WO2022080334A1 - 作業車両の制御システム、作業車両の制御方法、および作業車両 - Google Patents

作業車両の制御システム、作業車両の制御方法、および作業車両 Download PDF

Info

Publication number
WO2022080334A1
WO2022080334A1 PCT/JP2021/037638 JP2021037638W WO2022080334A1 WO 2022080334 A1 WO2022080334 A1 WO 2022080334A1 JP 2021037638 W JP2021037638 W JP 2021037638W WO 2022080334 A1 WO2022080334 A1 WO 2022080334A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
work vehicle
vehicle
pitch
controller
Prior art date
Application number
PCT/JP2021/037638
Other languages
English (en)
French (fr)
Inventor
裕輔 山▲崎▼
友起 安藤
総一 津村
拓斗 本村
研二 岡本
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to AU2021361368A priority Critical patent/AU2021361368B2/en
Priority to US18/044,441 priority patent/US20240026637A1/en
Publication of WO2022080334A1 publication Critical patent/WO2022080334A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/841Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • E02F3/847Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7609Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
    • E02F3/7618Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers with the scraper blade adjustable relative to the pivoting arms about a horizontal axis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles

Definitions

  • the present disclosure relates to a work vehicle control system, a work vehicle control method, and a work vehicle.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-171979 filed in Japan on October 12, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a technique relating to a bulldozer that improves the efficiency of excavation, soil transportation, and soil removal by switching the pitch angle of the blade. According to Patent Document 1, the pitch angle of the blade can be changed by tilting the operation lever with the tilt / pitch changeover switch turned on.
  • An object of the present disclosure is to provide a work vehicle control device that automatically controls the blade pitch according to the work state of the work vehicle, and a work vehicle control method.
  • the present invention is a control system for a work vehicle having a vehicle body and a work machine capable of changing the height and pitch with respect to the vehicle body, and includes a controller.
  • the controller determines the switching point with reference to the target displacement data indicating the target displacement of the height of the work machine according to the amount of movement of the work vehicle from the work start position.
  • the controller determines whether or not the work vehicle has reached the switching point based on the amount of movement of the work vehicle from the work start position. When it is determined that the work vehicle has reached the switching point, the controller outputs a command to change the pitch of the work machine.
  • the switching point is determined with reference to the target displacement data indicating the target displacement of the height of the work machine according to the movement amount of the work vehicle from the work start position.
  • the second process determines whether or not the work vehicle has reached the switching point based on the amount of movement of the work vehicle from the work start position.
  • the third process outputs a command to change the pitch of the work machine when it is determined that the work vehicle has reached the switching point.
  • the work vehicle includes a vehicle body, a work machine whose height and pitch can be changed with respect to the vehicle body, and a controller.
  • the controller determines the switching point with reference to the target displacement data indicating the target displacement of the height of the work machine according to the amount of movement of the work vehicle from the work start position.
  • the controller determines whether or not the work vehicle has reached the switching point based on the amount of movement of the work vehicle from the work start position.
  • the controller outputs a command to change the pitch of the work machine so that the work machine tilts backward with respect to the vehicle body.
  • control device can automatically control the pitch of the blades according to the working state of the work vehicle.
  • FIG. 1 is a side view of the work vehicle 100 according to the first embodiment.
  • the work vehicle 100 according to the first embodiment is, for example, a bulldozer.
  • the work vehicle 100 includes a vehicle body 110, a traveling device 120, and a working machine 130.
  • the vehicle body 110 has a driver's cab 140.
  • the driver's cab 140 is provided on the upper part of the vehicle body 110.
  • a driver's seat (not shown) is arranged in the driver's cab 140.
  • the traveling device 120 is provided at the lower part of the vehicle body 110.
  • the traveling device 120 has a pair of left and right tracks 121, a sprocket 122, and an idler 124. In FIG. 1, only the left crawler belt 121, the sprocket 122, and the idler 124 are shown.
  • the work vehicle 100 travels due to the rotation of the crawler belt 121.
  • the traveling of the work vehicle 100 may be in any form of autonomous traveling, semi-autonomous traveling, and traveling operated by an operator.
  • a rotation sensor 123 is provided on the rotation axis of the sprocket 122.
  • the rotation sensor 123 measures the rotation speed of the rotation axis of the sprocket 122.
  • the rotation speed of the rotation shaft of the sprocket 122 can be converted into the speed of the traveling device 120 and the movement amount of the vehicle body 110.
  • the working machine 130 is used for excavating and transporting an excavation target such as earth and sand.
  • the working machine 130 is provided at the front portion of the vehicle body 110.
  • the working machine 130 has a lift frame 131, a blade 132, a lift cylinder 133, and a pitch cylinder 134.
  • the lift frame 131 is attached to the side surface of the vehicle body 110 via a pin extending in the vehicle width direction.
  • the lift frame 131 is rotatably supported in the vertical direction with respect to the vehicle body 110 about the axis X1 extending in the vehicle width direction.
  • the lift frame 131 supports the blade 132.
  • the blade 132 is attached to the front of the vehicle body 110 via the lift frame 131.
  • the blade 132 is rotatably supported with respect to the lift frame 131 about an axis X2 extending in the vehicle width direction.
  • the blade 132 moves up and down as the lift frame 131 moves up and down.
  • a cutting edge 132e is provided at the lower end of the front surface of the blade 132.
  • the lift cylinder 133 is a hydraulic cylinder.
  • the lift cylinder 133 is connected to the vehicle body 110 and the blade 132. As the lift cylinder 133 expands and contracts, the lift frame 131 and the blade 132 rotate in the vertical direction about the axis X1.
  • the pitch cylinder 134 is a hydraulic cylinder.
  • the pitch cylinder 134 is connected to the lift frame 131 and the blade 132.
  • the pitch cylinder 134 expands and contracts, the blade 132 rotates about the axis X2 with respect to the lift frame 131. More specifically, as the pitch cylinder 134 extends, the blade 132 tilts forward (pitch dump) with respect to the lift frame 131 about the axis X2.
  • the pitch cylinder 134 shrinks, the blade 132 tilts (pitch back) rearward of the vehicle body about the axis X2 with respect to the lift frame 131.
  • FIG. 2 is a diagram showing the posture of the blade 132 according to the first embodiment.
  • the blade 132 is switched to an excavation posture, a soil transport posture, and a soil discharge posture by a controller 320 described later.
  • the excavation posture is a posture in which the angle of the cutting edge of the blade 132 is the first angle (for example, 52 degrees) with respect to the bottom surface of the track 121.
  • the soil transportation posture is a posture in which the angle of the cutting edge of the blade 132 is set as the second angle by inclining the blade 132 to the rear of the vehicle body as much as possible.
  • the soil removal posture is a posture in which the angle of the cutting edge of the blade 132 is set to the third angle by inclining the blade 132 to the front of the vehicle body.
  • the first angle is larger than the second angle and smaller than the third angle.
  • FIG. 3 is a block diagram showing a configuration of the drive system 200 and the control system 300 of the work vehicle 100 according to the first embodiment.
  • the drive system 200 includes a power source 210, a PTO (Power Take Off) 220, a power transmission device 230, and a hydraulic pump 240.
  • the power source 210 is, for example, a diesel engine.
  • the PTO 220 transmits a part of the driving force of the power source 210 to the hydraulic pump 240. That is, the PTO 220 distributes the driving force of the power source 210 to the power transmission device 230 and the hydraulic pump 240.
  • the power transmission device 230 transmits the driving force of the power source 210 to the traveling device 120.
  • the power transmission device 230 may be, for example, an HST (Hydro Static Transmission).
  • the power transmission device 230 is, for example, a torque converter, a transmission having a plurality of transmission gears, an HMT (Hydraulic Mechanical Transmission), or an electric transmission device in which a generator and a drive electric motor are combined. May be good.
  • the hydraulic pump 240 is driven by the power source 210 and discharges hydraulic oil.
  • the hydraulic oil discharged from the hydraulic pump 240 is supplied to the lift cylinder 133 and the pitch cylinder 134 via the control valve 330.
  • the control valve 330 controls the flow rate of the hydraulic oil discharged from the hydraulic pump 240.
  • Control system 300 includes an operating device 310, a controller 320, and a control valve 330.
  • the operating device 310 is a device for operating the working machine 130 and the traveling device 120.
  • the operating device 310 is arranged in the driver's cab 140.
  • the operation device 310 receives an operation by an operator for driving the working machine 130 and the traveling device 120, and outputs an operation signal corresponding to the operation.
  • the operating device 310 includes, for example, an operating lever, a pedal, a switch, and the like.
  • the operating device 310 includes a pitch operating switch 312 for controlling the pitch of the blade 132.
  • the pitch operation switch 312 is, for example, a momentary switch that can be operated at a pitch dump position and a pitch back position.
  • the operation signal of the pitch operation switch 312 is output to the controller 320.
  • the controller 320 sends a command signal for controlling the pitch cylinder 134 so that the blade 132 rotates about the axis X2 with respect to the lift frame 131. Output to.
  • the controller 320 controls the control valve 330 so that the blade 132 tilts forward of the vehicle body when the operation position of the pitch operation switch 312 is the pitch dump position.
  • the controller 320 controls the control valve 330 so that the blade 132 tilts to the rear of the vehicle body when the operation position of the pitch operation switch 312 is the pitch back position.
  • the pitch operation switch 312 may be composed of two push buttons that output pitch dump operation signals and pitch back operation signals, respectively.
  • the controller 320 controls the work vehicle 100.
  • the controller 320 automatically controls the working machine 130 based on the current topography of the construction site, the final design surface, and the measured values of various sensors by a program described later.
  • the control valve 330 is a proportional control valve and is controlled by a command signal from the controller 320.
  • the control valve 330 is arranged between the hydraulic actuators such as the lift cylinder 133 and the pitch cylinder 134 and the hydraulic pump 240.
  • the control valve 330 controls the flow rate of the hydraulic oil supplied from the hydraulic pump 240 to the lift cylinder 133 and the pitch cylinder 134.
  • the controller 320 generates a command signal to the control valve 330 so that the blade 132 operates in response to the operation of the operating device 310 described above.
  • the lift cylinder 133 and the pitch cylinder 134 are controlled according to the operation amount of the operation device 310.
  • the control valve 330 may be a pressure proportional control valve.
  • the control valve 330 may be an electromagnetic proportional control valve.
  • the control system 300 includes a stroke sensor 133s.
  • the stroke sensor 133s detects the stroke amount of the lift cylinder 133.
  • the position of the cutting edge 132e in the vehicle body coordinate system which is the local coordinate system with respect to the vehicle body 110, can be calculated.
  • the controller 320 calculates the rotation angle of the lift frame 131 based on the stroke amount of the lift cylinder 133. Since the dimensions of the lift frame 131 and the blade 132 are known, the position of the cutting edge 132e of the blade 132 can be specified from the rotation angle of the lift frame 131.
  • the work vehicle 100 may detect the angle of rotation by another sensor such as an encoder.
  • the control system 300 includes a position detection device 340.
  • the position detection device 340 measures the position of the work vehicle 100.
  • the position detection device 340 includes a GNSS (Global Navigation Satellite System) receiver 341 and an IMU (Inertial Measurement Unit) 342.
  • the GNSS receiver 341 is, for example, a receiver for GPS (Global Positioning System).
  • the antenna of the GNSS receiver 341 is mounted, for example, on the driver's cab 140.
  • the GNSS receiver 341 receives a positioning signal from the satellite, calculates the position of the antenna by the positioning signal, and generates vehicle position data.
  • the GNSS receiver 341 outputs the position data of the work vehicle 100 to the controller 320.
  • the IMU342 acquires vehicle body tilt angle data and vehicle body acceleration data.
  • the vehicle body tilt angle data includes an angle with respect to the horizontal in the front-rear direction of the vehicle (pitch angle) and an angle with respect to the horizontal in the lateral direction of the vehicle (roll angle).
  • the vehicle body acceleration data includes the acceleration of the work vehicle 100.
  • the IMU342 outputs the vehicle body tilt angle data and the vehicle body acceleration data to the controller.
  • the controller 320 obtains the traveling direction and the vehicle speed of the work vehicle 100 from the vehicle body acceleration data.
  • FIG. 4 is a schematic block diagram showing the configuration of the controller 320 of the work vehicle 100 according to the first embodiment.
  • the controller 320 is a computer including a processor 321, a main memory 322, a storage 323, and an interface 324.
  • the processor 321 calculates and processes the operation of the working machine 130 by executing the program.
  • the main memory 322 stores the design terrain data and the work site terrain data.
  • the design terrain data indicates the final design terrain.
  • the final design terrain is the final target shape of the surface of the work site.
  • the design topography data is, for example, a civil engineering construction drawing in a three-dimensional data format.
  • the work site topography data shows the current topography of the work site.
  • the work site topographical data is, for example, a current topographical survey map in a three-dimensional data format.
  • Work site topography data can be obtained, for example, by aerial laser surveying.
  • Storage 323 is a non-temporary tangible storage medium. Examples of the storage 323 include magnetic disks, magneto-optical disks, semiconductor memories, and the like. The storage 323 may be an internal medium directly connected to the bus of the controller 320, or an external medium connected to the controller 320 via the interface 324 or a communication line. The storage 323 stores a program for controlling the work vehicle 100.
  • the controller 320 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
  • PLD Programmable Logic Device
  • Examples of PLD include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PLD Programmable Integrated Circuit
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • FIG. 5 is a flowchart showing a control process of the working machine 130 according to the first embodiment.
  • the posture of the blade 132 takes an excavation posture.
  • step S1 the controller 320 acquires the current position data from the position detection device 340.
  • the controller 320 acquires the design terrain data of the construction site.
  • the design terrain data includes the height Zdesign of the final design terrain 60 at a plurality of reference points in the traveling direction of the work vehicle 100.
  • the plurality of reference points indicate a plurality of points at predetermined intervals along the traveling direction of the work vehicle 100.
  • the plurality of reference points are on the traveling path of the blade 132.
  • the final design terrain 60 has a flat shape parallel to the horizontal direction, but may have a different shape.
  • the design terrain data may be acquired via the interface 324, may be acquired via an external storage device, or may be acquired from another device connected via a network.
  • the controller 320 stores the design terrain data in the main memory 322.
  • step S3 the controller 320 acquires the current topographical data of the construction site.
  • the controller 320 acquires the current terrain data by calculation from the work site terrain data obtained from the main memory 322, the vehicle body position data and the traveling direction data obtained from the position detection device 340.
  • the current terrain data is information indicating the terrain located in the traveling direction of the work vehicle 100.
  • FIG. 6 shows a cross section of the current terrain 50. In FIG. 6, the vertical axis indicates the height of the terrain, and the horizontal axis indicates the distance from the current position in the traveling direction of the work vehicle 100.
  • step S4 the controller 320 acquires the work start position.
  • the controller 320 calculates the position of the cutting edge 132e of the blade 132 in the field coordinate system based on the measured value of the stroke sensor 133s and the measured value of the position detection device 340, and the position of the cutting edge 132e is the first to be the height of the current terrain. The position when the value falls below is acquired as the excavation start position.
  • the controller 320 may acquire the excavation start position by another method.
  • the controller 320 may acquire the excavation start position based on the operation of the working machine operating device 311.
  • the controller 320 may acquire the excavation start position based on an operation such as a button or a screen operation using a touch panel.
  • step S5 the controller 320 acquires the movement amount of the work vehicle 100.
  • the controller 320 acquires the distance traveled from the excavation start position to the current position in the traveling path of the blade 132 as the movement amount.
  • the movement amount of the work vehicle 100 may be the movement amount of the vehicle body 110.
  • the amount of movement of the work vehicle 100 may be the amount of movement of the cutting edge 132e.
  • step S6 the controller 320 determines the target design terrain data.
  • the target design terrain data shows the target design terrain 70 shown by the broken line in FIG.
  • the target design terrain 70 indicates the desired trajectory of the cutting edge 132e of the blade 132 in the work.
  • the target design terrain 70 is the desired terrain profile as a result of the excavation work.
  • the controller 320 determines the target design terrain 70 displaced downward by the displacement distance ⁇ Z from the current terrain 50.
  • the displacement distance ⁇ Z is the target displacement in the vertical direction at each reference point.
  • the displacement distance ⁇ Z is the target depth at each reference point, and indicates the target position of the blade 132 below the current terrain 50.
  • the target position of the blade 132 means the position of the cutting edge 132e of the blade 132.
  • the displacement distance ⁇ Z indicates the amount of soil per unit movement amount excavated by the blade 132. Therefore, the target design topographical data shows the relationship between a plurality of reference points and a plurality of target soil volumes.
  • the controller 320 determines the target design terrain 70 so as not to exceed the final design terrain 60 downward. Therefore, the controller 320 determines the target design terrain 70 whose target height is equal to or higher than the final design terrain 60 and located below the current terrain 50.
  • the controller 320 determines the height Z of the target design terrain 70 by the following equation (1).
  • ⁇ Z is the displacement distance
  • FIG. 6 shows the excavation depth.
  • t1 is a magnification based on traction force data indicating the magnitude of traction force available to the work vehicle.
  • T2 is the magnification based on the blade specification data.
  • the blade specification data is determined according to the specifications of the selected blade.
  • the Z_offset is a target displacement determined according to the amount of movement of the work vehicle 100.
  • the target displacement Z_offset is an example of a target load parameter related to the load on the blade 132.
  • the target displacement Z_offset indicates the amount of displacement of the blade 132 in the height direction (vertical direction) from the ground surface.
  • FIG. 7 is a diagram showing an example of the target displacement data C.
  • the target displacement data C shows the excavation depth (target displacement) Z_offset in the vertical downward direction from the ground surface of the blade 132 as a dependent variable of the horizontal movement amount n of the work vehicle 100.
  • the horizontal movement amount n of the work vehicle 100 is substantially the same as the horizontal movement amount of the blade 132.
  • the controller 320 determines the target displacement Z_offset from the movement amount n of the work vehicle 100 with reference to the target displacement data C shown in FIG. 7.
  • the target displacement data C defines the relationship between the movement amount n of the work vehicle 100 and the target displacement Z_offset.
  • the target displacement data C is stored in the main memory 322.
  • the values of t1 and t2 are set to 1, and the displacement distance ⁇ Z is assumed to be equal to the target displacement Z_offset.
  • the target displacement data C includes start data c1, excavation data c2, transition data c3, and soil transportation data c4.
  • the start data c1 defines the relationship between the movement amount n in the excavation start region and the target displacement Z_offset.
  • the excavation start area is an area from the excavation start point S to the steady excavation start point D.
  • the target displacement Z_offset that gradually increases with the increase of the movement amount n is defined.
  • the start data c1 defines a target displacement Z_offset that linearly increases with respect to the movement amount n.
  • the excavation data c2 defines the relationship between the movement amount n in the excavation area and the target displacement Z_offset.
  • the excavation area is an area from the steady excavation start point D to the soil transfer start point T.
  • the target displacement Z_offset is defined as a constant value in the excavation region.
  • the excavation data c2 defines a constant target displacement Z_offset with respect to the movement amount n.
  • the transition data c3 defines the relationship between the movement amount n in the transportation transition region and the target displacement Z_offset.
  • the transportation transition area is an area from the transportation transition start point T to the transportation start point P.
  • the target displacement Z_offset that gradually decreases as the movement amount n increases is defined in the transportation transition region.
  • the transition data c3 defines a target displacement Z_offset that linearly decreases with respect to the movement amount n.
  • the soil transportation data c4 defines the relationship between the movement amount n in the soil transportation area and the target displacement Z_offset.
  • the soil transportation area is an area starting from the soil transportation start point P.
  • the target displacement Z_offset is defined as a constant value in the soil transportation region.
  • the soil transportation data c4 defines a constant target displacement Z_offset with respect to the movement amount n.
  • the excavation area starts from the first start value b1 and ends at the first end value b2.
  • the soil transportation area starts from the second starting value b3.
  • the first end value b2 is smaller than the second start value b3. Therefore, the excavation area is started when the movement amount n is smaller than that of the soil transportation area.
  • the target displacement Z_offset in the excavation region is constant at the first target value a1.
  • the target displacement Z_offset in the soil transport area is constant at the second target value a2.
  • the first target value a1 is larger than the second target value a2. Therefore, a displacement distance ⁇ Z larger than that in the soil transportation area is defined in the excavation area.
  • the target displacement Z_offset at the excavation start position is the start value a0.
  • the starting value a0 is smaller than the first target value a1.
  • the starting target value a0 is smaller than the second target value a2.
  • FIG. 8 is a flowchart showing the determination process of the target displacement Z_offset.
  • the determination process is started when the operating device 310 for operating the traveling device 120 moves to the forward position.
  • the controller 320 determines whether the movement amount n is 0 or more and is less than the first start value b1.
  • the controller 320 gradually increases the target displacement Z_offset from the start value a0 in accordance with the increase in the movement amount n.
  • the start value a0 is a constant and is stored in the main memory 322.
  • the starting value a0 is preferably a small value so that the load on the blade 132 at the start of excavation does not become excessively large.
  • the first start value b1 is obtained by calculation from the slope c1 in the excavation start region shown in FIG. 7, the start value a0, and the first target value a1.
  • the slope c1 is a constant and is stored in the main memory 322. It is preferable that the inclination c1 is a value that can quickly shift from the start of excavation to the excavation work and that the load on the blade 132 does not become excessively large.
  • step S203 the controller 320 determines whether the movement amount n is equal to or more than the first start value b1 and less than the first end value b2.
  • the controller 320 sets the target displacement Z_offset to the first target value a1.
  • the first target value a1 is a constant and is stored in the main memory 322.
  • the first target value a1 is preferably a value that enables efficient excavation and does not excessively increase the load on the blade 132.
  • step S205 the controller 320 determines whether the movement amount n is equal to or more than the first end value b2 and less than the second start value b3.
  • step S206 the controller 320 sets the target displacement Z_offset to the first target value a1 in accordance with the increase in the movement amount n. Gradually reduce from.
  • the first end value b2 is the amount of movement when the amount of soil currently held by the blade 132 exceeds a predetermined threshold value. Therefore, when the current amount of soil held by the blade 132 exceeds a predetermined threshold value, the controller 320 reduces the target displacement Z_offset from the first target value a1.
  • the predetermined threshold is determined, for example, based on the maximum capacity of the blade 132.
  • the current amount of soil held by the blade 132 may be determined by calculation from the load measured on the blade 132.
  • an image of the blade 132 may be acquired by a camera and the image may be analyzed to calculate the current amount of soil held by the blade 132.
  • the point cloud data of the blade 132 may be acquired by a scanner and the current amount of soil held by the blade 132 may be calculated by analyzing the point cloud data.
  • a predetermined initial value is set as the first end value b2.
  • the movement amount when the amount of soil held by the blade 132 exceeds a predetermined threshold value is stored as an update value, and the first end value b2 is updated based on the stored update value.
  • step S207 the controller 320 determines whether the movement amount n is equal to or greater than the second start value b3. When the movement amount n is equal to or greater than the second start value b3, in step S208, the controller 320 sets the target displacement Z_offset to the second target value a2.
  • the second target value a2 is a constant and is stored in the main memory 322.
  • the second target value a2 is preferably set to a value suitable for soil transportation work.
  • the second target value a2 may be set so that the target displacement Z_offset in the soil transport area becomes 0. That is, the second target value a2 may be a value equal to or less than the initial target value a0.
  • the second start value b3 is obtained by calculation from the slope c3 in the land transportation transition region shown in FIG. 7, the first target value a1, and the second target value a2.
  • the slope c3 is a constant and is stored in the main memory 322. It is preferable that the inclination c3 is a value such that the excavation work can be quickly shifted to the soil transportation work and the load on the blade 132 is not excessively increased.
  • the start value a0, the first target value a1, and the second target value a2 may be changed according to the situation of the work vehicle 100 and the like.
  • the first start value b1, the first end value b2, and the second start value b3 may be stored in the main memory 322 as constants.
  • the height Z of the target design terrain 70 is determined by determining the target displacement Z_offset.
  • step S7 the controller 320 controls the working machine 130 toward the target design terrain 70.
  • the controller 320 generates a command signal to the working machine 130 so that the position of the cutting edge 132e of the blade 132 moves toward the target design terrain 70 created in step S6.
  • the generated command signal is input to the control valve 330.
  • the cutting edge 132e of the blade 132 moves along the target design terrain 70.
  • the displacement distance ⁇ Z between the current terrain 50 and the target design terrain 70 is larger than in other areas.
  • excavation work of the existing terrain 50 is performed.
  • the displacement distance ⁇ Z between the current terrain 50 and the target design terrain 70 is smaller than in other areas.
  • step S8 the controller 320 determines whether the work vehicle 100 has reached the switching point or the pitch operation switch 312 has been continuously operated to the bitch back position by the operator for a certain period of time based on the movement amount acquired in step S5. judge.
  • the switching point is either a point separated by a first distance from the excavation start point, a point separated by a second distance, or a point separated by a third distance from the excavation start point.
  • the switching point can be appropriately selected by the operator. As shown in FIG. 7, the point separated by the first distance from the excavation start point corresponds to the steady excavation start point D. Further, the point separated by the second distance from the excavation start point corresponds to the soil transfer start point T. Further, the point separated by the third distance from the excavation start point corresponds to the soil transportation start point P.
  • the determination reference position is the position of the center of gravity of the vehicle body 110 or the position of the cutting edge 132e.
  • step S9 the controller 320 is the target design.
  • the working machine 130 is controlled toward the terrain 70.
  • a command signal to the working machine 130 is generated so that the position of the cutting edge 132e of the blade 132 moves toward the target design terrain 70 created in step S6.
  • the generated command signal is input to the control valve 330.
  • the position of the cutting edge 132e of the working machine 130 moves along the target design terrain 70.
  • step S10 the controller 320 moves the blade 132.
  • a command signal to the working machine 130 is generated so as to be in the soil posture.
  • a command signal for controlling the pitch cylinder 134 so that the blade 132 is in the soil transport posture is generated.
  • the controller 320 since the soil transportation posture is a posture in which the blade 132 is tilted to the rear of the vehicle body to the maximum extent, the controller 320 has the controller 320 from the time when the discharge pressure of the hydraulic pump 240 becomes equal to or higher than the relief pressure of the pitch cylinder 134 until a predetermined time elapses.
  • the command signal may be output to the control valve 330.
  • step S11 the controller 320 controls the lift cylinder 133 toward the target design terrain 70.
  • FIG. 9 is a diagram showing changes in the height of the blade according to the first embodiment.
  • the state ST_A indicates a state in which the blade 132 is in the excavation posture and the cutting edge 132e is adjusted to the reference height H0.
  • the pitch cylinder 134 is extended so that the blade 132 dumps the pitch in the state ST_A, the blade 132 rotates around the axis X2, and the height of the cutting edge 132e is lower than the reference height H0.
  • State The state ST_B is set.
  • step S11 the controller 320 moves to the lift cylinder 133 so that the position of the cutting edge 132e of the blade 132 moves toward the target design terrain 70 while offsetting the fluctuation of the cutting edge height due to the drive of the pitch cylinder 134. Generates a control signal for.
  • the amount of fluctuation in the height of the cutting edge due to the drive of the pitch cylinder 134 can be specified by the dimensional data of the working machine 130.
  • step S12 the controller 320 updates the work site topography data.
  • the controller 320 acquires position data indicating the latest trajectory of the cutting edge 132e as the current terrain data, and updates the work site terrain data with the acquired current terrain data.
  • the controller 320 may calculate the position of the bottom surface of the crawler belt 121 from the vehicle body position data and the vehicle body dimension data, and acquire the position data indicating the locus of the bottom surface of the crawler belt 121 as the current topographical data.
  • the work terrain data can be updated immediately.
  • the controller 320 determines the switching point with reference to the target displacement data indicating the target displacement of the height of the work machine according to the amount of movement of the work vehicle from the work start position. .. Further, it is determined whether or not the work vehicle 100 has reached the switching point, and when it is determined that the work vehicle 100 has reached the switching point, the work machine 130 is tilted rearward of the vehicle body. As a result, the controller 320 automatically operates the pitch of the blade 132 at the time of transition from the excavation work to the soil transportation work, so that the work load of the operator can be reduced.
  • controller 320 controls the pitch of the blade 132 and also controls the height of the blade 132 to prevent soil spillage during the transition from the excavation work to the soil transportation work. Further, the controller 320 can maximize the amount of soil at the time of soil transportation and improve the work efficiency by changing the pitch angle of the blade 132 at the optimum timing.
  • the switching point is set to a point separated by a first distance from the excavation start point, a point separated by a second distance from the excavation start point, or a first point from the excavation start point. It is set by the operator whether the points are separated by 3 distances, the determination reference position is the cutting edge 132e of the blade 132, or the center of gravity of the vehicle body 110. Thereby, the operator can set the control timing of the pitch angle of the blade 132 so as to be suitable for the soil quality of the work target and the operation feeling of the operator. For example, depending on the soil quality, if the blade 132 remains in the excavation posture when the blade 132 is lifted up, the blade 132 may be pressed against the work target and excavation may not be performed efficiently.
  • the pitch angle of the blade 132 is controlled at an appropriate timing by setting the switching point to a point separated by the second distance from the excavation start point and setting the determination reference position to the cutting edge 132e of the blade 132.
  • the switching point is preset to a point separated by a first distance from the excavation start point, a point separated by a second distance from the excavation start point, or a point separated by a third distance from the excavation start point.
  • the determination reference position may be set in advance at the cutting edge 132e of the blade 132 or the center of gravity of the vehicle body 110, so that the setting by the operator may not be accepted.
  • the controller 320 may be configured by a single computer, or the configuration of the controller 320 may be divided into a plurality of computers, and the plurality of computers cooperate with each other to form a controller. It may function as a 320.
  • the controller 320 may include a remote controller 350 arranged outside the work vehicle 100 and an in-vehicle controller 360 mounted on the work vehicle 100.
  • the remote controller 350 and the vehicle-mounted controller 360 may be capable of wireless communication via the communication devices 380 and 390.
  • a part of the functions of the controller 320 described above may be executed by the remote controller 350, and the remaining functions may be executed by the in-vehicle controller 360.
  • the process of determining the target design terrain 70 may be executed by the remote controller 350, and the process of outputting the command signal to the working machine 130 may be executed by the vehicle-mounted controller 360.
  • the operating device 310 may be arranged outside the work vehicle 100. In that case, the driver's cab may be omitted from the work vehicle 100. Alternatively, the operating device 310 may be omitted from the work vehicle 100.
  • the work vehicle 100 may be operated only by the automatic control by the controller 320 without the operation by the operation device 310.
  • the current topographical data may be generated from the survey data measured by the external surveying device 400 of the work vehicle 100.
  • an external surveying device for example, aerial laser surveying may be used.
  • the current terrain 50 may be photographed by a camera, and the current terrain data may be generated from the image data obtained by the camera.
  • aerial surveying by UAV Unmanned Aerial Vehicle
  • the work site topographical data may be updated at predetermined intervals or at any time.
  • the controller 320 creates a target design terrain at the start of excavation and controls the cutting edge 132e to follow the target design terrain, but the present invention is not limited to this.
  • the controller 320 may calculate the target displacement from the mileage based on the target displacement function at regular timing intervals without creating the target design terrain, and calculate the target height each time.
  • the work vehicle 100 according to the above-described embodiment is a bulldozer, but the vehicle is not limited to this.
  • the work vehicle 100 according to another embodiment may be a motor grader.
  • control device can automatically control the pitch of the blades according to the working state of the work vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Operation Control Of Excavators (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

車体と、車体に対し高さおよびピッチの変更が可能な作業機を有する作業車両の制御システムは、コントローラを備える。コントローラは、作業開始位置からの作業車両の移動量に応じた作業機の高さの目標変位を示す目標変位データを参照して切換え点を決定する。コントローラは、作業開始位置からの作業車両の移動量に基づいて、作業車両が切換え点に到達したか否かを判定する。コントローラは、作業車両が切換え点に到達したと判定した場合に、作業機のピッチを変更させる指令を出力する。

Description

作業車両の制御システム、作業車両の制御方法、および作業車両
 本開示は、作業車両の制御システム、作業車両の制御方法、および作業車両に関する。
 本願は、2020年10月12日に日本に出願された特願2020-171979号について優先権を主張し、その内容をここに援用する。
 特許文献1には、ブレードのピッチ角を切り替えることで、掘削、運土及び排土の効率を向上させるブルドーザに係る技術が開示されている。特許文献1によれば、チルト・ピッチ切り替えスイッチをONにした状態で操作レバーを倒すことで、ブレードのピッチ角を変化させることができる。
特開平7-252859号公報
 一方で、特許文献1に記載の技術のようにブレードのピッチ角を手動で調整する場合、オペレータが操作のタイミングや操作量を誤ると、作業効率が低下する可能性がある。
 本開示の目的は、作業車両の作業状態に応じてブレードのピッチを自動制御する作業車両の制御装置および作業車両の制御方法を提供することにある。
 本発明の第一の態様によれば、車体と、車体に対し高さおよびピッチの変更が可能な作業機を有する作業車両の制御システムであって、コントローラを備える。コントローラは、作業開始位置からの作業車両の移動量に応じた作業機の高さの目標変位を示す目標変位データを参照して切換え点を決定する。コントローラは、作業開始位置からの作業車両の移動量に基づいて、作業車両が切換え点に到達したか否かを判定する。コントローラは、作業車両が切換え点に到達したと判定した場合に、作業機のピッチを変更させる指令を出力する。
 本発明の第二の態様によれば、車体と、車体に対し高さおよびピッチの変更が可能な作業機を有する作業車両の制御方法であって、以下の処理を備える。第1の処理は、作業開始位置からの作業車両の移動量に応じた作業機の高さの目標変位を示す目標変位データを参照して切換え点を決定する。第2の処理は、作業開始位置からの作業車両の移動量に基づいて、作業車両が切換え点に到達したか否かを判定する。第3の処理は、作業車両が切換え点に到達したと判定した場合に、作業機のピッチを変更させる指令を出力する。
 本発明の第三の態様によれば、作業車両は、車体と、車体に対し高さおよびピッチの変更が可能な作業機と、コントローラとを備える。コントローラは、作業開始位置からの作業車両の移動量に応じた作業機の高さの目標変位を示す目標変位データを参照して切換え点を決定する。コントローラは、作業開始位置からの作業車両の移動量に基づいて、作業車両が切換え点に到達したか否かを判定する。コントローラは、作業車両が切換え点に到達したと判定した場合に、作業機が車体に対して後方に傾斜するように作業機のピッチを変更させる指令を出力する。
 上記態様によれば、制御装置は、作業車両の作業状態に応じてブレードのピッチを自動制御することができる。
第1の実施形態に係る作業車両の側面図である。 第1の実施形態に係るブレードの姿勢を示す図である。 第1の実施形態に係る作業車両の駆動系と制御システムとの構成を示すブロック図である。 第1の実施形態に係る作業車両のコントローラの構成を示す概略ブロック図である。 第1の実施形態に係る作業機の制御の処理を示すフローチャートである。 第1の実施形態に係る最終設計地形、現況地形、及び目標設計地形の例を示す図である。 第1の実施形態に係る目標変位データの例を示す図である。 第1の実施形態に係る目標変位を決定するための処理を示すフローチャートである。 第1の実施形態に係るブレードの高さの変動を示す図である。 第1変形例に係る駆動系と制御システムの構成を示すブロック図である。 第2変形例に係る駆動系と制御システムの構成を示すブロック図である。
〈第1の実施形態〉
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第1の実施形態に係る作業車両100の側面図である。
 第1の実施形態に係る作業車両100は、例えばブルドーザである。作業車両100は、車体110と、走行装置120と、作業機130とを備える。
 車体110には、運転室140を有する。運転室140は、車体110の上部に設けられる。運転室140には、図示しない運転席が配置されている。走行装置120は、車体110の下部に設けられる。走行装置120は、左右一対の履帯121、スプロケット122およびアイドラ124を有している。なお、図1では、左側の履帯121、スプロケット122およびアイドラ124のみが図示されている。履帯121が回転することによって、作業車両100が走行する。作業車両100の走行は、自律走行、セミ自律走行、オペレータの操作による走行のいずれの形式であってもよい。スプロケット122の回転軸には、回転センサ123が設けられる。回転センサ123は、スプロケット122の回転軸の回転数を計測する。スプロケット122の回転軸の回転数は、走行装置120の速度および車体110の移動量に換算可能である。
 作業機130は、土砂等の掘削対象の掘削および運搬に用いられる。作業機130は、車体110の前部に設けられる。作業機130は、リフトフレーム131、ブレード132、リフトシリンダ133及びピッチシリンダ134を有する。
 リフトフレーム131は、車幅方向に伸びるピンを介して、車体110の側面に取り付けられる。リフトフレーム131は、車幅方向に延びる軸線X1を中心として車体110に対して上下方向に回動可能に支持される。リフトフレーム131は、ブレード132を支持している。
 ブレード132は、リフトフレーム131を介して、車体110の前方に取付けられる。ブレード132は、車幅方向に延びる軸線X2を中心としてリフトフレーム131に対して回動可能に支持される。ブレード132は、リフトフレーム131の上下動に伴って上下に移動する。ブレード132の前面下端部には、刃先132eが設けられる。
 リフトシリンダ133は、油圧シリンダである。リフトシリンダ133は、車体110とブレード132とに連結されている。リフトシリンダ133が伸縮することによって、リフトフレーム131およびブレード132は、軸線X1を中心として上下方向に回動する。
 ピッチシリンダ134は、油圧シリンダである。ピッチシリンダ134は、リフトフレーム131とブレード132とに連結されている。ピッチシリンダ134が伸縮することによって、ブレード132は、リフトフレーム131に対して軸線X2を中心に回動する。より詳しくは、ピッチシリンダ134が伸長することで、ブレード132は、リフトフレーム131に対して軸線X2を中心に車体前方へ傾斜(ピッチダンプ)する。ピッチシリンダ134が縮小することで、ブレード132は、リフトフレーム131に対して軸線X2を中心に車体後方へ傾斜(ピッチバック)する。
 図2は、第1の実施形態に係るブレード132の姿勢を示す図である。ブレード132は、後述するコントローラ320によって、掘削姿勢、運土姿勢及び排土姿勢に切り替えられる。掘削姿勢は、ブレード132の刃先の角度を履帯121底面に対して第1角度(例えば、52度)とする姿勢である。運土姿勢は、ブレード132を車体後方へ最大限傾斜させることで、ブレード132の刃先の角度を第2角度とする姿勢である。排土姿勢は、ブレード132を車体前方へ傾斜させることで、ブレード132の刃先の角度を第3角度とする姿勢である。第1角度は第2角度より大きく、第3角度より小さい。
 図3は、第1の実施形態に係る作業車両100の駆動系200と制御システム300との構成を示すブロック図である。
《駆動系200》
 駆動系200は、動力源210、PTO(Power Take Off)220、動力伝達装置230、油圧ポンプ240を備える。
 動力源210は、例えばディーゼルエンジンである。
 PTO220は、動力源210の駆動力の一部を、油圧ポンプ240に伝達する。つまり、PTO220は、動力源210の駆動力を、動力伝達装置230および油圧ポンプ240に分配する。
 動力伝達装置230は、動力源210の駆動力を走行装置120に伝達する。動力伝達装置230は、例えば、HST(Hydro Static Transmission)であってもよい。或いは、動力伝達装置230は、例えば、トルクコンバーター、或いは複数の変速ギアを有するトランスミッション、或いはHMT(Hydraulic Mechanical Transmission)、或いは、発電機と駆動用電動モータとを組み合わせた電動式伝達装置であってもよい。
 油圧ポンプ240は、動力源210によって駆動され、作動油を吐出する。油圧ポンプ240から吐出された作動油は、制御弁330を介してリフトシリンダ133及びピッチシリンダ134に供給される。制御弁330は、油圧ポンプ240から吐出された作動油の流量を制御する。
《制御システム300》
 制御システム300は、操作装置310と、コントローラ320と、制御弁330とを備える。
 操作装置310は、作業機130及び走行装置120を操作するための装置である。操作装置310は、運転室140に配置されている。操作装置310は、作業機130及び走行装置120を駆動するためのオペレータによる操作を受け付け、操作に応じた操作信号を出力する。操作装置310は、例えば、操作レバー、ペダル、スイッチ等を含む。
 操作装置310は、ブレード132のピッチを制御するためのピッチ操作スイッチ312を含む。ピッチ操作スイッチ312は例えば、ピッチダンプ位置とピッチバック位置とに操作可能なモーメンタリスイッチである。ピッチ操作スイッチ312の操作信号は、コントローラ320に出力される。コントローラ320は、ピッチ操作スイッチ312からの操作信号に応答して、ブレード132をリフトフレーム131に対して軸線X2を中心に回動するようにピッチシリンダ134を制御するための指令信号を制御弁330へ出力する。コントローラ320は、ピッチ操作スイッチ312の操作位置がピッチダンプ位置であるときには、ブレード132が車体前方へ傾斜するように、制御弁330を制御する。コントローラ320は、ピッチ操作スイッチ312の操作位置がピッチバック位置であるときには、ブレード132が車体後方へ傾斜するように、制御弁330を制御する。なお、ピッチ操作スイッチ312は、ピッチダンプ操作信号およびピッチバック操作信号をそれぞれ出力する2つの押し釦で構成されてもよい。
 コントローラ320は、作業車両100を制御する。コントローラ320は、後述するプログラムにより、施工現場の現況地形と、最終設計面と、各種センサの計測値とに基づいて作業機130を自動制御する。
 制御弁330は、比例制御弁であり、コントローラ320からの指令信号によって制御される。制御弁330は、リフトシリンダ133やピッチシリンダ134などの油圧アクチュエータと、油圧ポンプ240との間に配置される。制御弁330は、油圧ポンプ240からリフトシリンダ133およびピッチシリンダ134へ供給される作動油の流量を制御する。コントローラ320は、上述した操作装置310の操作に応じてブレード132が動作するように、制御弁330への指令信号を生成する。これにより、リフトシリンダ133およびピッチシリンダ134が、操作装置310の操作量に応じて制御される。なお、制御弁330は、圧力比例制御弁であってもよい。或いは、制御弁330は、電磁比例制御弁であってもよい。
 制御システム300は、ストロークセンサ133sを備える。ストロークセンサ133sは、リフトシリンダ133のストローク量を検出する。ストロークセンサ133sが検出するストローク量を用いることで、車体110を基準としたローカル座標系である車体座標系における刃先132eの位置を算出することができる。具体的には、コントローラ320は、リフトシリンダ133のストローク量に基づいて、リフトフレーム131の回転角を算出する。リフトフレーム131およびブレード132の寸法は既知であるため、リフトフレーム131の回転角から、ブレード132の刃先132eの位置を特定することができる。なお、他の実施形態に係る作業車両100は、エンコーダ等の他のセンサで回転角を検出してもよい。
 図3に示すように、制御システム300は、位置検出装置340を備えている。位置検出装置340は、作業車両100の位置を測定する。位置検出装置340は、GNSS(Global Navigation Satellite System)レシーバ341と、IMU(Inertial Measurement Unit)342とを有する。GNSSレシーバ341は、例えばGPS(Global Positioning System)用の受信機である。GNSSレシーバ341のアンテナは、例えば、運転室140上に取り付けられる。GNSSレシーバ341は、衛星より測位信号を受信し、測位信号によりアンテナの位置を演算して車両位置データを生成する。GNSSレシーバ341は、作業車両100の位置データをコントローラ320に出力する。
 IMU342は、車体傾斜角データと車体加速度データを取得する。車体傾斜角データは、車両前後方向の水平に対する角度(ピッチ角)、および車両横方向の水平に対する角度(ロール角)を含む。車体加速度データは、作業車両100の加速度を含む。IMU342は、車体傾斜角データ及び車体加速度データをコントローラへ出力する。コントローラ320は、車体加速度データにより、作業車両100の進行方向と車速とを得る。
 図4は、第1の実施形態に係る作業車両100のコントローラ320の構成を示す概略ブロック図である。コントローラ320は、プロセッサ321、メインメモリ322、ストレージ323、インタフェース324を備えるコンピュータである。プロセッサ321は、プログラムを実行することで、作業機130の動作を演算処理する。
 メインメモリ322は、設計地形データと作業現場地形データとを記憶している。設計地形データは、最終設計地形を示す。最終設計地形は、作業現場の表面の最終的な目標形状である。設計地形データは、例えば、三次元データ形式の土木施工図である。作業現場地形データは、作業現場の現況の地形を示す。作業現場地形データは、例えば、三次元データ形式の現況地形測量図である。作業現場地形データは、例えば、航空レーザ測量で得ることができる。
 ストレージ323は、一時的でない有形の記憶媒体である。ストレージ323の例としては、磁気ディスク、光磁気ディスク、半導体メモリ等が挙げられる。ストレージ323は、コントローラ320のバスに直接接続された内部メディアであってもよいし、インタフェース324または通信回線を介してコントローラ320に接続される外部メディアであってもよい。ストレージ323は、作業車両100を制御するためのプログラムを記憶する。
 なお、他の実施形態においては、コントローラ320は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ321によって実現される機能の一部または全部が当該集積回路によって実現されてよい。
《作業車両100の動作》
 以下、コントローラ320によって実行される、掘削における作業機130の制御について説明する。図5は、第1の実施形態に係る作業機130の制御の処理を示すフローチャートである。作業車両100の作業開始時において、ブレード132の姿勢は掘削姿勢をとる。
 図5に示すように、ステップS1では、コントローラ320は、位置検出装置340から現在位置データを取得する。
 ステップS2では、コントローラ320は、施工現場の設計地形データを取得する。図6に示すように、設計地形データは、作業車両100の進行方向において、複数の参照点での最終設計地形60の高さZdesignを含む。複数の参照点は、作業車両100の進行方向に沿う所定間隔ごとの複数地点を示す。複数の参照点は、ブレード132の進行パス上にある。なお、図6では、最終設計地形60は、水平方向に平行な平坦な形状であるが、これと異なる形状であってもよい。設計地形データは、インタフェース324を介して取得されてもよいし、外部記憶装置を介して取得されてもよいし、ネットワークを介して接続される他の装置から取得されてもよい。コントローラ320は、設計地形データをメインメモリ322に記憶させる。
 ステップS3では、コントローラ320は、施工現場の現況地形データを取得する。コントローラ320は、メインメモリ322より得られる作業現場地形データと、位置検出装置340より得られる車体の位置データ及び進行方向データから演算により、現況地形データを取得する。現況地形データは、作業車両100の進行方向に位置する地形を示す情報である。図6は、現況地形50の断面を示す。なお、図6において、縦軸は、地形の高さを示しており、横軸は、作業車両100の進行方向における現在位置からの距離を示している。
 ステップS4では、コントローラ320は、作業開始位置を取得する。例えば、コントローラ320は、ストロークセンサ133sの計測値及び位置検出装置340の計測値に基づいて現場座標系におけるブレード132の刃先132eの位置を算出し、刃先132eの位置が現況地形の高さを最初に下回ったときの位置を掘削開始位置として取得する。ただし、コントローラ320は、他の方法によって、掘削開始位置を取得してもよい。例えば、コントローラ320は、作業機操作装置311の操作に基づいて、掘削開始位置を取得してもよい。例えば、コントローラ320は、ボタン、或いは、タッチパネルによる画面操作などの操作に基づいて、掘削開始位置を取得してもよい。
 ステップS5では、コントローラ320は、作業車両100の移動量を取得する。コントローラ320は、ブレード132の進行パスにおいて掘削開始位置から現在位置まで進んだ距離を、移動量として取得する。作業車両100の移動量は、車体110の移動量であってもよい。或いは、作業車両100の移動量は、刃先132eの移動量であってもよい。
 ステップS6では、コントローラ320は、目標設計地形データを決定する。目標設計地形データは、図6に破線で記載された目標設計地形70を示す。目標設計地形70は、作業におけるブレード132の刃先132eの望まれる軌跡を示す。目標設計地形70は、掘削作業の結果として望まれる地形プロファイルである。図6に示すように、コントローラ320は、現況地形50から、変位距離ΔZ、下方に変位した目標設計地形70を決定する。変位距離ΔZは、各参照点での鉛直方向における目標変位である。本実施形態において、変位距離ΔZは、各参照点での目標深さであり、現況地形50の下方におけるブレード132の目標位置を示す。ブレード132の目標位置とは、ブレード132の刃先132eの位置を意味する。言い換えれば、変位距離ΔZは、ブレード132によって掘削される単位移動量当たりの土量を示す。従って、目標設計地形データは、複数の参照点と複数の目標土量との関係を示す。なお、コントローラ320は、最終設計地形60を下方に越えないように、目標設計地形70を決定する。従って、コントローラ320は、目標高さを最終設計地形60以上、且つ、現況地形50より下方に位置する目標設計地形70を決定する。
 詳細には、コントローラ320は、以下の数1式により、目標設計地形70の高さZを決定する。
[数1]
 Z = Zm - ΔZ
 ΔZ = t1 * t2 * Z_offset
 Zm(m = 1,・・・,n)は、複数の参照点での現況地形50の高さZ0~Znである。ΔZは変位距離であり、図6では掘削深さを示す。t1は、作業車両が利用可能な牽引力の大きさを示す牽引力データに基づく倍率である。
 t2は、ブレード仕様データによる倍率である。ブレード仕様データは、選択されたブレードの仕様に応じて決定される。
 Z_offsetは、作業車両100の移動量に応じて決定される目標変位である。目標変位Z_offsetは、ブレード132への負荷に関係する目標負荷パラメータの一例である。目標変位Z_offsetは、地表からのブレード132の高さ方向(鉛直方向)の変位量を示す。図7は、目標変位データCの一例を示す図である。目標変位データCは、ブレード132の地表から鉛直下方向への掘削深さ(目標変位)Z_offsetを、作業車両100の水平方向の移動量nの従属変数として示す。作業車両100の水平方向の移動量nは、ブレード132の水平方向の移動量と実質的に同じ値である。コントローラ320は、図7に示す目標変位データCを参照して、作業車両100の移動量nから、目標変位Z_offsetを決定する。
 図7に示すように、目標変位データCは作業車両100の移動量nと、目標変位Z_offsetと、の関係を規定する。目標変位データCは、メインメモリ322に記憶されている。以降は説明を簡単にするため、t1とt2の値を1として変位距離ΔZは目標変位Z_offsetに等しいとする。
 図7に示すように、目標変位データCは、開始時データc1と、掘削時データc2と、移行時データc3と、運土時データc4とを含む。開始時データc1は、掘削開始領域での移動量nと目標変位Z_offsetとの関係を規定する。掘削開始領域は、掘削開始点Sから定常掘削開始点Dまでの領域である。開始時データc1で示されるように、掘削開始領域では、移動量nの増大に応じて徐々に増大する目標変位Z_offsetが規定される。開始時データc1は、移動量nに対して線的に増加する目標変位Z_offsetを規定する。
 掘削時データc2は、掘削領域での移動量nと目標変位Z_offsetとの関係を規定する。掘削領域は、定常掘削開始点Dから運土移行開始点Tまでの領域である。掘削時データc2で示されるように、掘削領域では、目標変位Z_offsetは、一定値に規定される。掘削時データc2は、移動量nに対して一定の目標変位Z_offsetを規定する。
 移行時データc3は、運土移行領域での移動量nと目標変位Z_offsetとの関係を規定する。運土移行領域は、運土移行開始点Tから運土開始点Pまでの領域である。移行時データc3で示されるように、運土移行領域では、移動量nの増大に応じて徐々に減少する目標変位Z_offsetが規定される。移行時データc3は、移動量nに対して線的に減少する目標変位Z_offsetを規定する。
 運土時データc4は、運土領域での移動量nと目標変位Z_offsetとの関係を規定する。運土領域は、運土開始点Pから開始される領域である。運土時データc4に示されるように、運土領域では、目標変位Z_offsetは一定値に規定される。運土時データc4は、移動量nに対して一定の目標変位Z_offsetを規定する。
 詳細には、掘削領域は、第1開始値b1から開始され、第1終了値b2で終了する。運土領域は、第2開始値b3から開始される。第1終了値b2は、第2開始値b3よりも小さい。従って、掘削領域は、運土領域よりも、移動量nが小さいときに開始される。掘削領域での目標変位Z_offsetは、第1目標値a1で一定である。運土領域での目標変位Z_offsetは、第2目標値a2で一定である。第1目標値a1は、第2目標値a2よりも大きい。従って、掘削領域では運土領域よりも大きな変位距離ΔZが規定される。
 掘削開始位置での目標変位Z_offsetは、開始値a0である。開始値a0は、第1目標値a1よりも小さい。図7に示す例では、開始目標値a0は、第2目標値a2よりも小さい。
 図8は、目標変位Z_offsetの決定処理を示すフローチャートである。説明を簡単にするため、以下に説明する決定処理では、作業車両100の走行は前進のみであるものとする。決定処理は、走行装置120を操作するための操作装置310が前進の位置に移動すると開始される。ステップS201では、コントローラ320は、移動量nが0以上、且つ、第1開始値b1未満であるか判定する。移動量nが0以上、且つ、第1開始値b1未満であるときには、ステップS202において、コントローラ320は、移動量nの増大に応じて、目標変位Z_offsetを開始値a0から徐々に増大させる。
 開始値a0は、定数であり、メインメモリ322に記憶されている。開始値a0は、掘削開始時にブレード132への負荷が過剰に大きくならない程度に小さな値であることが好ましい。第1開始値b1は、図7に示す掘削開始領域での傾きc1、開始値a0、及び第1目標値a1から演算により求められる。傾きc1は、定数であり、メインメモリ322に記憶されている。傾きc1は、掘削開始から掘削作業に迅速に移行可能であると共に、ブレード132への負荷が過剰に大きくならない程度の値であることが好ましい。
 ステップS203では、コントローラ320は、移動量nが、第1開始値b1以上、且つ、第1終了値b2未満であるか判定する。移動量nが、第1開始値b1以上、且つ、第1終了値b2未満であるときには、ステップS204において、コントローラ320は、目標変位Z_offsetを第1目標値a1に設定する。第1目標値a1は、定数であり、メインメモリ322に記憶されている。第1目標値a1は、効率よく掘削を行うことができると共に、ブレード132への負荷が過剰に大きくならない程度の値であることが好ましい。
 ステップS205では、コントローラ320は、移動量nが、第1終了値b2以上、且つ、第2開始値b3未満であるか判定する。移動量nが、第1終了値b2以上、且つ、第2開始値b3未満であるときには、ステップS206において、コントローラ320は、移動量nの増大に応じて、目標変位Z_offsetを第1目標値a1から徐々に低減させる。
 第1終了値b2は、ブレード132の現在の保有土量が、所定の閾値を越えるときの移動量である。従って、ブレード132の現在の保有土量が、所定の閾値を越えたときに、コントローラ320は、目標変位Z_offsetを第1目標値a1から低減させる。所定の閾値は、例えばブレード132の最大容量に基づいて決定される。例えば、ブレード132の現在の保有土量は、ブレード132への負荷が測定され、当該負荷から演算により決定されてもよい。或いは、ブレード132の画像がカメラによって取得され、当該画像を分析することによって、ブレード132の現在の保有土量が算出されてもよい。或いは、ブレード132の点群データがスキャナによって取得され、当該点群データを分析することによって、ブレード132の現在の保有土量が算出されてもよい。
 なお、作業開始時には、第1終了値b2として、所定の初期値が設定される。作業開始後には、ブレード132の保有土量が所定の閾値を越えたときの移動量が更新値として記憶され、第1終了値b2は記憶された更新値に基づいて更新される。
 ステップS207では、コントローラ320は、移動量nが、第2開始値b3以上であるか判定する。移動量nが、第2開始値b3以上であるときには、ステップS208において、コントローラ320は、目標変位Z_offsetを第2目標値a2に設定する。
 第2目標値a2は、定数であり、メインメモリ322に記憶されている。第2目標値a2は、運土作業に適した値に設定されることが好ましい。例えば、運土領域での目標変位Z_offsetが0となるように、第2目標値a2を設定してもよい。すなわち、第2目標値a2は初期目標値a0以下の値であってよい。第2開始値b3は、図7に示す運土移行領域での傾きc3、第1目標値a1、及び第2目標値a2から演算により求められる。傾きc3は、定数であり、メインメモリ322に記憶されている。傾きc3は、掘削作業から運土作業に迅速に移行可能であると共に、ブレード132への負荷が過剰に大きくならない程度の値であることが好ましい。
 なお、開始値a0、第1目標値a1、及び第2目標値a2は、作業車両100の状況等に応じて変更されてもよい。第1開始値b1、第1終了値b2、及び第2開始値b3は、定数としてメインメモリ322に記憶されてもよい。
 以上のように、目標変位Z_offsetが決定されることで、目標設計地形70の高さZが決定される。
 ステップS7では、コントローラ320は、目標設計地形70に向って作業機130を制御する。ここでは、コントローラ320は、ステップS6で作成した目標設計地形70に向ってブレード132の刃先132eの位置が移動するように、作業機130への指令信号を生成する。生成された指令信号は、制御弁330に入力される。それにより、ブレード132の刃先132eが目標設計地形70に沿って移動する。
 上述した掘削領域では、現況地形50と目標設計地形70との間の変位距離ΔZが、他の領域と比べて大きい。これにより、掘削領域では、現況地形50の掘削作業が行われる。運土領域では、現況地形50と目標設計地形70との間の変位距離ΔZが他の領域と比べて小さい。これにより、運土領域では、地面の掘削が控えられ、ブレード132に保持されている土砂が運搬される。
 ステップS8では、コントローラ320は、ステップS5で取得した移動量に基づいて、作業車両100が切換え点に到達した、またはオペレータによってピッチ操作スイッチ312をビッチバック位置に一定時間継続して操作されたかを判定する。切換え点は、掘削開始点から第1距離だけ離れた点、第2距離だけ離れた点、及び掘削開始点から第3距離だけ離れた点のいずれかである。切換え点は、オペレータによって適宜選択できる。図7に示すように、掘削開始点から第1距離だけ離れた点は、定常掘削開始点Dに相当する。また、掘削開始点から第2距離だけ離れた点は、運土移行開始点Tに相当する。また、掘削開始点から第3距離だけ離れた点は、運土開始点Pに相当する。判定基準位置は、車体110の重心位置又は刃先132eの位置である。
 判定基準位置が切換え点に到達しておらず、かつピッチ操作スイッチ312がビッチバック位置へ一定時間継続して操作されていない場合(ステップS8:NO)、ステップS9において、コントローラ320は、目標設計地形70に向って作業機130を制御する。ここでは、ステップS6で作成した目標設計地形70に向ってブレード132の刃先132eの位置が移動するように、作業機130への指令信号を生成する。生成された指令信号は、制御弁330に入力される。それにより、作業機130の刃先132eの位置が目標設計地形70に沿って移動する。
 他方、判定基準位置が切換え点に到達し、またはピッチ操作スイッチ312がビッチバック位置へ一定時間継続して操作された場合(ステップS8:YES)、ステップS10において、コントローラ320は、ブレード132が運土姿勢になるように作業機130への指令信号を生成する。ここでは、ブレード132が運土姿勢となるようにピッチシリンダ134を制御する指令信号を生成する。例えば、運土姿勢はブレード132を車体後方へ最大限傾斜させた姿勢であるため、コントローラ320は、油圧ポンプ240の吐出圧力がピッチシリンダ134のリリーフ圧以上となってから所定時間が経過するまで指令信号を制御弁330へ出力すればよい。
 ステップS11では、コントローラ320は、目標設計地形70に向かってリフトシリンダ133を制御する。図9は、第1の実施形態に係るブレードの高さの変動を示す図である。状態ST_Aは、ブレード132を掘削姿勢にさせて刃先132eを基準高さH0に合わせた状態を示す。作業車両100は、状態ST_Aにおいて、ブレード132がピッチダンプするようにピッチシリンダ134を伸長させると、軸線X2を中心にブレード132が回動し、刃先132eの高さが基準高さH0よりも低い状態状態ST_Bとなる。
 作業車両100は、状態ST_Aにおいて、ブレード132がピッチバックするようにピッチシリンダ134を縮小させると、軸線X2を中心にブレード132が回動し、刃先132eの高さが基準高さH0よりも高い状態ST_Cとなる。したがって、ステップS11では、コントローラ320は、ピッチシリンダ134の駆動による刃先高さの変動を相殺しつつ、目標設計地形70に向かってブレード132の刃先132eの位置が移動するように、リフトシリンダ133への制御信号を生成する。なお、ピッチシリンダ134の駆動による刃先高さの変動量は、作業機130の寸法データにより特定することが出来る。
 ステップS12では、コントローラ320は、作業現場地形データを更新する。コントローラ320は、刃先132eの最新の軌跡を示す位置データを、現況地形データとして取得し、取得した現況地形データによって作業現場地形データを更新する。或いは、コントローラ320は、車体位置データと車体寸法データとから履帯121の底面の位置を算出し、履帯121の底面の軌跡を示す位置データを現況地形データとして取得してもよい。この場合、作業地形データの更新は即時に行うことができる。
《作用・効果》
 このように、第1の実施形態に係るコントローラ320は、作業開始位置からの作業車両の移動量に応じた作業機の高さの目標変位を示す目標変位データを参照して切換え点を決定する。また、作業車両100が切換え点に到達したか否かを判定し、作業車両100が切換え点に到達したと判定した場合に、作業機130を車体後方へ傾斜させる。これによりコントローラ320は掘削作業から運土作業への移行時に自動的にブレード132のピッチ操作を行うため、オペレータの作業負担を軽減することができる。また、コントローラ320は、ブレード132のピッチを制御すると共に、ブレード132の高さも制御することで、掘削作業から運土作業への移行時に土こぼれが生じることを防ぐことができる。また、コントローラ320は、最適なタイミングでブレード132のピッチ角を変化させることで、運土時の土量を最大化し、作業効率を向上させることができる。
 また、第1の実施形態によれば、切換え点を、掘削開始点から第1距離だけ離れた点とするか、掘削開始点から第2距離だけ離れた点とするか、掘削開始点から第3距離だけ離れた点とするか、及び判定基準位置をブレード132の刃先132eとするか車体110の重心とするかは、オペレータによって設定される。これにより、オペレータは、ブレード132のピッチ角の制御タイミングが作業対象の土質やオペレータの操作感に適するように、設定することができる。例えば、土質によっては、ブレード132をリフトアップするときにブレード132が掘削姿勢のままであると、ブレード132が作業対象に押し付けられ、掘削が効率よく行われない場合がある。このような場合には、切換え点を掘削開始点から第2距離だけ離れた点とし、判定基準位置をブレード132の刃先132eとすることで、適切なタイミングでブレード132のピッチ角を制御することができる。なお、他の実施形態においては、切換え点が掘削開始点から第1距離だけ離れた点又は掘削開始点から第2距離だけ離れた点又は掘削開始点から第3距離だけ離れた点に予め設定され、かつ判定基準位置がブレード132の刃先132e又は車体110の重心に予め設定されることで、オペレータによる設定を受け付けないものであってもよい。
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。すなわち、他の実施形態においては、上述の処理の順序が適宜変更されてもよい。また、一部の処理が並列に実行されてもよい。
 上述した実施形態に係るコントローラ320は、単独のコンピュータによって構成されるものであってもよいし、コントローラ320の構成を複数のコンピュータに分けて配置し、複数のコンピュータが互いに協働することでコントローラ320として機能するものであってもよい。例えば、図10に示すように、コントローラ320は、作業車両100の外部に配置されるリモートコントローラ350と、作業車両100に搭載される車載コントローラ360とを含んでもよい。リモートコントローラ350と車載コントローラ360とは通信装置380、390を介して無線により通信可能であってもよい。そして、上述したコントローラ320の機能の一部がリモートコントローラ350によって実行され、残りの機能が車載コントローラ360によって実行されてもよい。例えば、目標設計地形70を決定する処理がリモートコントローラ350によって実行され、作業機130への指令信号を出力する処理が車載コントローラ360によって実行されてもよい。
 或いは、操作装置310は、作業車両100の外部に配置されてもよい。その場合、運転室は、作業車両100から省略されてもよい。或いは、操作装置310が作業車両100から省略されてもよい。操作装置310による操作無しで、コントローラ320による自動制御のみによって作業車両100が操作されてもよい。
 或いは、図11に示すように、現況地形データは、作業車両100の外部の測量装置400によって計測された測量データから生成されてもよい。外部の測量装置として、例えば、航空レーザ測量を用いてよい。或いは、カメラによって現況地形50を撮影し、カメラによって得られた画像データから現況地形データが生成されてもよい。例えば、UAV(Unmanned Aerial Vehicle)による空撮測量を用いてよい。外部の測量装置又はカメラの場合、作業現場地形データの更新は、所定周期ごと、あるいは随時に行われてもよい。
 上述した実施形態に係るコントローラ320は、掘削開始時に目標設計地形を作成し、刃先132eが当該目標設計地形に沿うように制御するが、これに限られない。例えば、他の実施形態に係るコントローラ320は、目標設計地形を作成せず、一定タイミング毎に目標変位関数に基づいて走行距離から目標変位を計算し、都度目標高さを計算してもよい。
 上述した実施形態に係る作業車両100はブルドーザであるが、これに限られない。例えば、他の実施形態に係る作業車両100はモータグレーダであってもよい。
 上記態様によれば、制御装置は、作業車両の作業状態に応じてブレードのピッチを自動制御することができる。
 100…作業車両 110…車体 120…走行装置 121…履帯 122…スプロケット 123…回転センサ 124…アイドラ 130…作業機 131…リフトフレーム 132…ブレード 132e…刃先 133…リフトシリンダ 133s…ストロークセンサ 134…ピッチシリンダ 140…運転室 210…動力源 220…PTO 230…動力伝達装置 240…油圧ポンプ 310…操作装置 311…作業機操作装置 312…ピッチ操作スイッチ 320…コントローラ 321…プロセッサ 322…メインメモリ 323…ストレージ 324…インタフェース 330…制御弁 341…GNSSレシーバ 342…IMU

Claims (19)

  1.  車体と、前記車体に対し高さおよびピッチの変更が可能な作業機を有する作業車両の制御システムであって、
     コントローラを備え、
     前記コントローラは、
      作業開始位置からの前記作業車両の移動量に応じた前記作業機の高さの目標変位を示す目標変位データを参照して切換え点を決定し、
      前記作業開始位置からの前記作業車両の前記移動量に基づいて、前記作業車両が前記切換え点に到達したか否かを判定し、
      前記作業車両が前記切換え点に到達したと判定した場合に、前記作業機のピッチを変更させる指令を出力する、
     作業車両の制御システム。
  2.  前記コントローラは、前記作業車両が前記切換え点に到達したと判定した場合に、前記作業機が前記車体に対して後方に傾斜するようにピッチを変更させる前記指令を出力する 請求項1に記載の作業車両の制御システム。
  3.  前記目標変位データは、
     前記作業車両の移動量が第1距離未満である第1の領域について、ゼロ以上所定値未満の範囲で前記作業車両の移動量の増大に応じて単調増加する目標変位を示し、
     前記作業車両の移動量が第1距離以上第2距離未満である第2の領域について、前記所定値と等しい目標変位を示し、
     前記作業車両の移動量が第2距離以上第3距離未満である第3の領域について、ゼロ以上前記所定値未満の範囲で前記作業車両の移動量の増大に応じて単調減少する目標変位を示し、
     前記切換え点は、前記第2の領域および前記第3の領域の範囲内に位置する、
     請求項1に記載の作業車両の制御システム。
  4.  前記切換え点は、前記作業開始位置から前記第2距離だけ離れた点である
     請求項3に記載の作業車両の制御システム。
  5.  前記切換え点は、前記作業開始位置から前記第1距離だけ離れた点である
     請求項3に記載の作業車両の制御システム。
  6.  前記切換え点は、前記作業開始位置から前記第3距離だけ離れた点である
     請求項3に記載の作業車両の制御システム。
  7.  前記コントローラは、前記作業機の刃先が前記切換え点に到達したと判定した場合に、前記作業機のピッチを変更させる前記指令を出力する
     請求項1から請求項6の何れか1項に記載の作業車両の制御システム。
  8.  前記コントローラは、前記車体の重心位置が前記切換え点の直上に到達したと判定した場合に、前記作業機のピッチを変更させる前記指令を出力する
     請求項1から請求項6の何れか1項に記載の作業車両の制御システム。
  9.  前記コントローラは、
      作業対象の現況地形を示す現況地形情報を取得し、
      前記目標変位データを参照して前記現況地形から鉛直方向に変位した目標設計面を決定し、
      前記目標設計面に沿って前記作業機の高さを変更させる指令を出力する。
     請求項1から請求項8の何れか1項に記載の作業車両の制御システム。
  10.  前記目標設計面は、前記現況地形よりも下方に位置する、
     請求項9に記載の作業車両の制御システム。
  11.  前記コントローラは、前記作業機のピッチを変更させる前記指令による前記作業機の刃先高さの変動を相殺するように前記作業機を下げる
     請求項1から請求項10の何れか1項に記載の作業車両の制御システム。
  12.  車体と、前記車体に対し高さおよびピッチの変更が可能な作業機を有する作業車両の制御方法であって、
     作業開始位置からの前記作業車両の移動量に応じた前記作業機の高さの目標変位を示す目標変位データを参照して切換え点を決定し、
     前記作業開始位置からの前記作業車両の前記移動量に基づいて、前記作業車両が前記切換え点に到達したか否かを判定し、
     前記作業車両が前記切換え点に到達したと判定した場合に、前記作業機のピッチを変更させる指令を出力することを備える、
     作業車両の制御方法。
  13.  前記作業車両が前記切換え点に到達したと判定した場合に、前記作業機が前記車体に対して後方に傾斜するようにピッチを変更させる前記指令を出力する
     請求項12に記載の作業車両の制御方法。
  14.  前記作業機の刃先が前記切換え点に到達したと判定した場合に、前記作業機のピッチを変更させる前記指令を出力する
     請求項12又は請求項13に記載の作業車両の制御方法。
  15.  前記車体の重心位置が前記切換え点の直上に到達したと判定した場合に、前記作業機のピッチを変更させる前記指令を出力する
     請求項12又は請求項13に記載の作業車両の制御方法。
  16.  作業対象の現況地形を示す現況地形情報を取得し、
     前記目標変位データを参照して前記現況地形から鉛直方向に変位した目標設計面を決定し、
     前記目標設計面に沿って前記作業機の高さを変更させる指令を出力する。
     請求項12から請求項15の何れか1項に記載の作業車両の制御方法。
  17.  前記目標設計面は、前記現況地形よりも下方に位置する、
     請求項16に記載の作業車両の制御方法。
  18.  前記作業機のピッチを変更させる前記指令による前記作業機の刃先高さの変動を相殺するように前記作業機を下げる
     請求項12から請求項17の何れか1項に記載の作業車両の制御方法。
  19.  車体と、
     前記車体に対し高さおよびピッチの変更が可能な作業機と、
     コントローラと
     を備える作業車両であって、
     前記コントローラは、
      作業開始位置からの前記作業車両の移動量に応じた前記作業機の高さの目標変位を示す目標変位データを参照して切換え点を決定し、
      前記作業開始位置からの前記作業車両の前記移動量に基づいて、前記作業車両が前記切換え点に到達したか否かを判定し、
      前記作業車両が前記切換え点に到達したと判定した場合に、前記作業機が前記車体に対して後方に傾斜するように前記作業機のピッチを変更させる指令を出力する、
     作業車両。
PCT/JP2021/037638 2020-10-12 2021-10-11 作業車両の制御システム、作業車両の制御方法、および作業車両 WO2022080334A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2021361368A AU2021361368B2 (en) 2020-10-12 2021-10-11 Work vehicle control system, work vehicle control method, and work vehicle
US18/044,441 US20240026637A1 (en) 2020-10-12 2021-10-11 Work vehicle control system, work vehicle control method, and work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-171979 2020-10-12
JP2020171979A JP2022063624A (ja) 2020-10-12 2020-10-12 作業車両の制御システム、作業車両の制御方法、および作業車両

Publications (1)

Publication Number Publication Date
WO2022080334A1 true WO2022080334A1 (ja) 2022-04-21

Family

ID=81209152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037638 WO2022080334A1 (ja) 2020-10-12 2021-10-11 作業車両の制御システム、作業車両の制御方法、および作業車両

Country Status (4)

Country Link
US (1) US20240026637A1 (ja)
JP (1) JP2022063624A (ja)
AU (1) AU2021361368B2 (ja)
WO (1) WO2022080334A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115271566A (zh) * 2022-09-29 2022-11-01 北京易控智驾科技有限公司 排土位生成方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147952A (ja) * 1996-11-18 1998-06-02 Komatsu Ltd ブルドーザのドージング装置
JPH10159124A (ja) * 1996-12-02 1998-06-16 Komatsu Ltd ブルドーザのドージング装置
JP2000096601A (ja) * 1998-09-25 2000-04-04 Komatsu Ltd 作業機の角度制御方法及びその制御装置
WO2018179383A1 (ja) * 2017-03-31 2018-10-04 株式会社小松製作所 作業車両の制御システム、及び作業機の軌跡設定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147952A (ja) * 1996-11-18 1998-06-02 Komatsu Ltd ブルドーザのドージング装置
JPH10159124A (ja) * 1996-12-02 1998-06-16 Komatsu Ltd ブルドーザのドージング装置
JP2000096601A (ja) * 1998-09-25 2000-04-04 Komatsu Ltd 作業機の角度制御方法及びその制御装置
WO2018179383A1 (ja) * 2017-03-31 2018-10-04 株式会社小松製作所 作業車両の制御システム、及び作業機の軌跡設定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115271566A (zh) * 2022-09-29 2022-11-01 北京易控智驾科技有限公司 排土位生成方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
AU2021361368B2 (en) 2024-08-01
JP2022063624A (ja) 2022-04-22
AU2021361368A1 (en) 2023-04-13
US20240026637A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2018179383A1 (ja) 作業車両の制御システム、及び作業機の軌跡設定方法
WO2018179384A1 (ja) 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
US10787789B2 (en) Control system for work vehicle, control method, and work vehicle
JP6878317B2 (ja) 作業車両の制御システム、及び作業機の軌跡設定方法
JP7418948B2 (ja) 作業車両の制御システム、方法、及び作業車両
JP7133539B2 (ja) 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
JP6910450B2 (ja) 作業車両の制御システム、方法、及び作業車両
JP6910245B2 (ja) 作業車両の制御システム、方法、及び作業車両
US11408149B2 (en) Control system for work vehicle, control method, and work vehicle
WO2019187770A1 (ja) 作業車両の制御システム、方法、及び作業車両
WO2019187771A1 (ja) 作業車両の制御システム、方法、及び作業車両
WO2019187797A1 (ja) 作業車両の制御システム、方法、及び作業車両
JP7169760B2 (ja) 作業車両の制御システム、方法、及び作業車両
WO2022080334A1 (ja) 作業車両の制御システム、作業車両の制御方法、および作業車両
JP7379281B2 (ja) 作業機械を制御するためのシステム、方法、および作業機械
US11459734B2 (en) Control system for work vehicle, method, and work vehicle
WO2022163272A1 (ja) 作業機械を制御するためのシステム、方法、および作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18044441

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021361368

Country of ref document: AU

Date of ref document: 20211011

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880073

Country of ref document: EP

Kind code of ref document: A1