WO2022080407A1 - 魚数算出方法、魚数算出プログラム、及び、魚数算出装置 - Google Patents

魚数算出方法、魚数算出プログラム、及び、魚数算出装置 Download PDF

Info

Publication number
WO2022080407A1
WO2022080407A1 PCT/JP2021/037884 JP2021037884W WO2022080407A1 WO 2022080407 A1 WO2022080407 A1 WO 2022080407A1 JP 2021037884 W JP2021037884 W JP 2021037884W WO 2022080407 A1 WO2022080407 A1 WO 2022080407A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
echo image
space
underwater space
underwater
Prior art date
Application number
PCT/JP2021/037884
Other languages
English (en)
French (fr)
Inventor
悠 西川
洋一 石川
立 桑谷
大祐 松岡
大祐 杉山
佳孝 渡邊
Original Assignee
国立研究開発法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人海洋研究開発機構 filed Critical 国立研究開発法人海洋研究開発機構
Priority to US18/031,222 priority Critical patent/US20230389530A1/en
Priority to JP2022557041A priority patent/JP7287734B2/ja
Publication of WO2022080407A1 publication Critical patent/WO2022080407A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/90Sorting, grading, counting or marking live aquatic animals, e.g. sex determination
    • A01K61/95Sorting, grading, counting or marking live aquatic animals, e.g. sex determination specially adapted for fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/96Sonar systems specially adapted for specific applications for locating fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/15Fishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a fish number calculation method, a fish number calculation program, and a fish number calculation device.
  • the amount of fish is estimated by a fish finder using underwater ultrasonic waves and a fish finder using the principle of the fish finder, and the fish stock is investigated. Although it is possible to determine the distribution of fish schools, the depth of fish schools, and the density of fish schools with a fish finder, it was difficult to count the number of fish.
  • An object of the present invention is to easily grasp the number of fish existing in an underwater space such as a cage.
  • the disclosed technique employs the following means in order to solve the above problems. That is, the first aspect is The computer Each includes a learning echo image based on the sound wave reflected and received by the fish when the sound wave is transmitted into the underwater space where the fish is present, and the number of fish existing in the underwater space in the echo image.
  • an estimator that estimates the number of fish existing in the underwater space
  • the echo image generated based on the sound waves transmitted into the underwater space and reflected and received by an unknown number of fish present in the underwater space is used in the underwater.
  • To calculate the number of the unknown fish existing in the space It is a method of calculating the number of fish including.
  • the aspect of disclosure may be realized by executing the program by the information processing device. That is, the configuration of the disclosure can be specified as a program for causing the information processing apparatus to execute the process executed by each means in the above-described embodiment, or as a computer-readable recording medium on which the program is recorded. Further, the configuration of the disclosure may be specified by a method in which the information processing apparatus executes the processing executed by each of the above-mentioned means. The configuration of the disclosure may be specified as a system including an information processing apparatus that performs processing executed by each of the above-mentioned means.
  • the number of fish existing in an underwater space such as a cage can be easily grasped.
  • FIG. 1 is a diagram showing a configuration example of the system of the embodiment.
  • FIG. 2 is a diagram showing an example of a functional block of a fish number calculation device.
  • FIG. 3 is a diagram showing an example of an operation flow of a fish behavior simulation process and a simulated echo image generation process by a fish number calculation device.
  • FIG. 4 is a diagram showing an example of a cage used in a numerical simulation by a fish number calculation device.
  • FIG. 5 is a diagram showing an example of an operation flow of construction of an estimator for estimating the number of fish by the fish number calculation device.
  • FIG. 6 is a diagram showing an example of an operation flow of calculating the number of fish by the fish number calculation device.
  • FIG. 7 is a diagram showing an example of a fish finder and a fish.
  • FIG. 8 is a diagram showing an example of xz coordinates fixed to a fish and uv coordinates.
  • FIG. 9 is a diagram showing an example of xy coordinates fixed to the fish.
  • FIG. 10 is a diagram showing an example of reflection and transmission of sound waves in a fish body and an example of reflection and transmission in a swim bladder.
  • FIG. 11 is a diagram showing an example of a simulated echo image generated.
  • a learning echo image and a learning echo image based on the sound wave reflected and received by the fish when the computer transmits a sound wave into the underwater space where the fish is present respectively.
  • an estimator to estimate the number of fish present in the underwater space by machine learning using multiple learning data sets as teacher data, including the number of fish present in the underwater space in the water, and to construct an underwater estimator.
  • the echo image generated based on the sound waves transmitted to the space and reflected and received by an unknown number of fish present in the underwater space, using an estimator, said to be present in the underwater space. Includes calculating the number of unknown fish.
  • the underwater space includes, for example, the space below the water surface such as rivers, lakes, ponds, and the sea, or the inner space such as a cage that divides the water using a net or the bottom of the water.
  • the water includes freshwater, brackish water, and seawater in which the fish to be counted can live.
  • Underwater spaces include not only those that utilize the natural environment, but also the spaces inside structures that artificially store water, such as pools and water tanks. In the underwater space, there are multiple fish to be counted.
  • the fish may be freshwater fish or saltwater fish, and the types of fish are, for example, fish to be cultivated (yellowtail, red sea bream, red sea bream, amberjack, horse mackerel, horse mackerel, trough, flatfish, salmon and trout, etc.). Not limited.
  • fish and shellfish aquatic organisms such as shrimp can also be counted.
  • the boundary between the inside and the outside is separated by a net, the surface of the water, the bottom of the water, etc., so that fish cannot move between the inside and the outside of the cage.
  • various shapes such as a rectangular parallelepiped, a cube, and a columnar shape can be adopted.
  • the underwater space it is conceivable to define the underwater space by a rectangular parallelepiped in length, width, and height.
  • the space in the water is a rectangular parallelepiped space having a length X in the horizontal direction, a length Y in the vertical direction, and a length Z in the depth direction.
  • the horizontal direction, the vertical direction, and the depth direction may be orthogonal to each other.
  • the water surface may be defined as the upper surface of the underwater space.
  • the above is an example, and the three-dimensional shape of the space in the water is not limited to a rectangular parallelepiped.
  • the echo image is an image generated based on the sound pressure of a sound wave transmitted from the water surface of an underwater space and received as a reflected wave reflected by a fish or the like in a fish finder or the like.
  • the fish number calculation method it is possible to construct an estimator that estimates the number of fish existing in the underwater space by using the learning data set including the learning echo image and the number of fish as teacher data.
  • the number of fish existing in the underwater space is calculated based on the constructed estimator and the echo image obtained by the fish finder installed in the underwater space such as a cage. be able to.
  • the number of fish existing in the underwater space can be calculated more accurately by constructing an estimator using more teacher data.
  • the configuration of the embodiment is an example.
  • the configuration of the invention is not limited to the specific configuration of the embodiment. In carrying out the invention, a specific configuration according to the embodiment may be appropriately adopted.
  • FIG. 1 is a diagram showing a configuration example of the system of the present embodiment.
  • the system of the present embodiment includes a fish number calculation device 100 and a fish finder 200.
  • the fish number calculation device 100 is communicably connected to the fish finder 200 directly or via a network such as the Internet.
  • the fish number calculation device 100 transmits sound waves within a predetermined range (underwater space such as a cage) in which a plurality of fish exist, and acquires an echo image based on the sound waves reflected and received by the plurality of fish.
  • Sound waves include ultrasonic waves.
  • the fish number calculation device 100 constructs an estimator that estimates the number of fish from the echo image by machine learning using the pair of the echo image and the number of fish existing in the predetermined range as teacher data.
  • the fish number calculation device 100 calculates the number of fish existing in the cage or the like from an echo image obtained from a fish finder or the like installed in the vicinity of the actual cage or the like by using the constructed estimator. do.
  • the fish number calculation device 100 simulates the behavior of fish existing within a predetermined range and an echo image obtained from a fish finder or the like, and generates a learning echo image for machine learning.
  • the fish number calculation device 100 includes a dedicated or general-purpose computer (information processing device) such as a workstation (WS, WorkStation), a PC (Personal Computer), a smartphone, a tablet terminal, or an electronic device equipped with a computer. It is feasible to use.
  • the fish number calculation device 100 can be realized by using a computer (server device) that provides a service through a network.
  • the fish number calculation device 100 can be realized by a computer that executes parallelization by MPI (Message Passing Interface) in which CPUs or GPUs are parallelized on a large scale.
  • MPI Message Passing Interface
  • the fishfinder 200 transmits sound waves into the water and receives reflected waves reflected by an object such as a fish in the water. Further, the fishfinder 200 generates an echo image based on the sound pressure (echo sound pressure) of the sound wave received as the reflected wave.
  • the horizontal axis is the time timing when the sound wave was transmitted
  • the vertical axis is the distance from the fishfinder
  • the sound pressure (echo sound pressure) of the sound wave received by the fishfinder is represented by the shade of color. It is an image.
  • the fishfinder 200 is installed on the water surface (sea surface) of an underwater space such as a cage.
  • the fish number calculation device 100 includes a processor 101, a memory 102, a storage device 103, an input device 104, an output device 105, and a communication control device 106. These are connected to each other by a bus.
  • the memory 102 and the storage device 103 are non-temporary computer-readable recording media.
  • the hardware configuration of the fish number calculation device 100 is not limited to the example shown in FIG. 1, and components may be omitted, replaced, or added as appropriate.
  • the fish number calculation device 100 meets a predetermined purpose by having the processor 101 load the program stored in the recording medium into the work area of the memory 102 and execute the program, and each component or the like is controlled through the execution of the program. It is possible to realize the functions that have been achieved.
  • the processor 101 is, for example, a CPU (Central Processing Unit) or the like.
  • the processor 101 loads and executes the program stored in the memory 102 to execute the fish behavior simulation process 151, the echo image generation process 152, the estimator construction process 153, and the fish number estimation process 154. Further, the processor 101 acquires data or the like used in each process from another device such as the fish finder 200 via the storage device 103 or the communication control device 106.
  • a CPU Central Processing Unit
  • the memory 102 is composed of, for example, a RAM (RandomAccessMemory), a RAM, and a ROM (ReadOnlyMemory).
  • the memory 102 is also called a main storage device.
  • the storage device 103 is, for example, an EPROM (ErasableProgrammableROM), a hard disk drive (HDD, HardDiskDrive), or the like. Further, the storage device 103 can include a removable medium, that is, a portable recording medium.
  • the removable media is, for example, a USB (Universal Serial Bus) memory or a disc recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the storage device 103 is also called a secondary storage device.
  • the storage device 103 stores various programs, various data, and various tables used in the fish number calculation device 100 in a readable / writable recording medium.
  • the storage device 103 stores an operating system (Operating System: OS), various application programs, various tables, and the like.
  • OS Operating System
  • the information stored in the storage device 103 may be stored in the memory 102. Further, the information stored in the memory 102 may be stored in the storage device 103.
  • a program for executing fish behavior simulation processing, echo image generation processing, estimator construction processing, fish number estimation processing, etc. is installed in the storage device 103. Further, the storage device 103 stores various data related to fish, fish cages, etc. used in the numerical simulation, such as echo images acquired by the fish finder, calculation results calculated by each process, and the like.
  • the operating system is software that mediates between software and hardware, manages memory space, manages files, manages processes and tasks, and so on.
  • the operating system includes a communication interface.
  • the communication interface is a program for exchanging data with other external devices and the like connected via the communication control device 106.
  • the external device and the like include, for example, another information processing device, an external storage device, and the like.
  • the input device 104 includes a keyboard, a pointing device, a wireless remote controller, a touch panel, and the like. Further, the input device 104 can include a video or image input device such as a camera, or an audio input device such as a microphone.
  • the output device 105 includes a display device such as an LCD (Liquid Crystal Display), an EL (Electroluminescence) panel, a CRT (Cathode Ray Tube) display, a PDP (Plasma Display Panel), and an output device such as a printer. Further, the output device 105 can include an audio output device such as a speaker.
  • a display device such as an LCD (Liquid Crystal Display), an EL (Electroluminescence) panel, a CRT (Cathode Ray Tube) display, a PDP (Plasma Display Panel), and an output device such as a printer.
  • the output device 105 can include an audio output device such as a speaker.
  • the communication control device 106 is connected to another device and controls communication between the fish number calculation device 100 and the other device.
  • the communication control device 106 is, for example, a LAN (Local Area Network) interface board, a wireless communication circuit for wireless communication, and a communication circuit for wired communication.
  • the LAN interface board and the wireless communication circuit are connected to a network such as the Internet.
  • the step of writing a program includes not only the processes performed in chronological order in the described order but also the processes executed in parallel or individually even if they are not necessarily processed in chronological order. Some of the steps in writing the program may be omitted.
  • the series of processes executed by the processor 101 can be executed by hardware or software.
  • Hardware components are hardware circuits, such as FPGAs (Field Programmable Gate Arrays), application-specific integrated circuits (ASICs), gate arrays, logic gate combinations, analog circuits, and the like. ..
  • FIG. 2 is a diagram showing an example of a functional block of the fish number calculation device 100.
  • the processor 101 of the fish number calculation device 100 executes the fish behavior simulation process 151, the echo image generation process 152, the estimator construction process 153, and the fish number estimation process 154 by executing the program stored in the memory 102. Further, the processor 101 acquires data or the like used in each process from another device such as the fish finder 200 via the storage device 103 or the communication control device 106.
  • the fish behavior simulation process 151 is a process for performing a numerical simulation to calculate the position (fish behavior) of each fish existing in an underwater space such as a cage based on an equation showing the behavior of the fish (equation of motion of the fish), the size of the cage, and the like. be.
  • the fish behavior simulation process 151 calculates the time change of the position of each fish by the numerical simulation for calculating the position of the fish.
  • the echo image generation process 152 is a simulated echo image (simulated) based on the echo sound pressure of the sound wave reflected from the fish existing in the predetermined range when the sound wave is transmitted from the fish finder on the sea surface to the predetermined range. It is a process to generate an echo image).
  • the sound wave reflected by each fish is calculated based on the position (fish behavior) of each fish calculated by the fish behavior simulation process 151.
  • the sound waves reflected by each fish are added together, and the echo sound pressure is calculated for each distance from the fish finder.
  • a simulated echo image is generated based on the calculated echo sound pressure for each distance.
  • various simulated echo images are generated by changing the number of fish, the size of the fish, and the like.
  • the estimator construction process 153 determines the data of the simulated echo image (learning echo image) generated by the echo image generation process 152 and the number of fish (and the size of the fish) used in generating the simulated echo image. This is a process of constructing an estimator that estimates the number of fish (and the size of fish) from an echo image using a data set (learning data set) including data as teacher data.
  • the fish number estimation process 154 uses the estimator constructed by the estimator construction process 153 based on the echo image generated by the actual fishfinder, and the number of fish (and the size of the fish) for the echo image. ) Is the process of calculating.
  • FIG. 3 is a diagram showing an example of an operation flow of a fish behavior simulation process and a simulated echo image generation process executed by a computer processor 101 operating as a fish number calculation device 100.
  • the fish number calculation device 100 assumes a fish existing in a predetermined range in water (a space in water such as a cage), and performs a numerical simulation (numerical calculation) of the behavior (time change of position) of the fish. Further, the fish number calculation device 100 calculates the sound pressure (echo sound pressure) of the sound wave transmitted by the fish finder to the fish finder and reflected by the fish and received by the fish finder based on the position of each fish. ..
  • the fish number calculation device 100 adds the echo sound pressures for each distance from the fishfinder to the fish, and calculates the echo sound pressure for each distance. Further, the fish number calculation device 100 calculates the echo sound pressure for each distance by shifting the time. The fish number calculation device 100 generates a simulated echo image based on the calculated echo sound pressure. Further, the fish number calculation device 100 changes the number of fish existing in a predetermined range and the size of the fish, performs a numerical simulation of the behavior of the fish, and generates simulated echo images having different numbers of fish and the size of the fish.
  • the simulated echo image is an image showing the distribution of fish in a predetermined range.
  • the cage 300 used in the numerical simulation is installed on the surface of the sea such as the ocean.
  • the cage 300 has vertical and horizontal directions on the sea surface, and a net or the like is installed at the boundary between the inside and the outside of the cage to prevent fish from going back and forth between the inside and the outside of the cage 300.
  • the cage 300 is, for example, a rectangular parallelepiped having a width of 10 m, a length of 10 m, and a depth of 8 m.
  • the top of the cage 300 is above the sea surface (water surface).
  • the shape of the cage 300 is not limited to a rectangular parallelepiped, and may be a cylinder or the like.
  • the fishfinder that transmits and receives sound waves underwater is installed at a predetermined position on the sea surface in the cage 300. It is assumed that the fish finder is installed at a position 1.5 m in the horizontal direction and 1.5 m in the vertical direction from the center of the cage, for example.
  • the fishfinder may be installed in the center of the sea surface in the cage.
  • the fish shown in FIG. 4 exists at a position (underwater) where the distance from the fishfinder is r or more and less than r + ⁇ r.
  • the fish number calculation device 100 numerically simulates the behavior of each fish in the cage 300 in the fish behavior simulation process.
  • the fish number calculation device 100 calculates the sound pressure (echo sound pressure) of the reflected wave reflected by the fish inside the fish cage 300 from the sound wave (transmitted wave) transmitted from the fish finder. It is assumed that the fish cage 300 or the like used in the numerical simulation is the same as the fish cage or the like for which the number of fish is calculated by the fish number calculation device 100.
  • the processor 101 of the fish number calculation device 100 acquires the data used in the numerical simulation.
  • the processor 101 acquires data such as the size of a predetermined range (fish cage) to be calculated, the number of fish, the size of each fish, the initial position of each fish, the equation of fish behavior, and various parameters stored in the storage device 103. ..
  • the processor 101 may acquire these data from other devices via the communication control device 106, the network, and the like.
  • the processor 101 numerically simulates the behavior of the fish (time change in position) based on the data acquired in S101.
  • the processor 101 calculates the behavior of the fish by the equation showing the behavior of the fish for each fish assumed to exist in the cage to be numerically simulated.
  • the processor 101 stores the calculated behavior of each fish (time change of the position of each fish) in the storage unit 107.
  • the behavior of the fish is represented, for example, as the position of the fish at each time for each fish. The calculation of fish behavior (fish behavior simulation processing) will be described in detail later.
  • the processor 101 calculates the echo sound pressure based on the position of each fish whose position was calculated in S102.
  • Processor 101 assumes a fishfinder installed on the surface of the sea in a cage.
  • the processor 101 calculates the sound pressure of the sound wave transmitted from the fish finder, reflected by each fish, and received by the fish finder based on the position of each fish whose position is calculated in S102.
  • the processor 101 aggregates the sound pressures of sound waves from each fish and calculates the sound pressure (echo sound pressure) for each distance from the fishfinder. Further, the processor 101 depends on the time from the transmission of the sound wave to the reception of the sound wave in the distance from the fish finder.
  • the processor 101 In S104, the processor 101 generates a simulated echo image based on the echo sound pressure for each distance from the fishfinder calculated in S103.
  • the simulated echo image is an image that simulates the echo image generated by the fishfinder.
  • the processor 101 changes the time and calculates the sound pressure for each distance from the fish finder based on the position of the fish at different times.
  • the processor 101 generates a simulated echo image based on the sound pressure at each time and every distance.
  • the processor 101 stores the generated simulated echo image in the storage unit 107 together with the data of the number of fish and the size of the fish used in generating the simulated echo image.
  • the fish number calculation device 100 variously changes the number of fish, the size of the fish (distribution of the size of the fish), and the like, and generates simulated echo images in various cases.
  • the size (size) of fish can be classified into a plurality of types, and the number of fish for each class can be obtained (for example, size A or less is X tails, A or more and less than B is Y tails, and B or more is Z tails).
  • the size of the fish is, for example, the body length of the fish, the thickness of the fish, and the weight of the fish.
  • the size of the fish is an example of the shape of the fish. In this way, the estimator is learning to be able to estimate the number of fish existing in the underwater space for each class.
  • the fish number calculation device 100 defines the equation of motion of the fish for each kind of fish according to the characteristics of the fish, and simulates and simulates the fish behavior. You may generate an echo image or the like.
  • the behavioral equations of each organism are defined according to the characteristics of each organism, and the behavior of each organism. Simulation, generation of simulated echo images, etc. may be performed.
  • FIG. 5 is a diagram showing an example of an operation flow of construction of an estimator for estimating the number of fish by the fish number calculation device.
  • the fish number calculation device 100 uses a learning data set including a simulated echo image generated based on a numerical simulation and a number of fish as teacher data, and uses a deep learning model of machine learning to obtain the number of fish from the echo image. Build an estimator to estimate.
  • the number of fish and the size of the fish may be used instead of the number of fish.
  • the processor 101 of the fish number calculation device 100 acquires the simulated echo image obtained by the operation flow of FIG. 3 and the number of fish associated with the simulated echo image from the storage device 103.
  • the processor 101 uses a deep learning model of machine learning, and uses a learning data set including the simulated echo image acquired in S201 and the number of fish as teacher data, and the number of fish from the simulated echo image (echo image). Build an estimator to estimate. Any model may be used as the deep learning model used here.
  • the processor 101 stores an estimator for estimating the number of constructed fish in the storage device 103.
  • a method using a learning space such as deep learning by a neural network, multiple regression analysis, Look Up Table, etc. can be used. Methods other than machine learning may be used in the construction of the estimator.
  • the simulated echo image as the teacher data, more teacher data can be prepared as compared with using the actual echo image. By using a lot of teacher data, it is possible to build a higher performance estimator.
  • the simulated echo image and echo image used here are examples of learning echo images.
  • the fish number calculation device 100 constructed an estimator using the simulated echo image generated by the numerical simulation, but instead of the simulated echo image or by adding it to the simulated echo image, the actual An echo image generated by the fishfinder 200 installed on the water surface of the cage may be used. At this time, it is assumed that the number of fish in the cage and the size of the fish are known. By using the actual echo image, a more realistic estimator can be constructed.
  • FIG. 6 is a diagram showing an example of an operation flow of calculating the number of fish by the fish number calculation device.
  • the fish number calculation device 100 acquires an actual echo image generated by the fishfinder 200 installed in the cage as shown in FIG. 4, and calculates the number of fish by using the constructed estimator.
  • the size of the cage used in the numerical simulation when constructing the estimator, the installation position of the fish finder, the type of fish, etc. are shown here as the actual size of the cage for which the number of fish is calculated, and the fish finder. It is assumed that it is the same as the installation position, the type of fish, etc.
  • the operation flow of FIG. 6 also uses the number of fish instead of the number of fish.
  • the number and size of fish aretribution of fish size).
  • the processor 101 of the fish number calculation device 100 acquires the echo image generated by the fish finder 200 installed in the cage via the communication control device 106.
  • the processor 101 stores the acquired echo image in the storage device 103.
  • the echo image generated by the fishfinder 200 may be stored in the storage device 103 in advance.
  • the processor 101 is equipped with a fishfinder 200 that generates an echo image based on the echo image acquired in S301 using the estimator that estimates the number of fish constructed in the operation flow of FIG. Calculate the number of fish contained in the fish cage.
  • the processor 101 associates the estimated number of fish with the echo image and stores it in the storage device 103.
  • the fish number calculation device 100 can calculate the number of fish existing in the cage in which the fishfinder 200 is installed by using the echo image generated by the fishfinder 200.
  • the fish behavior simulation process of S102 in FIG. 3 will be described in detail.
  • the behavior (time change of position) of the fish existing in the underwater space (fish cage) is numerically simulated.
  • a plurality of fish exist in an underwater space such as a cage installed in the ocean or the like.
  • a net or the like is installed at the boundary between the inside and the outside of the cage to prevent fish from going back and forth between the inside and the outside of the cage.
  • the size of the cage is 10 m in width, 10 m in length, and 8 m in depth.
  • the horizontal direction is the x direction
  • the vertical direction is the y direction
  • the depth direction (the direction from the seabed to the sea surface) is the z direction.
  • the x-direction, y-direction, and z-direction are orthogonal to each other.
  • fish form a flock and orbit in a cage in a truncated cone shape with a larger radius toward the bottom.
  • each fish is regarded as a self-oscillating particle, and the motion of the fish is described as follows by the second-order differential equation (equation of motion of the fish).
  • x is the fish position vector (x, y, z)
  • v is the fish velocity vector (vx, vy, vz)
  • F is the force vector sum
  • is noise.
  • the force vector F includes attractive force, alignment force, repulsive force, propulsive force, water resistance, light repellent, pressure from a wall (boundary), and the like.
  • the upper limit of the field of view and the angle at which the direction can be changed per second is set for each fish.
  • ⁇ Suction force, repulsion force> The fish in the flock try to get closer to each other.
  • the suction force expresses this as the force acting between two individuals (two fish).
  • the suction forces Fiji and tract received by the i-th fish from the j-th fish are inversely proportional to the distance rig between the two individuals.
  • the suction force Fiji and tract are expressed as follows.
  • xi is the position vector of the i-th fish
  • c1 and c2 are constants.
  • the suction force Fi and tract received by the i-th fish are expressed as follows.
  • Ni and a are the number of fish in the perceptual area of the i-th fish.
  • Si and a are spheres having a radius of Ra.
  • the repulsive force expresses this as the force acting between two individuals.
  • the repulsive force Fiji repulsive received by the i-th fish from the j-th fish is expressed as follows.
  • c3 and c4 are constants.
  • the average of Fiji and repulsive received from the fish of Ni and r included in the perceptual region Si and r represented by the sphere of radius Rr is the repulsive force Fi and repulsive received by the i-th fish. Become.
  • the repulsive force Fi and repulsive are expressed as follows.
  • ⁇ Alignment power> Fish in a flock try to reduce energy consumption by riding the flow of water created by the surrounding fish, or head to a place with a common purpose such as food. At this time, the fish tries to match its speed with other fish around it.
  • the alignment force expresses this as the force acting between two individuals.
  • the alignment force Fiji, orientation received by the i-th fish from the j-th fish can be expressed as follows using the constant J. Assuming that the perceptual region of the i-th fish is Si, o, the alignment force Fi, orientation received by the i-th fish is expressed as follows.
  • Ni and o are the number of fish in the perceptual region defined by the sphere of radius Ro.
  • the alignment force Fi orientation is expressed as follows.
  • the constant J is, for example, 0.95.
  • the alignment force is often determined according to the speed of the surrounding fish, but the fish sense the surrounding flow velocity on the lateral line. Therefore, the average velocity ⁇ v> i may be given at the flow velocity in the cage by adjusting the velocity to the in-situ flow velocity rather than the swimming velocity of other fish in the perceptual region.
  • the flow velocity in the cage can be estimated from the current meter installed at the corner of the cage. However, it is difficult to measure the flow velocity everywhere in the fish cage.
  • the flow velocity distribution is given as in the following Case01-Case03. The flow velocity given here is a value close to the measurement result of the current meter.
  • the swimming power of the fish itself is called the propulsive force
  • the force received from the water against the movement is called the resistance force.
  • the propulsive force and resistance force Fi, spp received by the i-th fish are expressed as follows using the constants k and ⁇ .
  • the first term on the right side represents the propulsive force.
  • Propulsive force is the force that further accelerates in the direction of travel.
  • the second term on the right side represents resistance.
  • the resistance force is in the form of receiving a decelerating force opposite to the direction of travel.
  • the constant k is 0.05 and the constant ⁇ is 1.0.
  • this pseudo wall (the first fish from the wall) has a little more range of motion than the actual wall, it is considered that the force toward the center received by the second fish is weaker than the force received by the first fish. .. Similarly, it is considered that the third and subsequent fish from the wall are also subjected to a force toward the center that gradually weakens. Therefore, it is assumed that the closer to the wall (the farther from the center), the stronger the force toward the center of the cage.
  • the force Fwall from the wall is applied like the following Case11-Case14. Further, it is assumed that the force Fwall from the wall does not change in the depth direction. The force Fwall from the wall does not have to be applied.
  • the fish receives the resultant force from the entire wall surface of the force toward the center from the wall, which is attenuated in proportion to the distance rw from the wall.
  • Fboundary is a force from the wall toward the center, and the absolute value is 0.43.
  • the viewing angle is assumed to be, for example, 180 °, 270 °, and 360 °.
  • the viewing angle is less than 360 °, the fish outside the field of view are not recognized, and the suction force, the repulsive force, and the alignment force do not work on these fish.
  • the angle is given at, for example, 20 °, 30 °, 40 °, 50 °, and 60 °. For example, even if a fish tries to change direction at a steep angle due to the influence of another individual, it actually changes direction only up to the size of the changeable angle.
  • noise is given, for example, to follow four normal distributions with a mean of 0 and a standard deviation of 0.0, 0.02, 0.1, 1.0. When the average is 0 and the standard deviation is 0.0, there is no noise.
  • a repulsive force is applied by the following method of Case22a-Case22c.
  • Case22a Since the actual body length distribution in the cage is a normal distribution, c3 is also given so as to follow the normal distribution.
  • the behavior (position) of each fish existing within the predetermined range (border) is determined.
  • the number of fish is, for example, 100 to 10,000 fish.
  • each fish may be given a different size (body length). Since it is known that the actual body length distribution of fish in the cage is normally distributed, the body length of the fish may be given so that the distribution of the body length of each fish is normally distributed.
  • the fishfinder 200 has a transmitter for transmitting sound waves (including ultrasonic waves) and a receiver for receiving sound waves.
  • the fishfinder 200 transmits a burst wave or a PCW (Pulsed Continuous Wave) from the transmitter toward the water. Due to the directivity of the transmitter, the sensitivity varies depending on the direction from the transmitter.
  • FIG. 7 is a diagram showing an example of a fish finder and a fish.
  • the fishfinder 200 is installed on the surface of the water, and fish are moving in the water.
  • the sound pressure sound pressure of the wave: the magnitude of the sound wave (transmitted sound) to be transmitted
  • D ( ⁇ ) is called a directivity function. D ( ⁇ ) becomes the largest when, for example, ⁇ is 0.
  • the sound wave transmitted from the transmitter undergoes attenuation (diffusion attenuation or divergence attenuation) due to the spread of the sound wave and attenuation (absorption attenuation) due to absorption by seawater in the process of propagating the sound wave to the position of the fish.
  • the incident sound pressure of the sound wave incident on the fish (sound pressure at a position 1 m away from the fish) is Pi
  • the sound pressure of the sound wave reflected by the fish is Pr. ..
  • the intensity of reflection in a fish is expressed by the target strength (Ts), which is the ratio of the intensity of the reflected wave to the intensity of the incident wave (the ratio of the square in the sound pressure).
  • the reflected wave is affected by the same attenuation and directivity as the incident wave, and is received as an echo sound pressure P by the receiver of the fishfinder.
  • the time from when a sound wave is transmitted from a fishfinder to when it is reflected by a fish and received by the fishfinder depends on (almost proportionally) the distance from the fishfinder to the fish.
  • the echo sound pressure P when the sound wave transmitted from the transmitter is reflected by the fish existing at the position r in the ⁇ direction when viewed from the transmitter and received by the receiver is calculated as follows. Will be done.
  • the echo sound pressure P depends on the target strength Ts and the distance r to the fish.
  • is an absorption coefficient and is expressed as follows based on Thorp's equation.
  • f is the frequency of the sound wave transmitted from the transmitter.
  • Ts in the equation of echo sound pressure P is a linear quantity.
  • a swim bladder scattering model a model in which Clay's Kirchhoff, sound line approximation, gas, and cylinder model is modified into a short cylinder synthesis model and the sound line theory is incorporated is used. Also, as a fish scattering model, a similar short cylinder synthetic model for fluids is used. The results of these two models are coherently added (scattering amplitude is added by a complex number) to obtain an overall model. The swim bladder and the fish body are approximated by the synthesis of short cylinders, and the scattered waves from each short cylinder are added.
  • the xyz coordinate fixed to the fish the u coordinate parallel to the wavefront of the sound wave incident on x at an angle ⁇ , and the v coordinate orthogonal to the u coordinate are introduced.
  • FIGS. 8 to 9 are diagrams showing an example of xyz coordinates fixed to the fish and uv coordinates.
  • the x-coordinate is taken in the direction of the body axis of the fish, that is, in the direction from the head to the rear of the fish.
  • the y coordinate is taken from the left side to the right side of the fish.
  • the direction of the y coordinate is the direction from the front surface to the back surface of the paper.
  • the z coordinate is taken from the lower side to the upper side of the fish.
  • the direction of the z coordinate is the direction from the back surface to the front surface of the paper.
  • the fish are divided at equal intervals ( ⁇ x) along the x-coordinate from the head side of the fish, the x-coordinate on the head side of the j-th part of the fish body is x (j), and the j-th part of the fish body.
  • the upper z-coordinate on the head side is zU (j)
  • the lower z-coordinate is zL (j).
  • the body width on the head side of the j-th part of the fish body is defined as w (j).
  • the v-coordinates corresponding to zU (j) and zL (j) are vU (j) and vL (j), respectively.
  • the fish body and the swim bladder are approximated by a plurality of cylinders (short cylinders) having a height of ⁇ x arranged so that the central axes are parallel to each other in the x direction.
  • FIG. 10 is a diagram showing an example of reflection and transmission of sound waves in a fish body and an example of reflection and transmission in a swim bladder.
  • Rbs indicates the reflectance between the fish body (b) and the swim bladder (s)
  • Rwb indicates the reflectance between the ambient water (w) and the fish body
  • Rbw indicates the reflectance between the fish body and the ambient water.
  • Twb indicates the transmittance between the ambient water and the fish body
  • Tbw indicates the transmittance between the fish body and the ambient water.
  • TwbTbw 1-Rwb2 between the reflectance and the transmittance.
  • the scattering amplitude Ass of the swim bladder is obtained as follows by adding the transmission and reflection of sound waves in the swim bladder to the short cylinder synthetic model based on the Kirchhoff approximation of the finite long cylinder.
  • Ns is the number of divisions of the swim bladder
  • kb is the radius of the swim bladder
  • cw is the speed of sound of seawater
  • cb is the speed of sound of a fish body
  • cs is the speed of sound of a swim bladder.
  • ⁇ w indicates the density of seawater
  • ⁇ b indicates the density of the fish body
  • ⁇ s indicates the density of the swim bladder.
  • Aj and ⁇ sj are amplitude and phase correction terms when ka is small, respectively.
  • the scattering amplitude Asb by the fish body is also obtained as follows by the same method as that of the swim bladder.
  • Nb is the number of divisions of the fish body.
  • the simulated echo image is based on the sound pressure (echo sound pressure) of the sound wave received as the reflected wave of the sound wave transmitted into the fish cage in the fish finder installed at the predetermined position (sea surface) of the fish cage where multiple fish exist.
  • This is a simulated image of the echo image generated by the above.
  • the sound wave transmitted from the fishfinder is, for example, a continuous wave of a 100 kHz sound wave modulated with a pulse of 1 ms.
  • the frequency of sound waves transmitted from the fishfinder is, for example, 800 times / minute.
  • the fishfinder is installed at a predetermined position on the sea surface of the cage when generating the simulated echo image.
  • the position of the fish finder is, for example, 1.5 m in the horizontal direction and 1.5 m in the vertical direction from the center of the cage (10 m in width, 10 m in length and 8 m in depth) as shown in FIG.
  • the echo sound pressure of each fish is calculated based on the distance between the fishfinder and the fish and the target strength.
  • the echo sound pressure at r + ⁇ r is calculated from the distance r from the fishfinder.
  • the echo sound pressure from all the fish in the cage can be calculated by moving r from 0 to the distance of the boundary of the cage every ⁇ r.
  • the position of each fish at each time is calculated by numerical simulation of the position of the fish.
  • the target strength of each fish is also calculated by numerical simulation.
  • the echo sound pressure is calculated at predetermined time intervals by simulating that sound waves are transmitted from the fish finder at predetermined time intervals.
  • the echo image generated by the fishfinder has the time when the sound wave was transmitted on the horizontal axis and the distance (depth) from the fishfinder on the vertical axis, and the sound pressure (echo sound) of the sound wave received by the fishfinder. It is an image showing pressure) by the shade of color and the like.
  • the distance from the fishfinder corresponds to the time from when the sound wave is transmitted to when it is received.
  • the simulated echo image is generated as an image in which the echo sound pressure at each time and distance is represented by a shade of color or the like.
  • the fishfinder has a stronger directivity in the vertical direction.
  • the installation position of the fish finder is preferably a position where more fish are present directly under the fish finder (vertical direction) so that strong echo sound pressure from more fish can be received. This is because when the fishfinder is installed at a position where there are few fish directly underneath, there is little difference in the echo image between the case where the number of fish in the cage is large and the case where the number of fish is small.
  • the fishfinder may be installed at a position on the water surface that is calculated by numerical simulation of fish behavior in the cage to have a high probability of having fish directly underneath (the number of fish is large).
  • FIG. 11 is a diagram showing an example of a simulated echo image generated.
  • the horizontal axis represents time and the vertical axis represents the distance from the fishfinder.
  • the time on the horizontal axis corresponds to the time when the fishfinder transmitted the sound wave.
  • the shade of color indicates the echo sound pressure at each time and distance. The closer to the bottom of the cage, the higher the echo sound pressure (more fish).
  • the intensity of the echo sound pressure changes with the movement of the fish.
  • Numerical simulation of fish behavior and generation of simulated echo images may be performed by a device other than the fish number calculation device 100.
  • the processor 101 of the fish number calculation device 100 acquires the simulated echo image from the other device that generated the simulated echo image by numerical simulation via the communication control device 106, the network, and the like.
  • the fish number calculation device 100 exists in a predetermined range based on the number of fish existing in a predetermined range (underwater space such as a cage), the size of the fish, the size of the predetermined range, the force acting on the fish, the flow velocity of seawater, and the like.
  • the behavior of the fish is calculated by numerical simulation.
  • the fish number calculation device 100 generates a simulated echo image simulating the echo image generated by the fish finder based on the behavior of the fish in a predetermined range calculated by the numerical simulation.
  • the fish number calculation device 100 calculates the behavior of fish by changing the number of fish and the size of the fish, and generates simulated echo images of various numbers of fish and the size of the fish.
  • the fish number calculation device 100 constructs an estimator that estimates the number of fish and the size of fish from the echo image by using the set of the simulated echo image and the number of fish and the size of fish as teacher data. According to the fish number calculation device 100, the behavior of fish is calculated by numerical simulation for various numbers of fish, and more simulated echo images are generated, so that only the echo images generated by the actual fish finder are used. It is possible to create more teacher data for the echo image than in the case of doing so. According to the fish number calculation device 100, by constructing an estimator using more teacher data, the number of fish and the size of fish in the cage where an unknown number of fish exist (the number of fish in each class of fish size). Etc.) can be calculated more accurately.
  • Computer readable recording medium A program that realizes any of the above functions in a computer or other machine or device (hereinafter referred to as a computer or the like) can be recorded on a recording medium that can be read by a computer or the like. Then, by having a computer or the like read and execute the program of this recording medium, the function can be provided.
  • a recording medium that can be read by a computer or the like is a recording medium that can store information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read from a computer or the like.
  • elements constituting a computer such as a CPU and a memory may be provided, and the CPU may execute a program.
  • recording media those that can be removed from a computer or the like include, for example, flexible disks, magneto-optical disks, CD-ROMs, CD-R / Ws, DVDs, DATs, 8 mm tapes, memory cards, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Acoustics & Sound (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Business, Economics & Management (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

魚が存在する水中の空間に音波を送信した場合に魚により反射されて受信される音波に基づく学習用エコー画像と、エコー画像における水中の空間に存在する魚の数とを夫々が含む、複数の学習用データセットを教師データとして利用した機械学習によって、水中の空間に存在する魚の数を推定する推定器を構築する。複数の学習用データセットの夫々は、魚が存在する水中の空間に音波を送信した場合に魚により反射されて受信される音波に基づく学習用エコー画像と、エコー画像における水中の空間に存在する魚の数とを含む。水中の空間に音波を送信し、水中の空間に存在する未知の数の魚により反射されて受信される音波に基づいて生成されたエコー画像に関して、推定器を使用して、水中の空間内に存在する未知数の魚の数を算出する。

Description

魚数算出方法、魚数算出プログラム、及び、魚数算出装置
 本発明は、魚数算出方法、魚数算出プログラム、及び、魚数算出装置に関する。
 世界人口の増加、乱獲による天然水産資源の枯渇に伴い、養殖魚の需要はますます高まっている。また、自然変動のある天然魚に比べ、安定した供給を見込めるという点でも養殖魚の増産は重要な課題である。安定供給のためには、養殖生簀を定期的にモニタリングし、生簀中の現在のバイオマス(魚の数、大きさ)を把握し、魚の病気の蔓延や斃死といったトラブルが生じていないかを確認する必要がある。
特公昭57-62026号公報 特開平11-296650号公報 特開2018-44773号公報 特開2019-200175号公報
 しかし、特に海面養殖の場合、生簀のモニタリングは困難であり、カメラや音響観測機器を使っても生簀の一部しか観測できないことが多い。従来、水中超音波を利用した魚群探知機及び魚群探知機の原理を利用した魚量計により魚量を推定し、魚群資源を調査することは行われている。魚群探知機では、魚群の分布、魚群の深さ、魚群の密度を判断することは可能であるが、魚数を計数することは困難であった。
 本発明は、生簀などの水中の空間内に存在する魚の数を容易に把握することを目的とする。
 開示の技術は、上記課題を解決するために、以下の手段を採用する。
 即ち、第1の態様は、
 コンピュータが、
 魚が存在する水中の空間に音波を送信した場合に前記魚により反射されて受信される音波に基づく学習用エコー画像と前記エコー画像における前記水中の空間に存在する魚の数とを夫々が含む、複数の学習用データセットを教師データとして利用した機械学習によって、前記水中の空間に存在する魚の数を推定する推定器を構築することと、
 前記水中の空間に音波を送信し、前記水中の空間に存在する未知の数の魚により反射されて受信される音波に基づき生成されたエコー画像に関して、前記推定器を使用して、前記水中の空間内に存在する前記未知数の魚の数を算出することと、
を含む魚数算出方法である。
 開示の態様は、プログラムが情報処理装置によって実行されることによって実現されてもよい。即ち、開示の構成は、上記した態様における各手段が実行する処理を、情報処理装置に対して実行させるためのプログラム、或いは当該プログラムを記録したコンピュータ読み取り可能な記録媒体として特定することができる。また、開示の構成は、上記した各手段が実行する処理を情報処理装置が実行する方法をもって特定されてもよい。開示の構成は、上記した各手段が実行する処理を行う情報処理装置を含むシステムとして特定されてもよい。
 本発明によれば、生簀などの水中の空間内に存在する魚の数を容易に把握することができる。
図1は、実施形態のシステムの構成例を示す図である。 図2は、魚数算出装置の機能ブロックの例を示す図である。 図3は、魚数算出装置による魚行動模擬処理、模擬エコー画像生成処理の動作フローの例を示す図である。 図4は、魚数算出装置による数値シミュレーションで使用される生簀の例を示す図である。 図5は、魚数算出装置による魚の数を推定する推定器の構築の動作フローの例を示す図である。 図6は、魚数算出装置による魚の数の算出の動作フローの例を示す図である。 図7は、魚群探知機と魚の例を示す図である。 図8は、魚に固定のxz座標と、uv座標との例を示す図である。 図9は、魚に固定のxy座標の例を示す図である。 図10は、音波の魚体における反射及び透過の例と、鰾における反射及び透過の例を示す図である。 図11は、生成される模擬エコー画像の例を示す図である。
 〔実施形態〕
 実施形態に係る魚数算出方法は、コンピュータが、夫々が、魚が存在する水中の空間に音波を送信した場合に魚により反射されて受信される音波に基づく学習用エコー画像と学習用エコー画像における水中の空間に存在する魚の数とを含む、複数の学習用データセットを教師データとして利用した機械学習によって、水中の空間に存在する魚の数を推定する推定器を構築することと、水中の空間に音波を送信し、水中の空間に存在する未知の数の魚により反射されて受信される音波に基づき生成されたエコー画像に関して、推定器を使用して、水中の空間内に存在する前記未知数の魚の数を算出することを含む。
 ここで、水中の空間は、例えば、川、湖沼、池、海などの水面から下、或いは水中を網や水底などを使って区切った生簀等の内側の空間を含む。水中は、計数の対象となる魚が生息可能な、淡水、汽水、海水を含む。水中の空間は、自然環境を利用したものだけでなく、プールや水槽などの人工的に水を蓄えた構造物の内側の空間も含む。水中の空間には、計数の対象となる複数の魚が存在する。魚は淡水魚でも海水魚でもよく、魚の種類は、例えば、養殖の対象となる魚(ブリ・ハマチ、マダイ、カンパチ、マアジ、マサバ、トラフグ、ヒラメ、サケ・マス類など)であるが、これらに限られない。計数の対象としては、魚以外に、エビなどの、水棲生物(魚介類)も含まれ得る。
 水中に網を張った生簀では、内側と外側との境界が、網、水面、水底等で仕切られ、魚が生簀の内側と外側とを行き来できないようにされている。水中の空間の形状は、直方体、立方体、円柱状など、様々な形状を採用し得る。一例としては、水中の空間を、縦、横、高さの直方体で規定することが考えられる。この場合、水中の空間は、横方向の長さX、縦方向の長さY、深さ方向の長さZの直方体の空間である。ここで、横方向、縦方向、深さ方向は、互いに直交するようにしてもよい。また、水中の空間の上面として水面を規定してもよい。但し、上記は一例であって、水中の空間の立体形状は直方体に限られない。
 また、エコー画像は、魚群探知機などにおいて、水中の空間の水面から送信した音波が魚等によって反射される反射波として受信される音波の音圧に基づいて生成される画像である。
 魚数算出方法によると、学習用エコー画像と魚の数とを含む学習用データセットを教師データとして、水中の空間に存在する魚の数を推定する推定器を構築することができる。また、魚数算出方法によると、構築した推定器と、生簀などの水中の空間に設置される魚群探知機で得られたエコー画像とに基づいて、水中の空間に存在する魚の数を算出することができる。魚数算出方法によれば、より多くの教師データを使用して推定器を構築することで、より正確に水中の空間に存在する魚の数等を算出することができる。
 以下、図面を参照して実施形態の構成についてさらに説明する。実施形態の構成は例示である。発明の構成は、実施形態の具体的構成に限定されない。発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されうる。
 (構成例)
 図1は、本実施形態のシステムの構成例を示す図である。本実施形態のシステムは、魚数算出装置100と、魚群探知機200とを含む。魚数算出装置100は、魚群探知機200と、直接、または、インターネットなどのネットワーク等を介して、通信可能に接続される。
 魚数算出装置100は、複数の魚が存在する所定範囲(生簀等の水中の空間)内に音波を送信して複数の魚により反射されて受信される音波に基づくエコー画像を取得する。音波は超音波を含む。また、魚数算出装置100は、当該エコー画像と当該所定範囲内に存在する魚の数との組を教師データとして使用した機械学習によって、エコー画像から魚の数を推定する推定器を構築する。さらに、魚数算出装置100は、構築された推定器を用いて、実際の生簀等に近傍に設置された魚群探知機等から得られたエコー画像から、当該生簀等に存在する魚の数を算出する。また、魚数算出装置100は、所定範囲内に存在する魚の行動、及び、魚群探知機等から得られるエコー画像を模擬し、機械学習のための学習用エコー画像を生成する。
 魚数算出装置100は、ワークステーション(WS、Work Station)のような専用または汎用のコンピュータ(情報処理装置)、PC(Personal Computer)、スマートフォン、タブレット型端末、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。魚数算出装置100は、ネットワークを通じてサービスを提供するコンピュータ(サーバ機器)を使用して、実現可能である。魚数算出装置100は、CPUまたはGPUを大規模に並列させたMPI(Message Passing Interface)による並列を実行する計算機によって実現可能である。
 魚群探知機200は、水中に音波を送信し、水中の魚等の物体で反射される反射波を受信する。また、魚群探知機200は、反射波として受信される音波の音圧(エコー音圧)に基づいて、エコー画像を生成する。エコー画像は、横軸に音波を送信した時刻タイミング、縦軸に魚群探知機からの距離をとり、魚群探知機で受信される音波の音圧(エコー音圧)を色の濃淡等で表した画像である。魚群探知機200は、生簀など水中の空間の水面(海面)に設置される。
 魚数算出装置100は、プロセッサ101、メモリ102、記憶装置103、入力装置104、出力装置105、通信制御装置106を有する。これらは、互いにバスによって接続される。メモリ102及び記憶装置103は、非一時的なコンピュータ読み取り可能な記録媒体である。魚数算出装置100のハードウェア構成は、図1に示される例に限らず、適宜構成要素の省略、置換、追加が行われてもよい。
 魚数算出装置100は、プロセッサ101が記録媒体に記憶されたプログラムをメモリ102の作業領域にロードして実行し、プログラムの実行を通じて各構成部等が制御されることによって、所定の目的に合致した機能を実現することができる。
 プロセッサ101は、例えば、CPU(Central Processing Unit)などである。プロセッサ101は、メモリ102に記憶されたプログラムをロードし、実行することによって、魚行動模擬処理151、エコー画像生成処理152、推定器構築処理153、魚数推定処理154を実行する。また、プロセッサ101は、各処理で使用されるデータ等を、記憶装置103や、通信制御装置106を介して魚群探知機200などの他の装置から取得する。
 メモリ102は、例えば、RAM(Random Access Memory)、RAM及びROM(Read Only Memory)によって構成される。メモリ102は、主記憶装置とも呼ばれる。
 記憶装置103は、例えば、EPROM(Erasable Programmable ROM)、ハードディスクドライブ(HDD、Hard Disk Drive)などである。また、記憶装置103は、リムーバブルメディア、即ち可搬記録媒体を含むことができる。リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、あるいは、CD(Compact Disc)やDVD(Digital Versatile Disc)のようなディスク記録媒体である。記憶装置103は、二次記憶装置とも呼ばれる。
 記憶装置103は、魚数算出装置100で使用される、各種のプログラム、各種のデータ及び各種のテーブルを読み書き自在に記録媒体に格納する。記憶装置103には、オペレーティングシステム(Operating System :OS)、各種のアプリケーションプログラム、各種テーブル等が格納される。記憶装置103に格納される情報は、メモリ102に格納されてもよい。また、メモリ102に格納される情報は、記憶装置103に格納されてもよい。
 記憶装置103には、魚行動模擬処理、エコー画像生成処理、推定器構築処理、魚数推定処理等を実行するためのプログラムがインストールされている。また、記憶装置103は、魚群探知機で取得されたエコー画像、各処理で算出される算出結果等、数値シミュレーションで使用する魚や生簀等に関する各種データ等を格納する。
 オペレーティングシステムは、ソフトウェアとハードウェアとの仲介、メモリ空間の管理、ファイル管理、プロセスやタスクの管理等を行うソフトウェアである。オペレーティングシステムは、通信インタフェースを含む。通信インタフェースは、通信制御装置106を介して接続される他の外部装置等とデータのやり取りを行うプログラムである。外部装置等には、例えば、他の情報処理装置、外部記憶装置等が含まれる。
 入力装置104は、キーボード、ポインティングデバイス、ワイヤレスリモコン、タッチパネル等を含む。また、入力装置104は、カメラのような映像や画像の入力装置や、マイクロフォンのような音声の入力装置を含むことができる。
 出力装置105は、LCD(Liquid Crystal Display)、EL(Electroluminescence)パネル、CRT(Cathode Ray Tube)ディスプレイ、PDP(Plasma Display Panel)等の表示装置、プリンタ等の出力装置を含む。また、出力装置105は、スピーカのような音声の出力装置を含むことができる。
 通信制御装置106は、他の装置と接続し、魚数算出装置100と他の装置との間の通信を制御する。通信制御装置106は、例えば、LAN(Local Area Network)インタフェースボード、無線通信のための無線通信回路、有線通信のための通信回路である。LANインタフェースボードや無線通信回路は、インターネット等のネットワークに接続される。
 プログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくても、並列的または個別に実行される処理を含む。プログラムを記述するステップの一部が省略されてもよい。
 本実施形態において、プロセッサ101によって実行される一連の処理は、ハードウェアにより実行させることも、ソフトウェアにより実行させることもできる。ハードウェアの構成要素は、ハードウェア回路であり、例えば、FPGA(Field Programmable Gate Array)、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)、ゲートアレイ、論理ゲートの組み合わせ、アナログ回路等がある。
 図2は、魚数算出装置100の機能ブロックの例を示す図である。魚数算出装置100のプロセッサ101は、メモリ102に記憶されたプログラムの実行によって、魚行動模擬処理151、エコー画像生成処理152、推定器構築処理153、魚数推定処理154を実行する。また、プロセッサ101は、各処理で使用されるデータ等を、記憶装置103や、通信制御装置106を介して魚群探知機200などの他の装置から取得する。
 魚行動模擬処理151は、魚の行動を示す方程式(魚の運動方程式)、生簀の大きさ等により、生簀などの水中の空間に存在する各魚の位置(魚行動)を算出する数値シミュレーションを行う処理である。また、魚行動模擬処理151によって、魚の位置を算出する数値シミュレーションによって、各魚の位置の時間変化が算出される。
 エコー画像生成処理152は、海面の魚群探知機から所定範囲に向けて音波を送信したときに所定範囲に存在する魚から反射される音波のエコー音圧に基づいて、模擬的なエコー画像(模擬エコー画像)を生成する処理である。エコー画像生成処理152では、魚行動模擬処理151によって算出された各魚の位置(魚行動)に基づいて、各魚で反射される音波が算出される。また、エコー画像生成処理152では、各魚で反射される音波を足し合わせて、魚群探知機からの距離毎にエコー音圧が算出される。エコー画像生成処理152では、算出した距離毎のエコー音圧に基づいて、模擬エコー画像が生成される。エコー画像生成処理152では、魚の数や魚の大きさなどを変化させて、様々な模擬エコー画像が生成される。
 推定器構築処理153は、エコー画像生成処理152で生成された模擬エコー画像(学習用エコー画像)のデータと、当該模擬エコー画像を生成する際に使用された魚の数(及び魚の大きさ)のデータとを含むデータセット(学習用データセット)を教師データとして、エコー画像から魚の数(及び魚の大きさ)を推定する推定器を構築する処理である。
 魚数推定処理154は、実際の魚群探知機で生成されたエコー画像に基づいて、推定器構築処理153で構築された推定器を使用して、当該エコー画像についての魚の数(及び魚の大きさ)を算出する処理である。
 (動作例)
 〈魚行動模擬処理、模擬エコー画像生成処理〉
 図3は、魚数算出装置100として動作するコンピュータのプロセッサ101によって実行される魚行動模擬処理、及び模擬エコー画像生成処理の動作フローの例を示す図である。魚数算出装置100は、水中の所定範囲(生簀などの水中の空間)に存在する魚を想定して、魚の行動(位置の時間変化)の数値シミュレーション(数値計算)を行う。さらに、魚数算出装置100は、各魚の位置に基づいて、生簀に魚群探知機から音波を送信し魚で反射されて魚群探知機で受信される音波の音圧(エコー音圧)を算出する。魚数算出装置100は、魚群探知機から魚までの距離毎にエコー音圧を足し合わせて、当該距離毎のエコー音圧を算出する。また、魚数算出装置100は、時刻をずらして、距離毎のエコー音圧を算出する。魚数算出装置100は、算出したエコー音圧に基づいて、模擬エコー画像を生成する。さらに、魚数算出装置100は、所定範囲に存在する魚の数や魚の大きさを変更して、魚の行動の数値シミュレーションを行い、魚の数や魚の大きさの異なる模擬エコー画像を生成する。模擬エコー画像は所定範囲における魚の分布を示す画像である。
 ここで、図4を用いて、魚数算出装置による数値シミュレーションで使用される生簀の例を示す。数値シミュレーションで使用される生簀300は、海洋などの海面に設置される。生簀300は、海面に、縦方向、及び、横方向をとり、生簀の内側と外側との境界には網等が設置され、魚が生簀300の内側と外側とを行き来できないようにされている。ここで、生簀300は、例えば、横10m、縦10m、深さ8mの直方体とする。生簀300の最上部は海面(水面)より上にある。生簀300の形状は、直方体に限定されるものではなく、円柱形などであってもよい。また、音波を水中に送信し、受信する魚群探知機は、生簀300内の海面の所定の位置に設置されているとする。魚群探知機は、例えば、生簀の中央から横方向に1.5m、縦方向に1.5m離れた位置に設置されるとする。魚群探知機は、生簀内の海面の中心に設置されてもよい。生簀300の内側には、複数の魚が存在する。図4に示される魚は、魚群探知機からの距離がr以上r+Δr未満である位置(水中)に存在する。魚数算出装置100は、魚行動模擬処理において、生簀300内の各魚の行動を数値シミュレーションする。また、魚数算出装置100は、魚群探知機から送信される音波(送信波)が生簀300の内側の魚によって反射された反射波の音圧(エコー音圧)を算出する。数値シミュレーションで使用される生簀300等は、魚数算出装置100による魚数の算出対象の生簀等と同様であるとする。
 S101では、魚数算出装置100のプロセッサ101は、数値シミュレーションで使用するデータを取得する。プロセッサ101は、記憶装置103に格納される、計算対象の所定範囲(生簀)の大きさ、魚の数、各魚の大きさ、各魚の初期位置、魚の行動の方程式、各種パラメータ等のデータを取得する。プロセッサ101は、これらのデータを、通信制御装置106、ネットワーク等を介して、他の装置から取得してもよい。
 S102では、プロセッサ101は、S101で取得したデータに基づいて、魚の行動(位置の時間変化)を数値シミュレーションする。プロセッサ101は、数値シミュレーション対象の生簀に存在すると仮定する各魚について、魚の行動を示す方程式により、魚の行動を算出する。プロセッサ101は、算出した各魚の行動(各魚の位置の時間変化)を、記憶部107に格納する。魚の行動は、例えば、魚毎に各時刻の魚の位置として表される。魚の行動の算出(魚行動模擬処理)については、後に詳述する。
 S103では、プロセッサ101は、S102で位置を算出した各魚の位置に基づいて、エコー音圧を算出する。プロセッサ101は、生簀内の海面に設置される魚群探知機を仮定する。プロセッサ101は、S102で位置を算出した各魚の位置に基づいて、当該魚群探知機から送信され、各魚で反射され、魚群探知機で受信される音波の音圧を算出する。さらに、プロセッサ101は、各魚からの音波の音圧を集計して、魚群探知機からの距離毎の音圧(エコー音圧)を算出する。さらに、プロセッサ101は、魚群探知機からの距離は、音波を送信してから受信するまでの時間に依存する。
 S104では、プロセッサ101は、S103で算出した魚群探知機からの距離毎のエコー音圧に基づいて、模擬エコー画像を生成する。模擬エコー画像は、魚群探知機で生成されるエコー画像を模擬した画像である。また、プロセッサ101は、時刻を変化させて異なる時刻の魚の位置に基づく、魚群探知機からの距離毎の音圧を算出する。プロセッサ101は、時刻毎距離毎の音圧に基づいて、模擬エコー画像を生成する。プロセッサ101は、生成した模擬エコー画像を、模擬エコー画像を生成する際に使用した魚の数及び魚の大きさのデータとともに、記憶部107に格納する。
 S103のエコー音圧の算出及びS104の模擬エコー画像の生成(模擬エコー画像処理)の詳細については、後に詳述する。
 また、魚数算出装置100は、魚の数及び魚の大きさ(魚の大きさの分布)等を様々に変更して、様々な場合における模擬エコー画像を生成する。魚の大きさ(サイズ)を複数種類にクラス分けし、クラス毎の魚数を求め得る(例えば、大きさA未満がX尾、A以上B未満がY尾、B以上がZ尾)。魚の大きさは、例えば、魚の体長、魚の太さ、魚の重さである。魚の大きさは、魚の形状の一例である。このように、推定器は、水中の空間に存在する魚の、クラス毎の数を推定可能に学習している。
 ここでは、1種類の魚を想定しているが、魚数算出装置100は、複数種類の魚について、魚の種類毎に、魚の特性に合わせて、魚の運動方程式を規定し、魚行動模擬、模擬エコー画像の生成等を行ってもよい。また、魚以外のエビ、カニなどの甲殻類、イカ、タコなどの軟体動物等の他の水棲生物について、それぞれの生物の特性に合わせて、各生物の運動方程式を規定し、各生物の行動模擬、模擬エコー画像の生成等を行ってもよい。
 〈推定器の構築〉
 図5は、魚数算出装置による魚の数を推定する推定器の構築の動作フローの例を示す図である。魚数算出装置100は、数値シミュレーションに基づいて生成された模擬エコー画像と、魚の数とを含む学習用データセットを教師データとして、機械学習の深層学習モデルを使用して、エコー画像から魚の数を推定する推定器を構築する。ここで、魚の数の代わりに、魚の数及び魚の大きさ(魚の大きさの分布)としてもよい。
 S201では、魚数算出装置100のプロセッサ101は、図3の動作フローにより得られた、模擬エコー画像と、当該模擬エコー画像に対応づけられた魚の数とを、記憶装置103から取得する。
 S202では、プロセッサ101は、機械学習の深層学習モデルを使用して、S201で取得した模擬エコー画像と魚の数とを含む学習用データセットを教師データとして、模擬エコー画像(エコー画像)から魚の数を推定する推定器を構築する。ここで使用される深層学習モデルは、どのようなモデルが使用されてもよい。プロセッサ101は、構築した魚の数を推定する推定器を記憶装置103に格納する。推定器の構築には、ニューラルネットワークによるディープラーニング、多重回帰分析、Look Up Table等の学習空間を利用する手法等が使用され得る。推定器の構築の際に、機械学習以外の方法が使用されてもよい。模擬エコー画像を教師データとすることで、実際のエコー画像を使用するのに比べて、より多くの教師データを用意することができる。多くの教師データを使用することで、より性能の高い推定器を構築することができる。ここで使用される模擬エコー画像、エコー画像は、学習用エコー画像の一例である。
 ここでは、魚数算出装置100は、数値シミュレーションによって生成された模擬エコー画像を使用して、推定器を構築したが、模擬エコー画像の代わりに、もしくは、模擬エコー画像に追加して、実際の生簀の水面に設置された魚群探知機200で生成されたエコー画像を使用してもよい。このとき、生簀内の魚の数や魚の大きさは既知であるとする。実際のエコー画像が使用されることにより、より現実に近い推定器が構築され得る。
 〈魚数の算出〉
 図6は、魚数算出装置による魚の数の算出の動作フローの例を示す図である。魚数算出装置100は、図4のような生簀に設置された魚群探知機200で生成された実際のエコー画像を取得して、魚の数の算出を、構築した推定器を使用して行う。推定器を構築した際に数値シミュレーションで使用した生簀の大きさ、魚群探知機の設置位置、魚の種類等は、ここで、魚の数を算出する対象の実際の生簀の大きさ、魚群探知機の設置位置、魚の種類等と同様であるとする。ここで、図3、図5の動作フローで、魚の数の代わりに、魚の数及び魚の大きさ(魚の大きさの分布)とした場合、図6の動作フローでも、魚の数の代わりに、魚の数及び魚の大きさ(魚の大きさの分布)とする。
 S301では、魚数算出装置100のプロセッサ101は、生簀に設置された魚群探知機200で生成されたエコー画像を、通信制御装置106を介して、取得する。プロセッサ101は、取得したエコー画像を記憶装置103に格納する。魚群探知機200で生成されたエコー画像は、あらかじめ、記憶装置103に格納されていてもよい。
 S302では、プロセッサ101は、図5の動作フローで構築された魚の数を推定する推定器を使用して、S301で取得したエコー画像に基づいて、エコー画像を生成した魚群探知機200が設置される生簀に含まれる魚の数を算出する。プロセッサ101は、推定した魚の数をエコー画像に対応づけて、記憶装置103に格納する。これにより、魚数算出装置100は、魚群探知機200で生成されたエコー画像により、魚群探知機200が設置される生簀に存在する魚の数を算出することができる。
 (魚行動模擬処理)
 ここでは、図3のS102の魚行動模擬処理について詳しく説明する。魚行動模擬処理では、水中の空間(生簀)に存在する魚の行動(位置の時間変化)を数値シミュレーションする。ここでは、海洋等に設置される生簀等の水中の空間内に複数の魚が存在するとする。生簀の内側と外側との境界には網等が設置され、魚が生簀の内側と外側とを行き来できないようにされているとする。ここで、図4のように、生簀の大きさは、横10m、縦10m、深さ8mとする。ここでは、横方向をx方向、縦方向をy方向、深さ方向(海底から海面の方向)をz方向とする。x方向、y方向、z方向は、互いに直交する。魚は、例えば、群れをなして、生簀の中を、底へ向かって半径の大きくなる円錐台状に周遊する。
 ここでは、それぞれの魚を自己振動粒子として捉え、2階の微分方程式(魚の運動方程式)によって、次のように魚の運動が記述される。
Figure JPOXMLDOC01-appb-M000001

 ここで、xは魚の位置ベクトル(x,y,z)、vは魚の速度ベクトル(vx,vy,vz)、Fは力のベクトル和、ηはノイズである。力のベクトルFは、吸引力、整列力、反発力、推進力、水の抵抗、光の忌避、壁(境界)からの圧力などを含む。また、それぞれの魚には視野と1秒間に方向転換可能な角度の上限が設定される。
 〈吸引力、反発力〉
 群れにおける魚は互いに近づこうとする。これを2個体(2つの魚)間に働く力として表したのが吸引力である。i番目の魚がj番目の魚から受ける吸引力Fij,attractは2個体間の距離rijに反比例する。吸引力Fij,attractは、次のように表される。
Figure JPOXMLDOC01-appb-M000002

 ここで、xiはi番目の魚の位置ベクトル、c1、c2は、定数である。
 i番目の魚の知覚領域をSi,aとすると、その領域内にいるすべての魚から受けるFij,attractの平均がi番目の魚が受ける吸引力Fi,attractとなる。吸引力Fi,attractは、次のように表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、Ni,aは、i番目の魚の知覚領域にいる魚の数である。Si,aは半径Raの球とする。
 また、魚は、互いに衝突を回避しようとする。これを2個体間に働く力として表したのが反発力である。i番目の魚がj番目の魚から受ける反発力Fij,repulsiveは、次のように表される。
Figure JPOXMLDOC01-appb-M000004

 ここで、c3、c4は、定数である。
 吸引力の場合と同様に、半径Rrの球で表される知覚領域Si,rに含まれるNi,rの魚から受けるFij,repulsiveの平均が、i番目の魚が受ける反発力Fi,repulsiveとなる。反発力Fi,repulsiveは、次のように表される。
Figure JPOXMLDOC01-appb-M000005
 〈整列力〉
 群れにおける魚は、周りの魚の作る水の流れに乗ってエネルギーの消費を抑えようとしたり、餌などの共通の目的のある場所に向かったりする。このとき、魚はまわりの他の魚とその速度を合わせようとする。これを2個体間に働く力として表したものが整列力である。一般には、整列力の式として、実際に周りの魚の速度を認識するという表式が使われる。i番目の魚がj番目の魚から受ける整列力Fij,orientationは、定数Jを用いて次のように表せる。
Figure JPOXMLDOC01-appb-M000006

 i番目の魚の知覚領域をSi,oとすると、i番目の魚が受ける整列力Fi,orientationは、次のように表される。
Figure JPOXMLDOC01-appb-M000007

 ここで、Ni,oは半径Roの球で定義される知覚領域内にいる魚の数である。
 <v>iを知覚領域内にいる魚についての局所的な平均速度とすると、整列力Fi,orientationは、次のように表される。
Figure JPOXMLDOC01-appb-M000008

 定数Jは、例えば、0.95である。
 このように周りの魚の速度に合わせる形で整列力を決めることが多いが、魚は側線で周囲の流速を感じ取っている。そこで、知覚領域内の他の魚の遊泳速度よりその場の流速に速度を合わせ、平均速度<v>iを生簀内の流速で与えてもよい。生簀内の流速は生簀の角に設置した流速計から推定できる。しかし、魚が密集する生簀のあらゆる場所で流速を計測することは困難である。ここでは、例えば、次のCase01-Case03のように流速分布を与える。ここで与える流速は、流速計の測定結果に近い値である。ただし、生簀の中心付近には魚がいないことが観測からわかっているため、生簀に中心から半径1mの範囲には流速を与えない。
 (Case01)深度と生簀内の場所によらず0.6m/sの一様な流速を与える。
 (Case02)深度方向には変化しないが角速度がω=0.15で一定となるよう中心に向かって流速を減速させる。
 (Case03)魚が高密度で存在する、中心の空いた円錐台の部分にのみ流速を与える流速はCase1と同様に0.6m/sとする。
 〈推進力、水の抵抗〉
 魚自身が持つ遊泳力を推進力、その運動に対して水から受ける力を抵抗力と呼ぶ。i番目の魚が受ける推進力及び抵抗力Fi,sppは、定数k、βを使って、次のように表される。
Figure JPOXMLDOC01-appb-M000009

 右辺の第1項は、推進力を表す。推進力は、進んでいる方向に対してさらに加速させる力である。右辺の第2項は、抵抗力を表す。抵抗力は、進んでいる方向とは逆の減速させる力を受ける形になっている。例えば、定数kは0.05、定数βは1.0である。
 〈初期配置〉
 複数の魚を旋回させた状態からシミュレーションを行うとより長時間旋回行動を継続できることが知られている。そこで、複数の魚を、生簀の底面から、0.5mから3.5mまでの範囲にドーナツ状に配置し、角速度0.1で旋回させた状態からシミュレーションを開始する。
 〈趨光性〉
 実際の生簀の魚の観測では、魚は生簀の下方に集中する。また、多くの魚で光源から遠ざかろうとする趨光性(Phototropism)が見られることが知られている。そこで、魚に働く力に下向きの力Fphotoを与えることで趨光性を表現する。基本的には深度(深さ)zが大きくなるほど(海面に近づくほど)、鉛直下向きの力Fphotoが大きくなる。Fphotoは、例えば、次のいずれかのように表される。ここで、生簀の底面でz=0とする。
Figure JPOXMLDOC01-appb-M000010

 1番目の式及び2番目の式は、光が深度に対して指数関数的に減衰することを反映している。2番目の式は、1番目の式より上層での値が大きい。3番目の式は、ある程度の深度(明度)になれば趨光性がなくなることを仮定し、底面から2mまでの範囲で0となるように調整されている。魚の位置の計算において、力Fphotoは、与えられなくてもよい。
 〈生簀の底面付近での速度〉
 魚は、趨光性の条件により底面に集まろうとするが、底面に近づきすぎると減速すると考えられる。そこで、底面からの距離に応じて、魚の速度を減速させるようにしてもよい。また、実際に魚の位置が底面を超えた場合は、例えば、底面から対照となる位置に移動させる。
 〈壁(境界)からの力〉
 生簀内は高密度なので、最も壁際の魚には近接個体から壁に押しつける力が常に働いているが、最も壁際の魚は壁に衝突しないために踏みとどまっている。この状態は、壁から生簀の中心に向かう力を受けているとも言える。次に壁から2番目の位置にいる魚を考えると、この魚も壁の方に動こうとした場合、この魚と壁の間に位置する壁から1番目の魚がいるために、壁と逆に中心に向かう力によって踏みとどまらざるを得ない。言い換えれば、2番目の魚も擬似的な壁から中心に向かう力を受けていることになる。ただしこの擬似的な壁(壁から1番目の魚)は実際の壁よりは多少可動域があるので、2番目の魚が受ける中心に向かう力は1番目の魚が受ける力より弱いと考えられる。同様に、壁から3番目以降の魚も徐々に弱まる中心向きの力を受けていると考えられる。そこで、壁に近いほど(中心から遠いほど)強く生簀の中心に向かう力が働くとする。ここでは、例えば、次のCase11-Case14のように壁からの力Fwallを与える。また、壁からの力Fwallは深度方向には変化しないとする。壁からの力Fwallは、与えられなくてもよい。
(Case11)魚は中心からの距離rcの4乗に比例する力を受ける。
Figure JPOXMLDOC01-appb-M000011
(Case12)魚は壁からの距離rwに比例して減衰する、壁から中心に向かう力の全壁面からの合力を受ける。
Figure JPOXMLDOC01-appb-M000012

 ここで、Fboundaryは壁から中心に向かう力であり、絶対値は0.43である。
(Case13)Case12と同様に、壁からの距離rwに応じて減衰する力を受けるが、壁から離れると強く減衰する。
Figure JPOXMLDOC01-appb-M000013

 ここでFboundaryの絶対値は0.35である。
(Case14)Case11、Case12と同様に、壁からの距離rwに応じて減衰する力を受けるが、さらに中心からの距離に応じて減衰させる。
Figure JPOXMLDOC01-appb-M000014

 ここでFboundaryの絶対値は0.78である。
 〈視野角、方向転換可能角〉
 魚は自分の後方を見られないと考えられることから、視野角が、例えば、180°、270°、360°であるとする。視野角が360°未満である場合、視野外の魚は認識でないので、これらの魚に対し吸引力、反発力、整列力は働かないとする。
 また、魚が一秒間に方向転換可能な角度には限界があると考え、その角度を、例えば、20°、30°、40°、50°、60°で与える。例えば魚が他個体の影響などにより急角度で方向転換しようとしても、実際には方向転換可能角の大きさまでしか方向転換を行わないとする。
 〈ノイズ〉
 ノイズは、例えば、平均が0、標準偏差が0.0、0.02、0.1、1.0となる4通りの正規分布に従うように与えられる。平均が0、標準偏差が0.0である場合は、ノイズがない場合である。
 〈種内順位の考慮〉
 一部の魚では、体サイズに影響を受けた種内順位関係が発達し、摂餌場所を巡って同種に攻撃行動を示すことが知られている。養殖場では給餌時に大型個体ほど早く浮上し摂餌する行動が見られることから、明確な種内順位が存在するとは言わないまでも、体サイズが大きいほど有利な場所を占めやすいのではないかと考えられる。そこで、まず、次のCase21-22で、種内順位を考慮する。
(Case21)順位が低い個体は高い個体から反発力を受けるが、高い個体は低い個体から反発力を受けない。
(Case22)順位が低い個体は高い個体から強い反発力を受け、高い個体は低い個体から弱い反発力を受ける。
 Case21、22において、順位は体長の大きい順に振るものとする。反発力の大きさは、反発力に関する定数c3を調整して表現する。さらに、Case21の場合、体長差が小さければ順位差による反発力の違いは発生しない可能性があると考え、ある程度順位が離れている場合のみ反発力に差が生じるとしてもよい。また、Case22の場合、次のCase22a-Case22cの方法で、反発力を与える。
(Case22a)実際の生簀内の体長分布は正規分布になっていることから、同様にc3も正規分布に従うように与える。
(Case22b)魚を体長別に5つのグループに分け、それぞれのグループにc3=0.1、0.2、0.3、0.4、0.5となる反発力を与える。
(Case22c)自分の順位から500位より上の個体からはc3=0.3、500位より下の個体からはc3=0.05、その他の個体からはc3=0.2となる反発力を受ける。
 上記の吸引力、整列力、反発力、推進力、水の抵抗、光の忌避、壁(境界)からの圧力などに基づいて、所定範囲(生簀)内に存在する各魚の行動(位置)を数値シミュレーションする。魚の数は、例えば、100~10000尾とする。また、各魚に、異なる大きさ(体長)を与えてもよい。実際の生簀の魚の体長分布は正規分布になることが知られているので、各魚の体長の分布が正規分布になるように、魚の体長を与えてもよい。
 (模擬エコー画像生成処理)
 〈エコー音圧の算出〉
 ここでは、図3の動作フローのS103の魚群探知機で受信されるエコー音圧の算出について説明する。魚群探知機200は、音波(超音波を含む)を送信する送波器と、音波を受信する受波器とを有する。魚群探知機200は、送波器からバースト波またはPCW(Pulsed Continuous Wave)を、水中に向けて送波する。送波器の指向性のため、送波器からの方向により感度が異なる。
 図7は、魚群探知機と魚の例を示す図である。図7に示すように、魚群探知機200は水面に設置され、水中を魚が移動している。送波器から鉛直方向に1m離れた位置における音圧(送波音圧:送波する音波(送信音)の大きさ)P0とする。鉛直方向をθ=0、水平方向をθ=90°としたときの送波器からθ方向に1m離れた位置に音圧Pは、D(θ)P0と表される。D(θ)は、指向性関数という。D(θ)は、例えば、θが0のときに最も大きくなる。送波器から送信された音波は、魚の位置に音波が伝搬する過程で、音波が広がることによる減衰(拡散減衰または発散減衰)と、海水に吸収されることによる減衰(吸収減衰)を受ける。魚へ入射される音波の入射音圧(魚から1m離れた位置での音圧)をPi、魚で反射された音波の音圧(魚から1m離れた位置での音圧)をPrとする。魚における反射の強さは、反射波の強さと入射波の強さの比(音圧では2乗の比)であるターゲットストレングス(Target Strength、Ts)で表される。ターゲットストレングスTsは、Ts=(Pr/Pi)2と表される。反射波は、入射波と同じ減衰と指向性の影響を受けて、魚群探知機の受波器によりエコー音圧Pとして受信される。魚群探知機から音波を送信してから魚で反射されて魚群探知機で受信されるまでの時間は、魚群探知機から魚までの距離に依存(ほぼ比例)する。
 送波器から送信された音波が、送信機から見てθ方向の距離rの位置に存在する魚で反射され、受波器で受信されるときのエコー音圧Pは、次のように算出される。
Figure JPOXMLDOC01-appb-M000015

 この式では、エコー音圧Pは、ターゲットストレングスTsと魚までの距離rとに依存する。ここで、αは、吸収係数であり、Thorpの式に基づいて、次のように表される。
Figure JPOXMLDOC01-appb-M000016

 ここで、fは、送波器から送信される音波の周波数である。エコー音圧Pの式におけるTsは線形量である。
 〈ターゲットストレングスTs〉
 ここでは、ターゲットレングスTsの算出について説明する。ここでは、魚のTsを算出するために、魚の鰾による散乱(鰾散乱モデル)と、魚の体(魚体)による散乱(魚体散乱モデル)とを考慮する。
 鰾散乱モデルとして、Clayのキルヒホッフ・音線近似・気体・円筒モデルを短円筒合成モデルに改変し、音線理論を組み込むものが使用される。また、魚体散乱モデルとして、流体に対する同様な短円筒合成モデルが使用される。これらの2モデルの結果を、コヒーレント加算(散乱振幅を複素数で加算)して、全体のモデルとする。鰾及び魚体を短円筒の合成で近似し、各短円筒からの散乱波を加算する。ここで、魚に固定のxyz座標と、xに対して角度θで入射する音波の波面に平行なu座標とu座標に直交するv座標を導入する。ここで、u座標、v座標は、u=xsinθ-zcosθ、v=xcosθ+zsinθと表される。
 図8乃至図9は、魚に固定のxyz座標と、uv座標との例を示す図である。x座標は、魚の体軸の方向、すなわち、魚の頭部から後部への方向に取る。y座標は、魚の左側から右側の方向に取る。図8において、y座標の方向は紙面の表面から裏面の方向である。z座標は魚の下側から上側の方向に取る。図9において、z座標の方向は紙面の裏面から表面の方向である。ここで、魚の頭側からx座標に沿って魚を等間隔(Δx)に区切っていき、魚体のj番目の部分の頭部側のx座標をx(j)、魚体のj番目の部分の頭部側の上側のz座標をzU(j)、下側のz座標をzL(j)とする。また、魚体のj番目の部分の頭部側の体幅をw(j)とする。また、zU(j)、zL(j)に対応する、v座標を、それぞれ、vU(j)、vL(j)とする。ここで、魚体及び鰾は、x方向に中心軸を平行にして並べられた高さΔxの複数の円筒(短円筒)によって近似されるとする。j番目の短円筒の長さのu方向成分Δu(j)と半径a(j)は、それぞれ、Δu(j)(≡Δuj)=(x(j+1)-x(j))sinθ、a(j)(≡aj)=(w(j)+w(j+1))/4と表される。
 図10は、音波の魚体における反射及び透過の例と、鰾における反射及び透過の例を示す図である。Rbsは魚体(b)と鰾(s)との間の反射率、Rwbは周囲水(w)と魚体との間の反射率、Rbwは魚体と周囲水との間の反射率を示す。また、Twbは、周囲水と魚体との間の透過率、Tbwは魚体と周囲水との間の透過率を示す。反射率と透過率とには、TwbTbw=1-Rwb2の関係がある。
 鰾による散乱振幅Assは、有限長円筒のキルヒホッフ近似を元にした短円筒合成モデルに、鰾における音波の透過と反射とを加味して、次のように得られる。
Figure JPOXMLDOC01-appb-M000017

Figure JPOXMLDOC01-appb-M000018

ここで、Nsは鰾の分割数、kbは鰾の半径、cwは海水の音速、cbは魚体の音速、csは鰾の音速を示す。また、ρwは海水の密度、ρbは魚体の密度、ρsは鰾の密度を示す。また、Ajとψsjは、それぞれ、kaが小さいときの振幅と位相の補正項である。
 また、魚体による散乱振幅Asbも、鰾と同様な方法で、次のように得られる。
Figure JPOXMLDOC01-appb-M000019

ここで、Nbは魚体の分割数である。
 以上から、ターゲットレングスTsは、鰾による散乱振幅Ass及び魚体による散乱振幅Asbを用いて、Ts=(Ass)2+(Asb)2と求められる。
 〈模擬エコー画像生成)
 ここでは、図3の動作フローのS104の模擬エコー画像の生成について説明する。模擬エコー画像は、複数の魚が存在する生簀の所定位置(海面)に設置した魚群探知機において、生簀内に送信した音波の反射波として受信される音波の音圧(エコー音圧)に基づいて生成されるエコー画像を、模擬した画像である。魚群探知機から送信される音波は、例えば、100kHzの音波の連続波(Continuous Wave)を1msのパルスで変調したものである。魚群探知機から送信される音波の発射頻度は、例えば、800回/分である。
 模擬エコー画像生成の際、魚群探知機が生簀の海面の所定位置に設置されたと仮定する。魚群探知機の位置は、例えば、図4のように、生簀(横10m縦10m深さ8m)の中央から横方向に1.5m、縦方向に1.5m離れた位置である。魚群探知機の位置から生簀内を所定距離Δr(例えば、Δr=10cm)毎に区切り、魚群探知機からの距離がrからr+Δrの位置に存在する各魚についてのエコー音圧を算出する。rは、0から生簀の境界の距離まで、Δr毎に動かされる。各魚のエコー音圧は、魚群探知機と魚の距離、ターゲットストレングスに基づいて算出される。魚群探知機からの距離rからr+Δrに存在する魚によるエコー音圧を足し合わせることで、魚群探知機からの距離rからr+Δrにおけるエコー音圧が算出される。また、rを0から生簀の境界の距離までΔr毎に動かすことで生簀内のすべての魚からのエコー音圧を算出することができる。各時刻の各魚の位置は、魚の位置の数値シミュレーションにより算出される。また、各魚のターゲットストレングスも数値シミュレーションにより算出される。また、魚群探知機から所定時間毎に音波が送信されることを模擬して、所定時間毎にエコー音圧を算出する。魚群探知機で生成されるエコー画像は、横軸に音波を送信した時刻、縦軸に魚群探知機からの距離(深さ)をとり、魚群探知機で受信される音波の音圧(エコー音圧)を色の濃淡等で表した画像である。魚群探知機からの距離は、音波を送信してから受信するまでの時間に対応する。模擬エコー画像は、同様に、各時刻各距離でのエコー音圧を色の濃淡等で表した画像として生成される。魚群探知機は、鉛直方向により強い指向性を有する。よって、魚群探知機の設置位置は、より多くの魚からの強いエコー音圧を受信できるように、魚群探知機の真下(鉛直方向)により多くの魚が存在する位置であることが好ましい。真下に存在する魚が少ない位置に魚群探知機を設置した場合、生簀の中の魚の数が多い場合と少ない場合とでエコー画像に差が出にくいからである。魚群探知機の設置位置は、生簀内の魚行動の数値シミュレーションにより真下に魚の存在する確率が高い(魚の数が多い)と算出される水面の位置であってもよい。
 図11は、生成される模擬エコー画像の例を示す図である。図11のエコー画像において、横軸は時間、縦軸は魚群探知機からの距離を示す。横軸の時間は、魚群探知機が音波を送信した時刻に対応する。また、色の濃淡は、各時刻各距離におけるエコー音圧を示す。生簀の底面に近いほど、エコー音圧が高い(魚が多い)ことを示している。また、エコー音圧の強度が、魚の移動に伴って変化している。
 〈その他〉
 魚の行動の数値シミュレーションや模擬エコー画像の生成は、魚数算出装置100以外の他の装置で行われてもよい。このとき、魚数算出装置100のプロセッサ101は、数値シミュレーションによって模擬エコー画像を生成した当該他の装置から、通信制御装置106、ネットワーク等を介して、模擬エコー画像を取得する。
 (実施形態の作用、効果)
 魚数算出装置100は、所定範囲(生簀などの水中の空間)に存在する魚の数、魚の大きさ、所定範囲の大きさ、魚に働く力、海水の流速等に基づいて、所定範囲に存在する魚の行動(位置の時間変化)を数値シミュレーションにより算出する。また、魚数算出装置100は、数値シミュレーションにより算出した所定範囲の魚の行動に基づいて、魚群探知機が生成するエコー画像を模擬した模擬エコー画像を生成する。魚数算出装置100は、魚の数や魚の大きさを変更して魚の行動を算出し、様々な魚の数や魚の大きさについての模擬エコー画像を生成する。魚数算出装置100は、模擬エコー画像と魚の数及び魚の大きさとの組を教師データとして、エコー画像から魚の数及び魚の大きさを推定する推定器を構築する。魚数算出装置100によれば、様々な魚の数等について魚の行動を数値シミュレーションにより算出し、より多くの模擬エコー画像を生成することで、実際の魚群探知機で生成されたエコー画像のみを使用する場合に比べて、エコー画像をより多くの教師データを作成することができる。魚数算出装置100によれば、より多くの教師データを使用して推定器を構築することで、未知数の魚が存在する生簀における魚の数及び魚の大きさ(魚の大きさのクラス毎の魚の数など)を、より正確に算出することができる。
 以上、本発明の実施形態を説明したが、これらはあくまで例示にすぎず、本発明はこれらに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。また、各構成例等は、可能な限りにおいて、組み合わされて実施され得る。
 〈コンピュータ読み取り可能な記録媒体〉
 コンピュータその他の機械、装置(以下、コンピュータ等)に上記いずれかの機能を実現させるプログラムをコンピュータ等が読み取り可能な記録媒体に記録することができる。そして、コンピュータ等に、この記録媒体のプログラムを読み込ませて実行させることにより、その機能を提供させることができる。
 ここで、コンピュータ等が読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータ等から読み取ることができる記録媒体をいう。このような記録媒体内には、CPU、メモリ等のコンピュータを構成する要素を設け、そのCPUにプログラムを実行させてもよい。
 また、このような記録媒体のうちコンピュータ等から取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD-ROM、CD-R/W、DVD、DAT、8mmテープ、メモリカード等がある。
 また、コンピュータ等に固定された記録媒体としてハードディスクやROM等がある。
       100     魚数算出装置
       101      プロセッサ
       102      メモリ
       103      記憶装置
       104      入力装置
       105      出力装置
       106      通信制御装置
       200     魚群探知機

Claims (6)

  1.  コンピュータが、
     魚が存在する水中の空間に音波を送信した場合に前記魚により反射されて受信される音波に基づく学習用エコー画像と前記学習用エコー画像における前記水中の空間に存在する魚の数とを夫々が含む、複数の学習用データセットを教師データとして利用した機械学習によって、前記水中の空間に存在する魚の数を推定する推定器を構築することと、
     前記水中の空間に音波を送信し、前記水中の空間に存在する未知数の魚により反射されて受信される音波に基づき生成されたエコー画像に関して、前記推定器を使用して、前記水中の空間内に存在する前記未知数の魚の数を算出することと、
    を含む魚数算出方法。
  2.  前記学習用エコー画像は、前記水中の空間、前記水中の空間内に存在する魚の夫々の位置及び形状、並びに、前記水中の空間内に音波を送信した場合に魚により反射されて受信される音波を模擬した数値シミュレーションの結果を用いて生成された模擬的なエコー画像である、
    請求項1に記載の魚数算出方法。
  3.  コンピュータが、
     前記数値シミュレーションにおいて、前記水中の空間内に存在する前記魚について、少なくとも、魚の大きさと、魚に働く力と、魚の視野角と、前記水中の空間の大きさと、前記水中の空間内での流体の流速とをパラメータとして使用して、それぞれの魚の運動方程式により、前記水中の空間における前記魚の位置を算出すること
    を含む請求項2に記載の魚数算出方法。
  4.  前記水中の空間に存在する魚は、2以上の魚の大きさのクラスにクラス分けされており、
     前記推定器は、前記学習用データセットを用いた機械学習により、前記水中の空間に存在する魚の、前記クラス毎の数を推定可能に学習しており、
     コンピュータが、前記推定器を使用して、前記エコー画像に関する、前記水中の空間に存在する魚の、前記クラス毎の魚の数を算出する
    請求項1乃至3のいずれか1項に記載の魚数算出方法。
  5.  コンピュータが、
     魚が存在する水中の空間に音波を送信した場合に前記魚により反射されて受信される音波に基づく学習用エコー画像と前記学習用エコー画像における前記水中の空間に存在する魚の数とを夫々が含む、複数の学習用データセットを教師データとして利用した機械学習によって、前記水中の空間に存在する魚の数を推定する推定器を構築することと、
     前記水中の空間に音波を送信し、前記水中の空間に存在する未知の数の魚により反射されて受信される音波に基づき生成されたエコー画像に関して、前記推定器を使用して、前記水中の空間内に存在する前記未知数の魚の数を算出することと、
    を実行するための魚数算出プログラム。
  6.  魚が存在する水中の空間に音波を送信した場合に前記魚により反射されて受信される音波に基づく学習用エコー画像と前記学習用エコー画像における前記水中の空間に存在する魚の数とを夫々が含む、複数の学習用データセットを教師データとして利用した機械学習によって、前記水中の空間に存在する魚の数を推定する推定器を構築し、
     前記水中の空間に音波を送信し、前記水中の空間に存在する未知の数の魚により反射されて受信される音波に基づき生成されたエコー画像に関して、前記推定器を使用して、前記水中の空間内に存在する前記未知数の魚の数を算出するプロセッサ
    を備える魚数算出装置。
PCT/JP2021/037884 2020-10-14 2021-10-13 魚数算出方法、魚数算出プログラム、及び、魚数算出装置 WO2022080407A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/031,222 US20230389530A1 (en) 2020-10-14 2021-10-13 Fish Count Calculation Method, Fish Count Calculation Program, and Fish Count Calculation Device
JP2022557041A JP7287734B2 (ja) 2020-10-14 2021-10-13 魚数算出方法、魚数算出プログラム、及び、魚数算出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020173549 2020-10-14
JP2020-173549 2020-10-14

Publications (1)

Publication Number Publication Date
WO2022080407A1 true WO2022080407A1 (ja) 2022-04-21

Family

ID=81209154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037884 WO2022080407A1 (ja) 2020-10-14 2021-10-13 魚数算出方法、魚数算出プログラム、及び、魚数算出装置

Country Status (3)

Country Link
US (1) US20230389530A1 (ja)
JP (1) JP7287734B2 (ja)
WO (1) WO2022080407A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240037917A1 (en) * 2022-07-28 2024-02-01 Softbank Corp. Information processing method, non-transitory computer-readable storage medium, and information processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11296650A (ja) * 1998-04-08 1999-10-29 Nec Corp 生魚計数装置
JP2009213473A (ja) * 2008-02-29 2009-09-24 Pukyong National Univ Industry-Univ Cooperation Foundation 漁撈シミュレーション方法と、漁撈シミュレーションの遂行方法及び漁撈シミュレーター
WO2014207991A1 (ja) * 2013-06-28 2014-12-31 日本電気株式会社 教師データ生成装置、方法、プログラム、および群衆状態認識装置、方法、プログラム
JP2019200175A (ja) * 2018-05-18 2019-11-21 古野電気株式会社 魚種推定システム、魚種推定方法、及びプログラム
JP2020085609A (ja) * 2018-11-22 2020-06-04 株式会社アイエンター 魚体サイズ算出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142708A (ja) 2015-02-05 2016-08-08 株式会社豊田中央研究所 混相状態分布計測装置
JP6714279B2 (ja) 2017-03-02 2020-06-24 日本電信電話株式会社 通信制御方法、通信システム及び事前学習補助装置
JP6849081B2 (ja) 2017-09-04 2021-03-24 日本電気株式会社 情報処理装置、計数システム、計数方法およびコンピュータプログラム
AU2019227780A1 (en) 2018-03-02 2020-10-15 Umitron Pte. Ltd. Automatic feeding assistance device, automatic feeding assistance method, and recording medium
JP7106384B2 (ja) 2018-07-27 2022-07-26 キヤノンメディカルシステムズ株式会社 医用画像処理装置及びx線コンピュータ断層撮影装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11296650A (ja) * 1998-04-08 1999-10-29 Nec Corp 生魚計数装置
JP2009213473A (ja) * 2008-02-29 2009-09-24 Pukyong National Univ Industry-Univ Cooperation Foundation 漁撈シミュレーション方法と、漁撈シミュレーションの遂行方法及び漁撈シミュレーター
WO2014207991A1 (ja) * 2013-06-28 2014-12-31 日本電気株式会社 教師データ生成装置、方法、プログラム、および群衆状態認識装置、方法、プログラム
JP2019200175A (ja) * 2018-05-18 2019-11-21 古野電気株式会社 魚種推定システム、魚種推定方法、及びプログラム
JP2020085609A (ja) * 2018-11-22 2020-06-04 株式会社アイエンター 魚体サイズ算出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONITSUKA YUKI: "Development of fish school behavior simulator in running water", RIVER MAINTENANCE FUND SUBSIDY PROJECT, GRADUATE SCHOOL OF ENGINEERING, KYUSHU INSTITUTE OF TECHNOLOGY, 25 March 2013 (2013-03-25), XP055921856, Retrieved from the Internet <URL:http://public-report.kasen.or.jp/241212010.pdf> *

Also Published As

Publication number Publication date
US20230389530A1 (en) 2023-12-07
JP7287734B2 (ja) 2023-06-06
JPWO2022080407A1 (ja) 2022-04-21

Similar Documents

Publication Publication Date Title
Wahlberg et al. Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus)
Liu et al. Numerical analysis of the influence of reef arrangements on artificial reef flow fields
Miller et al. First indications that northern bottlenose whales are sensitive to behavioural disturbance from anthropogenic noise
Michalec et al. Zooplankton can actively adjust their motility to turbulent flow
KR100923668B1 (ko) 어로 시뮬레이션 방법과 어로 시뮬레이션 수행방법 및 어로시뮬레이터
WO2022170901A1 (zh) 一种鱼类偏好栖息地的确定方法及终端设备
Rieucau et al. School level structural and dynamic adjustments to risk promote information transfer and collective evasion in herring
Rieucau et al. Experimental evidence of threat-sensitive collective avoidance responses in a large wild-caught herring school
Mortensen et al. Agent‐based models to investigate sound impact on marine animals: bridging the gap between effects on individual behaviour and population level consequences
Holmin et al. Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment
Mann et al. Active and passive acoustics to locate and study fish
WO2022080407A1 (ja) 魚数算出方法、魚数算出プログラム、及び、魚数算出装置
Jaffe To sea and to see: That is the answer
Cutter Jr et al. Accounting for scattering directivity and fish behaviour in multibeam-echosounder surveys
Kristmundsson et al. Fish monitoring in aquaculture using multibeam echosounders and machine learning.
Wei et al. Possible limitations of dolphin echolocation: a simulation study based on a cross-modal matching experiment
Hassan et al. Fish as a source of acoustic signal measurement in an aquaculture tank: Acoustic sensor based time frequency analysis
Mirabet et al. Spatial structures in simulations of animal grouping
Sibley et al. Sound sees more: a comparison of imaging sonars and optical cameras for estimating fish densities at artificial reefs
Lin et al. Measuring fish length and assessing behaviour in a high‐biodiversity reach of the Upper Yangtze River using an acoustic camera and echo sounder
Banno et al. Expanded vision for the spatial distribution of Atlantic salmon in sea cages
Handegard et al. Evaluating the effect of seismic surveys on fish—the efficacy of different exposure metrics to explain disturbance
Weber et al. Near resonance acoustic scattering from organized schools of juvenile Atlantic bluefin tuna (Thunnus thynnus)
Schecklman et al. Comparison of methods used for computing the impact of sound on the marine environment
Andrews et al. High resolution population density imaging of random scatterers with the matched filtered scattered field variance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557041

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18031222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880145

Country of ref document: EP

Kind code of ref document: A1