WO2022079336A1 - Polímeros reforzados con fibras basados en matrices termoplásticas - Google Patents

Polímeros reforzados con fibras basados en matrices termoplásticas Download PDF

Info

Publication number
WO2022079336A1
WO2022079336A1 PCT/ES2021/070751 ES2021070751W WO2022079336A1 WO 2022079336 A1 WO2022079336 A1 WO 2022079336A1 ES 2021070751 W ES2021070751 W ES 2021070751W WO 2022079336 A1 WO2022079336 A1 WO 2022079336A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acrylic resin
monomer
temperature
thermoplastic acrylic
Prior art date
Application number
PCT/ES2021/070751
Other languages
English (en)
French (fr)
Inventor
Raquel VERDEJO MÁRQUEZ
Miguel Ángel LÓPEZ MANCHADO
Alberto SANTIAGO BETHENCOURT
Original Assignee
Consejo Superior De Investigaciones Cientificas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas (Csic) filed Critical Consejo Superior De Investigaciones Cientificas (Csic)
Priority to EP21879583.9A priority Critical patent/EP4230695A1/en
Priority to US18/032,079 priority patent/US20230383028A1/en
Publication of WO2022079336A1 publication Critical patent/WO2022079336A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to the manufacture of fiber-reinforced polymeric composite materials (FRP) based on thermoplastic matrices (FRTP), in a liquid state, which allow prepregs to be stored between 10-15 ° C without polymerizing the material for more than six months.
  • FRP fiber-reinforced polymeric composite materials
  • FRTP thermoplastic matrices
  • Fiber-reinforced polymeric (FRP) composites consist of high-strength, high-modulus fibers bonded to a polymeric matrix. These materials exhibit, among other characteristics, excellent mechanical properties superior to those of conventional materials, high resistance to fatigue and corrosion, good dimensional stability, as well as being very light. For all these reasons, these materials increasingly have a more important specific weight as structural materials in a wide range of applications such as the aeronautical, aerospace, automotive, and wind industries, among others.
  • thermoplastic matrices FRTP
  • FRTP thermoplastic matrices
  • thermosetting matrix FRPs that can be processed by the conventional techniques used to develop thermosetting matrix FRPs.
  • thermoplastic matrices in a liquid state with low viscosity that allow the impregnation of the fibers and that, subsequently, polymerize when the temperature is applied.
  • Arkema has developed a family of thermoplastic resins, called elium® resins based on acrylic matrices, specifically a methyl methacrylate that polymerizes in the presence of a peroxide-type catalyst. This resin has been shown to readily impregnate into the fiber using the same transformation techniques used with thermosetting resins. Arkema has produced long glass or carbon fiber composite materials with good mechanical characteristics, which can be thermoformed by applying temperature.
  • an acrylic resin has been developed by means of a mass polymerization reaction with thermal initiation with peroxides.
  • the polymerization between the acrylic monomer and the initiator is a less exothermic and more controlled reaction, it does not occur immediately, and it is possible to store the mixture at temperatures between 10-15°C without polymerizing the material, which which makes your job easier.
  • the resin is prepared in a wide range of viscosities between 100 and 1100 cP, so it can be used in any FRP transformation technique, such as hand contact molding, pultrusion, filament winding, resin infusion , laminate compression molding (SMC) or resin transfer molding (RTM). Furthermore, it is possible to prepare prepregs, in which the fiber is impregnated with the uncured resin.
  • thermosetting resins have to be kept at very low temperatures , -20°C, so that the resin does not cure. With this new thermoplastic resin, it would be possible to store the prepregs between 10-15 C without polymerizing the material , which represents significant economic savings.
  • Another advantage is that at the end of its useful life, it is possible to separate and recover the fiber and the resin by simple treatment with mild solvents such as acetone.
  • thermoplastic resins (acrylic) have been developed that can be polymerized by means of a mass polymerization reaction with thermal initiation with peroxides, which allows said polymerization reaction between the acrylic monomer and the initiator is a less exothermic and more controlled reaction than those described to date.
  • this reaction does not occur immediately, and it is possible to store the mixture at temperatures between 10-15 C without polymerizing the material for more than six months.
  • the invention relates to a process for obtaining a thermoplastic acrylic resin comprising the following steps: a) bulk polymerization by thermal initiation at a temperature between 60 and 100 °C between a monomer selected from ethyl methacrylate, methyl methacrylate, isopropyl methacrylate, t-butyl methacrylate, butyl methacrylate, ethylene acrylate, hydroxyethyl methacrylate, and trimethylolpropane triacrylate, or any combination thereof, and a radical initiator selected from between benzoyl peroxide, methyl ethyl ketone peroxide, cumyl hydroperoxide, and azobisisobutyronitrile, in a percentage between 0.5 and 5%; b) grinding of the polymer obtained in step a) until reaching a particle size between 20 and 100 pm; c) dilution of the polymer from step b) with its corresponding monomer until reaching a dynamic
  • the monomer of step a) is methyl methacrylate.
  • the concentration of the radical initiator in step a) is between 0.5 and 5% by weight, and more preferably it is 3% by weight.
  • the radical initiator of step a) is benzoyl peroxide.
  • step a) takes place at a temperature of 70 ° C.
  • the ratio in dilution stage c) between the polymer from stage a) and its corresponding monomer is between 90:10 and 70:30 monomer:polymer; more preferably the monomer:polymer ratio is 75:25.
  • the MMA:PMMA ratio is 75:25.
  • the process comprises an additional stage of curing the resin from stage d) at a temperature between 60 and 100 °C.
  • the present invention relates to a polymeric thermoplastic acrylic resin obtained according to the process of the invention described above, and characterized by having a dynamic viscosity between 100 and 1,100 cP.
  • This range of viscosities is marketed by Arkema in its acrylic resin.
  • the difference with the resin of the invention lies in the gel time or time it takes for the resin to increase its viscosity. While with the Arkema resin it occurs in about 10 minutes at room temperature, the system of the invention can remain more than two days without polymerizing at room temperature. On the other hand, the resin-initiator mixture of the invention can be stored between 10-15 ° C for more than 6 months without polymerizing, which is not possible with the Arkema resin.
  • a third aspect of the invention is the use of the polymeric thermoplastic acrylic resin obtained according to the method of the invention as described above, in the preparation of prepregs that can be stored at 10-15 ° C for more than 6 months. without polymerizing, characterized in that it comprises a fibrous material and the polymeric thermoplastic acrylic resin obtained according to the process of the invention as described above.
  • Another aspect of the present invention is a prepreg characterized in that it comprises a fibrous material and the polymeric thermoplastic acrylic resin obtained according to the process of the invention as described above.
  • the fibrous material is selected from carbon fiber, glass fiber, aramid fiber, and natural fibers, among others.
  • An additional aspect of the invention is the use of the polymeric thermoplastic acrylic resin, obtained according to the process of the invention as described above, in the preparation of polymeric composite materials.
  • Another additional aspect of the present invention is a polymeric composite material obtained by polymerization or curing, at a temperature equal to or greater than 60°C , of the polymeric thermoplastic acrylic resin of the invention, as described above, in the presence of a fibrous material.
  • a final aspect of the invention is the use of the prepreg and/or the polymeric composite material as described above in the manufacture, for example, of wind turbine blades, automobile parts, boats, sports equipment, etc. construction, among others.
  • prepreg refers to the composition comprising the polymeric thermoplastic acrylic resin of the invention together with a fibrous material selected from carbon fiber, glass fiber, aramid fiber, and natural fibers, among others.
  • This composition allows the fibrous material to be stored together with the uncured resin at a temperature of between 10-15 ° C without the material polymerizing for more than six months, which represents a considerable improvement over the prepregs currently marketed with thermosetting resins, which must be kept at very low temperatures (-20 e C) so that the resin does not cure, with the industrial and economic advantages that this entails.
  • Fig. 1 DSC curve of PMMA. Thermogram obtained under dynamic conditions in a temperature range of 40 °C to 180 °C at a heating rate of 2 q C/min by differential scanning calorimetry (DSC).
  • Fig. 2 Resin curing curves at different storage times.
  • Fig. 3 Original shape of the laminate and after molding at 1 10 °C.
  • MMA methyl methacrylate monomer
  • radical initiators such as peroxides or azo compounds.
  • peroxides such as benzoyl peroxide (PB), methyl ethyl ketone peroxide (PMEK), cumyl hydroperoxide (CHP), as well as the compound azobisisobutyronitrile (AIBN) were used in this study.
  • PB benzoyl peroxide
  • PMEK methyl ethyl ketone peroxide
  • CHP cumyl hydroperoxide
  • AIBN compound azobisisobutyronitrile
  • the polymerized MMA was characterized to determine its glass transition temperature (Tg) and molecular weight.
  • Fig. 1 shows the thermogram obtained under dynamic conditions in a temperature range of 40 °C to 180 °C at a heating rate of 2 q C/min by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • PMMA shows a Tg of 102 qC .
  • the viscosity of the resin is a key aspect for its use in the manufacture of fiber composite materials, since it has to flow easily and impregnate the fibers. Depending on the transformation technique used for the manufacture of composite materials, the viscosity of the resin should be in the range of approximately 100 to 1,100 cP.
  • PMMA was diluted, previously polymerized and ground by cryogrinding in a ball mill with liquid nitrogen cooling in a single cycle of 2 minutes at a frequency of 30 s -1 until reaching a size of particle between 20 and 100 microns, with the MMA monomer at different concentrations and is kept under gentle mechanical agitation for a minimum of 48 hours to guarantee complete and homogeneous dilution.
  • the viscosity of the resin is controlled in a viscosity range between 100 and 1100 cP, optimal viscosities for the manufacture of fiber-reinforced composite materials by any of the transformation techniques used on an industrial scale.
  • Table 2 shows the viscosity values of the systems based on the percentage of polymer diluted in the monomer, where it can be seen that the viscosity of the system increases progressively with the concentration of polymer in the mixture.
  • Another key aspect is to control the conditions of the curing reaction (temperature and time).
  • a study of the effect of the concentration of the radical initiator already used previously (benzoyl peroxide, PB) and the reaction temperature on the curing time of the resin obtained in example 1 was carried out, using a range of initiator concentration of between 0.5 and 3% by weight with respect to the resin, and a curing temperature range of between 60 and 80 qC . It is observed that the curing time decreases as the percentage of initiator in the resin increases and as the curing temperature increases (Table 3).
  • a fundamental aspect when working with a resin at an industrial level is to control the gel time, that is, the time necessary for the resin to begin to cure and increase its viscosity. It is a measure of the time available to work with the resin.
  • This MMA:PMMA/initiator system does not polymerize at room temperature for up to 7 days, unlike Arkema's commercial resin which, when the initiator is added, produces a strongly exothermic reaction, polymerizing the resin in a few minutes. at room temperature.
  • the resin developed in this invention can be stored at a temperature between 10-15 °C without polymerizing for more than 6 months.
  • the resin stability study over time was carried out through differential scanning calorimetry (DSC) tests, under isothermal conditions at 70 °C for 2 hours in a nitrogen atmosphere, to simulate industrial curing conditions.
  • the resin is stored at 10 °C and aliquots are taken at different times, 30, 60, 180 and 210 days from the preparation (control sample) (Fig. 2).
  • the curing reaction is an exothermic reaction and the peak represents the time required for the curing reaction to occur. It is observed that as the storage time of the resin increases, the curing reaction starts earlier and requires less time. This is because the resin-initiator mixture is still somewhat reactive, so polymerization starts a few minutes earlier as there are more free radicals.
  • Unidirectional carbon fiber 4-layer laminates with a dimension of 12 x 12 cm were prepared by vacuum assisted resin infusion (VARI) molding. Once the fiber is perfectly impregnated with the resin/initiator mixture, the piece is cured by applying a temperature of 70°C for 2 hours , maintaining a vacuum to achieve optimal compaction between the different sheets that make up the composite material.
  • VARI vacuum assisted resin infusion
  • the resin developed in this invention allows the preparation of very cheap prepregs, fibers preimpregnated with the uncured resin/initiator mixture.
  • commercial prepregs of thermosetting resins need to be stored below -20 °C to avoid curing, which makes this type of material more expensive.
  • the prepregs developed in this invention can be kept at 10 °C for 6 months without polymerizing, which represents considerable economic savings.
  • Prepreg can be done manually or by using impregnation equipment at room temperature and removing excess resin using a roller system.
  • the proportion of resin in these prepregs is between 30% and 35% by weight.
  • thermoplastic matrices for the manufacture of fiber-reinforced composite materials are that they can be thermoformed, unlike those prepared with thermosetting resins that are impossible to reprocess. This characteristic does not depend on the size of the part or the number of layers. This size will only influence the optimal conditions of temperature, time and/or pressure to carry out the thermoforming.
  • Example 5 The laminate prepared in Example 5 is thermoformed by applying a temperature above the Tg of the polymer, around 1 10 C, and light pressure for 5 minutes, adapting different geometric shapes that consolidate on cooling (Fig. 3).
  • thermoplastic resin designed in this invention it is possible to recover the fibers by simply diluting the matrix in a solvent.
  • laminates have been immersed in different organic solvents, such as tetrahydrofuran, chloroform, acetone, toluene or dichloromethane for two days, easily recovering the fiber in optimal conditions. conditions (Fig. 4). Approximately 95% of the resin impregnated in the fiber is removed. Using a rotary evaporator at room temperature, the polymer extracted from the composite material and the solvent are separated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Multicomponent Fibers (AREA)
  • Laminated Bodies (AREA)

Abstract

La presente invención se refiere a la fabricación de materiales compuestos poliméricos reforzados con fibras (FRP) basados en matrices termoplásticas (FRTP), en estado líquido, que permiten almacenar los preimpregnados entre los 10-15 ºC sin que polimerice el material durante más de seis meses.

Description

Polímeros reforzados con fibras basados en matrices termoplásticas
DESCRIPCIÓN
La presente invención se refiere a la fabricación de materiales compuestos poliméricos reforzados con fibras (FRP) basados en matrices termoplásticas (FRTP), en estado líquido, que permiten almacenar los preimpregnados entre los 10-15 eC sin que polimerice el material durante más de seis meses.
ANTECEDENTES DE LA INVENCIÓN
Los materiales compuestos poliméricos reforzados con fibras (FRP) consisten en fibras de alta resistencia y módulo adheridas a una matriz polimérica. Estos materiales exhiben entre otras características, unas excelentes propiedades mecánicas superiores a la de los materiales convencionales, alta resistencia a fatiga y a la corrosión, buena estabilidad dimensional, además de ser muy ligeros. Por todo ello, estos materiales cada vez tienen un peso específico más importante como materiales estructurales en un amplio sector de aplicaciones como la industria aeronáutica, aeroespacial, automovilística, eólica, entre otras.
Actualmente, estos materiales están constituidos por fibra larga o continua, unidireccional o tejido, y una matriz termoestable. El principal inconveniente que presentan estos materiales es que una vez que la matriz cura, se forman un gran número de entrecruzamientos químicos que dan lugar a una red tridimensional irreversible. Es decir, estos materiales no se pueden volver a transformar ni a termoconformar, y además dificulta su reciclado. Para intentar resolver este problema, existe un enorme interés en desarrollar FRP basados en matrices termoplásticas (FRTP). Estos polímeros sí permiten reprocesar el material a temperaturas por encima de su temperatura de fusión. Sin embargo, la mayoría de los avances en este campo se han limitado al uso de fibra corta ya que las técnicas de transformación convencionales de matrices termoplásticas, como la extrusión e inyección, no permiten incorporar fibra larga. Las propiedades de los materiales compuestos reforzados con fibra corta son inferiores a las que se alcanzan con la fibra larga. A día de hoy, se comercializan cintas de fibra larga con matriz termoplástica, pero para su procesado se requieren altas temperaturas para fundir la matriz. Es un proceso complejo y más costoso que con matrices termoestables, ya que requiere una infraestructura y técnicas más caras.
Por lo tanto, es necesario desarrollar FRTPs que se puedan procesar por las técnicas convencionales que se usan para desarrollar los FRP con matriz termoestable. Para ello, es necesario utilizar matrices termoplásticas en estado líquido con baja viscosidad que permitan la impregnación de las fibras y que, posteriormente, polimericen al aplicar temperatura. En los últimos años, Arkema ha desarrollado una familia de resinas termoplásticas, denominadas elium® resins basadas en matrices acrílicas, concretamente un metacñlato de metilo que polimeñza en presencia de un catalizador tipo peróxido. Se ha demostrado que esta resina impregna fácilmente en la fibra utilizando las mismas técnicas de transformación empleadas con las resinas termoestables. Arkema ha producido materiales compuestos con fibra larga de vidrio o carbono con buenas características mecánicas, que se pueden termoconformar al aplicar temperatura.
Sin embargo, el principal inconveniente de este sistema es que la polimerización entre la resina y el peróxido se lleva a cabo mediante reacciones redox muy exotérmicas y que ocurre de manera prácticamente inmediata, lo que limita el tiempo de trabajo (tiempo de gel).
DESCRIPCIÓN DE LA INVENCIÓN
Teniendo en cuenta el estado del arte previo y los problemas identificados, en la presente invención se ha desarrollado una resina acrílica mediante una reacción de polimerización en masa con una iniciación térmica con peróxidos.
De este modo, la polimerización entre el monómero acrílico y el iniciador es una reacción menos exotérmica y más controlada, no ocurre de manera inmediata, y es posible almacenar la mezcla a temperaturas entre los 10-15 eC sin que polimehce el material, lo que facilita su trabajo. La resina se prepara en un amplio rango de viscosidades comprendidas entre los 100 y los 1 100 cP, por lo que se puede usar en cualquier técnica de transformación de FRP, como el moldeo por contacto a mano, pultrusion, enrollamiento filamentario, infusión de resina, moldeo por compresión de laminados (SMC) o moldeo por transferencia de resina (RTM). Además, es posible preparar preimpregnados, en los que la fibra se encuentra impregnada con la resina sin curar. Los preimpregnados que se comercializan actualmente con resinas termoestables se tienen que conservar a temperaturas muy bajas, -20 eC, para que no cure la resina. Con esta nueva resina termoplástica, sería posible almacenar los preimpregnados entre los 10-15 eC sin que polimerice el material, lo cual supone un importante ahorro económico.
Además, otra ventaja, es que al final de su vida útil, es posible separar y recuperar la fibra y la resina por simple tratamiento con disolventes suaves como la acetona.
Por lo tanto, en la presente invención se ha desarrollado una serie de nuevas resinas termoplásticas (acrílica) que pueden ser polimerizadas mediante una reacción de polimerización en masa con iniciación térmica con peróxidos, que permite que dicha reacción de polimerización entre el monómero acrílico y el iniciador sea una reacción menos exotérmica y más controlada que las descritas hasta la fecha.
Además, tal y como se ha mencionado anteriormente, esta reacción no ocurre de manera inmediata, y es posible almacenar la mezcla a temperaturas entre los 10-15 eC sin que polimerice el material durante más de seis meses.
Por lo tanto, en un primer aspecto, la invención se refiere a un procedimiento de obtención de una resina acrílica termoplástica que comprende las siguientes etapas: a) polimerización en masa por iniciación térmica a una temperatura comprendida entre 60 y 100eC entre un monómero seleccionado de entre metacrilato de etilo, metacrilato de metilo, metacrilato de isopropilo, metacrilato de t-butilo, metacrilato de butilo, acrilato de etileno, metacrilato de hidroxietilo, y triacrilato de trimetilolpropano, o cualquiera de sus combinaciones, y un iniciador radicálico seleccionado de entre peróxido de benzoilo, peróxido de metil etil cetona, hidroperóxido de cumilo, y azobisisobutironitrilo, en un porcentaje comprendido entre el 0,5 y el 5%; b) molienda del polímero obtenido en la etapa a) hasta alcanzar un tamaño de partícula comprendido entre 20 y 100 pm; c) dilución del polímero procedente de la etapa b) con su correspondiente monómero hasta alcanzar una viscosidad dinámica comprendida entre 100 y 1100 cP medida en un viscosímetro Brookfield a 20 °C y con una velocidad de rotor de 200 rpm; d) dilución del mismo iniciador radicálico usado en la etapa a) en la dilución obtenida en la etapa c) a temperatura ambiente y hasta alcanzar un porcentaje de iniciador comprendido entre el 0,5 y el 3%.
En una realización preferida el monómero de la etapa a) es metacrilato de metilo.
En otra realización preferida, la concentración del iniciador radicálico de la etapa a) está comprendida entre el 0,5 y un 5% en peso, y más preferiblemente es de un 3% en peso.
En otra realización preferida, el iniciador radicálico de la etapa a) es peróxido de benzoilo.
En otra realización preferida, la iniciación térmica de la etapa a) transcurre a una temperatura de 70eC.
En otra realización preferida, la proporción en la etapa de dilución c) entre el polímero procedente de la etapa a) y su monómero correspondiente está comprendida entre 90:10 y 70:30 monómero:polímero; más preferiblemente la relación monómero:polímero es de 75:25.
Más preferiblemente, cuando el monómero en la etapa a) es metacrilato de metilo obteniéndose PMMA en la polimerización, y el monómero de dilución de la etapa c) es metacrilato de metilo (MMA), la relación MMA:PMMA es de 75:25.
En otra realización preferida, el procedimiento comprende una etapa adicional de curado de la resina procedente de la etapa d) a una temperatura comprendida entre 60 y 100eC.
En un segundo aspecto, la presente invención se refiere a una resina acrílica termoplástica polimérica obtenida según el procedimiento de la invención descrito anteriormente, y caracterizada por presentar una viscosidad dinámica comprendida entre 100 y 1 100 cP.
Este rango de viscosidades lo comercializa Arkema en su resina acrílica. Sin embargo, la diferencia con la resina de la invención reside en el tiempo de gel o tiempo que tarda la resina en aumentar su viscosidad. Mientras que con la resina de Arkema ocurre en alrededor de 10 minutos a temperatura ambiente, el sistema de la invención puede permanecer más de dos días sin polimerizar a temperatura ambiente. Por otro lado, la mezcla resina-iniciador de la invención se puede almacenar entre 10-15 eC durante más de 6 meses sin polimerizar, lo que no es posible con la resina de Arkema.
Un tercer aspecto de la invención es el uso de la resina acrílica termoplástica polimérica obtenida según el procedimiento de la invención tal y como se ha descrito anteriormente, en la preparación de preimpregnados que se pueden almacenar a 10-15 eC durante más de 6 meses sin que polimericen, caracterizado por que comprende un material fibroso y la resina acrílica termoplástica polimérica obtenida según el procedimiento de la invención tal y como se ha descrito anteriormente.
Otro aspecto de la presente invención es un preimpregnado caracterizado porque comprende un material fibroso y la resina acrílica termoplástica polimérica obtenida según el procedimiento de la invención tal y como se ha descrito anteriormente.
En una realización preferida el material fibroso se selecciona de entre fibra de carbono, fibra de vidrio, fibra de aramida, y fibras naturales, entre otras.
Un aspecto adicional de la invención es el uso de la resina acrílica termoplástica polimérica, obtenida según el procedimiento de la invención tal y como se ha descrito anteriormente, en la preparación de materiales compuestos poliméricos.
Otro aspecto adicional de la presente invención es un material compuesto polimérico obtenido por polimerización o curado, a una temperatura igual o superior a 60eC, de la resina acrílica termoplástica polimérica de la invención, tal como se ha descrito anteriormente, en presencia de un material fibroso.
Un último aspecto de la invención es el uso del preimpregnado y/o del material compuesto polimérico tal y como se ha descrito anteriormente en la fabricación, por ejemplo, de las palas de los aerogeneradores eólicos, piezas del automóvil, embarcaciones, material de deporte, construcción, entre otros.
En la presente invención el término “preimpregnado” se refiere a la composición que comprende la resina acrílica termoplástica polimérica de la invención junto con un material fibroso seleccionado de entre fibra de carbono, fibra de vidrio, fibra de aramida, y fibras naturales, entre otros. Esta composición permite almacenar el material fibroso junto con la resina sin curar a una temperatura de entre los 10-15 eC sin que polimerice el material durante más de seis meses, lo que supone una mejora considerable frente a los preimpregnados que se comercializan actualmente con resinas termoestables, que se deben conservar a temperaturas muy bajas (-20 eC) para que no cure la resina, con las ventajas industriales y económicas que eso conlleva.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Fig. 1. Curva DSC del PMMA. Termograma obtenido en condiciones dinámicas en un rango de temperatura de 40 °C a 180 °C a una velocidad de calentamiento de 2 qC/min por calorimetría diferencial de barrido (DSC).
Fig. 2. Curvas de curado de la resina a distintos tiempos de almacenamiento.
Fig. 3. Forma original del laminado y tras moldearse a 1 10 °C.
Fig. 4. Fibra de carbono recuperada tras sumergir el laminado en acetona.
EJEMPLOS
A continuación, se ¡lustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención.
Ejemplo 1. Polimerización del monómero metil metacrilato (MMA) en presencia de iniciadores radicálicos
La polimerización del monómero metacrilato de metilo (MMA) se llevó a cabo a través de una reacción en masa mediante una iniciación térmica en presencia de iniciadores radicálicos tipo peróxidos o compuestos azo. En este estudio se utilizaron distintos peróxidos tales como el peróxido de benzoilo (PB), peróxido de metil etil cetona (PMEK), hidroperóxido de cumilo (CHP), así como el compuesto azobisisobutironitrilo (AIBN).
Para optimizar el tiempo y la temperatura mínima de polimerización de estos iniciadores, se seleccionó una cantidad fija de 5 g de MMA mezclada con un 3% en peso de iniciador.
Las muestras se sumergieron en un baño de silicona a la temperatura deseada, controlada por una placa calefactora que permitió la transmisión de calor homogénea en todo el baño. Las temperaturas y tiempos óptimos para cada iniciador se recogen en la tabla 1 .
Tabla 1. Tiempos y temperaturas óptimos para la polimerización de MMA con distintos iniciadores
Figure imgf000008_0001
El MMA polimeñzado (PMMA) se caracterizó para determinar su temperatura de transición vitrea (Tg) y peso molecular. La Fig. 1 muestra el termograma obtenido en condiciones dinámicas en un rango de temperatura de 40 °C a 180 °C a una velocidad de calentamiento de 2 qC/min por calorimetría diferencial de barrido (DSC). El PMMA muestra una Tg de 102 qC.
Ejemplo 2. Caracterización de la viscosidad de la resina
La viscosidad de la resina es un aspecto clave para su uso en la fabricación de materiales compuestos con fibras, ya que tiene que fluir fácilmente e impregnar las fibras. Dependiendo de la técnica de transformación que se utilice para la fabricación de materiales compuestos, la viscosidad de la resina debe estar en el rango de 100 a 1 100 cP aproximadamente. La viscosidad de la resina, mezcla de MMA y un 3% de PB, medido en un viscosímetro Brookfield a 20 °C y con una velocidad de rotor de 200 rpm es de 0,62 cP.
Para elevar la viscosidad por encima de los 100 cP se diluyó PMMA, previamente polimerizado y molido mediante criomolienda en un molino de bolas con refrigeración de nitrógeno líquido en un único ciclo de 2 minutos a una frecuencia de 30 s-1 hasta alcanzar un tamaño de partícula de entre 20 y 100 mieras, con el monómero de MMA a distintas concentraciones y se mantiene en agitación mecánica suave durante un mínimo de 48 horas para garantizar una dilución completa y homogénea.
De esta manera se controla la viscosidad de la resina en un rango de viscosidad comprendido entre 100 y 1100 cP, viscosidades óptimas para la fabricación de materiales compuestos reforzados con fibra por cualquiera de las técnicas de transformación usadas a escala industrial.
En la Tabla 2, se indican los valores de la viscosidad de los sistemas en función del porcentaje de polímero diluido en el monómero, donde se aprecia que la viscosidad del sistema aumenta progresivamente con la concentración de polímero en la mezcla.
Tabla 2. Valores de viscosidad de la resina en función de la concentración de MMA
Figure imgf000009_0001
Por los valores de viscosidad, se seleccionó la resina con una relación MMA:PMMA 75:25, aunque los procedimientos son igualmente válidos para cualquiera de las proporciones estudiadas.
Ejemplo 3. Optimización de los parámetros de la reacción de curado
Otro aspecto clave es controlar las condiciones de la reacción de curado (temperatura y tiempo). Para ello, se llevó a cabo un estudio del efecto de la concentración del iniciador radicálico ya empleado anteriormente (peróxido de benzoilo, PB) y la temperatura de reacción sobre el tiempo de curado de la resina obtenida en el ejemplo 1 , empleándose un rango de concentración de iniciador de entre 0,5 y 3 % en peso respecto a la resina, y un rango de temperaturas de curado de entre 60 y 80 qC. Se observa que el tiempo de curado disminuye a medida que aumenta el porcentaje de iniciador en la resina y al aumentar la temperatura de curado (Tabla 3).
Tabla 3. Tiempo de curado (en minutos) de la resina en función de la concentración de PB y de la temperatura de curado
Figure imgf000010_0001
Además, se estudió el efecto de estos factores, porcentaje de iniciador y temperatura de curado, sobre la Tg de la resina en un DSC siguiendo el protocolo previamente descrito (Tabla 4). Se observa que la Tg disminuye progresivamente al aumentar la concentración de iniciador y no se aprecia una tendencia clara con la temperatura de curado.
Tabla 4. Temperatura de transición vitrea de la resina en función del contenido de iniciador y de la temperatura de curado
Figure imgf000010_0002
Ejemplo 4. Estabilidad de la mezcla resina-iniciador
Un aspecto fundamental a la hora de trabajar con una resina a nivel industrial, es controlar el tiempo de gel, es decir, el tiempo necesario para que empiece a curar la resina y aumente su viscosidad. Es una medida del tiempo disponible para trabajar con la resina. Este sistema MMA:PMMA/inic¡ador no polimeriza a temperatura ambiente hasta los 7 días, a diferencia de la resina comercial de Arkema que al añadir el iniciador produce una reacción fuertemente exotérmica polimehzando la resina en pocos minutos a temperatura ambiente.
Además, la resina desarrollada en esta invención se puede almacenar a una temperatura entre 10-15 °C sin que polimerice durante más de 6 meses.
El estudio de estabilidad de la resina con el tiempo se realizó a través de ensayos de calorimetría diferencial de barrido (DSC), en condiciones isotermas a 70 °C durante 2 horas en atmósfera de nitrógeno, para simular las condiciones de curado a nivel industrial. La resina se almacena a 10 °C y se van tomando alícuotas a distintos tiempos, 30, 60, 180 y 210 días desde la preparación (muestra control) (Fig. 2). La reacción de curado es una reacción exotérmica y el pico representa el tiempo necesario para que se produzca la reacción de curado. Se observa que a medida que aumenta el tiempo de almacenamiento de la resina, la reacción de curado se inicia antes y requiere un menor tiempo. Esto se debe a que la mezcla resina-iniciador sigue siendo algo reactiva, por lo que la polimerización se inicia unos minutos antes al haber más radicales libres. Sin embargo, este cambio es bastante insignificante, habiendo una diferencia de tiempos de inicio de polimerización de apenas 8 minutos entre la muestra almacenada durante 210 días (7 meses) y la muestra control (0 días). Se puede concluir que el almacenamiento de la resina a 10 °C es viable, ya que ralentiza la reactividad inherente de la misma lo suficiente como para mantener la vida útil de la resina por encima de los 6 meses.
Ejemplo 5. Preparación de materiales compuestos reforzados de fibra de carbono
Se prepararon laminados de 4 capas de fibra de carbono unidireccional con una dimensión de 12 x 12 cm, mediante moldeo por infusión de resina asistida por vacío (VARI). Una vez perfectamente impregnada la fibra por la mezcla resina/iniciador, se cura la pieza aplicando una temperatura de 70 eC durante 2 horas manteniendo el vacío para conseguir una óptima compactación entre las diferentes láminas que forman el material compuesto.
Ejemplo 6. Preparación de preimpregnados y estabilidad
La resina desarrollada en esta invención permite la preparación de preimpregnados, fibras preimpregnadas con la mezcla resina/iniciador sin curar, muy económicos. Actualmente los preimpregnados comerciales de resinas termoestables necesitan almacenarse por debajo de los -20 °C para evitar su curado, lo que encarece este tipo de materiales. Los preimpregnados desarrollados en esta invención se pueden mantener a 10 °C durante 6 meses sin que polimerice, lo que supone un ahorro económico considerable. La preimpregnación puede realizarse de manera manual o mediante el empleo de equipos de impregnación a temperatura ambiente y eliminando el exceso de resina mediante un sistema de rodillos. La proporción de resina en estos preimpregnados es entre un 30% y un 35% en peso.
Ejemplo 7. Termoconformado del material compuesto reforzado de fibra de carbono de la invención
Una de las principales ventajas de utilizar matrices termoplásticas para la fabricación de materiales compuestos reforzados con fibras es que se puede termoconformar, a diferencia de los preparados con resinas termoestables que son imposibles de reprocesar. Esta característica no depende del tamaño de la pieza ni del número de capas. Este tamaño sólo influirá en las condiciones óptimas de temperatura, tiempo y/o presión para realizar el termoconformado.
El laminado preparado en el ejemplo 5 se termoconforma con la aplicación de una temperatura por encima de la Tg del polímero, alrededor de 1 10 eC, y una ligera presión durante 5 minutos, adaptando distintas formas geométricas que se consolidan al enfriar (Fig. 3).
Ejemplo 8. Reciclado de fibras procedentes del material compuesto de la invención
Los materiales compuestos reforzados con fibras convencionales con matrices termoestables no se pueden reciclar y la única forma de recuperar la fibra, componente mayoñtaño y más costoso del material compuesto, es mediante procesos complicados de combustión a temperaturas elevadas, por encima de los 600 qC, lo que produce además daños en la superficie de las fibras. Sin embargo, utilizando la resina termoplástica diseñada en esta invención es posible recuperar las fibras por simple dilución de la matriz en un disolvente. Para comprobarlo, se han sumergido laminados en diferentes disolventes orgánicos, como el tetrahidrofurano, cloroformo, acetona, tolueno o diclorometano durante dos días, recuperándose fácilmente la fibra en óptimas condiciones (Fig. 4). Aproximadamente, se elimina un 95 % de la resina impregnada en la fibra. Mediante un equipo de rotavapor a temperatura ambiente se separa el polímero extraído del material compuesto y el disolvente.

Claims

REIVINDICACIONES
1 . Procedimiento de obtención de una resina acrílica termoplástica que comprende las siguientes etapas: a) polimerización en masa por iniciación térmica a una temperatura comprendida entre 60 y 100eC entre un monómero seleccionado de entre metacrilato de etilo, metacrilato de metilo, metacrilato de isopropilo, metacrilato de t-butilo, metacrilato de butilo, acrilato de etileno, metacrilato de hidroxietilo, y triacrilato de trimetilolpropano, o cualquiera de sus combinaciones, y un iniciador radicálico seleccionado de entre peróxido de benzoilo, peróxido de metil etil cetona, hidroperóxido de cumilo, y azobisisobutironitrilo ; b) molienda del polímero obtenido en la etapa a) hasta alcanzar un tamaño de partícula comprendido entre 20 y 100 pm; c) dilución del polímero procedente de la etapa b) con su correspondiente monómero hasta alcanzar una viscosidad dinámica comprendida entre 100 y 1100 cP medida en un viscosímetro Brookfield a 20 °C y con una velocidad de rotor de 200 rpm; d) dilución del mismo iniciador radicálico usado en la etapa a) en la dilución obtenida en la etapa c) a temperatura ambiente y hasta alcanzar un porcentaje de iniciador comprendido entre el 0,5 y el 3%.
2. Procedimiento según la reivindicación anterior donde el monómero de la etapa a) es metacrilato de metilo.
3. Procedimiento según cualquiera de las reivindicaciones anteriores donde la concentración del iniciador radicálico de la etapa a) está comprendida entre el 0,5 y un 5% en peso.
4. Procedimiento según la reivindicación anterior donde la concentración del iniciador es de un 3% en peso.
5. Procedimiento según cualquiera de las reivindicaciones anteriores donde el iniciador es peróxido de benzoilo.
6. Procedimiento según cualquiera de las reivindicaciones anteriores donde la iniciación térmica de la etapa a) transcurre a una temperatura de 70eC.
7. Procedimiento según cualquiera de las reivindicaciones anteriores donde la proporción en la etapa de dilución c) entre el polímero procedente de la etapa a) y su monómero correspondiente está comprendida entre 90:10 y 70:30 monómero:polímero.
8. Procedimiento según la reivindicación anterior donde la proporción entre el monómero y su polímero correspondiente procedente de la etapa a) es de 75:25.
9. Procedimiento según cualquiera de las reivindicaciones anteriores que comprende una etapa adicional de curado de la resina procedente de la etapa d) a una temperatura comprendida entre 60 y 100eC.
10. Resina acrílica termoplástica polimérica obtenida según cualquiera de las reivindicaciones 1 a 8.
11 . Uso de la resina acrílica termoplástica polimérica según la reivindicación anterior para la preparación de un preimpregnado caracterizado por que comprende un material fibroso y dicha resina acrílica termoplástica polimérica.
12. Preimpregnado caracterizado por que comprende un material fibroso y la resina acrílica termoplástica polimérica según la reivindicación 10.
13. Preimpregnado según la reivindicación anterior donde el material fibroso se selecciona de entre fibra de carbono, fibra de vidrio, fibra de aramida, y fibras naturales.
14. Uso de la resina acrílica termoplástica polimérica según la reivindicación 10 para la preparación de materiales compuestos poliméricos.
15. Material compuesto polimérico caracterizado por que se obtiene por polimerización de la resina acrílica termoplástica polimérica según la reivindicación 10 a una temperatura igual o superior a 60eC en presencia de un material fibroso.
16. Material compuesto según la reivindicación anterior donde el material fibroso se selecciona de entre fibra de carbono, fibra de vidrio, fibra de aramida, y fibras naturales. 15 Uso del preimpregnado cualquiera de las reivindicaciones 12 a 13 y/o del material compuesto según la cualquiera de las reivindicaciones 15 a 16 para la fabricación de las palas de aerogeneradores eólicos, piezas del automóvil, embarcaciones, material de deporte, y construcción.
PCT/ES2021/070751 2020-10-15 2021-10-14 Polímeros reforzados con fibras basados en matrices termoplásticas WO2022079336A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21879583.9A EP4230695A1 (en) 2020-10-15 2021-10-14 Fibre-reinforced polymers based on thermoplastic matrices
US18/032,079 US20230383028A1 (en) 2020-10-15 2021-10-14 Fibre-reinforced polymers based on thermoplastic matrices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202031042A ES2906674B2 (es) 2020-10-15 2020-10-15 Polimeros reforzados con fibras basados en matrices termoplasticas
ESP202031042 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022079336A1 true WO2022079336A1 (es) 2022-04-21

Family

ID=81207759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070751 WO2022079336A1 (es) 2020-10-15 2021-10-14 Polímeros reforzados con fibras basados en matrices termoplásticas

Country Status (4)

Country Link
US (1) US20230383028A1 (es)
EP (1) EP4230695A1 (es)
ES (1) ES2906674B2 (es)
WO (1) WO2022079336A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017095893A1 (en) * 2015-12-02 2017-06-08 Arkema Inc. Peroxy ester cure of liquid prepolymer compositions
US20180179105A1 (en) * 2015-06-05 2018-06-28 Arkema France Method for impregnating a fibrous substrate with a methacrylic mixture comprising a flame-retardant substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180179105A1 (en) * 2015-06-05 2018-06-28 Arkema France Method for impregnating a fibrous substrate with a methacrylic mixture comprising a flame-retardant substance
WO2017095893A1 (en) * 2015-12-02 2017-06-08 Arkema Inc. Peroxy ester cure of liquid prepolymer compositions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BALKE, S. T. ET AL.: "Bulk Polymerization of Methyl Methacrylate", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 17, 1973, pages 905 - 949, XP055934666, DOI: 10.1002/app.l973.070170320 *
CHARLIER, Q. ET AL.: "Rheokinetic study of acrylic reactive mixtures dedicated to fast processing of fiber-reinforced thermoplastic composites", JOURNAL OF APLLIED POLYMER SCIENCE, vol. 136, 2019, pages 1 - 9, XP055934660, DOI: 10.1002/APP.47391 *
KAZEMI, M. E. ET AL.: "Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium", COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING, vol. 125, 2019, pages 1 - 12, XP085790499, DOI: 10.1016/j.compositesa.2019.105523 *

Also Published As

Publication number Publication date
ES2906674A1 (es) 2022-04-19
EP4230695A1 (en) 2023-08-23
ES2906674B2 (es) 2022-11-17
US20230383028A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
JP6778309B2 (ja) イン・サイテュ重合で得られる熱可塑性(メタ)アクリル樹脂の複合材料と、その使用
US10882966B2 (en) Liquid (meth)acrylic syrup for impregnating a fibrous substrate, method for impregnating a fibrous substrate, and composite material produced after polymerisation of said pre-impregnated substrate
AU2012356792B2 (en) Improvements in or relating to fibre reinforced composites
CN103965582A (zh) 用于拉挤成型工艺的碳纳米双固化树脂基体及复合材料
CN109563291B (zh) 包含纤维材料、多级聚合物和(甲基)丙烯酸系聚合物的组合物、其制备方法及其用途
JP5815555B2 (ja) エンジニアリング熱可塑性樹脂中の多官能性添加剤
CN103025508A (zh) 液态树脂注入用的改性树脂体系及其加工方法
Timoshkin et al. Heat-resistant carbon fiber reinforced plastics based on a copolymer of bisphthalonitriles and bisbenzonitrile
ES2906674B2 (es) Polimeros reforzados con fibras basados en matrices termoplasticas
JP5099998B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
CN108316016A (zh) 一种超高分子量聚乙烯纤维防弹复合材料及制备方法
CN110202905A (zh) 原位三维树脂复合材料及其应用
JP2000281747A (ja) 複合材料用エポキシ樹脂組成物
CN109563290B (zh) 预成型体、其制备方法及其用途
JP2017523293A (ja) 可逆的に架橋したポリマーエマルションを含む複合材料半製品を製造するためのキット
WO2000053654A1 (fr) Composition de resine epoxy, composition de resine epoxy pour materiau composite a fibres, et materiau composite a fibres contenant ladite composition
US20230212356A1 (en) Sulfur-containing material and use thereof
Isna et al. Effect of Post-Curing Heat Treatment on Tensile Properties of Carbon UD/Vinyl Ester Composite with VARI Manufacturing Method
CN108329879A (zh) 一种用于玻璃钢的耐腐蚀胶粘剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879583

Country of ref document: EP

Effective date: 20230515

WWE Wipo information: entry into national phase

Ref document number: 18032079

Country of ref document: US