WO2022083102A1 - 一种低铝高钛焊丝钢及其冶炼方法 - Google Patents

一种低铝高钛焊丝钢及其冶炼方法 Download PDF

Info

Publication number
WO2022083102A1
WO2022083102A1 PCT/CN2021/091368 CN2021091368W WO2022083102A1 WO 2022083102 A1 WO2022083102 A1 WO 2022083102A1 CN 2021091368 W CN2021091368 W CN 2021091368W WO 2022083102 A1 WO2022083102 A1 WO 2022083102A1
Authority
WO
WIPO (PCT)
Prior art keywords
refining
content
aluminum
titanium
steel
Prior art date
Application number
PCT/CN2021/091368
Other languages
English (en)
French (fr)
Inventor
肖丹平
张华�
李孟雄
Original Assignee
江苏永钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏永钢集团有限公司 filed Critical 江苏永钢集团有限公司
Priority to GB2113700.5A priority Critical patent/GB2610653B/en
Publication of WO2022083102A1 publication Critical patent/WO2022083102A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the invention belongs to the technical field of iron and steel smelting, in particular to a low-aluminum and high-titanium welding wire steel and a smelting method thereof.
  • Welding wire steel has very strict requirements on composition, and it is difficult to control smelting. Titanium-containing welding steel is based on ordinary welding steel by adding titanium and other elements, which can reduce the spatter during the welding process. The weld metal has good plasticity and toughness, the arc is stable and soft, and the weld is beautiful.
  • the smelting process mainly has the following problems: 1) Lower carbon content Control, the addition of alloys in converter tapping and refining and heating will increase the carbon content of molten steel, and the carbon content of the finished product needs to be controlled to 0.05-0.07%; 2)
  • the titanium element has strong metallic properties, and is easily oxidized during the smelting process, and the yield of titanium is low.
  • the molten steel is only deoxidized by silicon-manganese, and it is difficult to control the titanium content stably; 3) Titanium is very easy to oxidize, and the nozzle and plug rod are easy to accumulate titanium oxide inclusions during the continuous casting process It can not be produced continuously.
  • the welding wire steel with a titanium content of 0.20% is mainly produced by die casting. above the furnace.
  • CN103045946A (published date: 20130417) "A kind of steel for high titanium alloy welding wire and its preparation method", the method adds rare earth elements, suppresses the oxidation of titanium in the welding wire steel during continuous casting and welding, controls the titanium content of the finished product to be ⁇ 0.18%, and the aluminum Content ⁇ 0.10%.
  • rare earth elements are added, and the price is high, which increases the cost of steelmaking.
  • the titanium content of the welding wire steel produced by this method is not high at 0.15-0.18%; the aluminum and iron are deeply deoxidized in the tapping process, and the aluminum content in the product process and finished product is relatively high. , unable to achieve low aluminum control.
  • the present invention provides a low-aluminum and high-titanium welding wire steel and a smelting method thereof, which is a simple and easy-to-control smelting method, realizes stable control of the composition of the low-aluminum and high-titanium welding wire steel, and greatly improves the low The performance of continuous casting of aluminum high titanium wire steel reduces production costs.
  • a smelting method for low-aluminum and high-titanium welding wire steel comprising the following steps:
  • Step S1 converter tapping deoxidation and alloying: control the carbon content in the molten steel to be ⁇ 0.04% at the end point of converter smelting, and the molten steel temperature to be ⁇ 1600°C.
  • the converter is tapping, add high-silicon manganese and high-purity ferrosilicon in sequence for deoxidation and alloying, and then sequentially Lime and fluorite are added; the carbon content of the high-silicon silico-manganese is ⁇ 0.3%, the silicon content is 25.0-28.0%, and the manganese content is 60.0-67.0%; the aluminum content of the high-purity ferrosilicon is ⁇ 0.03%, and the carbon content is ⁇ 0.03%. ⁇ 0.05%, silicon content ⁇ 75.0%; after the steel is finished, the silicon content in the steel is controlled at 0.70-0.80%, the manganese content is controlled at 1.35-1.45%, and the total aluminum content is controlled at ⁇ 0.004%;
  • Step S2 LF refining: in the early stage of refining, lime and fluorite are added to the LF furnace according to the fluidity of the refining slag to ensure that the refining slag has good fluidity; calcium carbide and ferrosilicon powder are added in multiple batches to deoxidize the slag surface when the refining slag is energized for the first time.
  • the flow of argon gas in the process is controlled at 120-180NL/min; after electrifying for a period of time, preferably, sampling is performed for 12-17 minutes after electrification, and high-purity ferrosilicon and metal manganese are added to adjust the composition to the target value according to the test results; the metal manganese The carbon content is less than or equal to 0.05%, and the manganese content is greater than or equal to 96.5%; after the alloy is added to the end of refining, ferrosilicon powder is added to maintain the reducibility of the refining slag, and the argon gas flow is controlled at 40-80NL/min; Wire to make the titanium content reach the target value, and supplement the sulfur wire according to the test results and then perform soft blowing.
  • the argon flow is controlled at 15-25NL/min. After soft blowing for 5-10min The aluminum content is less than or equal to 0.6%, and the titanium content is 65.0-75.0%; the ladle is poured within 15-20 minutes after feeding the titanium-iron wire, and the superheat of the continuous pouring furnace is 35-50 °C to ensure the pouring performance of the molten steel.
  • the total amount of lime added during the converter tapping is 7.0-8.0 kg per ton of molten steel, and the total amount of fluorite is 2.0-2.5 kg per ton of molten steel.
  • step S1 high silicon manganese and high-purity ferrosilicon are sequentially added for deoxidation and alloying when 1/3 of the converter is tapped, and then lime and fluorite are added in sequence to prevent premature alloying from forming at the bottom. yuan.
  • the total amount of lime added during refining is 0-2.0 kg per ton of molten steel, and the total amount of fluorite is 0-1.0 kg per ton of molten steel.
  • step S2 sampling is performed after 15 minutes of electrification.
  • the slag-forming time in the early stage of refining is less than or equal to 15min
  • the total amount of calcium carbide added in the first power-on refining is 0.2-0.4 kg per ton of molten steel
  • the total amount of ferrosilicon powder is 1.2-1.6 kg per ton of molten steel.
  • the total amount of ferrosilicon powder added after the alloy is added to the end of refining is 0.4 to 0.6 kg per ton of molten steel.
  • the total amount of ferrosilicon powder added after the alloy is added to the end of refining in the step S2 and the step S2 is 0.4-0.6 kg per ton of molten steel.
  • a low-aluminum and high-titanium welding wire steel obtained according to the low-aluminum and high-titanium welding wire steel smelting method obtained according to the low-aluminum and high-titanium welding wire steel smelting method.
  • the beneficial effects of the present invention are: the smelting process of the present invention can stably control the carbon content at 0.05-0.07%, the aluminum content at ⁇ 0.007%, the sulfur content at 0.008-0.012%, and the titanium content at 0.008-0.012%.
  • the stability is controlled at 0.18-0.23%; the present invention optimizes the feeding method and timing of the iron-titanium wire by feeding the iron-titanium wire at one time in the later stage of refining, and solves the problem of nodules of the nozzle and the stopper rod, and the number of continuous pouring furnaces can reach 16 furnaces,
  • the oxygen content of the rolled material is controlled to ⁇ 20ppm, and the average oxygen content is 15ppm.
  • the invention is a smelting method with simple process and easy control, realizes stable control of the composition of the low-aluminum and high-titanium welding wire steel, greatly improves the continuous casting performance of the low-aluminum and high-titanium welding wire steel, and reduces the production cost.
  • What the present invention needs is the conventional equipment for converter smelting high-quality steel, which further reduces the production cost.
  • a smelting method for low-aluminum and high-titanium welding wire steel comprising the following steps:
  • the chemical composition of the obtained low-aluminum and high-titanium welding wire steel is: C: 0.07%, Si: 0.88%, Mn: 1.54%, P: 0.009%, S: 0.010%, Ti: 0.18%, Al: 0.005%, Ca: 0.0002%, the balance is Fe and inevitable impurities; the oxygen content of the rolled material is 18ppm, and the number of continuous casting furnaces in this group has reached 15 furnaces.
  • a smelting method for low-aluminum and high-titanium welding wire steel comprising the following steps:
  • LF refining process add 114kg lime during the refining process, add 20kg calcium carbide and 60kg ferrosilicon powder in multiple batches to the slag surface during the first electrification process, and control the flow of argon at 120-180NL/min.
  • the exit temperature is 1580 °C
  • 18 min after feeding the titanium iron wire is poured
  • the 8th furnace is continuously poured
  • the superheat degree is 40 °C.
  • the chemical composition of the obtained low-aluminum and high-titanium welding wire steel is: C: 0.06%, Si: 0.87%, Mn: 1.52%, P: 0.015%, S: 0.009%, Ti: 0.22%, Al: 0.005%, Ca: 0.0003%, the balance is Fe and inevitable impurities; the oxygen content of the rolled material is 15ppm, and the number of continuous casting furnaces in this group has reached 16 furnaces.
  • a smelting method for low-aluminum and high-titanium welding wire steel comprising the following steps:
  • LF refining process 159.87kg lime is added during the refining process, 20kg calcium carbide and 70kg ferrosilicon powder are added in multiple batches of slag surface deoxidation during the first electrification process, and the argon gas flow is controlled at 120-180NL/min during the process, and the electricity is electrified.
  • the chemical composition of the obtained low-aluminum and high-titanium welding wire steel is: C: 0.05%, Si: 0.82%, Mn: 1.51%, P: 0.014%, S: 0.008%, Ti: 0.23%, Al: 0.006%, Ca: 0.0003%, the balance is Fe and inevitable impurities; the oxygen content of the rolled material is 18ppm, and the number of continuous pouring furnaces in this group has reached 16 furnaces.
  • a smelting method for low-aluminum and high-titanium welding wire steel comprising the following steps:
  • LF refining process add 106kg lime and 36kg fluorite during refining, add 20kg calcium carbide and 60kg ferrosilicon powder to slag surface deoxidation in multiple batches during the first electrification process, and control the flow of argon at 120-180NL/ min, energize for 15 minutes, take samples for testing, and add 10kg of high-purity ferrosilicon and 15kg of metal manganese to adjust the composition to the target value according to the test results; after the alloy is added, 40kg of ferrosilicon powder is added to the end of refining to maintain the reducibility of the refining slag, and argon gas is used during the process.
  • the flow rate is controlled at 40-80NL/min; after the refining, 840 meters of titanium iron wire is fed at one time to make the titanium content reach the target value, and then soft blowing is performed. 15 ⁇ 25NL/min, after soft blowing for 8 minutes, go to the continuous casting machine, the exit temperature is 1592 °C, 20 minutes after feeding the titanium iron wire, the ladle is poured, and the 9th furnace is continuously poured, and the superheat degree is 50 °C.
  • the chemical composition of the obtained low-aluminum and high-titanium welding wire steel is: C: 0.06%, Si: 0.89%, Mn: 1.50%, P: 0.013%, S: 0.008%, Ti: 0.22%, Al: 0.007%, Ca: 0.0003%, the balance is Fe and inevitable impurities; the oxygen content of the rolled material is 14ppm, and the number of continuous casting furnaces in this group has reached 15 furnaces.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

本发明提供一种低铝高钛焊丝钢及其冶炼方法,包括以下步骤:步骤S1、转炉出钢脱氧合金化:转炉出钢时依次加入高硅硅锰、高纯硅铁进行脱氧合金化,再依次加入石灰、萤石;步骤S2、LF精炼:LF炉根据精炼渣流动性加入石灰和萤石;精炼第一次通电分多批次加入电石和硅铁粉进行渣面脱氧;通电一段时间后取样化验,并根据化验结果加入高纯硅铁和金属锰调整成分至目标值;合金加入后至精炼结束加入硅铁粉保持精炼渣还原性;精炼后期,一次性喂入钛铁线使钛含量至目标值,并根据化验结果硫含量补位硫磺线后进行软吹后上机连铸。本发明实现低铝高钛焊丝钢成分的稳定控制,同时大幅度提高低铝高钛焊丝钢的连续浇注的性能,降低生产成本。

Description

一种低铝高钛焊丝钢及其冶炼方法 技术领域
本发明属于钢铁冶炼技术领域,尤其涉及一种低铝高钛焊丝钢及其冶炼方法。
背景技术
随着钢铁生产企业的下道用户对钢产品的质量要求不断提高,对焊丝的质量要求也随之提高。焊丝钢对成分要求非常严格,冶炼控制难度大。含钛焊接用钢是在普通焊接用钢的基础上加入钛和其他一些元素,可以减少焊接过程中的飞溅,焊缝金属塑性、韧性良好,电弧稳定柔和,焊缝成形美观。
含钛焊丝钢钛含量越高,焊丝的焊接性能也越好,但冶炼难度也随之增加,特别是在低碳低铝的情况下,冶炼过程主要存在下列问题:1)较低的碳含量控制,转炉出钢加入合金及精炼升温均会增加钢水的碳含量,成品碳含量需控制到0.05~0.07%;2)钛元素金属性较强,冶炼过程易被氧化,钛的收得率低且不稳定,特别是在低铝控制的情况下,钢水仅使用硅锰脱氧,很难稳定控制钛含量;3)钛元素极易氧化,在连铸过程中水口及塞棒容易聚集氧化钛夹杂物,造成水口、塞棒结瘤,无法连续生产,目前钛含量达到0.20%的焊丝钢主要采用模铸生产,连铸生产的浇注性很差,一般为2-4炉,很难稳定达到5炉以上。
CN103045946A(公开日:20130417)《一种高钛合金焊丝用钢及其制备方法》,该方法加入稀土元素,抑制了焊丝钢在连铸和焊接时钛氧化,控制成品钛含量≤0.18%,铝含量≤0.10%。该方法加入稀土元素,价格较高增加了炼钢的成本,同时该方法生产的焊丝钢钛含量不高为0.15~0.18%;出钢过程加入铝铁深脱氧,产品过程及成品铝含量较高,无法做到低铝控制。
发明内容
针对上述技术问题,本发明提供一种低铝高钛焊丝钢及其冶炼方法,是一种工艺简单、易控的冶炼方法,实现低铝高钛焊丝钢成分的稳定控制,同时大幅度提高低铝高钛焊丝钢的连续浇注的性能,降低生产成本。
本发明通过以下技术方案实现:一种低铝高钛焊丝钢冶炼方法,包括以下步骤:
步骤S1、转炉出钢脱氧合金化:转炉冶炼终点控制钢水中碳含量≤0.04%,钢水 温度≥1600℃,转炉出钢时依次加入高硅硅锰、高纯硅铁进行脱氧合金化,再依次加入石灰、萤石;所述高硅硅锰的碳含量≤0.3%,硅含量为25.0~28.0%,锰含量为60.0~67.0%;所述高纯硅铁的铝含量≤0.03%,碳含量≤0.05%,硅含量≥75.0%;出完钢后,钢中的硅含量控制在0.70~0.80%,锰含量控制在1.35~1.45%,全铝含量控制≤0.004%;
步骤S2、LF精炼:精炼前期LF炉根据精炼渣流动性加入石灰和萤石,确保精炼渣具有良好的流动性;精炼第一次通电分多批次加入电石和硅铁粉进行渣面脱氧,过程氩气流量控制在120~180NL/min;通电一段时间后,优选的,通电12-17分钟取样化验,并根据化验结果加入高纯硅铁和金属锰调整成分至目标值;所述金属锰的碳含量≤0.05%,锰含量≥96.5%;合金加入后至精炼结束加入硅铁粉保持精炼渣还原性,过程氩气流量控制在40~80NL/min;精炼后期,一次性喂入钛铁线使钛含量至目标值,并根据化验结果硫含量补位硫磺线后进行软吹,氩气流量控制在15~25NL/min,软吹5~10min后上机连铸,所述钛铁线的铝含量≤0.6%,钛含量为65.0~75.0%;在喂入钛铁线后15-20min内大包开浇,连浇炉次过热度为35~50℃,以保证钢水的浇注性能。
上述方案中,所述步骤S1中,转炉出钢时加入的石灰总量为每吨钢水7.0~8.0kg,萤石总量为每吨钢水2.0~2.5kg。
上述方案中,所述步骤S1中,转炉出钢1/3时依次加入高硅硅锰、高纯硅铁进行脱氧合金化,再依次加入石灰、萤石,防止加入过早合金辅料在底部结块。
上述方案中,所述步骤S2中,精炼时加入的石灰总量为每吨钢水0~2.0kg,萤石总量为每吨钢水0~1.0kg。
上述方案中,所述步骤S2中,通电15分钟后取样化验。
上述方案中,所述步骤S2中,精炼前期成渣时间≤15min,精炼第一次通电加入的电石总量为每吨钢水0.2~0.4kg,硅铁粉总量为每吨钢水1.2~1.6kg;合金加入后至精炼结束加入的硅铁粉总量为每吨钢水0.4~0.6kg。
上述方案中,所述步骤S2所述步骤S2中合金加入后至精炼结束加入的硅铁粉总量为每吨钢水0.4~0.6kg。
一种根据所述低铝高钛焊丝钢冶炼方法得到的低铝高钛焊丝钢,所述低 铝高钛焊丝钢的化学成分按照重量百分比计算:C:0.05~0.07%,Si:0.80~0.90%,Mn:1.48~1.55%,P≤0.018%,S:0.008~0.012%,Ti:0.18~0.23%,Al≤0.007%,Ca≤0.0010%,余量为Fe和不可避免的杂质。
与现有技术相比,本发明的有益效果是:本发明的冶炼工艺可以将碳含量稳定控制在0.05~0.07%,铝含量稳定控制≤0.007%,硫含量稳定控制在0.008~0.012%,钛稳定控制在0.18~0.23%;本发明通过精炼后期一次性喂入钛铁线优化钛铁线喂入方式及时机,解决了水口和塞棒结瘤的问题,连浇炉数可达到16炉,同时轧材氧含量控制到≤20ppm,平均氧含量为15ppm。本发明是一种工艺简单、易控的冶炼方法,实现低铝高钛焊丝钢成分的稳定控制,同时大幅度提高低铝高钛焊丝钢的连续浇注的性能,降低生产成本。本发明所需要的均为转炉冶炼优钢常规设备,进一步降低生产成本。
具体实施方式
下面详细描述本发明的实施例。
实施例1:
一种低铝高钛焊丝钢冶炼方法,包括以下步骤:
1)50t顶底复吹转炉出钢:钢水量为54.3t,转炉终点C:0.035%,P:0.008%,终点温度:1623℃;出钢1/3后依次加入1167kg高硅硅锰,178kg高纯硅铁,以及402g石灰,103kg萤石;出钢时间2分25秒,出钢过程保持氩气开启;出钢完成后钢中的硅含量为0.77%,锰含量为1.40%,铝含量为0.0019%。
2)LF精炼工序过程:精炼过程补加98kg石灰,精炼第一次通电过程中渣面脱氧多批次加入20kg电石,60kg硅铁粉,过程氩气流量控制在120~180NL/min,通电15分钟后取样化验,并根据化验结果补加42kg高纯硅铁和75kg金属锰调整成分至目标值;合金加入后至精炼结束加入30kg硅铁粉保持精炼渣还原性,过程氩气流量控制在40~80NL/min;精炼结束后,一次性喂入770米钛铁线使钛含量至目标值,后进行软吹,根据化验结果再补喂13米硫磺线,氩气流量控制在15~25NL/min,软吹7min后上连铸机,出站温度为1577℃,喂入钛铁线后15min大包开浇,连浇第12炉,过热度为35℃。
3)得到的低铝高钛焊丝钢的化学成分按重量百分比为:C:0.07%,Si:0.88%,Mn:1.54%,P:0.009%,S:0.010%,Ti:0.18%,Al:0.005%,Ca: 0.0002%,余量为Fe和不可避免的杂质;轧材氧含量为18ppm,并且本组连浇炉数达到了15炉。
实施例2:
一种低铝高钛焊丝钢冶炼方法,包括以下步骤:
1)50t顶底复吹转炉出钢:钢水量为55.55t,转炉终点C:0.026%,P:0.014%,终点温度:1624℃;出钢1/3后依次加入1178kg高硅硅锰,164kg高纯硅铁,以及402kg石灰,102kg萤石;出钢时间2分17秒,出钢过程保持氩气开启;出钢完成后钢中的硅含量为0.75%,锰含量为1.39%,铝含量为0.0026%。
2)LF精炼工序过程:精炼过程补加114kg石灰,精炼第一次通电过程中渣面脱氧多批次加入20kg电石,60kg硅铁粉,过程氩气流量控制在120~180NL/min,通电15分钟后取样化验,并根据化验结果补加20kg高纯硅铁和55kg金属锰调整成分至目标值;合金加入后至精炼结束加入30kg硅铁粉保持精炼渣还原性,过程氩气流量控制在40~80NL/min;精炼结束后,一次性喂入906米钛铁线使钛含量至目标值,后进行软吹,根据化验结果再补喂25米硫磺线,氩气流量控制在15~25NL/min,软吹9min后上连铸机,出站温度为1580℃,喂入钛铁线后18min大包开浇,连浇第8炉,过热度为40℃。
3)得到的低铝高钛焊丝钢的化学成分按重量百分比为:C:0.06%,Si:0.87%,Mn:1.52%,P:0.015%,S:0.009%,Ti:0.22%,Al:0.005%,Ca:0.0003%,余量为Fe和不可避免的杂质;轧材氧含量为15ppm,并且本组连浇炉数达到了16炉。
实施例3:
一种低铝高钛焊丝钢冶炼方法,包括以下步骤:
1)50t顶底复吹转炉出钢:钢水量为54.90t,转炉终点C:0.029%,P:0.012%,终点温度:1633℃;出钢1/3后依次加入1164kg高硅硅锰,169kg高纯硅铁,以及410kg石灰,103kg萤石;出钢时间2分16秒,出钢过程保持氩气开启;出钢完成后钢中的硅含量为0.71%,锰含量为1.35%,铝含量为0.0035%。
2)LF精炼工序过程:精炼过程补加159.87kg石灰,精炼第一次通电过程中渣面脱氧多批次加入20kg电石,70kg硅铁粉,过程氩气流量控制在120~180NL/min,通电15分钟后取样化验,并根据化验结果补加45kg高纯硅铁和70kg 金属锰调整成分至目标值;合金加入后至精炼结束加入30kg硅铁粉保持精炼渣还原性,过程氩气流量控制在40~80NL/min;精炼结束后,一次性喂入900米钛铁线使钛含量至目标值,后进行软吹,根据化验结果再补喂20米硫磺线,氩气流量控制在15~25NL/min,软吹8min后上连铸机,出站温度为1588℃,喂入钛铁线后19min大包开浇,连浇第3炉,过热度为48℃。
3)得到的低铝高钛焊丝钢的化学成分按重量百分比为:C:0.05%,Si:0.82%,Mn:1.51%,P:0.014%,S:0.008%,Ti:0.23%,Al:0.006%,Ca:0.0003%,余量为Fe和不可避免的杂质;轧材氧含量为18ppm,并且本组连浇炉数达到了16炉。
实施例4:
一种低铝高钛焊丝钢冶炼方法,包括以下步骤:
1)50t顶底复吹转炉出钢:钢水量为51.2t,转炉终点C:0.031%,P:0.012%,终点温度:1623℃;出钢1/3后依次加入1163kg高硅硅锰,196kg高纯硅铁,以及402kg石灰,101kg萤石;出钢时间3分钟,出钢过程保持氩气开启;出钢完成后钢中的硅含量为0.80%,锰含量为1.45%,铝含量为0.0031%。
2)LF精炼工序过程:精炼过程补加106kg石灰,36kg萤石,精炼第一次通电过程中渣面脱氧多批次加入20kg电石,60kg硅铁粉,过程氩气流量控制在120~180NL/min,通电15分钟后取样化验,并根据化验结果补加10kg高纯硅铁和15kg金属锰调整成分至目标值;合金加入后至精炼结束加入40kg硅铁粉保持精炼渣还原性,过程氩气流量控制在40~80NL/min;精炼结束后,一次性喂入840米钛铁线使钛含量至目标值,后进行软吹,根据化验结果再补喂23米硫磺线,氩气流量控制在15~25NL/min,软吹8min后上连铸机,出站温度为1592℃,喂入钛铁线后20min大包开浇,连浇第9炉,过热度为50℃。
3)得到的低铝高钛焊丝钢的化学成分按重量百分比为:C:0.06%,Si:0.89%,Mn:1.50%,P:0.013%,S:0.008%,Ti:0.22%,Al:0.007%,Ca:0.0003%,余量为Fe和不可避免的杂质;轧材氧含量为14ppm,并且本组连浇炉数达到了15炉。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域 技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种低铝高钛焊丝钢冶炼方法,其特征在于,所述低铝高钛焊丝钢的化学成分按照重量百分比计算:C:0.05~0.07%,Si:0.80~0.90%,Mn:1.48~1.55%,P≤0.018%,S:0.008~0.012%,Ti:0.18~0.23%,Al≤0.007%,Ca≤0.0010%,余量为Fe和不可避免的杂质;该方法包括以下步骤:
    步骤S1、转炉出钢脱氧合金化:
    转炉冶炼终点控制钢水中碳含量≤0.04%,钢水温度≥1600℃,转炉出钢时依次加入高硅硅锰、高纯硅铁进行脱氧合金化,再依次加入石灰、萤石;所述高硅硅锰的碳含量≤0.3%,硅含量为25.0~28.0%,锰含量为60.0~67.0%;所述高纯硅铁的铝含量≤0.03%,碳含量≤0.05%,硅含量≥75.0%;转炉出钢时加入的石灰总量为每吨钢水7.0~8.0kg,萤石总量为每吨钢水2.0~2.5kg;
    出完钢后,钢中的硅含量控制在0.70~0.80%,锰含量控制在1.35~1.45%,全铝含量控制≤0.004%;
    步骤S2、LF精炼:
    精炼前期LF炉根据精炼渣流动性加入石灰和萤石;精炼前期成渣时间≤15min,精炼第一次通电分多批次加入电石和硅铁粉进行渣面脱氧,精炼第一次通电加入的电石总量为每吨钢水0.2~0.4kg,硅铁粉总量为每吨钢水1.2~1.6kg,过程氩气流量控制在120~180NL/min;通电12-17分钟后取样化验,并根据化验结果加入高纯硅铁和金属锰调整成分至目标值;所述金属锰的碳含量≤0.05%,锰含量≥96.5%;合金加入后至精炼结束加入硅铁粉保持精炼渣还原性,过程氩气流量控制在40~80NL/min;
    精炼后期,一次性喂入钛铁线使钛含量至目标值,并根据化验结果硫含量补位硫磺线后进行软吹,氩气流量控制在15~25NL/min,软吹5~10min后上机连铸;所述钛铁线的铝含量≤0.6%,钛含量为65.0~75.0%;在喂入钛铁线后15-20min内大包开浇,连浇炉次过热度为35~50℃。
  2. 根据权利要求1所述的低铝高钛焊丝钢冶炼方法,其特征在于,所述步骤S1中,转炉出钢1/3时依次加入高硅硅锰、高纯硅铁进行脱氧合金化,再依次加入石灰、萤石。
  3. 根据权利要求1所述的低铝高钛焊丝钢冶炼方法,其特征在于,所述步骤S2中,精炼时加入的石灰总量为每吨钢水0~2.0kg,萤石总量为每吨钢水0~1.0kg。
  4. 根据权利要求1所述的低铝高钛焊丝钢冶炼方法,其特征在于,所述步骤S2中,通电15分钟后取样化验。
  5. 根据权利要求1所的述低铝高钛焊丝钢冶炼方法,其特征在于,所述步骤S2中合金加入 后至精炼结束加入的硅铁粉总量为每吨钢水0.4~0.6kg。
PCT/CN2021/091368 2020-10-22 2021-04-30 一种低铝高钛焊丝钢及其冶炼方法 WO2022083102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2113700.5A GB2610653B (en) 2020-10-22 2021-04-30 Low-aluminum and high-titanium welding wire steel and smelting process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011136088.1 2020-10-22
CN202011136088.1A CN112011718B (zh) 2020-10-22 2020-10-22 一种低铝高钛焊丝钢及其冶炼方法

Publications (1)

Publication Number Publication Date
WO2022083102A1 true WO2022083102A1 (zh) 2022-04-28

Family

ID=73528009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091368 WO2022083102A1 (zh) 2020-10-22 2021-04-30 一种低铝高钛焊丝钢及其冶炼方法

Country Status (2)

Country Link
CN (1) CN112011718B (zh)
WO (1) WO2022083102A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007821A (zh) * 2022-05-07 2022-09-06 建龙北满特殊钢有限责任公司 一种大方坯GCr15SiMn轴承钢及其冶炼方法
CN115404395A (zh) * 2022-08-29 2022-11-29 包头钢铁(集团)有限责任公司 一种小方坯工艺生产高锰、高钛桶装埋弧焊丝钢冶炼制备方法
CN115466906A (zh) * 2022-09-09 2022-12-13 中天钢铁集团有限公司 一种低渣量的轴承钢冶炼工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011718B (zh) * 2020-10-22 2021-01-12 江苏永钢集团有限公司 一种低铝高钛焊丝钢及其冶炼方法
CN114990286A (zh) * 2022-05-11 2022-09-02 包头钢铁(集团)有限责任公司 一种降低焊接飞溅的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049916A (ko) * 2000-12-20 2002-06-26 이구택 용접구조용 강의 제조방법
CN104831014A (zh) * 2015-03-31 2015-08-12 青岛钢铁控股集团有限责任公司 一种高钛特种焊丝钢的冶炼方法
CN110438286A (zh) * 2019-09-04 2019-11-12 鞍钢股份有限公司 一种控制焊丝钢连铸坯表面裂纹方法
CN112011718A (zh) * 2020-10-22 2020-12-01 江苏永钢集团有限公司 一种低铝高钛焊丝钢及其冶炼方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104259414A (zh) * 2014-09-16 2015-01-07 河北钢铁股份有限公司唐山分公司 一种减轻连铸水口结瘤的含钛焊丝用钢生产方法
CN110343807A (zh) * 2018-04-02 2019-10-18 潍坊特钢集团有限公司 一种er50-6e系列低碳钢冶炼脱氧工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049916A (ko) * 2000-12-20 2002-06-26 이구택 용접구조용 강의 제조방법
CN104831014A (zh) * 2015-03-31 2015-08-12 青岛钢铁控股集团有限责任公司 一种高钛特种焊丝钢的冶炼方法
CN110438286A (zh) * 2019-09-04 2019-11-12 鞍钢股份有限公司 一种控制焊丝钢连铸坯表面裂纹方法
CN112011718A (zh) * 2020-10-22 2020-12-01 江苏永钢集团有限公司 一种低铝高钛焊丝钢及其冶炼方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007821A (zh) * 2022-05-07 2022-09-06 建龙北满特殊钢有限责任公司 一种大方坯GCr15SiMn轴承钢及其冶炼方法
CN115404395A (zh) * 2022-08-29 2022-11-29 包头钢铁(集团)有限责任公司 一种小方坯工艺生产高锰、高钛桶装埋弧焊丝钢冶炼制备方法
CN115466906A (zh) * 2022-09-09 2022-12-13 中天钢铁集团有限公司 一种低渣量的轴承钢冶炼工艺
CN115466906B (zh) * 2022-09-09 2023-10-03 中天钢铁集团有限公司 一种低渣量的轴承钢冶炼工艺

Also Published As

Publication number Publication date
CN112011718A (zh) 2020-12-01
CN112011718B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2022083102A1 (zh) 一种低铝高钛焊丝钢及其冶炼方法
CN109706391B (zh) 一种60公斤级高强焊丝用热轧盘条及其生产方法
WO2020093710A1 (zh) 一种高纯净度抗酸管线钢冶炼工艺
JP5529341B2 (ja) 超低炭素,極低Tiのアルミニウムシリコンキルド鋼の制御方法
CN104962800B (zh) 一种不锈钢材料的冶炼方法
CN101121987B (zh) 含钛奥氏体不锈钢的冶炼方法
CN103255354B (zh) 一种复合微合金化焊丝用钢及其制备方法
CN110541114B (zh) 一种高氮高硫低铝钢的冶炼方法
CN104233064A (zh) 一种170MPa级冷轧加磷IF高强钢及其生产方法
CN109706404B (zh) 一种含钛碳素钢及其生产方法
CN102199682A (zh) 一种半钢炼钢的方法
GB2610653A (en) Low-aluminum and high-titanium welding wire steel and smelting method therefor.
CN103642979A (zh) 一种硅铝合金使用方法
CN113430334B (zh) 一种提高200系不锈钢废钢比的gor冶炼方法
CN105603154B (zh) 提高tds2205双相不锈钢钢质纯净度的冶炼方法
CN110016618A (zh) 高硅含量焊接用钢及其制备方法
CN112593138A (zh) 一种高强度钒钛钢筋生产工艺
CN112626425A (zh) 一种控制316l自熔焊材焊缝浮渣的方法
CN115351458B (zh) 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法
CN104561733B (zh) 一种高合金不锈钢的冶炼方法
CN115418429B (zh) 一种aod炉冶炼200系不锈钢的方法
CN110541060A (zh) 一种不锈钢aod冶炼控氮的方法
CN110029276A (zh) 高碳高硅焊接用钢及其制备方法
CN111206181B (zh) 一种含磷、铜合金钢的冶炼方法
CN116159975A (zh) 一种耐候钢薄板坯高拉速制备工艺

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202113700

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210430

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881526

Country of ref document: EP

Kind code of ref document: A1