WO2022080390A1 - Terminal device, and base station device - Google Patents

Terminal device, and base station device Download PDF

Info

Publication number
WO2022080390A1
WO2022080390A1 PCT/JP2021/037800 JP2021037800W WO2022080390A1 WO 2022080390 A1 WO2022080390 A1 WO 2022080390A1 JP 2021037800 W JP2021037800 W JP 2021037800W WO 2022080390 A1 WO2022080390 A1 WO 2022080390A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
unit
repetitions
frequency hopping
dmrs
Prior art date
Application number
PCT/JP2021/037800
Other languages
French (fr)
Japanese (ja)
Inventor
理 中村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2022080390A1 publication Critical patent/WO2022080390A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a terminal device and a base station device.
  • This application claims priority based on Japanese Patent Application No. 2020-174911, which was filed in Japan on October 16, 2020, and the contents thereof are incorporated herein by reference.
  • an OFDM symbol containing one or more DMRS (Demodulation Reference Signal) in a slot composed of multiple OFDM symbols is used. It is designed to be inserted.
  • the receiver receiving the transmitted slot performs channel estimation using the DMRS in the slot and demodulates the data signal in the slot.
  • repeated transmission between slots is specified in order to improve communication reliability and expand coverage.
  • inter-slot repetition the same data can be repeatedly transmitted in a plurality of slots.
  • a plurality of slots are required for repeated transmission, there is a problem in terms of delay. Therefore, in NR release 16, repeated transmission in the slot is specified.
  • the repeating unit can be set a plurality of times in the slot and the transmission can be performed.
  • Non-Patent Document 1 DMRS bundling (DMRS sharing) that enables the use of DMRS contained in different repeating units or different slots is being studied.
  • Non-Patent Document 2 This makes it possible to perform highly accurate channel estimation by DMRS bundling while applying frequency hopping.
  • Non-Patent Document 2 proposes a method of applying frequency hopping to each of a plurality of slots and applying DMRS bundling to the plurality of slots to obtain high channel estimation accuracy and frequency diversity by frequency hopping.
  • DMRS bundling to the plurality of slots to obtain high channel estimation accuracy and frequency diversity by frequency hopping.
  • it is necessary to consider how to control it and what kind of control information is exchanged.
  • One aspect of the present invention has been made in view of such circumstances, and an object thereof is to efficiently expand coverage by making it possible to effectively apply DMRS bundling.
  • the configuration of the base station device, the terminal device, and the communication method according to the present invention in order to solve the above-mentioned problems is as follows.
  • One aspect of the present invention is a terminal device that transmits to a base station device by repeated transmission, and is a frequency hopping method for changing the nominal number of repetitions in the repeated transmission and the transmission frequency in the repeated transmission.
  • the upper layer processing unit is provided with a transmission unit that determines the actual number of repetitions based on the nominal number of repetitions and transmits the actual number of repetitions, and the transmission unit applies DMRS bundling. Frequency hopping is applied based on the number of iterations to be performed and the nominal number of iterations.
  • the number of repetitions to which the DMRS bundling is applied is set by the upper layer processing unit.
  • the number of iterations to which the DMRS bundling is applied is associated with the redundancy version series set by the upper layer processing unit.
  • One aspect of the present invention is applied when the frequency hopping method indicates a predetermined method, and when a method other than the predetermined method is indicated, the transmission unit performs frequency hopping based on the nominal number of repetitions. To apply.
  • One aspect of the present invention is a base station apparatus that transmits to a terminal device by repeated transmission, and is a frequency hopping method for changing the nominal number of repetitions in the repeated transmission and the transmission frequency in the repeated transmission.
  • the upper layer processing unit is provided with a transmission unit that determines the actual number of repetitions based on the nominal number of repetitions and transmits the actual number of repetitions, and the transmission unit applies DMRS bundling.
  • Frequency hopping is applied based on the number of iterations to be performed and the nominal number of iterations.
  • the number of repetitions to which the DMRS bundling is applied is set by the upper layer processing unit.
  • the number of iterations to which the DMRS bundling is applied is associated with the redundancy version series set by the upper layer processing unit.
  • One aspect of the present invention is applied when the frequency hopping method indicates a predetermined method, and when the frequency hopping method indicates a method other than the predetermined method, the transmission unit has the nominal number of repetitions. Apply frequency hopping based on.
  • communication reliability can be improved and communication coverage can be expanded.
  • FIG. 3 is a diagram illustrating an example of frequency hopping based on a nominal repeat index when an invalid symbol is included, according to a third embodiment.
  • FIG. 5 is a diagram illustrating an example of frequency hopping based on a nominal repeat index when a plurality of invalid symbols are included according to a third embodiment.
  • the communication system includes a base station device (cell, small cell, serving cell, component carrier, eNodeB, Home eNodeB, gNodeB) and a terminal device (terminal, mobile terminal, UE: User Equipment).
  • the base station device in the case of downlink, the base station device is a transmitting device (transmitting point, transmitting antenna group, transmitting antenna port group, TRP (Tx / RxPoint)), and the terminal device is a receiving device (receiving point, receiving terminal). , Received antenna group, Received antenna port group).
  • the base station device is the receiving device and the terminal device is the transmitting device.
  • the communication system is also applicable to D2D (Device-to-Device, sidelink) communication. In that case, both the transmitting device and the receiving device become terminal devices.
  • the communication system is not limited to data communication between a terminal device and a base station device in which a human intervenes. That is, human intervention such as MTC (Machine Type Communication), M2M communication (Machine-to-Machine Communication), IoT (Internet of Things) communication, NB-IoT (Narrow Band-IoT), etc. (hereinafter referred to as MTC). It can also be applied to a form of data communication that does not require. In this case, the terminal device becomes an MTC terminal.
  • a multi-carrier transmission method such as CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) can be used for the uplink and the downlink.
  • the communication system is also referred to as DFTS-OFDM (Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing, SC-FDMA) to which Transform precursor is applied, that is, DFT is applied when upper layer parameters related to Transform precursor are set in the uplink. ) Etc. are used.
  • DFTS-OFDM Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing, SC-FDMA
  • SC-FDMA Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing
  • the base station device and the terminal device in the present embodiment are a so-called licensed band, and / or a frequency band for which a license has been obtained from the country or region where the wireless operator provides the service. It is possible to communicate in a frequency band called an unlicensed band, which does not require a license from the country or region.
  • X / Y includes the meaning of "X or Y”. In this embodiment, “X / Y” includes the meaning of "X and Y”. In this embodiment, “X / Y” includes the meaning of "X and / or Y”.
  • FIG. 1 is a diagram showing a configuration example of the communication system 1 according to the present embodiment.
  • the communication system 1 in the present embodiment includes a base station device 10 and a terminal device 20.
  • the coverage 10a is a range (communication area) in which the base station device 10 can connect (communicate) with the terminal device 20 (also referred to as a cell).
  • the base station device 10 can accommodate a plurality of terminal devices 20 in the coverage 10a.
  • the uplink radio communication r30 includes at least the following uplink physical channels:
  • the uplink physical channel is used to transmit the information output from the upper layer.
  • -Physical uplink control channel (PUCCH) -Physical uplink shared channel (PUSCH) -Physical Random Access Channel (PRACH)
  • the PUCCH is a physical channel used to transmit uplink control information (UCI).
  • the uplink control information includes an acknowledgment (positive acknowledgment: ACK) / a negative response (Negative acknowledgment: NACK) to the downlink data.
  • the downlink data refers to Downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH, and the like.
  • ACK / NACK is also referred to as HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement), HARQ feedback, HARQ response, or HARQ control information, a signal indicating delivery confirmation.
  • HARQ-ACK Hybrid Automatic Repeat request ACKnowledgement
  • NR supports at least five formats: PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4.
  • PUCCH format 0 and PUCCH format 2 are composed of 1 or 2 OFDM symbols, and the other PUCCHs are composed of 4 to 14 OFDM symbols. It is also composed of bandwidth 12 subcarriers of PUCCH format 0 and PUCCH format 1.
  • PUCCH format 0 1-bit (or 2-bit) ACK / NACK is transmitted by a resource element having 12 subcarriers and 1 OFDM symbol (or 2 OFDM symbol).
  • the uplink control information includes a scheduling request (Scheduling Request: SR) used to request a PUSCH (Uplink-Shared Channel: UL-SCH) resource for initial transmission.
  • the scheduling request indicates that a UL-SCH resource for initial transmission is requested.
  • the uplink control information includes the downlink channel state information (Channel State Information: CSI).
  • the downlink channel state information includes a rank index (RankIndicator: RI) indicating a suitable spatial multiplex (number of layers), a precoding matrix index (Precoding MatrixIndicator: PMI) indicating a suitable precoder, and a suitable transmission rate. Includes Channel Quality Indicator (CQI), etc.
  • the PMI represents a codebook determined by the terminal device. The codebook relates to the pre-recording of physical downlink shared channels.
  • the upper layer parameter RI limit can be set.
  • There are multiple setting parameters for the RI limit one is the type 1 single panel RI limit, which consists of 8 bits.
  • the type 1 single panel RI limitation which is a bitmap parameter, forms the bit series r 7 , ... r 2 , r 1 .
  • r 7 is the MSB (Most Significant Bit)
  • r 0 is the LSB (Least Significant Bit).
  • PMI and RI reporting corresponding to the precoder associated with the i + 1 layer is not allowed.
  • the RI limitation includes a type 1 multi-panel RI limitation in addition to the type 1 single panel RI limitation, and is composed of 4 bits.
  • the type 1 multi - panel RI limitation which is a bitmap parameter, forms the bitstreams r4 , r3 , r2, r1. Where r 4 is the MSB and r 0 is the LSB. When r i is zero (i is 0, 1, 2, 3), PMI and RI reporting corresponding to the precoder associated with the i + 1 layer is not allowed.
  • the CQI As the CQI, a suitable modulation method (for example, QPSK, 16QAM, 64QAM, 256QAMAM, etc.), a coding rate (coding rate), and an index (CQI index) indicating frequency utilization efficiency in a predetermined band can be used.
  • BLER block error probability
  • PUSCH is a physical channel used for transmitting uplink data (UplinkTransportBlock, Uplink-SharedChannel: UL-SCH), and CP-OFDM or DFT-S-OFDM is applied as a transmission method.
  • the PUSCH may be used together with the uplink data to transmit control information such as HARQ-ACK and / or channel state information for the downlink data.
  • PUSCH may be used to transmit only channel state information.
  • PUSCH may be used to transmit only HARQ-ACK and channel state information.
  • RRC signaling is also referred to as RRC message / RRC layer information / RRC layer signal / RRC layer parameter / RRC information element.
  • RRC signaling is information / signals processed in the radio resource control layer.
  • the RRC signaling transmitted from the base station device may be a signal common to a plurality of terminal devices in the cell.
  • the RRC signaling transmitted from the base station device may be dedicated signaling (also referred to as dedicated signaling) to a certain terminal device. That is, user device specific (user device specific) information is transmitted to a certain terminal device using dedicated signaling.
  • the RRC message can include the UE Capability of the terminal device.
  • UE Capability is information indicating the functions supported by the terminal device.
  • PUSCH is used to transmit MAC CE (Medium Access Control Element).
  • MAC CE is information / signal processed (transmitted) in the medium access control layer.
  • the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field is used to indicate the level of power headroom.
  • RRC signaling and / or MAC CE is also referred to as higher layer signaling.
  • RRC signaling and / or MAC CE is included in the transport block.
  • PRACH is used to transmit the preamble used for random access.
  • PRACH is used to send a random access preamble.
  • the PRACH is used to indicate an initial connection establishment procedure, a handover procedure, a connection re-establishment procedure, synchronization (timing adjustment) for uplink transmission, and a request for PUSCH (UL-SCH) resources. Used for.
  • an uplink reference signal (Uplink Reference Signal: ULRS) is used as an uplink physical signal.
  • the uplink reference signal includes a demodulation reference signal (Demodulation Reference Signal: DMRS), a sounding reference signal (Sounding Reference Signal: SRS), a phase tracking signal (Phase Tracking Reference Signal: PTRS), and the like.
  • DMRS is associated with the transmission of physical uplink shared channels / physical uplink control channels.
  • the base station apparatus 10 uses a demodulation reference signal to perform demodulation path estimation / propagation path correction when demodulating a physical uplink shared channel / physical uplink control channel.
  • SRS is not related to the transmission of the physical uplink shared channel / physical uplink control channel.
  • the base station apparatus 10 uses SRS to measure the channel state of the uplink (CSI Measurement).
  • PTRS is related to the transmission of the physical uplink shared channel / physical uplink control channel.
  • the base station apparatus 10 uses PTRS for phase tracking.
  • the downlink physical channel is used to transmit the information output from the upper layer.
  • PBCH Physical notification channel
  • PDCH Physical downlink control channel
  • PDSCH Physical downlink shared channel
  • PBCH is used to notify the master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in terminal devices.
  • MIB is one of the system information.
  • the MIB includes a downlink transmission bandwidth setting and a system frame number (SFN: SystemFrame number).
  • SFN SystemFrame number
  • the MIB may include information indicating at least a portion of the slot number, subframe number, and radio frame number to which the PBCH is transmitted.
  • the PDCCH is used to transmit downlink control information (DCI).
  • DCI downlink control information
  • the downlink control information is defined in a plurality of formats (also referred to as DCI formats) based on the intended use.
  • the DCI format may be defined based on the type of DCI and the number of bits constituting one DCI format. Each format is used according to the application.
  • the downlink control information includes control information for transmitting downlink data and control information for transmitting uplink data.
  • the DCI format for transmitting downlink data is also referred to as a downlink assignment (or downlink grant).
  • the DCI format for uplink data transmission is also referred to as an uplink grant (or uplink assignment).
  • the downlink grant may be at least used for scheduling PDSCH in the same slot in which the downlink grant was transmitted.
  • the downlink assignment includes frequency domain resource allocation for PDSCH, time domain resource allocation, MCS (Modulation and Coding Scheme) for PDSCH, NDI (New Data Indicator) for instructing initial transmission or retransmission, and HARQ for downlink. It includes information indicating the process number and downlink control information such as Redundancy version indicating the amount of redundancy added to the codeword during error correction coding.
  • the code word is the data after error correction coding.
  • the downlink assignment may include a transmission power control (TPC) command for PUCCH and a TPC command for PUSCH.
  • the uplink grant may include an aggregation level (number of repeated transmissions) indicating the number of times the PUSCH is repeatedly transmitted.
  • the DCI format for transmitting each downlink data includes information (fields) necessary for the purpose of the above information.
  • the uplink grant is used to notify the terminal device of the scheduling of one PUSCH in one serving cell.
  • the uplink grant has information on resource block allocation for transmitting PUSCH (resource block allocation and hopping resource allocation), time domain resource allocation, information on PUSCH MCS (MCS / Redundance version), information on DMRS port, and PUSCH. Includes uplink control information such as retransmission information, TPC commands for PUSCH, downlink channel state information (CSI) request (CSI request), and so on.
  • the uplink grant may include information indicating the HARQ process number in the uplink, information indicating the redundancy version, a transmission power control (TPC) command for PUCCH, and a TPC command for PUSCH.
  • the DCI format for transmitting each uplink data includes, among the above information, information (fields) necessary for the intended use.
  • the OFDM symbol number (position) that transmits the DMRS symbol is not subject to intra-frequency hopping, and for PUSCH mapping type A, it is between the first OFDM symbol in a slot and the last OFDM symbol of the PUSCH resource scheduled in that slot. Given by the signaled period of. Intra-frequency hopping is not applied and for PUSCH mapping type B, the OFDM symbol number (position) for transmitting the DMRS symbol is given by the scheduled PUSCH resource period. If intra-frequency hopping is applied, it is given in time per hop. For PUSCH mapping type A, only when the upper layer parameter indicating the position of the first DMRS is 2, the case where the upper layer parameter indicating the number of additional DMRSs is 3 is supported. Further, regarding the PUSCH mapping type A, the 4-symbol period can be applied only when the upper layer parameter indicating the position of the head DMRS is 2.
  • PDCCH is generated by adding a cyclic redundancy check (Cyclic Redundancy Check: CRC) to the downlink control information.
  • CRC Cyclic Redundancy Check
  • the CRC parity bit is scrambled (also referred to as exclusive-OR operation, mask) using a predetermined identifier.
  • the parity bit is C-RNTI (Cell-Radio Network Temporary Identifier), CS (Configured Scheduling) -RNTI, Temporary C-RNTI, P (Paging) -RNTI, SI (System Information) -RNTI, or RA (Random Access).
  • -RNTI Cell-Radio Network Temporary Identifier
  • CS Configured Scheduling
  • Temporary C-RNTI Temporary C-RNTI
  • P Paging
  • SI System Information
  • RA Random Access
  • C-RNTI and CS-RNTI are identifiers for identifying a terminal device in a cell.
  • the Temporary C-RNTI is an identifier for identifying the terminal device that transmitted the random access preamble during the contention-based random access procedure.
  • C-RNTI and Temporary C-RNTI are used to control PDSCH or PUSCH transmissions in a single subframe.
  • CS-RNTI is used to periodically allocate PDSCH or PUSCH resources.
  • the PDCCH (DCI format) scrambled by CS-RNTI is used to activate or deactivate CS type 2.
  • the control information (MCS, radio resource allocation, etc.) included in the PDCCH scrambled by CS-RNTI is included in the upper layer parameters related to CS, and the CS activation (setting) is performed by the upper layer parameters.
  • P-RNTI is used to send a paging message (Paging Channel: PCH).
  • SI-RNTI is used to transmit SIB.
  • RA-RNTI is used to send a random access response (message 2 in a random access procedure).
  • SP-CSI-RNTI is used for quasi-static CSI reporting.
  • MCS-C-RNTI is used in selecting MCS tables with low spectral efficiency.
  • PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used to transmit a system information message (also referred to as System Information Block: SIB). Part or all of the SIB may be included in the RRC message.
  • SIB System Information Block
  • the PDSCH is used to transmit RRC signaling.
  • the RRC signaling transmitted from the base station device may be common (cell-specific) to a plurality of terminal devices in the cell. That is, information common to user devices in the cell is transmitted using cell-specific RRC signaling.
  • the RRC signaling transmitted from the base station device may be a message (also referred to as dedicated signaling) dedicated to a certain terminal device. That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • PDSCH is used to transmit MAC CE.
  • RRC signaling and / or MAC CE is also referred to as higher layer signaling.
  • PMCH is used to transmit multicast data (Multicast Channel: MCH).
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Reference Signal: DLRS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit the information output from the upper layer, but is used by the physical layer.
  • the synchronization signal is used by the terminal device to synchronize the frequency domain and the time domain of the downlink.
  • the downlink reference signal is used by the terminal device to perform propagation path estimation / propagation path correction of the downlink physical channel.
  • the downlink reference signal is used to demodulate the PBCH, PDSCH, PDCCH.
  • the downlink reference signal can also be used by the terminal device to measure the channel state of the downlink (CSI measurement).
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink physical signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • the channel used in the MAC layer is called a transport channel.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (TB: Transport Block) or a MAC PDU (Protocol Data Unit).
  • a transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, the transport block is mapped to a code word, and coding processing or the like is performed for each code word.
  • FIG. 2 is a schematic block diagram of the configuration of the base station apparatus 10 according to the present embodiment.
  • the base station apparatus 10 includes an upper layer processing unit (upper layer processing step) 102, a control unit (control step) 104, a transmission unit (transmission step) 106, a transmission antenna 108, a reception antenna 110, and a reception unit (reception step) 112. Consists of including.
  • the transmission unit 106 generates a physical downlink channel according to the logical channel input from the upper layer processing unit 102.
  • the transmission unit 106 includes a coding unit (coding step) 1060, a modulation unit (modulation step) 1062, a downlink control signal generation unit (downlink control signal generation step) 1064, and a downlink reference signal generation unit (downlink reference signal).
  • the generation step) 1066, the multiplex unit (multiplex step) 1068, and the wireless transmission unit (radio transmission step) 1070 are included.
  • the receiving unit 112 detects the physical uplink channel (demodulation, decoding, etc.) and inputs the content to the upper layer processing unit 102.
  • the receiving unit 112 includes a wireless receiving unit (radio receiving step) 1120, a propagation path estimation unit (propagation path estimation step) 1122, a multiple separation unit (multiple separation step) 1124, an equalization unit (equalization step) 1126, and a demodulation unit (demodulation unit). It includes a demodulation step) 1128 and a decoding unit (decoding step) 1130.
  • the upper layer processing unit 102 includes a medium access control (MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). ResourceControl: RRC) Processes layers above the physical layer such as the layer.
  • the upper layer processing unit 102 generates information necessary for controlling the transmission unit 106 and the reception unit 112, and outputs the information to the control unit 104.
  • the upper layer processing unit 102 outputs downlink data (DL-SCH or the like), system information (MIB, SIB), or the like to the transmission unit 106.
  • the DMRS configuration information may be notified to the terminal device by system information (MIB or SIB) instead of notification by a higher layer such as RRC.
  • the upper layer processing unit 102 generates or acquires system information (MIB or a part of SIB) to be broadcast from the upper node.
  • the upper layer processing unit 102 outputs the system information to be broadcast to the transmission unit 106 as BCH / DL-SCH.
  • the MIB is arranged in the PBCH in the transmission unit 106.
  • the SIB is arranged in the PDSCH in the transmission unit 106.
  • the upper layer processing unit 102 generates system information (SIB) peculiar to the terminal device or acquires it from a higher degree.
  • the SIB is arranged in the PDSCH in the transmission unit 106.
  • the upper layer processing unit 102 sets various RNTIs for each terminal device.
  • the RNTI is used for encryption (scramble) of PDCCH, PDSCH and the like.
  • the upper layer processing unit 102 outputs the RNTI to the control unit 104 / transmission unit 106 / reception unit 112.
  • the downlink data (transport block, DL-SCH) arranged in the PDSCH, the system information (System Information Block: SIB) unique to the terminal device, the RRC message, the MAC CE, and the DMRS configuration information are SIB.
  • System information such as and MIB, and DMRS configuration information when not notified by DCI are generated or acquired from a higher-level node and output to the transmission unit 106.
  • the upper layer processing unit 102 manages various setting information of the terminal device 20. Note that some of the radio resource control functions may be performed in the MAC layer or the physical layer.
  • the upper layer processing unit 102 receives information about the terminal device such as a function supported by the terminal device (UE capability) from the terminal device 20 (via the receiving unit 112).
  • the terminal device 20 transmits its own function to the base station device 10 by a signal (RRC signaling) of an upper layer.
  • Information about a terminal device includes information indicating whether the terminal device supports a predetermined function or information indicating that the terminal device has been introduced and tested for a predetermined function. Support for a given feature includes whether it has been installed and tested for a given feature.
  • the terminal device When the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether or not the predetermined function is supported. If the terminal device does not support a predetermined function, the terminal device may not send information (parameter) indicating whether or not the predetermined function is supported. That is, whether or not to support the predetermined function is notified by whether or not to send information (parameter) indicating whether or not to support the predetermined function. Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 bit of 1 or 0.
  • the upper layer processing unit 102 acquires DL-SCH from the uplink data (including CRC) after decoding from the receiving unit 112.
  • the upper layer processing unit 102 performs error detection on the uplink data transmitted by the terminal device. For example, the error detection is performed in the MAC layer.
  • the control unit 104 controls the transmission unit 106 and the reception unit 112 based on various setting information input from the upper layer processing unit 102 / reception unit 112.
  • the control unit 104 generates downlink control information (DCI) based on the setting information input from the upper layer processing unit 102 / reception unit 112, and outputs the downlink control information (DCI) to the transmission unit 106.
  • DCI downlink control information
  • the control unit 104 considers the setting information (whether the DMRS configuration 1 or the DMRS configuration 2) regarding the DMRS input from the upper layer processing unit 102 / reception unit 112, and considers the frequency arrangement of the DMRS (DMRS configuration 1). In the case of, an even-numbered subcarrier or an odd-numbered subcarrier, and in the case of DMRS configuration 2, any of the 0th to 2nd sets) is set, and DCI is generated.
  • the control unit 104 determines the MCS of the PUSCH in consideration of the channel quality information (CSI Measurement result) measured by the propagation path estimation unit 1122.
  • the control unit 104 determines the MCS index corresponding to the MCS of the PUSCH.
  • the control unit 104 includes the determined MCS index in the uplink grant.
  • the transmission unit 106 generates PBCH, PDCCH, PDSCH, downlink reference signal, and the like according to the signal input from the upper layer processing unit 102 / control unit 104.
  • the coding unit 1060 uses a predetermined coding method for BCH, DL-SCH, etc. input from the upper layer processing unit 102, and a block code, a convolution code, and a turbo. Coding (including repetition) with a code, polar coding, LDPC code, or the like is performed.
  • the coding unit 1060 punctures the coding bit based on the coding rate input from the control unit 104.
  • the modulation unit 1062 data-modulates the coding bits input from the coding unit 1060 by a modulation method (modulation order) input from a predetermined / control unit 104 such as BPSK, QPSK, 16QAM, 64QAM, 256QAM. ..
  • the modulation order is based on the MCS index selected by the control unit 104.
  • the downlink control signal generation unit 1064 adds CRC to the DCI input from the control unit 104.
  • the downlink control signal generation unit 1064 performs encryption (scramble) on the CRC using RNTI. Further, the downlink control signal generation unit 1064 performs QPSK modulation on the DCI to which the CRC is added to generate PDCCH.
  • the downlink reference signal generation unit 1066 generates a series known by the terminal device as a downlink reference signal. The known sequence is obtained by a predetermined rule based on a physical cell identifier for identifying the base station apparatus 10.
  • the multiplexing unit 1068 multiplexes the modulation symbols of each channel input from the PDCCH / downlink reference signal / modulation unit 1062. That is, the multiplexing unit 1068 maps the PDCCH / downlink reference signal to the resource element with the modulation symbol of each channel.
  • the resource element to be mapped is controlled by the downlink scheduling input from the control unit 104.
  • a resource element is the smallest unit of a physical resource consisting of one OFDM symbol and one subcarrier.
  • a resource block (RB) is composed of a plurality of resource elements, and scheduling is applied with the RB as the minimum unit.
  • the transmission unit 106 includes a coding unit 1060 and a modulation unit 1062 in the number of layers. In this case, the upper layer processing unit 102 sets the MCS for each transport block of each layer.
  • the wireless transmission unit 1070 generates an OFDM symbol by performing an inverse fast Fourier transform (IFFT) on a multiplexed modulation symbol or the like.
  • the radio transmission unit 1070 adds a cyclic prefix (CP) to the OFDM symbol to generate a baseband digital signal. Further, the wireless transmission unit 1070 converts the digital signal into an analog signal, removes an excess frequency component by filtering, up-converts to a carrier frequency, amplifies the power, and outputs the digital signal to the transmission antenna 108 for transmission.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the receiving unit 112 detects (separates, demodulates, decodes) the received signal from the terminal device 20 via the receiving antenna 110 according to the instruction of the control unit 104, and transmits the decoded data to the upper layer processing unit 102 / control unit 104. input.
  • the radio reception unit 1120 converts the uplink signal received via the reception antenna 110 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so as to be properly maintained. The level is controlled, and based on the in-phase component and the quadrature component of the received signal, quadrature demodulation is performed and the quadrature demodulated analog signal is converted into a digital signal.
  • the radio receiving unit 1120 removes a portion corresponding to the CP from the converted digital signal.
  • the radio receiving unit 1120 performs a fast Fourier transform (FFT) on the signal from which the CP has been removed, and extracts the signal in the frequency domain.
  • FFT fast Fourier transform
  • the multiplex separation unit 1124 uses the signal input from the radio reception unit 1120 as a PUSCH, PUCCH and uplink reference signal based on the uplink scheduling information (uplink data channel allocation information, etc.) input from the control unit 104. Separate into signals such as.
  • the separated uplink reference signal is input to the propagation path estimation unit 1122.
  • the separated PUSCH and PUCCH are output to the equalization unit 1126.
  • the propagation path estimation unit 1122 estimates the frequency response (or delay profile) using the uplink reference signal.
  • the frequency response result estimated for the propagation path for demodulation is input to the equalization unit 1126.
  • the propagation path estimation unit 1122 uses the uplink reference signal to measure the uplink channel status (RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator) measurement). conduct.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Receiveived Signal Strength Indicator
  • the equalization unit 1126 performs a process of compensating for the influence on the propagation path from the frequency response input from the propagation path estimation unit 1122.
  • any existing propagation path compensation such as a method of multiplying an MMSE weight or an MRC weight or a method of applying an MLD can be applied.
  • the demodulation unit 1128 performs demodulation processing based on predetermined modulation method information instructed by the control unit 104.
  • the decoding unit 1130 performs decoding processing on the output signal of the demodulation unit based on the information of the coding rate specified in advance from the coding rate / control unit 104.
  • the decoding unit 1130 inputs the decrypted data (UL-SCH or the like) to the upper layer processing unit 102.
  • FIG. 3 is a schematic block diagram showing the configuration of the terminal device 20 in the present embodiment.
  • the terminal device 20 includes an upper layer processing unit (upper layer processing step) 202, a control unit (control step) 204, a transmission unit (transmission step) 206, a transmission antenna 208, a reception antenna 210, and a reception unit (reception step) 212. Consists of.
  • the upper layer processing unit 202 processes the medium access control (MAC) layer, the packet data integration protocol (PDCP) layer, the radio link control (RLC) layer, and the radio resource control (RRC) layer.
  • the upper layer processing unit 202 manages various setting information of the own terminal device.
  • the upper layer processing unit 202 notifies the base station device 10 of information (UECapability) indicating the function of the terminal device supported by the own terminal device via the transmission unit 206.
  • the upper layer processing unit 202 notifies UE Capability by RRC signaling.
  • the upper layer processing unit 202 acquires the decrypted data such as DL-SCH and BCH from the receiving unit 212.
  • the upper layer processing unit 202 generates HARQ-ACK from the error detection result of the DL-SCH.
  • the upper layer processing unit 202 generates SR.
  • the upper layer processing unit 202 generates a UCI including HARQ-ACK / SR / CSI (including a CQI report).
  • the upper layer processing unit 202 inputs the information regarding the DMRS configuration to the control unit 204.
  • the upper layer processing unit 202 inputs the UCI and UL-SCH to the transmission unit 206.
  • a part of the functions of the upper layer processing unit 202 may be included in the control unit 204.
  • the control unit 204 interprets the downlink control information (DCI) received via the reception unit 212.
  • the control unit 204 controls the transmission unit 206 according to the PUSCH scheduling / MCS index / TPC (Transmission Power Control) acquired from the DCI for uplink transmission.
  • the control unit 204 controls the reception unit 212 according to the PDSCH scheduling / MCS index acquired from the DCI for downlink transmission.
  • the control unit 204 specifies the frequency arrangement of the DMRS according to the information regarding the frequency arrangement (port number) of the DMRS included in the DCI for downlink transmission and the DMRS configuration information input from the upper layer processing unit 202. ..
  • the transmission unit 206 includes a coding unit (coding step) 2060, a modulation unit (modulation step) 2062, an uplink reference signal generation unit (uplink reference signal generation step) 2064, and an uplink control signal generation unit (uplink control signal).
  • the generation step) 2066, the multiplex unit (multiplex step) 2068, and the wireless transmission unit (radio transmission step) 2070 are included.
  • the coding unit 2060 convolves and encodes the uplink data (UL-SCH) input from the upper layer processing unit 202 according to the control of the control unit 204 (according to the coding rate calculated based on the MCS index), and LDPC. Coding such as coding, polar coding, turbo coding, etc. is performed.
  • the modulation unit 2062 modulates the coding bit input from the coding unit 2060 by the modulation method / channel predetermined modulation method instructed by the control unit 204 such as BPSK, QPSK, 16QAM, 64QAM, 256QAM. (Generates a modulation symbol for PUSCH).
  • the uplink reference signal generation unit 2064 arranges a physical cell identifier (referred to as physical cell identity: PCI, Cell ID, etc.) and an uplink reference signal for identifying the base station device 10 according to the instruction of the control unit 204. Based on the bandwidth, cyclic shift, parameter values for DMRS sequence generation, frequency allocation, etc., a sequence obtained by a predetermined rule (expression) is generated.
  • a physical cell identifier referred to as physical cell identity: PCI, Cell ID, etc.
  • the uplink control signal generation unit 2066 encodes UCI, performs BPSK / QPSK modulation according to the instruction of the control unit 204, and generates a modulation symbol for PUCCH.
  • mode 1 or mode 2 can be set as the value.
  • Mode 2 is slot-to-slot hopping, and is a mode in which the frequency is changed for each slot when transmission is performed using a plurality of slots.
  • mode 1 is in-slot hopping, and when transmitting using one or a plurality of slots, the slot is divided into the first half and the second half, and the frequency is changed between the first half and the second half for transmission.
  • the frequency allocation in frequency hopping the frequency domain radio resource allocation notified by DCI or RRC is applied to the first hop, and the frequency allocation of the second hop is applied to the radio resource used in the first hop.
  • the multiplexing unit 2068 performs PUSCH according to the uplink scheduling information from the control unit 204 (transmission interval in CS (Configured Scheduling) for uplink included in the RRC message, frequency domain and time domain resource allocation included in DCI, etc.).
  • the modulation symbol for PUCCH, the modulation symbol for PUCCH, and the uplink reference signal are multiplexed for each transmitting antenna port (DMRS port) (that is, each signal is mapped to a resource element).
  • CS configured scheduling
  • the RRC sets the following parameters.
  • the actual uplink grant is set via RRC for Configured Grant type 1 and is given via PDCCH processed by CS-RNTI for Configured Grant type 2.
  • the parameter repK set in the upper layer defines the number of iterations applied to the transmitted transport block.
  • the parameter repK-RV set in the upper layer indicates the redundancy version pattern applied to the iteration. If repK-RV is not set (not given), the redundancy version of each actual iteration in the Configure de Grant is set to 0. Otherwise, of the RV series (redundancy version pattern) set for the nth transmission opportunity in all actual iterations (including omitted actual iterations) during the K nominal iterations.
  • the transmission associated with the (mod (n-1, 4) +1) th value in is performed. Further, the first transmission of one transport block is started at the first transmission opportunity of K repetition when the set RV series is ⁇ 0, 2, 3, 1 ⁇ .
  • the iteration received the last transmission opportunity after K iterations, or during the K iterations in period P, or an uplink grant to schedule the same transport block in period P. It is terminated when the first time is reached.
  • the terminal device does not expect a time period for K repetitive transmissions to be set longer than the time period calculated by the period P.
  • the terminal For both Type 1 and Type 2 PUSCH transmissions by the Comfid Grant, when the terminal is set to repK> 1, the terminal repeats its transport block across the repK's contiguous slots. At this time, the terminal device applies the same symbol arrangement in each slot. If the terminal device procedure for determining the slot configuration determines (determines) the symbol of the placed slot as a downlink symbol, transmission in that slot is omitted for PUSCH transmission in multiple slots. When repK is set, any of 1, 2, 4, and 8 times can be set as the value. However, if the RRC parameter itself does not exist, the number of repetitions is set to 1 for transmission.
  • repK-RV can be set to any one of ⁇ 0, 2, 3, 1 ⁇ , ⁇ 0, 3, 0, 3 ⁇ , ⁇ 0, 0, 0, 0 ⁇ .
  • the signals of different redundancy versions generated from the same transport block are signals composed of the same transport block (information bit series), but at least a part of the configured coding bits is different.
  • PUSCH repetition type B was specified. Nominal iterations are given by the higher layer parameter numberofrepetitions, except for PUSCH, which sends CSI reports without transport blocks.
  • the slot where PUSCH transmission starts is K s
  • the number of symbols for each slot is N symb
  • the start symbol for the beginning of the slot is S
  • the number of consecutive symbols counted from the symbol S assigned as PUSCH is L
  • the slot at which the repetition is started is given by K s + ceil ((S + n ⁇ L) / N symbol )
  • the start symbol for the beginning of the slot is given by mod (S + n ⁇ L, N symbol ).
  • the slot where the nominal repetition ends is K s + ceil ((S + (n + 1) ⁇ L-1) / N symb ), and the end symbol for the beginning of the slot is mod (S + (n + 1) ⁇ L-1, N. It is given by symbol ).
  • the remaining symbols relate to PUSCH repetition type B transmission.
  • PUSCH repetition type B For each of the K nominal iterations, after determining invalid symbols due to TDD configuration or reception of downlink control information, the remaining symbols relate to PUSCH repetition type B transmission.
  • a potentially valid symbol If the number of potentially valid symbols for a PUSCH repetition type B transmission in a nominal iteration is greater than zero, then the nominal iteration constitutes one or more actual iterations.
  • each actual iteration constitutes a set of consecutive valid symbols used for PUSCH repetition type B transmission in the slot.
  • the actual iteration is omitted based on other conditions.
  • the redundancy version is applied based on the actual number of iterations.
  • the frequency hopping between repetitions in PUSCH repetition type B will be explained.
  • the number of slots is a problem in order to apply frequency hopping for each of a plurality of slots.
  • control is possible by notifying the terminal of the number of slots from the base station by RRC signaling.
  • FIG. 4 shows an example in which frequency hopping is applied every two slots.
  • FIG. 4 shows a case where a part of the OFDM symbols of the slot is used, in which the diagonal lines are the DMRS symbols and the dots are the data OFDM symbols.
  • transmission is performed using the same frequency between two slots transmitted at the same frequency, it is possible to perform channel estimation in which DMRS is shared between the two slots.
  • the channel estimation can be performed using more DMRS than the case where the channel estimation is performed only by the DMRS included in one slot, the channel estimation accuracy can be improved.
  • the overhead due to DMRS can be reduced to provide the same amount of information with a lower MCS or the same MCS. You can send a lot of information with.
  • the notification method of RRC signaling it may be possible to select from inter-slot frequency hopping, inter-repetition frequency hopping, and frequency hopping for each of a plurality of slots, and further, frequency hopping for each of a plurality of repetitions can be selected with the same parameter. You may do so.
  • the number of slots (hereinafter referred to as the number of FH slots) when performing frequency hopping for each of a plurality of slots is notified by RRC signaling, but the present invention is not limited to this, and for example, the nominal repetition index n and the nominal repetition number K. And may be determined by the value of the predetermined value A.
  • the frequency position may be determined depending on whether n ⁇ ceil (K / A) or n ⁇ ceil (K / A).
  • the ceiling function (ceil) may be a floor function (floor).
  • the number of FH slots When notifying the number of slots (hereinafter referred to as the number of FH slots) when performing frequency hopping for each of a plurality of slots by RRC signaling, the number of FH slots should be set to the same as or smaller than the number of repeated transmissions, but FH A value may be set in which the number of slots is larger than the number of repeated transmissions.
  • the number of FH slots is interpreted as the same as the number of repeated transmissions, and the terminal device and the base station device perform transmission and reception processing.
  • the terminal device and the base station device can perform frequency hopping for each of a plurality of slots. ..
  • FIG. 5 shows an example showing a case where an invalid OFDM symbol (slot) is included in the nominal repetition. If the nominal repeat transmission contains an invalid OFDM symbol (slot) as shown in FIG. 5, if the specifications of NR release 16 are applied as they are, frequency hopping is applied based on the nominal repeat, so 4 The third iteration will be transmitted at a different frequency (hop) than the third iteration.
  • DMRS bundling is applied when the radio resource is divided in time, it may not be possible to improve the channel estimation accuracy because the channel is fluctuating. Therefore, as shown in FIG. 7, when the radio resource is divided by an invalid symbol or the like, frequency hopping using the time-continuous radio resource can be applied by resetting the FH slot index. That is, when transmitting using resources that are discontinuous in time, the frequency may be hopped. However, in this case, depending on the situation of the invalid symbol, there is a possibility that the transmission may use a large amount of one of the frequency resources, and there is a concern that the frequency diversity effect cannot be maximized. Therefore, as shown in FIG. 8, the timing of frequency hopping may be controlled only by the actual repeat index.
  • the explanation is made assuming repetition between slots, but the explanation is not limited to repetition between slots, and may be applied to repetition within slots.
  • the setting related to DMRS bundling by RRC signaling or signaling by DCI is based on the repeating unit, that is, the number of repetitions in the slot, not the slot.
  • the QCL is limited to one slot of the repetition in the slot, and the repetition outside the slot may not be regarded as the QCL.
  • DMRS bundling can be performed, channel compensation can be performed using DMRS included in other slots, so it is not always necessary to insert DMRS into the slot.
  • DMRS is not inserted, many information bits or parity bits can be transmitted, so that the communication error rate can be reduced, which can lead to quality improvement or coverage improvement.
  • the setting related to the reduction of DMRS is made by the control information such as RRC signaling
  • DMRS is inserted only in the first repetition and DMRS is not inserted in the second and subsequent repetitions, so that many information bits are used.
  • the parity bit can be transmitted. However, if the transmission is started from the second time among the repetitions specified by the base station device, the DMRS will not be transmitted.
  • the DMRS is arranged only in the slot (repetition) where the RV is 0, and the DMRS is not arranged only in the slot (repetition) where the RV is other than 0.
  • the above will be described with reference to FIG.
  • the upper part of FIG. 6 shows the case where the RV pattern in repeated transmission is ⁇ 0, 0, 0, 0 ⁇ .
  • the figure shows a 4-slot repeat, where the DMRS symbols in the slots are shaded and the data OFDM symbols are dotted.
  • the RV pattern is ⁇ 0, 0, 0, 0 ⁇
  • DMRS is transmitted in all slots.
  • the RV pattern is ⁇ 0, 3, 0, 3 ⁇
  • DMRS is transmitted in the first and third slots, and DMRS is not included in the second and fourth slots.
  • the DMRS is not included in the slots other than 0 in the RV, the configuration may be reduced instead of completely not including the DMRS. For example, only the front loaded DMRS may be transmitted, and all or part of the additional DMRS set by the RRC may be reduced. Information on the reduction criteria may be communicated by RRC signaling.
  • DMRS bundling can be set by RRC, and even if DMRS bundling is enabled, DMRS is repeatedly transmitted (slot). May be.
  • DMRS reduction information about the DMRS time domain slot is notified by RRC signaling or DCI signaling, applied to each set slot (repetition), and DMRS is transmitted outside the set slot. May be good.
  • the wireless transmission unit 2070 performs an IFFT (Inverse Fast Fourier Transform) on the multiplexed signal to generate an OFDM symbol.
  • the radio transmission unit 2070 adds a CP to the OFDM symbol to generate a baseband digital signal. Further, the radio transmission unit 2070 converts the baseband digital signal into an analog signal, removes an excess frequency component, converts it into a carrier frequency by up-conversion, amplifies the power, and makes a base station via the transmission antenna 208. It is transmitted to the device 10.
  • IFFT Inverse Fast Fourier Transform
  • the receiving unit 212 includes a wireless receiving unit (radio receiving step) 2120, a multiple separation unit (multiple separation step) 2122, a propagation path estimation unit (propagation path estimation step) 2144, an equalization unit (equalization step) 2126, and a demodulation unit (demodulation unit). It includes a demodulation step) 2128 and a decoding unit (decoding step) 2130.
  • the radio reception unit 2120 converts the downlink signal received via the reception antenna 210 into a baseband signal by down-conversion, removes unnecessary frequency components, and sets the amplification level so that the signal level is properly maintained. Based on the in-phase component and the quadrature component of the controlled and received signal, quadrature demodulation is performed and the quadrature demodulated analog signal is converted into a digital signal.
  • the radio receiving unit 2120 removes a portion corresponding to the CP from the converted digital signal, performs FFT on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
  • the multiplex separation unit 2122 separates the extracted frequency domain signal into a downlink reference signal, PDCCH, PDSCH, and PBCH.
  • the propagation path estimation unit 2124 estimates the frequency response (or delay profile) using a downlink reference signal (DM-RS, etc.).
  • the frequency response result estimated for the propagation path for demodulation is input to the equalization unit 1126.
  • the propagation path estimation unit 2124 uses a downlink reference signal (CSI-RS, etc.) to measure the uplink channel status (RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength). Indicator), SINR (Signal to Interference plus Noise power Ratio) measurement).
  • the measurement of the downlink channel status is used for determining the MCS for the PUSCH and the like.
  • the measurement result of the downlink channel status is used for determining the CQI index and the like.
  • the equalization unit 2126 generates an equalization weight based on the MMSE norm from the frequency response input from the propagation path estimation unit 2124.
  • the equalization unit 2126 multiplies the input signal (PUCCH, PDSCH, PBCH, etc.) from the multiplex separation unit 2122 by the equalization weight.
  • the demodulation unit 2128 performs demodulation processing based on predetermined modulation order information instructed by the control unit 204.
  • the decoding unit 2130 performs decoding processing on the output signal of the demodulation unit 2128 based on the information of the coding rate specified in advance from the coding rate / control unit 204.
  • the decoding unit 2130 inputs the decrypted data (DL-SCH or the like) to the upper layer processing unit 202.
  • the RV series (RV pattern) is one of ⁇ 0,0,0,0 ⁇ , ⁇ 0,3,0,3 ⁇ , ⁇ 0,2,3,1 ⁇ . Is determined in repeated transmissions. For example, in the case of ⁇ 0,3,0,3 ⁇ , it is possible to obtain better characteristics due to the frequency diversity effect when transmitting at different frequencies than when transmitting at the same frequency in the first transmission and the third transmission. can. Therefore, as shown in FIG. 9, when transmission is performed in which the RV becomes 0, the frequency is hopped by frequency hopping and transmission is performed.
  • the RV series (RV pattern) is notified from the base station device to the terminal device by RRC signaling.
  • the RV series is not limited to the above three patterns, and may be any series, and any series can be applied by hopping the frequency when transmitting by the same RV. can. Whether or not the number of iterations for frequency hopping is determined by the RV sequence may be determined by RRC signaling.
  • the terminal device When the DMRS bundling setting is transmitted by RRC signaling or DCI signaling and the DMRS bundling setting is made at the terminal, the terminal device is notified of the DMRS time domain slot information by RRC signaling or DCI signaling. Will be done.
  • the terminal device performs transmission so that DMRS bundling can be applied by the base station device, which is a receiver, between the number of slots determined by the information about the time domain slot from the slot of the first transmission.
  • the transmission is performed so that it can be regarded as a QCL (Quasi-Colocation). That is, transmission is performed so that the amplitude and phase of the propagation path do not change between the slots (so that they do not become discontinuous).
  • the slots specified by the information about the time domain slots are not continuous, and the non-continuous slots may be transmitted so as to be QCL. It should be noted that whether or not transmission from a time other than the first assigned repetition may be enabled or disabled may be set by RRC signaling.
  • the timing of applying frequency hopping may be synchronized with the above-mentioned DMRS bundling. That is, frequency hopping may not be applied between different slots that share DMRS, and the frequency may be hopping when transmitting a slot that does not share DMRS with a previously transmitted slot. As a result, frequency hopping by a plurality of slots and DMRS bundling do not need to be separately set by RRC signaling, and control information can be reduced.
  • FIG. 11 shows an example of frequency hopping when 3 is notified as the DMRS bundling number by control information such as RRC signaling.
  • the DMRS bundling number may be any natural number less than or equal to a predetermined value, may be a power of 2 such as 1, 2, 4, 8, or may be one or more predetermined powers of 2. It may be specified (notified) by RRC signaling from the sum of the values of (for example, 12).
  • FIG. 12 shows an example in which an invalid symbol is included when the number of DMRS bundling is 3.
  • frequency hopping is applied based on the actual number of repetitions, if control is performed based on the actual number of repetitions as shown in the figure, the repetitions may be divided in time. Therefore, DMRS bundling and the frequency hopping associated therewith may be performed based on the nominal number of repetitions as shown in FIG. This makes it possible to apply DMRS bundling in temporally coherent slots when there are actually many invalid symbols and continuous resources cannot be secured. For example, in FIG. 13, the case where the slot corresponding to the nominal repeat index 5 cannot be transmitted is shown in FIG.
  • the actual repeat index 3 and the actual repeat index 4 are slots that are not continuous in time, but are included in the nominal repeat index 3 to the nominal repeat index 5, and DMRS bundling is applied. Therefore, the channel estimation accuracy can be improved. It should be noted that DMRS bundling and / or frequency hopping may be applied based on the actual repeat index, or may be determined based on the nominal repeat index based on control information such as RRC signaling.
  • the program that operates on the apparatus according to the present invention may be a program that controls the Central Processing Unit (CPU) or the like to operate the computer so as to realize the functions of the above-described embodiment according to the present invention.
  • the program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) at the time of processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and is required.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a part of the apparatus in the above-described embodiment may be realized by a computer.
  • the program for realizing the function of the embodiment may be recorded on a computer-readable recording medium. It may be realized by having a computer system read a program recorded on this recording medium and executing the program.
  • the term "computer system” as used herein is a computer system built into a device and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • a "computer-readable recording medium” is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • a program that holds a program for a certain period of time such as a volatile memory inside a computer system that is a server or a client, may be included.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
  • each functional block or feature of the device used in the above-described embodiment can be implemented or executed in an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others.
  • Programmable Logic Devices Discrete Gate or Transistor Logic, Discrete Hardware Components, or Combinations thereof.
  • the general purpose processor may be a microprocessor, a conventional processor, a controller, a microcontroller, or a state machine.
  • the electric circuit described above may be composed of a digital circuit or an analog circuit.
  • an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
  • the invention of the present application is not limited to the above-described embodiment.
  • an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors and outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like within a range not deviating from the gist of the present invention are also included. Further, the present invention can be variously modified within the scope of the claims, and the technical scope of the present invention also includes embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Will be. Further, the elements described in each of the above-described embodiments are included, and a configuration in which elements having the same effect are replaced with each other is also included.
  • the present invention is suitable for use in base station devices, terminal devices and communication methods.

Abstract

A terminal device for performing transmission to a base station device through repeated transmissions. This terminal device comprises: an upper-layer processing unit for setting the nominal number of repetitions in the repeated transmissions, and setting a frequency hopping method for changing a transmission frequency in the repeated transmissions; and a transmission unit for determining the actual number of repetitions on the basis of the nominal number of repetitions, and performing transmissions for the actual number of repetitions. The transmission unit applies frequency hopping on the basis of the number of repetitions to which DMRS bundling is applied and the nominal number of repetitions.

Description

端末装置および基地局装置Terminal equipment and base station equipment
 本発明は、端末装置および基地局装置に関する。本願は、2020年10月16日に日本に出願された特願2020-174911号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a terminal device and a base station device. This application claims priority based on Japanese Patent Application No. 2020-174911, which was filed in Japan on October 16, 2020, and the contents thereof are incorporated herein by reference.
 3GPP(Third Generation Partnership Project)で仕様化されたNR(New Radio)の通信システムでは、複数のOFDMシンボルから構成されるスロット内に、1または複数のDMRS(Demodulation Reference Signal)が含まれるOFDMシンボルを挿入する仕様になっている。送信されたスロットを受信した受信機は、スロット内のDMRSを用いてチャネル推定を行い、スロット内のデータ信号を復調する。 In the NR (New Radio) communication system specified by 3GPP (Third Generation Partnership Project), an OFDM symbol containing one or more DMRS (Demodulation Reference Signal) in a slot composed of multiple OFDM symbols is used. It is designed to be inserted. The receiver receiving the transmitted slot performs channel estimation using the DMRS in the slot and demodulates the data signal in the slot.
 また、NRリリース15では、通信信頼性向上およびカバレッジ拡大のため、スロット間繰り返し送信が仕様化されている。スロット間繰り返しでは、複数のスロットで同一のデータを繰り返し送信することができる。ただし、繰り返し送信を行うのに複数のスロットが必要となるため、遅延性の面で問題があった。そこでNRリリース16では、スロット内繰り返し送信が仕様化された。スロット内繰り返し送信では、スロット内に繰り返し単位を複数回設定し送信を行うことができる。 Also, in NR Release 15, repeated transmission between slots is specified in order to improve communication reliability and expand coverage. In inter-slot repetition, the same data can be repeatedly transmitted in a plurality of slots. However, since a plurality of slots are required for repeated transmission, there is a problem in terms of delay. Therefore, in NR release 16, repeated transmission in the slot is specified. In the repeated transmission in the slot, the repeating unit can be set a plurality of times in the slot and the transmission can be performed.
 Rel-16までの仕様では、チャネル推定に用いることができるDMRSは、繰り返し単位内、あるいはスロット内に限られていたが、異なる繰り返し単位、あるいは異なるスロットに含まれるDMRSを使用することでチャネル推定精度を大幅に改善することができる。そこでNRリリース17では、異なる繰り返し単位、あるいは異なるスロットに含まれるDMRSを使用することを可能とするDMRSバンドリング(DMRSシェアリング)の検討が行われている。(非特許文献1) In the specifications up to Rel-16, the DMRS that can be used for channel estimation was limited to within repeating units or slots, but channel estimation can be performed by using DMRS contained in different repeating units or different slots. The accuracy can be greatly improved. Therefore, in NR Release 17, DMRS bundling (DMRS sharing) that enables the use of DMRS contained in different repeating units or different slots is being studied. (Non-Patent Document 1)
 NRの仕様では、繰り返し送信毎に使用する周波数を変更する周波数ホッピングが採用されている。周波数を変更することで、チャネルの状況が送信側で未知な場合において、周波数ダイバーシチ効果により良好な特性を得ることができる。ただし、スロット間周波数ホッピング等によって周波数を変更した場合、上記のDMRSバンドリングを用いたチャネル推定精度の改善を見込むことができない。そこでスロット単位で周波数を変更するのではなく、複数のスロット単位で周波数ホッピングを適用する方法が提案されている。(非特許文献2)これにより周波数ホッピングを適用しつつ、DMRSバンドリングによる高精度なチャネル推定を行うことが可能となる。 In the NR specifications, frequency hopping that changes the frequency used for each repeated transmission is adopted. By changing the frequency, good characteristics can be obtained by the frequency diversity effect when the channel condition is unknown on the transmitting side. However, when the frequency is changed by frequency hopping between slots or the like, improvement in channel estimation accuracy using the above DMRS bundling cannot be expected. Therefore, instead of changing the frequency in slot units, a method of applying frequency hopping in multiple slot units has been proposed. (Non-Patent Document 2) This makes it possible to perform highly accurate channel estimation by DMRS bundling while applying frequency hopping.
 非特許文献2において、複数スロット毎に周波数ホッピングを適用し、該複数スロットにDMRSバンドリングを適用することで、高いチャネル推定精度を獲得しつつ、周波数ホッピングによる周波数ダイバーシチも獲得する方法が提案されてはいるが、実際に適用するにはどのように制御し、どのような制御情報をやり取りするかを検討する必要がある。 Non-Patent Document 2 proposes a method of applying frequency hopping to each of a plurality of slots and applying DMRS bundling to the plurality of slots to obtain high channel estimation accuracy and frequency diversity by frequency hopping. However, in order to actually apply it, it is necessary to consider how to control it and what kind of control information is exchanged.
 本発明の一態様はこのような事情を鑑みてなされたものであり、その目的は、DMRSバンドリングを効果的に適用できるようにすることで、効率的にカバレッジ拡大を行うことにある。 One aspect of the present invention has been made in view of such circumstances, and an object thereof is to efficiently expand coverage by making it possible to effectively apply DMRS bundling.
 上述した課題を解決するために本発明に係る基地局装置、端末装置および通信方法の構成は、次の通りである。 The configuration of the base station device, the terminal device, and the communication method according to the present invention in order to solve the above-mentioned problems is as follows.
 (1)本発明の一態様は、基地局装置宛に繰り返し送信によって送信を行う端末装置であって、前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
 (2)本発明の一態様は、前記DMRSバンドリングを適用する繰り返し数は、前記上位層処理部によって設定される。
 (3)本発明の一態様は、前記DMRSバンドリングを適用する繰り返し数は、上位層処理部で設定されるリダンダンシーバージョン系列と関連付けられる。
 (4)本発明の一態様は、前記周波数ホッピング法が所定の方法を示すときに適用され、前記所定の方法以外を示す場合、前記送信部は、前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
 (5)本発明の一態様は、端末装置宛に繰り返し送信によって送信を行う基地局装置であって、前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
 (6)本発明の一態様は、前記DMRSバンドリングを適用する繰り返し数は、前記上位層処理部によって設定される。
 (7)本発明の一態様は、前記DMRSバンドリングを適用する繰り返し数は、上位層処理部で設定されるリダンダンシーバージョン系列と関連付けられる。
 (8)本発明の一態様は、前記周波数ホッピングは、前記周波数ホッピング法が所定の方法を示すときに適用され、前記所定の方法以外を示す場合、前記送信部は、前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
(1) One aspect of the present invention is a terminal device that transmits to a base station device by repeated transmission, and is a frequency hopping method for changing the nominal number of repetitions in the repeated transmission and the transmission frequency in the repeated transmission. The upper layer processing unit is provided with a transmission unit that determines the actual number of repetitions based on the nominal number of repetitions and transmits the actual number of repetitions, and the transmission unit applies DMRS bundling. Frequency hopping is applied based on the number of iterations to be performed and the nominal number of iterations.
(2) In one aspect of the present invention, the number of repetitions to which the DMRS bundling is applied is set by the upper layer processing unit.
(3) In one aspect of the present invention, the number of iterations to which the DMRS bundling is applied is associated with the redundancy version series set by the upper layer processing unit.
(4) One aspect of the present invention is applied when the frequency hopping method indicates a predetermined method, and when a method other than the predetermined method is indicated, the transmission unit performs frequency hopping based on the nominal number of repetitions. To apply.
(5) One aspect of the present invention is a base station apparatus that transmits to a terminal device by repeated transmission, and is a frequency hopping method for changing the nominal number of repetitions in the repeated transmission and the transmission frequency in the repeated transmission. The upper layer processing unit is provided with a transmission unit that determines the actual number of repetitions based on the nominal number of repetitions and transmits the actual number of repetitions, and the transmission unit applies DMRS bundling. Frequency hopping is applied based on the number of iterations to be performed and the nominal number of iterations.
(6) In one aspect of the present invention, the number of repetitions to which the DMRS bundling is applied is set by the upper layer processing unit.
(7) In one aspect of the present invention, the number of iterations to which the DMRS bundling is applied is associated with the redundancy version series set by the upper layer processing unit.
(8) One aspect of the present invention is applied when the frequency hopping method indicates a predetermined method, and when the frequency hopping method indicates a method other than the predetermined method, the transmission unit has the nominal number of repetitions. Apply frequency hopping based on.
 本発明の一又は複数の態様によれば、通信信頼性を向上させたり、通信のカバレッジを拡大したりすることができる。 According to one or more aspects of the present invention, communication reliability can be improved and communication coverage can be expanded.
本実施形態に係る通信システム1の構成例を示す図である。It is a figure which shows the configuration example of the communication system 1 which concerns on this embodiment. 本実施形態に係る基地局装置の構成例を示す図である。It is a figure which shows the configuration example of the base station apparatus which concerns on this embodiment. 本実施形態に係る端末装置の構成例を示す図である。It is a figure which shows the configuration example of the terminal apparatus which concerns on this embodiment. 第一の実施形態に係る周波数ホッピングの一例を示す図である。It is a figure which shows an example of frequency hopping which concerns on 1st Embodiment. 第一の実施形態に係る名目上の繰り返しインデックスに基づく周波数ホッピングの一例を示す図である。It is a figure which shows an example of the frequency hopping based on the nominal repetition index which concerns on 1st Embodiment. 第一の実施形態に係る実際の繰り返しインデックスに基づく周波数ホッピングの一例を示す図である。It is a figure which shows an example of the frequency hopping based on the actual iterative index which concerns on 1st Embodiment. 第一の実施形態に係る、無効なシンボルおよび実際の繰り返しインデックスに基づく周波数ホッピングの一例を示す図である。It is a figure which shows an example of frequency hopping based on an invalid symbol and an actual repetition index which concerns on 1st Embodiment. 第一の実施形態に係る、無効なシンボルを複数含む場合の実際の繰り返しインデックスに基づく周波数ホッピングの一例を示す図である。It is a figure which shows an example of the frequency hopping based on the actual repetition index when a plurality of invalid symbols are included which concerns on 1st Embodiment. 第二の実施形態に係る、実際の繰り返しインデックスに基づく周波数ホッピングを適用した場合のRVの一例を示す図である。It is a figure which shows an example of RV when the frequency hopping based on the actual repetition index is applied which concerns on 2nd Embodiment. 第二の実施形態に係るRVに基づいた周波数ホッピングの一例を示す図である。It is a figure which shows an example of the frequency hopping based on RV which concerns on the 2nd Embodiment. 第三の実施形態に係る名目上の繰り返しインデックスに基づいた周波数ホッピングの一例を示す図である。It is a figure which shows an example of the frequency hopping based on the nominal repetition index which concerns on 3rd Embodiment. 第三の実施形態に係る実際の繰り返しインデックスに基づいた周波数ホッピングの一例を示す図である。It is a figure which shows an example of frequency hopping based on the actual repetition index which concerns on 3rd Embodiment. 第三の実施形態に係る、無効なシンボルを含む場合の名目上の繰り返しインデックスに基づいた周波数ホッピングの一例を示す図である。FIG. 3 is a diagram illustrating an example of frequency hopping based on a nominal repeat index when an invalid symbol is included, according to a third embodiment. 第三の実施形態に係る、複数の無効なシンボルを含む場合の名目上の繰り返しインデックスに基づいた周波数ホッピングの一例を示す図である。FIG. 5 is a diagram illustrating an example of frequency hopping based on a nominal repeat index when a plurality of invalid symbols are included according to a third embodiment.
 本実施形態に係る通信システムは、基地局装置(セル、スモールセル、サービングセル、コンポーネントキャリア、eNodeB、Home eNodeB、gNodeB)および端末装置(端末、移動端末、UE:User Equipment)を備える。該通信システムにおいて、下りリンクの場合、基地局装置は送信装置(送信点、送信アンテナ群、送信アンテナポート群、TRP(Tx/Rx Point))となり、端末装置は受信装置(受信点、受信端末、受信アンテナ群、受信アンテナポート群)となる。上りリンクの場合、基地局装置は受信装置となり、端末装置は送信装置となる。前記通信システムは、D2D(Device-to-Device、sidelink)通信にも適用可能である。その場合、送信装置も受信装置も共に端末装置になる。 The communication system according to the present embodiment includes a base station device (cell, small cell, serving cell, component carrier, eNodeB, Home eNodeB, gNodeB) and a terminal device (terminal, mobile terminal, UE: User Equipment). In the communication system, in the case of downlink, the base station device is a transmitting device (transmitting point, transmitting antenna group, transmitting antenna port group, TRP (Tx / RxPoint)), and the terminal device is a receiving device (receiving point, receiving terminal). , Received antenna group, Received antenna port group). In the case of uplink, the base station device is the receiving device and the terminal device is the transmitting device. The communication system is also applicable to D2D (Device-to-Device, sidelink) communication. In that case, both the transmitting device and the receiving device become terminal devices.
 前記通信システムは、人間が介入する端末装置と基地局装置間のデータ通信に限定されるものに限定されない。つまり、MTC(Machine Type Communication)、M2M通信(Machine-to-Machine Communication)、IoT(Internet of Things)用通信、NB-IoT(Narrow Band-IoT)等(以下、MTCと呼ぶ)の人間の介入を必要としないデータ通信の形態にも、適用することができる。この場合、端末装置がMTC端末となる。前記通信システムは、上りリンク及び下りリンクにおいて、CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)等のマルチキャリア伝送方式を用いることができる。前記通信システムは、上りリンクにおいて、Transform precoderに関する上位層パラメータが設定された場合、Transform precodingを適用、つまりDFTを適用するDFTS-OFDM(Discrete Fourier Transform Spread - Orthogonal Frequency Division Multiplexing、SC-FDMAとも称される)等の伝送方式を用いる。なお、以下では、上りリンク及び下りリンクにおいて、OFDM伝送方式を用いた場合で説明するが、これに限らず、他の伝送方式を適用することができる。 The communication system is not limited to data communication between a terminal device and a base station device in which a human intervenes. That is, human intervention such as MTC (Machine Type Communication), M2M communication (Machine-to-Machine Communication), IoT (Internet of Things) communication, NB-IoT (Narrow Band-IoT), etc. (hereinafter referred to as MTC). It can also be applied to a form of data communication that does not require. In this case, the terminal device becomes an MTC terminal. As the communication system, a multi-carrier transmission method such as CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) can be used for the uplink and the downlink. The communication system is also referred to as DFTS-OFDM (Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing, SC-FDMA) to which Transform precursor is applied, that is, DFT is applied when upper layer parameters related to Transform precursor are set in the uplink. ) Etc. are used. In the following, the case where the OFDM transmission method is used for the uplink and the downlink will be described, but the present invention is not limited to this, and other transmission methods can be applied.
 本実施形態における基地局装置及び端末装置は、無線事業者がサービスを提供する国や地域から使用許可(免許)が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンド、及び/又は、国や地域からの使用許可(免許)を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドで通信することができる。 The base station device and the terminal device in the present embodiment are a so-called licensed band, and / or a frequency band for which a license has been obtained from the country or region where the wireless operator provides the service. It is possible to communicate in a frequency band called an unlicensed band, which does not require a license from the country or region.
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。 In this embodiment, "X / Y" includes the meaning of "X or Y". In this embodiment, "X / Y" includes the meaning of "X and Y". In this embodiment, "X / Y" includes the meaning of "X and / or Y".
(第1の実施形態)
 図1は、本実施形態に係る通信システム1の構成例を示す図である。本実施形態における通信システム1は、基地局装置10、端末装置20を備える。カバレッジ10aは、基地局装置10が端末装置20と接続(通信)可能な範囲(通信エリア)である(セルとも呼ぶ)。なお、基地局装置10は、カバレッジ10aにおいて、複数の端末装置20を収容することができる。
(First Embodiment)
FIG. 1 is a diagram showing a configuration example of the communication system 1 according to the present embodiment. The communication system 1 in the present embodiment includes a base station device 10 and a terminal device 20. The coverage 10a is a range (communication area) in which the base station device 10 can connect (communicate) with the terminal device 20 (also referred to as a cell). The base station device 10 can accommodate a plurality of terminal devices 20 in the coverage 10a.
 図1において、上りリンク無線通信r30は、少なくとも以下の上りリンク物理チャネルを含む。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理上りリンク制御チャネル(PUCCH)
・物理上りリンク共有チャネル(PUSCH)
・物理ランダムアクセスチャネル(PRACH)
In FIG. 1, the uplink radio communication r30 includes at least the following uplink physical channels: The uplink physical channel is used to transmit the information output from the upper layer.
-Physical uplink control channel (PUCCH)
-Physical uplink shared channel (PUSCH)
-Physical Random Access Channel (PRACH)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。上りリンク制御情報は、下りリンクデータに対する肯定応答(positive acknowledgement: ACK)/否定応答(Negative acknowledgement: NACK)を含む。ここで下りリンクデータとは、Downlink transport block、 Medium Access Control Protocol Data Unit: MAC PDU、 Downlink-Shared Channel: DL-SCH、 Physical Downlink Shared Channel: PDSCH等を示す。ACK/NACKは、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)、HARQフィードバック、HARQ応答、または、HARQ制御情報、送達確認を示す信号とも称される。 PUCCH is a physical channel used to transmit uplink control information (UCI). The uplink control information includes an acknowledgment (positive acknowledgment: ACK) / a negative response (Negative acknowledgment: NACK) to the downlink data. Here, the downlink data refers to Downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH, and the like. ACK / NACK is also referred to as HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement), HARQ feedback, HARQ response, or HARQ control information, a signal indicating delivery confirmation.
 NRは、少なくともPUCCHフォーマット0、PUCCHフォーマット1、PUCCHフォーマット2、PUCCHフォーマット3、PUCCHフォーマット4という5つのフォーマットをサポートする。PUCCHフォーマット0およびPUCCHフォーマット2は、1または2のOFDMシンボルから構成され、それ以外のPUCCHは4~14のOFDMシンボルから構成される。またPUCCHフォーマット0およびPUCCHフォーマット1の帯域幅12サブキャリアから構成される。また、PUCCHフォーマット0では、12サブキャリアかつ1OFDMシンボル(あるいは2OFDMシンボル)のリソースエレメントで1ビット(あるいは2ビット)のACK/NACKが送信される。 NR supports at least five formats: PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4. PUCCH format 0 and PUCCH format 2 are composed of 1 or 2 OFDM symbols, and the other PUCCHs are composed of 4 to 14 OFDM symbols. It is also composed of bandwidth 12 subcarriers of PUCCH format 0 and PUCCH format 1. Further, in PUCCH format 0, 1-bit (or 2-bit) ACK / NACK is transmitted by a resource element having 12 subcarriers and 1 OFDM symbol (or 2 OFDM symbol).
 上りリンク制御情報は、初期送信のためのPUSCH(Uplink-Shared Channel: UL-SCH)リソースを要求するために用いられるスケジューリングリクエスト(Scheduling Request: SR)を含む。スケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求することを示す。 The uplink control information includes a scheduling request (Scheduling Request: SR) used to request a PUSCH (Uplink-Shared Channel: UL-SCH) resource for initial transmission. The scheduling request indicates that a UL-SCH resource for initial transmission is requested.
 上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information: CSI)を含む。前記下りリンクのチャネル状態情報は、好適な空間多重数(レイヤ数)を示すランク指標(Rank Indicator: RI)、好適なプレコーダを示すプレコーディング行列指標(Precoding Matrix Indicator: PMI)、好適な伝送レートを指定するチャネル品質指標(Channel Quality Indicator: CQI)などを含む。前記PMIは、端末装置によって決定されるコードブックを示す。該コードブックは、物理下りリンク共有チャネルのプレコーディングに関連する。 The uplink control information includes the downlink channel state information (Channel State Information: CSI). The downlink channel state information includes a rank index (RankIndicator: RI) indicating a suitable spatial multiplex (number of layers), a precoding matrix index (Precoding MatrixIndicator: PMI) indicating a suitable precoder, and a suitable transmission rate. Includes Channel Quality Indicator (CQI), etc. The PMI represents a codebook determined by the terminal device. The codebook relates to the pre-recording of physical downlink shared channels.
 NRでは、上位層パラメータRI制限を設定することができる。RI制限には複数の設定パラメータが存在し、1つはタイプ1シングルパネルRI制限であり、8ビットで構成される。ビットマップパラメータであるタイプ1シングルパネルRI制限は、ビット系列r、…r、rを形成する。ここでr、はMSB(Most Significant Bit)であり、r、はLSB(Least Significant Bit)である。riがゼロの時(iは0、1、…7)、i+1レイヤに関連付いたプリコーダに対応するPMIとRIレポーティングは許容されない。RI制限にはタイプ1シングルパネルRI制限の他にタイプ1マルチパネルRI制限があり、4ビットで構成される。ビットマップパラメータであるタイプ1マルチパネルRI制限は、ビット系列r、r、r、rを形成する。ここでr、はMSBであり、r、はLSBである。riがゼロの時(iは0、1、2、3)、i+1レイヤに関連付いたプリコーダに対応するPMIとRIレポーティングは許容されない。 In NR, the upper layer parameter RI limit can be set. There are multiple setting parameters for the RI limit, one is the type 1 single panel RI limit, which consists of 8 bits. The type 1 single panel RI limitation, which is a bitmap parameter, forms the bit series r 7 , ... r 2 , r 1 . Here, r 7 is the MSB (Most Significant Bit), and r 0 is the LSB (Least Significant Bit). When r i is zero (i is 0, 1, ... 7), PMI and RI reporting corresponding to the precoder associated with the i + 1 layer is not allowed. The RI limitation includes a type 1 multi-panel RI limitation in addition to the type 1 single panel RI limitation, and is composed of 4 bits. The type 1 multi - panel RI limitation, which is a bitmap parameter, forms the bitstreams r4 , r3 , r2, r1. Where r 4 is the MSB and r 0 is the LSB. When r i is zero (i is 0, 1, 2, 3), PMI and RI reporting corresponding to the precoder associated with the i + 1 layer is not allowed.
 前記CQIは、所定の帯域における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMAMなど)、符号化率(coding rate)、および周波数利用効率を指し示すインデックス(CQIインデックス)を用いることができる。端末装置は、PDSCHのトランスポートブロックがブロック誤り確率(BLER)=0.1を超えずに受信可能であろうCQIインデックスをCQIテーブルから選択する。ただし上位層シグナリングによって所定のCQIテーブルが設定された場合には、BLER=0.00001を超えずに受信可能であろうCQIインデックスをCQIテーブルから選択する。 As the CQI, a suitable modulation method (for example, QPSK, 16QAM, 64QAM, 256QAMAM, etc.), a coding rate (coding rate), and an index (CQI index) indicating frequency utilization efficiency in a predetermined band can be used. The terminal device selects from the CQI table the CQI index that the PDSCH transport block will be able to receive without exceeding the block error probability (BLER) = 0.1. However, when the predetermined CQI table is set by the upper layer signaling, the CQI index that can be received without exceeding BLER = 0.00001 is selected from the CQI table.
 PUSCHは、上りリンクデータ(Uplink Transport Block、Uplink-Shared Channel: UL-SCH)を送信するために用いられる物理チャネルであり、伝送方式としては、CP-OFDM、もしくはDFT-S-OFDMが適用される。PUSCHは、前記上りリンクデータと共に、下りリンクデータに対するHARQ-ACKおよび/またはチャネル状態情報等の制御情報を送信するために用いられてもよい。PUSCHは、チャネル状態情報のみを送信するために用いられてもよい。PUSCHはHARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。 PUSCH is a physical channel used for transmitting uplink data (UplinkTransportBlock, Uplink-SharedChannel: UL-SCH), and CP-OFDM or DFT-S-OFDM is applied as a transmission method. To. The PUSCH may be used together with the uplink data to transmit control information such as HARQ-ACK and / or channel state information for the downlink data. PUSCH may be used to transmit only channel state information. PUSCH may be used to transmit only HARQ-ACK and channel state information.
 PUSCHは、無線リソース制御(Radio Resource Control: RRC)シグナリングを送信するために用いられる。RRCシグナリングは、RRCメッセージ/RRC層の情報/RRC層の信号/RRC層のパラメータ/RRC情報要素とも称される。RRCシグナリングは、無線リソース制御層において処理される情報/信号である。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のシグナリングを用いて送信される。RRCメッセージは、端末装置のUE Capabilityを含めることができる。UE Capabilityは、該端末装置がサポートする機能を示す情報である。 PUSCH is used to transmit radio resource control (RRC) signaling. RRC signaling is also referred to as RRC message / RRC layer information / RRC layer signal / RRC layer parameter / RRC information element. RRC signaling is information / signals processed in the radio resource control layer. The RRC signaling transmitted from the base station device may be a signal common to a plurality of terminal devices in the cell. The RRC signaling transmitted from the base station device may be dedicated signaling (also referred to as dedicated signaling) to a certain terminal device. That is, user device specific (user device specific) information is transmitted to a certain terminal device using dedicated signaling. The RRC message can include the UE Capability of the terminal device. UE Capability is information indicating the functions supported by the terminal device.
 PUSCHは、MAC CE(Medium Access Control Element)を送信するために用いられる。MAC CEは、媒体アクセス制御層(Medium Access Control layer)において処理(送信)される情報/信号である。例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されてもよい。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられる。RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。RRCシグナリング、および/または、MAC CEは、トランスポートブロックに含まれる。 PUSCH is used to transmit MAC CE (Medium Access Control Element). MAC CE is information / signal processed (transmitted) in the medium access control layer. For example, the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field is used to indicate the level of power headroom. RRC signaling and / or MAC CE is also referred to as higher layer signaling. RRC signaling and / or MAC CE is included in the transport block.
 PRACHは、ランダムアクセスに用いるプリアンブルを送信するために用いられる。PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられる。 PRACH is used to transmit the preamble used for random access. PRACH is used to send a random access preamble. The PRACH is used to indicate an initial connection establishment procedure, a handover procedure, a connection re-establishment procedure, synchronization (timing adjustment) for uplink transmission, and a request for PUSCH (UL-SCH) resources. Used for.
 上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク参照信号には、復調用参照信号(Demodulation Reference Signal: DMRS)、サウンディング参照信号(Sounding Reference Signal: SRS)、位相追従信号(Phase Tracking Reference Signal: PTRS)等が含まれる。DMRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連する。例えば、基地局装置10は、物理上りリンク共有チャネル/物理上りリンク制御チャネルを復調するとき、伝搬路推定/伝搬路補正を行うために復調用参照信号を使用する。 In uplink wireless communication, an uplink reference signal (Uplink Reference Signal: ULRS) is used as an uplink physical signal. The uplink reference signal includes a demodulation reference signal (Demodulation Reference Signal: DMRS), a sounding reference signal (Sounding Reference Signal: SRS), a phase tracking signal (Phase Tracking Reference Signal: PTRS), and the like. DMRS is associated with the transmission of physical uplink shared channels / physical uplink control channels. For example, the base station apparatus 10 uses a demodulation reference signal to perform demodulation path estimation / propagation path correction when demodulating a physical uplink shared channel / physical uplink control channel.
 SRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連しない。基地局装置10は、上りリンクのチャネル状態を測定(CSI Measurement)するためにSRSを使用する。 SRS is not related to the transmission of the physical uplink shared channel / physical uplink control channel. The base station apparatus 10 uses SRS to measure the channel state of the uplink (CSI Measurement).
 PTRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連する。基地局装置10は、位相追従のためにPTRSを使用する。 PTRS is related to the transmission of the physical uplink shared channel / physical uplink control channel. The base station apparatus 10 uses PTRS for phase tracking.
 図1において、下りリンクr31の無線通信では、少なくとも以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理報知チャネル(PBCH)
・物理下りリンク制御チャネル(PDCCH)
・物理下りリンク共有チャネル(PDSCH)
In FIG. 1, in the wireless communication of the downlink r31, at least the following downlink physical channels are used. The downlink physical channel is used to transmit the information output from the upper layer.
-Physical notification channel (PBCH)
-Physical downlink control channel (PDCCH)
-Physical downlink shared channel (PDSCH)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB、 Broadcast Channel: BCH)を報知するために用いられる。MIBはシステム情報の1つである。例えば、MIBは、下りリンク送信帯域幅設定、システムフレーム番号(SFN:System Frame number)を含む。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。 PBCH is used to notify the master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in terminal devices. MIB is one of the system information. For example, the MIB includes a downlink transmission bandwidth setting and a system frame number (SFN: SystemFrame number). The MIB may include information indicating at least a portion of the slot number, subframe number, and radio frame number to which the PBCH is transmitted.
 PDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報は、用途に基づいた複数のフォーマット(DCIフォーマットとも称する)が定義される。1つのDCIフォーマットを構成するDCIの種類やビット数に基づいて、DCIフォーマットは定義されてもよい。各フォーマットは、用途に応じて使われる。下りリンク制御情報は、下りリンクデータ送信のための制御情報と上りリンクデータ送信のための制御情報を含む。下りリンクデータ送信のためのDCIフォーマットは、下りリンクアサインメント(または、下りリンクグラント)とも称する。上りリンクデータ送信のためのDCIフォーマットは、上りリンクグラント(または、上りリンクアサインメント)とも称する。 PDCCH is used to transmit downlink control information (DCI). The downlink control information is defined in a plurality of formats (also referred to as DCI formats) based on the intended use. The DCI format may be defined based on the type of DCI and the number of bits constituting one DCI format. Each format is used according to the application. The downlink control information includes control information for transmitting downlink data and control information for transmitting uplink data. The DCI format for transmitting downlink data is also referred to as a downlink assignment (or downlink grant). The DCI format for uplink data transmission is also referred to as an uplink grant (or uplink assignment).
 1つの下りリンクアサインメントは、1つのサービングセル内の1つのPDSCHのスケジューリングに用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロットと同じスロット内のPDSCHのスケジューリングのために少なくとも用いられてもよい。下りリンクアサインメントには、PDSCHのための周波数領域リソース割り当て、時間領域リソース割り当て、PDSCHに対するMCS(Modulation and Coding Scheme)、初期送信または再送信を指示するNDI(New Data Indicator)、下りリンクにおけるHARQプロセス番号を示す情報、誤り訂正符号化時にコードワードに加えられた冗長性の量を示すRedudancy versionなどの下りリンク制御情報が含まれる。コードワードは、誤り訂正符号化後のデータである。下りリンクアサインメントはPUCCHに対する送信電力制御(TPC:Transmission Power Control)コマンド、PUSCHに対するTPCコマンドを含めてもよい。上りリンクグラントは、PUSCHを繰り返し送信する回数を示すアグリゲーションレベル(送信繰り返し回数)を含めてもよい。なお、各下りリンクデータ送信のためのDCIフォーマットには、上記情報のうち、その用途のために必要な情報(フィールド)が含まれる。 One downlink assignment is used for scheduling one PDSCH in one serving cell. The downlink grant may be at least used for scheduling PDSCH in the same slot in which the downlink grant was transmitted. The downlink assignment includes frequency domain resource allocation for PDSCH, time domain resource allocation, MCS (Modulation and Coding Scheme) for PDSCH, NDI (New Data Indicator) for instructing initial transmission or retransmission, and HARQ for downlink. It includes information indicating the process number and downlink control information such as Redundancy version indicating the amount of redundancy added to the codeword during error correction coding. The code word is the data after error correction coding. The downlink assignment may include a transmission power control (TPC) command for PUCCH and a TPC command for PUSCH. The uplink grant may include an aggregation level (number of repeated transmissions) indicating the number of times the PUSCH is repeatedly transmitted. The DCI format for transmitting each downlink data includes information (fields) necessary for the purpose of the above information.
 1つの上りリンクグラントは、1つのサービングセル内の1つのPUSCHのスケジューリングを端末装置に通知するために用いられる。上りリンクグラントは、PUSCHを送信するためのリソースブロック割り当てに関する情報(リソースブロック割り当ておよびホッピングリソース割り当て)、時間領域リソース割り当て、PUSCHのMCSに関する情報(MCS/Redundancy version)、DMRSポートに関する情報、PUSCHの再送に関する情報、PUSCHに対するTPCコマンド、下りリンクのチャネル状態情報(Channel State Information: CSI)要求(CSI request)、など上りリンク制御情報を含む。上りリンクグラントは、上りリンクにおけるHARQプロセス番号を示す情報、リダンダンシーバージョンを示す情報、PUCCHに対する送信電力制御(TPC:Transmission Power Control)コマンド、PUSCHに対するTPCコマンドを含めてもよい。なお、各上りリンクデータ送信のためのDCIフォーマットには、上記情報のうち、その用途のために必要な情報(フィールド)が含まれる。 One uplink grant is used to notify the terminal device of the scheduling of one PUSCH in one serving cell. The uplink grant has information on resource block allocation for transmitting PUSCH (resource block allocation and hopping resource allocation), time domain resource allocation, information on PUSCH MCS (MCS / Redundance version), information on DMRS port, and PUSCH. Includes uplink control information such as retransmission information, TPC commands for PUSCH, downlink channel state information (CSI) request (CSI request), and so on. The uplink grant may include information indicating the HARQ process number in the uplink, information indicating the redundancy version, a transmission power control (TPC) command for PUCCH, and a TPC command for PUSCH. The DCI format for transmitting each uplink data includes, among the above information, information (fields) necessary for the intended use.
 DMRSシンボルを送信するOFDMシンボル番号(ポジション)は、イントラ周波数ホッピングが適用されず、PUSCHマッピングタイプAの場合、スロットの初めのOFDMシンボルとそのスロットでスケジュールされたPUSCHリソースの最後のOFDMシンボルの間のシグナリングされた期間によって与えられる。イントラ周波数ホッピングが適用されず、PUSCHマッピングタイプBの場合、DMRSシンボルを送信するOFDMシンボル番号(ポジション)は、スケジュールされたPUSCHリソース期間によって与えられる。イントラ周波数ホッピングが適用される場合、ホップあたりの期間で与えられる。PUSCHマッピングタイプAに関して、先頭のDMRSのポジションを示す上位層パラメータが2である場合のみ、追加のDMRS数を示す上位層パラメータが3の場合がサポートされる。またPUSCHマッピングタイプAに関して、4シンボル期間は、先頭のDMRSのポジションを示す上位層パラメータが2である場合のみ適用可能である。 The OFDM symbol number (position) that transmits the DMRS symbol is not subject to intra-frequency hopping, and for PUSCH mapping type A, it is between the first OFDM symbol in a slot and the last OFDM symbol of the PUSCH resource scheduled in that slot. Given by the signaled period of. Intra-frequency hopping is not applied and for PUSCH mapping type B, the OFDM symbol number (position) for transmitting the DMRS symbol is given by the scheduled PUSCH resource period. If intra-frequency hopping is applied, it is given in time per hop. For PUSCH mapping type A, only when the upper layer parameter indicating the position of the first DMRS is 2, the case where the upper layer parameter indicating the number of additional DMRSs is 3 is supported. Further, regarding the PUSCH mapping type A, the 4-symbol period can be applied only when the upper layer parameter indicating the position of the head DMRS is 2.
 PDCCHは、下りリンク制御情報に巡回冗長検査(Cyclic Redundancy Check: CRC)を付加して生成される。PDCCHにおいて、CRCパリティビットは、所定の識別子を用いてスクランブル(排他的論理和演算、マスクとも呼ぶ)される。パリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、CS(Configured Scheduling)-RNTI、Temporary C-RNTI、P(Paging)-RNTI、SI(System Information)-RNTI、またはRA(Random Access)-RNTI、SP-CSI(Semi-Persistent Channel State-Information)-RNTI、MCS-C-RNTIでスクランブルされる。C-RNTIおよびCS-RNTIは、セル内において端末装置を識別するための識別子である。Temporary C-RNTIは、コンテンションベースランダムアクセス手順(contention based random access procedure)中に、ランダムアクセスプリアンブルを送信した端末装置を識別するための識別子である。C-RNTIおよびTemporary C-RNTIは、単一のサブフレームにおけるPDSCH送信またはPUSCH送信を制御するために用いられる。CS-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。ここでCS-RNTIでスクランブリングされたPDCCH(DCIフォーマット)は、CSタイプ2をアクティベートあるいはディアクティベートするために用いられる。一方、CSタイプ1ではCS-RNTIでスクランブリングされたPDCCHに含まれる制御情報(MCSや無線リソース割当等)は、CSに関する上位層パラメータに含め、該上位層パラメータによってCSのアクティベート(設定)を行う。P-RNTIは、ページングメッセージ(Paging Channel: PCH)を送信するために用いられる。SI-RNTIは、SIBを送信するために用いられる。RA-RNTIは、ランダムアクセスレスポンス(ランダムアクセスプロシジャーにおけるメッセージ2)を送信するために用いられる。SP-CSI-RNTIは、準静的なCSIレポーティングのために用いられる。MCS-C-RNTIは、低いスペクトル効率のMCSテーブルを選択する際に用いられる。 PDCCH is generated by adding a cyclic redundancy check (Cyclic Redundancy Check: CRC) to the downlink control information. In PDCCH, the CRC parity bit is scrambled (also referred to as exclusive-OR operation, mask) using a predetermined identifier. The parity bit is C-RNTI (Cell-Radio Network Temporary Identifier), CS (Configured Scheduling) -RNTI, Temporary C-RNTI, P (Paging) -RNTI, SI (System Information) -RNTI, or RA (Random Access). -RNTI, SP-CSI (Semi-Persistent Channel State-Information) -Scrambled by RNTI, MCS-C-RNTI. C-RNTI and CS-RNTI are identifiers for identifying a terminal device in a cell. The Temporary C-RNTI is an identifier for identifying the terminal device that transmitted the random access preamble during the contention-based random access procedure. C-RNTI and Temporary C-RNTI are used to control PDSCH or PUSCH transmissions in a single subframe. CS-RNTI is used to periodically allocate PDSCH or PUSCH resources. Here, the PDCCH (DCI format) scrambled by CS-RNTI is used to activate or deactivate CS type 2. On the other hand, in CS type 1, the control information (MCS, radio resource allocation, etc.) included in the PDCCH scrambled by CS-RNTI is included in the upper layer parameters related to CS, and the CS activation (setting) is performed by the upper layer parameters. conduct. P-RNTI is used to send a paging message (Paging Channel: PCH). SI-RNTI is used to transmit SIB. RA-RNTI is used to send a random access response (message 2 in a random access procedure). SP-CSI-RNTI is used for quasi-static CSI reporting. MCS-C-RNTI is used in selecting MCS tables with low spectral efficiency.
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。PDSCHは、システムインフォメーションメッセージ(System Information Block: SIBとも称する。)を送信するために用いられる。SIBの一部又は全部は、RRCメッセージに含めることができる。 PDSCH is used to transmit downlink data (downlink transport block, DL-SCH). The PDSCH is used to transmit a system information message (also referred to as System Information Block: SIB). Part or all of the SIB may be included in the RRC message.
 PDSCHは、RRCシグナリングを送信するために用いられる。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通(セル固有)であってもよい。すなわち、そのセル内のユーザ装置共通な情報は、セル固有のRRCシグナリングを使用して送信される。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のメッセージ(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。 PDSCH is used to transmit RRC signaling. The RRC signaling transmitted from the base station device may be common (cell-specific) to a plurality of terminal devices in the cell. That is, information common to user devices in the cell is transmitted using cell-specific RRC signaling. The RRC signaling transmitted from the base station device may be a message (also referred to as dedicated signaling) dedicated to a certain terminal device. That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
 PDSCHは、MAC CEを送信するために用いられる。RRCシグナリングおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。 PDSCH is used to transmit MAC CE. RRC signaling and / or MAC CE is also referred to as higher layer signaling. PMCH is used to transmit multicast data (Multicast Channel: MCH).
 図1の下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。 In the downlink wireless communication shown in FIG. 1, a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Reference Signal: DLRS) are used as downlink physical signals. The downlink physical signal is not used to transmit the information output from the upper layer, but is used by the physical layer.
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路推定/伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、PBCH、PDSCH、PDCCHを復調するために用いられる。下りリンク参照信号は、端末装置が、下りリンクのチャネル状態の測定(CSI measurement)するために用いることもできる。 The synchronization signal is used by the terminal device to synchronize the frequency domain and the time domain of the downlink. The downlink reference signal is used by the terminal device to perform propagation path estimation / propagation path correction of the downlink physical channel. For example, the downlink reference signal is used to demodulate the PBCH, PDSCH, PDCCH. The downlink reference signal can also be used by the terminal device to measure the channel state of the downlink (CSI measurement).
 下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。 The downlink physical channel and the downlink physical signal are collectively referred to as a downlink physical signal. Further, the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal. Further, the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel. Further, the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:Transport Block)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。 BCH, UL-SCH and DL-SCH are transport channels. The channel used in the MAC layer is called a transport channel. The unit of the transport channel used in the MAC layer is also referred to as a transport block (TB: Transport Block) or a MAC PDU (Protocol Data Unit). A transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, the transport block is mapped to a code word, and coding processing or the like is performed for each code word.
 図2は、本実施形態に係る基地局装置10の構成の概略ブロック図である。基地局装置10は、上位層処理部(上位層処理ステップ)102、制御部(制御ステップ)104、送信部(送信ステップ)106、送信アンテナ108、受信アンテナ110、受信部(受信ステップ)112を含んで構成される。送信部106は、上位層処理部102から入力される論理チャネルに応じて、物理下りリンクチャネルを生成する。送信部106は、符号化部(符号化ステップ)1060、変調部(変調ステップ)1062、下りリンク制御信号生成部(下りリンク制御信号生成ステップ)1064、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1066、多重部(多重ステップ)1068、および無線送信部(無線送信ステップ)1070を含んで構成される。受信部112は、物理上りリンクチャネルを検出し(復調、復号など)、その内容を上位層処理部102に入力する。受信部112は、無線受信部(無線受信ステップ)1120、伝搬路推定部(伝搬路推定ステップ)1122、多重分離部(多重分離ステップ)1124、等化部(等化ステップ)1126、復調部(復調ステップ)1128、復号部(復号ステップ)1130を含んで構成される。 FIG. 2 is a schematic block diagram of the configuration of the base station apparatus 10 according to the present embodiment. The base station apparatus 10 includes an upper layer processing unit (upper layer processing step) 102, a control unit (control step) 104, a transmission unit (transmission step) 106, a transmission antenna 108, a reception antenna 110, and a reception unit (reception step) 112. Consists of including. The transmission unit 106 generates a physical downlink channel according to the logical channel input from the upper layer processing unit 102. The transmission unit 106 includes a coding unit (coding step) 1060, a modulation unit (modulation step) 1062, a downlink control signal generation unit (downlink control signal generation step) 1064, and a downlink reference signal generation unit (downlink reference signal). The generation step) 1066, the multiplex unit (multiplex step) 1068, and the wireless transmission unit (radio transmission step) 1070 are included. The receiving unit 112 detects the physical uplink channel (demodulation, decoding, etc.) and inputs the content to the upper layer processing unit 102. The receiving unit 112 includes a wireless receiving unit (radio receiving step) 1120, a propagation path estimation unit (propagation path estimation step) 1122, a multiple separation unit (multiple separation step) 1124, an equalization unit (equalization step) 1126, and a demodulation unit (demodulation unit). It includes a demodulation step) 1128 and a decoding unit (decoding step) 1130.
 上位層処理部102は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの物理層より上位層の処理を行なう。上位層処理部102は、送信部106および受信部112の制御を行なうために必要な情報を生成し、制御部104に出力する。上位層処理部102は、下りリンクデータ(DL-SCHなど)、システム情報(MIB、 SIB)などを送信部106に出力する。なお、DMRS構成情報はRRC等の上位レイヤによる通知ではなく、システム情報(MIBあるいはSIB)によって端末装置に通知してもよい。 The upper layer processing unit 102 includes a medium access control (MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). ResourceControl: RRC) Processes layers above the physical layer such as the layer. The upper layer processing unit 102 generates information necessary for controlling the transmission unit 106 and the reception unit 112, and outputs the information to the control unit 104. The upper layer processing unit 102 outputs downlink data (DL-SCH or the like), system information (MIB, SIB), or the like to the transmission unit 106. Note that the DMRS configuration information may be notified to the terminal device by system information (MIB or SIB) instead of notification by a higher layer such as RRC.
 上位層処理部102は、ブロードキャストするシステム情報(MIB、又はSIBの一部)を生成、又は上位ノードから取得する。上位層処理部102は、BCH/DL-SCHとして、前記ブロードキャストするシステム情報を送信部106に出力する。前記MIBは、送信部106において、PBCHに配置される。前記SIBは、送信部106において、PDSCHに配置される。上位層処理部102は、端末装置固有のシステム情報(SIB)を生成し、又は上位の―度から取得する。該SIBは、送信部106において、PDSCHに配置される。 The upper layer processing unit 102 generates or acquires system information (MIB or a part of SIB) to be broadcast from the upper node. The upper layer processing unit 102 outputs the system information to be broadcast to the transmission unit 106 as BCH / DL-SCH. The MIB is arranged in the PBCH in the transmission unit 106. The SIB is arranged in the PDSCH in the transmission unit 106. The upper layer processing unit 102 generates system information (SIB) peculiar to the terminal device or acquires it from a higher degree. The SIB is arranged in the PDSCH in the transmission unit 106.
 上位層処理部102は、各端末装置のための各種RNTIを設定する。前記RNTIは、PDCCH、PDSCHなどの暗号化(スクランブリング)に用いられる。上位層処理部102は、前記RNTIを、制御部104/送信部106/受信部112に出力する。 The upper layer processing unit 102 sets various RNTIs for each terminal device. The RNTI is used for encryption (scramble) of PDCCH, PDSCH and the like. The upper layer processing unit 102 outputs the RNTI to the control unit 104 / transmission unit 106 / reception unit 112.
 上位層処理部102は、PDSCHに配置される下りリンクデータ(トランスポートブロック、DL-SCH)、端末装置固有のシステムインフォメーション(System Information Block: SIB)、RRCメッセージ、MAC CE、DMRS構成情報がSIBやMIBのようなシステム情報や、DCIで通知されない場合はDMRS構成情報などを生成、又は上位ノードから取得し、送信部106に出力する。上位層処理部102は、端末装置20の各種設定情報の管理をする。なお、無線リソース制御の機能の一部は、MACレイヤや物理レイヤで行われてもよい。 In the upper layer processing unit 102, the downlink data (transport block, DL-SCH) arranged in the PDSCH, the system information (System Information Block: SIB) unique to the terminal device, the RRC message, the MAC CE, and the DMRS configuration information are SIB. System information such as and MIB, and DMRS configuration information when not notified by DCI are generated or acquired from a higher-level node and output to the transmission unit 106. The upper layer processing unit 102 manages various setting information of the terminal device 20. Note that some of the radio resource control functions may be performed in the MAC layer or the physical layer.
 上位層処理部102は、端末装置がサポートする機能(UE capability)等、端末装置に関する情報を端末装置20(受信部112を介して)から受信する。端末装置20は、自身の機能を基地局装置10に上位層の信号(RRCシグナリング)で送信する。端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。 The upper layer processing unit 102 receives information about the terminal device such as a function supported by the terminal device (UE capability) from the terminal device 20 (via the receiving unit 112). The terminal device 20 transmits its own function to the base station device 10 by a signal (RRC signaling) of an upper layer. Information about a terminal device includes information indicating whether the terminal device supports a predetermined function or information indicating that the terminal device has been introduced and tested for a predetermined function. Support for a given feature includes whether it has been installed and tested for a given feature.
 端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しないようにしてよい。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。 When the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether or not the predetermined function is supported. If the terminal device does not support a predetermined function, the terminal device may not send information (parameter) indicating whether or not the predetermined function is supported. That is, whether or not to support the predetermined function is notified by whether or not to send information (parameter) indicating whether or not to support the predetermined function. Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 bit of 1 or 0.
 上位層処理部102は、受信部112から復号後の上りリンクデータ(CRCも含む)からDL-SCHを取得する。上位層処理部102は、端末装置が送信した前記上りリンクデータに対して誤り検出を行う。例えば、該誤り検出はMAC層で行われる。 The upper layer processing unit 102 acquires DL-SCH from the uplink data (including CRC) after decoding from the receiving unit 112. The upper layer processing unit 102 performs error detection on the uplink data transmitted by the terminal device. For example, the error detection is performed in the MAC layer.
 制御部104は、上位層処理部102/受信部112から入力された各種設定情報に基づいて、送信部106および受信部112の制御を行なう。制御部104は、上位層処理部102/受信部112から入力された設定情報に基づいて、下りリンク制御情報(DCI)を生成し、送信部106に出力する。例えば制御部104は、上位層処理部102/受信部112から入力されたDMRSに関する設定情報(DMRS構成1であるかDMRS構成2であるか)を考慮して、DMRSの周波数配置(DMRS構成1の場合は偶数サブキャリアあるいは奇数サブキャリア、DMRS構成2の場合は第0~第2のセットのいずれか)を設定し、DCIを生成する。 The control unit 104 controls the transmission unit 106 and the reception unit 112 based on various setting information input from the upper layer processing unit 102 / reception unit 112. The control unit 104 generates downlink control information (DCI) based on the setting information input from the upper layer processing unit 102 / reception unit 112, and outputs the downlink control information (DCI) to the transmission unit 106. For example, the control unit 104 considers the setting information (whether the DMRS configuration 1 or the DMRS configuration 2) regarding the DMRS input from the upper layer processing unit 102 / reception unit 112, and considers the frequency arrangement of the DMRS (DMRS configuration 1). In the case of, an even-numbered subcarrier or an odd-numbered subcarrier, and in the case of DMRS configuration 2, any of the 0th to 2nd sets) is set, and DCI is generated.
 制御部104は、伝搬路推定部1122で測定されたチャネル品質情報(CSI Measurement結果)を考慮して、PUSCHのMCSを決定する。制御部104は、前記PUSCHのMCSに対応するMCSインデックスを決定する。制御部104は、決定したMCSインデックスをアップリンクグラントに含める。 The control unit 104 determines the MCS of the PUSCH in consideration of the channel quality information (CSI Measurement result) measured by the propagation path estimation unit 1122. The control unit 104 determines the MCS index corresponding to the MCS of the PUSCH. The control unit 104 includes the determined MCS index in the uplink grant.
 送信部106は、上位層処理部102/制御部104から入力された信号に従って、PBCH、PDCCH、PDSCHおよび下りリンク参照信号などを生成する。符号化部1060は、上位層処理部102から入力されたBCH、DL-SCHなどを、予め定められた/上位層処理部102が決定した符号化方式を用いて、ブロック符号、畳み込み符号、ターボ符号、ポーラ符号化、LDPC符号などによる符号化(リピティションを含む)を行なう。符号化部1060は、制御部104から入力された符号化率に基づいて、符号化ビットをパンクチャリングする。変調部1062は、符号化部1060から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた/制御部104から入力された変調方式(変調オーダー)でデータ変調する。該変調オーダーは、制御部104で選択された前記MCSインデックスに基づく。 The transmission unit 106 generates PBCH, PDCCH, PDSCH, downlink reference signal, and the like according to the signal input from the upper layer processing unit 102 / control unit 104. The coding unit 1060 uses a predetermined coding method for BCH, DL-SCH, etc. input from the upper layer processing unit 102, and a block code, a convolution code, and a turbo. Coding (including repetition) with a code, polar coding, LDPC code, or the like is performed. The coding unit 1060 punctures the coding bit based on the coding rate input from the control unit 104. The modulation unit 1062 data-modulates the coding bits input from the coding unit 1060 by a modulation method (modulation order) input from a predetermined / control unit 104 such as BPSK, QPSK, 16QAM, 64QAM, 256QAM. .. The modulation order is based on the MCS index selected by the control unit 104.
 下りリンク制御信号生成部1064は、制御部104から入力されたDCIに対してCRCを付加する。下りリンク制御信号生成部1064は、前記CRCに対して、RNTIを用いて暗号化(スクランブリング)を行う。さらに、下りリンク制御信号生成部1064は、前記CRCが付加されたDCIに対してQPSK変調を行い、PDCCHを生成する。下りリンク参照信号生成部1066は、端末装置が既知の系列を下りリンク参照信号として生成する。前記既知の系列は、基地局装置10を識別するための物理セル識別子などの基に予め定められた規則で求まる。 The downlink control signal generation unit 1064 adds CRC to the DCI input from the control unit 104. The downlink control signal generation unit 1064 performs encryption (scramble) on the CRC using RNTI. Further, the downlink control signal generation unit 1064 performs QPSK modulation on the DCI to which the CRC is added to generate PDCCH. The downlink reference signal generation unit 1066 generates a series known by the terminal device as a downlink reference signal. The known sequence is obtained by a predetermined rule based on a physical cell identifier for identifying the base station apparatus 10.
 多重部1068は、PDCCH/下りリンク参照信号/変調部1062から入力される各チャネルの変調シンボルを多重する。つまり、多重部1068は、PDCCH/下りリンク参照信号を各チャネルの変調シンボルをリソースエレメントにマッピングする。マッピングするリソースエレメントは、前記制御部104から入力される下りリンクスケジューリングによって制御される。リソースエレメントは、1つのOFDMシンボルと1つのサブキャリアからなる物理リソースの最小単位である。なお、複数のリソースエレメントによってリソースブロック(RB)が構成され、RBを最小単位としてスケジューリングが適用される。なお、MIMO伝送を行う場合、送信部106は符号化部1060および変調部1062をレイヤ数具備する。この場合、上位層処理部102は、各レイヤのトランスポートブロック毎にMCSを設定する。 The multiplexing unit 1068 multiplexes the modulation symbols of each channel input from the PDCCH / downlink reference signal / modulation unit 1062. That is, the multiplexing unit 1068 maps the PDCCH / downlink reference signal to the resource element with the modulation symbol of each channel. The resource element to be mapped is controlled by the downlink scheduling input from the control unit 104. A resource element is the smallest unit of a physical resource consisting of one OFDM symbol and one subcarrier. A resource block (RB) is composed of a plurality of resource elements, and scheduling is applied with the RB as the minimum unit. When performing MIMO transmission, the transmission unit 106 includes a coding unit 1060 and a modulation unit 1062 in the number of layers. In this case, the upper layer processing unit 102 sets the MCS for each transport block of each layer.
 無線送信部1070は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成する。無線送信部1070は、前記OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成する。さらに、無線送信部1070は、前記ディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送信アンテナ108に出力して送信する。 The wireless transmission unit 1070 generates an OFDM symbol by performing an inverse fast Fourier transform (IFFT) on a multiplexed modulation symbol or the like. The radio transmission unit 1070 adds a cyclic prefix (CP) to the OFDM symbol to generate a baseband digital signal. Further, the wireless transmission unit 1070 converts the digital signal into an analog signal, removes an excess frequency component by filtering, up-converts to a carrier frequency, amplifies the power, and outputs the digital signal to the transmission antenna 108 for transmission.
 受信部112は、制御部104の指示に従って、受信アンテナ110を介して端末装置20からの受信信号を検出(分離、復調、復号)し、復号したデータを上位層処理部102/制御部104に入力する。無線受信部1120は、受信アンテナ110を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1120は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1120は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。前記周波数領域の信号は、多重分離部1124に出力される。 The receiving unit 112 detects (separates, demodulates, decodes) the received signal from the terminal device 20 via the receiving antenna 110 according to the instruction of the control unit 104, and transmits the decoded data to the upper layer processing unit 102 / control unit 104. input. The radio reception unit 1120 converts the uplink signal received via the reception antenna 110 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so as to be properly maintained. The level is controlled, and based on the in-phase component and the quadrature component of the received signal, quadrature demodulation is performed and the quadrature demodulated analog signal is converted into a digital signal. The radio receiving unit 1120 removes a portion corresponding to the CP from the converted digital signal. The radio receiving unit 1120 performs a fast Fourier transform (FFT) on the signal from which the CP has been removed, and extracts the signal in the frequency domain. The signal in the frequency domain is output to the multiplex separation unit 1124.
 多重分離部1124は、制御部104から入力される上りリンクのスケジューリングの情報(上りリンクデータチャネル割当て情報など)に基づいて、無線受信部1120から入力された信号をPUSCH、PUCCH及上りリンク参照信号などの信号に分離する。前記分離された上りリンク参照信号は、伝搬路推定部1122に入力される。前記分離されたPUSCH、PUCCHは、等化部1126に出力する。 The multiplex separation unit 1124 uses the signal input from the radio reception unit 1120 as a PUSCH, PUCCH and uplink reference signal based on the uplink scheduling information (uplink data channel allocation information, etc.) input from the control unit 104. Separate into signals such as. The separated uplink reference signal is input to the propagation path estimation unit 1122. The separated PUSCH and PUCCH are output to the equalization unit 1126.
 伝搬路推定部1122は、上りリンク参照信号を用いて、周波数応答(または遅延プロファイル)を推定する。復調用に伝搬路推定された周波数応答結果は、等化部1126へ入力される。伝搬路推定部1122は、上りリンク参照信号を用いて、上りリンクのチャネル状況の測定(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)の測定)を行う。上りリンクのチャネル状況の測定は、PUSCHのためのMCSの決定などに用いられる。 The propagation path estimation unit 1122 estimates the frequency response (or delay profile) using the uplink reference signal. The frequency response result estimated for the propagation path for demodulation is input to the equalization unit 1126. The propagation path estimation unit 1122 uses the uplink reference signal to measure the uplink channel status (RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator) measurement). conduct. The measurement of the uplink channel status is used for determining the MCS for the PUSCH and the like.
 等化部1126は、伝搬路推定部1122より入力された周波数応答より伝搬路での影響を補償する処理を行う。補償の方法としては、MMSE重みやMRC重みを乗算する方法や、MLDを適用する方法等、既存のいかなる伝搬路補償も適用することができる。復調部1128は、予め決められている/制御部104から指示される変調方式の情報に基づき、復調処理を行う。 The equalization unit 1126 performs a process of compensating for the influence on the propagation path from the frequency response input from the propagation path estimation unit 1122. As the compensation method, any existing propagation path compensation such as a method of multiplying an MMSE weight or an MRC weight or a method of applying an MLD can be applied. The demodulation unit 1128 performs demodulation processing based on predetermined modulation method information instructed by the control unit 104.
 復号部1130は、予め決められている符号化率/制御部104から指示される符号化率の情報に基づいて、前記復調部の出力信号に対して復号処理を行う。復号部1130は、復号後のデータ(UL-SCHなど)を上位層処理部102に入力する。 The decoding unit 1130 performs decoding processing on the output signal of the demodulation unit based on the information of the coding rate specified in advance from the coding rate / control unit 104. The decoding unit 1130 inputs the decrypted data (UL-SCH or the like) to the upper layer processing unit 102.
 図3は、本実施形態における端末装置20の構成を示す概略ブロック図である。端末装置20は、上位層処理部(上位層処理ステップ)202、制御部(制御ステップ)204、送信部(送信ステップ)206、送信アンテナ208、受信アンテナ210および受信部(受信ステップ)212を含んで構成される。 FIG. 3 is a schematic block diagram showing the configuration of the terminal device 20 in the present embodiment. The terminal device 20 includes an upper layer processing unit (upper layer processing step) 202, a control unit (control step) 204, a transmission unit (transmission step) 206, a transmission antenna 208, a reception antenna 210, and a reception unit (reception step) 212. Consists of.
 上位層処理部202は、媒体アクセス制御(MAC)層、パケットデータ統合プロトコル(PDCP)層、無線リンク制御(RLC)層、無線リソース制御(RRC)層の処理を行なう。上位層処理部202は、自端末装置の各種設定情報の管理をする。上位層処理部202は、自端末装置がサポートしている端末装置の機能を示す情報(UE Capability)を、送信部206を介して、基地局装置10へ通知する。上位層処理部202は、UE CapabilityをRRCシグナリングで通知する。 The upper layer processing unit 202 processes the medium access control (MAC) layer, the packet data integration protocol (PDCP) layer, the radio link control (RLC) layer, and the radio resource control (RRC) layer. The upper layer processing unit 202 manages various setting information of the own terminal device. The upper layer processing unit 202 notifies the base station device 10 of information (UECapability) indicating the function of the terminal device supported by the own terminal device via the transmission unit 206. The upper layer processing unit 202 notifies UE Capability by RRC signaling.
 上位層処理部202は、DL-SCH、BCHなどの復号後のデータを受信部212から取得する。上位層処理部202は、前記DL-SCHの誤り検出結果から、HARQ-ACKを生成する。上位層処理部202は、SRを生成する。上位層処理部202は、HARQ-ACK/SR/CSI(CQIレポートを含む)を含むUCIを生成する。また上位層処理部202は、DMRS構成情報が上位レイヤによって通知されている場合、DMRS構成に関する情報を制御部204に入力する。上位層処理部202は、前記UCIやUL-SCHを送信部206に入力する。なお、上位層処理部202の機能の一部は、制御部204に含めてもよい。 The upper layer processing unit 202 acquires the decrypted data such as DL-SCH and BCH from the receiving unit 212. The upper layer processing unit 202 generates HARQ-ACK from the error detection result of the DL-SCH. The upper layer processing unit 202 generates SR. The upper layer processing unit 202 generates a UCI including HARQ-ACK / SR / CSI (including a CQI report). Further, when the DMRS configuration information is notified by the upper layer, the upper layer processing unit 202 inputs the information regarding the DMRS configuration to the control unit 204. The upper layer processing unit 202 inputs the UCI and UL-SCH to the transmission unit 206. A part of the functions of the upper layer processing unit 202 may be included in the control unit 204.
 制御部204は、受信部212を介して受信した下りリンク制御情報(DCI)を解釈する。制御部204は、上りリンク送信のためのDCIから取得したPUSCHのスケジューリング/MCSインデックス/TPC(Transmission Power Control)などに従って、送信部206を制御する。制御部204は、下りリンク送信のためのDCIから取得したPDSCHのスケジューリング/MCSインデックスなどに従って、受信部212を制御する。さらに制御部204は、下りリンク送信のためのDCIに含まれるDMRSの周波数配置(ポート番号)に関する情報と、上位層処理部202から入力されるDMRS構成情報にしたがって、DMRSの周波数配置を特定する。 The control unit 204 interprets the downlink control information (DCI) received via the reception unit 212. The control unit 204 controls the transmission unit 206 according to the PUSCH scheduling / MCS index / TPC (Transmission Power Control) acquired from the DCI for uplink transmission. The control unit 204 controls the reception unit 212 according to the PDSCH scheduling / MCS index acquired from the DCI for downlink transmission. Further, the control unit 204 specifies the frequency arrangement of the DMRS according to the information regarding the frequency arrangement (port number) of the DMRS included in the DCI for downlink transmission and the DMRS configuration information input from the upper layer processing unit 202. ..
 送信部206は、符号化部(符号化ステップ)2060、変調部(変調ステップ)2062、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2064、上りリンク制御信号生成部(上りリンク制御信号生成ステップ)2066、多重部(多重ステップ)2068、無線送信部(無線送信ステップ)2070を含んで構成される。 The transmission unit 206 includes a coding unit (coding step) 2060, a modulation unit (modulation step) 2062, an uplink reference signal generation unit (uplink reference signal generation step) 2064, and an uplink control signal generation unit (uplink control signal). The generation step) 2066, the multiplex unit (multiplex step) 2068, and the wireless transmission unit (radio transmission step) 2070 are included.
 符号化部2060は、制御部204の制御に従って(MCSインデックスに基づいて算出される符号化率に従って)、上位層処理部202から入力された上りリンクデータ(UL-SCH)を畳み込み符号化、LDPC符号化、ポーラ符号化、ターボ符号化等の符号化を行う。 The coding unit 2060 convolves and encodes the uplink data (UL-SCH) input from the upper layer processing unit 202 according to the control of the control unit 204 (according to the coding rate calculated based on the MCS index), and LDPC. Coding such as coding, polar coding, turbo coding, etc. is performed.
 変調部2062は、BPSK、QPSK、16QAM、64QAM、256QAM等の制御部204から指示された変調方式/チャネル毎に予め定められた変調方式で、符号化部2060から入力された符号化ビットを変調する(PUSCHのための変調シンボルを生成する)。 The modulation unit 2062 modulates the coding bit input from the coding unit 2060 by the modulation method / channel predetermined modulation method instructed by the control unit 204 such as BPSK, QPSK, 16QAM, 64QAM, 256QAM. (Generates a modulation symbol for PUSCH).
 上りリンク参照信号生成部2064は、制御部204の指示に従って、基地局装置10を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、サイクリックシフト、DMRSシーケンスの生成に対するパラメータの値、さらに周波数配置などを基に、予め定められた規則(式)で求まる系列を生成する。 The uplink reference signal generation unit 2064 arranges a physical cell identifier (referred to as physical cell identity: PCI, Cell ID, etc.) and an uplink reference signal for identifying the base station device 10 according to the instruction of the control unit 204. Based on the bandwidth, cyclic shift, parameter values for DMRS sequence generation, frequency allocation, etc., a sequence obtained by a predetermined rule (expression) is generated.
 上りリンク制御信号生成部2066は、制御部204の指示に従って、UCIを符号化、BPSK/QPSK変調を行い、PUCCHのための変調シンボルを生成する。 The uplink control signal generation unit 2066 encodes UCI, performs BPSK / QPSK modulation according to the instruction of the control unit 204, and generates a modulation symbol for PUCCH.
 Rel-15の周波数ホッピングに関する上位層パラメータ(frequencyHopping)が設定されている場合において、その値としてはモード1あるいはモード2が設定可能である。モード2はスロット間ホッピングであり、複数のスロットを用いて送信する場合において、スロットごとに周波数を変えて送信するモードである。一方、モード1はスロット内ホッピングであり、1つまたは複数のスロットを用いて送信する場合において、スロットを前半と後半に分割し、前半と後半で周波数を変えて送信するモードである。周波数ホッピングにおける周波数割り当てとしては、DCIやRRCによって通知された周波数領域の無線リソース割り当ては第1のホップに適用し、第2のホップの周波数割り当ては、第1のホップで用いる無線リソースに対して、周波数ホッピング量に関する上位層パラメータ(frequencyHoppingOffset)で設定される値だけシフトした無線リソースを割り当てる。 When the upper layer parameter (frequencyHopping) related to the frequency hopping of Rel-15 is set, mode 1 or mode 2 can be set as the value. Mode 2 is slot-to-slot hopping, and is a mode in which the frequency is changed for each slot when transmission is performed using a plurality of slots. On the other hand, mode 1 is in-slot hopping, and when transmitting using one or a plurality of slots, the slot is divided into the first half and the second half, and the frequency is changed between the first half and the second half for transmission. As for the frequency allocation in frequency hopping, the frequency domain radio resource allocation notified by DCI or RRC is applied to the first hop, and the frequency allocation of the second hop is applied to the radio resource used in the first hop. , Allocate radio resources shifted by the value set by the upper layer parameter (frequencyHoppingOffset) regarding the amount of frequency hopping.
 多重部2068は、制御部204からの上りリンクスケジューリング情報(RRCメッセージに含まれる上りリンクのためのCS(Configured Scheduling)における送信間隔、DCIに含まれる周波数領域および時間領域リソース割り当てなど)に従って、PUSCHのための変調シンボル、PUCCHのための変調シンボル、上りリンク参照信号を送信アンテナポート(DMRSポート)毎に多重する(つまり、各信号はリソースエレメントにマップされる)。 The multiplexing unit 2068 performs PUSCH according to the uplink scheduling information from the control unit 204 (transmission interval in CS (Configured Scheduling) for uplink included in the RRC message, frequency domain and time domain resource allocation included in DCI, etc.). The modulation symbol for PUCCH, the modulation symbol for PUCCH, and the uplink reference signal are multiplexed for each transmitting antenna port (DMRS port) (that is, each signal is mapped to a resource element).
 ここで、CS(configured scheduling、コンフィギュアドグラントスケジューリング)に関する説明を行う。ダイナミックグラントなしの伝送には2種類ある。1つは、RRCによって与えられ、configured grantとして保存されるconfigured grantタイプ1であり、1つは、PDCCHによって与えられ、configured grantアクティベーションあるいはデアクティベーションを示すL1シグナリングに基づいたconfigured grantとして保存およびクリアされるconfigured grantタイプ2である。タイプ1とタイプ2はサービングセル毎かつBWP毎にRRCで設定される。複数の設定は、異なるサービングセルにおいてのみ同時にアクティブになり得る。タイプ2に関して、アクティベーションとデアクティベーションは、サービングセル間で独立である。同じサービングセルに関して、MACエンティティはタイプ1あるいはタイプ2のどちらかで設定される。タイプ1が設定された時、RRCは次のパラメータを設定する。
・cs-RNTI: 再送のためのCS-RNTI
・periodicity: configured grantタイプ1の周期
・timeDomainOffset: 時間領域におけるSFN=0に関するリソースのオフセット
・timeDomainAllocation: パラメータstartSymbolAndLengthを含む、時間領域におけるconfigured grantの配置
・nrofHARQ-Processes: HARQプロセスの数
また、タイプ2が設定された時、RRCは次のパラメータを設定する。
・cs-RNTI: アクティベーション、デアクティベーション、再送のためのCS-RNTI
・periodicity: configured grantタイプ2の周期
・nrofHARQ-Processes: HARQプロセスの数
つまりConfiguredGrantConfigは、2つの方式にしたがって、ダイナミックグラントなしでアップリンク伝送を設定するために用いられる。実際のアップリンクグラントは、Configured Grantタイプ1では、RRC経由で設定され、Configured Grantタイプ2では、CS-RNTIで処理されたPDCCH経由で与えられる。
Here, CS (configured scheduling) will be described. There are two types of transmission without dynamic grants. One is a configured grant type 1 given by RRC and stored as a configured grant, and one is a configured grant given by PDCCH and stored as a configured grant based on L1 signaling indicating activated or deactivated. It is a configured grant type 2 that is cleared. Type 1 and type 2 are set by RRC for each serving cell and each BWP. Multiple settings can only be active at the same time in different serving cells. For Type 2, activation and deactivation are independent between serving cells. For the same serving cell, the MAC entity is set to either type 1 or type 2. When type 1 is set, the RRC sets the following parameters.
-Cs-RNTI: CS-RNTI for resending
-Periodicity: configured grant type 1 period-timeDomainOffset: resource offset for SFN = 0 in the time domain-timeDomainAllocation: placement of configured grants in the time domain, including the parameter startSymbolAndLength-nrofHARQ-Processes: number of HARQ processes and type 2 When is set, the RRC sets the following parameters.
-Cs-RNTI: CS-RNTI for activation, deactivation and resending
-Periodicity: configured grant type 2 period-nrofHARQ-Processes: The number of HARQ processes, or Configured GrantConfig, is used to configure uplink transmission without dynamic grants according to two methods. The actual uplink grant is set via RRC for Configured Grant type 1 and is given via PDCCH processed by CS-RNTI for Configured Grant type 2.
 上位層で設定されるパラメータrepKは、送信されたトランスポートブロックに適用される繰り返し数が定義される。上位層で設定されるパラメータrepK-RVは、繰り返しに適用されるリダンダンシーバージョンパターンを示す。repK-RVが設定されない(与えられない)場合、コンフィギュアドグラントにおける各実際の繰り返しのリダンダンシーバージョンは、0にセットされる。それ以外の場合、K回の名目上の繰り返し中のすべての実際の繰り返し(省略される実際の繰り返しを含む)の中のn番目の送信機会について、設定されるRV系列(リダンダンシーバージョンパターン)の中の(mod(n-1、4)+1)番目の値に関連付けられた伝送が行われる。また一つのトランスポートブロックの初送は、設定されるRV系列が{0、2、3、1}の場合、K回繰り返しの最初の送信機会で開始される。設定されるRV系列が{0、3、0、3}の場合、RV=0と関連付けられたK回繰り返しのいずれかの送信機会で開始される。設定されるRV系列が{0、0、0、0}の場合、K=8の時の最後の送信機会を除く、K回繰り返しのいずれかの送信機会で開始される。いずれのRV系列に関しても、繰り返しはK回繰り返し送信後、あるいは周期P内のK回繰り返し中の最後の送信機会、あるいは周期P内に同じトランスポートブロックをスケジューリングするためのアップリンクグラントを受信した時のいずれかに初めに達した場合に終端される。Rel-15において端末装置は、周期Pによって算出される時間期間よりも長いK回繰り返し送信に関する時間期間が設定されることを期待しない。コンフィギュアドグラントによるタイプ1およびタイプ2PUSCH送信両方について、端末装置がrepK>1と設定された時、端末装置はそのトランスポートブロックをrepKの連続するスロットに渡って繰り返す。この時、端末装置は各スロットで同じシンボル配置を適用する。もしスロット構成の決定に関する端末装置のプロシージャが、配置されたスロットのシンボルをダウンリンクシンボルとして判断(決定)する場合、そのスロットにおける送信は複数スロットのPUSCH送信に関し省略される。repKが設定された場合、値として1回、2回、4回、8回のいずれかを設定可能である。ただし、RRCパラメータ自体が存在しない場合、繰り返し数は1として送信を行う。またrepK-RVは、{0、2、3、1}、{0、3、0、3}、{0、0、0、0}のいずれかが設定され得る。なお、同一のトランスポートブロックから生成される異なるリダンダンシーバージョンの信号は、同一のトランスポートブロック(情報ビット系列)から構成される信号であるが、構成される符号化ビットの少なくとも一部が異なる。 The parameter repK set in the upper layer defines the number of iterations applied to the transmitted transport block. The parameter repK-RV set in the upper layer indicates the redundancy version pattern applied to the iteration. If repK-RV is not set (not given), the redundancy version of each actual iteration in the Configure de Grant is set to 0. Otherwise, of the RV series (redundancy version pattern) set for the nth transmission opportunity in all actual iterations (including omitted actual iterations) during the K nominal iterations. The transmission associated with the (mod (n-1, 4) +1) th value in is performed. Further, the first transmission of one transport block is started at the first transmission opportunity of K repetition when the set RV series is {0, 2, 3, 1}. When the set RV sequence is {0, 3, 0, 3}, it is started at any transmission opportunity of K repetitions associated with RV = 0. When the set RV series is {0, 0, 0, 0}, it is started at any transmission opportunity of K repetition except for the last transmission opportunity when K = 8. For any RV sequence, the iteration received the last transmission opportunity after K iterations, or during the K iterations in period P, or an uplink grant to schedule the same transport block in period P. It is terminated when the first time is reached. In Rel-15, the terminal device does not expect a time period for K repetitive transmissions to be set longer than the time period calculated by the period P. For both Type 1 and Type 2 PUSCH transmissions by the Comfid Grant, when the terminal is set to repK> 1, the terminal repeats its transport block across the repK's contiguous slots. At this time, the terminal device applies the same symbol arrangement in each slot. If the terminal device procedure for determining the slot configuration determines (determines) the symbol of the placed slot as a downlink symbol, transmission in that slot is omitted for PUSCH transmission in multiple slots. When repK is set, any of 1, 2, 4, and 8 times can be set as the value. However, if the RRC parameter itself does not exist, the number of repetitions is set to 1 for transmission. Further, repK-RV can be set to any one of {0, 2, 3, 1}, {0, 3, 0, 3}, {0, 0, 0, 0}. The signals of different redundancy versions generated from the same transport block are signals composed of the same transport block (information bit series), but at least a part of the configured coding bits is different.
 NRリリース16で、PUSCHリピティションタイプBが仕様化された。トランスポートブロックを伴わないCSIレポートを送信するPUSCHを除き、名目上の繰り返し数は上位レイヤパラメータであるnumberofrepetitionsで与えられる。PUSCH送信がスタートするスロットをK、スロット毎のシンボル数をNsymb、スロットの先頭に対するスタートシンボルをS、PUSCHとして割り当てられるシンボルSから数えて連続するシンボル数をLとした場合、名目上の繰り返しが開始されるスロットは、K+ceil((S+n・L)/Nsymb)、スロットの先頭に対するスタートシンボルはmod(S+n・L、Nsymb)で与えられる。また、名目上の繰り返しが終了するスロットは、K+ceil((S+(n+1)・L-1)/Nsymb)、スロットの先頭に対するエンドシンボルはmod(S+(n+1)・L-1、Nsymb)で与えられる。 With NR Release 16, PUSCH repetition type B was specified. Nominal iterations are given by the higher layer parameter numberofrepetitions, except for PUSCH, which sends CSI reports without transport blocks. When the slot where PUSCH transmission starts is K s , the number of symbols for each slot is N symb , the start symbol for the beginning of the slot is S, and the number of consecutive symbols counted from the symbol S assigned as PUSCH is L, it is nominal. The slot at which the repetition is started is given by K s + ceil ((S + n · L) / N symbol ), and the start symbol for the beginning of the slot is given by mod (S + n · L, N symbol ). The slot where the nominal repetition ends is K s + ceil ((S + (n + 1) ・ L-1) / N symb ), and the end symbol for the beginning of the slot is mod (S + (n + 1) ・ L-1, N. It is given by symbol ).
 PUSCHリピティションタイプBに関して、K回の名目上の繰り返しのそれぞれに関して、TDDのコンフィグレーションやダウンリンク制御情報の受信による無効なシンボルを決定した後、残ったシンボルがPUSCHリピティションタイプB送信に関する、潜在的に有効なシンボルと考慮される。もし、ある名目上の繰り返しにおけるPUSCHリピティションタイプB送信に関する潜在的に有効なシンボルの数がゼロより大きい場合、その名目上の繰り返しは1または複数の実際の繰り返しを構成する。ここで、各実際の繰り返しは、スロット内のPUSCHリピティションタイプB送信に用いられる連続する有効なシンボルのセットを構成する。1つのシンボルによる実際の繰り返しは、L=1の場合を除き省略される。実際の繰り返しは、その他の条件に基づいて省略される。リダンダンシーバージョンは実際の繰り返し数に基づいて適用される。 With respect to PUSCH repetition type B, for each of the K nominal iterations, after determining invalid symbols due to TDD configuration or reception of downlink control information, the remaining symbols relate to PUSCH repetition type B transmission. Considered a potentially valid symbol. If the number of potentially valid symbols for a PUSCH repetition type B transmission in a nominal iteration is greater than zero, then the nominal iteration constitutes one or more actual iterations. Here, each actual iteration constitutes a set of consecutive valid symbols used for PUSCH repetition type B transmission in the slot. The actual repetition by one symbol is omitted except in the case of L = 1. The actual iteration is omitted based on other conditions. The redundancy version is applied based on the actual number of iterations.
 PUSCHリピティションタイプBにおける繰り返し間周波数ホッピングについて説明を行う。n番目の名目上の繰り返し内の実際の繰り返しにおけるスタートRBは、mod(n、2)=0の時アップリンクBWP内のスタートRBで決定し、mod(n、2)=1の時、アップリンクBWP内のスタートRBとRRCシグナリングで通知される周波数ホッピング時のオフセット、およびアップリンクBWPの帯域幅で決定される。一方、スロット間周波数ホッピングにおいては、あるスロット番号に基づいてスタートRBが決定される。 The frequency hopping between repetitions in PUSCH repetition type B will be explained. The start RB in the actual iteration within the nth nominal iteration is determined by the start RB in the uplink BWP when mod (n, 2) = 0 and up when mod (n, 2) = 1. It is determined by the start RB in the link BWP, the offset during frequency hopping notified by RRC signaling, and the bandwidth of the uplink BWP. On the other hand, in inter-slot frequency hopping, the start RB is determined based on a certain slot number.
 非特許文献2が開示しているように、複数のスロット毎の周波数ホッピングを適用するには、そのスロット数が問題となる。例えば、RRCシグナリングによって基地局から端末にスロット数を通知することで、制御することが可能となる。図4に2スロット毎に周波数ホッピングを適用した場合の例を示す。図4は、スロットの一部のOFDMシンボルが使用される場合を示しており、斜線で示しているのはDMRSシンボル、ドットで示しているのはデータOFDMシンボルである。図4の場合、同一の周波数で送信される2スロット間で同一の周波数を用いて伝送を行うため、該2スロット間でDMRSを共有したチャネル推定を行うことができる。つまり、1スロットに含まれるDMRSのみによってチャネル推定を行う場合よりも多くのDMRSを用いてチャネル推定を行うことができるため、チャネル推定精度を向上させることができる。あるいは、同一の周波数で送信される複数のスロットのすべて、あるいは一部のスロットに含まれるDMRSを削減することで、DMRSによるオーバヘッドを削減することで、同じ情報量を低いMCSで、あるいは同じMCSで多くの情報を送信することができる。なお、RRCシグナリングの通知方法としては、スロット間周波数ホッピング、繰り返し間周波数ホッピング、複数スロット毎の周波数ホッピングから選択できるようにしてもよいし、さらに同一のパラメータで複数繰り返し毎の周波数ホッピングを選択できるようにしてもよい。 As disclosed in Non-Patent Document 2, the number of slots is a problem in order to apply frequency hopping for each of a plurality of slots. For example, control is possible by notifying the terminal of the number of slots from the base station by RRC signaling. FIG. 4 shows an example in which frequency hopping is applied every two slots. FIG. 4 shows a case where a part of the OFDM symbols of the slot is used, in which the diagonal lines are the DMRS symbols and the dots are the data OFDM symbols. In the case of FIG. 4, since transmission is performed using the same frequency between two slots transmitted at the same frequency, it is possible to perform channel estimation in which DMRS is shared between the two slots. That is, since the channel estimation can be performed using more DMRS than the case where the channel estimation is performed only by the DMRS included in one slot, the channel estimation accuracy can be improved. Alternatively, by reducing the DMRS contained in all or some of the multiple slots transmitted at the same frequency, the overhead due to DMRS can be reduced to provide the same amount of information with a lower MCS or the same MCS. You can send a lot of information with. As the notification method of RRC signaling, it may be possible to select from inter-slot frequency hopping, inter-repetition frequency hopping, and frequency hopping for each of a plurality of slots, and further, frequency hopping for each of a plurality of repetitions can be selected with the same parameter. You may do so.
 上記は複数のスロット毎の周波数ホッピングを行う際のスロット数(以降、FHスロット数)をRRCシグナリングによって通知するとしたがこれに限定されず、例えば名目上の繰り返しインデックスnと名目上の繰り返し数Kと所定の値Aの値によって決定してもよい。例えばn<ceil(K/A)であるかn≧ceil(K/A)であるかによって周波数ポジションを決定してもよい。ここで天井関数(ceil)は床関数(floor)としてもよい。 In the above, the number of slots (hereinafter referred to as the number of FH slots) when performing frequency hopping for each of a plurality of slots is notified by RRC signaling, but the present invention is not limited to this, and for example, the nominal repetition index n and the nominal repetition number K. And may be determined by the value of the predetermined value A. For example, the frequency position may be determined depending on whether n <ceil (K / A) or n ≧ ceil (K / A). Here, the ceiling function (ceil) may be a floor function (floor).
 RRCシグナリングによって、複数のスロット毎の周波数ホッピングを行う際のスロット数(以降、FHスロット数)を通知する際、FHスロット数としては繰り返し送信数と同じか少ない数が設定されるべきだが、FHスロット数が繰り返し送信数よりも大きな値が設定されてもよい。この場合、FHスロット数は、繰り返し送信数と同一と解釈し、送信及び受信処理を端末装置および基地局装置は行う。これにより、繰り返し送信回数がDCIによってダイナミックに通知され、FHスロット数がRRCで準静的に通知される場合においても、端末装置および基地局装置は複数のスロット毎の周波数ホッピングを行うことができる。 When notifying the number of slots (hereinafter referred to as the number of FH slots) when performing frequency hopping for each of a plurality of slots by RRC signaling, the number of FH slots should be set to the same as or smaller than the number of repeated transmissions, but FH A value may be set in which the number of slots is larger than the number of repeated transmissions. In this case, the number of FH slots is interpreted as the same as the number of repeated transmissions, and the terminal device and the base station device perform transmission and reception processing. As a result, even when the number of repeated transmissions is dynamically notified by DCI and the number of FH slots is quasi-statically notified by RRC, the terminal device and the base station device can perform frequency hopping for each of a plurality of slots. ..
 PUSCHとして連続したスロット、あるいはOFDMシンボルを確保できる場合には、図4のように2スロットずつホップさせることができるが、必ずしも確保できるとは限らない。そこで名目上の繰り返しの中で、無効なOFDMシンボル(スロット)が含まれる場合の動作について説明を行う。名目上の繰り返しの中で、無効なOFDMシンボル(スロット)が含まれる場合を示す例を図5に示す。図5のように名目上の繰り返し送信に無効なOFDMシンボル(スロット)が含まれた場合、NRリリース16の仕様をそのまま適用すると、名目上の繰り返しに基づいて周波数ホッピングが適用されるため、4回目の繰り返しは3回目の繰り返しとは異なる周波数(ホップ)で送信されることになる。この場合、3回目と4回目の送信が同一の周波数リソースで送信されないため、異なる繰り返しにおけるDMRSを共有してチャネル推定精度を向上させることができなくなるという問題がある。そこで、名目上の繰り返し数(インデックス)に基づいて周波数ホッピングを行うのではなく、図6のように、実際の繰り返し数に基づいて周波数ホッピングを適用する。これにより、リソースが2連続となる場合は、同一の周波数リソースを用いた伝送を行うことができるようになる。これにより、DMRSバンドリングによりチャネル推定精度を向上させることができる。ところで、例えば実際の繰り返しインデックスに基づいて周波数ホッピングを決定する場合、無効なシンボルで分断されるにもかかわらず、同一の周波数リソースで送信される可能性がある。無線リソースが時間的に分断された場合にDMRSバンドリングを適用すると、チャネルが変動しているため、チャネル推定精度を上げることができない可能性がある。そこで、図7に示すように、無効なシンボル等により無線リソースが分断された場合、FHスロットインデックスをリセットすることで、時間的に連続する無線リソースを用いた周波数ホッピングを適用することができる。つまり、時間的に非連続となるリソースを用いて伝送する場合、周波数をホップさせるとしてもよい。ただしこの場合、無効ンシンボルの状況次第では、いずれかの周波数リソースが多く用いられた伝送となる可能性があり、周波数ダイバーシチ効果を最大化できないという懸念がある。そこで図8に示すように、実際の繰り返しインデックスのみによって周波数ホッピングを行うタイミングを制御してもよい。 If continuous slots or OFDM symbols can be secured as PUSCH, it is possible to hop two slots at a time as shown in FIG. 4, but it is not always possible to secure them. Therefore, the operation when an invalid OFDM symbol (slot) is included in the nominal repetition will be described. FIG. 5 shows an example showing a case where an invalid OFDM symbol (slot) is included in the nominal repetition. If the nominal repeat transmission contains an invalid OFDM symbol (slot) as shown in FIG. 5, if the specifications of NR release 16 are applied as they are, frequency hopping is applied based on the nominal repeat, so 4 The third iteration will be transmitted at a different frequency (hop) than the third iteration. In this case, since the third and fourth transmissions are not transmitted with the same frequency resource, there is a problem that the DMRS in different repetitions cannot be shared to improve the channel estimation accuracy. Therefore, instead of performing frequency hopping based on the nominal number of repetitions (index), frequency hopping is applied based on the actual number of repetitions as shown in FIG. As a result, when the resources are two consecutive, transmission using the same frequency resource can be performed. This makes it possible to improve the channel estimation accuracy by DMRS bundling. By the way, for example, when the frequency hopping is determined based on the actual repetition index, it may be transmitted by the same frequency resource even though it is divided by an invalid symbol. If DMRS bundling is applied when the radio resource is divided in time, it may not be possible to improve the channel estimation accuracy because the channel is fluctuating. Therefore, as shown in FIG. 7, when the radio resource is divided by an invalid symbol or the like, frequency hopping using the time-continuous radio resource can be applied by resetting the FH slot index. That is, when transmitting using resources that are discontinuous in time, the frequency may be hopped. However, in this case, depending on the situation of the invalid symbol, there is a possibility that the transmission may use a large amount of one of the frequency resources, and there is a concern that the frequency diversity effect cannot be maximized. Therefore, as shown in FIG. 8, the timing of frequency hopping may be controlled only by the actual repeat index.
 上記ではスロット間繰り返しを想定して説明を行ったが、スロット間繰り返しに限定されず、スロット内繰り返しに適用してもよい。この場合、RRCシグナリングまたはDCIによるシグナリングよるDMRSバンドリングに関する設定は、スロットではなく繰り返し単位、つまりスロット内での繰り返し数が基準となる。またさらに、QCLとするのはスロット内繰り返しの1スロット内に限定され、スロット外の繰り返しについてはQCLとみなさないとしてもよい。 In the above, the explanation is made assuming repetition between slots, but the explanation is not limited to repetition between slots, and may be applied to repetition within slots. In this case, the setting related to DMRS bundling by RRC signaling or signaling by DCI is based on the repeating unit, that is, the number of repetitions in the slot, not the slot. Further, the QCL is limited to one slot of the repetition in the slot, and the repetition outside the slot may not be regarded as the QCL.
 DMRSバンドリングが行える場合、他のスロットに含まれるDMRSを用いてチャネル補償を行うことができるため、必ずしもスロット内にDMRSを挿入する必要がない。DMRSを挿入しない場合、多くの情報ビット、あるいはパリティビットを送信することができるようになるため、通信の誤り率を下げることができるため、品質向上あるいはカバレッジ向上につなげることができる。例えば、RRCシグナリング等の制御情報によってDMRSの削減に関する設定が行われた場合、初回繰り返しのみにDMRSを挿入し、2回目以降の繰り返しにおいてはDMRSを挿入しない構成とすることで、多くの情報ビット、あるいはパリティビットを送信できるようになる。ただし、基地局装置が指定する繰り返しの内、2回目から送信を開始した場合、DMRSを送信しないことになってしまう。RVが0のスロット(繰り返し)のみにDMRSを配置し、RVが0以外のスロット(繰り返し)についてはDMRSを配置しない構成とする。上記を図6を用いて説明する。図6の上部は繰り返し送信におけるRVパターンが{0、0、0、0}の場合を示している。図は4スロット繰り返しを示しており、スロット内のDMRSシンボルを斜線で示し、データOFDMシンボルを点で模様を付けている。RVパターンが{0、0、0、0}の場合、全てのスロットにおいてDMRSを送信する。次に、RVパターンが{0、3、0、3}の場合、第1および第3スロットにおいてDMRSを送信し、第2および第4スロットではDMRSを含まない構成とする。RVパターンが{0、2、3、1}の場合、第1スロットにおいてのみDMRSを送信し、第2、第3および第4スロットではDMRSを含まない構成とする。つまり、NRではRVが0以外のスロット(繰り返し)から繰り返し送信を開始することは仕様化されていないため、必ずRV=0のスロットから送信を開始することになる。これにより、DMRSが含まれない伝送のみを行うことを回避することができる。ここで、RVが0以外のスロットではDMRSを含まない構成としたが、完全に含まない構成とするのではなく、削減するとしてもよい。例えばフロントローデッドDMRSのみを送信し、RRCで設定されるアディショナルDMRSについてはすべてあるいは一部を削減するとしてもよい。削減基準に関する情報はRRCシグナリングによって通知されるとしてもよい。ただし、スロット内周波数ホッピング/スロット間周波数ホッピング/繰り返し間周波数ホッピングが適用された場合に上記の送信を行うと、オフセットのかかったホップにおいてDMRSが送信されなくなる問題がある。そこで上記の周波数ホッピングのいずれかが適用された場合は、RRCによるDMRSバンドリングに関する設定がおこなれ、DMRSバンドリングが有効となっている場合においても、DMRSを繰り返し(スロット)毎に送信する構成としてもよい。なお、DMRS削減についてもRRCシグナリングまたはDCIによるシグナリングよって、前記DMRSの時間領域スロットに関する情報が通知され、設定されたスロット(繰り返し)毎に適用し、設定されたスロット外ではDMRSを送信する構成としてもよい。 If DMRS bundling can be performed, channel compensation can be performed using DMRS included in other slots, so it is not always necessary to insert DMRS into the slot. When DMRS is not inserted, many information bits or parity bits can be transmitted, so that the communication error rate can be reduced, which can lead to quality improvement or coverage improvement. For example, when the setting related to the reduction of DMRS is made by the control information such as RRC signaling, DMRS is inserted only in the first repetition and DMRS is not inserted in the second and subsequent repetitions, so that many information bits are used. , Or the parity bit can be transmitted. However, if the transmission is started from the second time among the repetitions specified by the base station device, the DMRS will not be transmitted. The DMRS is arranged only in the slot (repetition) where the RV is 0, and the DMRS is not arranged only in the slot (repetition) where the RV is other than 0. The above will be described with reference to FIG. The upper part of FIG. 6 shows the case where the RV pattern in repeated transmission is {0, 0, 0, 0}. The figure shows a 4-slot repeat, where the DMRS symbols in the slots are shaded and the data OFDM symbols are dotted. When the RV pattern is {0, 0, 0, 0}, DMRS is transmitted in all slots. Next, when the RV pattern is {0, 3, 0, 3}, DMRS is transmitted in the first and third slots, and DMRS is not included in the second and fourth slots. When the RV pattern is {0, 2, 3, 1}, DMRS is transmitted only in the first slot, and DMRS is not included in the second, third, and fourth slots. That is, in NR, it is not specified that the transmission is repeatedly started from the slot (repetition) where the RV is other than 0, so that the transmission is always started from the slot where the RV = 0. This makes it possible to avoid performing only transmission that does not include DMRS. Here, although the DMRS is not included in the slots other than 0 in the RV, the configuration may be reduced instead of completely not including the DMRS. For example, only the front loaded DMRS may be transmitted, and all or part of the additional DMRS set by the RRC may be reduced. Information on the reduction criteria may be communicated by RRC signaling. However, if the above transmission is performed when the intra-slot frequency hopping / inter-slot frequency hopping / inter-slot frequency hopping is applied, there is a problem that DMRS is not transmitted at the offset hop. Therefore, if any of the above frequency hopping is applied, DMRS bundling can be set by RRC, and even if DMRS bundling is enabled, DMRS is repeatedly transmitted (slot). May be. Regarding DMRS reduction, information about the DMRS time domain slot is notified by RRC signaling or DCI signaling, applied to each set slot (repetition), and DMRS is transmitted outside the set slot. May be good.
 無線送信部2070は、多重された信号をIFFT(Inverse Fast Fourier Transform)して、OFDMシンボルを生成する。無線送信部2070は、前記OFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成する。さらに、無線送信部2070は、前記ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送信アンテナ208を介して基地局装置10に送信する。 The wireless transmission unit 2070 performs an IFFT (Inverse Fast Fourier Transform) on the multiplexed signal to generate an OFDM symbol. The radio transmission unit 2070 adds a CP to the OFDM symbol to generate a baseband digital signal. Further, the radio transmission unit 2070 converts the baseband digital signal into an analog signal, removes an excess frequency component, converts it into a carrier frequency by up-conversion, amplifies the power, and makes a base station via the transmission antenna 208. It is transmitted to the device 10.
 受信部212は、無線受信部(無線受信ステップ)2120、多重分離部(多重分離ステップ)2122、伝搬路推定部(伝搬路推定ステップ)2144、等化部(等化ステップ)2126、復調部(復調ステップ)2128、復号部(復号ステップ)2130を含んで構成される。 The receiving unit 212 includes a wireless receiving unit (radio receiving step) 2120, a multiple separation unit (multiple separation step) 2122, a propagation path estimation unit (propagation path estimation step) 2144, an equalization unit (equalization step) 2126, and a demodulation unit (demodulation unit). It includes a demodulation step) 2128 and a decoding unit (decoding step) 2130.
 無線受信部2120は、受信アンテナ210を介して受信した下りリンク信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部2120は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対してFFTを行い、周波数領域の信号を抽出する。 The radio reception unit 2120 converts the downlink signal received via the reception antenna 210 into a baseband signal by down-conversion, removes unnecessary frequency components, and sets the amplification level so that the signal level is properly maintained. Based on the in-phase component and the quadrature component of the controlled and received signal, quadrature demodulation is performed and the quadrature demodulated analog signal is converted into a digital signal. The radio receiving unit 2120 removes a portion corresponding to the CP from the converted digital signal, performs FFT on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
 多重分離部2122は、前記抽出した周波数領域の信号を下りリンク参照信号、PDCCH、PDSCH、PBCHに分離する。伝搬路推定部2124は、下りリンク参照信号(DM-RSなど)を用いて、周波数応答(または遅延プロファイル)を推定する。復調用に伝搬路推定された周波数応答結果は、等化部1126へ入力される。伝搬路推定部2124は、下りリンク参照信号(CSI-RSなど)を用いて、上りリンクのチャネル状況の測定(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)、SINR(Signal to Interference plus Noise power Ratio)の測定)を行う。下りリンクのチャネル状況の測定は、PUSCHのためのMCSの決定などに用いられる。下りリンクのチャネル状況の測定結果は、CQIインデックスの決定などに用いられる。 The multiplex separation unit 2122 separates the extracted frequency domain signal into a downlink reference signal, PDCCH, PDSCH, and PBCH. The propagation path estimation unit 2124 estimates the frequency response (or delay profile) using a downlink reference signal (DM-RS, etc.). The frequency response result estimated for the propagation path for demodulation is input to the equalization unit 1126. The propagation path estimation unit 2124 uses a downlink reference signal (CSI-RS, etc.) to measure the uplink channel status (RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength). Indicator), SINR (Signal to Interference plus Noise power Ratio) measurement). The measurement of the downlink channel status is used for determining the MCS for the PUSCH and the like. The measurement result of the downlink channel status is used for determining the CQI index and the like.
 等化部2126は、伝搬路推定部2124より入力された周波数応答よりMMSE規範に基づく等化重みを生成する。等化部2126は、多重分離部2122からの入力信号(PUCCH、PDSCH、PBCHなど)に該等化重みを乗算する。復調部2128は、予め決められている/制御部204から指示される変調オーダーの情報に基づき、復調処理を行う。 The equalization unit 2126 generates an equalization weight based on the MMSE norm from the frequency response input from the propagation path estimation unit 2124. The equalization unit 2126 multiplies the input signal (PUCCH, PDSCH, PBCH, etc.) from the multiplex separation unit 2122 by the equalization weight. The demodulation unit 2128 performs demodulation processing based on predetermined modulation order information instructed by the control unit 204.
 復号部2130は、予め決められている符号化率/制御部204から指示される符号化率の情報に基づいて、前記復調部2128の出力信号に対して復号処理を行う。復号部2130は、復号後のデータ(DL-SCHなど)を上位層処理部202に入力する。 The decoding unit 2130 performs decoding processing on the output signal of the demodulation unit 2128 based on the information of the coding rate specified in advance from the coding rate / control unit 204. The decoding unit 2130 inputs the decrypted data (DL-SCH or the like) to the upper layer processing unit 202.
(第2の実施形態)
 第1の実施形態では、周波数ホッピングを行うまでの繰り返し数(スロット数)がRRCシグナリングで通知されることによって、ホップ変更する方法について説明を行った。本実施形態では、追加のRRCシグナリングを通知することなく、周波数をホップさせる方法について説明を行う。
(Second embodiment)
In the first embodiment, a method of changing the hop by notifying the number of repetitions (number of slots) until frequency hopping is performed by RRC signaling has been described. In this embodiment, a method of hopping a frequency without notifying an additional RRC signaling will be described.
 NRリリース16までの仕様では、RVとして0,1,2,3のいずれかが指定され、送信を行う。コンギュアドグラントスケジューリングの場合、RV系列(RVパターン)としては{0,0,0,0}、{0,3,0,3}、{0,2,3,1}のいずれかのパターンによって、繰り返し送信における決定される。例えば{0,3,0,3}の場合、1回目の送信と3回目の送信で同じ周波数によって送信を行うよりも、異なる周波数によって送信した方が周波数ダイバーシチ効果により良好な特性を得ることができる。そこで、図9に示すように、RVが0となる送信を行う場合、周波数ホッピングにより周波数をホップさせて伝送を行う。この結果、実際の繰り返しを2回行う毎に周波数を変更した伝送を行うことができるようになり、一部の周波数リソースに送信が偏ることがなくなる。{0,2,3,1}の場合、図10のように、実際の繰り返しを4回行う毎に周波数を変更した伝送を行う。ここで、RV系列(RVパターン)はRRCシグナリングによって基地局装置から端末装置に通知される。なお、RV系列は上記の3パターンに限らず、どのようなものであってもよく、同一のRVによる送信を行う場合に周波数をホッピングさせればどのような系列であっても適用することができる。RV系列によって周波数ホッピングを行う繰り返し数を決定するか否かはRRCシグナリングによって決定されてもよい。 In the specifications up to NR release 16, one of 0, 1, 2, and 3 is specified as the RV, and transmission is performed. In the case of regulatory scheduling, the RV series (RV pattern) is one of {0,0,0,0}, {0,3,0,3}, {0,2,3,1}. Is determined in repeated transmissions. For example, in the case of {0,3,0,3}, it is possible to obtain better characteristics due to the frequency diversity effect when transmitting at different frequencies than when transmitting at the same frequency in the first transmission and the third transmission. can. Therefore, as shown in FIG. 9, when transmission is performed in which the RV becomes 0, the frequency is hopped by frequency hopping and transmission is performed. As a result, it becomes possible to perform transmission in which the frequency is changed every time the actual repetition is performed twice, and the transmission is not biased to some frequency resources. In the case of {0,2,3,1}, as shown in FIG. 10, transmission is performed by changing the frequency every time the actual repetition is performed four times. Here, the RV series (RV pattern) is notified from the base station device to the terminal device by RRC signaling. The RV series is not limited to the above three patterns, and may be any series, and any series can be applied by hopping the frequency when transmitting by the same RV. can. Whether or not the number of iterations for frequency hopping is determined by the RV sequence may be determined by RRC signaling.
(第3の実施形態)
 第2の実施形態では、周波数ホッピングを行うまでの繰り返し数(スロット数)をRV系列と関連付ける方法について説明を行った。本実施形態では、DMRSバンドリングに関する情報と関連づける方法について説明を行う。
(Third embodiment)
In the second embodiment, a method of associating the number of repetitions (number of slots) until frequency hopping with the RV series has been described. In this embodiment, a method of associating with information on DMRS bundling will be described.
 RRCシグナリングまたはDCIによるシグナリングよって、DMRSバンドリングに関する設定が送信され、端末においてDMRSバンドリングに関する設定が行われた場合、RRCシグナリングまたはDCIによるシグナリングよって、DMRSの時間領域スロットに関する情報が端末装置に通知される。端末装置は初送のスロットから該時間領域スロットに関する情報によって決まるスロット数の間は、受信機である基地局装置によってDMRSバンドリングが適用できるように、送信を行う。言い換えると、QCL(Quasi-Colocation)とみなせるように送信を行う。つまりは、スロット間で伝搬路の振幅や位相が変更しないように(非連続とならないように)送信を行う。また時間領域スロットに関する情報によって指定されるスロットは連続ではなく、非連続なスロットがQCLとなるように送信されてもよい。なお、割り当てられた繰り返しの初回以外からの送信を可能とするか不可とするかは、RRCシグナリングによって設定されてもよい。 When the DMRS bundling setting is transmitted by RRC signaling or DCI signaling and the DMRS bundling setting is made at the terminal, the terminal device is notified of the DMRS time domain slot information by RRC signaling or DCI signaling. Will be done. The terminal device performs transmission so that DMRS bundling can be applied by the base station device, which is a receiver, between the number of slots determined by the information about the time domain slot from the slot of the first transmission. In other words, the transmission is performed so that it can be regarded as a QCL (Quasi-Colocation). That is, transmission is performed so that the amplitude and phase of the propagation path do not change between the slots (so that they do not become discontinuous). Further, the slots specified by the information about the time domain slots are not continuous, and the non-continuous slots may be transmitted so as to be QCL. It should be noted that whether or not transmission from a time other than the first assigned repetition may be enabled or disabled may be set by RRC signaling.
 周波数ホッピングを適用するタイミングは、上述のDMRSバンドリングと同期させてもよい。つまり、DMRSを共有する異なるスロット間では周波数ホッピングを適用せず、以前に送信したスロットとDMRSを共有しないスロットを送信する際に周波数をホッピングさせる構成としてもよい。これにより、複数スロットによる周波数ホッピングと、DMRSバンドリングで別々にRRCシグナリングによる設定が不要となり、制御情報を削減することができる。図11は、RRCシグナリング等の制御情報により、DMRSバンドリング数として3が通知された場合の周波数ホッピングの一例を示している。図にしめすように、実際の繰り返し数に応じて、繰り返し1から3についてはオフセットの無い周波数で送信を行い、4から6についてはオフセットが反映された周波数で送信を行うことになる。なおDMRSバンドリング数は、所定の値以下のどのような自然数を取るとしてもよいし、1,2,4,8といった2のべき乗を取るとしてもよいし、2のべき乗に1または複数の所定の値(例えば12)を加えたものの中からRRCシグナリングによって指定(通知)されてもよい。 The timing of applying frequency hopping may be synchronized with the above-mentioned DMRS bundling. That is, frequency hopping may not be applied between different slots that share DMRS, and the frequency may be hopping when transmitting a slot that does not share DMRS with a previously transmitted slot. As a result, frequency hopping by a plurality of slots and DMRS bundling do not need to be separately set by RRC signaling, and control information can be reduced. FIG. 11 shows an example of frequency hopping when 3 is notified as the DMRS bundling number by control information such as RRC signaling. As shown in the figure, according to the actual number of repetitions, the repetitions 1 to 3 are transmitted at a frequency without offset, and the repetitions 1 to 6 are transmitted at a frequency reflecting the offset. The DMRS bundling number may be any natural number less than or equal to a predetermined value, may be a power of 2 such as 1, 2, 4, 8, or may be one or more predetermined powers of 2. It may be specified (notified) by RRC signaling from the sum of the values of (for example, 12).
 図12にDMRSバンドリング数が3の場合において、無効なシンボルが含まれる場合の例を示す。実際の繰り返し数に基づいて周波数ホッピングを適用する場合、図のように実際の繰り返し数に基づいて制御を行うと、繰り返しが時間的に分断されることがある。そこで、DMRSバンドリングおよびそれに伴う周波数ホッピングについては、図13のように名目上の繰り返し数に基づいて行うとしてもよい。これにより、実際には無効なシンボルが多く存在して、連続なリソースが確保できない場合において、時間的にコヒーレントなスロットにおいてDMRSバンドリングを適用することができる。例えば図13において、名目上の繰り返しインデックス5に相当するスロットが送信できない場合を図14に示す。この場合、実際の繰り返しインデックス3と実際の繰り返しインデックス4は時間的に連続しないスロットとなるが、名目上の繰り返しインデックス3から名目上の繰り返しインデックス5に含まれており、DMRSバンドリングを適用することができるため、チャネル推定精度を向上させることができる。なお、実際の繰り返しインデックスに基づいてDMRSバンドリングおよび/あるいは周波数ホッピングを適用するか、名目上の繰り返しインデックスに基づいて決定するかをRRCシグナリング等の制御情報に基づいて決定するとしてもよい。 FIG. 12 shows an example in which an invalid symbol is included when the number of DMRS bundling is 3. When frequency hopping is applied based on the actual number of repetitions, if control is performed based on the actual number of repetitions as shown in the figure, the repetitions may be divided in time. Therefore, DMRS bundling and the frequency hopping associated therewith may be performed based on the nominal number of repetitions as shown in FIG. This makes it possible to apply DMRS bundling in temporally coherent slots when there are actually many invalid symbols and continuous resources cannot be secured. For example, in FIG. 13, the case where the slot corresponding to the nominal repeat index 5 cannot be transmitted is shown in FIG. In this case, the actual repeat index 3 and the actual repeat index 4 are slots that are not continuous in time, but are included in the nominal repeat index 3 to the nominal repeat index 5, and DMRS bundling is applied. Therefore, the channel estimation accuracy can be improved. It should be noted that DMRS bundling and / or frequency hopping may be applied based on the actual repeat index, or may be determined based on the nominal repeat index based on control information such as RRC signaling.
 本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program that operates on the apparatus according to the present invention may be a program that controls the Central Processing Unit (CPU) or the like to operate the computer so as to realize the functions of the above-described embodiment according to the present invention. The program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) at the time of processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and is required. The CPU reads, corrects, and writes accordingly.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。 It should be noted that a part of the apparatus in the above-described embodiment may be realized by a computer. In that case, the program for realizing the function of the embodiment may be recorded on a computer-readable recording medium. It may be realized by having a computer system read a program recorded on this recording medium and executing the program. The term "computer system" as used herein is a computer system built into a device and includes hardware such as an operating system and peripheral devices. Further, the "computer-readable recording medium" may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Furthermore, a "computer-readable recording medium" is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In that case, a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client, may be included. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, each functional block or feature of the device used in the above-described embodiment can be implemented or executed in an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits. Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others. Programmable Logic Devices, Discrete Gate or Transistor Logic, Discrete Hardware Components, or Combinations thereof. The general purpose processor may be a microprocessor, a conventional processor, a controller, a microcontroller, or a state machine. The electric circuit described above may be composed of a digital circuit or an analog circuit. In addition, when an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 The invention of the present application is not limited to the above-described embodiment. In the embodiment, an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors and outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like within a range not deviating from the gist of the present invention are also included. Further, the present invention can be variously modified within the scope of the claims, and the technical scope of the present invention also includes embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Will be. Further, the elements described in each of the above-described embodiments are included, and a configuration in which elements having the same effect are replaced with each other is also included.
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。 The present invention is suitable for use in base station devices, terminal devices and communication methods.

Claims (8)

  1.  基地局装置宛に繰り返し送信によって送信を行う端末装置であって、
    前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、
    前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、
    前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する端末装置。
    A terminal device that repeatedly transmits to a base station device.
    An upper layer processing unit that sets a nominal number of repetitions in the repeated transmission and a frequency hopping method for changing the transmission frequency in the repeated transmission.
    A transmission unit that determines the actual number of repetitions based on the nominal number of repetitions and transmits the actual number of repetitions is provided.
    The transmitter is a terminal device that applies frequency hopping based on the number of iterations to which DMRS bundling is applied and the nominal number of iterations.
  2. 前記DMRSバンドリングを適用する繰り返し数は、前記上位層処理部によって設定される請求項1記載の端末装置。 The terminal device according to claim 1, wherein the number of repetitions to which the DMRS bundling is applied is set by the upper layer processing unit.
  3. 前記DMRSバンドリングを適用する繰り返し数は、上位層処理部で設定されるリダンダンシーバージョン系列と関連付けられる請求項1記載の端末装置。 The terminal device according to claim 1, wherein the number of iterations to which the DMRS bundling is applied is associated with a redundancy version series set by the upper layer processing unit.
  4. 前記周波数ホッピングは、前記周波数ホッピング法が所定の方法を示すときに適用され、前記所定の方法以外を示す場合、前記送信部は、前記名目上の繰り返し数に基づいて周波数ホッピングを適用する請求項1から3のいずれかに記載の端末装置。 The frequency hopping is applied when the frequency hopping method indicates a predetermined method, and when a method other than the predetermined method is indicated, the transmitter applies frequency hopping based on the nominal number of repetitions. The terminal device according to any one of 1 to 3.
  5.  端末装置宛に繰り返し送信によって送信を行う基地局装置であって、
    前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、
    前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、
    前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する基地局装置。
    A base station device that repeatedly sends to a terminal device.
    An upper layer processing unit that sets a nominal number of repetitions in the repeated transmission and a frequency hopping method for changing the transmission frequency in the repeated transmission.
    A transmission unit that determines the actual number of repetitions based on the nominal number of repetitions and transmits the actual number of repetitions is provided.
    The transmitter is a base station apparatus that applies frequency hopping based on the number of iterations to which DMRS bundling is applied and the nominal number of iterations.
  6. 前記DMRSバンドリングを適用する繰り返し数は、前記上位層処理部によって設定される請求項5記載の基地局装置。 The base station apparatus according to claim 5, wherein the number of repetitions to which the DMRS bundling is applied is set by the upper layer processing unit.
  7. 前記DMRSバンドリングを適用する繰り返し数は、上位層処理部で設定されるリダンダンシーバージョン系列と関連付けられる請求項5記載の基地局装置。 The base station apparatus according to claim 5, wherein the number of iterations to which the DMRS bundling is applied is associated with a redundancy version series set by the upper layer processing unit.
  8. 前記周波数ホッピングは、前記周波数ホッピング法が所定の方法を示すときに適用され、前記所定の方法以外を示す場合、前記送信部は、前記名目上の繰り返し数に基づいて周波数ホッピングを適用する請求項5から7のいずれかに記載の基地局装置。 The frequency hopping is applied when the frequency hopping method indicates a predetermined method, and when a method other than the predetermined method is indicated, the transmitter applies frequency hopping based on the nominal number of repetitions. The base station apparatus according to any one of 5 to 7.
PCT/JP2021/037800 2020-10-16 2021-10-13 Terminal device, and base station device WO2022080390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020174911A JP2023166647A (en) 2020-10-16 2020-10-16 Terminal device and base station device
JP2020-174911 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080390A1 true WO2022080390A1 (en) 2022-04-21

Family

ID=81208233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037800 WO2022080390A1 (en) 2020-10-16 2021-10-13 Terminal device, and base station device

Country Status (2)

Country Link
JP (1) JP2023166647A (en)
WO (1) WO2022080390A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 16)", 3GPP DRAFT; DRAFT38214-G30, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 30 September 2020 (2020-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051936896 *
APPLE INC.: "Remaining issues on PUSCH enhancements", 3GPP DRAFT; R1-2000856, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 15 February 2020 (2020-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051853474 *
SHARP: "PUSCH coverage enhancement", 3GPP DRAFT; R1-2008399, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051940128 *
VIVO: "PUSCH enhancements for URLLC", 3GPP DRAFT; R1-1901694 PUSCH ENHANCEMENTS FOR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 16 February 2019 (2019-02-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051599390 *

Also Published As

Publication number Publication date
JP2023166647A (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US11109267B2 (en) Base station apparatus, terminal apparatus, and communication method for these apparatuses
JP6723388B2 (en) Base station device, terminal device and communication method thereof
JP6926043B2 (en) Terminal equipment, base station equipment and their communication methods
WO2019216410A1 (en) Terminal device and base station device
JP7100969B2 (en) Terminal equipment and base station equipment
WO2019131021A1 (en) Base station device, terminal device and communication method therefor
WO2018230694A1 (en) Base station device, terminal device, and communication method therefor
WO2020138004A1 (en) Terminal device and base station device
WO2019065213A1 (en) Communication device
WO2020090646A1 (en) Terminal device and base station device
WO2022186230A1 (en) Terminal device and base station device
WO2020138005A1 (en) Terminal device and base station device
WO2022080390A1 (en) Terminal device, and base station device
WO2022030598A1 (en) Terminal device and base station device
WO2022080391A1 (en) Terminal device, and base station device
JP2019033415A (en) Base station device, terminal device and communication method for the same
WO2023026673A1 (en) Terminal device, and base station device
WO2020090645A1 (en) Terminal device and base station device
US20210307017A1 (en) Method for wireless communication and terminal device thereof
WO2019194271A1 (en) Terminal device
WO2019156084A1 (en) Terminal device and base station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP