WO2022082780A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022082780A1
WO2022082780A1 PCT/CN2020/123418 CN2020123418W WO2022082780A1 WO 2022082780 A1 WO2022082780 A1 WO 2022082780A1 CN 2020123418 W CN2020123418 W CN 2020123418W WO 2022082780 A1 WO2022082780 A1 WO 2022082780A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
mode
information
reference signals
antenna
Prior art date
Application number
PCT/CN2020/123418
Other languages
English (en)
French (fr)
Inventor
李铁
张永平
冯淑兰
刘晓晴
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080106346.3A priority Critical patent/CN116391409A/zh
Priority to PCT/CN2020/123418 priority patent/WO2022082780A1/zh
Publication of WO2022082780A1 publication Critical patent/WO2022082780A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a communication method and apparatus.
  • the antenna panel of network equipment or the antenna panel of terminal equipment is transparent.
  • the antenna panel of the network device is transparent, it can be understood that the state of the antenna panel of the network device is invisible to the terminal device.
  • the antenna panel of the terminal device is transparent, it can be understood that the state of the antenna panel of the terminal device is also invisible to the network device.
  • the antenna panel state includes an active state and an inactive state. How beams or resources (signals or channels, etc.) are associated with the antenna panel also depends entirely on the implementation of network equipment or terminal equipment.
  • the switching of beams involves not only beam switching of network equipment, but also beam switching of terminal equipment.
  • the network device notifies the terminal device to switch the beam, and because the antenna panel of the terminal device is transparent, the network device cannot determine whether the terminal device switches the antenna panel at the same time during the beam switching process, that is, the beam switching process of the terminal device may be It is switching between different beams within the same antenna panel, or switching between different beams of different antenna panels.
  • antenna panel switching between different antenna panels includes switching from one active antenna panel to another active antenna panel (ie, antenna panel switching between activated antenna panels) and switching from an activated antenna panel to an inactive antenna panel.
  • the antenna panel switching between the activated antenna panels takes several us, and usually the time of several us can be ignored.
  • Antenna panel switching from an active antenna panel to an inactive antenna panel includes two actions of antenna panel activation and antenna panel switching.
  • the time required for antenna panel switching from an active antenna panel to an inactive antenna panel includes the time required for antenna panel activation and the time required for antenna panel switching between activated antenna panels. time. Usually, it takes about 2-3ms for the antenna panel to activate, so it takes 2-3ms plus several us time for the antenna panel to switch from the active antenna panel to the inactive antenna panel. However, most scenarios of the current protocol do not reserve the time required for the activation of the antenna panel.
  • a solution is for the terminal device to keep multiple antenna panels in an active state at the same time, and this solution will lead to high power consumption of the terminal.
  • Another solution is that the terminal device only activates one antenna panel in order to save power consumption, and this solution may cause the terminal device to fail to communicate with the network device using a suitable beam pair, thereby affecting the communication performance.
  • Embodiments of the present application provide a communication method and apparatus, which are used to effectively save power consumption of a terminal device when switching between different beams of different antenna panels.
  • an embodiment of the present application provides a communication method, the method includes: a terminal device receives first information, where the first information is used to configure N groups of reference signals, wherein the last reference signal in the i-th group of reference signals The transmission time interval between the signal and the first reference signal in the i+1th group of reference signals is the first time interval, and the first time interval is when the terminal device switches from the i-th antenna panel to the i+1-th antenna panel
  • the time required for the antenna panel, 1 ⁇ i ⁇ N, i is a positive integer; the number of antenna panels is N, and N is a positive integer greater than or equal to 2; the terminal device uses N antenna panels to transmit the N groups of reference signals , the N antenna panels are in one-to-one correspondence with the N groups of reference signals.
  • the antenna panel training process can be added during the smooth beam process. There is a transmission time interval between the last reference signal in the previous set of reference signals and the first reference signal in the next set of reference signals, and the terminal device can adjust the antenna by adjusting the antenna.
  • the state of the panel adapts to the configuration of the network equipment, thereby achieving a compromise between system performance and power saving.
  • the method further includes: the terminal device receives second information from the network device, the second information indicates that the terminal device is in the first mode or the terminal device is in the second mode ; or, the terminal device sends third information to the network device, the third information indicates that the terminal device is in the first mode or the terminal device is in the second mode; wherein, when the terminal device is in any In the first mode, there are inactive antenna panels in the N antenna panels; when the terminal device is in the second mode, all the N antenna panels are activated.
  • the terminal device can be in the first mode or the second mode, and since the terminal device is in different modes, the network device can configure the first information for the terminal device according to the mode.
  • the value of the first time interval when the terminal device is in the first mode, the value of the first time interval is a first preset value, and when the terminal device is in the second mode, The value of the first time interval is a second preset value, and the first preset value is greater than the second preset value.
  • the network device can configure the first time interval for the terminal device according to the mode in which the terminal device is located.
  • the method further includes: the terminal device measures the N groups of reference signals to obtain measurement results; the terminal device determines a target antenna panel from the N antenna panels according to the measurement results .
  • the terminal device can independently determine the target antenna panel.
  • the method further includes: the terminal device sends a measurement result to the network device; the measurement result is obtained by the terminal device measuring the N groups of reference signals; the terminal device Fourth information is received from the network device, the fourth information indicating a target antenna panel of the N antenna panels.
  • the network device can indicate the target antenna panel to the terminal device.
  • the target antenna panel is L out of the N antenna panels, and L is an integer
  • the method further includes: deactivating, by the terminal device, other antenna panels except the target antenna panel N-L antenna panels.
  • the terminal device can save the power consumption of the terminal device by deactivating the non-target antenna panel.
  • the method further includes: the terminal device sends fifth information to the network device, where the fifth information indicates the number N of antenna panels included in the terminal device and the number N of antenna panels included in each antenna panel. number of beams.
  • the terminal device can notify the network device of the number N of its own antenna panels and the number of beams included on each antenna panel.
  • an embodiment of the present application provides a communication method, the method includes: a network device sends first information to a terminal device, where the first information is used to configure N groups of reference signals, the last reference signal in the i-th group of reference signals The time interval between sending the first reference signal in the i+1th group of reference signals is the first time interval, and the first time interval is when the terminal device switches from the i-th antenna panel to the i+1-th antenna When required by the panel, 1 ⁇ i ⁇ N, i is a positive integer; the number of antenna panels is N, and N is a positive integer greater than or equal to 2; the network device transmits the N on the N time-frequency resources A group of reference signals, the N antenna panels are in one-to-one correspondence with the N groups of reference signals.
  • the method further includes: the network device sends second information to the terminal device, where the second information indicates that the terminal device is in the first mode or the terminal device is in the second mode; or , the network device receives third information sent from the terminal device, the third information indicates that the terminal device is in the first mode or the terminal device is in the second mode; wherein, when the terminal device is in the first mode In the first mode, there are inactive antenna panels in the N antenna panels; when the terminal device is in the second mode, all the N antenna panels are activated.
  • the value of the first time interval when the terminal device is in the first mode, the value of the first time interval is a first preset value, and when the terminal device is in the second mode, The value of the first time interval is a second preset value, and the first preset value is greater than the second preset value.
  • the method further includes: receiving, by the network device, a measurement result from the terminal device, where the measurement result is obtained by the terminal device measuring the N groups of reference signals; the The network device sends fourth information to the terminal device, where the fourth information indicates a target antenna panel among the N antenna panels.
  • the target antenna panels are L out of the N antenna panels, and L is an integer.
  • the method further includes: the network device receives fifth information from the terminal device, where the fifth information indicates the number N of antenna panels included in the terminal device and the number N of antenna panels on each antenna panel. The number of beams included.
  • an embodiment of the present application provides a communication apparatus, the apparatus includes a module for implementing any one of the possible designs of the first aspect and the first aspect, or performs any of the second aspect and the second aspect. Modules of any possible design.
  • an embodiment of the present application provides a communication device, including a processor and an interface circuit, where the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or transfer signals to the processor.
  • the signal from the processor is sent to other communication devices other than the communication device, and the processor is used to implement any one of the first aspect and the possible design of the first aspect through logic circuits or executing code instructions, Or any possible design for implementing the second aspect and the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program or instruction is stored in the storage medium, and when the computer program or instruction is executed by a communication device, the first aspect and the first aspect are implemented Any one of the possible designs or any one of the possible designs that implement the second aspect and the second aspect.
  • embodiments of the present application provide a computer program product including a program, which, when running on a communication device, enables the communication device to execute any one of the possible designs of the first aspect and the first aspect or to execute the second Any of the possible designs of the aspect and the second aspect.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the application is applied;
  • FIG. 2 is one of beam training processes provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a scenario in which all antenna panels are in an active state during a beam training process according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a scenario in which an antenna panel is activated during a beam training process according to an embodiment of the present application
  • FIG. 5 is one of the overview processes of a communication method provided by an embodiment of the present application.
  • FIG. 6 is the second beam training process provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a state of an antenna panel when a terminal device is in a first model during a beam training process according to an embodiment of the present application;
  • FIG. 8 is the third beam training process provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the state of the antenna panel in which the terminal device is in the first model during the beam training process provided by the embodiment of the present application;
  • FIG. 10 is the second overview flow of a communication method provided by an embodiment of the present application.
  • FIG. 11 is one of schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a second schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110 , a radio access network device 120 and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1 ).
  • the terminal equipment is connected to the wireless access network equipment in a wireless manner, and the wireless access network equipment is connected with the core network equipment in a wireless or wired manner.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment.
  • Terminal equipment can be fixed or movable.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the mobile communication system.
  • the terminal device is wirelessly connected to the wireless access network device, so as to access the mobile communication system.
  • the radio access network equipment can be a base station (base station), an evolved NodeB (eNodeB), a transmission reception point (TRP), and a next generation NodeB (gNB) in the 5G mobile communication system , the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (CU) or a distributed unit (distributed unit, DU).
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • wireless access network equipment is referred to as network equipment, and unless otherwise specified, network equipment refers to wireless access network equipment.
  • a terminal device may also be referred to as a terminal, user equipment (UE), a mobile station, a mobile terminal, and the like.
  • the terminal equipment can be mobile phone, tablet computer, computer with wireless transceiver function, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in remote surgery, smart grid wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • the network device and the terminal device can communicate through the licensed spectrum, the unlicensed spectrum, or the licensed spectrum and the unlicensed spectrum at the same time.
  • the network device and the terminal device can communicate through the frequency spectrum below 6 GHz (gigahertz, GHz), and can also communicate through the frequency spectrum above 6 GHz, and can also use the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • SINR signal to interference plus noise ratio
  • the hybrid beamforming (HBF) technology including digital beamforming and analog beamforming is finally adopted.
  • the antenna panel is the core component. Beams are sent or received through the antenna panel.
  • both network equipment and terminal equipment are deployed using multi-antenna panels. Especially for terminal equipment, in order to meet coverage, and in the case of limited space and cost saving, the impact of antenna panel deployment on performance is more important.
  • the standardized beam management framework includes beam training, beam measurement and reporting, individual signal or channel beam indication, etc.
  • the uplink and downlink signals or channel beam indications are briefly described below.
  • a high-level radio resource control (RRC) signaling is used to configure a beam resource pool
  • a medium access control element MAC control element, MAC CE
  • CSI-RS channel state information reference signals
  • RRC radio link control
  • the antenna panel is a logical entity, and how the physical antenna is mapped to the logical entity is determined by the product implementation.
  • the antenna panel ID can be defined, so that at least the antenna panel of the terminal device is visible to the network device. Therefore, the network device can indicate or acquire the antenna panel status of the terminal device according to this ID.
  • Beam training includes the scanning process of transmitting and receiving beams of network equipment and terminal equipment. The goal is to find beam pairs, i.e. including a transmit beam and a receive beam. Only when the direction of the sending beam and the direction of the receiving beam are aligned, the gain of the signal received by the network device and the terminal device can be considered optimal.
  • the following is a brief introduction to the beam training or scanning process:
  • the downlink beam training process is shown in Figure 2.
  • the gNB covers an area in the beam scanning mode, and the UE is paired with the gNB's transmitting beam through the receiving beam scanning mode, and performs measurement and reporting.
  • the gNB obtains the initial beam transmission based on the P1 process, and the UE obtains the initial beam reception through the P1 process (or the gNB instruction).
  • the gNB and UE choose coarse beam scanning.
  • the gNB scans the fine transmission beam based on the initial transmission beam obtained by the P1 process, and the UE performs pairing measurement and reporting through the initial beam reception obtained by the P1 process (or gNB instruction). .
  • the gNB obtains fine beams based on the P2 process.
  • the gNB obtains the fine beam fixed transmission based on the P2 process, the UE obtains the coarse beam through the P2 process to scan the fine beam, and performs pairing measurement, and the UE obtains the UE through the P3 process. the finer beam.
  • Uplink beam training process (similar to the downlink beam training process):
  • the U-1 process (that is, the process of coarse beam alignment):
  • the UE covers an area by scanning with the sending beam, and the gNB is paired with the sending beam of the UE through the scanning method of receiving and receiving beams and performs measurement.
  • the initial receiving beam obtained by the gNB through the U1 process the UE obtains the initial sending beam according to the gNB configuration.
  • generally gNB and UE choose coarse beam scanning.
  • U-2 process that is, the process of fine-tuning gNB beam receiving: UE performs fixed transmission according to the initial beam receiving configured by gNB, gNB scans the initial receiving beam obtained by U1 process, and performs pairing measurement, and selects the appropriate beam. narrow beam.
  • the gNB configures the same beam for different reference signals of the UE, it can be regarded as a U2 process.
  • U-3 process (that is, the process of fine-tuning UE beam transmission): UE performs fine beam scanning according to the initial transmission beam configured by gNB, gNB performs pairing measurement through the fine beam obtained by the U2 process, and selects the appropriate UE fine beam.
  • the gNB configures different beams for different reference signals of the UE, it can be regarded as a U3 process.
  • the terminal when the CSI-RS configuration repetition is 'ON', the terminal assumes that the beams of the gNBs corresponding to all CSI-RSs in a CSI-RS set (CSI-RS se)t are the same; the CSI-RS configuration repetition is 'OFF' ', the terminal does not assume that the beams of gNBs corresponding to all CSI-RSs in a CSI-RS set are the same.
  • the terminal device cannot predict whether to reserve the activation and switching time of the antenna panels between different resource groups. At the same time, in order to meet the coverage requirements, all antenna panels need to be trained, so multiple antenna panels need to be activated at the same time. Therefore, the terminal device consumes more power, which is not conducive to saving the power consumption of the terminal device. In addition, activating multiple antenna panels at the same time for a long time may even cause the terminal to overheat. As shown in Figure 3, antenna panel 1, antenna panel 2 and The antenna panels 3 are all activated. Or when the network device configures the coarse beam training step P1, the terminal device only activates one antenna panel for beam training in order to save power for some reasons, such as power consumption, overheating, hardware processing constraints, etc. As a result, the system performance is degraded. As shown in FIG. 4 , the antenna panel 1 and the antenna panel 3 are in an inactive state (or a deactivated state), and only the antenna panel 2 is in an active state.
  • an embodiment of the present application provides a communication method to effectively save power consumption of a terminal device when switching between different beams of different antenna panels.
  • different beam training methods are designed to achieve a compromise between the complexity, power consumption, heat dissipation and system performance of comprehensive terminal implementation.
  • the terminal device includes N antenna panels, where N is a positive integer greater than or equal to 2.
  • the method shown in FIG. 5 is applicable to the downlink beam training process, and the method shown in the embodiment shown in FIG. 5 can be applied before the P1 process.
  • the method includes:
  • the network device sends first information to the terminal device, where the first information is used to configure N groups of reference signals, the last reference signal in the i-th group of reference signals and the first reference signal in the i+1-th group of reference signals are sent
  • the time interval is the first time interval
  • the first time interval is the time required for the terminal device to switch from the i-th antenna panel to the i+1-th antenna panel
  • i is a positive integer.
  • the first information may be carried through RRC signaling.
  • the ith group of reference signals includes K i reference signals.
  • the network device uses K i transmit beams on the ith time-frequency resource to send reference signals respectively, and the terminal device uses the receive beam on the ith antenna panel to receive on the ith time-frequency resource.
  • the network device uses K i transmit beams. separately transmitted reference signals.
  • the ith time-frequency resource is the time-frequency resource where the ith group of reference signals is located.
  • the i+1th group of reference signals includes K i+1 reference signals.
  • the network device uses K i+1 transmit beams on the i+1th time-frequency resource to send reference signals respectively, and the terminal device uses the receive beam on the i+1th antenna panel to receive on the i+1th time-frequency resource.
  • the network device uses the reference signals sent respectively by the K i+1 sending beams.
  • the i+1 th time-frequency resource is the time-frequency resource where the i+1 th group of reference signals is located.
  • the transmission time interval between the last reference signal in the i-th group of reference signals and the first reference signal in the i+1-th group of reference signals is the first time interval.
  • K i and K i+1 are positive integers.
  • the first time interval is the last OFDM symbol in the time domain resource where the last reference signal in the ith group of reference signals is located and the first OFDM symbol in the time domain resource where the first reference signal in the i+1th group of reference signals is located.
  • the interval between an OFDM symbol is the last OFDM symbol in the time domain resource where the last reference signal in the ith group of reference signals is located and the first OFDM symbol in the time domain resource where the first reference signal in the i+1th group of reference signals is located.
  • the terminal device may further send fifth information to the network device, where the fifth information indicates the number N of antenna panels included in the terminal device and the number of beams included on each antenna panel.
  • the network device may determine the first information according to the number N of antenna panels included in the terminal device and the number of beams included on each antenna panel.
  • the terminal device includes 3 antenna panels, namely Antenna Panel 1, Antenna Panel 2, and Antenna Panel 3.
  • Antenna Panel 1 includes 8 receiving beams
  • Antenna Panel 2 includes 4 receiving beams
  • Antenna Panel 3 includes 8 receiving beams. receive beam.
  • the network device generates first information accordingly, where the first information is used to configure three groups of reference signals.
  • the three time-frequency resources are in one-to-one correspondence with the three groups of reference signals.
  • the time-frequency resource 1 is used by the network device to transmit reference signals to the terminal device respectively by using 8 transmit beams.
  • the time-frequency resource 2 is used by the network device to transmit reference signals to the terminal device respectively by using four transmit beams.
  • the time-frequency resource 3 is used by the network device to transmit reference signals to the terminal device respectively by using 8 transmit beams.
  • the sending time interval between the last reference signal sent by the network device on time-frequency resource 1 and the first reference signal sent by the network device on time-frequency resource 2 is the first time interval.
  • the sending time interval between the last reference signal sent by the network device on time-frequency resource 2 and the first reference signal sent by the network device on time-frequency resource 3 is the first time interval.
  • the terminal device uses the antenna panel 1 to receive the first group of reference signals on the first time-frequency resource.
  • the terminal device uses the antenna panel 2 to receive the second group of reference signals on the second time-frequency resource.
  • the terminal device uses the antenna panel 3 to receive the third group of reference signals on the third time-frequency resource.
  • the terminal device before the network device sends the first information to the terminal device, the terminal device receives second information from the network device, the second information indicates that the terminal device is in the first mode or the terminal device is in the second mode; or, The terminal device sends third information to the network device, where the third information indicates that the terminal device is in the first mode or the terminal device is in the second mode.
  • the terminal device when the terminal device accesses the network device, the terminal device sends capability information of the terminal device to the network device, where the capability information of the terminal device is used to indicate that the terminal device supports the first mode and/or the second mode.
  • the terminal device when the terminal device accesses the network device, the terminal device sends capability information of the terminal device to the network device, where the capability information of the terminal device is used to indicate that the terminal device supports the first mode and/or the second mode.
  • the network device may send indication information to the terminal device according to the capability information of the terminal device, where the indication information is used to indicate that the terminal device is in the first mode or the terminal device is in the second mode.
  • the terminal device can also determine the mode that it needs to be in now or the mode that will be in the future according to factors such as the current power level, whether it is overheated, or whether it needs to enter an energy-saving state. At this time, the terminal device can actively report the terminal device to the network device. in the first mode or the second mode.
  • the terminal device when the terminal device is in the first mode, there are inactive antenna panels in the N antenna panels. Exemplarily, in order to save power consumption of the terminal device, only one of the N antenna panels is in an active state. When the terminal device is in the second mode, all N antenna panels are activated.
  • the first mode involved in the embodiments of the present application may also be referred to as a performance mode
  • the second mode may also be referred to as a power saving mode, which is not limited in the embodiments of the present application.
  • the value of the first time interval is the first preset value
  • the value of the first time interval is the second preset value
  • the first The preset value is greater than the second preset value.
  • the first preset value may be greater than the time required for antenna panel activation, which is generally longer, such as 2-3 ms
  • the second preset value may be greater than the time required for antenna panel switching between activated antenna panels, which is generally longer. Short, such as a few us.
  • the network device can configure the N time-frequency resources to realize the sending of the last reference signal in the i-th group of reference signals and the first reference signal in the i+1-th group of reference signals
  • the time interval is the first time interval, that is, the network device can realize the time reserved for the terminal device to switch the antenna panel.
  • the terminal device may determine the target antenna panel among the N antenna panels by, but not limited to, the following manner.
  • the target antenna panel is L among the N antenna panels, and L is an integer.
  • the terminal device may deactivate other N-L antenna panels except the target antenna panel, so as to save the power consumption of the terminal device.
  • Mode 1 The terminal device measures N groups of reference signals to obtain measurement results, and the terminal device determines the target antenna panel from the N antenna panels according to the measurement results. Therefore, using the method provided in the above manner 1, the terminal device can autonomously determine the target antenna panel.
  • the terminal equipment measuring N groups of reference signals means that the terminal equipment uses a corresponding receive beam to receive for each reference signal in each group of reference signals, and performs measurement for each received reference signal. Further, the terminal device can obtain the measurement result for each received reference signal, sort all the obtained measurement results, and select the antenna panel where the reception beam corresponding to the measurement result whose signal quality is ranked in the top X position is located. As the target antenna panel, X is a positive integer.
  • the terminal device sends a measurement result to the network device, where the measurement result is obtained by the terminal device measuring N groups of reference signals.
  • the terminal device receives fourth information from the network device, where the fourth information indicates a target antenna panel among the N antenna panels. Therefore, using the method provided in the above manner 2, the network device indicates the target antenna panel to the terminal device.
  • the terminal equipment measuring N groups of reference signals means that the terminal equipment uses a corresponding receive beam to receive for each reference signal in each group of reference signals, and performs measurement for each received reference signal. Further, the terminal device can obtain measurement results for each received reference signal, and the terminal device can choose to report all the obtained measurement results to the network device, or the terminal device can also choose to report some of the measurement results to the network device, such as , the terminal device selects the measurement result whose signal quality ranks in the top Y position and reports it to the network device, where Y is a positive integer.
  • the network device may determine the target antenna panel according to the measurement result reported by the terminal device, and send the fourth information to the terminal device.
  • the fourth information may include the index of the target antenna panel, or the beam index.
  • the antenna panel where the beam corresponding to the beam index is located is the target antenna panel.
  • the network device can also determine the target antenna panel in combination with other factors and the measurement result reported by the terminal device.
  • the target antenna panels are at least two of the N antenna panels. Specifically, after the antenna panel training is completed, at least two antenna panels may be required to transmit data simultaneously.
  • the network device will choose to transmit two beams at the same time to communicate with the terminal device, and the terminal device needs to transmit and receive on two beams on different panels.
  • the network device will also use two beams to communicate with the terminal device, and the terminal device also needs to send and receive on two beams on different panels. In this scenario , the network device may assume that a certain beam may be blocked.
  • FIG. 5 The embodiment shown in FIG. 5 will be described below with reference to specific examples.
  • Example 1 The terminal device is in the first mode.
  • the terminal device includes three antenna panels, namely antenna panel 1, antenna panel 2, and antenna panel 3.
  • the beam training process shown in FIG. 6 includes a P-0 process, a P-1 process, a P-2 process, and a P-3 process.
  • each set of reference signals includes three reference signals.
  • the terminal equipment uses the antenna panel 1 to receive the first group of reference signals on the first time-frequency resource, and the terminal equipment uses the antenna panel 2 to receive the second group of reference signals on the second time-frequency resource.
  • the terminal device uses the antenna panel 3 to receive the third group of reference signals on the third time-frequency resource.
  • the time interval between receiving the first group of reference signals and receiving the second group of reference signals is the first time interval. At this time, the first time interval is used for the terminal device to switch from the antenna panel 1 to the antenna panel 2. Since the state of the antenna panel 2 is inactive, the value of the first time interval is the first preset value.
  • the time interval between receiving the second group of reference signals and receiving the third group of reference signals is the first time interval. At this time, the first time interval is used for the terminal device to switch from the antenna panel 2 to the antenna panel 3. Since the state of the antenna panel 3 is inactive, the value of the first time interval is the first preset value.
  • the state of the antenna panel 1 is the active state
  • the state of the antenna panel 2 is the inactive state
  • the state of the antenna panel 2 is the inactive state
  • the state of 3 is the inactive state.
  • the state of the antenna panel 1 is the inactive state
  • the state of the antenna panel 2 is the active state
  • the state of the antenna panel 3 is the inactive state state.
  • the terminal device uses antenna panel 3 to receive the third group of reference signals on the third time-frequency resource, the state of antenna panel 1 is inactive, the state of antenna panel 2 is inactive, and the state of antenna panel 3 is active state.
  • the terminal device can switch the antenna panels according to the first time interval, so that all antenna panels do not need to be activated. Further, through the P-0 process, the network device can indicate the target antenna panel for the terminal device, and the terminal device can deactivate the non-target antenna panel, which can save the power consumption of the terminal device.
  • the network equipment covers an area in the beam scanning mode, and the terminal equipment is paired with the transmitting beam of the network equipment through the beam receiving and scanning method, and performs measurement and reporting.
  • the network device obtains the initial beam transmission based on the P1 process, and the terminal device obtains the initial beam reception through the P1 process (or an instruction of the network device).
  • the network device performs fine beam scanning based on the initial sending beam obtained in the P1 process, and the terminal device performs pairing measurement and reporting through the initial receiving beam obtained in the P1 process (or indicated by the network device).
  • the network device obtains the fine beams based on the P2 process.
  • the network device obtains the fine beam fixed transmission based on the P2 process, the terminal device obtains the coarse beam through the P2 process to scan the fine beam, and performs pairing measurement, and the terminal device obtains the terminal device's fine beam through the P3 process.
  • Example 2 The terminal device is in the second mode.
  • the terminal device includes three antenna panels, namely antenna panel 1, antenna panel 2, and antenna panel 3.
  • each group of reference signals includes three reference signals.
  • the terminal equipment uses the antenna panel 1 to receive the first group of reference signals on the first time-frequency resource, and the terminal equipment uses the antenna panel 2 to receive the second group of reference signals on the second time-frequency resource.
  • the terminal device uses the antenna panel 3 to receive the third group of reference signals on the third time-frequency resource.
  • the time interval between receiving the first group of reference signals and receiving the second group of reference signals is the first time interval.
  • the time interval between receiving the second group of reference signals and receiving the third group of reference signals is the first time interval.
  • the value of the first time interval is the second preset value.
  • the state of the antenna panel 1 is the active state
  • the state of the antenna panel 2 is the active state
  • the state of the antenna panel 3 is the active state, that is, the three antenna panels are always in the active state.
  • the network device can indicate the target antenna panel to the terminal device, and the terminal device can deactivate the non-target antenna panel, thereby optimizing the beam training process and saving the power consumption of the terminal device.
  • the network equipment covers an area in the beam scanning mode, and the terminal equipment is paired with the transmitting beam of the network equipment through the beam receiving and scanning method, and performs measurement and reporting.
  • the network device obtains the initial beam transmission based on the P1 process, and the terminal device obtains the initial beam reception through the P1 process (or an instruction of the network device).
  • the network device performs fine beam scanning based on the initial sending beam obtained in the P1 process, and the terminal device performs pairing measurement and reporting through the initial receiving beam obtained in the P1 process (or indicated by the network device).
  • the network device obtains the fine beams based on the P2 process.
  • the network device obtains the fine beam fixed transmission based on the P2 process, the terminal device obtains the coarse beam through the P2 process to scan the fine beam, and performs pairing measurement, and the terminal device obtains the terminal device's fine beam through the P3 process.
  • an embodiment of the present application provides a communication method to effectively save power consumption of a terminal device when switching between different beams of different antenna panels.
  • different beam training methods are designed to achieve a compromise between the complexity, power consumption, heat dissipation and system performance of comprehensive terminal implementation.
  • the terminal device includes N antenna panels, where N is a positive integer greater than or equal to 2.
  • the method shown in FIG. 10 is applicable to the uplink beam training process, and the method shown in the embodiment shown in FIG. 10 can be applied before the U1 process.
  • the method includes:
  • the network device sends first information to the terminal device, where the first information is used to configure N groups of reference signals.
  • the transmission time interval between the last reference signal in the ith group of reference signals and the first reference signal in the i+1th group of reference signals is the first time interval, and the first time interval is when the terminal equipment switches from the ith antenna panel to the is the time required for the i+1th antenna panel, i is a positive integer.
  • the first information may be carried through RRC signaling.
  • S1002 The terminal device transmits N groups of reference signals by using N antenna panels, and the N antenna panels are in one-to-one correspondence with the N groups of reference signals.
  • S1002 can also be described as: the network device receives N groups of reference signals.
  • the ith group of reference signals includes K i reference signals.
  • the network device receives, on the ith time-frequency resource, the reference signal sent by the terminal device using the K i transmit beams, respectively, and the terminal device transmits the reference signal respectively on the ith time-frequency resource by using the K i transmit beams on the ith antenna panel. reference signal.
  • the i+1th group of reference signals includes K i+1 reference signals.
  • the network device receives the reference signals sent by the terminal device using K i+1 transmit beams on the i+1 th time-frequency resource, and the terminal device uses the i+1 th antenna panel on the i+1 th time-frequency resource.
  • the K i+1 transmit beams respectively transmit reference signals.
  • the transmission time interval between the last reference signal in the i-th group of reference signals and the first reference signal in the i+1-th group of reference signals is the first time interval.
  • K i and K i+1 are positive integers.
  • the first time interval is the last OFDM symbol in the time domain resource where the last reference signal in the ith group of reference signals is located and the first OFDM symbol in the time domain resource where the first reference signal in the i+1th group of reference signals is located.
  • the interval between an OFDM symbol is the last OFDM symbol in the time domain resource where the last reference signal in the ith group of reference signals is located and the first OFDM symbol in the time domain resource where the first reference signal in the i+1th group of reference signals is located.
  • the terminal device may further send fifth information to the network device, where the fifth information indicates the number N of antenna panels included in the terminal device and the number of beams included on each antenna panel.
  • the network device may determine the first information according to the number N of antenna panels included in the terminal device and the number of beams included on each antenna panel.
  • the terminal device includes 3 antenna panels, namely Antenna Panel 1, Antenna Panel 2, and Antenna Panel 3.
  • Antenna Panel 1 includes 8 transmit beams
  • Antenna Panel 2 includes 4 transmit beams
  • Antenna Panel 3 includes 8 transmit beams. transmit beam.
  • the network device generates first information accordingly, where the first information is used to configure three groups of reference signals.
  • the three time-frequency resources are in one-to-one correspondence with the three groups of reference signals.
  • the time-frequency resource 1 is used by the terminal equipment to transmit reference signals to the network equipment respectively by using 8 transmit beams.
  • the time-frequency resource 2 is used by the terminal device to transmit reference signals to the network device respectively by using four transmit beams.
  • the time-frequency resource 3 is used by the terminal equipment to transmit reference signals to the network equipment respectively using 8 transmit beams.
  • the time interval between the last reference signal sent by the terminal device on time-frequency resource 1 and the first reference signal sent by the terminal device on time-frequency resource 2 is the first time interval.
  • the sending time interval between the last reference signal sent by the terminal device on time-frequency resource 2 and the sending time interval of the first reference signal sent by the terminal device on time-frequency resource 3 is the first time interval.
  • the network device receives the first group of reference signals on the first time-frequency resource.
  • the network device receives the second group of reference signals on the second time-frequency resource.
  • the network device receives the third group of reference signals on the third time-frequency resource.
  • the terminal device before the network device sends the first information to the terminal device, the terminal device receives second information from the network device, the second information indicates that the terminal device is in the first mode or the terminal device is in the second mode; or, The terminal device sends third information to the network device, where the third information indicates that the terminal device is in the first mode or the terminal device is in the second mode.
  • the terminal device when the terminal device is in the first mode, there are inactive antenna panels in the N antenna panels.
  • the terminal device in order to save power consumption of the terminal device, only one of the N antenna panels is in an active state.
  • the terminal device is in the second mode, all N antenna panels are activated.
  • the first mode involved in the embodiments of the present application may also be referred to as a performance mode
  • the second mode may also be referred to as a power saving mode, which is not limited in the embodiments of the present application.
  • the terminal device when the terminal device accesses the network device, the terminal device sends capability information of the terminal device to the network device, where the capability information of the terminal device is used to indicate that the terminal device supports the first mode and/or the second mode.
  • the terminal device when the terminal device accesses the network device, the terminal device sends capability information of the terminal device to the network device, where the capability information of the terminal device is used to indicate that the terminal device supports the first mode and/or the second mode.
  • the network device may send indication information to the terminal device according to the capability information of the terminal device, where the indication information is used to indicate that the terminal device is in the first mode or the terminal device is in the second mode.
  • the terminal device can also determine the mode that it needs to be in now or the mode that will be in the future according to factors such as the current power level, whether it is overheated, or whether it needs to enter an energy-saving state. At this time, the terminal device can actively report the terminal device to the network device. in the first mode or the second mode.
  • the value of the first time interval is the first preset value
  • the value of the first time interval is the second preset value
  • the first The preset value is greater than the second preset value.
  • the first preset value may be greater than the time required for antenna panel activation, which is generally longer, such as 2-3 ms
  • the second preset value may be greater than the time required for antenna panel switching between activated antenna panels, which is generally longer. Short, such as a few us.
  • the network device can configure the N time-frequency resources to realize the sending of the last reference signal in the i-th group of reference signals and the first reference signal in the i+1-th group of reference signals
  • the time interval is the first time interval, that is, the network device can realize the time reserved for the terminal device to switch the antenna panel.
  • the network device measures N groups of reference signals to obtain measurement results, and the network device determines the target antenna panel from the N antenna panels according to the measurement results.
  • the network device sends fourth information to the terminal device, where the fourth information indicates a target antenna panel among the N antenna panels. Therefore, using the method provided in the above manner 1, the network device indicates the target antenna panel to the terminal device.
  • the network device measuring N groups of reference signals means that the network device uses a corresponding receive beam to receive for each reference signal in each group of reference signals, and performs measurement for each received reference signal. Further, the network device can obtain a measurement result for each received reference signal, sort all the obtained measurement results, and select the antenna panel where the receiving beam corresponding to the measurement result whose signal quality is ranked in the top X positions is located. As the target antenna panel, X is a positive integer. In addition, the network device can also combine other factors with the measurement results to determine the target antenna panel.
  • the fourth information may include the index of the target antenna panel, or the beam index.
  • the antenna panel where the beam corresponding to the beam index is located is the target antenna panel.
  • the target antenna panel is L among the N antenna panels, and L is an integer. After the terminal device determines the target antenna panel, the terminal device can deactivate other N-L antenna panels except the target antenna panel, so as to save the power consumption of the terminal device.
  • the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 11 and FIG. 12 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal equipment or the network equipment in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be the terminal device 130 or the terminal device 140 as shown in FIG. 1 , or may be the wireless access network device 120 as shown in FIG. 1 , or may be applied to the terminal device or a module (such as a chip) of a network device.
  • the communication device 1100 includes a processing unit 1110 and a transceiver unit 1120 .
  • the communication apparatus 1100 is configured to implement the functions of the terminal device or the network device in the method embodiments shown in FIG. 5 and FIG. 10 .
  • the processing unit 1110 calls the transceiver unit 1120 to execute: receive the first information, and the first information is used for Configure N groups of reference signals, wherein the transmission time interval between the last reference signal in the ith group of reference signals and the first reference signal in the i+1th group of reference signals is the first time interval, and the first time interval is The time required for the terminal device to switch from the i-th antenna panel to the i+1-th antenna panel, 1 ⁇ i ⁇ N, i is a positive integer; the number of antenna panels is N, and N is a positive integer greater than or equal to 2 Integer; use the N antenna panels to transmit the N groups of reference signals, and the N antenna panels are in one-to-one correspondence with the N groups of reference signals.
  • the processing unit 1110 calls the transceiver unit 1120 to execute: send the first information to the terminal device, and the first information is used
  • the transmission time interval between the last reference signal in the i-th group of reference signals and the first reference signal in the i+1-th group of reference signals is a first time interval, and the first time interval is all
  • the terminal equipment is switched from the ith antenna panel to the one required by the i+1th antenna panel, 1 ⁇ i ⁇ N, i is a positive integer; the number of antenna panels is N, and N is a positive integer greater than or equal to 2 ; Transmit the N groups of reference signals, and the N antenna panels are in one-to-one correspondence with the N groups of reference signals.
  • the communication device 1200 includes a processor 1210 and an interface circuit 1220 .
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 can be a transceiver or an input-output interface.
  • the communication apparatus 1200 may further include a memory 1230 for storing instructions executed by the processor 1210 or input data required by the processor 1210 to execute the instructions or data generated after the processor 1210 executes the instructions.
  • the processor 1210 is used to implement the functions of the above-mentioned processing unit 1110
  • the interface circuit 1220 is used to implement the functions of the above-mentioned transceiver unit 1120 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROMs or known in the art in any other form of storage medium.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Erasable Programmable Read-Only Memory
  • EPROM Electrically Erasable Programmable Read-Only Memory
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website site, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable medium can be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it can also be an optical medium, such as a digital video disc (DVD); it can also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • a magnetic medium such as a floppy disk, a hard disk, and a magnetic tape
  • an optical medium such as a digital video disc (DVD)
  • DVD digital video disc
  • it can also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:终端设备接收第一信息,第一信息用于配置N组参考信号,其中,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,第一时间间隔为终端设备从第i个天线面板切换至为第i+1个天线面板所需的时间,1≤i≤N,i为正整数;终端设备采用N个天线面板传输N组参考信号,N个天线面板与N组参考信号一一对应。终端设备包括N个天线面板,N为大于等于2的正整数

Description

一种通信方法及装置 技术领域
本申请实施例涉及无线通信领域,尤其涉及一种通信方法及装置。
背景技术
在3GPP Rel-15版本中,网络设备的天线面板或终端设备的天线面板是透明的。其中,网络设备的天线面板是透明的可以理解为网络设备的天线面板状态终端设备不可见,同理,终端设备的天线面板是透明的可以理解为终端设备的天线面板状态网络设备也不可见。其中,天线面板状态包括激活状态和非激活状态。对于波束或者资源(信号或信道等)如何与天线面板产生关联,也完全取决于网络设备或终端设备的实现。
而波束(对)的切换不仅涉及网络设备的波束切换,也涉及终端设备的波束切换。当网络设备通知终端设备切换波束时,且由于终端设备的天线面板是透明的,因此,网络设备无法确定终端设备在波束的切换过程中,是否同时切换天线面板,即终端设备的波束切换过程可能是同一个天线面板内的不同波束之间的切换,或者不同天线面板的不同波束之间的切换。
其中,不同天线面板的不同波束之间的切换所需的时间主要为不同天线面板之间的天线面板切换所需的时间。其中,不同天线面板之间的天线面板切换包括从一个激活天线面板切换到另一个激活天线面板(即激活的天线面板之间的天线面板切换)和从激活天线面板切换到非激活天线面板两种情况。其中,激活的天线面板之间的天线面板切换需要几个us,通常几个us时间可以忽略。从激活天线面板到非激活天线面板之间的天线面板切换包括天线面板激活和天线面板切换两个动作。因此,无论是终端设备还是网络设备,从激活天线面板到非激活天线面板之间的天线面板切换所需的时间包括是天线面板激活所需时间和激活的天线面板之间的天线面板切换所需的时间。通常,天线面板激活需要2-3ms左右,因此,从激活天线面板到非激活天线面板之间的天线面板切换需要2-3ms加上几个us时间。但是当前协议的大部分场景未预留天线面板激活需要的时间。当前,为了解决上述问题,一种方案为终端设备保持多个天线面板同时处于激活状态,而该方案将会导致终端功耗较高。另一种方案为终端设备为了节省功耗仅激活一个天线面板,而该方案可能导致终端设备未能与网络设备采用合适的波束对进行通信,进而对通信性能造成影响。
发明内容
本申请实施例提供一种通信方法及装置,用以实现在不同天线面板的不同波束之间的切换时有效节省终端设备的功耗。
第一方面,本申请实施例提供一种通信方法,该方法包括:终端设备接收第一信息,所述第一信息用于配置N组参考信号,其中,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,所述第一时间间隔为所述终端设备从第i个天线面板切换至为第i+1个天线面板所需的时间,1≤i≤N,i为正整数;天线面板的数目为N,N为大于等于2的正整数;所述终端设备采用N个天线面板传输所述N组参考信号,所述N个天线面板与所述N组参考信号一一对应。
采用上述方法,在波束顺利过程中可以增加天线面板训练过程,前一组参考信号中的最后一个参考信号与后一组参考信号中第一个参考信号存在发送时间间隔,终端设备可以通过调整天线面板的状态适应网络设备的配置,进而可以达到系统性能和节电折中。
在一种可能的设计中,还包括:所述终端设备接收来自于所述网络设备的第二信息,所述第二信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;或者,所述终端设备向所述网络设备发送第三信息,所述第三信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;其中,在所述终端设备处于所述第一模式时,所述N个天线面板中存在未被激活的天线面板;在所述终端设备处于所述第二模式时,所述N个天线面板全部被激活。
采用上述设计,终端设备可以处于第一模式或第二模式,且由于终端设备处于不同的模式,网络设备可以根据该模式为终端设备配置第一信息。
在一种可能的设计中,在所述终端设备处于所述第一模式时,所述第一时间间隔的取值为第一预设数值,在所述终端设备处于所述第二模式时,所述第一时间间隔的取值为第二预设数值,所述第一预设数值大于所述第二预设数值。
采用上述设计,由于终端设备可以处于第一模式或第二模式,网络设备可以根据终端设备所处的模式为终端设备配置第一时间间隔。
在一种可能的设计中,所述方法还包括:所述终端设备测量所述N组参考信号获得测量结果;所述终端设备根据所述测量结果从所述N个天线面板中确定目标天线面板。
采用上述设计,终端设备可以自主确定目标天线面板。
在一种可能的设计中,所述方法还包括:所述终端设备向所述网络设备发送测量结果;所述测量结果是所述终端设备测量所述N组参考信号获得的;所述终端设备接收来自于所述网络设备的第四信息,所述第四信息指示所述N个天线面板中的目标天线面板。
采用上述设计,网络设备可以为终端设备指示目标天线面板。
在一种可能的设计中,所述目标天线面板为所述N个天线面板中的L个,L为整数,所述方法还包括:所述终端设备去激活除所述目标天线面板外的其他N-L个天线面板。
采用上述设计,终端设备通过去激活非目标天线面板可以实现节省终端设备的功耗。
在一种可能的设计中,还包括:所述终端设备向所述网络设备发送第五信息,所述第五信息指示所述终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目。
采用上述设计,终端设备可以向网络设备通知自身的天线面板的数目N和每个天线面板上包括的波束数目。
第二方面,本申请实施例提供一种通信方法,该方法包括:网络设备向终端设备发送第一信息,第一信息用于配置N组参考信号,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,所述第一时间间隔为所述终端设备从第i个天线面板切换至为第i+1个天线面板所需的时,1≤i≤N,i为正整数;天线面板的数目为N,N为大于等于2的正整数;所述网络设备在所述N个时频资源上传输所述N组参考信号,所述N个天线面板与所述N组参考信号一一对应。
在一种可能的设计中,还包括:所述网络设备向所述终端设备发送第二信息,所述第二信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;或者,所述网络设备接收来自于所述终端设备发送的第三信息,所述第三信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;其中,在所述终端设备处于所述第一模式时,所述N个 天线面板中存在未被激活的天线面板;在所述终端设备处于所述第二模式时,所述N个天线面板全部被激活。
在一种可能的设计中,在所述终端设备处于所述第一模式时,所述第一时间间隔的取值为第一预设数值,在所述终端设备处于所述第二模式时,所述第一时间间隔的取值为第二预设数值,所述第一预设数值大于所述第二预设数值。
在一种可能的设计中,所述方法还包括:所述网络设备接收来自于所述终端设备的测量结果,所述测量结果是所述终端设备测量所述N组参考信号获得的;所述网络设备向所述终端设备发送第四信息,所述第四信息指示所述N个天线面板中的目标天线面板。
在一种可能的设计中,所述目标天线面板为所述N个天线面板中的L个,L为整数。
在一种可能的设计中,还包括:所述网络设备接收来自于所述终端设备的第五信息,所述第五信息指示所述终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目。
第三方面,本申请实施例提供一种通信装置,所述装置包括用于执行第一方面和第一方面中的任意一种可能的设计的模块,或执行第二方面和第二方面中的任意一种可能的设计的模块。
第四方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现第一方面和第一方面中的任意一种可能的设计,或用于实现第二方面和第二方面中的任意一种可能的设计。
第五方面,本申请实施例提供一种计算机可读存储介质,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现第一方面和第一方面中的任意一种可能的设计或实现第二方面和第二方面中的任意一种可能的设计。
第六方面,本申请实施例提供一种包含程序的计算机程序产品,当其在通信装置上运行时,使得通信装置执行第一方面和第一方面中的任意一种可能的设计或者执行第二方面和第二方面中的任意一种可能的设计。
附图说明
图1为本申请实施例应用的移动通信系统的架构示意图;
图2为本申请实施例提供的波束训练过程之一;
图3为本申请实施例提供的在波束训练过程全部天线面板处于激活状态的场景示意图;
图4为本申请实施例提供的在波束训练过程一个天线面板处于激活状态的场景示意图;
图5为本申请实施例提供的一种通信方法的概述流程之一;
图6为本申请实施例提供的波束训练过程之二;
图7为本申请实施例提供的在波束训练过程终端设备处于第一模型的天线面板状态示意图;
图8为本申请实施例提供的波束训练过程之三;
图9为本申请实施例提供的在波束训练过程终端设备处于第一模型的天线面板状态 示意图;
图10为本申请实施例提供的一种通信方法的概述流程之二;
图11为本申请实施例提供的一种通信装置的结构示意图之一;
图12为本申请实施例提供的一种通信装置的结构示意图之二。
具体实施方式
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
终端设备通过无线方式与无线接入网设备相连,从而接入到该移动通信系统中。无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
5G新空口(new radio,NR)为了满足三大场景需求,相比于4G长期演进(long term evolution,LTE)采用低频频段,新增高频频段(通常认为6G以上),比如28GHz、39GHz 或60GHz频段。引入高频来实现更大带宽、更高传输速率。由于频率较高,信号在空间传播过程中会发生严重衰落。因此,5G NR采用波束赋形(beamforming,BF)技术获得良好的定向性增益,以提高发射方向定向功率,改善接收端信干噪比(signal to interference plus noise radio,SINR),进而提升系统性能。在5G NR研究过程中,考虑成本和性能折中,最终采用包含数字波束赋形和模拟波束赋形的混合波束赋形(hybrid beamforming,HBF)技术。在波束赋形技术实现过程中,天线面板(antenna panel)是核心组件。波束是通过天线面板发送或者接收。在5G NR部署实现中,由于采用定向波束,为了满足广域覆盖,网络设备和终端设备均是采用多天线面板部署。尤其终端设备,为了满足覆盖,且在有限空间并节省成本的情况下,天线面板部署对性能影响更加重要。
由于网络设备和终端设备均采用混合波束赋形技术,由此带来的收发波束管理问题成为5G NR标准化讨论过程中的一个中心问题。经过多次讨论,最终在5G NR的第一个版本3GPP Rel-15版本中,标准化了波束管理的内容。标准化了波束管理的框架包括波束训练、波束测量和上报、各信号或信道波束指示等。
下面分别简述上下行信号或信道波束指示。对于物理下行控制信道(physical downlink control channel,PDCCH)波束,采用高层无线资源控制(radio resource control,RRC)信令配置一个波束资源池,并通过媒体接入控制信元(MAC control element,MAC CE)信令激活其中一个波束来指示PDCCH波束;对于PDSCH波束,采用高层RRC信令配置一个波束资源池,并通过MAC-CE信令激活其中包含多个波束的一个波束子集,最终通过DCI触发该波束子集的一个波束来指示PDSCH波束;对于用于传输周期和非周期性信道状态信息参考信号(channel state information reference signal,CSI-RS)的波束,通过RRC信令指示;对于用于传输半持续CSI-RS的波束,通过MAC-CE指示;对于PUCCH波束,采用高层RRC信令配置一个波束资源池,并通过MAC-CE信令激活其中一个波束来指示PUCCH波束;对于PUSCH波束指示,通过与之关联的SRS资源指示(SRS resource indicator,SRI)指示用于传输探测参考信号(sounding reference signal,SRS)的波束;对于用于传输周期和非周期的SRS波束,通过RRC信令指示;对于用于传输半持续SRS的波束可以采用RRC信令指示或者可以通过MAC-CE信令指示。
其中,天线面板是一个逻辑实体,物理天线如何映射到逻辑实体通过产品实现决定。可以定义天线面板ID,这样至少终端设备的天线面板对网络设备来说是可见的,因此,网络设备可以根据此ID,来指示或者获取终端设备的天线面板状态。
波束训练包括网络设备和终端设备的收发波束扫描过程。目的是找到波束对,即包括一个发波束和一个收波束。只有发送波束方向和接收波束方向是对齐的情况下,网络设备和终端设备接收信号的增益才算最佳。以下对波束训练或扫描流程进行简要介绍:
下行波束训练过程,如图2所示。
P-1过程(即波束粗对齐的过程):gNB以发波束扫描方式覆盖一个区域,UE通过收波束扫描方式分别与gNB的发波束配对并进行测量和上报。gNB基于P1过程获得初始发波束,UE通过P1过程(或gNB指示)获得的初始收波束。为了加快P1过程,通常gNB和UE选择粗波束扫描。
P-2过程(即精调gNB发波束的过程):gNB基于P1过程获得的初始发波束进行细发波束扫描,UE通过P1过程(或gNB指示)获得的初始收波束,进行配对测量和上报。gNB基于P2过程获得细发波束。该过程协议中只描述P2过程的识别,即当标志位 (Repitition=OFF)时,UE假设gNB发送不同的波束,其他配置和过程由gNB实现主控。
P-3过程(即精调UE收波束的过程):gNB基于P2过程获得细发波束固定发送,UE通过P2过程获得粗波束进行细收波束扫描,并进行配对测量,UE通过P3过程获得UE的细收波束。该过程协议中只描述P3过程的识别,即当标志位(Repitition=ON)时,UE假设gNB发送相同的波束,其他配置和过程由gNB实现主控。
上行波束训练过程(与下行波束训练过程类似):
U-1过程(即波束粗对齐的过程):UE以发波束扫描方式覆盖一个区域,gNB通过收波束扫描方式分别与UE的发波束配对并进行测量。gNB通过U1过程获得的初始收波束,UE根据gNB配置获得初始发波束。为了加快U1过程,通常gNB和UE选择粗波束扫描。
U-2过程(即精调gNB收波束的过程):UE根据gNB配置的初始发波束进行固定发送,gNB通过U1过程获得的初始收波束进行细收波束扫描,并进行配对测量,选择合适的细收波束。当gNB给UE不同参考信号配置相同发波束时,可认为是U2过程。
U-3过程(即精调UE发波束的过程):UE根据gNB配置的初始发波束进行细发波束扫描,gNB通过U2过程获得的细收波束进行配对测量,选择合适的UE细收波束。当gNB给UE不同参考信号配置不同发波束时,可认为是U3过程。
上述过程中,CSI-RS配置repetition为‘ON’时,终端假设一个CSI-RS集合(CSI-RS se)t内所有CSI-RS对应的gNB的发波束相同;CSI-RS配置repetition为‘OFF’时,终端不假设一个CSI-RS set内所有CSI-RS对应的gNB的发波束相同。
当前,终端设备在训练开始前,由于无法预知在不同的资源组之间是否预留天线面板激活和切换时间,同时为了满足覆盖要求,需要训练所有天线面板,因此需同时激活多个天线面板,因此导致终端设备耗电较多,不利于节省终端设备的功耗;此外,长时间同时激活多个天线面板,甚至会导致终端过热问题,如图3所示,天线面板1、天线面板2和天线面板3均处于激活状态。或者在网络设备配置粗波束训练P1步骤时,终端设备由于某些原因,如耗电、过热、硬件处理约束等问题,终端设备为了节省电量,只激活一个天线面板进行波束训练,因而,可能会导致系统性能下降,如图4所示,天线面板1和天线面板3处于非激活状态(或去激活状态),只有天线面板2处于激活状态。
基于此,本申请实施例提供一种通信方法,用以实现在不同天线面板的不同波束之间的切换时有效节省终端设备的功耗。本申请实施例通过设计不同的波束训练方式,达到综合终端实现复杂度、功耗、热散和系统性能折中。其中,终端设备包括N个天线面板,N为大于等于2的正整数,如图5所示的方法适用于下行波束训练过程,如图5所示实施例的方法可以应用于P1过程之前。该方法包括:
S501:网络设备向终端设备发送第一信息,第一信息用于配置N组参考信号,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,第一时间间隔为终端设备从第i个天线面板切换至为第i+1个天线面板所需的时间,i为正整数。示例性地,第一信息可以通过RRC信令携带。
S502:网络设备发送N组参考信号。相应的,S502又可描述为,终端设备采用N个天线面板在N个时频资源上接收N组参考信号,N个天线面板与N组参考信号一一对应。
示例性地,第i组参考信号包括K i个参考信号。网络设备在第i个时频资源上采用K i个发送波束分别发送参考信号,终端设备采用第i个天线面板上的接收波束在第i个时频 资源上接收网络设备采用K i个发送波束分别发送的参考信号。第i个时频资源为第i组参考信号所在的时频资源。第i+1组参考信号包括K i+1个参考信号。网络设备在第i+1个时频资源上采用K i+1个发送波束分别发送参考信号,终端设备采用第i+1个天线面板上的接收波束在第i+1个时频资源上接收网络设备采用K i+1个发送波束分别发送的参考信号。第i+1个时频资源为第i+1组参考信号所在的时频资源。其中,第i组参考信号中的最后一个参考信号与第i+1组参考信号中的第1个参考信号的发送时间间隔为第一时间间隔。其中,K i和K i+1为正整数。
第一时间间隔为第i组参考信号中的最后一个参考信号所在的时域资源中的最后一个OFDM符号与第i+1组参考信号中的第1个参考信号所在的时域资源中的第一个OFDM符号之间的间隔。
在一些实施例中,终端设备还可以向网络设备发送第五信息,第五信息指示终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目。网络设备可以根据终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目确定第一信息。
例如,终端设备包括3个天线面板,分别为天线面板1、天线面板2和天线面板3,其中,天线面板1包括8个接收波束,天线面板2包括4个接收波束,天线面板3包括8个接收波束。网络设备据此生成第一信息,第一信息用于配置3组参考信号。3个时频资源与3组参考信号一一对应。时频资源1用于网络设备采用8个发送波束向终端设备分别发送参考信号。时频资源2用于网络设备采用4个发送波束向终端设备分别发送参考信号。时频资源3用于网络设备采用8个发送波束向终端设备分别发送参考信号。其中,网络设备在时频资源1上发送的最后一个参考信号与网络设备在时频资源2上发送的第一个参考信号的发送时间间隔为第一时间间隔。网络设备在时频资源2上发送的最后一个参考信号与网络设备在时频资源3上发送的第一个参考信号的发送时间间隔为第一时间间隔。终端设备采用天线面板1在第1个时频资源上接收第1组参考信号。终端设备采用天线面板2在第2个时频资源上接收第2组参考信号。终端设备采用天线面板3在第3个时频资源上接收第3组参考信号。
在一些实施例中,在网络设备向终端设备发送第一信息之前,终端设备接收来自于网络设备的第二信息,第二信息指示终端设备处于第一模式或终端设备处于第二模式;或者,终端设备向网络设备发送第三信息,第三信息指示终端设备处于第一模式或终端设备处于第二模式。
在一示例中,在终端设备接入网络设备时,终端设备向网络设备发送终端设备的能力信息,该终端设备的能力信息用于指示终端设备支持第一模式和/或第二模式。
在一示例中,在终端设备接入网络设备时,终端设备向网络设备发送终端设备的能力信息,该终端设备的能力信息用于指示终端设备支持第一模式和/或第二模式。网络设备可以根据终端设备的能力信息向终端设备发送指示信息,该指示信息用于指示终端设备处于第一模式或终端设备处于第二模式。
在一示例中,终端设备还可以根据当前电量,是否过热或者是否需要进入节能状态等因素,判断现在需要处于的模式或未来即将处于的模式,此时,终端设备可以主动向网络设备上报终端设备处于第一模式或第二模式。
其中,在终端设备处于第一模式时,N个天线面板中存在未被激活的天线面板。示例性地,终端设备为节省功耗,N个天线面板中仅有一个天线面板的状态为激活状态。在终 端设备处于第二模式时,N个天线面板全部被激活。此外,本申请实施例所涉及的第一模式又可称为性能模式,第二模式又可称为节电方式,本申请实施例对此不作限定。
此外,在终端设备处于第一模式时,第一时间间隔的取值为第一预设数值,在终端设备处于第二模式时,第一时间间隔的取值为第二预设数值,第一预设数值大于第二预设数值。示例性地,第一预设数值可以大于天线面板激活需要的时间,一般较长,例如2-3ms,第二预设数值可以大于激活的天线面板之间的天线面板切换需要的时间,一般较短,例如几个us。因此,当终端设备处于第一模式时,网络设备可以通过配置N个时频资源,实现第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,即网络设备可以实现为终端设备切换天线面板预留时间。
进一步地,在S502之后,终端设备可以通过但不限于以下方式确定N个天线面板中的目标天线面板。其中,目标天线面板为N个天线面板中的L个,L为整数。终端设备在确定目标天线面板之后,终端设备可以去激活除目标天线面板外的其他N-L个天线面板,以实现节省终端设备的功耗。
方式1:终端设备测量N组参考信号获得测量结果,终端设备根据测量结果从N个天线面板中确定目标天线面板。因此,采用上述方式1提供的方法,终端设备可以自主确定目标天线面板。
示例性地,终端设备测量N组参考信号是指终端设备针对每组参考信号中的每个参考信号采用相应的接收波束进行接收,并针对每个接收到的参考信号进行测量。进一步地,终端设备可以获得针对每个接收到的参考信号的测量结果,并对获得的全部测量结果进行排序,从中选择信号质量排在前X位的测量结果所对应的接收波束所在的天线面板作为目标天线面板,X为正整数。
方式2:终端设备向网络设备发送测量结果,该测量结果是终端设备测量N组参考信号获得的。终端设备接收来自于网络设备的第四信息,第四信息指示N个天线面板中的目标天线面板。因此,采用上述方式2提供的方法,网络设备为终端设备指示目标天线面板。
示例性地,终端设备测量N组参考信号是指终端设备针对每组参考信号中的每个参考信号采用相应的接收波束进行接收,并针对每个接收到的参考信号进行测量。进一步地,终端设备可以获得针对每个接收到的参考信号的测量结果,终端设备可以选择将获得的全部测量结果上报至网络设备,或者终端设备也可以选择上报其中部分测量结果至网络设备,例如,终端设备选择信号质量排在前Y位的测量结果上报至网络设备,Y为正整数。
网络设备可以根据终端设备上报的测量结果确定目标天线面板,并向终端设备发送第四信息。示例性地,第四信息可以包括目标天线面板的索引,或者波束索引。其中,该波束索引所对应的波束所在的天线面板为目标天线面板。此外,网络设备还可以结合其他因素与终端设备上报的测量结果共同确定目标天线面板。
示例性地,目标天线面板为N个天线面板中的至少两个面板。具体的,在天线面板训练完成后,可能需要至少两个天线面板同时传输数据。例如,在多TRP场景,网络设备会选择同时传输两个波束与终端设备进行通信,终端设备需要在不同的面板上的两个波束进行收发。又例如,在单TRP场景,网络设备为了保证传输的鲁棒性,也会使用两个波束与终端设备进行通信,终端设备也需要在不同的面板上的两个波束进行收发,在该场景下,网络设备可能假设某一个波束可能被遮挡。
下面结合具体示例对如图5所示实施例进行说明。
示例1:终端设备处于第一模式。终端设备包括3个天线面板,分别为天线面板1、天线面板2和天线面板3。如图6所示的波束训练过程包括P-0过程,P-1过程,P-2过程,P-3过程。
在P-0过程中,每组参考信号包括三个参考信号。终端设备采用天线面板1在第1个时频资源上接收第1组参考信号,终端设备采用天线面板2在第2个时频资源上接收第2组参考信号。终端设备采用天线面板3在第3个时频资源上接收第3组参考信号。接收第1组参考信号与接收第2组参考信号的时间间隔为第一时间间隔。此时,第一时间间隔用于终端设备从天线面板1切换至天线面板2,由于天线面板2的状态为非激活状态,因此,第一时间间隔的取值为第一预设取值。接收第2组参考信号与接收第3组参考信号的时间间隔为第一时间间隔。此时,第一时间间隔用于终端设备从天线面板2切换至天线面板3,由于天线面板3的状态为非激活状态,因此,第一时间间隔的取值为第一预设取值。
如图7所示,在终端设备采用天线面板1在第1个时频资源上接收第1组参考信号时,天线面板1的状态为激活状态,天线面板2的状态为非激活状态,天线面板3的状态为非激活状态。在终端设备采用天线面板2在第2个时频资源上接收第2组参考信号时,天线面板1的状态为非激活状态,天线面板2的状态为激活状态,天线面板3的状态为非激活状态。在终端设备采用天线面板3在第3个时频资源上接收第3组参考信号时,天线面板1的状态为非激活状态,天线面板2的状态为非激活状态,天线面板3的状态为激活状态。
通过P-0过程,终端设备可以根据第一时间间隔切换天线面板,从而不需要全部天线面板处于激活状态。进一步地,通过P-0过程,网络设备可以为终端设备指示目标天线面板,终端设备可以去激活非目标天线面板,能够节省终端设备的功耗。
在P-1过程中,网络设备以发波束扫描方式覆盖一个区域,终端设备通过收波束扫描方式分别与网络设备的发波束配对并进行测量和上报。网络设备基于P1过程获得初始发波束,终端设备通过P1过程(或网络设备指示)获得的初始收波束。
在P-2过程中,网络设备基于P1过程获得的初始发波束进行细发波束扫描,终端设备通过P1过程(或网络设备指示)获得的初始收波束,进行配对测量和上报。网络设备基于P2过程获得细发波束。
在P-3过程中,网络设备基于P2过程获得细发波束固定发送,终端设备通过P2过程获得粗波束进行细收波束扫描,并进行配对测量,终端设备通过P3过程获得终端设备的细收波束。
示例2:终端设备处于第二模式。终端设备包括3个天线面板,分别为天线面板1、天线面板2和天线面板3。如图8所示,每组参考信号包括三个参考信号。终端设备采用天线面板1在第1个时频资源上接收第1组参考信号,终端设备采用天线面板2在第2个时频资源上接收第2组参考信号。终端设备采用天线面板3在第3个时频资源上接收第3组参考信号。接收第1组参考信号与接收第2组参考信号的时间间隔为第一时间间隔。接收第2组参考信号与接收第3组参考信号的时间间隔为第一时间间隔。此时,第一时间间隔的取值为第二预设取值。如图9所示,天线面板1的状态为激活状态,天线面板2的状态为激活状态,天线面板3的状态为激活状态,即三个天线面板始终处于激活状态。
通过P-0过程,网络设备可以为终端设备指示目标天线面板,终端设备可以去激活非目标天线面板,从而优化波束训练过程,且能够节省终端设备的功耗。
在P-1过程中,网络设备以发波束扫描方式覆盖一个区域,终端设备通过收波束扫描 方式分别与网络设备的发波束配对并进行测量和上报。网络设备基于P1过程获得初始发波束,终端设备通过P1过程(或网络设备指示)获得的初始收波束。
在P-2过程中,网络设备基于P1过程获得的初始发波束进行细发波束扫描,终端设备通过P1过程(或网络设备指示)获得的初始收波束,进行配对测量和上报。网络设备基于P2过程获得细发波束。
在P-3过程中,网络设备基于P2过程获得细发波束固定发送,终端设备通过P2过程获得粗波束进行细收波束扫描,并进行配对测量,终端设备通过P3过程获得终端设备的细收波束。
基于此,本申请实施例提供一种通信方法,用以实现在不同天线面板的不同波束之间的切换时有效节省终端设备的功耗。本申请实施例通过设计不同的波束训练方式,达到综合终端实现复杂度、功耗、热散和系统性能折中。其中,终端设备包括N个天线面板,N为大于等于2的正整数,如图10所示的方法适用于上行波束训练过程,如图10所示实施例的方法可以应用于U1过程之前。该方法包括:
S1001:网络设备向终端设备发送第一信息,第一信息用于配置N组参考信号。第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,第一时间间隔为终端设备从第i个天线面板切换至为第i+1个天线面板所需的时间,i为正整数。示例性地,第一信息可以通过RRC信令携带。
S1002:终端设备采用N个天线面板发送N组参考信号,N个天线面板与N组参考信号一一对应。相应的,S1002又可描述为,网络设备接收N组参考信号。
示例性地,第i组参考信号包括K i个参考信号。网络设备在第i个时频资源上接收终端设备采用K i个发送波束分别发送的参考信号,终端设备在第i个时频资源上采用第i个天线面板上的K i个发送波束分别发送参考信号。第i+1组参考信号包括K i+1个参考信号。网络设备在第i+1个时频资源上接收终端设备采用K i+1个发送波束分别发送的参考信号,终端设备在第i+1个时频资源上采用第i+1个天线面板上的K i+1个发送波束分别发送参考信号。其中,第i组参考信号中的最后一个参考信号与第i+1组参考信号中的第1个参考信号的发送时间间隔为第一时间间隔。其中,K i和K i+1为正整数。
第一时间间隔为第i组参考信号中的最后一个参考信号所在的时域资源中的最后一个OFDM符号与第i+1组参考信号中的第1个参考信号所在的时域资源中的第一个OFDM符号之间的间隔。
在一些实施例中,终端设备还可以向网络设备发送第五信息,第五信息指示终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目。网络设备可以根据终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目确定第一信息。
例如,终端设备包括3个天线面板,分别为天线面板1、天线面板2和天线面板3,其中,天线面板1包括8个发送波束,天线面板2包括4个发送波束,天线面板3包括8个发送波束。网络设备据此生成第一信息,第一信息用于配置3组参考信号。3个时频资源与3组参考信号一一对应。时频资源1用于终端设备采用8个发送波束向网络设备分别发送参考信号。时频资源2用于终端设备采用4个发送波束向网络设备分别发送参考信号。时频资源3用于终端设备采用8个发送波束向网络设备分别发送参考信号。其中,终端设备在时频资源1上发送的最后一个参考信号与终端设备在时频资源2上发送的第一个参考 信号的发送时间间隔为第一时间间隔。终端设备在时频资源2上发送的最后一个参考信号与终端设备在时频资源3上发送的第一个参考信号的发送时间间隔为第一时间间隔。网络设备在第1个时频资源上接收第1组参考信号。网络设备在第2个时频资源上接收第2组参考信号。网络设备在第3个时频资源上接收第3组参考信号。
在一些实施例中,在网络设备向终端设备发送第一信息之前,终端设备接收来自于网络设备的第二信息,第二信息指示终端设备处于第一模式或终端设备处于第二模式;或者,终端设备向网络设备发送第三信息,第三信息指示终端设备处于第一模式或终端设备处于第二模式。其中,在终端设备处于第一模式时,N个天线面板中存在未被激活的天线面板。示例性地,终端设备为节省功耗,N个天线面板中仅有一个天线面板的状态为激活状态。在终端设备处于第二模式时,N个天线面板全部被激活。此外,本申请实施例所涉及的第一模式又可称为性能模式,第二模式又可称为节电方式,本申请实施例对此不作限定。
在一示例中,在终端设备接入网络设备时,终端设备向网络设备发送终端设备的能力信息,该终端设备的能力信息用于指示终端设备支持第一模式和/或第二模式。
在一示例中,在终端设备接入网络设备时,终端设备向网络设备发送终端设备的能力信息,该终端设备的能力信息用于指示终端设备支持第一模式和/或第二模式。网络设备可以根据终端设备的能力信息向终端设备发送指示信息,该指示信息用于指示终端设备处于第一模式或终端设备处于第二模式。
在一示例中,终端设备还可以根据当前电量,是否过热或者是否需要进入节能状态等因素,判断现在需要处于的模式或未来即将处于的模式,此时,终端设备可以主动向网络设备上报终端设备处于第一模式或第二模式。
此外,在终端设备处于第一模式时,第一时间间隔的取值为第一预设数值,在终端设备处于第二模式时,第一时间间隔的取值为第二预设数值,第一预设数值大于第二预设数值。示例性地,第一预设数值可以大于天线面板激活需要的时间,一般较长,例如2-3ms,第二预设数值可以大于激活的天线面板之间的天线面板切换需要的时间,一般较短,例如几个us。因此,当终端设备处于第一模式时,网络设备可以通过配置N个时频资源,实现第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,即网络设备可以实现为终端设备切换天线面板预留时间。
在一些实施例中,网络设备测量N组参考信号获得测量结果,网络设备根据测量结果从N个天线面板中确定目标天线面板。网络设备向终端设备发送第四信息,第四信息指示N个天线面板中的目标天线面板。因此,采用上述方式1提供的方法,网络设备为终端设备指示目标天线面板。
示例性地,网络设备测量N组参考信号是指网络设备针对每组参考信号中的每个参考信号采用相应的接收波束进行接收,并针对每个接收到的参考信号进行测量。进一步地,网络设备可以获得针对每个接收到的参考信号的测量结果,并对获得的全部测量结果进行排序,从中选择信号质量排在前X位的测量结果所对应的接收波束所在的天线面板作为目标天线面板,X为正整数。此外,网络设备还可以结合其他因素与测量结果共同确定目标天线面板。
示例性地,第四信息可以包括目标天线面板的索引,或者波束索引。其中,该波束索引所对应的波束所在的天线面板为目标天线面板。
其中,目标天线面板为N个天线面板中的L个,L为整数。终端设备在确定目标天线 面板之后,终端设备可以去激活除目标天线面板外的其他N-L个天线面板,以实现节省终端设备的功耗。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图11和图12为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图11所示,通信装置1100包括处理单元1110和收发单元1120。通信装置1100用于实现上述图5、图10中所示的方法实施例中终端设备或网络设备的功能。
当通信装置1100用于实现图5、图10所示的方法实施例中终端设备的功能时:所述处理单元1110调用所述收发单元1120执行:接收第一信息,所述第一信息用于配置N组参考信号,其中,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,所述第一时间间隔为所述终端设备从第i个天线面板切换至为第i+1个天线面板所需的时间,1≤i≤N,i为正整数;天线面板的数目为N,N为大于等于2的正整数;采用所述N个天线面板传输所述N组参考信号,所述N个天线面板与所述N组参考信号一一对应。
当通信装置1100用于实现图5、图10所示的方法实施例中网络设备的功能时:所述处理单元1110调用所述收发单元1120执行:向终端设备发送第一信息,第一信息用于配置N组参考信号,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,所述第一时间间隔为所述终端设备从第i个天线面板切换至为第i+1个天线面板所需的时,1≤i≤N,i为正整数;天线面板的数目为N,N为大于等于2的正整数;传输所述N组参考信号,所述N个天线面板与所述N组参考信号一一对应。
有关上述处理单元1110和收发单元1120更详细的描述可以直接参考图5、图10所示的方法实施例中相关描述直接得到,这里不加赘述。
如图12所示,通信装置1200包括处理器1210和接口电路1220。处理器1210和接口电路1220之间相互耦合。可以理解的是,接口电路1220可以为收发器或输入输出接口。可选的,通信装置1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。
当通信装置1200用于实现图5、图10所示的方法时,处理器1210用于实现上述处理单元1110的功能,接口电路1220用于实现上述收发单元1120的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模 块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (29)

  1. 一种通信方法,其特征在于,该方法包括:
    终端设备接收第一信息,所述第一信息用于配置N组参考信号,其中,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,所述第一时间间隔为所述终端设备从第i个天线面板切换至为第i+1个天线面板所需的时间,1≤i≤N,i为正整数;天线面板的数目为N,N为大于等于2的正整数;
    所述终端设备采用N个天线面板传输所述N组参考信号,所述N个天线面板与所述N组参考信号一一对应。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述终端设备接收来自于所述网络设备的第二信息,所述第二信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;或者,所述终端设备向所述网络设备发送第三信息,所述第三信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;
    其中,在所述终端设备处于所述第一模式时,所述N个天线面板中存在未被激活的天线面板;在所述终端设备处于所述第二模式时,所述N个天线面板全部被激活。
  3. 如权利要求2所述的方法,其特征在于,在所述终端设备处于所述第一模式时,所述第一时间间隔的取值为第一预设数值,在所述终端设备处于所述第二模式时,所述第一时间间隔的取值为第二预设数值,所述第一预设数值大于所述第二预设数值。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备测量所述N组参考信号获得测量结果;
    所述终端设备根据所述测量结果从所述N个天线面板中确定目标天线面板。
  5. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送测量结果;所述测量结果是所述终端设备测量所述N组参考信号获得的;
    所述终端设备接收来自于所述网络设备的第四信息,所述第四信息指示所述N个天线面板中的目标天线面板。
  6. 如权利要求4或5所述的方法,其特征在于,所述目标天线面板为所述N个天线面板中的L个,L为整数,所述方法还包括:
    所述终端设备去激活除所述目标天线面板外的其他N-L个天线面板。
  7. 如权利要求1-6任一项所述的方法,其特征在于,还包括:
    所述终端设备向所述网络设备发送第五信息,所述第五信息指示所述终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目。
  8. 一种通信方法,其特征在于,该方法包括:
    网络设备向终端设备发送第一信息,第一信息用于配置N组参考信号,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,所述第一时间间隔为所述终端设备从第i个天线面板切换至为第i+1个天线面板所需的时,1≤i≤N,i为正整数;天线面板的数目为N,N为大于等于2的正整数;
    所述网络设备在所述N个时频资源上传输所述N组参考信号,所述N个天线面板与所述N组参考信号一一对应。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;或者,所述网络设备接收来自于所述终端设备发送的第三信息,所述第三信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;
    其中,在所述终端设备处于所述第一模式时,所述N个天线面板中存在未被激活的天线面板;在所述终端设备处于所述第二模式时,所述N个天线面板全部被激活。
  10. 如权利要求9所述的方法,其特征在于,在所述终端设备处于所述第一模式时,所述第一时间间隔的取值为第一预设数值,在所述终端设备处于所述第二模式时,所述第一时间间隔的取值为第二预设数值,所述第一预设数值大于所述第二预设数值。
  11. 如权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自于所述终端设备的测量结果,所述测量结果是所述终端设备测量所述N组参考信号获得的;
    所述网络设备向所述终端设备发送第四信息,所述第四信息指示所述N个天线面板中的目标天线面板。
  12. 如权利要求11所述的方法,其特征在于,所述目标天线面板为所述N个天线面板中的L个,L为整数。
  13. 如权利要求8-12任一项所述的方法,其特征在于,还包括:
    所述网络设备接收来自于所述终端设备的第五信息,所述第五信息指示所述终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目。
  14. 一种通信装置,其特征在于,该装置包括收发单元和处理单元:
    所述处理单元调用所述收发单元执行:
    接收第一信息,所述第一信息用于配置N组参考信号,其中,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,所述第一时间间隔为所述终端设备从第i个天线面板切换至为第i+1个天线面板所需的时间,1≤i≤N,i为正整数;天线面板的数目为N,N为大于等于2的正整数;
    采用所述N个天线面板传输所述N组参考信号,所述N个天线面板与所述N组参考信号一一对应。
  15. 如权利要求14所述的装置,其特征在于,还包括:
    所述收发单元,用于接收来自于所述网络设备的第二信息,所述第二信息指示所述装置处于第一模式或所述装置处于第二模式;或者,向所述网络设备发送第三信息,所述第三信息指示所述装置处于第一模式或所述装置处于第二模式;
    其中,在所述装置处于所述第一模式时,所述N个天线面板中存在未被激活的天线面板;在所述装置处于所述第二模式时,所述N个天线面板全部被激活。
  16. 如权利要求15所述的装置,其特征在于,在所述装置处于所述第一模式时,所述第一时间间隔的取值为第一预设数值,在所述装置处于所述第二模式时,所述第一时间间隔的取值为第二预设数值,所述第一预设数值大于所述第二预设数值。
  17. 如权利要求14-16任一项所述的装置,其特征在于,所述装置还包括:
    所述处理单元,用于测量所述N组参考信号获得测量结果;
    所述收发单元,用于根据所述测量结果从所述N个天线面板中确定目标天线面板。
  18. 如权利要求14-16任一项所述的装置,其特征在于,所述装置还包括:
    所述收发单元,用于向所述网络设备发送测量结果;所述测量结果是所述装置测量所述N组参考信号获得的;接收来自于所述网络设备的第四信息,所述第四信息指示所述N个天线面板中的目标天线面板。
  19. 如权利要求17或18所述的装置,其特征在于,所述目标天线面板为所述N个天线面板中的L个,L为整数,所述装置还包括:
    所述处理单元,用于去激活除所述目标天线面板外的其他N-L个天线面板。
  20. 如权利要求14-19任一项所述的装置,其特征在于,还包括:
    所述收发单元,用于向所述网络设备发送第五信息,所述第五信息指示所述装置包括的天线面板的数目N和每个天线面板上包括的波束数目。
  21. 一种通信装置,其特征在于,该装置包括收发单元和处理单元:
    所述处理单元调用所述收发单元执行:
    向终端设备发送第一信息,第一信息用于配置N组参考信号,第i组参考信号中的最后一个参考信号与第i+1组参考信号中第一个参考信号的发送时间间隔为第一时间间隔,所述第一时间间隔为所述终端设备从第i个天线面板切换至为第i+1个天线面板所需的时,1≤i≤N,i为正整数;天线面板的数目为N,N为大于等于2的正整数;
    传输所述N组参考信号,所述N个天线面板与所述N组参考信号一一对应。
  22. 如权利要求21所述的装置,其特征在于,还包括:
    所述收发单元,用于向所述终端设备发送第二信息,所述第二信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;或者,接收来自于所述终端设备发送的第三信息,所述第三信息指示所述终端设备处于第一模式或所述终端设备处于第二模式;
    其中,在所述终端设备处于所述第一模式时,所述N个天线面板中存在未被激活的天线面板;在所述终端设备处于所述第二模式时,所述N个天线面板全部被激活。
  23. 如权利要求22所述的装置,其特征在于,在所述终端设备处于所述第一模式时,所述第一时间间隔的取值为第一预设数值,在所述终端设备处于所述第二模式时,所述第一时间间隔的取值为第二预设数值,所述第一预设数值大于所述第二预设数值。
  24. 如权利要求21-23任一项所述的装置,其特征在于,所述装置还包括:
    所述收发单元,用于接收来自于所述终端设备的测量结果,所述测量结果是所述终端设备测量所述N组参考信号获得的;
    所述收发单元,用于向所述终端设备发送第四信息,所述第四信息指示所述N个天线面板中的目标天线面板。
  25. 如权利要求24所述的装置,其特征在于,所述目标天线面板为所述N个天线面板中的L个,L为整数。
  26. 如权利要求21-25任一项所述的装置,其特征在于,还包括:
    所述收发单元,用于接收来自于所述终端设备的第五信息,所述第五信息指示所述终端设备包括的天线面板的数目N和每个天线面板上包括的波束数目。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至13中的任一项所述方法的模块。
  28. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的 信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法。
PCT/CN2020/123418 2020-10-23 2020-10-23 一种通信方法及装置 WO2022082780A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080106346.3A CN116391409A (zh) 2020-10-23 2020-10-23 一种通信方法及装置
PCT/CN2020/123418 WO2022082780A1 (zh) 2020-10-23 2020-10-23 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123418 WO2022082780A1 (zh) 2020-10-23 2020-10-23 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022082780A1 true WO2022082780A1 (zh) 2022-04-28

Family

ID=81291187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123418 WO2022082780A1 (zh) 2020-10-23 2020-10-23 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116391409A (zh)
WO (1) WO2022082780A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268778A (zh) * 2019-04-29 2019-09-20 北京小米移动软件有限公司 下行数据传输方法、装置及存储介质
CN110521266A (zh) * 2019-07-11 2019-11-29 北京小米移动软件有限公司 非授权频谱上的bwp切换指示方法、装置及存储介质
CN110868231A (zh) * 2018-08-10 2020-03-06 华为技术有限公司 管理天线面板的方法、网络设备和终端设备
US20200169995A1 (en) * 2018-11-28 2020-05-28 Qualcomm Incorporated Management of multiple antenna panels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110868231A (zh) * 2018-08-10 2020-03-06 华为技术有限公司 管理天线面板的方法、网络设备和终端设备
US20200169995A1 (en) * 2018-11-28 2020-05-28 Qualcomm Incorporated Management of multiple antenna panels
CN110268778A (zh) * 2019-04-29 2019-09-20 北京小米移动软件有限公司 下行数据传输方法、装置及存储介质
CN110521266A (zh) * 2019-07-11 2019-11-29 北京小米移动软件有限公司 非授权频谱上的bwp切换指示方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "On SRS antenna switching for FR2", 3GPP DRAFT; R4-1904521 ON SRS ANTENNA SWITCHING FOR FR2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Xi’an, China; 20190408 - 20190412, 1 April 2019 (2019-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051714857 *

Also Published As

Publication number Publication date
CN116391409A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
US11569949B2 (en) Communication method and communications apparatus
CN110809321B (zh) 接收和发送信号的方法以及通信装置
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
WO2020156174A1 (zh) 波束指示的方法和通信装置
WO2020034889A1 (zh) 信号传输的方法和通信装置
EP3955678A1 (en) Data receiving and transmitting method and apparatus
CN111148120A (zh) 不具有波束对应的波束管理
US20210274438A1 (en) Antenna Panel Management And Beam Management Method And Device
CN115211175B (zh) 用于上行传输的方法和装置
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
WO2020029942A1 (zh) 波束测量的方法和装置
WO2023050472A1 (zh) 用于寻呼的方法和装置
US20220225337A1 (en) Interference measurement reporting method and communications apparatus
CN114071536A (zh) 通信的方法和装置
US20240098635A1 (en) Channel state information measurement method, and apparatus
US20240155371A1 (en) Communication method and communication apparatus
WO2022082780A1 (zh) 一种通信方法及装置
WO2022028555A1 (zh) 波束测量的方法和装置
WO2022151409A1 (zh) 一种波束指示方法、装置及终端
TWI815083B (zh) 空間關係切換方法與使用者設備
WO2023151601A1 (zh) 数据传输方法及通信装置
US12010648B2 (en) Method and device for paging
WO2024032246A1 (zh) 一种能力上报的方法和通信装置
EP4366186A1 (en) Channel state information feedback method and communication apparatus
WO2024026832A1 (zh) 无线通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958362

Country of ref document: EP

Kind code of ref document: A1