设计1、第一响应信息包括第一信道的索引。或者,第一响应信息包括第一信道中每一个子信道的索引。
设计2、第一响应信息包括位图,所述位图包括多个比特,每一个比特对应一个20MHz信道。对于位图中的每一个比特来说,当一个比特的取值为第一数值时,该比特对应的20MHz信道是第一信道中的子信道;当一个比特的取值为第二数值时,该比特对应的20MHz信道不为第一信道中的子信道。示例性的,上述第一数值为1,第二数值为0。或者,上述第一数值为0,第二数值为1。应理解,当该位图包括主20MHz信道对应的比特时,该主20MHz信道对应的比特默认设置为第二数值。
应理解,第一设备和第二设备均根据第一响应信息,确定第一信道。
基于图9(a)所示实施例,第一设备和第二设备基于第一请求信息和第一响应信息的交互过程,能够确定相同的第一信道。
另一个可能的示例中,如图9(b)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S601、第二设备向第一设备发送第一请求信息。相应的,第一设备接收第二设备发送的第一请求信息。
S602、第一设备向第二设备发送第一响应信息。相应的,第二设备接收第一设备发送的第一响应信息。
上述第一请求信息和第一响应信息的具体描述可以参考上文,在此不再赘述。
基于图9(b)所示实施例,第一设备和第二设备基于第一请求信息和第一响应信息的交互过程,能够确定相同的第一信道。
为了便于描述,本申请实施例将图6(a)和图7(a)所示实施例所介绍的传输机制定义为第一传输机制。具体的,第一传输机制用于第一设备和第二设备在满足第一预设条件 的情况下从主20MHz信道切换到第一信道。
一种可能的设计中,第一设备和第二设备之间可以默认开启第一传输机制。
另一种可能的设计中,第一设备和第二设备之间可以协商是否开启第一传输机制,以提高灵活性,以便于使用于不同应用场景。
例如,在第一设备和第二设备之间的距离比较远而导致隐藏节点的问题比较严重的情况下,第一设备和第二设备即使开启第一传输机制,也有较大概率不能同时切换到第一信道,从而无法在第一信道上进行正常通信。从而,针对这种场景,第一设备和第二设备可以协商关闭第一传输机制,从而简化第一设备和第二设备的相关操作。
应理解,在关闭第一传输机制后,第一设备不执行上述图6(a)所示实施例,第二设备不执行上述图7(a)所示实施例。在开启第一传输机制后,第一设备可以执行上述图6(a)所示实施例,第二设备可以执行上述图7(a)所示实施例。
下面结合实施例对第一设备和第二设备之间协商是否开启第一传输机制的具体实现方式进行介绍。
一种可能的示例,如图10(a)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S701、第一设备生成第二指示信息。
其中,第二指示信息用于指示是否开启第一传输机制。或者,第二指示信息用于指示是否关闭第一传输机制。
可选的,第二指示信息可以承载于管理帧、控制帧或者A-control字段中。
一种可能的设计中,第二指示信息是专门发送给第二设备的信息。
另一种可能的设计中,第二指示信息是广播给第一设备所关联的其他设备的信息。应理解,第一设备所关联的其他设备包括第二设备。
S702、第一设备向第二设备发送第二指示信息。相应的,第二设备接收第一设备发送的第二指示信息。
S703、第二设备根据第二指示信息,确定是否开启第一传输机制。
应理解,当第二指示信息用于指示开启第一传输机制时,第二设备确定开启第一传输机制。或者,当第二指示信息用于指示关闭第一传输机制时,第二设备确定关闭第一传输机制。
基于图10(a)所示的实施例,第一设备通过向第二设备发送第二指示信息,以决定第一设备与第二设备之间是否开启第一传输机制。
另一种可能的示例中,如图10(b)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S801、第二设备生成第二指示信息。
其中,第二指示信息用于指示是否开启第一传输机制。或者,第二指示信息用于指示是否关闭第一传输机制。
可选的,第二指示信息可以承载于管理帧、控制帧或者A-control字段中。
一种可能的设计中,第二指示信息是专门发送给第一设备的信息。
另一种可能的设计中,第二指示信息是广播给第二设备所关联的其他设备的信息。应理解,第二设备所关联的其他设备包括第一设备。
S802、第二设备向第一设备发送第二指示信息。相应的,第一设备接收第二设备发送的第二指示信息。
S803、第一设备根据第二指示信息,确定是否开启第一传输机制。
应理解,当第二指示信息用于指示开启第一传输机制时,第一设备确定开启第一传输机制。或者,当第二指示信息用于指示关闭第一传输机制时,第一设备确定关闭第一传输机制。
基于图10(b)所示的实施例,第二设备通过向第一设备发送第二指示信息,以决定第一设备与第二设备之间是否开启第一传输机制。
另一种可能的示例中,如图11(a)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S901、第一设备向第二设备发送第二请求信息。相应的,第二设备接收第一设备发送的第二请求信息。
其中,第二请求信息用于请求开启第一传输机制。或者,第二请求信息用于请求关闭第一传输机制。
可选的,第二请求信息可以承载于管理帧、控制帧或者A-control字段中。
S902、第二设备向第一设备发送第二响应信息。相应的,第一设备接收第二设备发送的第二响应信息。
在本申请实施例中,第二响应信息用于响应第二请求信息。可选的,第二响应信息可以承载于管理帧、控制帧或者A-control字段中。
可选的,当第二请求信息用于请求开启第一传输机制时,第二响应信息用于表示同意/者拒绝开启第一传输机制。
应理解,当第二响应信息用于表示同意开启第一传输机制时,第一设备与第二设备之间开启第一传输机制。或者,当第二响应信息用于表示拒绝开启第一传输机制时,第一设备与第二设备之间关闭第一传输机制。
可选的,当第二请求信息用于请求关闭第一传输机制时,第二响应信息用于表示同意/者拒绝关闭第一传输机制。
应理解,当第二响应信息用于表示同意关闭第一传输机制时,第一设备与第二设备之间关闭第一传输机制。或者,当第二响应信息用于表示拒绝关闭第一传输机制时,第一设备与第二设备之间开启第一传输机制。
基于图11(a)所示实施例,第二设备与第一设备之间通过第二请求信息和第二响应信息的交互,来协商确定是否开启第一传输机制。
另一种可能的示例中,如图11(b)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S1001、第二设备向第一设备发送第二请求信息。相应的,第一设备接收第二设备发送的第二请求信息。
S1002、第一设备向第二设备发送第二响应信息。相应的,第二设备接收第一设备发送的第二响应信息。
上述第二请求信息和第二响应信息的具体介绍可以参见上文,在此不再赘述。
基于图11(b)所示实施例,第二设备与第一设备之间通过第二请求信息和第二响应 信息的交互,来协商确定是否开启第一传输机制。
下面对第一设备和第二设备之间协商确定第一信道传输的数据的业务类型的具体实现方式进行介绍。应理解,下述图12(a)、图12(b)、图13(a)、或图13(b)所示实施例可以与上述图6(a)、图6(b)、图6(c)、图7(a)、图7(b)、以及图7(c)所示实施例相互结合使用。
一种可能的示例中,如图12(a)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S1101、第一设备生成第三指示信息。
其中,第三指示信息用于指示第一信道上传输的数据的业务类型。
示例性的,第三指示信息可以包括一个或多个业务类型的标识。从而,第三指示信息所包括的业务类型的标识,用于确定允许在第一信道上传输的数据的业务类型。
可选的,业务类型的标识可以为接入类型(access category,AC)或者业务标识(traffic identifier,TID)。
示例性的,AC的类型可以如表1所示。
表1
ACI AC Description
0 AC_BE 尽力而为的业务(best effort)
1 AC_BK 背景业务(background)
2 AC_VI 视频业务(video)
3 AC_VO 语音业务(voice)
举例说明,第三指示信息可以用于指示第一信道上传输AC_VO和/或AC_VI对应的数据。
在本申请实施例中,第三指示信息可以承载于管理帧、控制帧或者A-control字段中。
S1102、第一设备向第二设备发送第三指示信息。相应的,第二设备接收第一设备发送的第一指示信息。
S1103、第二设备根据第三指示信息,确定在第一信道上传输的数据的业务类型。
基于图12(a)所示的实施例,第二设备根据第一设备所发送的第三指示信息,可以确定允许在第一信道上的数据的业务类型,以降低这些业务类型的数据的传输时延。
作为另一种可能的示例中,如图12(b)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S1201、第二设备生成第三指示信息。
S1202、第二设备向第一设备发送第三指示信息。相应的,第一设备接收第二设备发送的第一指示信息。
S1203、第一设备根据第三指示信息,确定在第一信道上传输的数据的业务类型。
其中,第三指示信息的具体介绍可以参考上文,在此不再赘述。
基于图12(b)所示的实施例,第一设备根据第一设备所发送的第三指示信息,可以确定允许在第一信道上的数据的业务类型,以降低这些业务类型的数据的传输时延。
作为另一种可能的示例中,如图13(a)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S1301、第一设备向第二设备发送第三请求信息。相应的,第二设备接收第一设备发送的第三请求信息。
其中,第三请求信息用于请求协商第一信道上传输的数据的业务类型。
一种可能的设计中,第三请求信息包括一个或多个建议的业务类型的标识。
另一种可能的设计中,第三请求信息不包括一个或多个建议的业务类型的标识。
在本申请实施例中,第三请求信息承载于管理帧、控制帧或者A-control字段中。
S1302、第二设备向第一设备发送第三响应信息。相应的,第一设备接收第二设备发送的第三响应信息。
其中,第三响应信息用于响应第三请求信息。第三响应信息用于确定第一信道上传输的数据的业务类型。
一种可能的设计中,在第三请求信息不包括一个或多个建议的业务类型的标识的情况下,第三响应信息包括一个或多个在第一信道上传输的数据的业务类型的标识。
另一种可能的设计中,在第三请求信息包括一个或多个建议的业务类型的标识的情况下,第三响应信息用于表示允许在第一信道上传输所述一个或多个建议的业务类型的数据;或者,第三响应信息包括一个或多个在第一信道上传输的数据的业务类型的标识。
应理解,第一设备和第二设备基于第三响应信息,确定在第一信道上传输的数据的业务类型。
基于图13(a)所示实施例,第一设备和第二设备基于第三请求信息和第三响应信息的交互,可以确定允许在第一信道上传输的数据的业务类型,以降低这些业务类型的数据的传输时延。
另一种可能的示例中,如图13(b)所示,为本申请实施例提供的一种数据传输方法,该方法包括以下步骤:
S1401、第二设备向第一设备发送第三请求信息。相应的,第一设备接收第二设备发送的第三请求信息。
S1402、第一设备向第二设备发送第三响应信息。相应的,第二设备接收第一设备发送的第三响应信息。
其中,第三请求信息和第三响应信息的具体细节可以参考上文描述,在此不再赘述。
基于图13(b)所示实施例,第一设备和第二设备基于第三请求信息和第三响应信息的交互,可以确定允许在第一信道上传输的数据的业务类型,以降低这些业务类型的数据的传输时延。
上述主要从通信装置(例如第一设备、第二设备)的角度对本申请实施例提供的方案进行了介绍。可以理解的是,通信装置为了实现上述功能,其包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个功能模块中。 上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
如图14所示,为本申请实施例提供的一种通信装置,该通信装置包括:退避模块101、切换模块102和通信模块103。
一种可能的设计中,当该通信装置作为第一设备时,退避模块101用于执行图6(a)中的步骤S101,图6(b)中的步骤S103。切换模块102用于执行图6(a)中的步骤S102,图6(c)中的步骤S105。通信模块103用于执行图6(b)中的步骤S104,图8(a)中的步骤S302,图8(b)中的步骤S402,图9(a)中的步骤S501-S502,图9(b)中的步骤S601-S602,图10(a)中的步骤S702,图10(b)中的步骤S802,图11(a)中的步骤S901-S902,图11(b)中的步骤S1001-S1002,图12(a)中的步骤S1102,图12(b)中的步骤S1202,图13(a)中的步骤S1301-S1302,图13(b)中的步骤S1401-S1402。
一种可能的设计中,当该通信装置作为第二设备时,退避模块101用于执行图7(a)中的步骤S201,图7(b)中的步骤S203。切换模块102用于执行图7(a)中的步骤S202,图7(c)中的步骤S205。通信模块103用于执行图7(b)中的步骤S204,图8(a)中的步骤S302,图8(b)中的步骤S402,图9(a)中的步骤S501-S502,图9(b)中的步骤S601-S602,图10(a)中的步骤S702,图10(b)中的步骤S802,图11(a)中的步骤S901-S902,图11(b)中的步骤S1001-S1002,图12(a)中的步骤S1102,图12(b)中的步骤S1202,图13(a)中的步骤S1301-S1302,图13(b)中的步骤S1401-S1402。
应理解,上述退避模块101和切换模块102可以集成为处理模块。
图15是本申请实施例所述的通信装置可能的产品形态的结构图。
作为一种可能的产品形态,本申请实施例所述的通信装置可以为上述第一设备,所述第一设备包括处理器201和收发器202。可选的,所述通信设备还包括存储介质203。
处理器201用于执行图6(a)中的步骤S101,图6(b)中的步骤S103,图6(a)中的步骤S102,图6(c)中的步骤S105。收发器202用于执行图6(b)中的步骤S104,图8(a)中的步骤S302,图8(b)中的步骤S402,图9(a)中的步骤S501-S502,图9(b)中的步骤S601-S602,图10(a)中的步骤S702,图10(b)中的步骤S802,图11(a)中的步骤S901-S902,图11(b)中的步骤S1001-S1002,图12(a)中的步骤S1102,图12(b)中的步骤S1202,图13(a)中的步骤S1301-S1302,图13(b)中的步骤S1401-S1402。
作为另一种可能的产品形态,本申请实施例所述的通信装置可以为上述第二设备,所述第二设备包括处理器201和收发器202。可选的,所述通信设备还包括存储介质203。
处理器201用于执行图7(a)中的步骤S201,图7(b)中的步骤S203,图7(a)中的步骤S202,图7(c)中的步骤S205。收发器202用于执行图7(b)中的步骤S204,图8(a)中的步骤S302,图8(b)中的步骤S402,图9(a)中的步骤S501-S502,图9(b)中的步骤S601-S602,图10(a)中的步骤S702,图10(b)中的步骤S802,图11(a)中的步骤S901-S902,图11(b)中的步骤S1001-S1002,图12(a)中的步骤S1102,图12(b)中的步骤S1202,图13(a)中的步骤S1301-S1302,图13(b)中的步骤S1401-S1402。
作为另一种可能的产品形态,本申请实施例所述的通信装置也可以由芯片来实现。该芯片包括:处理电路201和收发管脚202。可选的,该芯片还可以包括存储介质203。
作为另一种可能的产品形态,本申请实施例所述的通信装置也可以使用下述电路或者器件来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其他适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
可选的,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行前述方法实施例中的通信方法。
可选的,本申请实施例还提供一种包含计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行前述方法实施例中的通信方法。
应理解,所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘)等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
应该理解到,在本申请所提供的几个实施例中所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申 请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    第一设备在主20MHz信道上执行退避,以与第二设备进行数据传输;
    当满足第一预设条件时,所述第一设备从所述主20MHz信道切换到第一信道,所述第一信道是预配置给所述第一设备与所述第二设备之间通信的信道,所述第一信道不包括所述主20MHz信道,所述第一预设条件至少包括:所述主20MHz信道处于繁忙状态。
  2. 根据权利要求1所述的方法,其特征在于,所述主20MHz信道处于繁忙状态,包括以下情形至少一个:
    所述第一设备在所述主20MHz信道上接收到第一重叠基本服务集OBSS帧;或者,
    所述第一设备确定在所述主20MHz信道上的能量检测结果为繁忙状态;或者,
    所述第一设备确定在所述主20MHz信道上的第一网络分配矢量NAV的值大于0。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一预设条件还包括:目标时长大于或等于第一预设时长;其中,所述目标时长为所述第一设备在所述主20MHz信道上接收到的第一OBSS帧的剩余传输时长,或者,所述目标时长为所述主20MHz信道上的第一NAV的剩余计时时长。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述第一信道上执行退避;
    在所述第一信道退避到0后,所述第一设备在所述第一信道上与所述第二设备进行数据传输。
  5. 根据权利要求4所述的方法,其特征在于,当所述第一信道包括多个子信道时,所述第一设备在所述第一信道上执行退避,包括:
    所述第一设备在所述多个子信道中的每一个子信道上执行退避。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若所述第一设备在所述第一信道中的任意一个子信道同步到一个物理帧头,则所述第一设备暂停所述第一信道中所有子信道的退避,并判断所述物理帧头对应的物理帧是否是OBSS帧;
    若所述物理帧头对应的物理帧是OBSS帧,则所述第一设备继续在所述第一信道中的每一个子信道上执行退避;或者,
    若所述物理帧头对应的物理帧不是OBSS帧,则所述第一设备继续暂停所述第一信道中所有子信道的退避,直至所述物理帧头对应的物理帧传输完毕;或者,
    若所述物理帧头对应的物理帧不是OBSS帧,则所述第一设备继续暂停所述第一信道中所有子信道的退避,直至以所述物理帧头对应的物理帧设置的NAV减少到0。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述第一信道中的任意一个子信道上接收到一个物理帧;
    若所述第一设备确定所述物理帧来自所述第一设备所属BSS,则所述第一设备暂停所述第一信道中所有子信道的退避,直至所述物理帧传输完毕;或者,
    若所述第一设备确定所述物理帧来自所述第一设备所属BSS,则所述第一设备暂停所述第一信道中所有子信道的退避,直至以所述物理帧设置的NAV减少到0。
  8. 根据权利要求4所述的方法,其特征在于,当所述第一信道包括多个子信道时,所述第一设备在所述第一信道上执行退避,包括:
    所述第一设备在所述多个子信道中的一个子信道上执行退避;
    当所述子信道处于繁忙状态时,所述第一设备按照预设顺序,切换至所述多个子信道中的另一个子信道上执行退避。
  9. 根据权利要求8所述的方法,其特征在于,所述子信道处于繁忙状态,包括以下情形至少一个:
    所述第一设备在所述子信道上接收到第二OBSS帧;或者,
    所述第一设备没有检测到无线帧,但是所述第一设备确定所述子信道上的能量检测结果为繁忙状态的持续时间大于或等于第二预设时长;或者,
    所述第一设备确定所述子信道上的第二NAV的值大于0。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述子信道上进行能量检测;
    当所述子信道上的能量检测值大于或等于能量检测门限时,所述第一设备确定所述子信道上的能量检测结果为繁忙状态;或者,
    当所述子信道上的能量检测值小于能量检测门限时,所述第一设备确定所述子信道上的能量检测结果为空闲状态;
    其中,所述子信道的能量检测门限设置为小于-62dBm并且大于-82dBm的数值。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一设备从所述主20MHz信道切换到所述第一信道的时长达到目标时长之前,所述第一设备从所述第一信道切换到所述主20MHz信道;其中,所述目标时长为所述第一设备在所述主20MHz信道上接收到的第一OBSS帧的剩余传输时长,或者,所述目标时长为所述主20MHz信道上的第一NAV的剩余计时时长。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    若所述目标时长为所述主20MHz信道上的第一NAV的剩余计时时长,则所述第一设备在所述主20MHz信道上执行盲恢复操作。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第一指示信息;或者,
    所述第一设备向所述第二设备发送第一指示信息;其中,所述第一指示信息用于配置所述第一信道。
  14. 根据权利要求1至12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第一请求信息,所述第一请求信息用于请求协商所述第一信道;
    所述第一设备接收所述第二设备发送的第一响应信息,所述第一响应信息用于响应所述第一请求信息,所述第一响应信息用于确定所述第一信道。
  15. 根据权利要求1至12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第一请求信息,所述第一请求信息用于请求协商所述第一信道;
    所述第一设备向所述第二设备发送第一响应信息,所述第一响应信息用于响应所 述第一请求信息,所述第一响应信息用于确定所述第一信道。
  16. 根据权利要求1至12任一项所述的方法,其特征在于,所述第一信道为以下情形之一:
    所述第一信道为次20MHz信道;或者,
    所述第一信道为80MHz信道中频率最低的20MHz信道;或者,
    所述第一信道为80MHz信道中频率最高的20MHz信道。
  17. 根据权利要求1至16任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二指示信息;或者,
    所述第一设备向所述第二设备发送第二指示信息;
    其中,所述第二指示信息用于指示是否开启第一传输机制,所述第一传输机制用于所述第一设备与所述第二设备在满足所述第一预设条件的情况下从所述主20MHz信道切换到所述信道。
  18. 根据权利要求1至16任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第二请求信息;
    所述第一设备接收所述第二设备发送的第二响应信息;
    其中,所述第二请求信息用于请求开启第一传输机制,所述第二响应信息用于表示同意或者拒绝开启所述第一传输机制,所述第一传输机制用于所述第一设备与所述第二设备在满足所述第一预设条件的情况下从所述主20MHz信道切换到所述信道;或者,
    所述第二请求信息用于请求关闭所述第一传输机制,所述第二响应信息用于表示同意或者拒绝关闭所述第一传输机制。
  19. 根据权利要求1至16任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二请求信息;
    所述第一设备向所述第二设备发送第二响应信息;
    其中,所述第二请求信息用于请求开启第一传输机制,所述第二响应信息用于表示同意或者拒绝开启所述第一传输机制,所述第一传输机制用于所述第一设备与所述第二设备在满足所述第一预设条件的情况下从所述主20MHz信道切换到所述信道;或者,
    所述第二请求信息用于请求关闭所述第一传输机制,所述第二响应信息用于表示同意或者拒绝关闭所述第一传输机制。
  20. 根据权利要求1至19任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第三指示信息;或者,
    所述第一设备向所述第二设备发送第三指示信息;
    其中,所述第三指示信息用于指示所述第一信道上传输的数据的业务类型。
  21. 根据权利要求1至19任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第三请求信息,所述第三请求信息用于请求协商所述第一信道上传输的数据的业务类型;
    所述第一设备接收所述第二设备发送的第三响应信息,所述第三响应信息用于响应所述第三请求信息,所述第三响应信息用于确定所述第一信道上传输的数据的业务 类型。
  22. 根据权利要求1至19任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第三请求信息,所述第三请求信息用于请求协商所述第一信道上传输的数据的业务类型;
    所述第一设备向所述第二设备发送第三响应信息,所述第三响应信息用于响应所述第三请求信息,所述第三响应信息用于确定所述第一信道上传输的数据的业务类型。
  23. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求1至22中任一项所涉及的方法中的各个步骤的单元。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行权利要求1至22任一项所述的方法。
  25. 一种芯片,其特征在于,所述芯片包括处理电路和收发管脚;所述处理电路用于执行权利要求1至22中任一项所涉及的方法中的处理操作,所述收发管脚用于执行权利要求1至22中任一项所涉及的方法中的通信操作。
  26. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1至22任一项所述的方法。
PCT/CN2021/111010 2020-10-19 2021-08-05 数据传输方法及装置 WO2022083233A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/302,051 US20230262785A1 (en) 2020-10-19 2023-04-18 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011120199.3A CN114390597A (zh) 2020-10-19 2020-10-19 数据传输方法及装置
CN202011120199.3 2020-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/302,051 Continuation US20230262785A1 (en) 2020-10-19 2023-04-18 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022083233A1 true WO2022083233A1 (zh) 2022-04-28

Family

ID=81193378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111010 WO2022083233A1 (zh) 2020-10-19 2021-08-05 数据传输方法及装置

Country Status (3)

Country Link
US (1) US20230262785A1 (zh)
CN (1) CN114390597A (zh)
WO (1) WO2022083233A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140355556A1 (en) * 2013-06-03 2014-12-04 Qualcomm Incorporated Methods and apparatus for clear channel assessment
CN105682247A (zh) * 2016-01-14 2016-06-15 西安电子科技大学 基于802.11ac协议中的介质访问控制方法
CN106559900A (zh) * 2016-10-31 2017-04-05 西北工业大学 一种基于非对称带宽的多信道多址接入方法
CN107251638A (zh) * 2015-02-19 2017-10-13 高通股份有限公司 用于无线通信网络中的多站占驻信道的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140355556A1 (en) * 2013-06-03 2014-12-04 Qualcomm Incorporated Methods and apparatus for clear channel assessment
CN107251638A (zh) * 2015-02-19 2017-10-13 高通股份有限公司 用于无线通信网络中的多站占驻信道的系统和方法
CN105682247A (zh) * 2016-01-14 2016-06-15 西安电子科技大学 基于802.11ac协议中的介质访问控制方法
CN106559900A (zh) * 2016-10-31 2017-04-05 西北工业大学 一种基于非对称带宽的多信道多址接入方法

Also Published As

Publication number Publication date
US20230262785A1 (en) 2023-08-17
CN114390597A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
EP3968724A1 (en) Frame transmission method and device using multiple random backoff operation in broadband wireless communication network
US10194468B2 (en) Wireless channel reservation
US9854603B2 (en) Channel access method for very high throughput (VHT) wireless local access network system
US8989158B2 (en) Channel access method for very high throughput (VHT) wireless local access network system and station supporting the channel access method
EP2962508B1 (en) Methods and apparatuses for differentiated fast initial link setup
WO2022057901A1 (zh) 无线局域网中的信道接入方法及相关装置
TW201417607A (zh) 用於無線區域網路系統中之通道存取的方法及設備
JP7472257B2 (ja) 通信方法および装置
WO2015109890A1 (zh) 竞争信道的方法和装置
WO2021254234A1 (zh) 信道竞争方法及相关装置
WO2014183401A1 (zh) 信道接入方法和接入设备
KR20190077536A (ko) 웨이크업 프레임 전송 방법, 및 노드 웨이크업 후에 제1 프레임을 전송하기 위한 방법, 디바이스 및 장비
RU2635868C2 (ru) Способ и устройство для выполнения доступа в системе беспроводной lan
CN116744468B (zh) 多链路设备的信道接入方法及相关装置
Wang et al. Restricted access window based hidden node problem mitigating algorithm in IEEE 802.11 ah networks
WO2022083233A1 (zh) 数据传输方法及装置
WO2022033283A1 (zh) 一种信道竞争方法及相关装置
CN106488580B (zh) 竞争接入方法、竞争接入装置、站点及竞争接入系统
Zhao et al. A MAC protocol of cognitive networks based on IEEE 802.11
WO2017036258A1 (zh) 竞争接入方法、竞争接入装置、站点及竞争接入系统
CN114080050B (zh) 一种信道竞争方法及相关装置
WO2024179401A1 (zh) 通信方法和通信装置
WO2021139793A1 (zh) 信道接入方法及相关产品
US20240097838A1 (en) Primary and non-primary subchannels in a basic service set of a wireless network
WO2016131191A1 (zh) 一种信道接入方法及信道接入装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881652

Country of ref document: EP

Kind code of ref document: A1