WO2022080563A1 - 디지털 홀로그래픽 광학소자 제작을 위한 호겔 생성 방법 및 장치 - Google Patents

디지털 홀로그래픽 광학소자 제작을 위한 호겔 생성 방법 및 장치 Download PDF

Info

Publication number
WO2022080563A1
WO2022080563A1 PCT/KR2020/015870 KR2020015870W WO2022080563A1 WO 2022080563 A1 WO2022080563 A1 WO 2022080563A1 KR 2020015870 W KR2020015870 W KR 2020015870W WO 2022080563 A1 WO2022080563 A1 WO 2022080563A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
manufacturing
holographic optical
hogel
signal beam
Prior art date
Application number
PCT/KR2020/015870
Other languages
English (en)
French (fr)
Inventor
염지운
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022080563A1 publication Critical patent/WO2022080563A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0216Optical components

Definitions

  • the present invention relates to a technology related to a manufacturing method of a digitized and manufactured holographic optical device, and more particularly, to a Hogel recording structure capable of increasing a beam deflection angle during optical recording and a manufacturing method using the same.
  • the beam deflection angle that can be provided by an individual Hogel is determined by the individual pixel size of the filtered and reduced modulator for the complex modulation, and usually only a limited angle within +/- 20 to 30 degrees is possible. Therefore, there is a disadvantage in that it is difficult to replace the functions of various existing optical elements.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to record through a hogel generating means based on a spherical wave that can form a convergence point instead of side band filtering based on parallel light and a 4-f optical system. It is to provide a method for manufacturing a digitized holographic optical device with a high degree of freedom so that it can be utilized in more diverse applications by increasing the beam deflection angle that can be done in the hogel.
  • an apparatus for manufacturing a holographic optical device comprising: a division unit for receiving light emitted from a light source and allowing a reference beam and a signal beam to emit light in different directions; a spatial light modulator for modulating an incident signal beam based on a spherical wave by a lens; and a recording medium for storing the interference pattern of the emitted reference beam and the modulated signal beam.
  • ⁇ sig which is the incident angle range of the modulated signal beam, may be determined according to the focal length of the used lens and the curvature of the spherical wave regardless of the pixel size of the spatial light modulator.
  • the spatial light modulator may use a lens having a smaller focal length than a critical focal length to increase the incident angle range of a signal beam that can be provided by an individual hogel.
  • the spatial light modulator may use both the first-order term and the zero-order term as a signal beam in consideration of the energy required for optical recording and the recording time.
  • the spatial light modulator can adjust the size of the hogel by adjusting the distance between the lens generating the spherical wave and the holographic recording medium.
  • S Hogel which is the size of the hogel applied from the signal beam, can be adjusted according to Equation 1 below when the effective diameter of the lens is D, the focal length is f, and the distance between the lens and the recording medium is d.
  • the spatial light modulator backpropagates the wavefront of the target domain, which is the phase modulation pattern required at the location of the recording medium, to the Hogel domain, extracts only phase information from the generated wavefront, and propagates it back to the target domain, at this time , while maintaining intensity information among the propagated wavefronts in the target domain, the phase information may be updated with the target phase modulation pattern to be backpropagated back to the Hogel domain.
  • a method for manufacturing a holographic optical device includes the steps of, by an apparatus for manufacturing a holographic optical device, allowing a reference beam and a signal beam to emit light in different directions; modulating, by the apparatus for manufacturing a holographic optical device, an incident signal beam based on a spherical wave by a lens; and allowing, by the apparatus for manufacturing a holographic optical device, an interference pattern of the emitted reference beam and the modulated signal beam to be stored.
  • a wider beam deflection degree can be provided, thereby increasing the design and manufacturing function of the optical device. It is possible to reduce the construction cost and system volume by simplifying the filtering and reduction optics. In addition, it is possible to manufacture a high-efficiency HOE optical device that can operate under the Bragg condition in any target wavefront condition.
  • FIG. 2 is a view provided for the description of an apparatus for manufacturing a digital holographic optical device according to an embodiment of the present invention
  • FIG. 3 is a flowchart provided for explaining a digital holographic optical device manufacturing method using the digital holographic optical device manufacturing apparatus according to an embodiment of the present invention
  • FIGS 4 to 6 are views provided for explaining the location of the spatial light modulator according to an embodiment of the present invention.
  • FIG. 7 to 8 are diagrams provided for explanation of an iterative algorithm for generating unit Hogel.
  • FIG. 1 is a diagram provided for explanation of a conventional plane wave-based Hogel generation structure.
  • a holographic optical element is manufactured by storing an interference pattern of two light waves (a reference beam and a signal beam) incident from different directions in a recording medium (eg, photopolymer, photorefractive polymer, silver halide, etc.).
  • a recording medium eg, photopolymer, photorefractive polymer, silver halide, etc.
  • the interference pattern recorded on the recording medium forms a periodic repeating volume grid in the holographic recording medium.
  • the fabrication of digitized holographic optical devices divides the entire interference pattern into a very small local area, a unit hogel, and generates the interference pattern required for each hogel through a digital light wave modulation device (e.g., a spatial light modulator with a pixel structure). and recording as the basic structure.
  • a digital light wave modulation device e.g., a spatial light modulator with a pixel structure.
  • the recording medium is moved, and the modulation pattern of the digital light wave modulation device is regenerated, and the hogel is continuously recorded at an adjacent position.
  • FIG. 1 is a structural diagram of a wavefront printer, which is a representative method for manufacturing a digital holographic optical device.
  • a signal beam capable of independently phase-modulating and intensity-modulating at the location of the recording medium must be incident.
  • Complex modulation is indirectly implemented by imaging a single spatial light modulator for a single spatial light modulator through a 4-f optical system that performs the functions of side-band filtering and reduction optics.
  • the pixel size of the spatial light modulator used is p phy
  • the virtual spatial light that is positioned on the final recording medium through the 4-f and side band filtering system is p img .
  • p img cannot be smaller than the wavelength used due to the physical limitation of the optical system used for imaging, and p phy resulting from the physical pixel structure is usually 4 micrometers or less in size, so The maximum beam deflection angle that can be expressed as a standard is less than ⁇ 30 degrees.
  • Such a value may be suitable for a purpose of providing a general static holographic image, but is a limited value for an alternative use of an optical device that must include a beam deflection in a very wide range.
  • FIG. 2 is a view provided for explanation of an apparatus for manufacturing a digital holographic optical device according to an embodiment of the present invention.
  • the digital holographic optical device manufacturing apparatus is a beam capable of being recorded in a hogel through side band filtering based on collimated light and a hogel generating means based on a spherical wave that can form a convergence point instead of a 4-f optical system.
  • the deflection angle can be increased.
  • the present digital holographic optical device manufacturing apparatus includes a light source 110 , a division unit 120 , a spatial light modulator 130 , and a recording medium 140 .
  • the light source 110 is provided to emit light, and the division unit 120 may allow the reference beam and the signal beam to exit in different directions when the light emitted from the light source 110 is incident.
  • the recording medium 140 is a holographic recording medium, and the reference beam emitted from the division unit 120 and the signal beam modulated by the spatial light modulator 130 are incident in different directions, and each interference pattern is stored. By doing so, it is possible to manufacture a holographic optical device.
  • the spatial light modulator 130 is provided with a lens 131 and an aperture 132 , and in order to increase the incident angle range of the signal beam corresponding to the beam deflection angle, the incident signal beam is generated by the lens 131 . It can be modulated based on a spherical wave.
  • ⁇ sig which is the incident angle range of the modulated signal beam, may be determined according to the focal length of the lens 131 used and the curvature of the spherical wave regardless of the pixel size of the spatial light modulator 130 .
  • the angular range of the beam deflection function that can be provided by individual hogels can be greatly increased by simply using a group of lenses 131 having a short focal length, and diffraction in the conventional method
  • a high-spec spatial light modulator with a very small pixel structure required for each magnification is unnecessary.
  • the spatial light modulator 130 may use a lens 131 less than or equal to a critical focal length so that the incident angle range of a signal beam that can be provided by an individual hogel is increased.
  • FIG. 3 is a flowchart provided to explain a digital holographic optical device manufacturing method using the digital holographic optical device manufacturing apparatus according to an embodiment of the present invention.
  • the reference beam and the signal beam are directed in different directions (S310)
  • the signal beam exits and enters the spatial light modulator 130, so that the incoming signal beam is modulated based on the spherical wave by the lens 131 through the spatial light modulator 130. is done (S320).
  • the reference beam emitted from the dividing unit 120 and the signal beam modulated by the spatial light modulator 130 are incident on the recording medium 140 from different directions, and each interference pattern is stored in the recording medium 140 .
  • S330 it is possible to manufacture a holographic optical device.
  • the spatial light modulator (130) since the ⁇ sig , which is the incident angle range of the modulated signal beam, can be determined according to the focal length of the lens 131 used and the curvature of the spherical wave regardless of the pixel size of the spatial light modulator 130 , the spatial light modulator (130), the angular range of the beam deflection function that can be provided by an individual hogel can be greatly increased by using a group of short focal length lenses 131 that are less than or equal to the critical focal length.
  • 4 to 6 are views provided to explain the location of the spatial light modulator 130 according to an embodiment of the present invention.
  • the spatial light modulator 130 and the lens 131 may be implemented with various types of positional relationships and configurations as illustrated in FIGS. 4 to 6 .
  • FIG. 4 is a diagram illustrating a state in which a short focal length lens 131 is disposed between the spatial light modulator 130 and the recording medium 140 as a basic embodiment.
  • FIG. 5 is a diagram exemplifying a state in which the spatial light modulator 130 is implemented as the reflective spatial light modulator 130 .
  • the spatial light modulator 130 may use both the 1st order and 0th order as a signal beam in consideration of the energy required for optical recording and the recording time.
  • FIG. 6 is a diagram illustrating a state in which the spatial light modulator 130 is disposed between the lens 131 and the recording medium 140 .
  • the spatial light modulator 130 may use both the first-order term and the zero-order term as a signal beam in consideration of the energy required for optical recording and the recording time as in FIG. 5 .
  • the spatial light modulator 130 can easily adjust the size of the hogel, which can be freely adjusted by adjusting the distance between the lens 131 that generates the spherical wave and the holographic recording medium.
  • the spatial light modulator 130 may adjust the size of the hogel by adjusting the distance between the lens 131 generating the spherical wave and the holographic recording medium.
  • S Hogel which is the size of the Hogel applied from the signal beam, is the effective diameter of the lens 131 is D, the focal length is f, and the distance between the lens 131 and the recording medium 140 is d. 1 can be adjusted.
  • FIG. 7 to 8 are diagrams provided for explanation of an iterative algorithm for generating unit Hogel.
  • FIG. 7 is a diagram provided for explanation of generating a hologram pattern based on an iterative Fourier transform algorithm (IFTA)
  • FIG. 8 is a flowchart provided for an explanation of an iterative algorithm for generating unit Hogel.
  • IFTA iterative Fourier transform algorithm
  • phase modulation is performed while maintaining the intensity modulation constant on the spatial light modulator 130 of the signal beam in order to generate a Hogel phase modulation pattern performing the function of the optical device.
  • a fracture front may be required.
  • the digital holographic optical device manufacturing method may calculate the Hogel pattern of the spatial light modulator 130 based on an iterative algorithm.
  • This digital holographic optical device manufacturing method applies the hologram pattern generation based on the iterative Fourier transform algorithm (IFTA) in the Hogel generation algorithm to be uniform in both the Hogel pattern and the target domain (phase modulation pattern required at the location of the recording medium).
  • IFTA iterative Fourier transform algorithm
  • One amplitude can be forced, but the phase modulation pattern derived from the propagation and backpropagation processes can be maintained.
  • the spatial light modulator 130 backpropagates the wavefront of the target domain, which is the phase modulation pattern required at the location of the recording medium, to the Hogel domain (S810), and maintains intensity information among the generated wavefronts (S820) , extracts only the phase information and propagates it back to the target domain (S830), and maintains the intensity information among the propagated wavefronts in the target domain (S840), but updates the phase information with the target phase modulation pattern and back propagates back to the Hogel domain can do it
  • a modulation technique such as phase encoding may be used to generate an image of the spatial light modulator 130 for Hogel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Optical Head (AREA)

Abstract

광기록 시에 빔편향 각도를 증대시킬 수 있는 호겔 기록 구조와 그를 이용한 제작 방법이 제공된다. 본 발명의 실시예에 따른 홀로그래픽 광학소자 제작 장치는, 광원으로부터 출광된 광을 입광하여, 기준빔과 신호빔이 서로 다른 방향으로 출광하도록 하는 분할부; 입광하는 신호빔을 렌즈에 의한 구면파에 기반하여 변조되도록 하는 공간광변조기; 및 서로 다른 방향에서 입광하는 기준빔과 신호빔의 간섭 패턴을 저장하는 기록매질;을 포함한다. 이에 의해, 디지털화된 홀로그래픽 광학소자를 제작하는 장치를 구성함에 있어, 보다 넓은 빔 편향 자유도를 제공할 수 있어 설계 및 제작 가능한 광학소자의 기능을 증대시킬 수 있으며, 필터링 및 축소 광학계를 단순화함으로써 구축 비용 및 시스템 부피를 절감할 수 있다. 또한 목표로 하는 임의의 파면 조건에서 브래그 조건으로 동작 가능한 고효율 HOE 광학소자 제작이 가능하다.

Description

디지털 홀로그래픽 광학소자 제작을 위한 호겔 생성 방법 및 장치
본 발명은 디지털화되어 제작되는 홀로그래픽 광학소자의 제작방법 관련 기술에 관한 것으로, 더욱 상세하게는 광기록 시에 빔편향 각도를 증대시킬 수 있는 호겔 기록 구조와 그를 이용한 제작 방법에 관한 것이다.
디지털화되어 제작되는 기존의 홀로그래픽 광학소자는 개별 호겔의 광기록을 연속적으로 수행하여 기록하게 되는데, 파면 프린터의 예에서 볼 수 있듯이 통상적으로 평행광에 기반하여 사이드 밴드 필터링과 같이 위상과 세기의 독립적 변조(복소 변조) 기능 구현을 위하여 복잡한 형태의 필터링/축소 광학계를 도입하게 된다.
한편, 개별 호겔에서 제공할 수 있는 빔 편향 각도는 해당 복소 변조를 위하여 필터링 및 축소된 변조장치의 개별 픽셀 크기에 의해 결정되게 되며, 통상적으로 +/-20~30도 이내의 제한된 각도만이 가능하여, 다양한 기존 광학소자의 기능을 대체하기 어렵다는 단점이 존재한다.
따라서, 기존의 제한된 빔 편향 각도를 증대시키기 위한 방안의 모색이 요구된다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 평행광에 기반한 사이드 밴드 필터링 및 4-f 광학계 대신 수렴점을 형성할 수 있는 구면파에 기반한 호겔 생성 수단을 통하여 기록되는 호겔에서 할 수 있는 빔 편향 각도를 증대시킴으로써, 보다 다양한 응용처로 활용될 수 있도록 높은 자유도의 디지털화된 홀로그래픽 광학소자 제작방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 홀로그래픽 광학소자 제작 장치는, 광원으로부터 출광된 광을 입광하여, 기준빔과 신호빔이 서로 다른 방향으로 출광하도록 하는 분할부; 입광하는 신호빔이 렌즈에 의한 구면파에 기반하여 변조되도록 하는 공간광변조기; 및 출광된 기준빔과 변조된 신호빔의 간섭 패턴을 저장하는 기록매질;을 포함한다.
이때, 변조된 신호빔의 입광 각도 범위인 θ sig는, 공간광변조기의 픽셀 크기와 관계 없이 사용되는 렌즈의 초점거리와 구면파의 곡률에 따라 결정될 수 있다.
또한, 공간광변조기는, 개별 호겔에서 제공할 수 있는 신호빔의 입광 각도 범위가 증대되도록, 임계 초점 거리 이하의 렌즈를 사용할 수 있다.
그리고 공간광변조기는, 광기록에 요구되는 에너지와 기록 시간을 고려하여, 1차항 및 0차항 모두를 신호빔으로 사용할 수 있다.
또한, 공간광변조기는, 구면파를 발생시키는 렌즈와 홀로그래픽 기록매질 사이의 거리를 조정함으로써, 호겔의 크기를 조정할 수 있다.
그리고 신호빔에서 인가되는 호겔의 크기인 SHogel는, 렌즈의 유효경을 D, 초점거리를 f, 렌즈와 기록매질 사이의 거리를 d라고 하는 경우, 하기 수식 1에 따라 조정될 수 있다.
(수식 1)
Figure PCTKR2020015870-appb-I000001
또한, 공간광변조기는, 기록매질 위치에서의 요구되는 위상 변조 패턴인 타겟 도메인의 파면을 호겔 도메인으로 역전파 시킨 뒤, 생성된 파면 중 위상 정보만을 추출하여 다시 타겟 도메인으로 전파시키도록 하며, 이때, 타겟 도메인에서는 전파해온 파면 중 세기 정보를 유지하되, 위상 정보를 타겟 위상 변조 패턴으로 업데이트하여 다시 호겔 도메인으로 역전파시킬 수 있다.
한편, 본 발명의 다른 실시예에 따른, 홀로그래픽 광학소자 제작 방법은, 홀로그래픽 광학소자 제작 장치가, 기준빔과 신호빔이 서로 다른 방향으로 출광하도록 하는 단계; 홀로그래픽 광학소자 제작 장치가, 입광하는 신호빔을 렌즈에 의한 구면파에 기반하여 변조시키는 단계; 및 홀로그래픽 광학소자 제작 장치가, 출광된 기준빔과 변조된 신호빔의 간섭 패턴이 저장되도록 하는 단계;를 포함한다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 디지털화된 홀로그래픽 광학소자를 제작하는 장치를 구성함에 있어, 보다 넓은 빔 편향 자유도를 제공할 수 있어 설계 및 제작 가능한 광학소자의 기능을 증대시킬 수 있으며, 필터링 및 축소 광학계를 단순화함으로써 구축 비용 및 시스템 부피를 절감할 수 있다. 또한 목표로 하는 임의의 파면 조건에서 브래그 조건으로 동작 가능한 고효율 HOE 광학소자 제작이 가능하다.
도 1은, 기존의 평면파 기반의 호겔 생성 구조의 설명에 제공된 도면,
도 2는, 본 발명의 일 실시예에 따른 디지털 홀로그래픽 광학소자 제작 장치의 설명에 제공된 도면,
도 3은, 본 발명의 일 실시예에 따른 디지털 홀로그래픽 광학소자 제작 장치를 이용하는 디지털 홀로그래픽 광학소자 제작 방법의 설명에 제공된 흐름도,
도 4 내지 도 6은, 본 발명의 일 실시예에 따른 공간광변조기의 위치 설명에 제공된 도면, 그리고
도 7 내지 도 8은, 단위 호겔 생성을 위한 반복 알고리즘의 설명에 제공된 도면이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
도 1은, 기존의 평면파 기반의 호겔 생성 구조의 설명에 제공된 도면이다.
홀로그래픽 광학소자(HOE)는 서로 다른 방향에서 입광하는 두 광파(기준빔 및 신호빔)의 간섭 패턴을 기록매질(예: 포토폴리머, 광굴절폴리머, 실버할라이드 등)에 저장함으로써 제작된다.
이때, 기록매질에 기록된 간섭 패턴은 홀로그래픽 기록매질 내에 주기적으로 반복되는 형태의 체적 격자을 형성하며, 추후 재생 단계에서 입광하는 투사빔이 체적 격자의 브래그 조건을 만족할 경우 회절 현상을 통하여 재생빔을 출력한다.
디지털화된 홀로그래픽 광학소자의 제작은 전체 간섭 패턴을 매우 작은 국소 영역인 단위 호겔로 분할하여, 개별 호겔에 필요한 간섭패턴을 디지털 광파 변조 장치(예: 픽셀 구조를 가지는 공간광변조기 등)를 통해 생성 및 기록하는 것을 기본 구조로 한다.
여기서, 하나의 호겔을 기록한 후 기록매질을 이동시킨 뒤, 디지털 광파 변조 장치의 변조 패턴을 재생성하여 인접한 위치에 연이어 호겔을 기록해나간다.
이를 전체 관심 영역에 대하여 반복함으로써 기존 (아날로그) 홀로그래픽 광학소자에서는 표현하기 어려운 광학적 편향(Deflection) 기능을 디지털 홀로그래픽 광학소자를 통하여 구현할 수 있다는 강점이 있다.
도 1은, 디지털 홀로그래픽 광학소자 제작을 위한 대표적인 방법인 파면 프린터의 구조도이다.
파면 프린터에서는 원하는 간섭 패턴을 구현하기 위하여 기록매질 위치에서 독립적으로 위상 변조와 세기 변조가 가능한 신호빔이 입광해야 하는데, 현재 기술적으로 가용한 단일 복소 변조 장치가 존재하지 않기 때문에, 통상 세기 또는 위상에 대한 단일 공간광변조기를 사이드 밴드 필터링 및 축소 광학계의 기능을 수행하는 4-f 광학계 시스템을 통해 이미징함으로써 복소 변조를 간접적으로 구현한다.
이러한 파면 프린터의 경우, 평행광 및 4-f 광학 시스템의 특성에 의하여, 기록매질 위치에서 표현 가능한 신호빔의 각도 범위는 매우 제한적이다.
예를 들어, 호겔에 기록되는 신호빔의 입광 각도 범위는 사용된 공간광변조기의 픽셀 크기가 pphy이고, 4-f 및 사이드 밴드 필터링 시스템을 거쳐 최종 기록매질 상에 위치하게 되는 가상의 공간광변조기 픽셀 크기가 pimg일 때 아래 수식과 같이 표현할 수 있다.
(수식)
Figure PCTKR2020015870-appb-I000002
실제 구현 시, pimg는 이미징에 사용된 광학시스템의 물리적 한계로 인하여 사용 파장 이하로 작아질 수 없고, 물리적 픽셀 구조에서 기인하는 pphy는 통상 4마이크로미터 이하의 크기이므로, 호겔의 신호빔을 기준으로 표현 가능한 최대의 빔 편향 각도는 ±30도 수준 이하이다.
이러한 수치는 일반적인 정적 홀로그래픽 영상을 제공하는 용도로는 적합할 수 있으나, 매우 넓은 범위의 빔 편향을 포함하여야 하는 광학 소자의 대체 용도로는 제한적인 수치이다.
도 2는, 본 발명의 일 실시예에 따른 디지털 홀로그래픽 광학소자 제작 장치의 설명에 제공된 도면이다.
본 실시예에 따른 디지털 홀로그래픽 광학소자 제작 장치는, 평행광에 기반한 사이드 밴드 필터링 및 4-f 광학계 대신 수렴점을 형성할 수 있는 구면파에 기반한 호겔 생성 수단을 통하여 기록되는 호겔에서 할 수 있는 빔 편향 각도를 증대시킬 수 있다.
이를 위해, 본 디지털 홀로그래픽 광학소자 제작 장치는, 광원(110), 분할부(120), 공간광변조기(130), 기록매질(140)로 구성된다.
광원(110)은 광을 출광하기 위해 마련되며, 분할부(120)는, 광원(110)으로부터 출광된 광이 입광하면, 기준빔과 신호빔이 서로 다른 방향으로 출광하도록 할 수 있다.
기록매질(140)은, 홀로그래픽 기록매질로서, 분할부(120)로부터 출광된 기준빔과 공간광변조기(130)에 의해 변조된 신호빔이 서로 다른 방향에서 입광하여, 각각의 간섭 패턴이 저장됨으로써, 홀로그래픽 광학소자가 제작되도록 할 수 있다.
공간광변조기(130)는, 렌즈(131)와 애퍼처(132)가 구비되며, 빔 편향 각도에 해당하는 신호빔의 입광 각도 범위를 증대시키기 위해, 입광하는 신호빔이 렌즈(131)에 의한 구면파에 기반하여 변조되도록 할 수 있다.
이때, 변조된 신호빔의 입광 각도 범위인 θ sig는, 공간광변조기(130)의 픽셀 크기와 관계 없이 사용되는 렌즈(131)의 초점거리와 구면파의 곡률에 따라 결정될 수 있다.
즉, 본 디지털 홀로그래픽 광학소자 제작 장치는, 단순히 짧은 초점 거리의 렌즈(131)군을 사용함으로써 개별 호겔에서 제공할 수 있는 빔 편향 기능의 각도 범위는 매우 증대될 수 있으며, 기존의 방법에서 회절각 확대를 위해 요구되던 매우 작은 픽셀 구조의 고사양 공간광변조기가 불필요하다는 장점이 있다.
이를 위해, 공간광변조기(130)는, 개별 호겔에서 제공할 수 있는 신호빔의 입광 각도 범위가 증대되도록, 임계 초점 거리 이하의 렌즈(131)를 사용할 수 있다.
도 3은, 본 발명의 일 실시예에 따른 디지털 홀로그래픽 광학소자 제작 장치를 이용하는 디지털 홀로그래픽 광학소자 제작 방법의 설명에 제공된 흐름도이다.
본 실시예에 따른 디지털 홀로그래픽 광학소자 제작 장치를 이용하는 디지털 홀로그래픽 광학소자 제작 방법은, 광원(110)으로부터 출광된 광이 분할부(120)로 입광하면, 기준빔과 신호빔이 서로 다른 방향으로 출광하게 하고(S310), 신호빔이 출광하여, 공간광변조기(130)에 입광하면, 공간광변조기(130)를 통해, 입광하는 신호빔이 렌즈(131)에 의한 구면파에 기반하여 변조되도록 하게 된다(S320).
그리고 분할부(120)로부터 출광된 기준빔과 공간광변조기(130)에 의해 변조된 신호빔이 서로 다른 방향에서 기록매질(140)에 입광하여, 각각의 간섭 패턴이 기록매질(140)에 저장되도록 함으로써(S330), 홀로그래픽 광학소자가 제작되도록 할 수 있다.
이때, 변조된 신호빔의 입광 각도 범위인 θ sig는, 공간광변조기(130)의 픽셀 크기와 관계 없이 사용되는 렌즈(131)의 초점거리와 구면파의 곡률에 따라 결정될 수 있기 때문에, 공간광변조기(130)는, 임계 초점 거리 이하의 짧은 초점 거리 렌즈(131)군을 사용함으로써 개별 호겔에서 제공할 수 있는 빔 편향 기능의 각도 범위가 매우 증대되도록 할 수 있다.
도 4 내지 도 6은, 본 발명의 일 실시예에 따른 공간광변조기(130)의 위치 설명에 제공된 도면이다.
공간광변조기(130)와 렌즈(131)는 도 4 내지 도 6에 예시된 바와 같이 다양한 형태의 위치 관계 및 구성으로 구현될 수 있다.
구체적으로, 도 4는, 기본적인 실시예로서, 짧은 초점 거리의 렌즈(131)가 공간광변조기(130)와 기록매질(140) 사이에 배치된 모습이 예시된 도면이다.
도 5는, 공간광변조기(130)가 반사형 공간광변조기(130)으로 구현된 모습이 예시된 도면이다. 이때, 공간광변조기(130)는, 광기록에 요구되는 에너지와 기록 시간을 고려하여, 1차항(1th order) 및 0차항(0th order) 모두를 신호빔으로 사용할 수 있다.
도 6은, 공간광변조기(130)가 렌즈(131)와 기록매질(140) 사이에 배치되는 모습이 예시된 도면이다. 이때, 공간광변조기(130)는 도 5와 마찬가지로 광기록에 요구되는 에너지와 기록 시간을 고려하여, 1차항 및 0차항 모두를 신호빔으로 사용할 수 있다.
본 공간광변조기(130)는 호겔의 크기를 손쉽게 조정할 수 있는데, 이는 구면파를 발생시키는 렌즈(131)와 홀로그래픽 기록매질 사이의 거리를 조정함으로써 자유롭게 조정이 가능하다.
즉, 공간광변조기(130)는, 구면파를 발생시키는 렌즈(131)와 홀로그래픽 기록매질 사이의 거리를 조정함으로써, 호겔의 크기를 조정할 수 있다.
이때, 신호빔에서 인가되는 호겔의 크기인 SHogel는, 렌즈(131)의 유효경을 D, 초점거리를 f, 렌즈(131)와 기록매질(140) 사이의 거리를 d라고 하는 경우, 하기 수식 1에 따라 조정될 수 있다.
(수식 1)
Figure PCTKR2020015870-appb-I000003
이를 통하여 홀로그래픽 기록매질(140)을 3축으로 이동시키면서, 위치에 따라 호겔의 크기 조정을 통해 불균일한 호겔 분포를 가지는 가변적인 디지털 홀로그래픽 광학소자의 제작도 가능하다.
도 7 내지 도 8은, 단위 호겔 생성을 위한 반복 알고리즘의 설명에 제공된 도면이다.
구체적으로, 도 7은, 반복 푸리에 변환 알고리즘(IFTA)에 기반한 홀로그램 패턴 생성 설명에 제공된 도면이고, 도 8은, 단위 호겔 생성을 위한 반복 알고리즘의 설명에 제공된 흐름도이다.
본 디지털 홀로그래픽 광학소자 제작 방법은, 광학소자의 기능을 수행하는 호겔의 위상 변조 패턴을 생성하기 위하여, 신호빔의 공간광변조기(130) 상에서는 세기 변조를 상수로 유지되면서 위상 변조만이 수행되는 파면이 요구될 수 있다.
이를 위하여, 디지털 홀로그래픽 광학소자 제작 방법은, 반복 알고리즘에 기반하여 공간광변조기(130)의 호겔 패턴을 계산할 수 있다.
본 디지털 홀로그래픽 광학소자 제작 방법은, 호겔 생성 알고리즘에서는 반복 푸리에 변환 알고리즘(IFTA)에 기반한 홀로그램 패턴 생성을 응용하여, 호겔 패턴 및 타겟 도메인(기록 매질 위치에서의 요구되는 위상 변조 패턴)에서 모두 균일한 진폭을 강제하되, 전파 및 역전파 과정에서 도출된 위상 변조 패턴은 유지할 수 있다.
구체적으로, 공간광변조기(130)는, 기록 매질 위치에서의 요구되는 위상 변조 패턴인 타겟 도메인의 파면을 호겔 도메인으로 역전파 시킨 뒤(S810), 생성된 파면 중 세기 정보를 유지하고(S820), 위상 정보만을 추출하여 다시 타겟 도메인으로 전파시키도록 하며(S830), 타겟 도메인에서는 전파해온 파면 중 세기 정보를 유지하되(S840), 위상 정보를 타겟 위상 변조 패턴으로 업데이트하여 다시 호겔 도메인으로 역전파시킬 수 있다.
이러한 과정을 반복하면서 미리 상정한 반복횟수 제한 혹은 오차의 기준치 제한에 따라 반복을 종료하여 최종적인 호겔 패턴을 계산할 수 있다(S850).
추가적으로, 호겔을 위한 공간광변조기(130) 영상 생성을 위해서 위상 인코딩과 같은 변조 기법이 활용될 수 있음은 물론이다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (8)

  1. 광원으로부터 출광된 광을 입광하여, 기준빔과 신호빔이 서로 다른 방향으로 출광하도록 하는 분할부;
    입광하는 신호빔이 렌즈에 의한 구면파에 기반하여 변조되도록 하는 공간광변조기; 및
    출광된 기준빔과 변조된 신호빔의 간섭 패턴을 저장하는 기록매질;을 포함하는 홀로그래픽 광학소자 제작 장치.
  2. 청구항 1에 있어서,
    변조된 신호빔의 입광 각도 범위인 θ sig는,
    공간광변조기의 픽셀 크기와 관계 없이 사용되는 렌즈의 초점거리와 구면파의 곡률에 따라 결정되는 것을 특징으로 하는 홀로그래픽 광학소자 제작 장치.
  3. 청구항 2에 있어서,
    공간광변조기는,
    개별 호겔에서 제공할 수 있는 신호빔의 입광 각도 범위가 증대되도록, 임계 초점 거리 이하의 렌즈를 사용하는 것을 특징으로 하는 홀로그래픽 광학소자 제작 장치.
  4. 청구항 2에 있어서,
    공간광변조기는,
    광기록에 요구되는 에너지와 기록 시간을 고려하여, 1차항 및 0차항 모두를 신호빔으로 사용하는 것을 특징으로 하는 홀로그래픽 광학소자 제작 장치.
  5. 청구항 2에 있어서,
    공간광변조기는,
    구면파를 발생시키는 렌즈와 홀로그래픽 기록매질 사이의 거리를 조정함으로써, 호겔의 크기를 조정하는 것을 특징으로 하는 홀로그래픽 광학소자 제작 장치.
  6. 청구항 5에 있어서,
    신호빔에서 인가되는 호겔의 크기인 SHogel는,
    렌즈의 유효경을 D, 초점거리를 f, 렌즈와 기록매질 사이의 거리를 d라고 하는 경우, 하기 수식 1에 따라 조정되는 것을 특징으로 하는 홀로그래픽 광학소자 제작 장치.
    (수식 1)
    Figure PCTKR2020015870-appb-I000004
  7. 청구항 1에 있어서,
    공간광변조기는,
    기록매질 위치에서의 요구되는 위상 변조 패턴인 타겟 도메인의 파면을 호겔 도메인으로 역전파 시킨 뒤, 생성된 파면 중 위상 정보만을 추출하여 다시 타겟 도메인으로 전파시키도록 하며,
    타겟 도메인에서는
    전파해온 파면 중 세기 정보를 유지하되, 위상 정보를 타겟 위상 변조 패턴으로 업데이트하여 다시 호겔 도메인으로 역전파시키는 것을 특징으로 하는 홀로그래픽 광학소자 제작 장치.
  8. 홀로그래픽 광학소자 제작 장치가, 기준빔과 신호빔이 서로 다른 방향으로 출광하도록 하는 단계;
    홀로그래픽 광학소자 제작 장치가, 입광하는 신호빔을 렌즈에 의한 구면파에 기반하여 변조시키는 단계; 및
    홀로그래픽 광학소자 제작 장치가, 출광된 기준빔과 변조된 신호빔의 간섭 패턴이 저장되도록 하는 단계;를 포함하는 홀로그래픽 광학소자 제작방법.
PCT/KR2020/015870 2020-10-15 2020-11-12 디지털 홀로그래픽 광학소자 제작을 위한 호겔 생성 방법 및 장치 WO2022080563A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0133386 2020-10-15
KR1020200133386A KR20220049807A (ko) 2020-10-15 2020-10-15 디지털 홀로그래픽 광학소자 제작을 위한 호겔 생성 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2022080563A1 true WO2022080563A1 (ko) 2022-04-21

Family

ID=81208238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015870 WO2022080563A1 (ko) 2020-10-15 2020-11-12 디지털 홀로그래픽 광학소자 제작을 위한 호겔 생성 방법 및 장치

Country Status (2)

Country Link
KR (1) KR20220049807A (ko)
WO (1) WO2022080563A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040093771A (ko) * 2003-04-30 2004-11-09 주식회사 대우일렉트로닉스 홀로그래픽 디지털 데이터 저장 시스템
JP2011174989A (ja) * 2010-02-23 2011-09-08 Tdk Corp ホログラフィック記録装置及び要素ホログラム記録方法
KR20120118621A (ko) * 2011-04-19 2012-10-29 전자부품연구원 홀로그램 기록 장치 및 홀로그램 재생 장치
KR20160066942A (ko) * 2014-12-03 2016-06-13 서울대학교산학협력단 홀로그래픽 광학 소자의 제조 방법 및 장치
KR20170052307A (ko) * 2015-11-04 2017-05-12 한국전자통신연구원 홀로그램 생성 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040093771A (ko) * 2003-04-30 2004-11-09 주식회사 대우일렉트로닉스 홀로그래픽 디지털 데이터 저장 시스템
JP2011174989A (ja) * 2010-02-23 2011-09-08 Tdk Corp ホログラフィック記録装置及び要素ホログラム記録方法
KR20120118621A (ko) * 2011-04-19 2012-10-29 전자부품연구원 홀로그램 기록 장치 및 홀로그램 재생 장치
KR20160066942A (ko) * 2014-12-03 2016-06-13 서울대학교산학협력단 홀로그래픽 광학 소자의 제조 방법 및 장치
KR20170052307A (ko) * 2015-11-04 2017-05-12 한국전자통신연구원 홀로그램 생성 장치 및 방법

Also Published As

Publication number Publication date
KR20220049807A (ko) 2022-04-22

Similar Documents

Publication Publication Date Title
US4057319A (en) Optical system using a hologram coupler
CA2065368A1 (en) Methods of and apparatus for manipulating electromagnetic phenomenon
JP2788040B2 (ja) 光空間スイッチ
US6646773B2 (en) Digital micro-mirror holographic projection
US20160028479A1 (en) Adaptive Optics Based Simultaneous Turbulence Compensation of Multiple Orbital Angular Momentum Beams
CN112711141B (zh) 三维动态显示的全息光波导装置和增强现实显示设备
AU3052499A (en) Holographic optical devices
CN109031915B (zh) 一种获取多模光纤成像传输矩阵的方法及系统
TWI403782B (zh) Dynamic wave forming unit
US5513022A (en) Method and apparatus for direct transmission of an optical image
WO2022080563A1 (ko) 디지털 홀로그래픽 광학소자 제작을 위한 호겔 생성 방법 및 장치
EP0610966A1 (en) Holographic display transmitting device
Correa-Rojas et al. Generation of linearly polarized modes using a digital micromirror device and phase optimization
WO2019225776A1 (ko) 중심 대칭형 멀티 주파수 대역 필터링 방법을 기반으로 하는 전 방향 시야각을 갖는 단순 구조의 인라인 홀로그램 기반 3 차원 비디오 디스플레이 시스템
WO2023219266A1 (en) Two-dimensional directional optical phased array device
KR20190026610A (ko) 시역 확장을 위한 공간 분할 다중화 doe를 이용한 3d 홀로그래픽 디스플레이 시스템 및 방법
CN101162295A (zh) 基于余(正)弦场振幅型调制器和菲涅尔变换系统组合的保模结构分束器
WO2023085467A1 (ko) 홀로그래픽 디스플레이를 위한 노이즈 제거 방법 및 그 장치
WO2022145504A1 (ko) 변형 거울을 이용한 홀로그래픽 광학 소자 프린팅 방법
WO2021112302A1 (ko) 헤드 업 디스플레이를 위한 홀로그래픽 광학 소자 기록 방법
WO2017115883A1 (ko) 시각도 다중화에 의한 홀로그래픽 디스플레이 방법 및 장치
WO2023128010A1 (ko) 홀로그래픽 디스플레이 장치 및 그 장치를 위한 홀로그램 최적화 방법
WO2021112301A1 (ko) 광도파로와 홀로그래픽 광학 소자를 이용한 증강현실 홀로그래픽 디스플레이
WO2023101274A1 (ko) 자유곡면 홀로그래픽 광학소자를 기록하기 위한 홀로그래픽 프린터
WO2023113060A1 (ko) 초점 가변 렌즈와 회전 미러를 이용한 홀로그래픽 광학 소자 프린팅 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957807

Country of ref document: EP

Kind code of ref document: A1