WO2022082962A1 - 一种飞机推进系统 - Google Patents

一种飞机推进系统 Download PDF

Info

Publication number
WO2022082962A1
WO2022082962A1 PCT/CN2020/135370 CN2020135370W WO2022082962A1 WO 2022082962 A1 WO2022082962 A1 WO 2022082962A1 CN 2020135370 W CN2020135370 W CN 2020135370W WO 2022082962 A1 WO2022082962 A1 WO 2022082962A1
Authority
WO
WIPO (PCT)
Prior art keywords
power group
aircraft
rotary power
propellers
group
Prior art date
Application number
PCT/CN2020/135370
Other languages
English (en)
French (fr)
Inventor
李洪亮
康元丽
回彦年
Original Assignee
中国商用飞机有限责任公司北京民用飞机技术研究中心
中国商用飞机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司北京民用飞机技术研究中心, 中国商用飞机有限责任公司 filed Critical 中国商用飞机有限责任公司北京民用飞机技术研究中心
Priority to EP20954322.2A priority Critical patent/EP4023557A4/en
Publication of WO2022082962A1 publication Critical patent/WO2022082962A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/32Wings specially adapted for mounting power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/08Aircraft not otherwise provided for having multiple wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present application relates to the field of aviation electrical systems, and in particular, to an aircraft propulsion system.
  • the present application provides an aircraft propulsion system, which can make the power dead weight not exist in the aircraft control system, reduce the weight of the aircraft, and optimize the flight control of the aircraft, thereby improving the utilization efficiency of the overall power system of the aircraft.
  • the group and fixed power group adopt a distributed layout, which improves the fault tolerance of the power system and ensures the safety of the aircraft.
  • the application provides an aircraft propulsion system, the system includes: a control device, a rotary power pack, and a fixed power pack; wherein the rotary power pack includes a plurality of propellers, the stationary power pack includes a plurality of propellers, and Both the rotating power group and the fixed power group are symmetrically arranged on the wings on both sides of the aircraft; wherein,
  • the control device is configured to send a target working mode to the rotating power group and the fixed power group according to the aircraft control instruction;
  • the rotary power group is used to adjust the directions and working states of all propellers in the rotary power group according to the target working mode;
  • the fixed power group is used to adjust the working states of all propellers in the fixed power group according to the target working mode.
  • the directions of all propellers in the fixed power group are fixed as a horizontal direction; wherein, the horizontal direction is the length direction of the fuselage of the aircraft.
  • the target working mode is a vertical take-off and landing working mode
  • the rotary power group is specifically used to adjust the directions of all the propellers in the rotary power group to the vertical direction, and adjust the working state of all the propellers in the rotary power group to the start state;
  • the vertical direction is a direction perpendicular to the length of the fuselage of the aircraft and facing the ground;
  • the fixed power group is used to adjust the working state of all propellers in the fixed power group to a stop state when the target working mode is a vertical take-off and landing working mode.
  • the target working mode is an air level flight working mode
  • the rotary power group is specifically used to adjust the directions of all the propellers in the rotary power group to the horizontal direction, and adjust the working state of all the propellers in the rotary power group to the start state;
  • the fixed power group is specifically used to adjust the working state of all the propellers in the fixed power group to the start state.
  • the rotating power group includes a first rotating power group, a second rotating power group, a third rotating power group and a fourth rotating power group;
  • the fixed power group includes a first fixed power group and a second fixed power group Group.
  • first rotational power group, the second rotational power group, the third rotational power group, and the fourth rotational power group are centrally symmetrically distributed on the aircraft wing.
  • the aircraft includes a left front wing, a right front wing, a left rear wing and a right rear wing;
  • the first rotary power group is arranged on the inner side of the right rear wing, and the first fixed power group is arranged on the outside of the right rear wing;
  • the second rotating power group is arranged on the inner side of the left rear wing, and the second fixed power group is arranged on the outer side of the left rear wing;
  • the third rotary power group is arranged on the right front wing
  • the fourth rotary power group is arranged on the left front wing.
  • the target working mode is a yaw motion mode, wherein the air yaw motion instruction includes a yaw angle and a yaw direction; and/or , the aircraft has no vertical tail;
  • the control device is specifically configured to determine, according to the yaw angle and the yaw direction, the respective motor speeds of the propellers in the third rotary power group and the respective propulsion speeds of the fourth rotary power group.
  • the motor speed corresponding to each propeller in the third rotary power group is sent to the third rotary power group, and the propellers in the fourth rotary power group are respectively corresponding The speed of the motor is sent to the fourth rotating power group;
  • the third rotary power group is used to control the motors of each propeller in the third rotary power group according to the respective motor speeds of the propellers in the third rotary power group;
  • the fourth rotary power group is used to control the motors of each propeller in the fourth rotary power group according to the respective motor speeds of the propellers in the fourth rotary power group.
  • each propeller includes a motor and a propeller; and/or, each propeller and the wing of the aircraft are integrally designed.
  • the motor is a shaftless propulsion motor; and/or the motor and the propeller are of an integrated design.
  • the present application provides an aircraft propulsion system
  • the system includes: a control device, a rotating power group and a fixed power group; wherein, the rotating power group includes several propellers, and the fixed power group The group includes several propellers, and the rotating power group and the fixed power group are symmetrically arranged on the wings on both sides of the aircraft; wherein, the control device is used for the rotation power group according to the aircraft control instruction. and the fixed power group to send a target working mode; the rotating power group is used to adjust the directions and working states of all propellers in the rotating power group according to the target working mode; the fixed power group , which is used to adjust the working states of all propellers in the fixed power group according to the target working mode.
  • the rotating power group can adjust the directions and working states of all the propellers in the rotating power group differently according to different target working modes, so that the rotating power group can be In the process of landing or level flight cruise, it can provide thrust for the aircraft; in this way, the vertical propulsion power system (that is, the rotary power group) in the aircraft propulsion system can be reused during the process of the aircraft being in level flight and cruise.
  • FIG. 1 is a schematic structural diagram of an aircraft propulsion system provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an aircraft propulsion system according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of an aircraft propulsion system according to an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a propeller according to an embodiment of the present application.
  • an aircraft propulsion system in an embodiment of the present application is shown, and the aircraft propulsion system may be applied to an aircraft, for example, an electrified aircraft.
  • the aircraft propulsion system may include controls (not shown), a rotating power pack and a stationary power pack.
  • the rotating power group may include several propellers
  • the fixed power group may include several propellers.
  • the number of propellers in the rotating power group and the number of propellers in the fixed power group may be based on actual The number of propellers of the rotating power group and the number of propellers of the fixed power group may be the same or different depending on the requirements.
  • the rotating power group and the fixed power group are symmetrically arranged on the wings on both sides of the aircraft.
  • the number of propellers of the rotating power group on the wings on both sides of the aircraft may be the same or If they are not the same, the number of propellers of the fixed power groups on the wings on both sides of the aircraft can be the same or different; for example, if the aircraft only has one wing on the left and one wing on the right, then A set of rotating power groups may be respectively arranged on the inner sides of the left and right wings, and a set of fixed power groups may be arranged on the outer sides of the left and right wings, respectively.
  • the control device may be configured to send a target working mode to the rotating power group and the fixed power group according to an aircraft control instruction.
  • the aircraft control instruction can be understood as an instruction input by the user through the terminal to control the operation of the aircraft, and in an implementation manner, the aircraft control instruction may include a vertical take-off and landing instruction, an air level flight instruction, and an air yaw motion Command, it should be noted that the vertical take-off and landing command is used to control the vertical take-off or vertical descent of the aircraft, and the air level flight command is used to control the aircraft to rise to a certain height, and the aircraft can cruise in the air (that is, level flight)
  • the command of yaw movement in the air can be the command to control the yaw movement of the aircraft in the air.
  • the control device when the control device receives the aircraft control command as a vertical take-off and landing command, the control device may send a target working mode to the rotating power group and the fixed power group, wherein the target working mode is vertical take-off and landing Operating mode.
  • the control device receives that the aircraft control command is an air level flight command, the control device can send a target working mode to the rotating power group and the fixed power group, wherein the target working mode is the air level flight working mode.
  • the control device receives the aircraft control command as a yaw motion command
  • the control device may send a target working mode to the rotating power group and the fixed power group, wherein the target working mode is a yaw motion mode.
  • the fixed power group may be used to adjust the working states of all propellers in the fixed power group according to the target working mode.
  • the directions of all the propellers in the fixed power group can be fixed to the horizontal direction. It can be understood that in this implementation manner, all the propellers in the fixed power group cannot rotate in the direction.
  • the fixed power pack can only provide thrust to the aircraft in the horizontal direction.
  • the horizontal direction may be the length direction of the fuselage of the aircraft, for example, the direction A toward the tail of the aircraft shown in FIG. 1 . It will be appreciated that a fixed power pack may be used to provide thrust for the aircraft in the horizontal direction.
  • the working state of the propeller can be divided into the starting state and the stopping state; when the working state of the propeller is the starting state, the propeller can provide thrust so that the aircraft can move forward; when the working state of the propeller is stop state, the thrusters stop providing thrust.
  • the rotating power group can be used to adjust the directions and working states of all propellers in the rotating power group according to the target working mode.
  • all the propellers in the rotary power pack in this embodiment can be rotated in directions, that is, the rotary power pack can provide thrust for the aircraft in multiple directions.
  • the rotating power group can make different adjustments to the directions and working states of all the propellers in the rotating power group according to different target working modes, so that the rotating power group can be used for vertical take-off and landing of the aircraft or level flight in the air.
  • the vertical propulsion power system that is, the rotating power group
  • the fixed power group can provide thrust for the aircraft when the aircraft is cruising in level flight in the air, so that there is no dead weight in the aircraft control system, reducing the weight of the aircraft, optimizing the flight control of the aircraft, and improving the overall power of the aircraft.
  • the utilization efficiency of the system is improved, and because the rotary power group and the fixed power group of the present application adopt a distributed layout, the fault tolerance of the power system is improved, and the safety of the aircraft is ensured.
  • the rotating power group may include a first rotating power group (ie, the power group 1 in FIG. 1 ), a second rotating power group group (ie power group 2 in FIG. 1 ), a third rotating power group (ie power group 3 in FIG. 1 ) and a fourth rotating power group (ie power group 4 in FIG. 1 );
  • the stationary power group includes A first stationary power group (ie, power group 5 in FIG. 1 ) and a second stationary power group (ie, power group 6 in FIG. 1 ).
  • first rotational power group, the second rotational power group, the third rotational power group and the fourth rotational power group may be symmetrically distributed on the aircraft wing, or may be centrally symmetrical Distribution settings.
  • respective numbers of propellers of the first rotary power group, the second rotary power group, the third rotary power group and the fourth rotary power group may be the same (for example, the first rotary power group, the second rotary power group
  • the propellers of the group, the third rotating power group, and the fourth rotating power group may all have four), or they may be different, which is not limited in this embodiment.
  • the number of the respective propellers of the first fixed power group and the second fixed power group may be the same (for example, the respective propellers of the first fixed power group and the second fixed power group may be four), or they may be different. , which is not limited in this embodiment.
  • the aircraft may include a left front wing, a right front wing, a left rear wing, and a right rear wing.
  • the first rotary power group is arranged on the inner side of the right rear wing
  • the first fixed power group is arranged on the outer side of the right rear wing
  • the second rotary power group is arranged on the left side
  • the third rotary power group is arranged on the right front wing
  • the fourth rotary power group is arranged on the left front wing.
  • the working methods of the rotating power group and the fixed power group will be introduced respectively when the target working mode is the vertical take-off and landing working mode, the air-level flight working mode and the yaw motion mode.
  • the target working mode is the VTOL working mode when the aircraft control command is a VTOL command is first introduced.
  • the rotary power group is specifically used to adjust the directions of all propellers in the rotary power group to the vertical direction, and to adjust the direction of all the propellers in the rotary power group
  • the working state of the thruster is adjusted to the activated state.
  • the vertical direction is a direction perpendicular to the length direction of the fuselage of the aircraft and facing the ground.
  • the vertical direction may be vertical to the length direction of the fuselage of the aircraft, and B direction perpendicular to the ground.
  • the rotary power pack can provide thrust for the aircraft in the vertical direction (eg, the direction vertical to the ground), so that the aircraft can take off and land vertically.
  • the rotary power group can first control all the propellers in the rotary power group to rotate until the direction of all the propellers in the rotary power group In the vertical direction, then, start to control the working state of all the propellers in the rotary power group to be the start state, so that all the propellers in the rotary power group start to provide thrust for the aircraft.
  • the fixed power group When the target working mode is the vertical take-off and landing working mode, the fixed power group is used to adjust the working states of all the propellers in the fixed power group to be when the target working mode is the vertical take-off and landing working mode stop state. That is to say, when the target working mode is the vertical take-off and landing working mode, the fixed power group will not provide any thrust, that is, during the vertical take-off and landing of the aircraft, the fixed power group will not work.
  • the target working mode is the vertical take-off and landing mode
  • the directions of all propellers in the rotating power group ie, power group 1, power group 2, power group 3 and power group 4
  • the working state of the power group 1-4 is switched to the start state, that is, the trailing edge of the wing of the power group 1-4 is folded down, and the four groups of power systems (ie, the power group 1-4) are converted to the vertical direction, and the aircraft enters the multi-rotor mode.
  • the four groups of power systems provide vertical thrust for vertical take-off and landing; while the direction of all propellers in the fixed power group (power group 5 and power group 6) is still fixed to the horizontal direction and toward the tail.
  • the target working mode is the air level flight work mode.
  • the rotary power group is specifically used to adjust the directions of all propellers in the rotary power group to the horizontal direction, and to adjust the direction of all the propellers in the rotary power group
  • the working state of the thruster is adjusted to the activated state. That is to say, when the target working mode is the air-level flight working mode, the rotary power pack can provide thrust for the aircraft in the horizontal direction (eg, toward the tail), so that the aircraft can have more sufficient cruising power.
  • the fixed power group is specifically used to adjust the working states of all the propellers in the fixed power group to the start-up state. That is, when the operating state of the aircraft has been converted to a state of level flight, the fixed power pack can provide thrust for the aircraft in a horizontal direction (eg, toward the tail), so that the aircraft can have sufficient cruising power.
  • the fixed power group starts to work (that is, the working state of the fixed power group is switched to the start state) to provide thrust in the horizontal direction, while the rotating power group starts to work.
  • the working state of the rotating power group can be adjusted to the stop state (that is, the rotating power group stops working first) and adjust the direction of all the propellers of the rotating power group; when the fixed power group provides enough cruising power , the rotating power group stops working first, and after turning the direction of all the propellers of the rotating power group to the horizontal direction, the working state of all the propellers of the rotating power group is switched to the starting state, so that the rotating power group cooperates with the fixed power group to provide the aircraft with Power, at this time, the aircraft switches from rotor mode to fixed-wing mode, that is, under fixed-wing cruise, the rotary power group and the fixed power group together provide thrust for the aircraft.
  • the target working mode is the air-level flight working mode
  • the working state of the fixed power group is switched to the start state, providing a horizontal direction.
  • the rotating power group ie power group 1, power group 2, power group 3 and power group 4
  • the power group 1, power group 2, power group After the direction of all propellers of group 3 and power group 4 is rotated to the horizontal direction, the working state of all the propellers of power group 1, power group 2, power group 3 and power group 4 is switched to the start state, so that the power group 1, power Group 2, power group 3 and power group 4 cooperate with power group 5 and power group 6 to provide power for the aircraft.
  • the aircraft switches from rotor mode to fixed-wing mode, that is, under fixed-wing cruise, the rotary power group and the fixed power group together to provide thrust for the aircraft.
  • the vertical take-off and landing power system (that is, the rotating power group) adopts the tilt-rotor method, and when the flight is switched (that is, when the operating state of the aircraft transitions from vertical take-off and landing to level flight (fixed wing rotation)), the The composite wing layout control method, after the state switching is completed, the vertical take-off and landing power group (ie, the rotating power group) becomes the horizontal state (ie, the direction is adjusted to the vertical direction), and works together with the cruise power group (ie, the fixed power group) to provide the aircraft with thrust.
  • This method optimizes the flight control, and there is no power dead weight, which reduces the weight of the aircraft and improves the utilization efficiency of the overall power system.
  • the distributed layout method is adopted to improve the fault tolerance of the power system and ensure the safety of the aircraft. It can be understood that the present application adopts the compound wing mode in the aircraft control mode, and adopts the tilt-rotor mode in the aircraft power unit.
  • the target operating mode is a yaw motion mode. It should be noted that, in this embodiment, pitch and roll motions can also be implemented, and details are not required here.
  • the aircraft to which the aircraft propulsion system is applied cancels the vertical tail design, that is, the aircraft does not have a vertical tail.
  • the yaw motion of the aircraft can be realized by adjusting the rotational speed of the motors of the rotating power groups of the wings on both sides and using the difference in the rotational speeds of the motors of the rotating power groups of the wings on both sides. That is to say, in an implementation manner of this embodiment, the vertical tail of the aircraft is cancelled, and the direction control is performed by the power system of the aircraft (such as a rotary power pack).
  • the control device may be specifically configured to determine, according to the yaw angle and the yaw direction, the respective motor speeds of the propellers in the third rotating power group (ie, the power group 3 in FIG. 1 ), respectively, And the motor speed corresponding to each propeller in the fourth rotary power group (that is, the power group 4 in FIG. 1 ) respectively; and the motor speed corresponding to each propeller in the third rotary power group
  • the three rotating power groups are sent, and the respective motor speeds of the propellers in the fourth rotating power group are sent to the fourth rotating power group.
  • the motor speed corresponding to each propeller in the third rotary power group can be higher than the motor speed corresponding to each propeller in the fourth rotary power group.
  • the three rotation The motor speed corresponding to each propeller in the power group may be lower than the motor speed corresponding to each propeller in the fourth rotating power group.
  • the third rotary power group can be used to control the motors of each propeller in the third rotary power group according to the respective motor speeds of the propellers in the third rotary power group, that is, according to the third rotary power group.
  • the respective motor speeds of the propellers in the three rotary power groups respectively control the working conditions of the motors of the propellers in the third rotary power group (for example, the speed of the motors).
  • the fourth rotary power group is used to control the motors of each propeller in the fourth rotary power group according to the respective motor speeds of the propellers in the fourth rotary power group, that is, according to the fourth rotary power group.
  • the respective motor speeds of the propellers in the rotary power group respectively control the working conditions of the motors of the respective propellers in the fourth rotary power group (for example, the speed of the motors). That is, after the aircraft cancels the vertical tail design, the yaw motion can be carried out by adjusting the motor speed of power group 3 and power group 4. In this way, the yaw control of the aircraft can be realized by using the speed difference between the motors of power group 3 and 4. , further reducing aircraft weight and drag.
  • the structure of the thruster in this embodiment After introducing the working modes of the rotating power group and the fixed power group when the target working mode is the vertical take-off and landing working mode, the air level flight working mode and the yaw motion mode, the structure of the thruster in this embodiment will be introduced.
  • each of the propellers in the rotary power pack and the fixed power pack may be disposed on the long edge of the wing toward the tail, and each propeller may include a motor and a propeller.
  • each propeller may include a motor and a propeller.
  • each propeller and the wing of the aircraft can be designed in an integrated manner, so that the stability of the connection between the propeller and the wing can be improved.
  • the motor in each propeller may be a shaftless propulsion motor. That is to say, in one implementation, the shaftless rim propulsion method can be adopted (that is, the middle of the propeller can be ventilated), and the shaftless propulsion motor and the propeller can be designed in one piece, and the power unit (ie each propeller) is placed in the On the upper edge of the wing, this structure is more flexible to install, and the inside of the propeller allows air to pass through, which can enhance the heat dissipation of the motor and improve the power density of the motor on the one hand, and improve the aerodynamic performance and the efficiency of the wing on the other hand.
  • the power system ie, the rotating power pack and the fixed power pack
  • the power system in this embodiment can be matched with a ducted fan and shaftless rim propulsion, so as to use the boundary layer suction (BLI) technology to further improve the cruise efficiency of the aircraft .
  • BBI boundary layer suction

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种飞机推进系统,所述系统包括:控制装置、旋转动力组和固定动力组;所述控制装置,用于根据飞机控制指令,向所述旋转动力组和所述固定动力组发送目标工作模式;所述旋转动力组,用于根据所述目标工作模式,对所述旋转动力组中的所有推进器的方向和工作状态进行调整;所述固定动力组,用于根据所述目标工作模式,对所述固定动力组中的所有推进器的工作状态进行调整。该飞机推进系统可以使得飞机控制系统中不存在动力死重,减轻飞机重量,优化了飞机的飞行控制,从而提高了飞机整体动力系统的利用效率,且由于其旋转动力组和固定动力组采用了分布式布局方式,提高了动力系统的容错性,保证了飞机安全。

Description

一种飞机推进系统 技术领域
本申请涉及航空电气系统领域,尤其涉及一种飞机推进系统。
背景技术
绿色航空一直是飞机制造领域的重点研究方向,目前以航空煤油为燃料的传统飞机在减排降噪上可挖掘的潜力已经非常有限,为实现航空领域节能减排目标,必须寻求新的解决方案。飞机电气化的实现,必须从总体设计角度,对电推进系统的布局开展研究,探索未来电气化飞机的新型布局,提高推进系统的效率,减少能源消耗。故此,目前亟需一种能够实现提高推进系统的效率、减少能源消耗的电气化飞机的推进系统。
发明内容
本申请提供一种飞机推进系统,可以使得飞机控制系统中不存在动力死重,减轻飞机重量,优化了飞机的飞行控制,从而提高了飞机整体动力系统的利用效率,且由于本申请的旋转动力组和固定动力组采用了分布式布局方式,提高了动力系统的容错性,保证了飞机安全。
本申请提供了一种飞机推进系统,所述系统包括:控制装置、旋转动力组和固定动力组;其中,所述旋转动力组包括若干推进器,所述固定动力组包括若干个推进器,且所述旋转动力组和所述固定动力组均对称设置于飞机两侧的机翼;其中,
所述控制装置,用于根据飞机控制指令,向所述旋转动力组和所述固定动力组发送目标工作模式;
所述旋转动力组,用于根据所述目标工作模式,对所述旋转动力组中的所有推进器的方向和工作状态进行调整;
所述固定动力组,用于根据所述目标工作模式,对所述固定动力组中的所 有推进器的工作状态进行调整。
可选的,所述固定动力组中的所有推进器的方向固定为水平方向;其中,所述水平方向为所述飞机的机身长度方向。
可选的,当所述飞机控制指令为垂直起降指令时,所述目标工作模式为垂直起降工作模式;相应地,
所述旋转动力组,具体用于将所述旋转动力组中的所有推进器的方向调整为垂直方向,且,将所述旋转动力组中的所有推进器的工作状态调整为启动状态;其中,所述垂直方向为与所述飞机的机身长度方向垂直、且朝向地面的方向;
所述固定动力组,用于当所述目标工作模式为垂直起降工作模式时,将所述固定动力组中的所有推进器的工作状态调整为停止状态。
可选的,当所述飞机控制指令为空中平飞指令时,所述目标工作模式为空中平飞工作模式;相应地,
所述旋转动力组,具体用于将所述旋转动力组中的所有推进器的方向调整为水平方向,且,将所述旋转动力组中的所有推进器的工作状态调整为启动状态;
所述固定动力组,具体用于将所述固定动力组中的所有推进器的工作状态调整为启动状态。
可选的,所述旋转动力组包括第一旋转动力组、第二旋转动力组、第三旋转动力组和第四旋转动力组;所述固定动力组包括第一固定动力组和第二固定动力组。
可选的,所述第一旋转动力组、所述第二旋转动力组、所述第三旋转动力组和所述第四旋转动力组在所述飞机机翼上为中心对称分布设置。
可选的,所述飞机包括左侧前机翼、右侧前机翼、左侧后机翼和右侧后机翼;
所述第一旋转动力组设置于所述右侧后机翼的内侧,所述第一固定动力组 设置于所述右侧后机翼的外侧;
所第二旋转动力组设置于所述左侧后机翼的内侧,所述第二固定动力组设置于所述左侧后机翼的外侧;
所述第三旋转动力组设置于所述右侧前机翼;
所述第四旋转动力组设置于所述左侧前机翼。
可选的,当所述飞机控制指令为空中偏航运动指令时,所述目标工作模式为偏航运动模式,其中,所述空中偏航运动指令包括偏航角度和偏航方向;和/或,所述飞机无垂尾;
所述控制装置,具体用于根据所述偏航角度和所述偏航方向,确定所述第三旋转动力组中各个推进器分别对应的电机转速,以及所述第四旋转动力组中各个推进器分别对应的电机转速;并将所述第三旋转动力组中各个推进器分别对应的电机转速向所述第三旋转动力组发送,以及将所述第四旋转动力组中各个推进器分别对应的电机转速向所述第四旋转动力组发送;
所述第三旋转动力组,用于根据所述第三旋转动力组中各个推进器分别对应的电机转速,分别控制所述第三旋转动力组中各个推进器的电机;
所述第四旋转动力组,用于根据所述第四旋转动力组中各个推进器分别对应的电机转速,分别控制所述第四旋转动力组中各个推进器的电机。
可选的,每个推进器均包括电机以及螺旋桨;和/或,每个推进器与飞机的机翼均为一体化设计。
可选的,所述电机为无轴推进电机;和/或,所述电机以及所述螺旋桨为一体化设计。
由上述技术方案可以看出,本申请提供了一种飞机推进系统,所述系统包括:控制装置、旋转动力组和固定动力组;其中,所述旋转动力组包括若干推进器,所述固定动力组包括若干个推进器,且所述旋转动力组和所述固定动力组均对称设置于飞机两侧的机翼;其中,所述控制装置,用于根据飞机控制指 令,向所述旋转动力组和所述固定动力组发送目标工作模式;所述旋转动力组,用于根据所述目标工作模式,对所述旋转动力组中的所有推进器的方向和工作状态进行调整;所述固定动力组,用于根据所述目标工作模式,对所述固定动力组中的所有推进器的工作状态进行调整。可见,在本申请中,旋转动力组可以根据不同的目标工作模式,对所述旋转动力组中的所有推进器的方向和工作状态进行不同的调整,以使得旋转动力组不论是在飞机垂直起降还是空中平飞巡航的过程中,均能为飞机提供推力;这样,可以使得飞机推进系统中的垂直推进动力系统(即旋转动力组)在飞机处于空中平飞巡航的过程中可以得到复用,使其可以与固定动力组在飞机处于空中平飞巡航的过程中可以一起为飞机提供推力,从而可以使得飞机控制系统中不存在动力死重,减轻飞机重量,优化了飞机的飞行控制,从而提高了飞机整体动力系统的利用效率,且由于本申请的旋转动力组和固定动力组采用了分布式布局方式,提高了动力系统的容错性,保证了飞机安全。
上述的非惯用的优选方式所具有的进一步效果将在下文中结合具体实施方式加以说明。
附图说明
为了更清楚地说明本申请实施例或现有的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的一种飞机推进系统的结构示意图;
图2为本申请一实施例提供的一种飞机推进系统的结构示意图;
图3为本申请一实施例提供的一种飞机推进系统的结构示意图;
图4为本申请一实施例提供的一种推进器的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合具体实施例及相应的附图对本申请的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图,详细说明本申请的各种非限制性实施方式。
参见图1,示出了本申请实施例中的一种飞机推进系统,所述飞机推进系统可以应用于飞机,例如,可以是电气化飞机。所述飞机推进系统可以包括:控制装置(未在图中展示)、旋转动力组和固定动力组。其中,所述旋转动力组可以包括若干推进器,所述固定动力组包括若干个推进器,需要说明的是,旋转动力组的推进器个数以及固定动力组的推进器个数可以是根据实际需求所设置的,旋转动力组的推进器个数和固定动力组的推进器个数可以相同,也可以不相同。并且,所述旋转动力组和所述固定动力组均对称设置于飞机两侧的机翼,需要说明的是,飞机两侧机翼的旋转动力组的推进器个数可以是相同,也可以是不相同的,飞机两侧机翼的固定动力组的推进器个数可以是相同,也可以是不相同的;举例来说,假设飞机仅存在左侧一个机翼和右侧一个机翼,则可以分别在左侧机翼和右侧机翼的内侧均设置一组旋转动力组,可以分别在左侧机翼和右侧机翼的外侧均设置一组固定动力组。
在本实施例中,所述控制装置,可以用于根据飞机控制指令,向所述旋转动力组和所述固定动力组发送目标工作模式。其中,所述飞机控制指令可以理解为用户通过终端所输入的用于控制飞机运行的指令,在一种实现方式中,飞机控制指令可以包括垂直起降指令、空中平飞指令以及空中偏航运动指令,需要说明的是,垂直起降指令为用于控制飞机垂直起飞或者垂直下降的指令,空中平飞指令为用于控制飞机上升至一定高度之后,飞机可以在空中进行巡航(即平飞)的指令,空中偏航运动指令可以为控制飞机在空中进行偏航运动的 指令。
在本实施例中,控制装置接收到飞机控制指令为垂直起降指令时,控制装置可以向所述旋转动力组和所述固定动力组发送目标工作模式,其中,该目标工作模式为垂直起降工作模式。控制装置接收到飞机控制指令为空中平飞指令时,控制装置可以向所述旋转动力组和所述固定动力组发送目标工作模式,其中,该目标工作模式为空中平飞工作模式。控制装置接收到飞机控制指令为偏航运动指令时,控制装置可以向所述旋转动力组和所述固定动力组发送目标工作模式,其中,该目标工作模式为偏航运动模式。
在本实施例中,所述固定动力组,可以用于根据所述目标工作模式,对所述固定动力组中的所有推进器的工作状态进行调整。在一种实现方式中,所述固定动力组中的所有推进器的方向可以固定为水平方向,可以理解的是,本实现方式中,固定动力组中的所有推进器是不可以转动方向的,固定动力组仅可以在水平方向上为飞机提供推力。其中,所述水平方向可以为所述飞机的机身长度方向,例如,图1中所示的朝向机尾的A方向。可以理解的是,固定动力组可以用于为飞机在水平方向上提供推力。需要说明的是,推进器的工作状态可以分为启动状态和停止状态;当推进器的工作状态为启动状态时,推进器可以提供推力,以便飞机可以前行;当推进器的工作状态为停止状态时,推进器停止提供推力。
在本实施例中,所述旋转动力组,可以用于根据所述目标工作模式,对所述旋转动力组中的所有推进器的方向和工作状态进行调整。需要说明的是,本实施例中的旋转动力组中的所有推进器是可以转动方向的,也就是说,旋转动力组可以在多个方向上为飞机提供推力。可见,旋转动力组可以根据不同的目标工作模式,对所述旋转动力组中的所有推进器的方向和工作状态进行不同的调整,以使得旋转动力组不论是在飞机垂直起降还是空中平飞巡航的过程中, 均能为飞机提供推力;这样,可以使得飞机推进系统中的垂直推进动力系统(即旋转动力组)在飞机处于空中平飞巡航的过程中可以得到复用,使其可以与固定动力组在飞机处于空中平飞巡航的过程中可以一起为飞机提供推力,从而可以使得飞机控制系统中不存在动力死重,减轻飞机重量,优化了飞机的飞行控制,从而提高了飞机整体动力系统的利用效率,且由于本申请的旋转动力组和固定动力组采用了分布式布局方式,提高了动力系统的容错性,保证了飞机安全。
需要说明的是,在本申请实施例的一种实现方式中,如图1所示,所述旋转动力组可以包括第一旋转动力组(即图1中的动力组1)、第二旋转动力组(即图1中的动力组2)、第三旋转动力组(即图1中的动力组3)和第四旋转动力组(即图1中的动力组4);所述固定动力组包括第一固定动力组(即图1中的动力组5)和第二固定动力组(即图1中的动力组6)。其中,所述第一旋转动力组、所述第二旋转动力组、所述第三旋转动力组和所述第四旋转动力组在所述飞机机翼上可以为对称分布,或者可以为中心对称分布设置。需要说明的是,第一旋转动力组、第二旋转动力组、第三旋转动力组和第四旋转动力组各自的推进器的数量可以是相同的(比如第一旋转动力组、第二旋转动力组、第三旋转动力组和第四旋转动力组各自的推进器可以均为四个),也可以是不相同的,在本实施例中对此不进行限定。第一固定动力组和第二固定动力组各自的推进器的数量可以是相同的(比如第一固定动力组和第二固定动力组各自的推进器可以均为四个),也可以是不相同的,在本实施例中对此不进行限定。
在一种实现方式中,如图1所示,飞机可以包括左侧前机翼、右侧前机翼、左侧后机翼和右侧后机翼。所述第一旋转动力组设置于所述右侧后机翼的内侧,所述第一固定动力组设置于所述右侧后机翼的外侧;所第二旋转动力组设置于所述左侧后机翼的内侧,所述第二固定动力组设置于所述左侧后机翼的外 侧;所述第三旋转动力组设置于所述右侧前机翼;所述第四旋转动力组设置于所述左侧前机翼。
接下来,将分别介绍目标工作模式为垂直起降工作模式、空中平飞工作模式以及偏航运动模式时,旋转动力组和固定动力组的工作方式。
首先,先介绍当所述飞机控制指令为垂直起降指令时,所述目标工作模式为垂直起降工作模式的情况。
当目标工作模式为垂直起降工作模式时,所述旋转动力组,具体用于将所述旋转动力组中的所有推进器的方向调整为垂直方向,且,将所述旋转动力组中的所有推进器的工作状态调整为启动状态。其中,所述垂直方向为与所述飞机的机身长度方向垂直、且朝向地面的方向,例如,如图1所示,所述垂直方向可以为与所述飞机的机身长度方向垂直、且与地面垂直的B方向。也就是说,当目标工作模式为垂直起降工作模式时,旋转动力组可以为飞机在垂直方向(例如垂直地面的方向)上提供推力,以便飞机可以垂直起降。具体地,在本实施例中,当旋转动力组接收到垂直起降工作模式时,旋转动力组可以先控制旋转动力组中的所有推进器进行转动,直至旋转动力组中的所有推进器的方向为垂直方向,接着,开始控制旋转动力组中的所有推进器的工作状态为启动状态,从而使得旋转动力组中的所有推进器开始为飞机提供推力。
当目标工作模式为垂直起降工作模式时,所述固定动力组,用于当所述目标工作模式为垂直起降工作模式时,将所述固定动力组中的所有推进器的工作状态调整为停止状态。也就是说,当目标工作模式为垂直起降工作模式时,固定动力组不会提供任何推力,即在飞机垂直起降过程中,固定动力组均不进行工作。
接下来,将结合图2进行举例说明。如图2所示,当目标工作模式为垂直起降模式时,旋转动力组(即动力组1、动力组2、动力组3和动力组4)中的所有推进器的方向调整为垂直方向,且动力组1-4的工作状态切换为启动状态, 即动力组1-4机翼后缘下折,将四组动力系统(即动力组1-4)转换为垂直方向,飞机进入多旋翼模式,由四组动力系统提供垂直方向推力,进行垂直起降;而固定动力组(动力组5和动力组6)中所有推进器的方向仍然固定为水平方向,且朝向机尾。
其次,介绍当所述飞机控制指令为空中平飞指令时,所述目标工作模式为空中平飞工作模式的情况。
当目标工作模式为空中平飞工作模式时,所述旋转动力组,具体用于将所述旋转动力组中的所有推进器的方向调整为水平方向,且,将所述旋转动力组中的所有推进器的工作状态调整为启动状态。也就是说,当目标工作模式为空中平飞工作模式时,旋转动力组可以为飞机在水平方向(例如朝向机尾的方向)上提供推力,以便飞机可以有更加足够的巡航动力。
当目标工作模式为空中平飞工作模式时,所述固定动力组,具体用于将所述固定动力组中的所有推进器的工作状态调整为启动状态。也就是说,当飞机的运行状态已经转换到平飞的状态时,固定动力组可以为飞机在水平方向(例如朝向机尾的方向)上提供推力,以便飞机可以有足够的巡航动力。
需要说明的是,在本实现方式中,在飞机起飞且到达指定高度后,固定动力组开始工作(即固定动力组的工作状态切换至启动状态),提供水平方向上的推力,而旋转动力组开始匹配固定动力组的运行状态,旋转动力组的工作状态可以先调整为停止状态(即旋转动力组先停止工作)并调整旋转动力组所有推进器的方向;当固定动力组提供足够巡航动力时,旋转动力组先停止工作,并将旋转动力组所有推进器的方向转动为水平方向后,旋转动力组所有推进器的工作状态切换至启动状态,以便旋转动力组配合固定动力组一起为飞机提供动力,此时,飞机从旋翼模式切换到固定翼模式,即固定翼巡航下由旋转动力组和固定动力组一起为飞机提供推力。
接下来,将结合图3进行举例说明。如图3所示,当目标工作模式为空中平飞工作模式时,在飞机起飞且到达指定高度后,固定动力组(动力组5和动 力组6)的工作状态切换至启动状态,提供水平方向上的推力;当固定动力组提供足够巡航动力时,旋转动力组(即动力组1、动力组2、动力组3和动力组4)先停止工作,并将动力组1、动力组2、动力组3和动力组4的所有推进器的方向转动为水平方向后,动力组1、动力组2、动力组3和动力组4所有推进器的工作状态切换至启动状态,以便动力组1、动力组2、动力组3和动力组4配合动力组5和动力组6一起为飞机提供动力,此时,飞机从旋翼模式切换到固定翼模式,即固定翼巡航下由旋转动力组和固定动力组一起为飞机提供推力。
可见,本申请中采用多组动力组的方式,沿机翼分布动力系统一部分(即旋转动力组)用于垂直起降,一部分(即固定动力组)用于巡航、平飞。垂直起降动力系统(即旋转动力组)采用倾转旋翼方式,而在飞行进行状态切换时(即飞机的运行状态由垂直起降过渡到平飞(固定翼旋)的过程时)采用的是复合翼布局控制方式,完成状态切换后垂直起降动力组(即旋转动力组)变为水平状态(即方向调整为垂直方向),和巡航动力组(即固定动力组)一起工作,为飞机提供推力。该方式优化了飞行控制,且不存在动力死重,减轻飞机重量,提高了整体动力系统利用效率。且采用分布式布局方式,提高动力系统的容错性,保证了飞机安全。可以理解的是,本申请在飞机控制方式上采用了复合翼模式,在飞机动力装置上采用了倾转旋翼方式。
接着,介绍当所述飞机控制指令为偏航运动指令时,所述目标工作模式为偏航运动模式的情况。需要说明的是,在本实施例中俯仰和滚转运动亦能实现,在此无需一一赘述。
需要说明的是,在本实施例的一种实现方式中,为了减少了飞机重量和阻力,本飞机推进系统所应用于的飞机取消了垂尾设计,即该飞机没有垂尾。为了实现飞机能够进行偏航运动,可以通过调整两侧机翼的旋转动力组的电机的转速,利用两侧机翼的旋转动力组的电机的转速差,以实现飞机的偏航运动。也就是说,本实施例的一种实现方式中,取消了飞机的垂尾,由飞机的动力系 统(比如旋转动力组)进行方向控制。
接下来,将结合图1进行举例说明。所述控制装置,可以具体用于根据所述偏航角度和所述偏航方向,确定所述第三旋转动力组(即图1中的动力组3)中各个推进器分别对应的电机转速,以及所述第四旋转动力组(即图1中的动力组4)中各个推进器分别对应的电机转速;并将所述第三旋转动力组中各个推进器分别对应的电机转速向所述第三旋转动力组发送,以及将所述第四旋转动力组中各个推进器分别对应的电机转速向所述第四旋转动力组发送。比如,当飞机需要左转时,第三旋转动力组中各个推进器分别对应的电机转速可以高于第四旋转动力组中各个推进器分别对应的电机转速,当飞机需要右转时,三旋转动力组中各个推进器分别对应的电机转速可以低于第四旋转动力组中各个推进器分别对应的电机转速。所述第三旋转动力组,可以用于根据所述第三旋转动力组中各个推进器分别对应的电机转速,分别控制所述第三旋转动力组中各个推进器的电机,即根据所述第三旋转动力组中各个推进器分别对应的电机转速,分别控制所述第三旋转动力组中各个推进器的电机的工作情况(比如电机的转速)。所述第四旋转动力组,用于根据所述第四旋转动力组中各个推进器分别对应的电机转速,分别控制所述第四旋转动力组中各个推进器的电机,即根据所述第四旋转动力组中各个推进器分别对应的电机转速,分别控制所述第四旋转动力组中各个推进器的电机的工作情况(比如电机的转速)。即飞机取消了垂尾设计之后,可以通过调整动力组3和动力组4的电机转速即可进行偏航运动,这样,可以利用动力组3和4电机的转速差即可实现飞机的偏航控制,进一步减少了飞机重量和阻力。
介绍完目标工作模式为垂直起降工作模式、空中平飞工作模式以及偏航运动模式时,旋转动力组和固定动力组的工作方式之后,将介绍本实施例中的推进器结构。
在本实施例中,旋转动力组和固定动力组中的每个推进器均可以设置在机 翼朝向机尾的长边缘上,且每个推进器均可以包括电机以及螺旋桨。可见,本申请得益于飞机推进系统具有功率相对尺寸近似无关的优势,将动力系统分布式布局,采用多个小型分布式电动机,简化了能源结构,使控制各个动力组的推进器的布局自由度更高。需要说明的是,在一种实现方式中,每个推进器中的电机以及螺旋桨可以为一体化设计,以便提高推进器中电机与螺旋桨之间的连接的稳定性。
在一种实现方式中,每个推进器与飞机的机翼可以均为一体化设计,这样,可以提高推进器与机翼之间的连接的稳定性。
在一种实现方式中,每个推进器中的电机可以为无轴推进电机。也就是说,在一种实现方式中,可以采用无轴轮缘推进方式(即推进器中间可以通风),并将无轴推进电机与螺旋桨一体设计,将动力装置(即各个推进器)置于机翼上缘,这种结构安装更加灵活,推进器内部允许空气通过,这样,一方面可以增强了电机散热,提高电机功率密度,另一方面提高了气动性能,提升机翼效率。
举例来说,本实施例中的动力系统(即旋转动力组和固定动力组)均可匹配涵道风扇,无轴轮缘推进,以利用边界层抽吸(BLI)技术,进一步提高飞机巡航效率。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。以上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述,仅为本较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围 应该以权利要求的保护范围为准。

Claims (10)

  1. 一种飞机推进系统,其特征在于,所述系统包括:控制装置、旋转动力组和固定动力组;其中,所述旋转动力组包括若干推进器,所述固定动力组包括若干个推进器,且所述旋转动力组和所述固定动力组均对称设置于飞机两侧的机翼;其中,
    所述控制装置,用于根据飞机控制指令,向所述旋转动力组和所述固定动力组发送目标工作模式;
    所述旋转动力组,用于根据所述目标工作模式,对所述旋转动力组中的所有推进器的方向和工作状态进行调整;
    所述固定动力组,用于根据所述目标工作模式,对所述固定动力组中的所有推进器的工作状态进行调整。
  2. 根据权利要求1所述的飞机推进系统,其特征在于,所述固定动力组中的所有推进器的方向固定为水平方向;其中,所述水平方向为所述飞机的机身长度方向。
  3. 根据权利要求2所述的飞机推进系统,其特征在于,当所述飞机控制指令为垂直起降指令时,所述目标工作模式为垂直起降工作模式;相应地,
    所述旋转动力组,具体用于将所述旋转动力组中的所有推进器的方向调整为垂直方向,且,将所述旋转动力组中的所有推进器的工作状态调整为启动状态;其中,所述垂直方向为与所述飞机的机身长度方向垂直、且朝向地面的方向;
    所述固定动力组,用于当所述目标工作模式为垂直起降工作模式时,将所述固定动力组中的所有推进器的工作状态调整为停止状态。
  4. 根据权利要求2所述的飞机推进系统,其特征在于,当所述飞机控制指令为空中平飞指令时,所述目标工作模式为空中平飞工作模式;相应地,
    所述旋转动力组,具体用于将所述旋转动力组中的所有推进器的方向调整为水平方向,且,将所述旋转动力组中的所有推进器的工作状态调整为启动状 态;
    所述固定动力组,具体用于将所述固定动力组中的所有推进器的工作状态调整为启动状态。
  5. 根据权利要求1-4中任一所述的飞机推进系统,其特征在于,所述旋转动力组包括第一旋转动力组、第二旋转动力组、第三旋转动力组和第四旋转动力组;所述固定动力组包括第一固定动力组和第二固定动力组。
  6. 根据权利要求5所述的飞机推进系统,其特征在于,所述第一旋转动力组、所述第二旋转动力组、所述第三旋转动力组和所述第四旋转动力组在所述飞机机翼上为中心对称分布设置。
  7. 根据权利要求5或6所述的飞机推进系统,其特征在于,所述飞机包括左侧前机翼、右侧前机翼、左侧后机翼和右侧后机翼;
    所述第一旋转动力组设置于所述右侧后机翼的内侧,所述第一固定动力组设置于所述右侧后机翼的外侧;
    所第二旋转动力组设置于所述左侧后机翼的内侧,所述第二固定动力组设置于所述左侧后机翼的外侧;
    所述第三旋转动力组设置于所述右侧前机翼;
    所述第四旋转动力组设置于所述左侧前机翼。
  8. 根据权利要求7所述的飞机推进系统,其特征在于,当所述飞机控制指令为空中偏航运动指令时,所述目标工作模式为偏航运动模式,其中,所述空中偏航运动指令包括偏航角度和偏航方向;和/或,所述飞机无垂尾;
    所述控制装置,具体用于根据所述偏航角度和所述偏航方向,确定所述第三旋转动力组中各个推进器分别对应的电机转速,以及所述第四旋转动力组中各个推进器分别对应的电机转速;并将所述第三旋转动力组中各个推进器分别对应的电机转速向所述第三旋转动力组发送,以及将所述第四旋转动力组中各个推进器分别对应的电机转速向所述第四旋转动力组发送;
    所述第三旋转动力组,用于根据所述第三旋转动力组中各个推进器分别对 应的电机转速,分别控制所述第三旋转动力组中各个推进器的电机;
    所述第四旋转动力组,用于根据所述第四旋转动力组中各个推进器分别对应的电机转速,分别控制所述第四旋转动力组中各个推进器的电机。
  9. 根据权利要求1-4中任一所述的飞机推进系统,其特征在于,每个推进器均包括电机以及螺旋桨;和/或,每个推进器与飞机的机翼均为一体化设计。
  10. 根据权利要求10所述的飞机推进系统,其特征在于,所述电机为无轴推进电机;和/或,所述电机以及所述螺旋桨为一体化设计。
PCT/CN2020/135370 2020-10-21 2020-12-10 一种飞机推进系统 WO2022082962A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20954322.2A EP4023557A4 (en) 2020-10-21 2020-12-10 AIRCRAFT PROPULSION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011133900.5 2020-10-21
CN202011133900.5A CN112141347A (zh) 2020-10-21 2020-10-21 一种飞机推进系统

Publications (1)

Publication Number Publication Date
WO2022082962A1 true WO2022082962A1 (zh) 2022-04-28

Family

ID=73954358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135370 WO2022082962A1 (zh) 2020-10-21 2020-12-10 一种飞机推进系统

Country Status (3)

Country Link
EP (1) EP4023557A4 (zh)
CN (1) CN112141347A (zh)
WO (1) WO2022082962A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144485A1 (es) * 2020-01-13 2021-07-22 Munoz Saiz Manuel Disposición sustentadora, estabilizadora y propulsora para aeronaves de despegue y aterrizaje vertical
CN112896529B (zh) * 2021-03-10 2022-07-12 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种辅助推进装置及电动飞机
CN114137839B (zh) * 2021-11-26 2023-03-24 南京航空航天大学 适用于分布式电推进飞机多推进器的协同控制方法
CN114476048B (zh) * 2022-01-12 2023-05-05 南京航空航天大学 一种基于轮缘驱动技术的翼缘融合推进结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170203839A1 (en) * 2016-01-15 2017-07-20 Aurora Flight Sciences Corporation Hybrid Propulsion Vertical Take-Off and Landing Aircraft
CN206561946U (zh) * 2017-03-08 2017-10-17 贾杰 多段可旋转机翼垂直起降飞行器
CN108163191A (zh) * 2018-02-24 2018-06-15 金羽飞 飞行器
CN108528706A (zh) * 2018-05-31 2018-09-14 江苏常探机器人有限公司 带太阳能附加翼的双螺旋桨复合辅翼的复合翼货运飞机
CN109747819A (zh) * 2017-11-05 2019-05-14 西安倾云无人机技术有限公司 一种升力风扇与倾转涵道融合的垂直起降飞行器
CN109911194A (zh) * 2018-11-22 2019-06-21 周雯韵 一种采用分布式动力系统的短距或垂直起降飞行器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100072325A1 (en) * 2008-01-22 2010-03-25 Kenneth William Sambell Forward (Upstream) Folding Rotor for a Vertical or Short Take-Off and Landing (V/STOL) Aircraft
US9694911B2 (en) * 2014-03-18 2017-07-04 Joby Aviation, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
CN106586001A (zh) * 2016-11-30 2017-04-26 中国电子科技集团公司第三十八研究所 多模多基有尾飞翼布局无人飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170203839A1 (en) * 2016-01-15 2017-07-20 Aurora Flight Sciences Corporation Hybrid Propulsion Vertical Take-Off and Landing Aircraft
CN206561946U (zh) * 2017-03-08 2017-10-17 贾杰 多段可旋转机翼垂直起降飞行器
CN109747819A (zh) * 2017-11-05 2019-05-14 西安倾云无人机技术有限公司 一种升力风扇与倾转涵道融合的垂直起降飞行器
CN108163191A (zh) * 2018-02-24 2018-06-15 金羽飞 飞行器
CN108528706A (zh) * 2018-05-31 2018-09-14 江苏常探机器人有限公司 带太阳能附加翼的双螺旋桨复合辅翼的复合翼货运飞机
CN109911194A (zh) * 2018-11-22 2019-06-21 周雯韵 一种采用分布式动力系统的短距或垂直起降飞行器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023557A4 *

Also Published As

Publication number Publication date
CN112141347A (zh) 2020-12-29
EP4023557A1 (en) 2022-07-06
EP4023557A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2022082962A1 (zh) 一种飞机推进系统
CN107458599B (zh) 电分布式推进反扭矩冗余电力及控制系统
CN107458598B (zh) 使用叶片桨距固定的马达模块的矩阵的反扭矩控制
CN211033016U (zh) 一种可垂直起降的飞行器
CN109665094B (zh) 具有机身和至少一个机翼的多旋翼飞行器
WO2013056493A1 (zh) 固定翼与电动多旋翼组成的复合飞行器
CN108698690A (zh) 具有提供有效的竖直起飞和着陆能力的翼板组件的uav
CN111619795A (zh) 能垂直起飞和降落的联结翼的多旋翼飞行器
CN208746231U (zh) 一种分布式涵道螺旋桨动力垂直起降无人机
CN113525678B (zh) 一种牵引-推进式倾转翼垂直起降载人飞行器
US20180362169A1 (en) Aircraft with electric and fuel engines
WO2013056492A1 (zh) 固定翼与电动多桨组成的具有直升机功能的复合飞行器
CN106628162A (zh) 一种复合无人飞行器
CN110466297A (zh) 一种飞行汽车及飞行汽车控制方法
WO2020122759A1 (ru) Летательный аппарат вертикального взлета и посадки
CN206327567U (zh) 一种复合无人飞行器
CN108622402A (zh) 一种复合式垂直起降长航时无人机
CN108382578B (zh) 一种高速混合布局垂直起降飞行器
EP3770063B1 (en) A multirotor aircraft with ducted rotors
CN111792027A (zh) 一种双机身串列翼垂直起降布局的飞行器
CN217515371U (zh) 一种涵道推力电动垂直起降复合翼飞行器
US11634233B2 (en) Distributed battery bank for ducted-rotor aircraft
CA3117164C (en) Electric distributed anti-torque architecture
CN213323678U (zh) 一种动力分配型式的可垂直起降无人飞行器
CN215043752U (zh) 一种飞机推进系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020954322

Country of ref document: EP

Effective date: 20220330

NENP Non-entry into the national phase

Ref country code: DE